WorldWideScience

Sample records for halide scintillators properties

  1. Lanthanum halide scintillators: Properties and applications

    International Nuclear Information System (INIS)

    Iltis, Alain; Mayhugh, M.R.; Menge, P.; Rozsa, C.M.; Selles, O.; Solovyev, V.

    2006-01-01

    BrilLanCe[reg]-350 and BrilLanCe[reg]-380, Saint-Gobain Crystals' trade-names for LaCl 3 :Ce and LaBr 3 :Ce are being brought to market under exclusive license to Delft and Bern Universities. We are reporting the properties of crystals produced with commercially viable processes and find they match others' observations. These scintillators are bright (60,000 photons/MeV for LaBr 3 :Ce) and have very linear response, a combination that leads to very good energy resolution ( 3 :Ce). The materials also have fast scintillation decay times ( 3 :Ce). These excellent properties are retained at high temperature with only moderate light loss ( 138 and Ac 227 , the latter having been substantially reduced in recent processing. BrilLanCe[reg]-350 is now available in detectors up to 51 mm diameter while 38 mm diameter is available for BrilLanCe[reg]-380. Larger sizes are expected

  2. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  3. Cerium doped lanthanum halides: fast scintillators for medical imaging

    International Nuclear Information System (INIS)

    Selles, O.

    2006-12-01

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl 3 :Ce 3+ and LaBr 3 :Ce 3+ ).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce 3+ ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  4. Alkali metal and alkali earth metal gadolinium halide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  5. Development and melt growth of novel scintillating halide crystals

    Science.gov (United States)

    Yoshikawa, Akira; Yokota, Yuui; Shoji, Yasuhiro; Kral, Robert; Kamada, Kei; Kurosawa, Shunsuke; Ohashi, Yuji; Arakawa, Mototaka; Chani, Valery I.; Kochurikhin, Vladimir V.; Yamaji, Akihiro; Andrey, Medvedev; Nikl, Martin

    2017-12-01

    Melt growth of scintillating halide crystals is reviewed. The vertical Bridgman growth technique is still considered as very popular method that enables production of relatively large and commercially attractive crystals. On the other hand, the micro-pulling-down method is preferable when fabrication of small samples, sufficient for preliminary characterization of their optical and/or scintillation performance, is required. Moreover, bulk crystal growth is also available using the micro-pulling-down furnace. The examples of growths of various halide crystals by industrially friendly melt growth techniques including Czochralski and edge-defined film-fed growth methods are also discussed. Finally, traveling molten zone growth that in some degree corresponds to horizontal zone melting is briefly overviewed.

  6. Waveshifting fiber readout of lanthanum halide scintillators

    International Nuclear Information System (INIS)

    Case, G.L.; Cherry, M.L.; Stacy, J.G.

    2006-01-01

    Newly developed high-light-yield inorganic scintillators coupled to waveshifting optical fibers provide the capability of efficient X-ray detection and millimeter scale position resolution suitable for high-energy cosmic ray instruments, hard X-ray/gamma ray astronomy telescopes and applications to national security. The CASTER design for NASA's proposed Black Hole Finder Probe mission, in particular, calls for a 6-8 m 2 hard X-ray coded aperture imaging telescope operating in the 20-600 keV energy band, putting significant constraints on cost and readout complexity. The development of new inorganic scintillator materials (e.g., cerium-doped LaBr 3 and LaCl 3 ) provides improved energy resolution and timing performance that is well suited to the requirements for national security and astrophysics applications. LaBr 3 or LaCl 3 detector arrays coupled with waveshifting fiber optic readout represent a significant advance in the performance capabilities of scintillator-based gamma cameras and provide the potential for a feasible approach to affordable, large area, extremely sensitive detectors. We describe some of the applications and present laboratory test results demonstrating the expected scintillator performance

  7. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    International Nuclear Information System (INIS)

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  8. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  9. Scintillation properties of GSO

    International Nuclear Information System (INIS)

    Melcher, C.L.; Schweitzer, J.S.; Utsu, T.; Akiyama, S.

    1990-01-01

    The timing properties of Gd 2 SiO 5 :Ce (GSO) single crystal scintillators have previously been evaluated for positron emission tomography applications. The measured time resolution, however, was worse than expected from calculations based on photoelectron yield and a 60 nanosecond exponential decay constant, leading us to further investigate GSO's basic properties. With a time-correlated-single-photon technique, the authors have found two decay components, one of 56 ns and one of 600 ns, the latter containing 10--15% of the total scintillation output. This may explain the difference between the experimental and theoretical time resolutions and confirms a previous hypothesis of a long decay component. In addition, the authors have found that each component's decay constant strongly depends on the cerium concentration. The primary component varies from ∼ 20 ns to ∼ 190 ns and the secondary component varies from ∼ 70 ns to ∼ 1200 ns as the cerium concentration is varied from 5.0 mol% to 0.1 mol%

  10. Properties of scintillator solutes

    International Nuclear Information System (INIS)

    Fluornoy, J.M.

    1998-06-01

    This special report summarizes measurements of the spectroscopic and other properties of the solutes that were used in the preparation of several new liquid scintillators developed at EG and G/Energy Measurements/Santa Barbara Operations (the precursor to Bechtel Nevada/Special Technologies Laboratory) on the radiation-to-light converter program. The data on the individual compounds are presented in a form similar to that used by Prof. Isadore Berlman in his classic handbook of fluorescence spectra. The temporal properties and relative efficiencies of the new scintillators are presented in Table 1, and the efficiencies as a function of wavelength are presented graphically in Figure 1. In addition, there is a descriptive glossary of the abbreviations used herein. Figure 2 illustrates the basic structures of some of the compounds and of the four solvents reported in this summary. The emission spectra generally exhibit more structure than the absorption spectra, with the result that the peak emission wavelength for a given compound may lie several nm away from the wavelength, λ avg , at the geometric center of the emission spectrum. Therefore, the author has chosen to list absorption peaks, λ max , and emission λ avg values in Figures 3--30, as being most illustrative of the differences between the compounds. The compounds, BHTP, BTPB, ADBT, and DPTPB were all developed on this program. P-terphenyl, PBD, and TPB are commercially available blue emitters. C-480 and the other longer-wavelength emitters are laser dyes available commercially from Exciton Corporation. 1 ref., 30 figs

  11. Physicochemical properties of mixed phosphorus halides

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Tugarinova, N.S.

    1996-01-01

    Certain physicochemical properties (thermodynamic characteristics at boiling point, critical constants, density of liquid on the saturation line) of mixed phosphorus halides (PI 3 , PI 2 F, PIF 2 , PI 2 Cl, PICl 2 , PI 1 Br, PIBr 2 , PIClF, PIBrCl, etc.) are determined by means of approximate methods. Reliability of the results obtained is confirmed by comparison of calculated and experimental data for phosphorus compounds of the same type. 7 refs., 3 figs., 4 tabs

  12. Scintillating properties of frozen new liquid scintillators

    CERN Document Server

    Britvich, G I; Golovkin, S V; Martellotti, G; Medvedkov, A M; Penso, G; Soloviev, A S; Vasilchenko, V G

    1999-01-01

    The light emission from scintillators which are liquid at room temperature was studied in the interval between $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C, where the phase transition from liquid to solid takes place. The light yield measured at $-120$~$^{\\circ}$C is about twice as much as that observed at $+20$~$^{\\circ}$C. By cooling the scintillator from $+20$~$^{\\circ}$C to $-120$~$^{\\circ}$C and then heating it from $-120$~$^{\\circ}$C to $+20$~$^{\\circ}$C, the light yield varies in steps at well defined temperatures, which are different for the cooling and heating processes. These hysteresis phenomena appear to be related to the solvent rather than to the dopant. The decay time of scintillation light was measured at $+20$~$^{\\circ}$C and $-120$~$^{\\circ}$C. Whilst at room temperature most of the light is emitted with a decay time of 6--8 ns, at $-120$~$^{\\circ}$C a slower component, with a decay time of 25--35 ns, becomes important.

  13. Cerium doped lanthanum halides: fast scintillators for medical imaging; Halogenures de lanthane dopes cerium des scintillateurs rapides pour l'imagerie medicale

    Energy Technology Data Exchange (ETDEWEB)

    Selles, O

    2006-12-15

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl{sub 3}:Ce{sup 3+} and LaBr{sub 3}:Ce{sup 3+}).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce{sup 3+} ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  14. Scintillation properties of acrylate based plastic scintillator by photoploymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Hwan [Dept. of Radiological Science, Cheongju University, Cheongju (Korea, Republic of); Lee, Joo Il [Dept. of of Radiology, Daegu Health College, Daegu (Korea, Republic of)

    2016-12-15

    In this study, we prepared and characterized a acrylate based UV-curable plastic scintillator. It was used co-polymers TMPTA, DHPA and Ultima GoldTM LLT organic scintillator. The emission spectrum of the plastic scintillator was located in the range of 380⁓520 nm, peaking at 423 nm. And the scintillator is more than 50% transparent in the range of 400⁓ 800 nm. The emission spectrum is well match to the quantum efficiency of photo-multiplier tube and the fast decay time of the scintillation is 12 ns, approximately. This scintillation material provides the possibility of combining 3D printing technology, and then the applications of the plastic scintillator may be expected in human dosimetry etc.

  15. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    International Nuclear Information System (INIS)

    Park, J.M.; Kim, H.J.; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-01-01

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator

  16. Scintillation properties of quantum-dot doped styrene based plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.M.; Kim, H.J., E-mail: hongjooknu@gmail.com; Hwang, Y.S.; Kim, D.H.; Park, H.W.

    2014-02-15

    We fabricated quantum-dot doped plastic scintillators in order to control the emission wavelength. We studied the characterization of the quantum-dots (CdSe/ZnS) and PPO (2, 5-diphenyloxazole) doped styrene based plastic scintillators. PPO is usually used as a dopant to enhance the scintillation properties of organic scintillators with a maximum emission wavelength of 380 nm. In order to study the scintillation properties of the quantum-dots doped plastic scintillators, the samples were irradiated with X-ray, photon, and 45 MeV proton beams. We observed that only PPO doped plastic scintillators shows a luminescence peak around 380 nm. However, both the quantum-dots and PPO doped plastic scintillators shows luminescence peaks around 380 nm and 520 nm. Addition of quantum-dots had shifted the luminescence spectrum from 380 nm (PPO) toward the region of 520 nm (Quantum-dots). Emissions with wavelength controllable plastic scintillators can be matched to various kinds of photosensors such as photomultiplier tubes, photo-diodes, avalanche photo-diodes, and CCDs, etc. Also quantum-dots doped plastic scintillator, which is irradiated 45 MeV proton beams, shows that the light yield of quantum-dots doped plastic scintillator is increases as quantum-dots doping concentration increases at 520 nm. And also the plastic scintillators were irradiated with Cs-137 γ-ray for measuring fluorescence decay time. -- Highlights: • Quantum-dot doped plastic scintillator is grown by the thermal polymerization method. • Quantum-dot doped plastic scintillators can control the emission wavelength to match with photo-sensor. • Quantum-dots and PPO doped plastic scintillators emitted luminescence peaks around 380 nm and 520 nm. • We observed the energy transfer from PPO to quantum-dot in the quantum-dot doped plastic scintillator.

  17. Hygroscopic properties of potassium-halide nanoparticles

    NARCIS (Netherlands)

    Giamarelou, M; Smith, M.; Papapanagiotou, E.; Martin, S. T.; Biskos, G.

    2018-01-01

    The hygroscopic properties of KBr, KCl, and KI nanoparticles having diameters from 8 to 60 nm were measured using a tandem Differential Mobility Analyzer. In all cases, the deliquescence and efflorescence relative humidity values increased with decreasing particle diameter. The associated growth

  18. Investigation of organic liquid-scintillator optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Juergen; Feilitzsch, Franz von; Goeger-Neff, Marianne; Lewke, Timo; Meindl, Quirin; Oberauer, Lothar; Potzel, Walter; Todor, Sebastian; Wurm, Michael [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Marrodan Undagoitia, Teresa [Physik Department E15, Technische Universitaet Muenchen, James-Franck-Str., 85748 Garching (Germany); Physik-Institut, Universitaet Zuerich (Switzerland)

    2009-07-01

    The characterization of different organic liquid-scintillator mixtures is an important step towards the design of a large-scale detector such as LENA (Low Energy Neutrino Astronomy). Its physics goals, extending from particle and geological to astrophysical issues, set high demands on the optical properties of the liquid scintillator. Therefore, small-scale experiments are carried out in order to optimize the final scintillator mixture. PXE, LAB, and dodecane are under consideration as solvents. Setups for the determination of scintillator properties are presented, such as attenuation length, light yield, emission spectra, fluorescence decay times, and quenching factors. Furthermore, results are discussed.

  19. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals

    International Nuclear Information System (INIS)

    Voloshina, O.V.; Baumer, V.N.; Bondar, V.G.; Kurtsev, D.A.; Gorbacheva, T.E.; Zenya, I.M.; Zhukov, A.V.; Sidletskiy, O.Ts.

    2012-01-01

    Aiming to explore the possibility of using the undoped rare-earth orthovanadates as scintillation materials, we developed the procedure for growth of gadolinium (GdVO 4 ) and yttrium (YVO 4 ) orthovanadate single crystals by Czochralski method, and determined the optimal conditions of their after-growth annealing. Optical, luminescent, and scintillation properties of YVO 4 and GdVO 4 were discussed versus known literature data. Scintillation characteristics of GdVO 4 were determined for the first time.

  20. Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators

    Science.gov (United States)

    Wolszczak, W.; Dorenbos, P.

    2017-06-01

    Internal contamination with actinium-227 and its daughters is a serious drawback in low-background applications of lanthanide-based scintillators. In this work we showed the important role of nuclear γ de-excitations on the shape of the internal alpha spectrum measured in scintillators. We calculated with Bateman equations the activities of contamination isotopes and the time evolution of actinium-227 and its progenies. Next, we measured the intrinsic background spectra of LaBr3(Ce), LaBr3(Ce,Sr) and CeBr3 with a digital spectroscopy technique, and we analyzed them with a pulse shape discrimination method (PSD) and a time-amplitude analysis. Finally, we simulated the α background spectrum with Geant4 tool-kit, consequently taking into account complex α-γ-electron events, the α / β ratio dependence on the α energy, and the electron/γ nonproportionality. We found that α-γ mixed events have higher light yield than expected for alpha particles alone, which leads to overestimation of the α / β ratio when it is measured with internal 227Th and 223Ra isotopes. The time-amplitude analysis showed that the α peaks of 219Rn and 215Po in LaBr3(Ce) and LaBr3(Ce,Sr) are not symmetric. We compared the simulation results with the measured data and provided further evidence of the important role of mixed α-γ-electron events for understanding the shape of the internal α spectrum in scintillators.

  1. Measurement methods for several properties of scintillator

    International Nuclear Information System (INIS)

    Luo Fengqun; Ji Changsong

    1998-01-01

    The current paper describes the experimental measurement methods for the relative light output, the relative energy conversion efficiency, the intrinsic amplitude resolution and the detection efficiency of the scintillators and their temperature effects

  2. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  3. Magnetic properties of nickel halide hydrates including deuteration effects

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: gxdefo@wm.edu [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Van Dongen, M.J.; Hampton, A.S.; Komatsu, C.H.; Trowell, K.T.; Havas, K.C.; Davis, C.M.; DeSanto, C.L. [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Hays, K.; Wagner, M.J. [Chemistry Department, George Washington University, Washington, DC, 20052 United States (United States)

    2017-01-01

    Magnetic measurements on variously hydrated nickel chlorides and bromides, including deuterated forms, are reported. Results include locations and sizes of susceptibility maxima, T{sub max} and χ{sub max}, ordering temperatures T{sub c}, Curie constants and Weiss theta in the paramagnetic regime, and primary and secondary exchange interactions from analysis of low temperature data. For the latter a 2D Heisenberg model augmented by interlayer exchange in a mean-field approximation is applied. Magnetization data to 16 kG as a function of temperature show curvature and hysteresis characteristics quite system dependent. For four materials high field magnetization data to 70 kG at 2.00 K are also obtained. Comparison is made with theoretical relations for spin-1 models. Trends are apparent, primarily that T{sub max} of each bromide hydrate is less than for the corresponding chloride, and that for a given halide nD{sub 2}O (n=1 or 2) deuterates exhibit lesser T{sub max} than do nH{sub 2}O hydrates. A monoclinic unit cell determined from powder X-ray diffraction data on NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O. This provides some rationale for the difference in magnetic properties between these. - Highlights: • The magnetism of Ni(II) chloride and bromide dihydrates and monohydrates is studied. • Effects of replacing H{sub 2}O by D{sub 2}O are examined for both hydration states and both halides. • Exchange interactions in bromides are weaker than in corresponding chlorides. • Exchange interactions are weaker in D{sub 2}O than in corresponding H{sub 2}O containing systems. • The unit cell of NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O.

  4. Role of hot electron transport in scintillators: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huihui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Univ. (China); Li, Qi [Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Lu, Xinfu; Williams, R.T. [Department of Physics, Wake Forest University, Winston Salem, NC (United States); Qian, Yiyang [College of Engineering and Applied Science, Nanjing University (China); Wu, Yuntao [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2016-10-15

    Despite recent intensive study on scintillators, several fundamental questions on scintillator properties are still unknown. In this work, we use ab-initio calculations to determine the energy dependent group velocity of the hot electrons from the electronic structures of several typical scintillators. Based on the calculated group velocities and optical phonon frequencies, a Monte-Carlo simulation of hot electron transport in scintillators is carried out to calculate the thermalization time and diffusion range in selected scintillators. Our simulations provide physical insights on a recent trend of improved proportionality and light yield from mixed halide scintillators. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Transparent Ceramic Scintillator Fabrication, Properties and Applications

    International Nuclear Information System (INIS)

    Cherepy, N.J.; Kuntz, J.D.; Roberts, J.J.; Hurst, T.A.; Drury, O.B.; Sanner, R.D.; Tillotson, T.M.; Payne, S.A.

    2008-01-01

    Transparent ceramics offer an alternative to single crystals for scintillator applications such as gamma ray spectroscopy and radiography. We have developed a versatile, scaleable fabrication method, using Flame Spray Pyrolysis (FSP) to produce feedstock which is readily converted into phase-pure transparent ceramics. We measure integral light yields in excess of 80,000 Ph/MeV with Cerium-doped Garnets, and excellent optical quality. Avalanche photodiode readout of Garnets provides resolution near 6%. For radiography applications, Lutetium Oxide offers a high performance metric and is formable by ceramics processing. Scatter in transparent ceramics due to secondary phases is the principal limitation to optical quality, and afterglow issues that affect the scintillation performance are presently being addressed

  6. Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

    NARCIS (Netherlands)

    Brenes, Roberto; Guo, D.; Osherov, Anna; Noel, Nakita K.; Eames, Christopher; Hutter, E.M.; Pathak, Sandeep K.; Niroui, Farnaz; Friend, Richard H.; Islam, M. Saiful; Snaith, Henry J.; Bulović, Vladimir; Savenije, T.J.; Stranks, Samuel D.

    2017-01-01

    Metal halide perovskites are generating enormous excitement for use in solar cells and light-emission applications, but devices still show substantial non-radiative losses. Here, we show that by combining light and atmospheric treatments, we can increase the internal luminescence quantum

  7. Scintillators

    International Nuclear Information System (INIS)

    Cusano, D.A.; Holub, F.F.; Prochazka, S.

    1979-01-01

    Scintillator bodies comprising phosphor materials and having high optical translucency with low light absorption, and methods of making the scintillator bodies, are described. Fabrication methods include (a) a hot-pressing process, (b) cold-pressing followed by sintering, (c) controlled cooling from a melt, and (d) hot-forging. The scintillator bodies that result are easily machined to desired shapes and sizes. Suitable phosphors include BaFCl:Eu, LaOBr:Tb, CsI:Tl, CaWO 4 and CdWO 4 . (U.K.)

  8. The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance

    KAUST Repository

    Adinolfi, Valerio

    2017-10-12

    Organometal halide perovskites are under intense study for use in optoelectronics. Methylammonium and formamidinium lead iodide show impressive performance as photovoltaic materials; a premise that has spurred investigations into light-emitting devices and photodetectors. Herein, the optical and electrical material properties of organometal halide perovskites are reviewed. An overview is given on how the material composition and morphology are tied to these properties, and how these properties ultimately affect device performance. Material attributes and techniques used to estimate them are analyzed for different perovskite materials, with a particular focus on the bandgap, mobility, diffusion length, carrier lifetime, and trap-state density.

  9. Tailoring the properties of europium-doped potassium calcium iodide scintillators through defect engineering

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuntao; Rutstrom, Daniel J.; Zhuravleva, Mariya; Loyd, Matthew [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Li, Qi [Physical Science Division, IBM Thomas J Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois, Urbana-Champaign, IL (United States); Stand, Luis [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN (United States); Koschan, Merry [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Melcher, Charles L. [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN (United States); Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN (United States); Departments of Nuclear Engineering, University of Tennessee, Knoxville, TN (United States)

    2018-02-15

    Codoping is an effective approach for precise control of point defects in many advanced materials, and can be used to optimize their function. This paper reports an effort toward tailoring the scintillation properties of metal halides through defect engineering. A study of aliovalent codoping of the KCaI{sub 3}:Eu{sup 2+} single-crystalline scintillators is performed, through which it is discovered that a simultaneous suppression of X-ray induced afterglow and improvement of gamma-ray energy resolution can be successfully achieved via Zr{sup 4+} codoping. The afterglow level is reduced by more than twofold with Zr{sup 4+} codoping. The energy resolution of a 5 mm cubic KCaI{sub 3}:Eu{sup 2+} sample is improved from 3.25 to 2.7% at 662 keV, and 6.5 to 5.73% at 122 keV upon Zr{sup 4+} codoping. Physical explanations for the improvements are revealed from our investigations into both the electronic structure and thermodynamics of the defects by using thermoluminescence techniques and density functional theory calculations. The codoped Zr{sup 4+} ions prefer to form interstitials acting as shallow electron traps. The {Zr_C_a+V_C_a} complex can co-exist with Zr{sub i} interstitials as shallow hole traps under certain condition, which are able to trap holes temporarily. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Yoshikawa, Akira; Yagi, Hideki; Yanagitani, Takagimi

    2011-01-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show ∼80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd 3+ 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under γ-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 μs due to Nd 3+ 4f-4f transitions.

  11. Scintillation properties of transparent ceramic and single crystalline Nd:YAG scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yagi, Hideki; Yanagitani, Takagimi [Konoshima Chemical Co., Ltd., 80 Kouda, Takuma, Mitoyo-gun, Kagawa 769-1103 (Japan)

    2011-03-01

    Nd 0.1, 1.1, 2, 4, and 6 mol% doped YAG transparent ceramics are manufactured by the sintering method and their scintillation properties are compared with those of single crystalline Nd 1 mol% doped YAG grown by the micro-pulling down method. They show {approx}80% transmittance at wavelengths longer than 300 nm and strong emission lines due to Nd{sup 3+} 4f-4f emission in their radio-luminescence spectra. Among them, the single crystalline sample shows the highest light yield of 11,000 ph/MeV under {gamma}-ray excitation and the second highest one is from Nd 1.1 mol% doped transparent ceramic, which shows 6000 ph/MeV. In these scintillators, dominant decay time constant is around 2-3 {mu}s due to Nd{sup 3+} 4f-4f transitions.

  12. Fabrication of large-volume, low-cost ceramic lanthanum halide scintillators for gamma ray detection : final report for DHS/DNDO/TRDD project TA-01-SL01.

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, Timothy J.; Ottley, Leigh Anna M.; Yang, Pin; Chen, Ching-Fong; Sanchez, Margaret R.; Bell, Nelson Simmons

    2008-10-01

    This project uses advanced ceramic processes to fabricate large, optical-quality, polycrystalline lanthanum halide scintillators to replace small single crystals produced by the conventional Bridgman growth method. The new approach not only removes the size constraint imposed by the growth method, but also offers the potential advantages of both reducing manufacturing cost and increasing production rate. The project goal is to fabricate dense lanthanum halide ceramics with a preferred crystal orientation by applying texture engineering and solid-state conversion to reduce the thermal mechanical stress in the ceramic and minimize scintillation light scattering at grain boundaries. Ultimately, this method could deliver the sought-after high sensitivity and <3% energy resolution at 662 keV of lanthanum halide scintillators and unleash their full potential for advanced gamma ray detection, enabling rapid identification of radioactive materials in a variety of practical applications. This report documents processing details from powder synthesis, seed particle growth, to final densification and texture development of cerium doped lanthanum bromide (LaBr{sub 3}:Ce{sup +3}) ceramics. This investigation demonstrated that: (1) A rapid, flexible, cost efficient synthesis method of anhydrous lanthanum halides and their solid solutions was developed. Several batches of ultrafine LaBr{sub 3}:Ce{sup +3} powder, free of oxyhalide, were produced by a rigorously controlled process. (2) Micron size ({approx} 5 {micro}m), platelet shape LaBr{sub 3} seed particles of high purity can be synthesized by a vapor phase transport process. (3) High aspect-ratio seed particles can be effectively aligned in the shear direction in the ceramic matrix, using a rotational shear-forming process. (4) Small size, highly translucent LaBr{sub 3} (0.25-inch diameter, 0.08-inch thick) samples were successfully fabricated by the equal channel angular consolidation process. (5) Large size, high density

  13. Optical properties of quantum-dot-doped liquid scintillators

    International Nuclear Information System (INIS)

    Aberle, C; Winslow, L; Li, J J; Weiss, S

    2013-01-01

    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double-beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO

  14. Crystal growth and scintillation properties of Lu substituted CeBr.sub.3./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Ito, T.; Yokota, Y.; Kurosawa, S.; Král, Robert; Kamada, K.; Pejchal, Jan; Ohashi, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 452, Oct (2016), s. 65-68 ISSN 0022-0248. [American Conference on Crystal Growth and Epitaxy /20./ (ACCGE) / 17th Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE) / 2nd 2D Electronic Materials Symposium. Big Sky, MT, 02.08.2015-07.08.2015] Institutional support: RVO:68378271 Keywords : radiation * halides * scintillator materials * crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.751, year: 2016

  15. Growth and scintillation properties of BaMgF4

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka; Sugiyama, Makoto; Furuya, Yuki; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira; Chani, Valery

    2010-01-01

    By using the micro-pulling down (μ-PD) method, the barium magnesium fluoride (BaMgF 4 ) single crystalline scintillator was produced. The crystal was cut and mirror polished to the physical dimensions of 1x2x10 mm 3 for examination of scintillation properties. BaMgF 4 demonstrated ∼70% transmittance in wavelength range above 170 nm, and strong emission peaking around 205 nm was observed under X-ray excitation. The absolute light yield of BaMgF 4 was 1300±100 ph/MeV, and the decay time profile showed two components as 0.57±0.01 (70%) and 2.2±0.31 (30%) ns at room temperature.

  16. Scintillation properties of polycrystalline LaxY1-xO3 ceramic

    Science.gov (United States)

    Sahi, Sunil; Chen, Wei; Kenarangui, Rasool

    2015-03-01

    Scintillators are the material that absorbs the high-energy photons and emits visible photons. Scintillators are commonly used in radiation detector for security, medical imaging, industrial applications and high energy physics research. Two main types of scintillators are inorganic single crystals and organic (plastic or liquid) scintillators. Inorganic single crystals are expensive and difficult to grow in desire shape and size. Also, some efficient inorganic scintillator such as NaI and CsI are not environmental friendly. But on the other hand, organic scintillators have low density and hence poor energy resolution which limits their use in gamma spectroscopy. Polycrystalline ceramic can be a cost effective alternative to expensive inorganic single crystal scintillators. Here we have fabricated La0.2Y1.8O3 ceramic scintillator and studied their luminescence and scintillation properties. Ceramic scintillators were fabricated by vacuum sintering of La0.2Y1.8O3 nanoparticles at temperature below the melting point. La0.2Y1.8O3 ceramic were characterized structurally using XRD and TEM. Photoluminescence and radioluminescence studies were done using UV and X-ray as an excitation source. We have used gamma isotopes with different energy to studies the scintillation properties of La0.2Y1.8O3 scintillator. Preliminary studies of La0.2Y1.8O3 scintillator shows promising result with energy resolution comparable to that of NaI and CsI.

  17. Crystal growth and scintillation properties of Pr-doped SrI2 single crystals

    Science.gov (United States)

    Yokota, Yuui; Ito, Tomoki; Yoshino, Masao; Yamaji, Akihiro; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Yoshikawa, Akira

    2018-04-01

    Pr-doped SrI2 (Pr:SrI2) single crystals with various Pr concentrations were grown by the halide-micro-pulling-down (H-μ-PD) method, and the scintillation properties were investigated. Pr1%:SrI2 single crystal with high transparency could be grown by the H-μ-PD method while Pr2, 3 and 5%:SrI2 single crystals included some cracks and opaque parts. In the photoluminescence spectrum of the Pr1%:SrI2 single crystal, an emission peak originated from the Pr3+ ion was observed around 435 nm while the radioluminescence spectra showed an emission peak around 535 nm for the undoped SrI2 and Pr:SrI2 single crystals. Light yields of Pr1, 2, 3 and 5%:SrI2 single crystals under γ-ray irradiation were 7700, 8700, 7200 and 6700 photons/MeV, respectively. Decay times of Pr1 and 2%:SrI2 single crystals under γ-ray irradiation were 55.9 and 35.0 ns of the fast decay component, and 435 and 408 ns of the slow decay component, respectively.

  18. Properties of the ukrainian polystyrene-based plastic scintillator UPS 923A

    International Nuclear Information System (INIS)

    Artikov, A.; Budagov, Yu.; Chirikov-Zorin, I.; Lyablin, M.; Chokheli, D.; Bellettini, G.; Mensione, A.; Tokar, S; Giokaris, N.; Manousakis-Katsikakis, A.

    2005-01-01

    The polystyrene-based scintillator UPS 923A was chosen for upgrading of the muon system for the CDF detector at the Fermilab Tevatron. Properties of this scintillator such as light output, light attenuation, long-term stability and also timing characteristics of the scintillator and wavelength shifting fibers were investigated. The method for the Bulk Attenuation Length measurements of the scintillator to its own light emitted was proposed. Comparative measurements of the characteristics of the UPS 923A and the polyvinyltoluene-based scintillator NE 114 were performed. It was found that natural aging of the NE 114 was two times faster than that of the UPS 923A

  19. Comparison of the methods for determination of scintillation light yield

    CERN Document Server

    Sysoeva, E; Zelenskaya, O

    2002-01-01

    One of the most important characteristics of scintillators is the light yield. It depends not only on the properties of scintillators, but also on the conditions of measurements. Even for widely used crystals, such as alkali halide scintillators NaI(Tl) and CsI(Tl), light yield data, obtained by various authors, are different. Therefore, it is very important to choose the convenient method of the light yield measurements. In the present work, methods for the determination of the physical light yield, based on measurements of pulse amplitude, single-electron pulses and intrinsic photomultiplier resolution are discussed. These methods have been used for the measurements of light yield of alkali halide crystals and oxide scintillators. Repeatability and reproducibility of results were determined. All these methods are rather complicated in use, not for measurements, but for further data processing. Besides that, they demand a precise determination of photoreceiver's parameters, as well as determination of light ...

  20. Luminescence and scintillation properties of Rb2HfCl6 crystals

    International Nuclear Information System (INIS)

    Saeki, Keiichiro; Wakai, Yuki; Fujimoto, Yutaka; Koshimizu, Masanori; Asai, Keisuke; Yanagida, Takayuki; Nakauchi, Daisuke

    2016-01-01

    We developed a scintillator based on a Rb 2 HfCl 6 crystal as a ternary halide crystal with intrinsic luminescence. In the photoluminescence spectra, two emission bands are observed at 383 and 434 nm. The 434 nm emission band for Rb 2 HfCl 6 may be attributed to [HfCl 6 ] 2- complex ion or [ZrCl 6 ] 2- impurity, since the Rb 2 HfCl 6 contained Zr as impurity at 0.62 mol %. The radioluminescence band is observed at 420 nm and can be attributed to the same origin as the photoluminescence band at 434 nm. The scintillation decay-time constants were 0.84 and 5.4 μs. The light yield was estimated to be 24,100 photons/MeV. (author)

  1. Crystal Growth and Scintillation Properties of Eu2+ doped Cs4CaI6 and Cs4SrI6

    Science.gov (United States)

    Stand, L.; Zhuravleva, M.; Chakoumakos, B.; Johnson, J.; Loyd, M.; Wu, Y.; Koschan, M.; Melcher, C. L.

    2018-03-01

    In this work we present the crystal growth and scintillation properties of two new ternarymetal halide scintillators activated with divalent europium, Cs4CaI6 and Cs4SrI6. Single crystals of each compound were grown in evacuated quartz ampoules via the vertical Bridgman technique using a two-zone transparent furnace. Single crystal X-ray diffraction experiments showed that both crystals have a trigonal (R-3c) structure, with a density of 3.99 g/cm3 and 4.03 g/cm3. The radioluminescence and photoluminescence measurements showed typical luminescence properties due to the 5d-4f radiative transitions in Eu2+. At this early stage of development Cs4SrI6:Eu and Cs4CaI6:Eu have shown very promising scintillation properties, with light yields and energy resolutions of 62,300 ph/MeV and 3.3%, and 51,800 photons/MeV and 3.6% at 662 keV, respectively.

  2. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  3. Scintillation properties and X-ray irradiation hardness of Ce3+-doped Gd2O3-based scintillation glass

    International Nuclear Information System (INIS)

    Liu, Liwan; Shao, Chongyun; Zhang, Yu; Liao, Xili; Yang, Qiuhong; Hu, Lili; Chen, Danping

    2016-01-01

    Ce 3+ -doped Gd 2 O 3 -based scintillation glasses are prepared within an air or CO atmosphere. The effects of fluorine, lutetium, barium, and the melting atmosphere on the optical properties, scintillation properties and irradiation hardness are studied. Absorption spectra, luminescence spectra under UV and X-ray excitation, and the X-ray radiation-induced spectra are presented. The results show that the density can be increased by doping with fluorine, lutetium and barium. The luminescence intensity decreases after X-ray irradiation. Because of charge transfer quenching, fluorine and lutetium enhance the UV-excited and X-ray excited luminescence intensity, but barium decreases. Moreover, fluorine and lutetium are advantageous to irradiation hardness while barium is not. In addition, a non-reducing atmosphere provides a higher irradiation hardness than a reducing atmosphere. Fluorine-doped glass is promising to enhance luminescence intensity, promote irradiation hardness, and increase the density.

  4. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Yajie Jiang

    2015-06-01

    Full Text Available The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1].

  5. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    CERN Document Server

    Wegrzecka, I

    1999-01-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  6. The properties of ITE's silicon avalanche photodiodes within the spectral range used in scintillation detection

    Science.gov (United States)

    Wegrzecka, Iwona; Wegrzecki, Maciej

    1999-04-01

    The design and properties of 3 mm silicon avalanche photodiodes developed at ITE are presented. Their performance parameters within the spectral range applicable in scintillation detection (400-700 nm) are discussed and compared to those for near infrared radiation.

  7. Photoluminescence and radiation response properties of Ce3+-doped CsCaCl3 crystalline scintillator

    International Nuclear Information System (INIS)

    Fujimoto, Yutaka; Saeki, Keiichiro; Tanaka, Hironori; Yahaba, Takuma; Koshimizu, Masanori; Asai, Keisuke; Yanagida, Takayuki

    2016-01-01

    In this paper, we report on the photoluminescence and scintillation properties of a newly developed CsCaCl 3 :Ce (0.5 mol%) crystalline scintillator grown by the vertical Bridgman method. The fluorescence quantum efficiency for the Ce 3+ characteristic emission bands centered at around 350–400 nm was 76% under excitation at 330 nm light. The photoluminescence decay time of the Ce 3+ was approximately 32 ns. When x-ray excited the crystal, intense emission bands were observed at 350–400 nm, and could be attributed to the Ce 3+ emission. The scintillation light yield of the developed crystal was ∼7600 ph MeV −1 compared to a NaI:Tl commercial scintillator, and the principal scintillation decay time was approximately 340 ns plus two fast components of around 1.6 ns and 45 ns. (paper)

  8. Scintillation properties of CdF{sub 2} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@lsse.kyutech.ac.jp [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196 (Japan); Fujimoto, Yutaka; Koshimizu, Masanori [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Fukuda, Kentaro [Tokuyama Corp., 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 Japan (Japan)

    2015-01-15

    CdF{sub 2} single crystal was prepared by Tokuyama Corp. with the μ-PD method to investigate Auger free luminescence of this material. From optical transmittance spectrum, bandgap wavelength was around 280 nm. In X-ray induced radioluminescence spectrum, emission lines appeared around 350 nm and 420 nm. Excitation wavelength was investigated and excitation peak was around 250 nm. Photoluminescence and scintillation decay times were evaluated and decay time was few ns. Temperature dependence of X-ray induced radioluminescence was compared with conventional BaF{sub 2} scintillator and scintillation of CdF{sub 2} decreased when the temperature increased. Consequently, scintillation of CdF{sub 2} is possibly emission at color centers or exciton related one. - Highlights: • CdF{sub 2} crystal scinitillator was synthesized. • Emission wavelengths of CdF{sub 2} appeared around 350 and 420 nm. • Scintillation decay time of CdF{sub 2} was quite fast, 1.75 ns. • Excitation bands were investigated by using Synchrotron facility, UVSOR.

  9. Scintillation properties of CdF2 crystal

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Fukuda, Kentaro

    2015-01-01

    CdF 2 single crystal was prepared by Tokuyama Corp. with the μ-PD method to investigate Auger free luminescence of this material. From optical transmittance spectrum, bandgap wavelength was around 280 nm. In X-ray induced radioluminescence spectrum, emission lines appeared around 350 nm and 420 nm. Excitation wavelength was investigated and excitation peak was around 250 nm. Photoluminescence and scintillation decay times were evaluated and decay time was few ns. Temperature dependence of X-ray induced radioluminescence was compared with conventional BaF 2 scintillator and scintillation of CdF 2 decreased when the temperature increased. Consequently, scintillation of CdF 2 is possibly emission at color centers or exciton related one. - Highlights: • CdF 2 crystal scinitillator was synthesized. • Emission wavelengths of CdF 2 appeared around 350 and 420 nm. • Scintillation decay time of CdF 2 was quite fast, 1.75 ns. • Excitation bands were investigated by using Synchrotron facility, UVSOR

  10. Pressure-Induced Structural and Optical Properties of Inorganic Halide Perovskite CsPbBr3.

    Science.gov (United States)

    Zhang, Long; Zeng, Qingxin; Wang, Kai

    2017-08-17

    Perovskite photovoltaic materials are gaining sustained attention because of their excellent photovoltaic properties and extensive practical applicability. In this Letter, we discuss the changes in the structure and optical properties of CsPbBr 3 under high pressure. As the pressure increased, the band gap initially began to red shift before 1.0 GPa followed by a continuous blue shift until the crystal was completely amorphized. An isostructural phase transition at 1.2 GPa was determined by high-pressure synchrotron X-ray and Raman spectroscopy. The result could be attributed to bond length shrinkage and PbBr 6 octahedral distortion under high pressure. The amorphization of the crystal was due to the severe distortion and tilt of the PbBr 6 octahedron, leading to broken long-range order. Changes in optical properties are closely related to the evolution of the crystal structure. Our discussion shows that high-pressure study can be used as an effective means to tune the structure and properties of all-inorganic halide perovskites.

  11. Prospects for first-principle calculations of scintillator properties

    International Nuclear Information System (INIS)

    Derenzo, Stephen E.; Weber, Marvin J.

    1999-01-01

    Several scintillation processes can be modeled from first principles using quantum chemistry cluster calculations and recently available high-performance computers. These processes include the formation of excitons and trapping centers, the diffusion of ionization energy (electrons and holes) through a host crystal, and the efficient capture of these carriers by an activator atom to form a luminous, non-quenched excited state. As examples of such calculations, results are presented for (1) hole transport in the known scintillator host crystal CsI, (2) hole trapping in the non-scintillator PbF 2 , (3) hole transport in the experimentally unexplored PbF 4 , and (4) the electronic nature of excited states of CsI : Tl and CsI : Na

  12. Optical and scintillation properties of bulk ZnO crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu 808-0196 (Japan); Fujimoto, Yutaka; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamanoi, Kohei; Sarukura, Nobuhiko [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan); Kano, Masataka; Wakamiya, Akira [Daishinku Corporation, 1389 Shinzaike, Hiraoka-cho, Kakogawa, Hyogo 675-0194 (Japan)

    2012-12-15

    Single crystal bulk ZnO scintillator grown by the hydrothermal method was tested on its scintillation performances. In X-ray induced radio luminescence spectrum, it exhibited two intense emission peaks at 400 and 550 nm. The former was ascribed to the free and bound exciton related luminescence and the latter to oxygen vacancy related one, respectively. X-ray induced scintillation decay time of the exciton related emission measured by the pulse X-ray streak camera system resulted {proportional_to} 4 ns. Finally, the light yield under {sup 241}Am 5.5 MeV {alpha}-ray was examined and it resulted {proportional_to} 500 ph/5.5 MeV-{alpha}.(copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Entropy in halide perovskites

    Science.gov (United States)

    Katan, Claudine; Mohite, Aditya D.; Even, Jacky

    2018-05-01

    Claudine Katan, Aditya D. Mohite and Jacky Even discuss the possible impact of various entropy contributions (stochastic structural fluctuations, anharmonicity and lattice softness) on the optoelectronic properties of halide perovskite materials and devices.

  14. Influence of Mo impurity on the spectroscopic and scintillation properties of PbWO4 crystals

    International Nuclear Information System (INIS)

    Boehm, M.; Hofstaetter, A.; Luh, M.; Meyer, B.K.; Scharmann, A.; Drobychev, G.Yu.; Grenoble-1 Univ., 74 - Annecy; Peigneux, J.P.

    1997-12-01

    The influence of molybdenum doping on the spectroscopic and scintillation properties of lead tungstate crystals has been investigated. From the results the slow scintillation component as well as the afterglow are found to be due to the Mo impurity. In addition the blue luminescence from excited (WO 4 ) 2- -complex seems to be increasingly suppressed as the doping concentration goes on. Possible mechanisms for the effects have been discussed. (author)

  15. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  16. Luminescence and scintillation properties of rare-earth-doped LuF.sub.3./sub. scintillation crystals

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 41, Mar SI (2015), s. 58-62 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : lutetium fluoride * scintillator * scintillator * VUV luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  17. Scintillation properties of the Ce-doped multicomponent garnetepitaxial films

    Czech Academy of Sciences Publication Activity Database

    Průša, Petr; Kučera, M.; Mareš, Jiří A.; Hanuš, M.; Beitlerová, Alena; Onderišinová, Z.; Nikl, Martin

    2013-01-01

    Roč. 35, č. 12 (2013), s. 2444-2448 ISSN 0925-3467 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : scintillator * liquid phase epitaxy method * photoelectron yield * garnet * Ce 3+ Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.075, year: 2013 http://dx.doi.org/10.1016/j.optmat.2013.06.051

  18. Survey meter using novel inorganic scintillators

    International Nuclear Information System (INIS)

    Yoshikawa, Akira; Fukuda, Kentaro; Kawaguchi, Noriaki; Kamada, Kei; Fujimoto, Yutaka; Yokota, Yuui; Kurosawa, Shunsuke; Yanagida, Takayuki

    2012-01-01

    Single crystal scintillator materials are widely used for detection of high-energy photons and particles. There is continuous demand for new scintillator materials with higher performance because of increasing number of medical, industrial, security and other applications. This article presents the recent development of three novel inorganic scintillators; Pr-doped Lu 3 Al 5 O 12 (Pr:LuAG), Ce doped Gd 3 (Al, Ga) 5 O 12 (Ce:GAGG) and Ce or Eu-doped 6 LiCaAlF 6 (Ce:LiCAF, Eu:LiCAF). Pr:LuAG shows very interesting scintillation properties including very fast decay time, high light yield and excellent energy resolution. Taking the advantage of these properties, positron emission mammography (PEM) equipped with Pr:LuAG were developed. Ce:GAGG shows very high light yield, which is much higher than that of Ce:LYSO. Survey meter using Ce:GAGG is developed using this scintillator. Ce:LiCAF and Eu:LiCAF were developed for neutron detection. The advantage and disadvantage are discussed comparing with halide scintillators. Eu-doped LiCAF indicated five times higher light yield than that of existing Li-glass. It is expected to be used as the alternative of 3 He. (author)

  19. Transport, Optical, and Magnetic Properties of the Conducting Halide Perovskite CH 3NH 3SnI 3

    Science.gov (United States)

    Mitzi, D. B.; Feild, C. A.; Schlesinger, Z.; Laibowitz, R. B.

    1995-01-01

    A low-temperature ( T ≤ 100°C) solution technique is described for the preparation of polycrystalline and single crystal samples of the conducting halide perovskite, CH 3NH 3SnI 3. Transport, Hall effect, magnetic, and optical properties are examined over the temperature range 1.8-300 K, confirming that this unusual conducting halide perovskite is a low carrier density p-type metal with a Hall hole density, 1/ RHe ≃ 2 × 10 19 cm -3. The resistivity of pressed pellet samples decreases with decreasing temperature with resistivity ratio ρ(300 K)/ρ(2 K) ≃ 3 and room temperature resistivity ρ(300 K) ≃ 7 mΩ-cm. A free-carrier infrared reflectivity spectrum with a plasma edge observed at approximately 1600 cm -1 further attests to the metallic nature of this compound and suggests a small optical effective mass, m* ≃ 0.2.

  20. Halide salts and their structural properties in presence of secondary amine based molecule: A combined experimental and theoretical analysis

    Science.gov (United States)

    Ghosh, Pritam; Hazra, Abhijit; Ghosh, Meenakshi; Chandra Murmu, Naresh; Banerjee, Priyabrata

    2018-04-01

    Biologically relevant halide salts and its solution state structural properties are always been significant. In general, exposure of halide salts into polar solution medium results in solvation which in turn separates the cationic and anionic part of the salt. However, the conventional behaviour of salts might alter in presence of any secondary amine based compound, i.e.; moderately strong Lewis acid. In its consequence, to investigate the effect of secondary amine based compound in the salt solution, novel (E)-2-(4-bromobenzylidene)-1-(perfluorophenyl) hydrazine has been synthesized and used as secondary amine source. The secondary amine compound interestingly shows a drastic color change upon exposure to fluoride salts owing to hydrogen bonding interaction. Several experimental methods, e.g.; SCXRD, UV-Vis, FT-IR, ESI-MS and DLS together with modern DFT (i.e.; DFT-D3) have been performed to explore the structural properties of the halide salts upon exposure to secondary amine based compound. The effect of counter cation of the fluoride salt in binding with secondary amine source has also been investigated.

  1. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium-Lead-Halide Perovskite Quantum Dots.

    Science.gov (United States)

    Makarov, Nikolay S; Guo, Shaojun; Isaienko, Oleksandr; Liu, Wenyong; Robel, István; Klimov, Victor I

    2016-04-13

    Organic-inorganic lead-halide perovskites have been the subject of recent intense interest due to their unusually strong photovoltaic performance. A new addition to the perovskite family is all-inorganic Cs-Pb-halide perovskite nanocrystals, or quantum dots, fabricated via a moderate-temperature colloidal synthesis. While being only recently introduced to the research community, these nanomaterials have already shown promise for a range of applications from color-converting phosphors and light-emitting diodes to lasers, and even room-temperature single-photon sources. Knowledge of the optical properties of perovskite quantum dots still remains vastly incomplete. Here we apply various time-resolved spectroscopic techniques to conduct a comprehensive study of spectral and dynamical characteristics of single- and multiexciton states in CsPbX3 nanocrystals with X being either Br, I, or their mixture. Specifically, we measure exciton radiative lifetimes, absorption cross-sections, and derive the degeneracies of the band-edge electron and hole states. We also characterize the rates of intraband cooling and nonradiative Auger recombination and evaluate the strength of exciton-exciton coupling. The overall conclusion of this work is that spectroscopic properties of Cs-Pb-halide quantum dots are largely similar to those of quantum dots of more traditional semiconductors such as CdSe and PbSe. At the same time, we observe some distinctions including, for example, an appreciable effect of the halide identity on radiative lifetimes, considerably shorter biexciton Auger lifetimes, and apparent deviation of their size dependence from the "universal volume scaling" previously observed for many traditional nanocrystal systems. The high efficiency of Auger decay in perovskite quantum dots is detrimental to their prospective applications in light-emitting devices and lasers. This points toward the need for the development of approaches for effective suppression of Auger

  2. Radiation damage studies on the optical and mechanical properties of plastic scintillators

    International Nuclear Information System (INIS)

    Mizue Hamada, Margarida; Roberto Rela, Paulo; Eduardo da Costa, Fabio; Henrique de Mesquita, Carlos

    1999-01-01

    This paper describes the radiation damage studies on a large volume plastic scintillator based in polystyrene doped with PPO and POPOP. The consequences on their mechanical and scintillation properties were evaluated before and after irradiation with different dose rates of 60 Co gamma radiation, in several doses. The optical results show a significant difference in the radiation susceptibility, when the plastic scintillator is irradiated at low rate (0.1 kGy/h) with that irradiated at high dose rate (85 kGy/h). The losses in the optical and mechanical properties increase as the irradiation dose is increased. The damage evaluated by the transmittance, emission intensity, pulse height and tensile strength was normalized as a damage fraction and fitted by a bi-exponential function. It was observed that the damage for irradiation is not permanent and it obeys a bi-exponential function

  3. Timing properties and pulse shape discrimination of LAB-based liquid scintillator

    International Nuclear Information System (INIS)

    Li Xiaobo; Xiao Hualin; Cao Jun; Li Jin; Heng Yuekun; Ruan Xichao

    2011-01-01

    Linear Alkyl Benzene (LAB) is a promising liquid scintillator solvent in neutrino experiments because it has many appealing properties. The timing properties of LAB-based liquid scintillator have been studied through ultraviolet and ionization excitation in this study. The decay time of LAB, PPO and bis-MSB is found to be 48.6 ns, 1.55 ns and 1.5 ns, respectively. A model can describe the absorption and re-emission process between PPO and bis-MSB perfectly. The energy transfer time between LAB and PPO with different concentrations can be obtained via another model. We also show that the LAB-based liquid scintillator has good (n, γ) and (α, γ) discrimination power. (authors)

  4. Luminescence properties of Ce3+ doped gadolinium-calcium-silicaborate glass scintillator

    International Nuclear Information System (INIS)

    Park, J.M.; Ha, D.H.; Kaewjeang, S.; Maghanemi, U.; Kothan, S.; Kaewkhao, J.; Kim, H.J.

    2016-01-01

    In this work, the Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd 2 O 3 :10CaO:10SiO 2 :(55−x)B 2 O 3 :xCeF 3 , have been fabricated by using the melt-quenching technique. The doping concentration of the Ce 3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce 3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce 3+ doped glass scintillator. - Highlights: • Ce 3+ doped gadolinium-calcium-silicaborate glass scintillators were developed. • Glass is easily fabricated with large sizes and various doping materials. • The luminescence properties are studied by using various radiation sources. • The light yield and decay time were measured at low temperature. • One decay time component is found.

  5. Test bench for measurements of NOvA scintillator properties at JINR

    Science.gov (United States)

    Velikanova, D. S.; Antoshkin, A. I.; Anfimov, N. V.; Samoylov, O. B.

    2018-04-01

    The NOvA experiment was built to study oscillation parameters, mass hierarchy, CP- violation phase in the lepton sector and θ23 octant, via vɛ appearance and vμ disappearance modes in both neutrino and antineutrino beams. These scientific goals require good knowledge about NOvA scintillator basic properties. The new test bench was constructed and upgraded at JINR. The main goal of this bench is to measure scintillator properties (for solid and liquid scintillators), namely α/β discrimination and Birk's coefficients for protons and other hadrons (quenching factors). This knowledge will be crucial for recovering the energy of the hadronic part of neutrino interactions with scintillator nuclei. α/β discrimination was performed on the first version of the bench for LAB-based and NOvA scintillators. It was performed again on the upgraded version of the bench with higher statistic and precision level. Preliminary result of quenching factors for protons was obtained. A technical description of both versions of the bench and current results of the measurements and analysis are presented in this work.

  6. Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.

    Science.gov (United States)

    Tang, Lixia; Torres Pazmiño, Daniel E; Fraaije, Marco W; de Jong, René M; Dijkstra, Bauke W; Janssen, Dick B

    2005-05-03

    Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.

  7. Optical properties of alkali halide crystals from all-electron hybrid TD-DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Webster, R., E-mail: ross.webster07@imperial.ac.uk; Harrison, N. M. [Thomas Young Centre, Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Bernasconi, L. [Rutherford Appleton Laboratory, STFC, Harwell Oxford, Didcot OX11 0QX (United Kingdom)

    2015-06-07

    We present a study of the electronic and optical properties of a series of alkali halide crystals AX, with A = Li, Na, K, Rb and X = F, Cl, Br based on a recent implementation of hybrid-exchange time-dependent density functional theory (TD-DFT) (TD-B3LYP) in the all-electron Gaussian basis set code CRYSTAL. We examine, in particular, the impact of basis set size and quality on the prediction of the optical gap and exciton binding energy. The formation of bound excitons by photoexcitation is observed in all the studied systems and this is shown to be correlated to specific features of the Hartree-Fock exchange component of the TD-DFT response kernel. All computed optical gaps and exciton binding energies are however markedly below estimated experimental and, where available, 2-particle Green’s function (GW-Bethe-Salpeter equation, GW-BSE) values. We attribute this reduced exciton binding to the incorrect asymptotics of the B3LYP exchange correlation ground state functional and of the TD-B3LYP response kernel, which lead to a large underestimation of the Coulomb interaction between the excited electron and hole wavefunctions. Considering LiF as an example, we correlate the asymptotic behaviour of the TD-B3LYP kernel to the fraction of Fock exchange admixed in the ground state functional c{sub HF} and show that there exists one value of c{sub HF} (∼0.32) that reproduces at least semi-quantitatively the optical gap of this material.

  8. Luminescence and scintillation properties of XPO4:Nd3+ (X = Y, Lu, Sc, La) crystals

    Science.gov (United States)

    Makowski, Michał; Witkowski, Marcin E.; Drozdowski, Winicjusz; Wojtowicz, Andrzej J.; Wisniewski, Krzysztof; Boatner, Lynn A.

    2018-05-01

    Due to their very fast short-wavelength emission, neodymium-doped materials are a subject of current interest as potential scintillators. Although the initial reports regarding neodymium-doped orthophosphates (in crystalline form) and their scintillation properties appeared almost twenty years ago, they remain an interesting class of materials since there is no in-depth understanding of their fundamental scintillation mechanism. In the present research, we focus on the crystalline systems: XPO4:Nd3+, where X = Y, Lu, La, Sc. The pulse height, optical absorption, radioluminescence and photoluminescence spectra were investigated and are reported here for various temperatures from 10 to 350 K. Additionally, results of both low and high temperature thermoluminescence measurements are reported in this communication.

  9. Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Yuki, E-mail: f.yuki@mail.tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Kamada, Kei [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawaguchi, Noriaki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Ishizu, Sumito [Research and Development Division, Tokuyama., Co. Ltd., ICR-Building, Minamiyoshinari, Aoba-ku, Sendai (Japan); Uchiyama, Koro; Mori, Kuniyoshi [Hamamatsu Photonics K.K., 325-6, Sunayama-cho, Naka-ku, Hamamatsu, Shizuoka 430-8587 (Japan); Kitano, Ken [Vacuum and Optical Instruments, 2-18-18 Shimomaruko, Ota, Tokyo 146-0092 (Japan); Nikl, Martin [Institute of Physics ASCR, Cukrovarnicka 10, Prague 6, 162-53 (Czech Republic); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-04-01

    To design new scintillating materials, it is very important to understand detailed information about the events, which occurred during the excitation and emission processes under the ionizing radiation excitation. We developed a streak camera system equipped with picosecond pulsed X-ray source to observe time- and wavelength-resolved scintillation events. In this report, we test the performance of this new system using several types of scintillators including bulk oxide/halide crystals, transparent ceramics, plastics and powders. For all samples, the results were consistent with those reported previously. The results demonstrated that the developed system is suitable for evaluation of the scintillation properties.

  10. Antimicrobial properties of metal and metal-halide nanoparticles and their potential applications

    Science.gov (United States)

    Torrey, Jason Robert

    Heavy metals, including silver and copper, have been known to possess antimicrobial properties against bacterial, fungal, and viral pathogens. Metal nanoparticles (aggregations of metal atoms 1-200 nm in size) have recently become the subject of intensive study for their increased antimicrobial properties. In the current studies, metal and metal-halide nanoparticles were evaluated for their antibacterial efficacy. Silver (Ag), silver bromide (AgBr), silver iodide (AgI), and copper iodide (CuI) nanoparticles significantly reduced bacterial numbers of the Gram-negative Pseudomonas aeruginosa and the Gram-positive Staphylococcus aureus within 24 hours and were more effective against P. aeruginosa. CuI nanoparticles were found to be highly effective, reducing both organisms by >4.43 log 10 within 15 minutes at 60 ppm Cu. CuI nanoparticles formulated with different stabilizers (sodium dodecyl sulfate, SDS; polyvinyl pyrrolidone, PVP) were further tested against representative Gram-positive and Gram-negative bacteria, Mycobacteria, a fungus (Candida albicans ), and a non-enveloped virus (poliovirus). Both nanoparticles caused significant reductions in most of the Gram-negative bacteria within five minutes (>5.09-log10). The Gram-positive bacterial species and C. albicans were more sensitive to the CuI-SDS than the CuI-PVP nanoparticles. In contrast, the acid-fast Mycobacterium smegmatis was more resistant to CuI-SDS than CuI-PVP nanoparticles. Poliovirus was more resistant than the other organisms tested except for Mycobacterium fortuitum, which displayed the greatest resistance to CuI nanoparticles. As an example of a real world antimicrobial application, polymer coatings embedded with various concentrations of CuI nanoparticles were tested for antibacterial efficacy against P. aeruginosa and S. aureus. Polyester-epoxy powder coatings were found to display superior uniformity, stability and antimicrobial properties against both organisms (>4.92 log 10 after six hours at

  11. Scintillation Counters

    Science.gov (United States)

    Bell, Zane W.

    Scintillators find wide use in radiation detection as the detecting medium for gamma/X-rays, and charged and neutral particles. Since the first notice in 1895 by Roentgen of the production of light by X-rays on a barium platinocyanide screen, and Thomas Edison's work over the following 2 years resulting in the discovery of calcium tungstate as a superior fluoroscopy screen, much research and experimentation have been undertaken to discover and elucidate the properties of new scintillators. Scintillators with high density and high atomic number are prized for the detection of gamma rays above 1 MeV; lower atomic number, lower-density materials find use for detecting beta particles and heavy charged particles; hydrogenous scintillators find use in fast-neutron detection; and boron-, lithium-, and gadolinium-containing scintillators are used for slow-neutron detection. This chapter provides the practitioner with an overview of the general characteristics of scintillators, including the variation of probability of interaction with density and atomic number, the characteristics of the light pulse, a list and characteristics of commonly available scintillators and their approximate cost, and recommendations regarding the choice of material for a few specific applications. This chapter does not pretend to present an exhaustive list of scintillators and applications.

  12. Co-doping effects on luminescence and scintillation properties of Ce doped Lu3Al5O12 scintillator

    International Nuclear Information System (INIS)

    Kamada, Kei; Nikl, Martin; Kurosawa, Shunsuke; Beitlerova, Alena; Nagura, Aya; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-01-01

    The Mg, Ca, Sr and Ba 200 ppm co-doped Ce:Lu 3 Al 5 O 12 single crystals were prepared by micro pulling down method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of the co-doping. The scintillation decays were accelerated by both Mg and Ca co-dopants. The Mg co-doped samples showed the fastest decay and the highest light yield among the co-doped samples

  13. Characterizing and simulation the scintillation properties of zinc oxide nanowires in AAO membrane for medical imaging applications

    International Nuclear Information System (INIS)

    Esfandi, F.; Saramad, S.; Shahmirzadi, M. Rezaei

    2017-01-01

    In this work, a new method is proposed for extracting some X-ray detection properties of ZnO nanowires electrodeposited on Anodized Aluminum Oxide (AAO) nanoporous template. The results show that the detection efficiency for 12μm thickness of zinc oxide nano scintillator at an energy of 9.8 keV, near the K-edge of ZnO (9.65 keV), is 24%. The X-rays that interact with AAO can also generate electrons that reach the nano scintillator. The scintillation events of these electrons are seen as a low energy tail in the spectrum. In addition, it is found that all the X-rays that are absorbed in 300 nm thickness of the gold layer on the top of the zinc oxide nanowires can participate in the scintillation process with an efficiency of 6%. Hence, the scintillation detection efficiency of the whole detector for 9.8 keV X-ray energy is 30%. The simulation results from Geant4 and the experimental detected photons per MeV energy deposition are also used to extract the light yield of the zinc oxide nano scintillator. The results show that the light yield of the zinc oxide nanowires deposited by the electrochemical method is approximately the same as for single crystal zinc oxide scintillator (9000). Much better spatial resolution of this nano scintillator in comparison to the bulk ones is an advantage which candidates this nano scintillator for medical imaging applications.

  14. Predicting the timing properties of phosphor-coated scintillators using Monte Carlo light transport simulation

    International Nuclear Information System (INIS)

    Roncali, Emilie; Schmall, Jeffrey P; Viswanath, Varsha; Berg, Eric; Cherry, Simon R

    2014-01-01

    Current developments in positron emission tomography focus on improving timing performance for scanners with time-of-flight (TOF) capability, and incorporating depth-of-interaction (DOI) information. Recent studies have shown that incorporating DOI correction in TOF detectors can improve timing resolution, and that DOI also becomes more important in long axial field-of-view scanners. We have previously reported the development of DOI-encoding detectors using phosphor-coated scintillation crystals; here we study the timing properties of those crystals to assess the feasibility of providing some level of DOI information without significantly degrading the timing performance. We used Monte Carlo simulations to provide a detailed understanding of light transport in phosphor-coated crystals which cannot be fully characterized experimentally. Our simulations used a custom reflectance model based on 3D crystal surface measurements. Lutetium oxyorthosilicate crystals were simulated with a phosphor coating in contact with the scintillator surfaces and an external diffuse reflector (teflon). Light output, energy resolution, and pulse shape showed excellent agreement with experimental data obtained on 3 × 3 × 10 mm 3  crystals coupled to a photomultiplier tube. Scintillator intrinsic timing resolution was simulated with head-on and side-on configurations, confirming the trends observed experimentally. These results indicate that the model may be used to predict timing properties in phosphor-coated crystals and guide the coating for optimal DOI resolution/timing performance trade-off for a given crystal geometry. Simulation data suggested that a time stamp generated from early photoelectrons minimizes degradation of the timing resolution, thus making this method potentially more useful for TOF-DOI detectors than our initial experiments suggested. Finally, this approach could easily be extended to the study of timing properties in other scintillation crystals, with a

  15. Structural, dynamical, and transport properties of the hydrated halides: How do At{sup −} bulk properties compare with those of the other halides, from F{sup −} to I{sup −}?

    Energy Technology Data Exchange (ETDEWEB)

    Réal, Florent, E-mail: florent.real@univ-lille1.fr; Severo Pereira Gomes, André; Guerrero Martínez, Yansel Omar; Vallet, Valérie [Université de Lille, CNRS, UMR 8523–PhLAM–Physique des Lasers Atomes et Molécules, F-59000 Lille (France); Ayed, Tahra; Galland, Nicolas [CEISAM UMR CNRS 6230, Université de Nantes, 2 Rue de la Houssinière, BP 92208 F-44322 Nantes Cedex 3 (France); Masella, Michel [Laboratoire de Biologie Structurale et Radiobiologie, Service de Bioénergétique, Biologie Structurale et Mécanismes, Institut de Biologie et de Technologies de Saclay, CEA Saclay, F-91191 Gif sur Yvette Cedex (France)

    2016-03-28

    The properties of halides from the lightest, fluoride (F{sup −}), to the heaviest, astatide (At{sup −}), have been studied in water using a polarizable force-field approach based on molecular dynamics (MD) simulations at the 10 ns scale. The selected force-field explicitly treats the cooperativity within the halide-water hydrogen bond networks. The force-field parameters have been adjusted to ab initio data on anion/water clusters computed at the relativistic Möller-Plesset second-order perturbation theory level of theory. The anion static polarizabilities of the two heaviest halides, I{sup −} and At{sup −}, were computed in the gas phase using large and diffuse atomic basis sets, and taking into account both electron correlation and spin-orbit coupling within a four-component framework. Our MD simulation results show the solvation properties of I{sup −} and At{sup −} in aqueous phase to be very close. For instance, their first hydration shells are structured and encompass 9.2 and 9.1 water molecules at about 3.70 ± 0.05 Å, respectively. These values have to be compared to the F{sup −}, Cl{sup −}, and Br{sup −} ones, i.e., 6.3, 8.4, and 9.0 water molecules at 2.74, 3.38, and 3.55 Å, respectively. Moreover our computations predict the solvation free energy of At{sup −} in liquid water at ambient conditions to be 68 kcal mol{sup −1}, a value also close the I{sup −} one, about 70 kcal mol{sup −1}. In all, our simulation results for I{sup −} are in excellent agreement with the latest neutron- and X-ray diffraction studies. Those for the At{sup −} ion are predictive, as no theoretical or experimental data are available to date.

  16. Investigation of the imaging properties of inorganic scintillation screens using high energetic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice [TU Darmstadt (Germany); JWG Universitaet Frankfurt/Main (Germany); Forck, Peter; Sieber, Thomas [GSI Darmstadt (Germany); Ensinger, Wolfgang; Lederer, Stephan [TU Darmstadt (Germany); Kester, Oliver [JWG Universitaet Frankfurt/Main (Germany)

    2016-07-01

    Inorganic scintillation screens are a common diagnostics tool in heavy ion accelerators. In order to investigate the imaging properties of various screen materials, four different material compositions were irradiated at GSI, using protons up to Uranium ions as projectiles. Beams were extracted from SIS18 with high energy (300 MeV/u) in slow and fast extraction mode. During irradiation the scintillation response of the screens was simultaneously recorded by two different optical setups to investigate light output, profile characteristics and emission spectra. It was observed, that fast extracted beams induce in general lower light output than slow extracted beams, while the light output per deposited energy decreases with atomic number. The analysis of the spectral emission as well as investigations with classical optical methods showed no significant defect-building in all materials, not even under irradiation with increasing beam intensity or over long time periods. The investigated scintillation screens can be considered as stable under irradiation with high energetic heavy ion pulses and are appropriate for beam diagnostics applications in future accelerator facilities like FAIR. Characteristic properties and application areas of the screens are presented in the poster.

  17. Scintillation properties of pure and Ca-doped ZnWO4 crystals

    International Nuclear Information System (INIS)

    Danevich, F.A.; Shkulkova, O.G.; Henry, S.; Kraus, H.; McGowan, R.; Mikhailik, V.B.; Telfer, J.

    2008-01-01

    Following the investigations of the structure and scintillation properties of Ca-doped zinc tungstate powder [phys. stat. sol. (a) 204, 730 (2007)] a single-crystal of ZnWO 4 -Ca (0.5 mol%) was grown and characterised. The relative light output, energy resolution and decay characteristics were measured for pure and Ca-doped ZnWO 4 scintillators. An increase in the light yield of ∝40% compared with the undoped crystal, and an energy resolution 9.6% ( 137 Cs) were obtained for Ca-doped ZnWO 4 . The observed improvement is attributed to the reduction of self-absorption (bleaching) of the crystal. The cause of bleaching as well as the possible contribution of scattering is discussed. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Growth and scintillation properties of BaMgF{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fujimoto, Yutaka; Sugiyama, Makoto; Furuya, Yuki; Kamada, Kei; Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Chani, Valery [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2010-09-21

    By using the micro-pulling down ({mu}-PD) method, the barium magnesium fluoride (BaMgF{sub 4}) single crystalline scintillator was produced. The crystal was cut and mirror polished to the physical dimensions of 1x2x10 mm{sup 3} for examination of scintillation properties. BaMgF{sub 4} demonstrated {approx}70% transmittance in wavelength range above 170 nm, and strong emission peaking around 205 nm was observed under X-ray excitation. The absolute light yield of BaMgF{sub 4} was 1300{+-}100 ph/MeV, and the decay time profile showed two components as 0.57{+-}0.01 (70%) and 2.2{+-}0.31 (30%) ns at room temperature.

  19. Scintillation properties of selected oxide monocrystals activated with Ce and Pr

    Science.gov (United States)

    Wojtowicz, Andrzej J.; Drozdowski, Winicjusz; Wisniewski, Dariusz; Lefaucheur, Jean-Luc; Galazka, Zbigniew; Gou, Zhenhui; Lukasiewicz, Tadeusz; Kisielewski, Jaroslaw

    2006-01-01

    In the last 10-15 years there has been a significant effort toward development of new, more efficient and faster materials for detection of ionizing radiation. A growing demand for better scintillator crystals for detection of 511 keV gamma particles has been due mostly to recent advances in modern imaging systems employing positron emitting radionuclides for medical diagnostics in neurology, oncology and cardiology. While older imaging systems were almost exclusively based on BGO and NaI:Tl crystals the new systems, e.g., ECAT Accel, developed by Siemens/CTI, are based on recently discovered and developed LSO (Lu 2SiO 5:Ce, Ce-activated lutetium oxyorthosilicate) crystals. Interestingly, despite very good properties of LSO, there still is a strong drive toward development of new scintillator crystals that would show even better performance and characteristics. In this presentation we shall review spectroscopic and scintillator characterization of new complex oxide crystals, namely LSO, LYSO, YAG, LuAP (LuAlO 3, lutetium aluminate perovskite) and LuYAP activated with Ce and Pr. The LSO:Ce crystals have been grown by CTI Inc (USA), LYSO:Ce, LuAP:Ce and LuYAP:Ce crystals have been grown by Photonic Materials Ltd., Scotland (PML is the only company providing large LuAP:Ce crystals on a commercial scale), while YAG:Pr and LuAP:Pr crystals have been grown by Institute of Electronic Materials Technology (Poland). All these crystals have been characterized at Institute of Physics, N. Copernicus University (Poland). We will review and compare results of measurements of radioluminescence, VUV spectroscopy, scintillation light yields, scintillation time profiles and low temperature thermoluminescence performed on these crystals. We will demonstrate that all experiments clearly indicate that there is a significant room for improvement of LuAP, LuYAP and YAG. While both Ce-activated LSO and LYSO perform very well, we also note that LuYAP:Ce, LuAP:Ce and YAG:Pr offer some

  20. Temperature dependence of scintillation properties of SrMoO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Mikhailik, V.B., E-mail: vmikhai@hotmail.com [Diamond Light Source, Harwell Science Campus, Didcot OX11 0DE (United Kingdom); Elyashevskyi, Yu. [Department of Physics, University of Oxford, Keble Rd., Oxford OX1 3RH (United Kingdom); Scientific-technical and Educational Centre of Low Temperature Studies, I. Franko National University of Lviv, 50 Dragomanova Str., 79005 Lviv (Ukraine); Kraus, H. [Department of Physics, University of Oxford, Keble Rd., Oxford OX1 3RH (United Kingdom); Kim, H.J. [Department of Physics of Kyungpook National University, 1370 Sangyeok-dong, Buk-gu, Daegu 702-701 (Korea, Republic of); Kapustianyk, V.; Panasyuk, M. [Scientific-technical and Educational Centre of Low Temperature Studies, I. Franko National University of Lviv, 50 Dragomanova Str., 79005 Lviv (Ukraine)

    2015-08-21

    Studies of the X-ray luminescence and scintillation properties of a SrMoO{sub 4} crystal as function of temperature down to T=10 K have been carried out. The luminescence in SrMoO{sub 4} is quenched at room temperature, but below T<200 K the crystal exhibits a broad emission band with a maximum at a wavelength of 520 nm. The emission is attributed to the radiative decay of self-trapped excitons and defects acting as traps for the exactions at low temperatures. Such complex character of radiative decay is reflected in the kinetics which contains several components plus a contribution from delayed recombination at low temperatures. The temperature dependence of scintillation light output of SrMoO{sub 4} was studied. Comparing with a reference ZnWO{sub 4} crystal measured under the same experimental conditions it was found that the light output of SrMoO{sub 4} is 15±5%. It is suggested, therefore, that there is scope for optimisation of strontium molybdate for application as scintillator in cryogenic rare event searches.

  1. Studies of scintillation properties of CaMoO{sub 4} at millikelvin temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Lin, J.; Kraus, H. [Department of Physics, University of Oxford, Keble Rd., Oxford OX1 3RH (United Kingdom); Mikhailik, V. B., E-mail: vmikhai@hotmail.com [Diamond Light Source, Harwell Science Campus, Didcot OX11 0DE (United Kingdom)

    2015-06-15

    Application of CaMoO{sub 4} as a scintillation target in cryogenic rare event searches relies on the understanding of scintillation properties of the material at the temperatures at which these detectors operate. We devised and implemented a detection module with a low-temperature photomultiplier from Hamamatsu (model R8520-06) powered by a Cockcroft-Walton generator. The detector module containing the CaMoO{sub 4} crystal was placed in a {sup 3}He/{sup 4}He dilution refrigerator and used to measure scintillation characteristics of CaMoO{sub 4} in the millikelvin temperature range. At the lowest temperature achieved, the energy resolution of CaMoO{sub 4} for 122 keV γ from a {sup 57}Co source is found to be 30%, and the fast and slow decay constants are 40.6 ± 0.8 μs and 3410 ± 50 μs, respectively. The temperature variation of the CaMoO{sub 4} decay kinetics is discussed in terms of a three-level model of the emission center.

  2. Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma

    Science.gov (United States)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges

    2016-07-01

    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.

  3. Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites.

    Science.gov (United States)

    Meng, Weiwei; Wang, Xiaoming; Xiao, Zewen; Wang, Jianbo; Mitzi, David B; Yan, Yanfa

    2017-07-06

    Using density functional theory calculations, we analyze the optical absorption properties of lead (Pb)-free metal halide perovskites (AB 2+ X 3 ) and double perovskites (A 2 B + B 3+ X 6 ) (A = Cs or monovalent organic ion, B 2+ = non-Pb divalent metal, B + = monovalent metal, B 3+ = trivalent metal, X = halogen). We show that if B 2+ is not Sn or Ge, Pb-free metal halide perovskites exhibit poor optical absorptions because of their indirect band gap nature. Among the nine possible types of Pb-free metal halide double perovskites, six have direct band gaps. Of these six types, four show inversion symmetry-induced parity-forbidden or weak transitions between band edges, making them not ideal for thin-film solar cell applications. Only one type of Pb-free double perovskite shows optical absorption and electronic properties suitable for solar cell applications, namely, those with B + = In, Tl and B 3+ = Sb, Bi. Our results provide important insights for designing new metal halide perovskites and double perovskites for optoelectronic applications.

  4. Investigation of radiation absorption and X-ray fluorescence properties of medical imaging scintillators by Monte Carlo methods

    International Nuclear Information System (INIS)

    Nikolopoulos, D.; Kandarakis, I.; Cavouras, D.; Valais, I.; Linardatos, D.; Michail, C.; David, S.; Gaitanis, A.; Nomicos, C.; Louizi, A.

    2006-01-01

    X-ray absorption and X-ray fluorescence properties of medical imaging scintillating screens were studied by Monte Carlo methods as a function of the incident photon energy and screen-coating thickness. The scintillating materials examined were Gd 2 O 2 S (GOS) Gd 2 SiO 5 (GSO) YAlO 3 (YAP), Y 3 Al 5 O 12 (YAG), LuSiO 5 (LSO), LuAlO 3 (LuAP) and ZnS. Monoenergetic photon exposures were modeled in the range from 10 to 100 keV. The corresponding ranges of coating thicknesses of the investigated scintillating screens ranged up to 200 mg cm -2 . Results indicated that X-ray absorption and X-ray fluorescence are affected by the incident photon energy and the screen's coating thickness. Regarding incident photon energy, this X-ray absorption and fluorescence was found to exhibit very intense changes near the corresponding K edge of the heaviest element in the screen's scintillating material. Regarding coating thickness, thicker screens exhibited higher X-ray absorption and X-ray fluorescence. Results also indicated that a significant fraction of the generated X-ray fluorescent quanta escape from the scintillating screen. This fraction was found to increase with screen's coating thickness. At the energy range studied, most of the incident photons were found to be absorbed via one-hit photoelectric effect. As a result, the reabsorption of scattered radiation was found to be of rather minor importance; nevertheless this was found to increase with the screen's coating thickness. Differences in X-ray absorption and X-ray fluorescence were found among the various scintillators studied. LSO scintillator was found to be the most attractive material for use in many X-ray imaging applications, exhibiting the best absorption properties in the largest part of the energy range studied. Y-based scintillators were also found to be of significant absorption performance within the low energy ranges

  5. Redox properties of biscyclopentadienyl uranium(V) imido-halide complexes: a relativistic DFT study.

    Science.gov (United States)

    Elkechai, Aziz; Kias, Farida; Talbi, Fazia; Boucekkine, Abdou

    2014-06-01

    Calculations of ionization energies (IE) and electron affinities (EA) of a series of biscyclopentadienyl imido-halide uranium(V) complexes Cp*2U(=N-2,6-(i)Pr2-C6H3)(X) with X =  F, Cl, Br, and I, related to the U(IV)/U(V) and U(V)/U(VI) redox systems, were carried out, for the first time, using density functional theory (DFT) in the framework of the relativistic zeroth order regular approximation (ZORA) coupled with the conductor-like screening model (COSMO) solvation approach. A very good linear correlation (R(2) =  0.993) was obtained, between calculated ionization energies at the ZORA/BP86/TZP level, and the experimental half-wave oxidation potentials E1/2. A similar linear correlation between the computed electron affinities and the electrochemical reduction U(IV)/U(III) potentials (R(2) =  0.996) is obtained. The importance of solvent effects and of spin-orbit coupling is definitively confirmed. The molecular orbital analysis underlines the crucial role played by the 5f orbitals of the central metal whereas the Nalewajski-Mrozek (N-M) bond indices explain well the bond distances variations following the redox processes. The IE variation of the complexes, i.e., IE(F) uranium charges and E1/2 in the reduction process of the U(V) species.

  6. Comparison of the scintillation and luminescence properties of the (Lu1−xGdx)2SiO5:Ce single crystal scintillators

    International Nuclear Information System (INIS)

    Jarý, V; Mihóková, E; Mareš, J A; Beitlerová, A; Nikl, M; Kurtsev, D; Sidletskiy, O

    2014-01-01

    We provide a systematic comparison of the scintillation and luminescence properties, including emission mechanisms, of the highly efficient cerium-doped scintillators lutetium-(gadolinium) orthosilicates Lu 2 (SiO 4 )O (LSO), (Lu 1−x Gd x ) 2 (SiO) 4 O(LGSO) and Gd 2 (SiO 4 )O (GSO). Determined characteristics manifest an advantage of LGSO:Ce with respect to both LSO:Ce and GSO:Ce for scintillator applications around room temperature. This is thanks to combined fast decay (faster than both limit compositions) high light yield, similar to that of LSO:Ce (twice higher than GSO:Ce) and low afterglow, similar to that of GSO:Ce (almost two orders of magnitude lower than LSO:Ce). High temperature applications do not, however, seem to be a suitable option for LGSO:Ce due to evidenced thermal ionization of both Ce1 and Ce2 centres above room temperature. (paper)

  7. Studies of scintillator optical properties, electronics simulation and data analysis for the BOREXINO neutrino experiment

    International Nuclear Information System (INIS)

    Lewke, Timo

    2013-01-01

    Borexino is a state-of-the-art low-energy neutrino detector. Many results, like the first real-time measurement of 7 Be neutrinos and the detection of pep neutrinos, could be reported. However, still some parts of the solar neutrino spectrum remain unseen. With a better detector understanding and monitoring these unexploited regions could be investigated. The results achieved in course of the present thesis account for accomplishing these improvements. First, the ionization quenching for electrons in liquid scintillators is investigated using a specially designed and build experiment. This effect is especially interesting for low-energy events and, therefore, has a direct influence on the possibility to detect CNO and pp neutrinos. With a coincidence circuit and the properties of Compton scattering the quenching is analysed. Further, the so-called Birks factor kB is measured for the scintillator used in the running Borexino experiment. As the Birks factor is also an important input parameter to simulations of the future large scale neutrino experiment LENA, the Birks factor of LENA's most probable scintillator is determined as well. Second, as muons are responsible for a large amount of background, an excellent working muon veto is essential. During this thesis, it was achieved to monitor the muon tagging stability and efficiency for a long period of time. Further, to verify the muon track reconstruction Monte Carlo simulations are needed. For the Inner Detector of Borexino the simulation is fully operable. In course of this thesis the complete electronics system of the Outer Detector is included into the simulation tool. In this way, a functioning simulation mimicking real physical events is generated. In addition, the output of the simulation can now be accessed and evaluated by the normal data handling system of Borexino. A comparison to real data and, therefore, validating the muon track reconstruction is now possible. Last, to check the neutron tagging, CNGS

  8. Studies of scintillator optical properties, electronics simulation and data analysis for the BOREXINO neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lewke, Timo

    2013-10-18

    Borexino is a state-of-the-art low-energy neutrino detector. Many results, like the first real-time measurement of {sup 7}Be neutrinos and the detection of pep neutrinos, could be reported. However, still some parts of the solar neutrino spectrum remain unseen. With a better detector understanding and monitoring these unexploited regions could be investigated. The results achieved in course of the present thesis account for accomplishing these improvements. First, the ionization quenching for electrons in liquid scintillators is investigated using a specially designed and build experiment. This effect is especially interesting for low-energy events and, therefore, has a direct influence on the possibility to detect CNO and pp neutrinos. With a coincidence circuit and the properties of Compton scattering the quenching is analysed. Further, the so-called Birks factor kB is measured for the scintillator used in the running Borexino experiment. As the Birks factor is also an important input parameter to simulations of the future large scale neutrino experiment LENA, the Birks factor of LENA's most probable scintillator is determined as well. Second, as muons are responsible for a large amount of background, an excellent working muon veto is essential. During this thesis, it was achieved to monitor the muon tagging stability and efficiency for a long period of time. Further, to verify the muon track reconstruction Monte Carlo simulations are needed. For the Inner Detector of Borexino the simulation is fully operable. In course of this thesis the complete electronics system of the Outer Detector is included into the simulation tool. In this way, a functioning simulation mimicking real physical events is generated. In addition, the output of the simulation can now be accessed and evaluated by the normal data handling system of Borexino. A comparison to real data and, therefore, validating the muon track reconstruction is now possible. Last, to check the neutron

  9. Impact of precursor purity on optical properties and radiation detection of CsI:Tl scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Saengkaew, Phannee; Cheewajaroen, Kulthawat; Yenchai, Chadet; Thong-aram, Decho [Chulalongkorn University, Department of Nuclear Engineering, Faculty of Engineering, Bangkok (Thailand); Sanorpim, Sakuntam [Chulalongkorn University, Department of Physics, Faculty of Science, Bangkok (Thailand); Jitpukdee, Manit [Kasetsart University, Department of Applied Radiation and Isotope, Faculty of Science, Bangkok (Thailand); Yordsri, Visittapong; Thanachayanont, Chanchana [Ministry of Science and Technology, National Metal and Materials Technology Center, National Science and Technology Development Agency, Pathumthani (Thailand); Nuntawong, Noppadon [Ministry of Science and Technology, National Electronic and Computer Technology Center, National Science and Technology Development Agency, Pathumthani (Thailand)

    2016-08-15

    Cesium iodide doped with thallium (CsI:Tl) crystals was grown to develop the gamma-ray detectors by using low-cost raw materials. Effect of impurities on optical properties and radiation detection performance was investigated. By a modified homemade Bridgman-Stockbarger technique, CsI:Tl samples were grown in two levels of CsI and TlI reactant materials, i.e., having as a very high purity of 99.999 % and a high purity of 99.9 %. XRD measurements indicate CsI:Tl crystals having a good quality with a dominant (110) plane. Having a cubic structure, a lattice constant of CsI crystals of 0.4574 nm and a crystallite size of 43.539 nm were obtained. From the lower-purity raw materials, calcite was found in an orange crystal with a lattice constant of 0.4560 nm and a crystallite size of 43.089 nm. By PL measurements, the optical properties of the CsI:Tl crystals were analyzed. ∝540-nm-wavelength PL peak was observed from the colorless high-purity crystal, and ∝600-nm-wavelength PL peak was observed from the orange crystal. The brighter PL emission was obtained from the orange crystals suggesting impurities. CsI:Tl surface morphology by SEM exhibited a smooth surface with some parallel crystal facets. For electrical properties of high-quality CsI:Tl crystals, the electrical resistances were 230 ± 16 MΩ in cross-sectional direction and 714 ± 136 MΩ in vertical direction with respect to more homogeneous crystal quality in cross-sectional direction than that in vertical direction. TEM measurement was applied to evaluate the microstructure of colorless CsI:Tl crystal with different patterns of a cubic structure. Both CsI:Tl crystals show good efficiencies and good resolutions. Maintaining the same electronic conditions and amplifications, the colorless CsI:Tl scintillators represented a higher detection efficiency at 122 keV of Co-57 of 78.4 % and the energy resolution of 23.3 % compared to the detection efficiency of 75.9 % and the energy resolution of 34.6 % of the

  10. Scintillation properties of YAlO3 doped with Lu and Nd perovskite single crystals

    Science.gov (United States)

    Akatsuka, Masaki; Usui, Yuki; Nakauchi, Daisuke; Kato, Takumi; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    YAlO3 (YAP) single crystals doped with Lu and Nd were grown by the Floating Zone (FZ) method to evaluate their scintillation properties particularly emissions in the near-infrared (NIR) range. The Nd concentration was fixed to 0 or 1 mol% while the Lu concentration was varied from 0 to 30%. When X-ray was irradiated, the scintillation of Nd-doped samples was observed predominantly at 1064 nm due to 4F3/2 → 4I11/2 transition of Nd3+. In contrast, a weak emission around 700 nm appeared in the samples doped with only Lu, and the emission origin was attributed to defect centers. In the Nd3+-doped samples, the decay time was 94-157 μs due to the 4f-4f transitions of Nd3+ whereas the Lu-doped samples showed signal with the decay time of 1.45-1.54 ms. The emission origin of the latter signal was attributed to the perovskite lattice defect.

  11. Methacrylate based cross-linkers for improved thermomechanical properties and retention of radiation detection response in plastic scintillators

    Science.gov (United States)

    Mahl, Adam; Lim, Allison; Latta, Joseph; Yemam, Henok A.; Greife, Uwe; Sellinger, Alan

    2018-03-01

    Pulse shape discrimination (PSD) is an important method that can efficiently sort and separate neutron and gamma radiation signals. PSD is currently achieved in plastic scintillators by over-doping poly(vinyl toluene) (PVT) matrices with fluorescent molecules. Meaningful separation of the signals requires addition of >20 wt% 2,5-diphenyloxazole (PPO) fluor in PVT. At these concentrations PPO acts as a plasticizer, negatively affecting the physical properties of the final plastic such as hardness, machinability, and thermomechanical stability. This work addresses these issues by implementing a cost-effective solution using cross-linking chemistry via commercially available bisphenol A dimethacrylate (BPA-DM), and a synthesized fluorinated analogue. Both improve the physical properties of over-doped PPO based plastic scintillators without degrading the measured light yield or PSD and Figure of Merit (FoM). In addition, the fluorinated analogue appears to enhance the hydrophobicity of the surface of the plastic scintillators, which may improve the scintillators' resistance to water diffusion and subsequent radiation response degradation. The new formulations improve the feasibility of widely deploying long lifetime PSD capable plastic scintillators in large area coverage assemblies.

  12. Imaging properties of scintillators for heavy-ion-beams and related model calculations

    International Nuclear Information System (INIS)

    Guetlich, Eiko

    2011-08-01

    This thesis is treating the imaging properties of scintillating screens for high-current ion beams as delivered by the UNILAC at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt, Germany. Scintillating screens are mainly used to measure and rate the tansversal beam parameters in nearly every particle accelerator. During daily operation, scintillating screens can be used to determine and optimize the position of the beam inside the beam-pipe as well as the transversal intensity distribution. Although scintillating screens are widely used in many measurement systems, their imaging properties are not well characterized. Within the framework of this thesis, accelerator based experiments were planed and carried out which allowed to compare the results of beam profile measurements of the different materials with reference methods. Parameters such as the screen temperature and particle energies have been varied. Additionaly, possible image distortions within the optical system have been investigated. To determine the influence of the emission spectra of the screens onto the profile measurement a novel experimental setup for the spectroscopic investigations has been established. The setup allows to investigate the emission spectrum along one spatial axes on the beamspot. The investigations focus on ceramic materials such as zirconium oxide doped e.g. with Mg (ZrO 2 :Mg) or aluminium oxide (Al 2 O 3 ). The materials have been irradiated with different ion species (e.g. Calcium and Uranium) with kinetic energies of 4.8 MeV/u (10% c) and 11.4 MeV (15% c). The results for different parameters are discussed and interpreted. The measured beam profiles show dependences of four parameters: - The material itself. - The screen temperature. - The accumulated fluence [ (Ions)/(cm 2 )]. - The excitation density [(Electron-Hole-Pairs)/(cm 3 )], which is proportional to the dose rate [(J)/(kg . s)] within the volume element. Among the above, the last one depends on the

  13. Studying the properties of the new class of organic scintillators-salicylic acid derivatives

    International Nuclear Information System (INIS)

    Mandzhukov, I.G.; Mandzhukova, B.V.; Bonchev, Ts.V.; Lazarova, G.I.

    1981-01-01

    Li, Na, K, Mg, Ca, Sr, Ba, La, Cd, Al, Sn, NH 4 salicylates are synthesized. Their relative scintillation efficiency during irradiation with α-particles of 5.156 MeV energy (sup(239)Pu) is determined. Scintillation efficiency of salicylates has been evaluated by comparing amplitude of scintillation pulse from salicylate with pulse amplitude from anthracene and other classical scintillators. Amplitude analysis has been conducted by standard methods. The analysis of the results obtained shows that sodium salicylate has the highest relative scintillation efficiency comparable with naphthalene efficiency. Salicylates of alkali Li and K metals as well as Ca and Cd salicylates have high relative scintillation efficiency. It is concluded that the investigated salicylates can be used for detection of (n, α), (n, p) and other reactions accompanying neutron capture not only during their reactions but by measuring activity induced in the scintillator [ru

  14. Modulation of electronic and optical properties in mixed halide perovskites CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x)

    Science.gov (United States)

    Zhou, Ziqi; Cui, Yu; Deng, Hui-Xiong; Huang, Le; Wei, Zhongming; Li, Jingbo

    2017-03-01

    The recent discovery of lead halide perovskites with band gaps in the visible presents important potential in the design of high efficient solar cells. CsPbCl3, CsPbBr3 and CsPbI3 are stable compounds within this new family of semiconductors. By performing the first-principles calculation, we explore the structural, electronic and optical properties of CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x) with various compositions of halide atoms. Structural stability is demonstrated with halide atoms distributing randomly at the halide atomic sites. CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x) exhibit the modulation of their band gaps by varying the halide composition. Our results also indicate that CsPbCl3xBr3(1-x) and CsPbBr3xI3(1-x) with different halide compositions are suitable to application to solar cells for the general features are well preserved. Good absorption to lights of different wavelengths has been obtained in these mixed halide perovskites.

  15. Physical properties of the TOF (time of flight) scintillation counters of DELPHI

    International Nuclear Information System (INIS)

    Benlloch, J.M.; Castillo, M.V.; Ferrer, A.; Fuster, J.; Higon, E.; Llopis, A.; Salt, J.; Sanchez, E.; Sanchis, E.; Silvestre, E.; Cuevas, J.

    1990-01-01

    In this paper we report the physical properties of the time of flight (TOF) scintillator counters used for the DELPHI Experiment at CERN. We discuss the different choices studied for the wrapping of the counters in order to obtain best efficiencies for light transmission. A very good agreement of the performances of the counters has been found with the results of an original Monte Carlo program. The main characteristics of the TOF counters of DELPHI are: an effective light attenuation length of 135 cm, effective light speed of 15.91 cm/ns, a time resolution of 1.2 ns, and an efficiency for detection of minimum ionizing particles of 99.9%. (orig.)

  16. Optical and scintillating properties of Ce:Li(Y,Lu)F4 single crystals

    International Nuclear Information System (INIS)

    Yokota, Yuui; Kurosawa, Shunsuke; Chani, Valery; Kamada, Kei; Yoshikawa, Akira

    2014-01-01

    We have investigated the optical and scintillating properties of Lu co-doped Ce:LiYF 4 single crystals with various Lu content. In the transmittance and absorption spectra, the absorption peaks at 243 nm get systematically red shifted in contrast to the peaks at 197 and 200 nm which get blue shifted with the increase in Lu content. At the same time, emission peaks at 306 nm and 200 nm under 295 nm excitation also get red shifted. The decay time of Ce:Li(Y,Lu)F 4 crystals under 295 nm excitation is found to be faster than that of Ce:LiYF 4 and Ce:LiLuF 4 crystals. The alpha-peak positions in the pulse-height spectra and decay times of crystals under alpha-ray irradiation are found to vary with the Lu content. - Highlights: • Optical and scintillation properties of Ce:Li(Y 1-x Lu x )F 4 crystals were inspected. • Increase of Lu content resulted change of the position of four absorption peaks. • Admixing of Y and Lu decreased the light yield and increased the decay time. • The Ce:LiLuF 4 crystal indicated the largest light yield in the pulse-height spectra. • Li[(Y 0.8 Lu 0.2 ) 0.98 Ce 0.02 ]F 4 indicated larger light yield than Ce:LiYF 4 crystal

  17. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  18. Investigations on imaging properties of inorganic scintillation screens under irradiation with high energetic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Lieberwirth, Alice

    2016-09-15

    This work represents the investigations in imagine properties of inorganic scintillation screens as diagnostic elements in heavy ion accelerator facilities, that were performed at GSI Helmholtz Centre for Heavy Ion Research (Darmstadt, Germany) and TU Darmstadt. The screen materials can be classified in groups of phosphor screens (P43 and P46 phosphor), single crystals (cerium-doped Y{sub 3}Al{sub 5}O{sub 12}) and polycrystalline aluminum oxides (pure and chromium-doped Al{sub 2}O{sub 3}). Out of these groups, a selection of seven screens were irradiated by five different projectiles (proton, nitrogen, nickel, xenon and uranium), that were extracted from SIS18 in fast (1 μs) and slow (300-400 ms) extraction mode at a specific energy of E{sub spec}=300 MeV/u. The number of irradiating particles per pulse was varied between 10{sup 7} and 2.10{sup 10} ppp and the scintillation response was recorded by a complex optical system. The records served on the one hand for investigations in the two-dimensional response to the irradiating beam, namely the light output L, the light yield Y and the characteristics of the beam profiles in horizontal and vertical direction. On the other hand the wavelength spectrum of the scintillation was recorded for investigations in variations of the material structure. A data analysis was performed based on a dedicated Python script. Additionally three conventional methods (UV/Vis transmission spectroscopy, X-Ray diffraction, Raman fluorescence spectroscopy) were performed after the beam times for investigations in the material structure. Nevertheless, neither structural variations nor material defects, induced by the ion irradiation, were proven within the accuracy range of the used instrumentation and the given ion fluences. Besides the irradiation under varying beam intensity, radiation hardness tests with fast and slow extracted Nickel pulses at 2.10{sup 9} ppp and a specific energy around E{sub spec}∼300 MeV/u were performed and the

  19. Structure and scintillation properties of CsI(Tl) films on Si single crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lina [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu, Shuang, E-mail: shuangliu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chen, Dejun; Zhang, Shangjian; Liu, Yong; Zhong, Zhiyong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 (China); Falco, Charles M. [University of Arizona, College of Optical Sciences, AZ 85721 (United States)

    2016-10-30

    Highlights: • We obtained the desired micro-columnar structure of CsI(Tl) films on the orienting Si substrates. • We improved the micro-columnar structure of CsI(Tl) films under the relatively large deposition rate through using the substrate with a pre-deposited CsI nanolayer. • We modeled the interface structures between the CsI(Tl) films with (200) and (310) orientation and Si(111) substrates to explain the preferred orientation of film under the influence of the orienting substrate significantly. • We gained a new spectrum of the CsI(Tl) films peaked at 740 nm wavelength. - Abstract: CsI(Tl) scintillation films fabricated on glass substrates are widely applied for X-ray imaging because their ability to grow in micro-columnar structure and proper emission wavelength matching CCD cameras. But the coupling process between the CsI(Tl) films and Si-based photo detector would cause coupling loss. In this work, CsI(Tl) films were deposited on the orienting Si substrates and the Si substrates covered by the pre-deposited CsI nanolayers. Structure and scintillation properties of films were examined by using scanning electron microscopy, X-ray diffraction, photoluminescence and radioluminescent spectrum. The films deposited on the orienting Si substrates show the micro-columnar morphology with perfect single crystalline structure and the photoluminescence spectra with bimodal distribution. The performances of the films prepared on the pre-deposited CsI nanolayer, containing micro-columns structure and the light yield are improved.

  20. Structure and scintillation properties of CsI(Tl) films on Si single crystal substrates

    International Nuclear Information System (INIS)

    Guo, Lina; Liu, Shuang; Chen, Dejun; Zhang, Shangjian; Liu, Yong; Zhong, Zhiyong; Falco, Charles M.

    2016-01-01

    Highlights: • We obtained the desired micro-columnar structure of CsI(Tl) films on the orienting Si substrates. • We improved the micro-columnar structure of CsI(Tl) films under the relatively large deposition rate through using the substrate with a pre-deposited CsI nanolayer. • We modeled the interface structures between the CsI(Tl) films with (200) and (310) orientation and Si(111) substrates to explain the preferred orientation of film under the influence of the orienting substrate significantly. • We gained a new spectrum of the CsI(Tl) films peaked at 740 nm wavelength. - Abstract: CsI(Tl) scintillation films fabricated on glass substrates are widely applied for X-ray imaging because their ability to grow in micro-columnar structure and proper emission wavelength matching CCD cameras. But the coupling process between the CsI(Tl) films and Si-based photo detector would cause coupling loss. In this work, CsI(Tl) films were deposited on the orienting Si substrates and the Si substrates covered by the pre-deposited CsI nanolayers. Structure and scintillation properties of films were examined by using scanning electron microscopy, X-ray diffraction, photoluminescence and radioluminescent spectrum. The films deposited on the orienting Si substrates show the micro-columnar morphology with perfect single crystalline structure and the photoluminescence spectra with bimodal distribution. The performances of the films prepared on the pre-deposited CsI nanolayer, containing micro-columns structure and the light yield are improved.

  1. Treatment of alcaline metals halides for developing crystals

    International Nuclear Information System (INIS)

    Spurney, R.W.

    1974-01-01

    A process is described whereby crystals of an alkaline metal halide may be dried and placed in a crucible for development by the Bridgeman-Stockbarger method. Purified alkaline halides from a suspension are dried and formed into dense cakes of transverse section slightly smaller than that of the crucible, where they are packed, melted and grown into crystals according to the Bridgeman-Stockbarger technique. This method applies to the preparation of alkaline halide crystals, particularly sodium iodide for optical elements or scintillation counters [fr

  2. Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.

    Science.gov (United States)

    Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz

    2017-10-09

    Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Zavadil, Jiří; Kostka, P.; Djouama, T.; Reinfelde, M.

    2017-01-01

    Roč. 254, č. 6 (2017), č. článku 1600662. ISSN 0370-1972 Institutional support: RVO:67985882 Keywords : caesium halides * chalcohalide glasses * erbium doping * transmission spectroscopy * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.674, year: 2016

  4. Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Zavadil, Jiří; Kostka, Petr; Djouama, T.; Reinfelde, M.

    2017-01-01

    Roč. 254, č. 6 (2017), č. článku 1600662. ISSN 0370-1972 Institutional support: RVO:67985891 Keywords : caesium halides * chalcohalide glasses * erbium doping * transmission spectroscopy * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.674, year: 2016

  5. Radiation Damage in Scintillating Crystals

    CERN Document Server

    Zhu Ren Yuan

    1998-01-01

    Crystal Calorimetry in future high energy physics experiments faces a new challenge to maintain its precision in a hostile radiation environment. This paper discusses the effects of radiation damage in scintillating crystals, and concludes that the predominant radiation damage effect in crystal scintillators is the radiation induced absorption, or color center formation, not the loss of the scintillation light yield. The importance of maintaining crystal's light response uniformity and the feasibility to build a precision crystal calorimeter under radiation are elaborated. The mechanism of the radiation damage in scintillating crystals is also discussed. While the damage in alkali halides is found to be caused by the oxygen or hydroxyl contamination, it is the structure defects, such as oxygen vacancies, cause damage in oxides. Material analysis methods used to reach these conclusions are presented in details.

  6. Monte Carlo simulation of the imaging properties of scintillator-coated X-ray pixel detectors

    International Nuclear Information System (INIS)

    Hjelm, M.; Norlin, B.; Nilsson, H.-E.; Froejdh, C.; Badel, X.

    2003-01-01

    The spatial resolution of scintillator-coated X-ray pixel detectors is usually limited by the isotropic light spread in the scintillator. One way to overcome this limitation is to use a pixellated scintillating layer on top of the semiconductor pixel detector. Using advanced etching and filling techniques, arrays of CsI columns have been successfully fabricated and characterized. Each CsI waveguide matches one pixel of the semiconductor detector, limiting the spatial spread of light. Another concept considered in this study is to detect the light emitted from the scintillator by diodes formed in the silicon pore walls. There is so far no knowledge regarding the theoretical limits for these two approaches, which makes the evaluation of the fabrication process difficult. In this work we present numerical calculations of the signal-to-noise ratio (SNR) for detector designs based on scintillator-filled pores in silicon. The calculations are based on separate Monte Carlo (MC) simulations of X-ray absorption and light transport in scintillator waveguides. The resulting data are used in global MC simulations of flood exposures of the detector array, from which the SNR values are obtained. Results are presented for two scintillator materials, namely CsI(Tl) and GADOX

  7. Electronic structure and optical properties of the scintillation material wurtzite ZnS(Ag)

    Institute of Scientific and Technical Information of China (English)

    Dong-Yang Jiang; Zheng Zhang; Rui-Xue Liang; Zhi-Hong Zhang; Yang Li; Qiang Zhao; Xiao-Ping Ouyang

    2017-01-01

    In order to investigate the effect of Ag doping (ZnS(Ag)) and Zn vacancy (Vzn) on the alpha particle detection performance of wurtzite (WZ) ZnS as a scintillation cell component,the electronic structure and optical properties of ZnS,ZnS(Ag),and Vzn were studied by firstprinciple calculation based on the density functional theory.The results show that the band gaps of ZnS,ZnS(Ag),and Vzn are 2.17,1.79,and 2.37 eV,respectively.Both ZnS(Ag) and Vzn enhance the absorption and reflection of the low energy photons.A specific energy,about 2.9 eV,leading to decrease of detection efficiency is observed.The results indicate that Ag doping has a complex effect on the detection performance.It is beneficial to produce more visible light photons than pure WZ ZnS when exposed to the same amount of radiation,while the increase of the absorption to visible light photons weakens the detection performance.Zn vacancy has negative effect on the detection performance.If we want to improve the detection performance of WZ ZnS,Ag doping will be a good way,but we should reduce the absorption to visible light photons and control the number of Zn vacancy rigorously.

  8. Scintillation properties of Er-doped Y3Al5O12 single crystals

    International Nuclear Information System (INIS)

    Yamaji, Akihiro; Ogino, Hiraku; Fujimoto, Yutaka; Suzuki, Akira; Yanagida, Takayuki; Yokota, Yuui; Kurosawa, Shunsuke; Yoshikawa, Akira

    2013-01-01

    Er-doped Y 3 Al 5 O 12 single crystals with different Er concentrations of 0.1, 1.0, 10, 30, and 50% were grown by the micro-pulling down method. There were several absorption lines due to the Er 3+ 4f-4f transitions in the transmittance spectra and these lines correspond to the transitions from the ground state of 4 I 15/2 to the excited states. The photo- and radio-luminescence spectra showed Er 3+ 4f-4f emissions. Relative light yield under 5.5 MeV alpha-ray irradiation of Er 0.1%:Y 3 Al 5 O 12 was estimated to be 63% of that of Bi 4 Ge 3 O 12 . -- Highlights: •Er doped Y 3 Al 5 O 12 single crystal scintillators were grown with different Er concentrations. •Optical properties associated with 4f-4f transition were evaluated. •Radio luminescence spectra measurements were performed under 5.5 MeV alpha-ray irradiation. •The highest light yield was estimated to be 63% of that of Bi 4 Ge 3 O 12 under 5.5 MeV alpha-ray irradiation

  9. Luminescence and scintillation properties of Ce-doped Cs2ZnCl4 crystals

    Science.gov (United States)

    Sugawara, K.; Koshimizu, M.; Yanagida, T.; Fujimoto, Y.; Haruki, R.; Nishikido, F.; Kishimoto, S.; Asai, K.

    2015-03-01

    In this study, we have synthesized scintillation materials based on Ce-doped Cs2ZnCl4 crystals. The light yield was enhanced by up to 20% by doping Cs2ZnCl4 with Ce3+ ions. In the scintillation time profiles, fast components exhibited decay time constants on the order of nanoseconds, which was ascribed to Auger-free luminescence (AFL). The light yield of the AFL component decreased at 10 mol% Ce3+ concentration, which is mainly attributed to the reabsorption of AFL photons inside the crystals by Ce3+ ions, as seen in the scintillation spectra. Long components had decay time constants of approximately 30 ns. In addition, at 10 mol% Ce3+ concentration, a prominent band appeared at approximately 500 nm in the scintillation spectrum, which was not observed in the photoluminescence spectra. The long components in the scintillation time profiles and the 500 nm band in the scintillation spectra were tentatively attributed to self-trapped excitons perturbed by Ce3+ ions.

  10. Elpasolite scintillators.

    Energy Technology Data Exchange (ETDEWEB)

    Doty, F. Patrick; Zhou, Xiao Wang; Yang, Pin; Rodriguez, Mark A

    2012-12-01

    This work was funded by the U.S. Department of Energy Office of Nonproliferation Research to develop elpasolite materials, with an emphasis on high-atomic-number rare-earth elpasolites for gamma-ray spectrometer applications. Low-cost, high-performance gamma-ray spectrometers are needed for detection of nuclear proliferation. Cubic materials, such as some members of the elpasolite family (A2BLnX6; Ln-lanthanide and X-halogen), hold promise due to their high light output, proportionality, and potential for scale-up. Using both computational and experimental studies, a systematic investigation of the compositionstructureproperty relationships of these high-atomic-number elpasolite halides was performed. The results reduce the barrier to commercialization of large single crystals or transparent ceramics, and will facilitate economical scale-up of elpasolites for high-sensitivity gamma-ray spectroscopy.

  11. Examination of the Properties of a Spent Fuel based Electricity Generation System - Scintillator Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Haneol; Yim, Man-Sung [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Gammavoltaic was proposed by Karl Scharf in 1960. The low efficiency resulted in gammavoltaic being used as a radiation detector. In the 1990s the efficiency of gammavoltaic increased by the use of a scintillator. Gammavoltaic was further studied as a power source for spent fuel transportation and a nuclear battery in the 2000s Haneol Lee and Man-Sung Yim also suggested electricity generation system based on spent fuel stored inside the fuel pool of a nuclear power plant. This study proposed the systematic design of an electricity conversion system using CsI(Tl) scintillator and a-Si photovoltaic cell. As such, this study is selected to be a reference paper. The results of this paper indicate a self-absorption effect from the reference model. This effect is negligible while the irradiation degradation has to be considered. Two main ways to reduce radiation induced degradation are scintillator shielding and replacing scintillator material with a material having higher radiation resistance. The analysis of the scintillator used in the 'electricity generation system using gamma radiation from spent fuel' was performed to evaluate the ideal electricity generation in the reference research.

  12. submitter Preparation and luminescence properties of ZnO:Ga – polystyrene composite scintillator

    CERN Document Server

    Burešová, Hana; Turtos, Rosana Martinez; Jarý, Vítězslav; Mihóková, Eva; Beitlerová, Alena; Pjatkan, Radek; Gundacker, Stefan; Auffray, Etiennette; Lecoq, Paul; Nikl, Martin; Čuba, Václav

    2016-01-01

    Highly luminescent ZnO:Ga-polystyrene composite (ZnO:Ga-PS) with ultrafast subnanosecond decay was prepared by homogeneous embedding the ZnO:Ga scintillating powder into the scintillating organic matrix. The powder was prepared by photo-induced precipitation with subsequent calcination in air and Ar/H2 atmospheres. The composite was subsequently prepared by mixing the ZnO:Ga powder into the polystyrene (10 wt% fraction of ZnO:Ga) and press compacted to the 1 mm thick pellet. Luminescent spectral and kinetic characteristics of ZnO:Ga were preserved. Radioluminescence spectra corresponded purely to the ZnO:Ga scintillating phase and emission of polystyrene at 300-350 nm was absent. These features suggest the presence of non-radiative energy transfer from polystyrene host towards the ZnO:Ga scintillating phase which is confirmed by the measurement of X-ray excited scintillation decay with picosecond time resolution. It shows an ultrafast rise time below the time resolution of the experiment (18 ps) and a single-...

  13. Examination of the Properties of a Spent Fuel based Electricity Generation System - Scintillator Performance Analysis

    International Nuclear Information System (INIS)

    Lee, Haneol; Yim, Man-Sung

    2016-01-01

    Gammavoltaic was proposed by Karl Scharf in 1960. The low efficiency resulted in gammavoltaic being used as a radiation detector. In the 1990s the efficiency of gammavoltaic increased by the use of a scintillator. Gammavoltaic was further studied as a power source for spent fuel transportation and a nuclear battery in the 2000s Haneol Lee and Man-Sung Yim also suggested electricity generation system based on spent fuel stored inside the fuel pool of a nuclear power plant. This study proposed the systematic design of an electricity conversion system using CsI(Tl) scintillator and a-Si photovoltaic cell. As such, this study is selected to be a reference paper. The results of this paper indicate a self-absorption effect from the reference model. This effect is negligible while the irradiation degradation has to be considered. Two main ways to reduce radiation induced degradation are scintillator shielding and replacing scintillator material with a material having higher radiation resistance. The analysis of the scintillator used in the 'electricity generation system using gamma radiation from spent fuel' was performed to evaluate the ideal electricity generation in the reference research

  14. Scintillator structures

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1978-01-01

    Distributed phosphor scintillator structures providing superior optical coupling to photoelectrically responsive devices together with methods for fabricating said scintillator structures are disclosed. In accordance with one embodiment of the invention relating to scintillator structures, the phosphor is distributed in a 'layered' fashion with certain layers being optically transparent so that the visible wavelength output of the scintillator is better directed to detecting devices. In accordance with another embodiment of the invention relating to scintillator structures, the phosphor is distributed throughout a transparent matrix in a continuous fashion whereby emitted light is more readily transmitted to a photodetector. Methods for fabricating said distributed phosphor scintillator structures are also disclosed. (Auth.)

  15. Properties of high pressure nitrogen-argon and nitrogen-xenon gas scintillators

    International Nuclear Information System (INIS)

    Tornow, W.; Huck, H.; Koeber, H.J.; Mertens, G.

    1976-01-01

    Investigations of scintillation light output and energy resolution have been made at pressures up to 90 atm in gaseous mixtures of nitrogen with both argon and xenon by stopping of 210 Po-alpha particles. In the absence of a wavelength shifter, the N 2 -Ar mixtures gave a maximum pulse height at a ratio of nitrogen to argon partial pressures rsub(N 2 /Ar) approximately =0.2. However, when using the wavelength shifter diphenyl stilbene (DPS), the measured light output was much larger at lower values of rsub(N 2 /Ar), whereas for rsub(N 2 /Ar)>0.2 pulse height and energy resolution of the studied N 2 -Ar mixtures were roughly indentical with and without DPS. The N 2 -Xe gas mixtures exhibited a similar dependence of pulse height and energy resolution to that of the N 2 -Ar mixtures employing DPS, but the pulse height was larger by a factor of about 7. A 40 atm 50% N 2 -50% Xe gas scintillator showed an energy resolution ΔE/E=0.25, while an 80 atm 75% N 2 -25% Xe scintillator gave ΔE/E=0.6. The pulse height from the 80 atm N 2 -Xe scintillator was smaller by a factor of about 240 than the pulse height from a 20 atm pure Xe gas scintillator, but larger by a factor of about 20 than the pulse height from a 75 atm pure N 2 gas scintillator. The N 2 -Xe mixtures showed a remarkable increase of light output as the temperature of the gas was descreased. (Auth.)

  16. Luminescence properties of undoped CsCaCl3 and CsSrCl3 crystalline scintillators

    International Nuclear Information System (INIS)

    Fujimoto, Yutaka; Saeki, Keiichiro; Koshimizu, Masanori; Asai, Keisuke; Yanagida, Takayuki

    2015-01-01

    Intrinsic luminescence properties of undoped CsCaCl 3 and CsSrCl 3 crystalline scintillators were studied. The crystal samples were grown by a vertical Bridgman method. Photoluminescence spectra of the crystals showed Auger-free luminescence (AFL) at 310 nm and self-trapped emission (STE) at 400 nm for CsCaCl 3 and 465 nm for CsSrCl 3 , when vacuum ultraviolet (VUV) light at 84 nm and 160 nm excited the crystals. X-ray excited radioluminescence spectra of the crystals showed some emission bands in the 280-600 nm wavelength range, which are owing to AFL, STE, and other origins such as lattice defects and impurities. Scintillation light yield was 400-300 ph/MeV, and the principal scintillation decay time about 2.5 ns and 12 ns for CsCaCl 3 and 1.8 ns and 13 ns for CsSrCl 3 . (author)

  17. Effect of gamma irradiation on optical properties of Ce 3+ - doped phosphate and silicate scintillating glasses

    Czech Academy of Sciences Publication Activity Database

    Baccaro, S.; Cecilia, A.; Chen, B.; Mareš, Jiří A.; Mihóková, Eva; Nikl, Martin; Polato, P.; Zanella, G.; Zannoni, R.

    2002-01-01

    Roč. 63, - (2002), s. 231-234 ISSN 0969-806X R&D Projects: GA MŠk ME 519 Institutional research plan: CEZ:AV0Z1010914 Keywords : glass scintillator * radiation hardness * colour centres Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.738, year: 2002

  18. Study on the property of the avalanche photodiode as the readout component for scintillation crystals

    International Nuclear Information System (INIS)

    He Jingtang; Chen Duanbao; Zhu Guoyi; Mao Yufang; Dong Xiaoli; Li Zuhao

    1996-01-01

    The new avalanche photodiode (APD) and a CsI(Tl) crystal formed a scintillation detector. The energy spectrum of γ rays was measured by this detector. The measured results were compared with that measured by photomultiplier. Our plan is to use APD as PbWO 4 readout component for forward luminosity electromagnetic calorimeter at τ-C factory

  19. Scintillation properties of a La,Lu-admix gadolinium pyrosilicate crystal

    Czech Academy of Sciences Publication Activity Database

    Kurosawa, S.; Shishido, T.; Suzuki, A.; Sugawara, T.; Nomura, A.; Yubuta, K.; Shoji, Y.; Yokota, Y.; Pejchal, Jan; Ohashi, Y.; Kamada, K.; Yoshikawa, A.

    2015-01-01

    Roč. 784, Jun (2015), s. 115-118 ISSN 0168-9002 Institutional support: RVO:68378271 Keywords : scintillator * pyrosilicate crystal * Ce-doped (La, Lu, Gd) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.200, year: 2015

  20. Crystal growth and scintillation properties of Ce-doped sodium calcium lutetium complex fluoride

    Czech Academy of Sciences Publication Activity Database

    Wakahara, S.; Furuya, Y.; Yanagida, T.; Yokota, Y.; Pejchal, Jan; Sugiyama, M.; Kawaguchi, N.; Totsuka, D.; Yoshikawa, A.

    2012-01-01

    Roč. 34, č. 4 (2012), s. 729-732 ISSN 0925-3467 Institutional research plan: CEZ:AV0Z10100521 Keywords : scintillator * micro-pulling-down method * single crystal * gamma-ray stopping power Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.918, year: 2012

  1. LPE growth and scintillation properties of (Zn,Mg)O single crystalline film

    Czech Academy of Sciences Publication Activity Database

    Yoshikawa, A.; Yanagida, T.; Fujimoto, Y.; Kurosawa, S.; Yokota, Y.; Yamaji, A.; Sugiyama, M.; Wakahara, S.; Futami, Y.; Kikuchi, M.; Miyamoto, M.; Sekiwa, H.; Nikl, Martin

    2012-01-01

    Roč. 59, č. 5 (2012), 2286-2289 ISSN 0018-9499 R&D Projects: GA MŠk LH12150 Institutional research plan: CEZ:AV0Z10100521 Keywords : crystalline materials * epitaxial layers * liquid phase epitaxy * scintillator * semiconductor films Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.219, year: 2012

  2. Scintillation scanner

    International Nuclear Information System (INIS)

    Mehrbrodt, A.W.; Mog, W.F.; Brunnett, C.J.

    1977-01-01

    A scintillation scanner having a visual image producing means coupled through a lost motion connection to the boom which supports the scintillation detector is described. The lost motion connection is adjustable to compensate for such delays as may occur between sensing and recording scintillations. 13 claims, 5 figures

  3. Influence of SrF_2-doping in AlN ceramics on scintillation and dosimeter properties

    International Nuclear Information System (INIS)

    Kojima, Kaori; Okada, Go; Fukuda, Kentaro; Yanagida, Takayuki

    2016-01-01

    In this study, we synthesized undoped AlN and SrF_2-doped AlN (AlN-SrF_2) ceramics by Spark Plasma Sintering (SPS), and we characterized their optical, scintillation and dosimeter properties. The prepared undoped AlN ceramic had gray color and visually non-transparent whereas, with an addition of SrF_2, the transparency improved and became translucent. The measured in-line transmittance was approximately 0.2% at wavelengths longer than 500 nm. While the addition of SrF_2 decreased the scintillation intensity, the decay time was significantly fastened, which is a great advantage for fast photon counting-based measurements. Both the thermally-stimulated luminescence (TSL) and optically-stimulated luminescence (OSL) showed good linear response from the milli-gray range to over 10 Gy. The sensitivity seems to decrease by an addition of SrF_2 as it suppresses structural defect centers which are responsible for dosimeter properties. However, the main TSL glow peak position shifts to higher temperature with the addition of SrF_2, which indicates that inclusion of SrF_2 improves the TSL signal stability. - Highlights: • We synthesized undoped and SrF_2-doped AlN ceramics by Spark Plasma Sintering. • We evaluated scintillator and dosimeter properties of undoped and SrF_2-doped AlN. • By doping with SrF_2, the decay time is shortened. • By doping with SrF_2, the stability of TSL and OSL is improved.

  4. Development of scintillation materials for PET scanners

    CERN Document Server

    Korzhik, Mikhail; Annenkov, Alexander N; Borissevitch, Andrei; Dossovitski, Alexei; Missevitch, Oleg; Lecoq, Paul

    2007-01-01

    The growing demand on PET methodology for a variety of applications ranging from clinical use to fundamental studies triggers research and development of PET scanners providing better spatial resolution and sensitivity. These efforts are primarily focused on the development of advanced PET detector solutions and on the developments of new scintillation materials as well. However Lu containing scintillation materials introduced in the last century such as LSO, LYSO, LuAP, LuYAP crystals still remain the best PET species in spite of the recent developments of bright, fast but relatively low density lanthanum bromide scintillators. At the same time Lu based materials have several drawbacks which are high temperature of crystallization and relatively high cost compared to alkali-halide scintillation materials. Here we describe recent results in the development of new scintillation materials for PET application.

  5. Liquid scintillators and liquefied rare gases for particle detectors. Background-determination in Double Chooz and scintillation properties of liquid argon

    International Nuclear Information System (INIS)

    Hofmann, Martin Alexander

    2012-01-01

    the BiPo analysis show the high level of radiopurity reached in Double Chooz. In addition, with the BiPo analysis the α-quenching factors for the Target and the GammaCatcher liquids have been determined, respectively, to 9.94±0.04 and 13.69±0.02 at 7.7 MeV, and 9.05±0.01 and 14.3±0.1 at 8.8 MeV. The former values show a good agreement with the values obtained in a dedicated laboratory measurement. The time stability of the peak position of the 214 Po α-peak could be proven, too, showing a stable detector performance at low visible energies. The direct search for Dark Matter can, amongst others, be performed with liquid rare gas detectors, which make use of the scintillation light. However, a good background discrimination is needed. Studies on the wavelength- and time-resolved scintillation properties of liquid argon have therefore been carried out with high resolution and best statistics. The results obtained for different ion beams show that particle discrimination is not feasible in any realistic experiment by means of the wavelength-resolved scintillation light only, but the time structure of the emitted light provides a good handle to distinguish between different incident particles. For heavy ions (sulfur) a ratio of the fast to the slow scintillation component of (1.6 ± 0.6) is found, while lighter particles (protons) exhibit a ratio of (0.25 ± 0.05). The outcome of the present studies shows that this ratio can also be used in wavelength-integrating measurements which have a comparable detection efficiency for wavelengths below and above ∝170 nm. The present results demonstrate that for a number of 90 detected photons the singlet-to-triplet distributions obtained for sulfur ions and protons as exciting particles cease to overlap. In a Dark Matter experiment, if all photons produced can be detected, this corresponds to a discrimination threshold of only 2.25 keV.

  6. Liquid scintillators and liquefied rare gases for particle detectors. Background-determination in Double Chooz and scintillation properties of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Martin Alexander

    2012-11-27

    }(g)/(g)). Both gamma spectroscopy measurements and the BiPo analysis show the high level of radiopurity reached in Double Chooz. In addition, with the BiPo analysis the {alpha}-quenching factors for the Target and the GammaCatcher liquids have been determined, respectively, to 9.94{+-}0.04 and 13.69{+-}0.02 at 7.7 MeV, and 9.05{+-}0.01 and 14.3{+-}0.1 at 8.8 MeV. The former values show a good agreement with the values obtained in a dedicated laboratory measurement. The time stability of the peak position of the {sup 214}Po {alpha}-peak could be proven, too, showing a stable detector performance at low visible energies. The direct search for Dark Matter can, amongst others, be performed with liquid rare gas detectors, which make use of the scintillation light. However, a good background discrimination is needed. Studies on the wavelength- and time-resolved scintillation properties of liquid argon have therefore been carried out with high resolution and best statistics. The results obtained for different ion beams show that particle discrimination is not feasible in any realistic experiment by means of the wavelength-resolved scintillation light only, but the time structure of the emitted light provides a good handle to distinguish between different incident particles. For heavy ions (sulfur) a ratio of the fast to the slow scintillation component of (1.6 {+-} 0.6) is found, while lighter particles (protons) exhibit a ratio of (0.25 {+-} 0.05). The outcome of the present studies shows that this ratio can also be used in wavelength-integrating measurements which have a comparable detection efficiency for wavelengths below and above {proportional_to}170 nm. The present results demonstrate that for a number of 90 detected photons the singlet-to-triplet distributions obtained for sulfur ions and protons as exciting particles cease to overlap. In a Dark Matter experiment, if all photons produced can be detected, this corresponds to a discrimination threshold of only 2.25 keV.

  7. Scintillating Cocktail Mixtures and the Role of Water on the Optophysical Properties.

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph Gabriel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Feng, Patrick L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mengesha, Wondwosen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Murtagh, Dustin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Anstey, Mitchell [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2015-10-01

    Two types of water - containing liquid scinti llation mixtures were prepared in the present work. In the first, m ixtures of 2 - phenylethanol, water, diphenyl phosphate, sodium phenyl phosphate dibasic dihydrate, and the dye 2,5 - diphenyloxazole (PPO) have been investigated as liquid scintillators. In th e second system, nonionic and mixed surfactant systems were investigated in conjunction with water and small amounts of toluene. In both cases, increasing amounts of water led to reductions in the scintillation light yield. Understanding what factors contr ibute to this phenomenon is the focus of this report. Changes in the solution microphase structure, diminishing aromatic content of the cocktail mixtures, and inefficient energy transfer to the dye a ppear to be responsible for the decreased light yield as more water is added . In the 2 - phenylethanol system, the observed experimental results are consistent with the formation of a bicontinuous microemulsion at higher water concentrations, which incorporates PPO and shields it from the quenching effects of the increasing polar matrix. Evidence for this proposed phase chan ge c ome s from light scattering data, photo - and x - ray luminescence measurements, and optical transparency measurements . In the surfactant - based system, the quenching effect of water was found to be less than both commercially - available dioxane - naphthalene mixtures used for scintillation counting as well as the 2 - phenylethanol mixtures described above. The effect of different surfactant mixtures and concentrations were studied, revealing a benefic ial effect upon the scintillation light yield for mixed surfactant mixtures. These results are interpreted in the context of r eactive radical species formation following water ionization , which leads to light - yield quenching in aqueous systems . The presenc e of surfactant(s) in these mixtures enables the formation of organic - rich regions that are spatially separated from the

  8. Scintillation properties of a La, Lu-admix gadolinium pyrosilicate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, Shunsuke, E-mail: kurosawa@imr.tohoku.ac.jp [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shishido, Toetsu; Suzuki, Akira; Sugawara, Takamasa; Nomura, Akiko; Yubuta, Kunio [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Shoji, Yasuhiro [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); C& A Corporation, 6-6-40 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yokota, Yuui [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Institute of Physics, AS CR, Cukrovarnická 10, 162 53 Prague (Czech Republic); Ohashi, Yuji [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kamada, Kei [New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); C& A Corporation, 6-6-40 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute for Materials Research (IMR), Tohoku University 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe) 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); C& A Corporation, 6-6-40 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2015-06-01

    In order to obtain new scintillator with higher effective atomic number, a pyrosilicate crystal with a composition (Ce{sub 0.01}, Gd{sub 0.54}, La{sub 0.25}, Lu{sub 0.20}){sub 2}Si{sub 2}O{sub 7} (Ce:LaLu-GPS) was grown by the floating zone method. Emission wavelengths of this material were at 370 and 390 nm. Gamma-ray-excited pulse height and scintillation decay measurement showed that Ce:LaLu-GPS had a light output of 34,000±2000 photons/MeV, an FWHM energy resolution of 6.9±0.2%, and the decay time components of 59±1 ns (13%) and 570±20 ns (87%)

  9. Growth and scintillation properties of Pr doped YAP with different Pr concentrations

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kamada, Kei; Fujimoto, Yutaka; Sugiyama, Makoto; Furuya, Yuki; Yamaji, Akihiro; Yokota, Yuui; Yoshikawa, Akira

    2010-01-01

    Pr 3+ 0.2, 0.75, and 3 mol% doped YAP single crystalline scintillators were grown by using the micro-pulling down (μ-PD) method. Pr 3+ 0.05 mol% doped YAP was also prepared by using the Czochralski method. In transmittance spectra, 4f-5d absorption line appeared at 230 nm. The μ-PD grown crystals showed intense emission at 290 nm while the Czochralski grown one showed an emission peak at 245 nm in radio luminescence spectra under X-ray excitation. Among them, the Czochralski grown one exhibited the highest light yield under 137 Cs 662 keV excitation and the absolute light yield of this sample was estimated to be 20400±2000 ph/MeV. The decay time constants of these scintillators were around 10 ns due to Pr 3+ 5d-4f transition.

  10. Growth and scintillation properties of Pr doped YAP with different Pr concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.j [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kamada, Kei; Fujimoto, Yutaka; Sugiyama, Makoto; Furuya, Yuki [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yamaji, Akihiro [New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yokota, Yuui [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2010-11-21

    Pr{sup 3+} 0.2, 0.75, and 3 mol% doped YAP single crystalline scintillators were grown by using the micro-pulling down ({mu}-PD) method. Pr{sup 3+} 0.05 mol% doped YAP was also prepared by using the Czochralski method. In transmittance spectra, 4f-5d absorption line appeared at 230 nm. The {mu}-PD grown crystals showed intense emission at 290 nm while the Czochralski grown one showed an emission peak at 245 nm in radio luminescence spectra under X-ray excitation. Among them, the Czochralski grown one exhibited the highest light yield under {sup 137}Cs 662 keV excitation and the absolute light yield of this sample was estimated to be 20400{+-}2000 ph/MeV. The decay time constants of these scintillators were around 10 ns due to Pr{sup 3+} 5d-4f transition.

  11. Study on time properties of newly type inorganic scintillator cerium fluoride (CeF3)

    International Nuclear Information System (INIS)

    Hu Mengchun; Zhou Dianzhong; Guo Cun; Ye Wenying

    2003-01-01

    CeF 3 is a newly fast time response inorganic scintillator, the time characteristics of which, developed in recent country in nearly year were studied in our works. The time characteristics are rise time, FWHM time and fall time for fast pulse radiation source. As the same time, authors have calculated and used the formula of pulse method gain to the decay time constant of crystal shining, the decay time constant measured is the same to the results of foreign references

  12. Improvement of luminescence properties of GaN buffer layer for fast nitride scintillator structures

    Czech Academy of Sciences Publication Activity Database

    Hubáček, T.; Hospodková, Alice; Oswald, Jiří; Kuldová, Karla; Pangrác, Jiří

    2017-01-01

    Roč. 464, Apr (2017), s. 221-225 ISSN 0022-0248 R&D Projects: GA ČR GA16-11769S; GA MŠk LO1603 Institutional support: RVO:68378271 Keywords : MOVPE * GaN * scintillators * yellow band Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  13. Investigation of surface halide modification of nitrile butadiene rubber

    Science.gov (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  14. Comparative study of scintillation properties of RE doped NaPO3-Al(PO3)3 glasses

    International Nuclear Information System (INIS)

    Kuro, Tomoaki; Yanagida, Takayuki; Okada, Go; Fujimoto, Yutaka; Masai, Hirokazu

    2015-01-01

    We systematically investigated photoluminescence (PL), scintillation and dosimeter properties of rare-earth (RE) doped NaPO 3 -Al(PO 3 ) 3 (NAP) glasses. Ag-doped NAP glass is widely used for individual radiation dosimeter, however, there have been few reports on studies about NAP glasses when RE ions are doped as the luminescence center. The NAP glasses doped with 0.3 wt% RE (La∼Yb) were prepared by the conventional melt-quenching method. PL decay time and scintillation decay time profiles showed fast (ns) and slow (μs or ms) components: the fast components were from several tens to 100 ns due to the host emission or 5d-4f transition emission, and the slow component from few μs to few ms was caused by 4f-4f transition emission of RE 3+ . Thermally stimulated luminescence (TSL) was evaluated as a dosimeter property, and glow peaks appeared around 400degC in all the samples. The TSL dose response function was examined in the dose range from 10 mGy to 10 Gy, and good linearity was observed in RE-doped NAP glasses. (author)

  15. Effects of Na co-doping on optical and scintillation properties of Eu:LiCaAlF.sub.6./sub. scintillator single crystals

    Czech Academy of Sciences Publication Activity Database

    Tanaka, Ch.; Yokota, Y.; Kurosawa, S.; Yamaji, A.; Ohashi, Y.; Kamada, K.; Nikl, Martin; Yoshikawa, A.

    2017-01-01

    Roč. 468, Jun (2017), s. 399-402 ISSN 0022-0248 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : doping * single crystal growth * lithium compounds * scintillator materials Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  16. Luminescence and scintillation properties of scintillators based on orthorhombic and monoclinic BaLu.sub.2./sub.F.sub.8./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Fukuda, K.; Kurosawa, S.; Yokota, Y.; Král, Robert; Nikl, Martin; Yoshikawa, A.

    2014-01-01

    Roč. 61, č. 1 (2014), s. 411-417 ISSN 0018-9499 R&D Projects: GA MŠk LH12150 Institutional support: RVO:68378271 Keywords : fluorides * rare-earth doping * scintillator * x-ray and gamma-ray detection Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.283, year: 2014

  17. Study on optical properties of ceramics scintillator for X-ray CT equipment. (Pt. 2)

    International Nuclear Information System (INIS)

    Nakamura, Ryouhei; Tsukuda, Yasuo; Nitanda, Humio

    1993-01-01

    The scintillator elements in X-ray CT equipment of the third generation type require high uniformity of distribution of light output as well as quality response characteristic. Parameters responsible for the distribution of light output were studied using the Monte Carlo method. Although the scattering coefficient was neglected, close agreement was obtained between calculated and experimental results. Calculated results indicated that relative output drop at both ends decreased with increasing optical absorption coefficient and was constant for X-ray absorption factor. (author)

  18. Scintillation property of rare earth-free SnO-doped oxide glass

    OpenAIRE

    Masai, Hirokazu; Yanagida, Takayuki; Fujimoto, Yutaka; Koshimizu, Masanori; Yoko, Toshinobu

    2012-01-01

    The authors have demonstrated scintillation of rare earth (RE)-free Sn-doped oxide glass by excitation of ionizing radiation. It is notable that light emission is attained for RE-free transparent glass due to s[2]-sp transition of Sn[2+] centre and the emission correlates with the excitation band at 20 eV. We have also demonstrated that excitation band of emission centre can be tuned by the chemical composition of the host glass. The present result is valuable not only for design of RE-free i...

  19. Photofragmentation of metal halides

    International Nuclear Information System (INIS)

    Veen, N.J.A. van.

    1980-01-01

    The author deals with photodissociation of molecules of alkali halides. It is shown that the total absorption cross section consists of two contributions arising from transitions to excited states of total electronic angular momentum Ω=0 + and Ω=1. From the inversion of the absorption continua potential energy curves of the excited states can be constructed in the Franck-Condon region. It is found that for all alkali halides the 0 + state is higher in energy than the Ω=1 state. Extensive studies are reported on three thallium halides, TlI, TlBr and TlCl at various wavelengths covering the near ultraviolet region. (Auth.)

  20. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, A., E-mail: yoshikawa@imr.tohoku.ac.jp [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Kamada, K. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Kurosawa, S. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); Shoji, Y. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); C& A Corporation, 6-6-40 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Yokota, Y. [New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai 980-8579 (Japan); Chani, V.I. [Institute for Materials Research (IMR), Tohoku University, Sendai 980-8577 (Japan); Nikl, M. [Institute of Physics, AS CR, Cukrovarnická 10, 162 53 Prague (Czech Republic)

    2016-01-15

    Crystal growth by micro-pulling-down, Czochralski, and floating zone methods and scintillation properties of Ce:Gd{sub 3}(Ga,Al){sub 5}O{sub 12} (Ce:GGAG) multi-component oxide garnets, and Ce:Gd{sub 2}Si{sub 2}O{sub 7} (Ce:GPS) or Ce:(La,Gd){sub 2}Si{sub 2}O{sub 7} (Ce:La-GPS) pyro-silicates are reviewed. GGAG crystals demonstrated practically linear dependences of some of the parameters including lattice constant, emission wavelength, and band gap on Ga content. However, emission intensity, light yield and energy resolution showed maxima for intermediate compositions. GGAG crystals had the highest light yield of 56,000 photon/MeV for Ga content of 2.7 atoms per garnet formula unit. Similarly the light yield and energy resolution of La-GPS showed the highest values of 40,000 photon/MeV and 4.4%@662 keV, respectively, for La-GPS containing 10% of La. Moreover, La-GPS demonstrated stable scintillation performance up to 200 °C.

  1. Scintillation and optical properties of Pb-doped YCa{sub 4}O(BO{sub 3}){sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yutaka, E-mail: fuji-you@tagen.tohoku.ac.jp [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); JSPS, 8 Ichibanmachi, Chiyoda-ku, Tokyo 102-8472 (Japan); Yanagida, Takayuki; Yokota, Yuui [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, 3 Shibuya Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Tokuyama Corporation, 3 Shibuya Shibuya-ku, Tokyo 150-8383 (Japan); Totsuka, Daisuke [Nihon Kessho Kogaku Co., Ltd., 810-5 Nobe-cho Tatebayashi Gunma (Japan); Watanabe, Kenichi; Yamazaki, Atsushi [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-10-01

    This communication reports optical properties and radiation responses of Pb{sup 2+} 0.5 and 1.0 mol%-doped YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) single crystals grown by the micro-pulling-down ({mu}-PD) method for neutron scintillator applications. The crystals had no impurity phases according to the results of X-ray powder diffraction. These Pb{sup 2+}-doped crystals demonstrated blue-light luminescence at 330 nm because of Pb{sup 2+1}S{sub 0}-{sup 3}P{sub 0,1} transition in the photoluminescence spectra. The main emission decay component was determined to be about 250-260 ns under 260 nm excitation wavelength. When irradiated by a {sup 252}Cf source, the relative light yield of 0.5% Pb{sup 2+}-doped crystal was about 300 ph/n that was determined using the light yield of a reference Li-glass scintillator.

  2. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    International Nuclear Information System (INIS)

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-01-01

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10 16 cm −3 to 6 × 10 17 cm −3 . Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10 17 cm −3 is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission

  3. Zinc(II) halide complexes with 2-methoxyaniline ligand: Synthesis, characterization, thermal analyses, crystal structure determination and luminescent properties

    Science.gov (United States)

    Amani, Vahid

    2018-03-01

    Three new mononuclear zinc(II) complexes, [Zn(2-MeO-C6H4NH2)2X2] (X is Cl in 1, Br in 2 and I in 3), were prepared from the reactions of ZnX2 with 2-methoxyaniline (2-MeO-C6H4NH2) ligand in methanol. Suitable crystals of these complexes were obtained for X-ray diffraction measurements by slow evaporation of methanol solution at room temperature. The three complexes were thoroughly characterized by thermogravimetric analysis, elemental analysis (CHNO), spectral methods (IR, UV-Vis, 13C{1H}NMR, 1H NMR and luminescence), and single crystal X-ray diffraction. The X-ray structural analysis indicated that in the structures of these complexes, the zinc(II) cation is four-coordinated in a distorted tetrahedral configuration by two N atoms from two 2-methoxyanyline ligands and two halide anions. Also, in these complexes intermolecular interactions, for example Nsbnd H⋯X hydrogen bonds (in 1-3), Csbnd H⋯X hydrogen bonds (in 3), Csbnd H⋯π interactions (in 1 and 2) and π⋯π interactions (in 3), are effective in the stabilization of the crystal structures. In addition, the luminescence spectra of all complexes in methanolic solution show that the intensity of their emission bands is stronger than that for free 2-methoxyaniline ligand.

  4. Lattice potential energies and thermochemical properties of triethylammonium halides (Et3NHX) (X = Cl, Br, and I)

    International Nuclear Information System (INIS)

    Liu Yupu; Tan Zhicheng; Di Youying; Xing Yiting; Zhang Peng

    2012-01-01

    Highlights: ► The crystal structures of (Et 3 NHX) (X = Cl, Br, and I) were determined. ► Lattice potential energies and ionic radius of the common cation were obtained. ► Molar enthalpies of dissolution at infinite dilution were derived. ► Relative partial molar enthalpies were derived. ► Hydration enthalpy of Et 3 NH + was calculated. - Abstract: A series of triethylammonium halides (Et 3 NHCl, Et 3 NHBr, and Et 3 NHI) was synthesized. The crystal structures of the three compounds were characterized by X-ray crystallography. The lattice potential energies and ionic radius of the common cation of the three compounds were obtained from crystallographic data. Molar enthalpies of dissolution of the compounds at various values of molality were measured in the double-distilled water at T = 298.150 K by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the values of molar enthalpies of dissolution at infinite dilution and Pitzer’s parameters of the compounds were obtained. The values of apparent relative molar enthalpies, relative partial molar enthalpies of the solvent and the compounds at different molalities were derived from the experimental values of molar enthalpies of dissolution of the compounds. Finally, hydration enthalpy of the common cation Et 3 NH + was calculated to be ΔH + = −(150.386 ± 4.071) kJ · mol −1 by designing a thermochemical cycle.

  5. Diversity of band gap and photoluminescence properties of lead halide perovskite: A halogen-dependent spectroscopic study

    Science.gov (United States)

    Yu, Wenlei; Jiang, Yunfeng; Zhu, Xiuwei; Luo, Chunhua; Jiang, Kai; Chen, Liangliang; Zhang, Juan

    2018-05-01

    The effects of halogen substitution on microstructure, optical absorption, and phonon modes for perovskite CH3NH3PbX3 (MAPbX3, X = I/Br/Cl) films grown on FTO substrates have been investigated. The X-ray diffraction analysis exhibited good crystallization, and the strong diffraction peak assigned to (1 0 0) c for X = Br/Cl shifted toward a higher angle compared to (1 1 0) t of MAPbI3. Band-gap tuning from 1.63 to 2.37 to 3.11 eV in the I-Br-Cl series can be found due to the halogen effects. These energy values closely match the positions of peak determined from photoluminescence experiments. The remarkable absorption dip and emission peak appear for the MAPbBr3, suggesting higher crystallinity under the same preparation conditions. The wavenumbers of main IR-vibrations slightly decrease with ionic radius of the halogen increasing (in the order of Cl-Br-I), which related to the increasing polarizability. These results provide important progress towards the understanding of the halide role in the realization of high performance MAPbX3-based solar cells.

  6. Scintillation and optical properties of Sn-doped Ga2O3 single crystals

    Science.gov (United States)

    Usui, Yuki; Nakauchi, Daisuke; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-06-01

    Sn-doped Ga2O3 single crystals were synthesized by the Floating Zone (FZ) method. In photoluminescence (PL) under the excitation wavelength of 280 nm, we observed two types of luminescence: (1) defect luminescence due to recombination of the donor/acceptor pairs which appears at 430 nm and (2) the nsnp-ns2 transitions of Sn2+ which appear at 530 nm. The PL and scintillation decay time curves of the Sn-doped samples were approximated by a sum of exponential decay functions. The faster two components were ascribed to the defect luminescence, and the slowest component was owing to the nsnp-ns2 transitions. In the pulse height spectrum measurements under 241Am α-rays irradiation, all the Sn-doped Ga2O3 samples were confirmed to show a full energy absorption peak but the undoped one. Among the present samples, the 1% Sn-doped sample exhibited the highest scintillation light yield (1,500 ± 150 ph/5.5 MeV-α).

  7. Scintillation properties of semiconducting {sup 6}LiInSe{sub 2} crystals to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, Brenden [Y-12 National Security Complex, Oak Ridge, TN (United States); Vanderbilt University, Nashville, TN (United States); Groza, Michael; Tupitsyn, Eugene [Fisk University, Nashville, TN (United States); Lukosi, Eric [University of Tennessee, Knoxville, TN (United States); Stassun, Keivan; Burger, Arnold [Vanderbilt University, Nashville, TN (United States); Fisk University, Nashville, TN (United States); Stowe, Ashley [Y-12 National Security Complex, Oak Ridge, TN (United States); Vanderbilt University, Nashville, TN (United States); University of Tennessee, Knoxville, TN (United States)

    2015-11-21

    {sup 6}LiInSe{sub 2} has gained attention recently as a semiconducting thermal neutron detector. As presented herein, the chalcogenide compound semiconductor also detects incident neutrons via scintillation, making {sup 6}LiInSe{sub 2} the only lithium containing semiconductor to respond to neutrons via both detection mechanisms. Both yellow and red crystals, which appear in the literature, were investigated. Only the yellow crystal responded favorably to ionizing radiation, similar to the semiconducting operation utilizing electrodes. The obtained light yield for yellow crystals is 4400 photons/MeV, referenced to Bi{sub 4}Ge{sub 3}O{sub 12} (BGO).The estimated thermal neutron light yield was 21,000 photons/thermal neutron. The two measured decay time components were found to be 31±1 ns (49%) and 143±9 ns (51%).This crystal provides efficient, robust detection of neutrons via scintillation with respectable light yield and rapid response, enabling its use for a broad array of neutron detection applications.

  8. Scintillation properties of Ce:(La,Gd){sub 2}Si{sub 2}O{sub 7} at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, Shunsuke, E-mail: kurosawa@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Shishido, Toetsu; Sugawara, Takamasa; Nomura, Akiko; Yubuta, Kunio; Suzuki, Akira; Murakami, Rikito [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi (Japan); Pejchal, Jan [New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Institute of Physics, AS CR, Cukrovarnická 10, 162 53 Prague (Czech Republic); Yokota, Yuui; Kamada, Kei [New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Miyagi (Japan); C and A Corporation, 6-6-40 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2015-02-01

    Temperature dependence of scintillation properties was investigated for (Ce{sub 0.01}, Gd{sub 0.90}, La{sub 0.09}){sub 2}Si{sub 2}O{sub 7} grown by floating zone method. The light output over 35,000 photons/MeV was found constant in the temperature range from 0 °C to 150 °C. In addition, FWHM energy resolution of Ce:La-GPS (roughly 7–8%) at 662 keV remained constant up to 100 °C. Thus, this crystal can be applied to oil well logging or other radiation detection application at high temperature conditions.

  9. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  10. Growth and luminescent properties of Yb3+--doped oxide single crystals for scintillator application

    International Nuclear Information System (INIS)

    Yoshikawa, A.; Ogino, H.; Shim, J.B.; Nikl, M.; Solovieva, N.; Fukuda, T.

    2004-01-01

    Rod-shaped (Lu 1-x Yb x ) 3 Al 5 O 12 with x=0.05, 0.15, 0.30 and (Y 1-x Yb x )AlO 3 with x=0.05, 0.10, 0.30 single crystals were grown by the micro-pulling-down method. Edge-defined film-fed growth method was used to prepare (Y 0.9 Yb 0.1 )VO 4 crystal, while Ca 8 (La 1.98 Yb 0.02 )(PO 4 ) 6 O 2 crystal was grown by the Czochralski method. Luminescence of these crystals was studied with main attention paid to the charge transfer emission of Yb 3+ . Temperature tuned decay times in the time scale of units--tens of nanosecond was measured as a feature possibly interesting for an application in scintillation detectors in positron emission tomography

  11. Scintillation properties of μPD-grown Y{sub 4}Al{sub 2}O{sub 9}:Pr (YAM:Pr) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Drozdowski, Winicjusz, E-mail: wind@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Brylew, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Malinowski, Michał [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Turczyński, Sebastian [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2015-05-25

    Highlights: • YAM:Pr crystals do scintillate and as such deserve further interest. • Fast d–f luminescence of Pr{sup 3+} ions appears in X-ray excited spectra. • Two components (24 and 790 ns) constitute scintillation time profiles. - Abstract: Y{sub 4}Al{sub 2}O{sub 9}:Pr (YAM:Pr) crystals have been grown by the micro-pulling-down method and their scintillation properties have been investigated. YAM:0.1%Pr displays a light yield of about 2000 ph/MeV and its scintillation time profile contains a prompt component with a decay time of 23.5 ns and a contribution of 20%. Radioluminescence spectra show both fast d–f and slow f–f praseodymium emissions. Low temperature glow curves are complex, consisting of discrete peaks and broad bands related to quasi-continuous trap distributions. Overall scintillation performance of YAM:Pr deteriorates with increasing praseodymium concentration.

  12. Study of properties of the plastic scintillator EJ-260 under irradiation with 150 MeV protons and 1.2MeV gamma-rays

    Science.gov (United States)

    Dormenev, V.; Brinkmann, K.-T.; Korjik, M.; Novotny, R. W.

    2017-11-01

    One of the most critical aspects for the application of a scintillation material in high energy physics is the degradation of properties of the material in an environment of highly ionizing particles in particular due to hadrons. There are presently several detector concepts in consideration being based on organic scintillator material for fast timing of charged particles or sampling calorimeters. We have tested different samples of the organic plastic scintillator EJ-260 produced by the company Eljen Technology (Sweetwater, TX, USA). The ongoing activity has characterized the relevant parameters such as light output, kinetics and temperature dependence. The study has focused on the change of performance after irradiation with 150 MeV protons up to an integral fluence of 5·1013 protons/cm2 as well as with a strong 60Co γ-source accumulating an integral dose of 100 Gy. The paper will report on the obtained results.

  13. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection

    KAUST Repository

    Saidaminov, Makhsud I.

    2016-12-06

    A rapid, low-temperature, and solution-based route is developed for growing large-sized cesium lead halide perovskite single crystals under ambient conditions. An ultralow minority carrier concentration was measured in CsPbBr3 (≈108 holes per cm3, much lower than in any other lead halide perovskite and crystalline silicon), which enables to realize self-powered photodetectors with a high ON/OFF ratio (105).

  14. Scintillation and optical properties of Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Masaki, E-mail: masaki.mori.mz4@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Nakauchi, Daisuke; Okada, Go [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Fujimoto, Yutaka [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan); Kawaguchi, Noriaki [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan); Koshimizu, Masanori [Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579 (Japan); Yanagida, Takayuki [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192 (Japan)

    2017-06-15

    The single crystals of 0, 0.6, 1, 1.6 and 2 mol% Ce doped CaGdAl{sub 3}O{sub 7} (Ce:CGAM) were grown by the Floating Zone method, and investigated on photoluminescence (PL) and scintillation properties. In the PL spectra, a broad emission appeared over 380–500 nm under 280 and 360 nm excitations with the quantum yield of 33.8–38.8%. Under a vacuum ultraviolet excitation (90 nm) using a synchrotron source, non-doped CGAM single crystal showed broad emissions over 250–650 nm. The PL decay time profiles followed a monotonic exponential decay with a decay time constant of around 33 ns. The scintillation spectra were similar to those of PL. All of the samples exhibited a clear photoabsorption peak and Compton edge in the pulse height spectra measured under {sup 137}Cs γ-ray irradiation, and the absolute scintillation light yield (LY) was highest for the 2% Ce-doped sample with the value of 3300±300 ph/MeV. The scintillation decay profiles were approximated by a third order exponential decay function, and the extracted decay time of Ce{sup 3+} emission component was around 36–44 ns. Among all the samples, 2%Ce:CGAM single crystal sample showed the best afterglow level as a scintillator under X-ray irradiation. - Highlights: •Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} single crystals were synthesized by the FZ method. •Optical and scintillation properties of Ce{sup 3+}-doped CaGdAl{sub 3}O{sub 7} were investigated. •Photoabsorption peak in a pulse height spectrum was clearly observed under γ-rays.

  15. Scintillation camera

    International Nuclear Information System (INIS)

    Zioni, J.; Klein, Y.; Inbar, D.

    1975-01-01

    The scintillation camera is to make pictures of the density distribution of radiation fields created by the injection or administration radioactive medicaments into the body of the patient. It contains a scintillation crystal, several photomultipliers and computer circuits to obtain an analytical function at the exits of the photomultiplier which is dependent on the position of the scintillations at the time in the crystal. The scintillation crystal is flat and spatially corresponds to the production site of radiation. The photomultipliers form a pattern whose basic form consists of at least three photomultipliers. They are assigned to at least two crossing parallel series groups where a vertical running reference axis in the crystal plane belongs to each series group. The computer circuits are each assigned to a reference axis. Each series of a series group assigned to one of the reference axes in the computer circuit has an adder to produce a scintillation dependent series signal. Furthermore, the projection of the scintillation on this reference axis is calculated. A series signal is used for this which originates from a series chosen from two neighbouring photomultiplier series of this group. The scintillation must have appeared between these chosen series. They are termed as basic series. The photomultiplier can be arranged hexagonally or rectangularly. (GG/LH) [de

  16. Two-Dimensional Lead(II) Halide-Based Hybrid Perovskites Templated by Acene Alkylamines: Crystal Structures, Optical Properties, and Piezoelectricity.

    Science.gov (United States)

    Du, Ke-Zhao; Tu, Qing; Zhang, Xu; Han, Qiwei; Liu, Jie; Zauscher, Stefan; Mitzi, David B

    2017-08-07

    A series of two-dimensional (2D) hybrid organic-inorganic perovskite (HOIP) crystals, based on acene alkylamine cations (i.e., phenylmethylammonium (PMA), 2-phenylethylammonium (PEA), 1-(2-naphthyl)methanammonium (NMA), and 2-(2-naphthyl)ethanammonium (NEA)) and lead(II) halide (i.e., PbX 4 2- , X = Cl, Br, and I) frameworks, and their corresponding thin films were fabricated and examined for structure-property relationship. Several new or redetermined crystal structures are reported, including those for (NEA) 2 PbI 4 , (NEA) 2 PbBr 4 , (NMA) 2 PbBr 4 , (PMA) 2 PbBr 4 , and (PEA) 2 PbI 4 . Non-centrosymmetric structures from among these 2D HOIPs were confirmed by piezoresponse force microscopy-especially noteworthy is the structure of (PMA) 2 PbBr 4 , which was previously reported as centrosymmetric. Examination of the impact of organic cation and inorganic layer choice on the exciton absorption/emission properties, among the set of compounds considered, reveals that perovskite layer distortion (i.e., Pb-I-Pb bond angle between adjacent PbI 6 octahedra) has a more global effect on the exciton properties than octahedral distortion (i.e., variation of I-Pb-I bond angles and discrepancy among Pb-I bond lengths within each PbI 6 octahedron). In addition to the characteristic sharp exciton emission for each perovskite, (PMA) 2 PbCl 4 , (PEA) 2 PbCl 4 , (NMA) 2 PbCl 4 , and (PMA) 2 PbBr 4 exhibit separate, broad "white" emission in the long wavelength range. Piezoelectric compounds identified from these 2D HOIPs may be considered for future piezoresponse-type energy or electronic applications.

  17. Composite scintillators for detection of ionizing radiation

    Science.gov (United States)

    Dai, Sheng [Knoxville, TN; Stephan, Andrew Curtis [Knoxville, TN; Brown, Suree S [Knoxville, TN; Wallace, Steven A [Knoxville, TN; Rondinone, Adam J [Knoxville, TN

    2010-12-28

    Applicant's present invention is a composite scintillator having enhanced transparency for detecting ionizing radiation comprising a material having optical transparency wherein said material comprises nano-sized objects having a size in at least one dimension that is less than the wavelength of light emitted by the composite scintillator wherein the composite scintillator is designed to have selected properties suitable for a particular application.

  18. Plastic scintillator

    International Nuclear Information System (INIS)

    Andreeshchev, E.A.; Kilin, S.F.; Kavyrzina, K.A.

    1978-01-01

    A plastic scintillator for ionizing radiation detectors with high time resolution is suggested. To decrease the scintillation pulse width and to maintain a high light yield, the 4 1 , 4 5 -dibromo-2 1 , 2 5 , 5 1 , 5 5 -tetramethyl-n-quinquiphenyl (Br 2 Me 4 Ph) in combination with n-terphenyl (Ph 3 ) or 2, 5-diphenyloxadiazol-1, 3, 4 (PPD) is used as a luminescent addition. Taking into consideration the results of a special study, it is shown, that the following ratio of ingradients is the optimum one: 3-4 mass% Ph 3 or 4-7 mas% PPD + 2-5 mass% Br 2 Me 4 Ph + + polymeric base. The suggested scintillator on the basis of polystyrene has the light yield of 0.23-0.26 arbitrary units and the scintillation pulse duration at half-height is 0.74-0.84 ns

  19. Chloride, bromide and iodide scintillators with europium

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2016-09-27

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  20. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.

    Science.gov (United States)

    Jaffe, Adam; Lin, Yu; Beavers, Christine M; Voss, Johannes; Mao, Wendy L; Karunadasa, Hemamala I

    2016-04-27

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.

  1. Radiopharmaceuticals for bone scintillators

    International Nuclear Information System (INIS)

    Rey, A.M.

    1994-01-01

    One of the diagnostic techniques used in nuclear medicine is the bone scintiscanning with labelled compounds for obtain skeletal images. The main sections in this work are: (1) bone composition and anatomy;(2)skeletal radiopharmaceutical development;(3)physical properties of radionuclides;(4)biological behaviour and chemical structures;(5)radiopharmaceuticals production for skeletal scintillation;(6)kits;(7)dosimetry and toxicity.tabs

  2. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  3. Preparation and Scintillating Properties of Sol-Gel Eu3+, Tb3+ Co-Doped Lu2O3 Nanopowders

    Directory of Open Access Journals (Sweden)

    Joel Moreno Palmerin

    2011-09-01

    Full Text Available Nanocrystalline Eu3+, Tb3+ co-doped Lu2O3 powders with a maximum size of 25.5 nm were prepared by the sol-gel process, using lutetium, europium and terbium nitrates as precursors, and ethanol as a solvent. Differential thermal analysis (DTA and infrared spectroscopy (IR were used to study the chemical changes during the xerogel annealing. After the sol evaporation at 100 °C, the formed gel was annealed from 300 to 900 °C for 30 min under a rich O2 atmosphere, and the yielded product was analyzed by X-ray diffraction (XRD to characterize the microstructural behavior and confirm the crystalline structure. The results showed that Lu2O3 nanopowders start to crystallize at 400 °C and that the crystallite size increases along with the annealing temperature. A transmission electron microscopy (TEM study of samples annealed at 700 and 900 °C was carried out in order to analyze the microstructure, as well as the size, of crystallites. Finally, in regard to scintillating properties, Eu3+ dopant (5 mol%, Tb3+ codoped Lu2O3 exhibited a typical red emission at 611 nm (Do→7F2, furthermore, the effect of Tb3+ molar content (0.01, 0.015 and 0.02% mol on the Eu3+ radioluminiscence was analyzed and it was found that the higher emission intensity corresponds to the lower Tb3+ content.

  4. Effect of Gd substitution on structure and spectroscopic properties of (Lu,Gd)2O3:Eu ceramic scintillator

    Science.gov (United States)

    Cao, Maoqing; Hu, Zewang; Ivanov, Maxim; Dai, Jiawei; Li, Chaoyu; Kou, Huamin; Shi, Yun; Chen, Haohong; Xu, Jiayue; Pan, Yubai; Li, Jiang

    2018-02-01

    In this paper, (Lu1-xGdx)2O3:Eu (x = 0, 0.1, 0.3, 0.5, 0.7, 0.9) ceramics were consolidated by the solid-state reaction method combined with vacuum sintering without sintering aids. We investigated the effect of the varying contents of Gd2O3 on the structure and spectroscopic properties of (Lu1-xGdx)2O3:Eu ceramics. X-ray diffraction (XRD) patterns indicate that proper amount of Gd2O3 can incorporate well with Lu2O3 and form Lu2O3-Gd2O3 solid solution. However, excessive Gd3+-doping in Lu2O3 will lead to the cubic phase transforming into monoclinic even hexagonal phase. The Gd3+ substitution no more than 50% of Lu2O3 enhances the radioluminescence, and reduces the fluorescence lifetime. Transmittance, photoluminescence, and radiation damage of the (Lu1-xGdx)2O3:Eu scintillation ceramics were also studied.

  5. Optical and scintillation properties of Ce-doped LuLiF{sub 4} with different Ce concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@lsse.kyutech.ac.jp [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196 (Japan); Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0196 (Japan); Fukuda, Kentaro [Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 Japan (Japan); Chani, Valery [Tohoku Univ., 2-1-1 Katahira, Sendai 980-8577 (Japan)

    2013-11-21

    The crystals of 0.1, 0.5, and 1 mol% Ce-doped LuLiF{sub 4} (Ce:LLF) grown by the micro-pulling down (μ-PD) method were examined for their optical and scintillation properties. Ce:LLF crystals had ∼80% transparency at wavelengths longer than 300 nm. In photoluminescence spectra, they demonstrated intense emission peaks at 310 and 330 nm with the quantum yield of 60–90%. Ce{sup 3+} 5d–4f emission peaks were also detected at similar wavelengths of 310 and 330 nm in the radioluminescence spectra obtained under X-ray excitation. According to pulse height spectra recorded under γ-ray irradiation, the absolute light yield of Ce 0.1, 0.5, and 1% were 3600±400, 3000±300, and 1700±200 ph/MeV, respectively. Decay time kinetics was also inspected using a pulse X-ray equipped streak camera system. The decay time components of Ce:LLF were ∼70 ns and ∼1 μs for all the samples.

  6. Scintillation properties of Ce-doped LuLiF{sub 4} and LuScBO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: t_yanagi@tagen.tohoku.ac.jp [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fujimoto, Yutaka [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kawaguchi, Noriaki [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama Corporation, Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yokota, Yuui [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Kamada, Kei [Materials Research Laboratory, Furukawa, Co. Ltd., 1-25-13 Kannondai, Tsukuba, Ibaragi 305-0856 (Japan); Totsuka, Daisuke [Nihon Kessho Kogaku Co., Ltd., 810-5 Nobe-cho, Tatebayashi, Gunma 374-0047 (Japan); Hatamoto, Shun-Ichi [Corporate Research and Development Center, Mitsui Mining and Smelting Co., Ltd., 1333-2 Haraichi, Ageo Saitama 362-0023 (Japan); Yoshikawa, Akira; Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2011-10-01

    The crystals of 1 mol% Ce-doped LuLiF{sub 4} (Ce:LLF) grown by the micro-pulling down ({mu}-PD) method and 1 mol% Ce-doped LuScBO{sub 3} (Ce:LSBO) grown by the conventional Czochralski (Cz) method were examined for their scintillation properties. Ce:LLF and Ce:LSBO demonstrated {approx}80% transparency at wavelengths longer than 300 and 400 nm, respectively. When excited by {sup 241}Am {alpha}-ray to obtain radioactive luminescence spectra, Ce{sup 3+} 5d-4f emission peaks were detected at around 320 nm for Ce:LLF and at around 380 nm for Ce:LSBO. In Ce:LSBO, the host luminescence was also observed at 260 nm. By recording pulse height spectra under {gamma}-ray irradiation, the absolute light yield of Ce:LLF and Ce:LSBO was measured to be 3600{+-}400 and 4200{+-}400 ph/MeV, respectively. Decay time kinetics was also investigated using a pulse X-ray equipped streak camera system. The main component of Ce:LLF was {approx}320 ns and that of Ce:LSBO was {approx}31 ns. In addition, the light yield non-proportionality and energy resolution against the {gamma}-ray energy were evaluated.

  7. Optical and scintillation properties of Ce-doped LuLiF4 with different Ce concentrations

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Fukuda, Kentaro; Chani, Valery

    2013-01-01

    The crystals of 0.1, 0.5, and 1 mol% Ce-doped LuLiF 4 (Ce:LLF) grown by the micro-pulling down (μ-PD) method were examined for their optical and scintillation properties. Ce:LLF crystals had ∼80% transparency at wavelengths longer than 300 nm. In photoluminescence spectra, they demonstrated intense emission peaks at 310 and 330 nm with the quantum yield of 60–90%. Ce 3+ 5d–4f emission peaks were also detected at similar wavelengths of 310 and 330 nm in the radioluminescence spectra obtained under X-ray excitation. According to pulse height spectra recorded under γ-ray irradiation, the absolute light yield of Ce 0.1, 0.5, and 1% were 3600±400, 3000±300, and 1700±200 ph/MeV, respectively. Decay time kinetics was also inspected using a pulse X-ray equipped streak camera system. The decay time components of Ce:LLF were ∼70 ns and ∼1 μs for all the samples

  8. Ultra-fast scintillation properties of β-Ga2O3 single crystals grown by Floating Zone method

    Science.gov (United States)

    He, Nuotian; Tang, Huili; Liu, Bo; Zhu, Zhichao; Li, Qiu; Guo, Chao; Gu, Mu; Xu, Jun; Liu, Jinliang; Xu, Mengxuan; Chen, Liang; Ouyang, Xiaoping

    2018-04-01

    In this investigation, β-Ga2O3 single crystals were grown by the Floating Zone method. At room temperature, the X-ray excited emission spectrum includes ultraviolet and blue emission bands. The scintillation light output is comparable to the commercial BGO scintillator. The scintillation decay times are composed of the dominant ultra-fast component of 0.368 ns and a small amount of slightly slow components of 8.2 and 182 ns. Such fast component is superior to most commercial inorganic scintillators. In contrast to most semiconductor crystals prepared by solution method such as ZnO, β-Ga2O3 single crystals can be grown by traditional melt-growth method. Thus we can easily obtain large bulk crystals and mass production.

  9. Optical and scintillation properties of Sr7%:Ce15%:GdF.sub.3./sub. single crystal

    Czech Academy of Sciences Publication Activity Database

    Fukabori, A.; Kamada, K.; Yanagida, T.; Chani, V.; Aoki, K.; Yokota, Y.; Maeo, S.; Nikl, Martin; Yoshikawa, A.

    2011-01-01

    Roč. 318, č. 1 (2011), s. 1175-1178 ISSN 0022-0248. [International Conference on Crystal Growth (ICCG16) /16./ and International Conference on Vapor Growth and Epitaxy (ICVGE14) /14./. Beijing, 08.08.2010-13.08.2010] Institutional research plan: CEZ:AV0Z10100521 Keywords : radiation * inorganic compounds * scintillator materials * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.726, year: 2011

  10. Extruded plastic scintillator for MINERvA

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alan D.; FermilabRykalin, Victor V.; Wood, Brian M.; NICADD, DeKalb

    2005-01-01

    An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. A new experiment at Fermilab is pursuing the use of extruded plastic scintillator. A new plastic scintillator strip is being tested and its properties characterized. The initial results are presented here

  11. Structural and Dynamical Properties of Alkaline Earth Metal Halides in Supercritical Water: Effect of Ion Size and Concentration.

    Science.gov (United States)

    Keshri, Sonanki; Tembe, B L

    2017-11-22

    Constant temperature-constant pressure molecular dynamics simulations have been performed for aqueous alkaline earth metal chloride [M 2+ -Cl - (M = Mg, Ca, Sr, and Ba)] solutions over a wide range of concentrations (0.27-5.55 m) in supercritical (SC) and ambient conditions to investigate their structural and dynamical properties. A strong influence of the salt concentration is observed on the ion-ion pair correlation functions in both ambient and SC conditions. In SC conditions, significant clustering is observed in the 0.27 m solution, whereas the reverse situation is observed at room temperature and this is also supported by the residence times of the clusters. The concentration and ion size (cation size) seem to have opposite effects on the average number of hydrogen bonds. The simulation results show that the self-diffusion coefficients of water, cations, and the chloride ion increase with increasing temperature, whereas they decrease with increasing salt concentration. The cluster size distribution shows a strong density dependence in both ambient and SC conditions. In SC conditions, cluster sizes display a near-Gaussian distribution, whereas the distribution decays monotonically in ambient conditions.

  12. Influence of sampling properties of fast-waveform digitizers on neutron−gamma-ray, pulse-shape discrimination for organic scintillation detectors

    International Nuclear Information System (INIS)

    Flaska, Marek; Faisal, Muhammad; Wentzloff, David D.; Pozzi, Sara A.

    2013-01-01

    One of the most important questions to be answered with regard to digital pulse-shape discrimination (PSD) systems based on organic scintillators is: What sampling properties are required for a fast-waveform digitizer used for digitizing neutron/gamma-ray pulses, while an accurate PSD is desired? Answering this question is the main objective of this paper. Specifically, the paper describes the influence of the resolution and sampling frequency of a waveform digitizer on the PSD performance of organic scintillators. The results presented in this paper are meant to help the reader choosing a waveform digitizer with appropriate bit resolution and sampling frequency. The results presented here show that a 12-bit, 250-MHz digitizer is a good choice for applications that require good PSD performance. However, when more accurate PSD performance is the main requirement, this paper presents PSD figures of merit to qualify the impact of further increasing either sampling frequency or resolution of the digitizer

  13. Liquid scintillation solutions

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The liquid scintillation solution described includes a mixture of: a liquid scintillation solvent, a primary scintillation solute, a secondary scintillation solute, a variety of appreciably different surfactants, and a dissolving and transparency agent. The dissolving and transparency agent is tetrahydrofuran, a cyclic ether. The scintillation solvent is toluene. The primary scintillation solute is PPO, and the secondary scintillation solute is dimethyl POPOP. The variety of appreciably different surfactants is composed of isooctylphenol-polyethoxyethanol and sodium dihexyl sulphosuccinate [fr

  14. Scintillation properties of LiF–SrF2 and LiF–CaF2 eutectic

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Kawaguchi, Noriaki; Fujimoto, Yutaka; Fukuda, Kentaro; Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira

    2013-01-01

    Dopant free eutectic scintillators 6 LiF–SrF 2 and 6 LiF–CaF 2 were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF 2 was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF 2 layers. When the samples were irradiated with 252 Cf neutrons, 6 LiF–SrF 2 and 6 LiF–CaF 2 exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of 6 LiF–SrF 2 and 6 LiF–CaF 2 were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF 2 and LiF–SrF 2 eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF 2 sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF 2 and LiF–SrF 2 were 250 and 90 ns, respectively

  15. Comparison of Spectral and Scintillation Properties of LuAP:Ce and LuAP:Ce,Sc Single Crystals

    Science.gov (United States)

    Petrosyan, Ashot G.; Derdzyan, Marina; Ovanesyan, Karine; Shirinyan, Grigori; Lecoq, Paul; Auffray, Etiennette; Kronberger, Matthias; Frisch, Benjamin; Pedrini, Christian; Dujardin, Christophe

    2009-10-01

    Scintillation properties of LuAP:Ce and LuAP:Ce,Sc crystal series were studied under excitation by gamma-rays from a 137Cs source. Both series demonstrated comparable optical quality in terms of underlying absorption at 260 nm, slope of the optical edge and transmission in the range of emission. The light yield of LuAP:Ce crystals measured in 0.2 cm times 0.2 cm times 0.8 cm pixels increases linearly with the Ce concentration reaching at 0.58 at. % 6448 plusmn 322 ph/MeV and 9911 plusmn 496 ph/MeV in the long and in the short directions respectively (the light yield ratio is 65%) and shows no sign of light saturation. The energy resolution is found to depend, among other factors, on the uniformity of Ce concentration within the pixels and is improved to 7.1 plusmn 0.4% (I = 0.2 cm), 9.5 plusmn 0.5% (I = 0.8 cm). Intentional co-doping with Sc + ions was tested and resulted in increase of the Ce distribution coefficient to about 0.3. This enabled to increase the concentration of Ce in LuAP:Ce,Sc crystals up to 0.7 at. %, while conserving high optical quality. In contrast to LuAP:Ce, the light yield in LuAP:Ce,Sc crystals does not increase with Ce concentration, the photo peak being gradually suppressed. The involved mechanisms are discussed basing on measurements of the unit cell volumes, Ce concentration uniformity, x-ray rocking spectra, absorption spectra of pure and variously doped LuAP crystals, and emission spectra under different excitations.

  16. Effects of Na and K co-doping on growth and scintillation properties of Eu:SrI_2 crystals

    International Nuclear Information System (INIS)

    Ito, Tomoki; Yokota, Yuui; Kurosawa, Shunsuke; Kral, Robert; Pejchal, Jan; Ohashi, Yuji; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2016-01-01

    We grew Na and K co-doped Eu:SrI_2 [Na,Eu:SrI_2 and K,Eu:SrI_2] crystals by a modified micro-pulling-down method to reveal the co-doping effects on the crystal growth and scintillation properties. The non-codoped, Na0.5%, Na1.0%, K0.5% and K1.0%,Eu:SrI_2 crystals indicated high transparency while the milky parts were generated in the Na5.0% and K5.0%,Eu:SrI_2 crystals. The light yields of Na,Eu:SrI_2 and K,Eu:SrI_2 crystals under γ-ray irradiation were decreased by the Na and K co-doping. On the other hand, there was a small change within 940–1020 ns in the decay times by the Na and K co-doping. In the light yield proportionality under γ-ray irradiation, the non-proportionality in the low energy region was improved by Na and K co-doping. - Highlights: • Na or K co-doped Eu:SrI_2crystals were grown by the modified μ-PD method. • The milky parts were generated in the Na5.0% and K5.0%,Eu:SrI_2crystals. • The light yield of Eu:SrI_2was decreased by the Na or K co-doping. • The decay times of Eu:SrI_2were almost constant by the Na or K co-doping. • The non-proportionalitywas improved in the low energy region by the K co-doping.

  17. High Efficiency, Low Cost Scintillators for PET

    International Nuclear Information System (INIS)

    Kanai Shah

    2007-01-01

    Inorganic scintillation detectors coupled to PMTs are an important element of medical imaging applications such as positron emission tomography (PET). Performance as well as cost of these systems is limited by the properties of the scintillation detectors available at present. The Phase I project was aimed at demonstrating the feasibility of producing high performance scintillators using a low cost fabrication approach. Samples of these scintillators were produced and their performance was evaluated. Overall, the Phase I effort was very successful. The Phase II project will be aimed at advancing the new scintillation technology for PET. Large samples of the new scintillators will be produced and their performance will be evaluated. PET modules based on the new scintillators will also be built and characterized

  18. The quest for the ideal inorganic scintillator

    International Nuclear Information System (INIS)

    Derenzo, S.E.; Weber, M.J.; Bourret-Courchesne, E.; Klintenberg, M.K.

    2002-01-01

    The past half century has witnessed the discovery of many new inorganic scintillator materials and numerous advances in our understanding of the basic physical processes governing the transformation of ionizing radiation into scintillation light. Whereas scintillators are available with a good combination of physical properties, none provides the desired combination of stopping power, light output, and decay time. A review of the numerous scintillation mechanisms of known inorganic scintillators reveals why none of them is both bright and fast. The mechanisms of radiative recombination in wide-bandgap direct semiconductors, however, remain relatively unexploited for scintillators. We describe how suitably doped semiconductor scintillators could provide a combination of high light output, short decay time, and linearity of response that approach fundamental limits

  19. High temperature reactions between molybdenum and metal halides

    International Nuclear Information System (INIS)

    Boeroeczki, A.; Dobos, G.; Josepovits, V.K.; Hars, Gy.

    2006-01-01

    Good colour rendering properties, high intensity and efficacy are of vital importance for high-end lighting applications. These requirements can be achieved by high intensity discharge lamps doped with different metal halide additives (metal halide lamps). To improve their reliability, it is very important to understand the different failure processes of the lamps. In this paper, the corrosion reactions between different metal halides and the molybdenum electrical feed-through electrode are discussed. The reactions were studied in the feed-through of real lamps and on model samples too. X-ray photoelectron spectroscopy (XPS) was used to establish the chemical states. In case of the model samples we have also used atomic absorption spectroscopy (AAS) to measure the reaction product amounts. Based on the measurement results we were able to determine the most corrosive metal halide components and to understand the mechanism of the reactions

  20. Luminescent properties of composite scintillators based on PPO and o-POPOP doped SiO{sub 2} xerogel matrices

    Energy Technology Data Exchange (ETDEWEB)

    Viagin, O., E-mail: viagin@isma.kharkov.ua [Institute for Scintillation Materials of NAS of Ukraine, 60 Science Ave., 61001 Kharkiv (Ukraine); Masalov, A.; Bespalova, I.; Zelenskaya, O.; Tarasov, V.; Seminko, V.; Voloshina, L. [Institute for Scintillation Materials of NAS of Ukraine, 60 Science Ave., 61001 Kharkiv (Ukraine); Zorenko, Yu. [Institute of Physics of Kazimierz Wielki University of Bydgoszcz, 2 Powstańców Wielkopolskich str., 85-090 Bydgoszcz (Poland); Malyukin, Yu. [Institute for Scintillation Materials of NAS of Ukraine, 60 Science Ave., 61001 Kharkiv (Ukraine)

    2016-11-15

    New composite scintillation detectors were obtained by incorporation of PPO and o-POPOP organic scintillators into porous sol–gel silica matrices. Composites possess high photoluminescence intensity and decay time in nanosecond range. The absolute light yield of composite scintillators at excitation by alpha-radiation is about 4000–5000 photons/MeV and the pulse–height resolution is about 30%. The investigations of time-resolved luminescence of composites performed under excitation by synchrotron radiation in the 3.7–25 eV range have shown that the non-radiative energy transfer between host matrix and dopant molecules occurs via singlet states of SiO{sub 2} oxygen-deficient centers.

  1. Scintillating camera

    International Nuclear Information System (INIS)

    Vlasbloem, H.

    1976-01-01

    The invention relates to a scintillating camera and in particular to an apparatus for determining the position coordinates of a light pulse emitting point on the anode of an image intensifier tube which forms part of a scintillating camera, comprising at least three photomultipliers which are positioned to receive light emitted by the anode screen on their photocathodes, circuit means for processing the output voltages of the photomultipliers to derive voltages that are representative of the position coordinates; a pulse-height discriminator circuit adapted to be fed with the sum voltage of the output voltages of the photomultipliers for gating the output of the processing circuit when the amplitude of the sum voltage of the output voltages of the photomultipliers lies in a predetermined amplitude range, and means for compensating the distortion introduced in the image on the anode screen

  2. Scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1979-01-01

    A scintillator structure comprises at least one layer of transparent fused quartz with a phosphor coating on one or both sides adjacent to at least one transparent layer of epoxy resin which directs light from the phosphor to a detector. The phosphor layer may be formed from a powder optionally with a binder, a single crystal or a melt, or by evaporation or sintering. A plurality of multiple layers may be used or the structure tilted for greater absorption. The structure may be surrounded by another such structure optionally operating in cascade with the first. Many phosphors are specified. A scintillator structure comprises phosphor particles dispersed in epoxy resin or copoly imide-silicone and cast in a multi-compartment box with long sides transparent to X-rays and dividers opaque to X-rays. (UK)

  3. Scintillating fibres

    International Nuclear Information System (INIS)

    Nahnhauer, R.

    1990-01-01

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry

  4. Scintillating fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nahnhauer, R. [IHEP Zeuthen (Germany)

    1990-11-15

    In the search for new detector techniques, scintillating fibre technology has already gained a firm foothold, and is a strong contender for the extreme experimental conditions of tomorrow's machines. Organized by a group from the Institute of High Energy Physics, Berlin-Zeuthen, a workshop held from 3-5 September in the nearby village of Blossin brought together experts from East and West, and from science and industry.

  5. Scintillation and optical properties of TiO2-ZnO-Al2O3-B2O3 glasses and glass-ceramics

    Science.gov (United States)

    Usui, Yuki; Okada, Go; Kawaguchi, Noriaki; Masai, Hirokazu; Yanagida, Takayuki

    2018-04-01

    13TiO2-xZnO-17Al2O3-(70 - x)B2O3 (x = 17, 26, and 35) glasses were prepared by a melt-quenching method, and the obtained glass samples were heated at temperatures 30 °C above the glass transition temperature of corresponding glass in order to obtain glass-ceramics. The obtained glass-ceramic samples were confirmed to have anatase (x = 17) and rutile (x = 26 and 35) phases from X-ray diffraction analysis. Then, the scintillation and optical properties were evaluated and discussed the difference between the glass-ceramic and glass samples. In the scintillation spectra under X-ray irradiation, a broad emission peak was observed around 450 nm in all the samples, and the new peak around 500 nm appeared in the anatase-precipitated glass-ceramic. The intensities of the glass-ceramic samples were enhanced in comparison with the corresponding glasses because the glass-ceramics includes TiO2 crystallites with defect centers which act as effective emission centers. The scintillation decay curves of the glass and glass-ceramic samples were approximated by one and a sum of two exponential decay functions, respectively. The faster component of glass and glass-ceramic samples would be caused by the host emission, and the slower component of glass-ceramic sample would be ascribed to the emission of Ti3+.

  6. Scintillation properties of Ca co-doped L(Y)SO:Ce between 193 K and 373 K for TOF-PET/MRI

    International Nuclear Information System (INIS)

    Weele, David N ter; Schaart, Dennis R; Dorenbos, Pieter

    2014-01-01

    Time-of-flight Positron Emission Tomography (TOF-PET) and TOF-PET/MRI require scintillators with high light yield, short decay time, and short rise time in order to obtain high timing resolution. LSO:Ce and LYSO:Ce are commonly used. Ca co-doped LSO:Ce shows improved scintillation properties. The decay time constant of LSO:Ce,0.2%Ca (~33 ns) is shorter than standard LSO:Ce (~38-40 ns), and it has about 15% higher light yield. We measured scintillation pulse shapes and photoelectron yields of LSO:Ce, LSO:Ce,0.2%Ca, LYSO:Ce, LYSO:Ce,20ppmCa, LYSO:0.11%Ce,0.2%Mg, and LYSO:0.2%Ce,0.2%Ca at temperatures ranging from 193 K to 373 K. To study rise times we built a set-up in which samples are excited by 100 ps (FWHM) x-ray pulses.

  7. MAPbI2.9-xBrxCl0.1 hybrid halide perovskites: Shedding light on the effect of chloride and bromide ions on structural and photoluminescence properties

    Science.gov (United States)

    Atourki, Lahoucine; Vega, Erika; Marí, Bernabé; Mollar, Miguel; Ait Ahsaine, Hassan; Bouabid, Khalid; Ihlal, Ahmed

    2016-12-01

    The optical and structural properties of CH3NH3PbI3 can be adjusted by introducing other extrinsic ions such as chloride and bromide. In this work, mixed bromide iodide lead perovskites with a 10% fraction of chloride were prepared from methylamine, lead nitrate and the corresponding hydro acid (X = I, Br, Cl). The effect of bromide and chloride incorporation on different properties of perovskite thin film was investigated. The Pawley fit method indicates the formation of the iodide halide MAPbI3 Pm-3 m cubic phase for x = 0 and the tetragonal P4/mmm phase for x ≥ 0.3. All deposited films showed a strong absorbance in the UV-vis range. The band gap values were estimated from absorbance measurements. It was found that the onset of the absorption edge for MAPbI2.9-xBrxCl0.1 thin film perovskites ranges between 1.60 and 1.80 eV. Moreover, it was found that both Cl and Br affect the PL emission of the mixed halide lead perovskite, the MAPbI2.9-xBrxCl0.1 films displayed intermediate values from 730 nm (MAPbI2.2Br0.7Cl0.1) to 770 nm (MAPbI2.6Br0.3Cl0.1).

  8. Growth and scintillation properties of Ce{sup 3+}-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yutaka; Wakahara, Shingo; Suzuki, Shotaro; Kurosawa, Shunsuke [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Yoshikawa, Akira [Institute of Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2012-12-15

    The optical and scintillation properties of 0.5% fixed Ce-doped (Y{sub 1-x}Gd{sub x})AlO{sub 3} single crystals have been investigated at three different levels of Gd doping: x = 0.2, 0.4 and 0.6. Single crystal of the Ce{sup 3+}-doped (Y{sub 0.8}Gd{sub 0.2})AlO{sub 3}, (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} and (Y{sub 0.4}Gd{sub 0.6})AlO{sub 3} were successfully grown by {mu}-PD technique in nitrogen atmosphere. From X-ray diffraction analysis, no impurity phase was detected for the grown Ce-doped crystals. Ce-doped (Y{sub 0.6}Gd{sub 0.4})AlO{sub 3} crystal demonstrated highest fluorescence quantum efficiency ({proportional_to} 25%) with improvement of excitation efficiency due to the Gd-doping. When irradiated by the alpha-rays from a {sup 241}Am source, all the Ce-doped crystals showed luminescence band that corresponding to 5d (t{sub 2g})-4f transition of Ce{sup 3+}. The scintillation decay time was characterized by two components; the fast component (5-15 ns) is ascribed to 5d-4f transition of Ce{sup 3+}, while the slow one (100-200 ns) may be related to energy transfer between Ce{sup 3+} and Gd{sup 3+} ion. According to the result of {sup 137}Cs gamma-ray irradiated pulse height spectra compared with BGO scintillator, the relative scintillation light output was found to be about 12200 {+-} 1220 (Gd 20%) and 16000 {+-} 1600 (Gd 40%) ph/MeV. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Plastic scintillation dosimetry: Optimal selection of scintillating fibers and scintillators

    International Nuclear Information System (INIS)

    Archambault, Louis; Arsenault, Jean; Gingras, Luc; Sam Beddar, A.; Roy, Rene; Beaulieu, Luc

    2005-01-01

    Scintillation dosimetry is a promising avenue for evaluating dose patterns delivered by intensity-modulated radiation therapy plans or for the small fields involved in stereotactic radiosurgery. However, the increase in signal has been the goal for many authors. In this paper, a comparison is made between plastic scintillating fibers and plastic scintillator. The collection of scintillation light was measured experimentally for four commercial models of scintillating fibers (BCF-12, BCF-60, SCSF-78, SCSF-3HF) and two models of plastic scintillators (BC-400, BC-408). The emission spectra of all six scintillators were obtained by using an optical spectrum analyzer and they were compared with theoretical behavior. For scintillation in the blue region, the signal intensity of a singly clad scintillating fiber (BCF-12) was 120% of that of the plastic scintillator (BC-400). For the multiclad fiber (SCSF-78), the signal reached 144% of that of the plastic scintillator. The intensity of the green scintillating fibers was lower than that of the plastic scintillator: 47% for the singly clad fiber (BCF-60) and 77% for the multiclad fiber (SCSF-3HF). The collected light was studied as a function of the scintillator length and radius for a cylindrical probe. We found that symmetric detectors with nearly the same spatial resolution in each direction (2 mm in diameter by 3 mm in length) could be made with a signal equivalent to those of the more commonly used asymmetric scintillators. With augmentation of the signal-to-noise ratio in consideration, this paper presents a series of comparisons that should provide insight into selection of a scintillator type and volume for development of a medical dosimeter

  10. Fabrication and scintillation properties of highly transparent Pr:LuAG ceramics using Sc,La-based isovalent sintering aids

    Czech Academy of Sciences Publication Activity Database

    Shen, Y.; Feng, X.; Babin, Vladimir; Nikl, Martin; Vedda, A.; Moretti, F.; Dell'Orto, E.; Pan, Y.; Li, J.; Zeng, Y.

    2013-01-01

    Roč. 39, č. 5 (2013), s. 5985-5990 ISSN 0272-8842 R&D Projects: GA MŠk LH12185; GA AV ČR KAN300100802 Institutional support: RVO:68378271 Keywords : Pr:LuAG transparent ceramics * isovalent sintering aids * scintillation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.086, year: 2013

  11. Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS

    Czech Academy of Sciences Publication Activity Database

    Yoshikawa, A.; Kamada, K.; Kurosawa, S.; Shoji, Y.; Yokota, Y.; Chani, V.I.; Nikl, Martin

    2016-01-01

    Roč. 169, Jan (2016), s. 387-393 ISSN 0022-2313. [International Conference on Luminescence and Optical Spectroscopy of Condensed Matter /17./. Wroclaw, 13.07.2014-18.07.2014] Institutional support: RVO:68378271 Keywords : scintillator * luminescent materials * Ce 3+ * radioluminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  12. Scintillation properties of LiF–SrF{sub 2} and LiF–CaF{sub 2} eutectic

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@lsse.kyutech.ac.jp [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Fujimoto, Yutaka [Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196 (Japan); Fukuda, Kentaro [Tokuyama Corporation, 1-1 Mikage-cho, Shunan-shi, Yamaguchi 745-8648 (Japan); Watanabe, Kenichi; Yamazaki, Atsushi; Uritani, Akira [Quantum Science and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2013-12-15

    Dopant free eutectic scintillators {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were developed by the vertical Bridgeman method for the purpose of thermal neutron detection. The molar ratio of LiF and Ca/SrF{sub 2} was 4:1 on its eutectic composition. The α-ray induced radioluminescence spectra of the scintillators showed intense emission peak at 300 nm due to the emission from the self-trapped exciton in Ca/SrF{sub 2} layers. When the samples were irradiated with {sup 252}Cf neutrons, {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} exhibited the light yields of 4700 and 9400 ph/n, respectively. Scintillation decay times of {sup 6}LiF–SrF{sub 2} and {sup 6}LiF–CaF{sub 2} were accepted for scintillation detectors, 90 and 250 ns, respectively. -- Highlights: • Nondoped LiF–CaF{sub 2} and LiF–SrF{sub 2} eutectic scinitillators are reported for the first time. • Two sample showed self-trapped exciton emission. • LiF–SrF{sub 2} sample exhibited the light yield of 9400 ph/n and this value was comparable to conventional materials doped with rare earth ions. • Scintillation decay times of LiF–CaF{sub 2} and LiF–SrF{sub 2} were 250 and 90 ns, respectively.

  13. Unraveling halide hydration: A high dilution approach.

    Science.gov (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (ΔG [minus sign in circle symbol]hyd[H+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a ΔG [minus sign in circle symbol]hyd[H] value of -1100 kJ mol(-1) [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl(-), Br(-), and I(-) ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F(-) ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl(-), Br(-), and I(-) ions does not extend beyond the ion first hydration shell, and the structure of water in the F(-) second shell is also substantially unaffected by the ion.

  14. Alpha scintillation radon counting

    International Nuclear Information System (INIS)

    Lucas, H.F. Jr.

    1977-01-01

    Radon counting chambers which utilize the alpha-scintillation properties of silver activated zinc sulfide are simple to construct, have a high efficiency, and, with proper design, may be relatively insensitive to variations in the pressure or purity of the counter filling. Chambers which were constructed from glass, metal, or plastic in a wide variety of shapes and sizes were evaluated for the accuracy and the precision of the radon counting. The principles affecting the alpha-scintillation radon counting chamber design and an analytic system suitable for a large scale study of the 222 Rn and 226 Ra content of either air or other environmental samples are described. Particular note is taken of those factors which affect the accuracy and the precision of the method for monitoring radioactivity around uranium mines

  15. DFT investigation of electronic structures and magnetic properties of halides family MeHal3 (Me=Ti, Mo,Zr,Nb, Ru, Hal=Cl,Br,I) one dimensional structures

    Science.gov (United States)

    Kuzubov, A. A.; Kovaleva, E. A.; Popova, M. I.; Kholtobina, A. S.; Mikhaleva, N. S.; Visotin, M. A.; Fedorov, A. S.

    2017-10-01

    Using DFT GGA calculations, electronic structure and magnetic properties of wide family of transition metal trihalides (TMHal3) (Zr, Ti and Nb iodides, Mo, Ru, Ti and Zr bromides and Ti or Zr chlorides) are investigated. These structures consist of transition metal atoms chains surrounded by halides atoms. Chains are connected to each other by weak interactions. All TMHal3 compounds were found to be conductive along chain axis except of MoBr3 which is indirect gap semiconductor. It was shown that NbI3 and MoBr3 have large magnetic moments on metal atoms (1.17 and 1.81 μB, respectively) but other TMHal3 materials have small or zero magnetic moments. For all structures ferromagnetic and anti-ferromagnetic phases have almost the same energies. The causes of these properties are debated.

  16. Broadly tunable metal halide perovskites for solid-state light-emission applications

    NARCIS (Netherlands)

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as

  17. Growth of LiF/LiBaF.sub.3./sub. eutectic scintillator crystals and their optical properties

    Czech Academy of Sciences Publication Activity Database

    Kurosawa, S.; Yamaji, A.; Pejchal, Jan; Yokota, Y.; Ohashi, Y.; Kamada, K.; Yoshikawa, A.

    2017-01-01

    Roč. 52, č. 10 (2017), s. 5531-5536 ISSN 0022-2461 Grant - others:AV ČR(CZ) JSPS-17-18 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : scintillators * eutectics * crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.599, year: 2016

  18. Large polarons in lead halide perovskites

    OpenAIRE

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3 ? framewor...

  19. Scintillation properties of Zr co-doped Ce:(Gd, La)_2Si_2O_7 grown by the Czochralski process

    International Nuclear Information System (INIS)

    Murakami, Rikito; Kurosawa, Shunsuke; Shoji, Yasuhiro; Jary, Vitezslav; Ohashi, Yuji; Pejchal, Jan; Yokota, Yuui; Kamada, Kei; Nikl, Martin; Yoshikawa, Akira

    2016-01-01

    (Gd_0_._7_5,Ce_0_._0_1_5,La_0_._2_3_5)_2Si_2O_7 (Ce:La-GPS) single crystals co-doped with 0, 100, 200, 500 and 1000 ppm Zr were grown by the Czochralski process, and their scintillation properties were investigated. We investigated the co-doping effect of a stable tetravalent ion in Ce:La-GPS for the first time. The scintillation decay times in the faster component were shortened with increasing the Zr concentration. While the non-co-doped sample showed ∼63 ns day time, the Zr 100, 200, 500 and 1000 ppm co-doped samples showed ∼61, ∼59, ∼57, ∼54 ns, respectively. Additionally, light output, photon nonproportional response (PNR) and other optical properties were investigated. - Highlights: • Czochralski growth of Ce:(Gd,La)_2Si_2O_7 single crystals. • Co-doping effect of a stable tetravalent ion in Ce:(Gd,La)_2Si_2O_7 system. • Photon nonproportional response of Zr co-doped Ce:(Gd,La)_2Si_2O_7.

  20. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1977-01-01

    A liquid scintillation solution is described which includes (1) a scintillation solvent (toluene and xylene), (2) a primary scintillation solute (PPO and Butyl PBD), (3) a secondary scintillation solute (POPOP and Dimethyl POPOP), (4) a plurality of substantially different surfactants and (5) a filter dissolving and/or transparentizing agent. 8 claims

  1. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  2. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Science.gov (United States)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  3. Scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Swank, R.K.; White, P.J.

    1978-01-01

    Scintillator structures are described in which the phosphor is embedded or suspended in an optically transparent matrix which is selected or adjusted to have an index of refraction which is approximately equal to that of the phosphor at the wavelength of the light emitted by the phosphor. The matrix may be glass, copoly 2-vinyl naphthalene/vinyl toluene or a liquid e.g. Br-naphthalene and optionally CH 3 I, the ratio of components being adjusted to give the desired refractive index. The polymer may be made in situ or a mixture of phosphor and polymer formed e.g. by freeze drying a solution and pulverizing, and then heating. Specified dyes may be used for converting the emitted light to other wavelengths. (author)

  4. Quaternary oxide halides of group 15 with zinc and cadmium

    International Nuclear Information System (INIS)

    Rueck, Nadia

    2014-01-01

    The present thesis ''Quaternary oxide halides of group 15 with zinc and cadmium'' deals with the chemical class of oxide halides, which contain d-block element cations and pnicogens. Over the past few years compounds containing pnicogene cations are intensively investigated. The reason for this is the free electron pair of the Pn"3"+ cation, which is responsible for some interesting properties. Free electron pairs do not only impact the spatial structure of molecules but also the properties of materials. The object of this work was the synthesis and characterization of compounds containing Pn"3"+ cations with free electron pairs. Due to the structure-determining effect of these free electron pairs and in combination with halides it is possible to synthesize compounds with low-dimensional structures like chains and layers. In these compounds the structure is separated into halophilic and chalcophilic sub-structures, which are held together only by weak Van der Waals forces.

  5. Chloride, bromide and iodide scintillators with europium doping

    Science.gov (United States)

    Zhuravleva, Mariya; Yang, Kan

    2014-08-26

    A halide scintillator material is disclosed where the halide may comprise chloride, bromide or iodide. The material is single-crystalline and has a composition of the general formula ABX.sub.3 where A is an alkali, B is an alkali earth and X is a halide which general composition was investigated. In particular, crystals of the formula ACa.sub.1-yEu.sub.yI.sub.3 where A=K, Rb and Cs were formed as well as crystals of the formula CsA.sub.1-yEu.sub.yX.sub.3 (where A=Ca, Sr, Ba, or a combination thereof and X=Cl, Br or I or a combination thereof) with divalent Europium doping where 0.ltoreq.y.ltoreq.1, and more particularly Eu doping has been studied at one to ten mol %. The disclosed scintillator materials are suitable for making scintillation detectors used in applications such as medical imaging and homeland security.

  6. Luminescence and scintillation properties of Mg-codoped LuAG:Pr single crystals annealed in air

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Buryi, Maksym; Babin, Vladimir; Průša, Petr; Beitlerová, Alena; Bárta, Jan; Havlák, Lubomír; Kamada, K.; Yoshikawa, A.; Laguta, Valentyn; Nikl, Martin

    2017-01-01

    Roč. 181, Jan (2017), s. 277-285 ISSN 0022-2313 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR GJ15-18300Y EU Projects: European Commission(XE) 644260 - INTELUM Institutional support: RVO:68378271 Keywords : scintillation * Pr4+ * luminescence * codoping * lutetium–aluminum garnet Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.686, year: 2016

  7. Cryogenic scintillation properties of n-type GaAs for the direct detection of MeV/c2 dark matter

    Science.gov (United States)

    Derenzo, S.; Bourret, E.; Hanrahan, S.; Bizarri, G.

    2018-03-01

    This paper is the first report of n-type GaAs as a cryogenic scintillation radiation detector for the detection of electron recoils from interacting dark matter (DM) particles in the poorly explored MeV/c2 mass range. Seven GaAs samples from two commercial suppliers and with different silicon and boron concentrations were studied for their low temperature optical and scintillation properties. All samples are n-type even at low temperatures and exhibit emission between silicon donors and boron acceptors that peaks at 1.33 eV (930 nm). The lowest excitation band peaks at 1.44 eV (860 nm), and the overlap between the emission and excitation bands is small. The X-ray excited luminosities range from 7 to 43 photons/keV. Thermally stimulated luminescence measurements show that n-type GaAs does not accumulate metastable radiative states that could cause afterglow. Further development and use with cryogenic photodetectors promises a remarkable combination of large target size, ultra-low backgrounds, and a sensitivity to electron recoils of a few eV that would be produced by DM particles as light as a few MeV/c2.

  8. Luminescent and scintillation properties of Sc3+and La3+doped Y2SiO5 powders and single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Voznyak, T.; Voloshynovskii, A.; Vistovskiy, V.; Paprocki, K.; Mosińska, L.; Bilski, P.; Twardak, A.; Fedorov, A.; Nikl, M.; Mares, J.A.

    2016-01-01

    The paper is dedicated to the investigation of the luminescence of Sc 3+ and La 3+ isoelectronic impurities in Y 2 SiO 5 (YSO) single crystalline films (SCF), grown by the liquid phase epitaxy (LPE) method, and in the powder analogs of these compounds prepared using the ceramic technology. The Sc 3+ and La 3+ dopants replacing the Y 3+ cations in Y1and Y2 positions of YSO host introduce the strong complex emission bands in the UV range peaked at 330 and 345 nm, respectively. The Sc 3+ and La 3+ dopant in YSO matrix yields also the strong TSL peaks at 400 and 405 K related to the ScY and ScLa centers formation, respectively. The luminescence and scintillation properties of YSO SCFs doped with Sc 3+ and La 3+ ions and co-doped with Ce 3+ ions on the trace impurity level have been also studied in our work. We have found that the light yield (LY) of these YSO:Sc and YSO:La SCFs can reach 50–65% of LY in reference YSO:Ce SCF due to strong quenching influence of Pb 2+ ions. Finally, the potential of Sc 3+ and La 3+ doped SCF of orthosilicates for creation of heavy scintillation screens, emitting in the UV range, is discussed.

  9. Comparative study of optical and scintillation properties of YVO4, (Lu0.5Y0.5)VO4, and LuVO4 single crystals

    International Nuclear Information System (INIS)

    Fujimoto, Yutaka; Yanagida, Takayuki; Yokota, Yuui; Chani, Valery; Kochurikhin, Vladimir V.; Yoshikawa, Akira

    2011-01-01

    Optical and scintillation properties of YVO 4 , (Lu 0.5 Y 0.5 )VO 4 , and LuVO 4 single crystals grown by the Czochralski (CZ) method with RF heating system are compared. All vanadate crystals show high transmittance (∼80%) in the 400-900 nm wavelength range. In both photo- and radio-luminescence spectra, intense peak around 400-500 nm, which was ascribed to the transition from triplet state of VO 4 3- , was clearly observed. The main decay time component was about 38 μs (YVO 4 ), 18 μs ((Lu 0.5 Y 0.5 )VO 4 ), and 17 μs (LuVO 4 ) under 340 nm excitation. The scintillation light yields of YVO 4 , (Lu 0.5 Y 0.5 )VO 4 , and LuVO 4 crystals (obtained from the 137 Cs excited pulse height spectra) were evaluated to be about 11,200, 10,700, and 10,300 ph/MeV, respectively.

  10. Imaging properties of scintillators for heavy-ion-beams and related model calculations; Abbildungseigenschaften von Szintillatoren fuer Schwerionenstrahlen und diesbezuegliche Modellrechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Guetlich, Eiko

    2011-08-15

    This thesis is treating the imaging properties of scintillating screens for high-current ion beams as delivered by the UNILAC at the GSI Helmholtzzentrum fuer Schwerionenforschung in Darmstadt, Germany. Scintillating screens are mainly used to measure and rate the tansversal beam parameters in nearly every particle accelerator. During daily operation, scintillating screens can be used to determine and optimize the position of the beam inside the beam-pipe as well as the transversal intensity distribution. Although scintillating screens are widely used in many measurement systems, their imaging properties are not well characterized. Within the framework of this thesis, accelerator based experiments were planed and carried out which allowed to compare the results of beam profile measurements of the different materials with reference methods. Parameters such as the screen temperature and particle energies have been varied. Additionaly, possible image distortions within the optical system have been investigated. To determine the influence of the emission spectra of the screens onto the profile measurement a novel experimental setup for the spectroscopic investigations has been established. The setup allows to investigate the emission spectrum along one spatial axes on the beamspot. The investigations focus on ceramic materials such as zirconium oxide doped e.g. with Mg (ZrO{sub 2}:Mg) or aluminium oxide (Al{sub 2}O{sub 3}). The materials have been irradiated with different ion species (e.g. Calcium and Uranium) with kinetic energies of 4.8 MeV/u (10% c) and 11.4 MeV (15% c). The results for different parameters are discussed and interpreted. The measured beam profiles show dependences of four parameters: - The material itself. - The screen temperature. - The accumulated fluence [ (Ions)/(cm{sup 2})]. - The excitation density [(Electron-Hole-Pairs)/(cm{sup 3})], which is proportional to the dose rate [(J)/(kg . s)] within the volume element. Among the above, the last

  11. Imaging properties of cerium doped Yttrium Aluminum Oxide (YAP:Ce) powder scintillating screens under X-ray excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kalivas, N. [Greek Atomic Energy Commission, 15310 Ag. Paraskevi, P.O. Box 60092 (Greece); Valais, I. [Department of Medical Physics, Medical School, University of Patras, 26500 Patras (Greece)]|[Department of Medical Instruments Technology, Technological Educational Institution of Athens, Ag. Spyridonos Street, Aigaleo, 12210 Athens (Greece); Salemis, G.; Karagiannis, C.; Konstantinidis, A.; Nikolopoulos, D. [Department of Medical Instruments Technology, Technological Educational Institution of Athens, Ag. Spyridonos Street, Aigaleo, 12210 Athens (Greece); Loudos, G.; Sakelios, N.; Karakatsanis, N.; Nikita, K. [Department of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou, 15780 Zografos (Greece); Gayshan, V.L.; Gektin, A.V. [Institute of Scintillation Materials, Lenin Avenue 60, 310072 Kharkov (Ukraine); Sianoudis, I. [Department of Physics, Chemistry and Materials Technology, Technological Educational Institution of Athens, Aigaleo, 12210 Athens (Greece); Giokaris, N. [Physics Department National Capodistrian University of Athens, Panepistimioupolis Ilisia, 15771 Athens (Greece)]|[Institute of Accelerating Systems and Applications, P.O. Box 17214, 10024 Athens (Greece); Nomicos, C.D. [Department of Electronics, Technological Educational Institution of Athens, Aigaleo, 12210 Athens (Greece); Dimitropoulos, N. [Department of Medical Imaging, ' Euromedica' Medical Center, Mesogeion 2-4, 11527 Athens (Greece); Cavouras, D. [Department of Medical Instruments Technology, Technological Educational Institution of Athens, Ag. Spyridonos Street, Aigaleo, 12210 Athens (Greece); Panayiotakis, G. [Department of Medical Physics, Medical School, University of Patras, 26500 Patras (Greece); Kandarakis, I. [Department of Medical Instruments Technology, Technological Educational Institution of Athens, Ag. Spyridonos Street, Aigaleo, 12210 Athens (Greece)]. E-mail: kandarakis@teiath.gr

    2006-12-20

    The aim of the present study was to evaluate the imaging performance of YAP:Ce powder scintillating screens under exposure conditions employed in diagnostic radiology (50-140 kV). Various screens were prepared in our laboratory from YAP: Ce powder (Phosphor Technology, Ltd.), with coating thickness ranging from 53 to 110 mg/cm{sup 2}. The imaging performance of the screens was assessed by experimental determination of the modulation transfer function (MTF) and the noise transfer function (NTF). MTF was determined by the edge spread function (ESF) method while NTF was estimated by noise power spectrum (NPS) measurements after uniform screen irradiation. In addition, parameters related to overall image quality, such as the signal-to-noise ratio transfer (MTF/NTF), were estimated. MTF curves were affected by the beam hardening effects caused by the patient simulating 20 mm thick aluminum phantom. Under these conditions MTF values were found to increase with the mean X-ray photon energy. A similar effect was observed for NTF curves. Results were compared with data obtained on CsI:Tl scintillator. Taking into consideration the very fast response of YAP:Ce, these data may be of interest in designing X-ray imaging detectors.

  12. Status of timing with plastic scintillation detectors

    International Nuclear Information System (INIS)

    Moszynski, M.; Bengtson, B.

    1979-01-01

    Timing properties of scintillators and photomultipliers as well as theoretical and experimental studies of time resolution of scintillation counters are reviewed. Predictions of the theory of the scintillation pulse generation processes are compared with the data on the light pulse shape from small samples, in which the light pulse shape depends only on the composition of the scintillator. For larger samples the influence of the light collection process and the self-absorption process on the light pulse shape are discussed. The data on rise times, fwhm's, decay times and light yield of several commercial scintillators used in timing are collected. The next part of the paper deals with the properties of photomultipliers. The sources of time uncertainties in photomultipliers as a spread of the initial velocity of photoelectrons, emission of photoelectrons under different angles and from different points at the photocathode, the time spread and the gain dispersion introduced by electron photomultiplier are reviewed. The experimental data on the time jitter, single electron response and photoelectron yield of some fast photomultipliers are collected. As the time resolution of the timing systems with scintillation counters depends also on time pick-off units, a short presentation of the timing methods is given. The discussion of timing theories is followed by a review of experimental studies of the time resolution of scintillation counters. The paper is ended by an analysis of prospects on further progress of the subnanosecond timing with scintillation counters. (Auth.)

  13. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  14. Local coordination of polyvalent metal ions in molten halide mixtures

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1989-07-01

    Ample experimental evidence is available in the literature on the geometry and the stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides. Recent schemes for classifying this evidence are discussed. Dissociation of tetrahedral halocomplexes in good ionic systems can be viewed as a classical Mott problem of bound-state stability in a conducting matrix. More generally, structural coordinates can be constructed from properties of the component elements, to separate out systems with long-lived fourfold or sixfold coordination and to distinguish between these. (author). 11 refs, 1 fig

  15. Empirical formula for the parameters of metallic monovalent halides ...

    African Journals Online (AJOL)

    By collating the data on melting properties and transport coefficients obtained from various experiments and theories for certain halides of monovalent metals, allinclusive linear relationship has been fashioned out. This expression holds between the change in entropy and volume on melting; it is approximately obeyed by ...

  16. On the Boiling Points of the Alkyl Halides.

    Science.gov (United States)

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  17. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won

    2016-01-01

    on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  18. Structured alkali halides for medical applications

    International Nuclear Information System (INIS)

    Schmitt, B.; Fuchs, M.; Hell, E.; Knuepfer, W.; Hackenschmied, P.; Winnacker, A.

    2002-01-01

    Image plates based on storage phosphors are a major application of radiation defects in insulators. Storage phosphors absorb X-ray quanta creating trapped electron-hole pairs in the material. Optical stimulation of the electron causes recombination leading to light emission. Application of image plates requires an optimal compromise between resolution (represented by the modulation transfer function (MTF)) and sensitivity. In our paper we present a new solution of the problem of combining a high MTF with a high sensitivity by structuring the image plates in form of thin needles acting as light guides. This suppresses the lateral spread of light which is detrimental to resolution. As doped CsBr, e.g. CsBr:Ga [Physica Medica XV (1999) 301], can pose a good storage phosphor evaporated layers are of interest in computed radiography. Needle structured CsI:Tl is used as scintillator in direct radiography [IEEE Trans. Nucl. Sci. 45 (3) (1998)]. CsBr layers have been produced by evaporation in vacuum and in inert gas atmosphere varying pressure and temperature. The resulting structures are of fibrous or columnar nature being in good agreement with the zone model of Thornton [Ann. Rev. Mater. Sci. 7 (1977) 239]. A zone model for CsBr has been developed. Measurements on doped alkali halide image plates having needle structure show good MTF at high sensitivity making a significant progress in image plate technology

  19. Radiation damage in the alkali halide crystals

    International Nuclear Information System (INIS)

    Diller, K.M.

    1975-10-01

    A general review is given of the experimental data on radiation damage in the alkali halide crystals. A report is presented of an experimental investigation of irradiation produced interstitial dislocation loops in NaCl. These loops are found to exhibit the usual growth and coarsening behaviour during thermal annealing which operates by a glide and self-climb mechanism. It is shown that the recombination of defects in these crystals is a two stage process, and that the loss of interstitials stabilized at the loops is caused by extrinsic vacancies. The theoretical techniques used in simulating point defects in ionic crystals are described. Shell model potentials are derived for all the alkali halide crystals by fitting to bulk crystal data. The fitting is supplemented by calculations of the repulsive second neighbour interactions using methods based on the simple electron gas model. The properties of intrinsic and substitutional impurity defects are calculated. The HADES computer program is used in all the defect calculations. Finally the report returns to the problems of irradiation produced interstitial defects. The properties of H centres are discussed; their structure, formation energies, trapping at impurities and dimerization. The structure, formation energies and mobility of the intermediate and final molecular defects are then discussed. The thermodynamics of interstitial loop formation is considered for all the alklai halide crystals. The nucleation of interstitial loops in NaCl and NaBr is discussed, and the recombination of interstitial and vacancy defects. The models are found to account for all the main features of the experimental data. (author)

  20. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; Bakr, Osman; Kamat, Prashant V.

    2016-01-01

    To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice

  1. Crystal growth and scintillation properties of Er-doped Lu3Al5O12 single crystals

    International Nuclear Information System (INIS)

    Sugiyama, Makoto; Fujimoto, Yutaka; Yanagida, Takayuki; Totsuka, Daisuke; Kurosawa, Shunsuke; Futami, Yoshisuke; Yokota, Yuui; Chani, Valery; Yoshikawa, Akira

    2012-01-01

    Er-doped Lu 3 Al 5 O 12 (Er:LuAG) single crystalline scintillators with different Er concentrations of 0.1, 0.5, 1, and 3% were grown by the micro-pulling-down (μ-PD) method. The grown crystals were composed of single-phase material, as demonstrated by powder X-ray diffraction (XRD). The radioluminescence spectra measured under 241 Am α-ray excitation indicated host emission at approximately 350 nm and Er 3+ 4f-4f emissions. According to the pulse height spectra recorded under γ-ray irradiation, the 0.5% Er:LuAG exhibited the highest peak channel among the samples. The γ-ray excited decay time profiles were well fitted by the two-component exponential approximation (0.8 μs and 6-10 μs).

  2. Luminescent and scintillation properties of the Ce3+ doped Y3−xLuxAl5O12:Ce single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Zorenko, T.; Popielarski, P.; Mosińska, L.; Fedorov, A.

    2016-01-01

    The work is related to the investigation of scintillation and luminescent properties of single crystalline films (SCF) of solid solutions of Ce 3+ doped Y 3−x Lu x Al 5 O 12 :Ce garnets with x value in the 0–3 range. We have shown a possibility of realization of high-energy shift of the Ce 3+ ion emission spectrum in these garnets up to 22 nm. We have also found that the light yield of the radioluminescence under α-particle excitation of LuAG:Ce SCF can exceed by 1.3 times the corresponding values for the YAG:Ce SCF counterpart. For investigation of the luminescent properties of Y 3−x Lu x Al 5 O 12 :Ce SCF at different x values the luminescent spectroscopy of these SCFs under excitation by synchrotron radiation in the VUV range was performed. - Highlights: • Single crystalline films of Y 3−x Lu x Al 5 O 12 garnets at x=0–3.0 were grown by LPE method onto YAG substrates. • Lattice constant of Y 3−x Lu x Al 5 O 12 :Ce film and the film/substrate misfit changed linearly with increasing of Lu content in the x=0–3.0 range. • High-energy shift of the Ce 3+ emission up to 22 nm in Y 3−x Lu x Al 5 O 12 film with increasing of Lu content in the x=0–3.0 range. • Light yield of Y 3−x Lu x Al 5 O 12 :Ce film decreases in the x=0–1.8 range and increases in the x=1.8–3.0 range. • Scintillation LY of Lu 3 Al 5 O 12 :Ce film can exceed by 1.3 times the LY for YAG:Ce film counterpart.

  3. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.

    Science.gov (United States)

    Sutter-Fella, Carolin M; Ngo, Quynh P; Cefarin, Nicola; Gardner, Kira L; Tamura, Nobumichi; Stan, Camelia V; Drisdell, Walter S; Javey, Ali; Toma, Francesca M; Sharp, Ian D

    2018-06-13

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2 ) 2 CsPb-halide (FACsPb-) and CH 3 NH 3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

  4. Scintillation counting apparatus

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1978-01-01

    Apparatus is described for the accurate measurement of radiation by means of scintillation counters and in particular for the liquid scintillation counting of both soft beta radiation and gamma radiation. Full constructional and operating details are given. (UK)

  5. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.; Burlakov, Victor M.; Saidaminov, Makhsud I.; Alofi, Abdulilah; Haque, Mohammed; Turedi, Bekir; Davaasuren, Bambar; Dursun, Ibrahim; Cho, Nam Chul; El-Zohry, Ahmed M.; de Bastiani, Michele; Giugni, Andrea; Torre, Bruno; Di Fabrizio, Enzo M.; Mohammed, Omar F.; Rothenberger, Alexander; Wu, Tao; Goriely, Alain; Bakr, Osman

    2017-01-01

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current

  6. Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals

    NARCIS (Netherlands)

    Khoram, P.; Brittman, S.; Dzik, W.I.; Reek, J.N.H.; Garneett, E.C.

    2016-01-01

    Recently, halide perovskites have attracted considerable attention for optoelectronic applications, but further progress in this field requires a thorough understanding of the fundamental properties of these materials. Studying perovskites in their single-crystalline form provides a model system for

  7. Liquid scintillation solution

    International Nuclear Information System (INIS)

    Long, E.C.

    1976-01-01

    The invention deals with a liquid scintillation solution which contains 1) a scintillation solvent (toluol), 2) a primary scintillation solute (PPO), 3) a secondary scintillation solute (dimethyl POPOP), 4) several surfactants (iso-octyl-phenol polyethoxy-ethanol and sodium di-hexyl sulfosuccinate) essentially different from one another and 5) a filter resolution and/or transparent-making agent (cyclic ether, especially tetrahydrofuran). (HP) [de

  8. Growth and scintillation properties of 3 in. diameter Ce doped Gd.sub.3./sub.Ga.sub.3./sub.Al.sub.2./sub.O.sub.12./sub. scintillation single crystal

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Shoji, Y.; Kochurikhin, V.V.; Okumura, S.; Yamamoto, S.; Nagura, A.; Yeom, J.Y.; Kurosawa, S.; Yokota, Y.; Ohashi, Y.; Nikl, Martin; Yoshikawa, A.

    2016-01-01

    Roč. 452, Oct (2016), s. 81-84 ISSN 0022-0248. [American Conference on Crystal Growth and Epitaxy /20./ (ACCGE) / 17th Biennial Workshop on Organometallic Vapor Phase Epitaxy (OMVPE) / 2nd 2D Electronic Materials Symposium. Big Sky, MT, 02.08.2015-07.08.2015] R&D Projects: GA MŠk(CZ) LH14266; GA ČR GJ15-18300Y EU Projects: European Commission(XE) 644260 - INTELUM Institutional support: RVO:68378271 Keywords : single crystal growth * oxides * scintillator materials * scintillators Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.751, year: 2016

  9. The Role of Trap-assisted Recombination in Luminescent Properties of Organometal Halide CH3NH3PbBr3 Perovskite Films and Quantum Dots

    Science.gov (United States)

    Zhang, Zhen-Yu; Wang, Hai-Yu; Zhang, Yan-Xia; Hao, Ya-Wei; Sun, Chun; Zhang, Yu; Gao, Bing-Rong; Chen, Qi-Dai; Sun, Hong-Bo

    2016-06-01

    Hybrid metal halide perovskites have been paid enormous attentions in photophysics research, whose excellent performances were attributed to their intriguing charge carriers proprieties. However, it still remains far from satisfaction in the comprehensive understanding of perovskite charge-transport properities, especially about trap-assisted recombination process. In this Letter, through time-resolved transient absorption (TA) and photoluminescence (PL) measurements, we provided a relative comprehensive investigation on the charge carriers recombination dynamics of CH3NH3PbBr3 (MAPbBr3) perovskite films and quantum dots (QDs), especially about trap-assisted recombination. It was found that the integral recombination mode of MAPbBr3 films was highly sensitive to the density distribution of generated charge carriers and trap states. Additional, Trap effects would be gradually weakened with elevated carrier densities. Furthermore, the trap-assisted recombination can be removed from MAPbBr3 QDs through its own surface passivation mechanism and this specialty may render the QDs as a new material in illuminating research. This work provides deeper physical insights into the dynamics processes of MAPbBr3 materials and paves a way toward more light-harvesting applications in future.

  10. Scintillator manufacture at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Mellott, K.; Bross, A.; Pla-Dalmau, A.

    1998-08-01

    A decade of research into plastic scintillation materials at Fermilab is reviewed. Early work with plastic optical fiber fabrication is revisited and recent experiments with large-scale commercial methods for production of bulk scintillator are discussed. Costs for various forms of scintillator are examined and new development goals including cost reduction methods and quality improvement techniques are suggested.

  11. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  12. Liquid scintillation measurement. I

    International Nuclear Information System (INIS)

    Rexa, R.; Tykva, R.

    1983-01-01

    The individual components of scintillation solutions and their tasks are listed. Explained briefly is the scintillation process in a liquid scintillator. Factors are discussed which influence this process as are methods applied to supress their influence. They include: ionization quenching, quenching by dilution and concentration, chemical, colour, phase and photon quenching and single-photon events causing an undesirable backgorund. (M.D.)

  13. Scintillation response of organic and inorganic scintillators

    CERN Document Server

    Papadopoulos, L M

    1999-01-01

    A method to evaluate the scintillation response of organic and inorganic scintillators to different heavy ionizing particles is suggested. A function describing the rate of the energy consumed as fluorescence emission is derived, i.e., the differential response with respect to time. This function is then integrated for each ion and scintillator (anthracene, stilbene and CsI(Tl)) to determine scintillation response. The resulting scintillation responses are compared to the previously reported measured responses. Agreement to within 2.5% is observed when these data are normalized to each other. In addition, conclusions regarding the quenching parameter kB dependence on the type of the particle and the computed values of kB for certain ions are included. (author)

  14. Large polarons in lead halide perovskites

    Science.gov (United States)

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647

  15. Perspectives on the future development of new scintillators

    International Nuclear Information System (INIS)

    Melcher, C.L.

    2005-01-01

    The search for new scintillators has become increasingly sophisticated and increasingly successful in recent years, driven to a large degree by the rapidly growing needs of medical imaging and high energy physics. Better understanding of the various scintillation mechanisms has led to innovative new materials for both gamma-ray and neutron detection, and the concept of scintillator design and engineering has emerged, whereby materials are optimized according to the scintillation properties needed by specific applications. Numerous promising candidates have been identified during the last few years, and several are currently being actively developed for commercial production. Economical crystal growth often represents a significant challenge in the practical application of new scintillation materials

  16. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM

    International Nuclear Information System (INIS)

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-01-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. - Highlights: • First practical application of epitaxial garnet films demonstrated in SEM. • Improved image quality of SEM equipped with GAGG:Ce single crystalline thin film scintillator. • Scintillation properties of GAGG:Ce films compared with standard bulk crystal scintillators.

  17. Luminescence and scintillation properties of advanced Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub.:Pr.sup.3+./sup. single crystal scintillators

    Czech Academy of Sciences Publication Activity Database

    Sreebunpeng, K.; Chewpraditkul, W.; Nikl, Martin

    2014-01-01

    Roč. 60, Jan (2014), 42-45 ISSN 1350-4487 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : energy resolution * light yield * LuAG:Pr * photofraction * scintillation detectors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.213, year: 2014

  18. Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd.sub.3./sub.Al.sub.2./sub.Ga.sub.3./sub.O.sub.12./sub. scintillator

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Nikl, Martin; Kurosawa, S.; Beitlerová, Alena; Nagura, A.; Shoji, Y.; Pejchal, Jan; Ohashi, Y.; Yokota, Y.; Yoshikawa, A.

    2015-01-01

    Roč. 41, Mar SI (2015), s. 63-66 ISSN 0925-3467 R&D Projects: GA MŠk(CZ) LH14266 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : scintillator * garnet * single crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.183, year: 2015

  19. Electron response of some low-Z scintillators in wide energy range

    International Nuclear Information System (INIS)

    Swiderski, L; Marcinkowski, R; Moszynski, M; Czarnacki, W; Szawlowski, M; Szczesniak, T; Pausch, G; Plettner, C; Roemer, K

    2012-01-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF 2 :Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF 2 :Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  20. Electron response of some low-Z scintillators in wide energy range

    Science.gov (United States)

    Swiderski, L.; Marcinkowski, R.; Moszynski, M.; Czarnacki, W.; Szawlowski, M.; Szczesniak, T.; Pausch, G.; Plettner, C.; Roemer, K.

    2012-06-01

    Light yield nonproportionality and the intrinsic resolution of some low atomic number scintillators were studied by means of the Wide Angle Compton Coincidence (WACC) technique. The plastic and liquid scintillator response to Compton electrons was measured in the energy range of 10 keV up to 4 MeV, whereas a CaF2:Eu sample was scanned from 3 keV up to 1 MeV. The nonproportionality of the CaF2:Eu light yield has characteristics typical for inorganic scintillators of the multivalent halides group, whereas tested organic scintillators show steeply increasing nonproportionality without saturation point. This is in contrast to the behavior of all known inorganic scintillators having their nonproportionality curves at saturation above energies between tens and several hundred keV.

  1. A Comprehensive Study on Gamma Rays and Fast Neutron Sensing Properties of GAGOC and CMO Scintillators for Shielding Radiation Applications

    Directory of Open Access Journals (Sweden)

    Shams A. M. Issa

    2017-01-01

    Full Text Available The WinXCom program has been used to calculate the mass attenuation coefficients (μm, effective atomic numbers (Zeff, effective electron densities (Nel, half-value layer (HVL, and mean free path (MFP in the energy range 1 keV–100 GeV for Gd3Al2Ga3O12Ce (GAGOC and CaMoO4 (CMO scintillator materials. The geometrical progression (G-P method has been used to compute the exposure buildup factors (EBF and gamma ray energy absorption (EABF in the photon energy range 0.015–15 MeV and up to a 40 penetration depth (mfp. In addition, the values of the removal cross section for a fast neutron ∑R have been calculated. The computed data observes that GAGOC showed excellent γ-rays and neutrons sensing a response in the broad energy range. This work could be useful for nuclear radiation sensors, detectors, nuclear medicine applications (medical imaging and mammography, nuclear engineering, and space technology.

  2. Scintillator materials

    International Nuclear Information System (INIS)

    1976-01-01

    The invention describes the chemical preparation of inorganic phosphors, i.e. cerium- and praseodymium pentaphosphate. The advantages, as compared to usual phosphors, are improved optical properties and a shorter duration (12 ns) of the afterglow. A discussion of various applications, e.g. in diode tubes, cathode ray tubes, gas discharge tubes, in electroluminescence, and in electron microscopes are given

  3. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  4. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  5. Local polar fluctuations in lead halide perovskites

    Science.gov (United States)

    Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor

    The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.

  6. Halides of BET-TTF: novel hydrated molecular metals

    Energy Technology Data Exchange (ETDEWEB)

    Laukhina, E.; Ribera, E.; Vidal-Gancedo, J.; Canadell, E.; Veciana, J.; Rovira, C. [Universidad Autonoma de Barcelona, Bellaterra (Spain). Inst. de Ciencia de Materials; Khasanov, S.; Zorina, L.; Shibaeva, R. [Rossijskaya Akademiya Nauk, Chernogolovka (Russian Federation). Inst. Fiziki Tverdogo Tela; Laukhin, V. [Inst. of Problems of Chemical Physics, RAS, Chernogolovka (Russian Federation); Honold, M.; Nam, M.-S.; Singleton, J. [Clarendon Lab., Univ. of Oxford (United Kingdom)

    2000-01-07

    A hint of superconducting transition has been observed for the first time in a cation radical salt derived from bisethylenethio-tetrathiafulvalene (BET-TTF), the salt (BET-TTF){sub 2}Br.3H{sub 2}O. Here the synthesis, X-ray structure, and physical properties of two hydrated halides of BET-TTF that are isostructural and present stable metallic properties are described. (orig.)

  7. Eu-activated fluorochlorozirconate glass-ceramic scintillators

    International Nuclear Information System (INIS)

    Johnson, J. A.; Schweizer, S.; Henke, B.; Chen, G.; Woodford, J.; Newman, P. J.; MacFarlane, D. R.

    2006-01-01

    Rare-earth-doped fluorochlorozirconate (FCZ) glass-ceramic materials have been developed as scintillators and their properties investigated as a function of dopant level. The paper presents the relative scintillation efficiency in comparison to single-crystal cadmium tungstate, the scintillation intensity as a function of x-ray intensity and x-ray energy, and the spatial resolution (modulation transfer function). Images obtained with the FCZ glass-ceramic scintillator and with cadmium tungstate are also presented. Comparison shows that the image quality obtained using the glass ceramic is close to that from cadmium tungstate. Therefore, the glass-ceramic scintillator could be used as an alternative material for image formation resulting from scintillation. Other inorganic scintillators such as single crystals or polycrystalline films have limitations in resolution or size, but the transparent glass-ceramic can be scaled to any shape or size with excellent resolution

  8. Optical and scintillation properties of Ce.sup.3+./sup.-doped YGd.sub.2./sub.Al.sub.5-x./sub.Ga.sub.x./sub.O.sub.12./sub. (x=2,3,4) single crystal scintillators

    Czech Academy of Sciences Publication Activity Database

    Chewpraditkul, Wa.; Brůža, P.; Pánek, D.; Pattanaboonmee, N.; Wantong, K.; Chewpraditkul, W.; Babin, Vladimir; Bartosiewicz, Karol; Kamada, K.; Yoshikawa, A.; Nikl, Martin

    2016-01-01

    Roč. 169, Jan (2016), s. 43-50 ISSN 0022-2313 R&D Projects: GA ČR GAP204/12/0805; GA MŠk(CZ) LH14266 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : YGd 2 Al 5-x Ga x O 12 :Ce * light yield * luminescence * scintillation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.686, year: 2016

  9. Synthesis of plastic scintillation microspheres: Evaluation of scintillators

    International Nuclear Information System (INIS)

    Santiago, L.M.; Bagán, H.; Tarancón, A.; Garcia, J.F.

    2013-01-01

    The use of plastic scintillation microspheres (PSm) appear to be an alternative to liquid scintillation for the quantification of alpha and beta emitters because it does not generate mixed wastes after the measurement (organic and radioactive). In addition to routine radionuclide determinations, PSm can be used for further applications, e.g. for usage in a continuous monitoring equipment, for measurements of samples with a high salt concentration and for an extractive scintillation support which permits the separation, pre-concentration and measurement of the radionuclides without additional steps of elution and sample preparation. However, only a few manufacturers provide PSm, and the low number of regular suppliers reduces its availability and restricts the compositions and sizes available. In this article, a synthesis method based on the extraction/evaporation methodology has been developed and successfully used for the synthesis of plastic scintillation microspheres. Seven different compositions of plastic scintillation microspheres have been synthesised; PSm1 with polystyrene, PSm2 with 2,5-Diphenyloxazol(PPO), PSm3 with p-terphenyl (pT), PSm4 with PPO and 1,4-bis(5-phenyloxazol-2-yl) (POPOP), PSm5 pT and (1,4-bis [2-methylstyryl] benzene) (Bis-MSB), PSm6 with PPO, POPOP and naphthalene and PSm7 with pT, Bis-MSB and naphthalene. The synthesised plastic scintillation microspheres have been characterised in terms of their morphology, detection capabilities and alpha/beta separation capacity. The microspheres had a median diameter of approximately 130 μm. Maximum detection efficiency values were obtained for the PSm4 composition as follows 1.18% for 3 H, 51.2% for 14 C, 180.6% for 90 Sr/ 90 Y and 76.7% for 241 Am. Values of the SQP(E) parameter were approximately 790 for PSm4 and PSm5. These values show that the synthesised PSm exhibit good scintillation properties and that the spectra are at channel numbers higher than in commercial PSm. Finally, the addition

  10. Development of Halide and Oxy-Halides for Isotopic Separations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Aaron T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pfeiffer, Jana [Idaho National Lab. (INL), Idaho Falls, ID (United States); Finck, Martha R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  11. Studies of novel plastic scintillators

    International Nuclear Information System (INIS)

    McInally, I.D.

    1979-08-01

    The general aim of this study was to synthesize fluorescent compounds which are capable of polymerisation, to prepare polymers and co-polymers from these compounds and to study the photophysical properties of these materials. In this way it is hoped to produce plastic scintillators exhibiting improved energy transfer efficiency. Materials studied included POS(2-phenyl-5-(p vinyl) phenyloxazole) vinyl naphthalene, methyl anthracene terminated poly vinyl toluene) and derivatives of BuPBD. (author)

  12. Broadly tunable metal halide perovskites for solid-state light-emission applications

    OpenAIRE

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as broad tunability of bandgap, defect tolerance, high photoluminescence quantum efficiency and high emission color purity (narrow full-width at half maximum). In this review, the photophysical propert...

  13. Luminescent and scintillation properties of Bi{sup 3+} doped Y{sub 2}SiO{sub 5} and Lu{sub 2}SiO{sub 5} single crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Zorenko, Yu., E-mail: zorenko@ukw.edu.pl [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Gorbenko, V.; Zorenko, T. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Laboratory for Optoelectronic Materials (LOM), Department of Electronics of Ivan Franko National University of Lviv, 79017 Lviv (Ukraine); Malinowski, P. [Institute of Physics, Kazimierz Wielki University in Bydgoszcz, 85-090 Bydgoszcz (Poland); Jary, V.; Kucerkova, R.; Beitlerova, A.; Mares, J.A.; Nikl, M. [Institute of Physics AS CR, Cukrovarnicka 10, 16253 Prague (Czech Republic); Fedorov, A. [Institute for Single Crystals NAS of Ukraine, 60 Lenin ave., 61001 Kharkiv (Ukraine)

    2014-10-15

    In this paper we report our follow-up research on the Bi{sup 3+} luminescence in orthosilicate compounds, focusing on absorption, luminescent and scintillation properties of YSO:Bi and LSO:Bi SCFs with the Bi concentration ranging from 0.05 to 0.18 at%. For purpose of this research, single crystalline films (SCF) of Y{sub 2}SiO{sub 5}:Bi and Lu{sub 2}SiO{sub 5}:Bi have been grown by the LPE method onto YSO and LSO substrates from the melt-solution based on Bi{sub 2}O{sub 3} flux. - Highlights: • YSO:Bi and LSO:Bi films have been grown by liquid phase epitaxy. • Bi{sup 3+} absorption and luminescence depends on Bi concentration. • Scintillation properties of YSO:Bi and LSO:Bi films have been studied.

  14. Energy resolution of scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moszyński, M., E-mail: M.Moszynski@ncbj.gov.pl; Syntfeld-Każuch, A.; Swiderski, L.; Grodzicka, M.; Iwanowska, J.; Sibczyński, P.; Szczęśniak, T.

    2016-01-01

    According to current knowledge, the non-proportionality of the light yield of scintillators appears to be a fundamental limitation of energy resolution. A good energy resolution is of great importance for most applications of scintillation detectors. Thus, its limitations are discussed below; which arise from the non-proportional response of scintillators to gamma rays and electrons, being of crucial importance to the intrinsic energy resolution of crystals. The important influence of Landau fluctuations and the scattering of secondary electrons (δ-rays) on intrinsic resolution is pointed out here. The study on undoped NaI and CsI at liquid nitrogen temperature with a light readout by avalanche photodiodes strongly suggests that the non-proportionality of many crystals is not their intrinsic property and may be improved by selective co-doping. Finally, several observations that have been collected in the last 15 years on the influence of the slow components of light pulses on energy resolution suggest that more complex processes are taking place in the scintillators. This was observed with CsI(Tl), CsI(Na), ZnSe(Te), and undoped NaI at liquid nitrogen temperature and, finally, for NaI(Tl) at temperatures reduced below 0 °C. A common conclusion of these observations is that the highest energy resolution, and particularly intrinsic resolution measured with the scintillators, characterized by two or more components of the light pulse decay, is obtainable when the spectrometry equipment integrates the whole light of the components. In contrast, the slow components observed in many other crystals degrade the intrinsic resolution. In the limiting case, afterglow could also be considered as a very slow component that spoils the energy resolution. The aim of this work is to summarize all of the above observations by looking for their origin.

  15. Calculations and measurements of the scintillator-to-water stopping power ratio of liquid scintillators for use in proton radiotherapy

    International Nuclear Information System (INIS)

    Scott Ingram, W.; Robertson, Daniel; Beddar, Sam

    2015-01-01

    Liquid scintillators are a promising detector for high-resolution three-dimensional proton therapy dosimetry. Because the scintillator comprises both the active volume of the detector and the phantom material, an ideal scintillator will exhibit water equivalence in its radiological properties. One of the most fundamental of these is the scintillator’s stopping power. The objective of this study was to compare calculations and measurements of scintillator-to-water stopping power ratios to evaluate the suitability of the liquid scintillators BC-531 and OptiPhase HiSafe 3 for proton dosimetry. We also measured the relative scintillation output of the two scintillators. Both calculations and measurements show that the linear stopping power of OptiPhase is significantly closer to water than that of BC-531. BC-531 has a somewhat higher scintillation output. OptiPhase can be mixed with water at high concentrations, which further improves its scintillator-to-water stopping power ratio. However, this causes the solution to become cloudy, which has a negative impact on the scintillation output and spatial resolution of the detector. OptiPhase is preferred over BC-531 for proton dosimetry because its density and scintillator-to-water stopping power ratio are more water equivalent

  16. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    Science.gov (United States)

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  17. Luminescent and scintillation properties of the Pr"3"+ doped single crystalline films of Lu_3Al_5_−_xGa_xO_1_2 garnet

    International Nuclear Information System (INIS)

    Gorbenko, V.; Zorenko, Yu; Zorenko, T.; Voznyak, T.; Paprocki, K.; Fabisiak, K.; Fedorov, A.; Bilski, P.; Twardak, A.; Zhusupkalieva, G.

    2016-01-01

    The Pr"3"+ d–f luminescence was investigated in the single crystalline films (SCF) of Lu_3Al_5_−_xGa_xO_1_2:Pr garnet solid solution at x = 1–3, grown by the liquid phase epitaxy (LPE) method from the melt-solution based on the PbO–B_2O_3 flux. The shape of CL spectra and decay kinetics of Pr"3"+ ions in Lu_3Al_5_−_xGa_xO_1_2 SCFs strongly depend on the total gallium concentration x and distribution of Ga"3"+ ions between the tetrahedral and octahedral position of the garnet host. The best scintillation properties of Lu_3Al_5_−_xGa_xO_1_2:Pr SCF are achieved at the nominal Ga content in melt-solution in the x = 2–2.5 range. - Highlights: • Single crystalline films of Lu_3Al_5_−_x Ga_xO_1_2:Pr garnet at x = 1–3 were grown by the LPE method. • Pr"3"+ emission spectra, light yield and decay time of films show strong dependence on Ga content. • The maximal light yield of Lu_3Al_5_−_x Ga_xO_1_2:Pr film is observed at Ga content x = 2.0–2.5.

  18. New heavy scintillating materials for precise heterogeneous EM-calorimeters

    International Nuclear Information System (INIS)

    Britvich, G.I.; Britvich, I.G.; Vasil'chenko, V.G.; Lishin, V.A.; Obraztsov, V.F.; Polyakov, V.A.; Solovjev, A.S.; Ryzhikov, V.D.

    2001-01-01

    This investigation shows some optical and scintillation properties of new scintillating media, based on heavy composite materials and an inorganic crystal CsI:Br, intended for the creation of precise heterogeneous EM-calorimeters with the energy resolution σ/E congruent with 4-5% E-radical. The possibility to use cheap heavy scintillating plates based on optical ceramics as active media in heterogeneous EM-calorimeters is considered

  19. Scintillation properties of Nd{sup 3+}, Tm{sup 3+}, and Er{sup 3+} doped LuF{sub 3} scintillators in the vacuum ultra violet region

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki, E-mail: yanagida@imr.tohoku.ac.jp [New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Kawaguchi, Noriaki [Tokuyama Corporation Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 Japan (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Fukuda, Kentaro [Tokuyama Corporation Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 Japan (Japan); Kurosawa, Shunsuke; Fujimoto, Yutaka; Futami, Yoshisuke; Yokota, Yuui [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Taniue, Kojiro [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo, Kyoto, 606-8502 (Japan); Sekiya, Hiroyuki [Kamioka Observatory, Institute for Cosmic Ray Research, University of Tokyo, Hida, 506-1205 (Japan); Kubo, Hidetoshi [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo, Kyoto, 606-8502 (Japan); Yoshikawa, Akira [New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 (Japan); Tanimori, Toru [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo, Kyoto, 606-8502 (Japan)

    2011-12-11

    In order to develop novel vacuum ultra violet (VUV) emitting scintillators, we grew Nd 0.5%, Tm 0.5%, and Er 0.5% doped LuF{sub 3} scintillators by the {mu}-pulling down method, because LuF{sub 3} has a very wide band gap and Nd{sup 3+}, Tm{sup 3+}, and Er{sup 3+} luminescence centers show fast and intense 5d-4f emission in VUV region. Transmittance and X-ray induced radioluminescence were studied in these three samples using our original spectrometer made by Bunkou-Keiki company. In the VUV region, transmittance of 20-60% was achieved for all the samples. The emission peaks appeared at approximately 180, 165, and 164 nm for Nd{sup 3+}, Tm{sup 3+}, and Er{sup 3+} doped LuF{sub 3}, respectively. Using PMT R8778 (Hamamatsu), we measured their light yields under {sup 241}Am {alpha}-ray excitation. Compared with Nd:LaF{sub 3} scintillator, which has 33 photoelectrons/5.5 MeV {alpha}, Nd:LuF{sub 3} and Tm:LuF{sub 3} showed 900{+-}90 and 170{+-}20 ph/5.5 MeV-{alpha}, respectively. Only for the Nd doped one, we can detect {sup 137}Cs 662 keV {gamma}-ray photoabsorption peak and the light yield of 1200{+-}120 ph/MeV was measured. We also investigated their decay time profiles by picosecond pulse X-ray equipped streak camera, and the main decay component of Nd:LuF{sub 3} turned out to be 7.63 ns.

  20. Monte Carlo simulation of electron thermalization in scintillator materials: Implications for scintillator nonproportionality

    Energy Technology Data Exchange (ETDEWEB)

    Prange, Micah P. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Xie, YuLong [Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Campbell, Luke W. [National Security Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA; Gao, Fei [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA; Kerisit, Sebastien [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA

    2017-12-21

    The lack of reliable quantitative estimates of the length and time scales associated with hot electron thermalization after a gamma-ray induced energy cascade obscures the interplay of various microscopic processes controlling scintillator performance and hampers the search for improved detector materials. We apply a detailed microscopic kinetic Monte Carlo model of the creation and subsequent thermalization of hot electrons produced by gamma irradiation of six important scintillating crystals to determine the spatial extent of the cloud of excitations produced by gamma rays and the time required for the cloud to thermalize with the host lattice. The main ingredients of the model are ensembles of microscopic track structures produced upon gamma excitation (including the energy distribution of the excited carriers), numerical estimates of electron-phonon scattering rates, and a calculated particle dispersion to relate the speed and energy of excited carriers. All these ingredients are based on first-principles density functional theory calculations of the electronic and phonon band structures of the materials. Details of the Monte Carlo model are presented along with results for thermalization time and distance distributions. These results are discussed in light of previous work. It is found that among the studied materials, calculated thermalization distances are positively correlated with measured nonproportionality. In the important class of halide scintillators, the particle dispersion is found to be more influential than the largest phonon energy in determining the thermalization distance.

  1. Scintillator material. Szintillatormaterial

    Energy Technology Data Exchange (ETDEWEB)

    Siegmund, M; Bendig, J; Regenstein, W

    1987-11-25

    A scintillator material for detection and quantitative determination of ionizing radiation is discussed consisting of an acridone dissolved in a fluid or solid medium. Solvent mixtures with at least one protogenic component or polymers and copolymers are used. The scintillator material is distinguished by an excellent stability at high energy doses.

  2. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Directory of Open Access Journals (Sweden)

    Simon A. Bretschneider

    2014-04-01

    Full Text Available The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

  3. Production low cost plastic scintillator by using commercial polystyrene

    International Nuclear Information System (INIS)

    2011-01-01

    Plastic Scintillators can be described as solid materials which contain organic fluorescent compounds dissolved within a polymer matrix. Transparent plastics commonly used for light scintillation are Polystyrene (or PS, poly-vinyl-benzene) and polyvinyl-toluene (or PVT, poly-methyl-styron). By changing the composition of plastic Scintillators some features such as light yield, radiation hardening, decay time etc. can be controlled. Plastic scintillation detectors have been used in nuclear and high energy physics for many decades. Among their benefits are fast response, ease of manufacture and versatility. Their main drawbacks are radiation resistance and cost. Many research projects have concentrated on improving the fundamental properties of plastic scintillators, but little attention has focussed on their cost and easier manufacturing techniques. First plastic Scintillators were produced in 1950's. Activities for production of low cost Scintillators accelerated in second half of 1970's. In 1975 acrylic based Plexipop Scintillator was developed. Despite its low cost, since its structure was not aromatic the light yield of Plexipop was about one quarter of classical Scintillators. Problems arising from slow response time and weak mechanical properties in scintillators developed, has not been solved until 1980. Within the last decade extrusion method became very popular in preparation of low cost and high quality plastic scintillators. In this activity, preliminary studies for low cost plastic scintillator production by using commercial polystyrene pellets and extrusion plus compression method were aimed. For this purpose, PS blocks consist of commercial fluorescent dopant were prepared in June 2008 by use of the extruder and pres in SANAEM. Molds suitable for accoupling to extruder were designed and manufactured and optimum production parameters such as extrusion temperature profile, extrusion rate and moulding pressure were obtained hence, PS Scintillator Blocks

  4. (Alpha-) quenching temperature dependence in liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Arnd; Lozza, Valentina; Krosigk, Belina von; Zuber, Kai [Institut fuer Kern- und Teilchenphysik, TU Dresden (Germany)

    2015-07-01

    Liquid scintillator (LS) is an effective and promising detector material, which is and will be used by many small and large scale experiments. In order to perform correct signal identification and background suppression, a very good knowledge of LS properties is crucial. One of those is the light yield from alpha particles in liquid scintillator. This light output strongly quenched, approx. 10 times compared to that of electrons, and has been precisely studied at room temperature for various LS. Big scintillator experiments, such as SNO+ and maybe future large scale detectors, will operate at different temperatures. While a strong temperature dependence is well known for solid state scintillators, due to the different scintillation process, a quenching temperature dependence in LS is usually assumed negligible. On the other hand, inconsistencies in between measurements are often explained by potential temperature effects. This study investigates LAB based liquid scintillator with an intrinsic, dissolved alpha emitter and its behaviour with temperature change. In a small, cooled and heated setup, a stabilized read-out with two PMTs is realised. First results are presented.

  5. Research in high energy physics: Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1988-01-01

    The scintillating fiber detector development program at the University of Notre Dame is divided into several components. These include: Research on scintillating glass fiber materials; Research on scintillating plastic fiber materials; Research on scintillating liquids in fiber capillaries; Studies of improvements in image intensification and light amplification of appropriate test and development facilities at Notre Dame. The overall goal of the program is to develop efficient scintillating fiber detectors with long, optical attenuation length, and excellent radiation resistance properties for tracking and microvertex detectors and as component active sampling materials for scintillation calorimetry. We now discuss each of these programs in turn. 2 figs., 3 tabs

  6. Barium iodide and strontium iodide crystals and scintillators implementing the same

    Science.gov (United States)

    Payne, Stephen A.; Cherepy, Nerine; Pedrini, Christian; Burger, Arnold

    2016-09-13

    In one embodiment, a crystal includes at least one metal halide; and an activator dopant comprising ytterbium. In another general embodiment, a scintillator optic includes: at least one metal halide doped with a plurality of activators, the plurality of activators comprising: a first activator comprising europium, and a second activator comprising ytterbium. In yet another general embodiment, a method for manufacturing a crystal suitable for use in a scintillator includes mixing one or more salts with a source of at least one dopant activator comprising ytterbium; heating the mixture above a melting point of the salt(s); and cooling the heated mixture to a temperature below the melting point of the salts. Additional materials, systems, and methods are presented.

  7. Hot working alkali halides for laser window applications

    International Nuclear Information System (INIS)

    Koepke, B.G.; Anderson, R.H.; Stokes, R.J.

    1975-01-01

    The techniques used to hot work alkali halide crystals into laser window blanks are reviewed. From the point of view of high power laser window applications one of the materials with a high figure of merit is KCl. Thus the materials examined are KCl and alloys of KCl-KBr containing 5 mole percent KBr. The fabrication techniques include conventional and constrained press forging, isostatic press forging and hot rolling. Optical properties are paramount to the ultimate usefulness of these materials. Results on the optical properties of the hot worked material are included together with mechanical properties and microstructural data

  8. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  9. Heterofacial alkylation of alkylenediamines by higher alkyl halides

    International Nuclear Information System (INIS)

    Semenov, V.A.; Kryshko, G.M.; Sokal'skaya, L.I.; Zhukova, N.G.

    1985-01-01

    A study of the physiochemical properties of alkylenediamines substituted by lower alkyls, showed that they possess increased complex-forming ability with respect to salts of different metals as titanium, niobium, zirconium, molybdenum, and zinc. To create a simpler method of synthesis of higher tetraaklyalkylalklyenediamines, based on the use of the accessible domestic raw material, the authors investigated the reaction of alkylenediamines with various alkyl halides. It was established that the best reagents can be obtained using alkyl bromides. It is concluded that the procedure of alkylation of alkylenediamines by higher alkyl halides in the presence of water developed permits the production of terraalkylalkylenediamines in one step with good yield and with purity acceptable for use as extraction reagents

  10. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    Science.gov (United States)

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  11. Phosphor scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.; Prener, J.S.

    1980-01-01

    A method of fabricating scintillators is described in which the phosphor is distributed within the structure in such a way as to enhance the escape of the visible wavelength radiation that would otherwise be dissipated within the scintillator body. Two embodiments of the present invention are disclosed: one in which the phosphor is distributed in a layered structure and another in which the phosphor is dispersed throughout a transparent matrix. (U.K.)

  12. Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites.

    Science.gov (United States)

    Turkevych, Ivan; Kazaoui, Said; Ito, Eisuke; Urano, Toshiyuki; Yamada, Koji; Tomiyasu, Hiroshi; Yamagishi, Hideo; Kondo, Michio; Aramaki, Shinji

    2017-10-09

    Hybrid CPbX 3 (C: Cs, CH 3 NH 3 ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C 2 ABX 6 double perovskites based on alternating corner-shared AX 6 and BX 6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX 6 and BX 6 octahedra with the general formula A a B b X x (x=a+3 b) such as Ag 3 BiI 6 , Ag 2 BiI 5 , AgBiI 4 , AgBi 2 I 7 . As perovskites were named after their prototype oxide CaTiO 3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO 2 . We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO 2 /Ag 3 BiI 6 /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural and optical properties of Vernier phase lutetium oxyfluorides doped with lanthanide ions: interesting candidates as scintillators and X-Ray phosphors

    Czech Academy of Sciences Publication Activity Database

    Passuello, T.; Piccinelli, M.; Trevisani, M.; Giarola, M.; Mariotto, G.; Marciniak, L.; Hreniak, D.; Guzik, M.; Fasoli, M.; Vedda, A.; Jarý, Vítězslav; Nikl, Martin; Causin, V.; Bettinelli, M.; Speghini, A.

    2012-01-01

    Roč. 22, č. 21 (2012), s. 10639-10649 ISSN 0959-9428 R&D Projects: GA AV ČR KAN300100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : oxyfluoride * luminescence * scintillator * phosphor * Eu3+ * Ce3+ * Pr3+ Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.968, year: 2011

  14. Growth and luminescence properties of Eu-doped HfO.sub.2./sub./α-Al.sub.2./sub.O.sub.3./sub. eutectic scintillator

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Hishinuma, K.; Kurosawa, S.; Yamaji, A.; Shoji, Y.; Pejchal, Jan; Ohashi, Y.; Yokota, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 34, č. 8 (2016), s. 796-801 ISSN 1002-0721 Institutional support: RVO:68378271 Keywords : eutectic * scintillator * micro-pulling down method * rare earths Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.429, year: 2016

  15. Crystal growth and luminescence properties of Yb.sub.2./sub.Si.sub.2./sub.O.sub.7./sub. infra-red emission scintillator

    Czech Academy of Sciences Publication Activity Database

    Horiai, T.; Kurosawa, S.; Murakami, R.; Pejchal, Jan; Yamaji, A.; Shoji, Y.; Chani, V.I.; Ohashi, Y.; Kamada, K.; Yokota, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 58, Aug (2016), s. 14-17 ISSN 0925-3467 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : scintillator * pyrosilicate * charge transfer * infra-red * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.238, year: 2016

  16. Scintillation properties of Ce:(La,Gd).sub.2./sub.Si.sub.2./sub.O.sub.7./sub. at high temperatures

    Czech Academy of Sciences Publication Activity Database

    Kurosawa, S.; Shishido, T.; Sugawara, T.; Nomura, A.; Yubuta, K.; Suzuki, A.; Murakami, R.; Pejchal, Jan; Yokota, Y.; Kamada, K.; Yoshikawa, A.

    2015-01-01

    Roč. 772, Feb (2015), s. 72-75 ISSN 0168-9002 Institutional support: RVO:68378271 Keywords : scintillator * oil well logging * Ce:LaGPS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.200, year: 2015

  17. Effects of Na and K co-doping on growth and scintillation properties of Eu:SrI.sub.2./sub. crystals\

    Czech Academy of Sciences Publication Activity Database

    Ito, T.; Yokota, Y.; Kurosawa, S.; Král, Robert; Pejchal, Jan; Ohashi, Y.; Kamada, K.; Nikl, Martin; Yoshikawa, A.

    2016-01-01

    Roč. 90, Jul (2016), 157-161 ISSN 1350-4487 R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : Eu:SrI 2 * scintillator * single crystal * alkali metal * light yield * non-proportionality Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  18. Scintillating fiber detector development for the SSC: Annual progress report

    International Nuclear Information System (INIS)

    Ruchti, R.C.

    1989-01-01

    During the past year, considerable effort has been applied to the development of scintillating fiber detectors in several areas: new scintillation liquids and studies of their fluorescence properties; new fluorescent dyes based on non-intramolecular proton transfer; new dyes based on intramolecular proton transfer; incorporation of these new dyes in plastic (polystyrene) and liquid scintillation solutions; development of small cross section glass capillaries for the containment of liquid scintillators; studies of waveguide characteristics; studies of image intensifier phosphor screen characteristics; initial steps to form a collaboration to study and develop appropriate new properties of the Solid State Photomultiplier; construction of a new laboratory at Notre Dame to enhance our capabilities for further measurements and studies; and organization of and execution of a Workshop on Scintillating Fiber Detector Development for the SSC, held at Fermilab, November 14--16, 1988

  19. Structure of polyvalent metal halide melts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1990-12-01

    A short review is given of recent progress in determining and understanding the structure of molten halide salts involving polyvalent metal ions. It covers the following three main topics: (i) melting mechanisms and types of liquid structure for pure polyvalent-metal chlorides; (ii) geometry and stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides; and (iii) structure breaking and electron localization on addition of metal to the melt. (author). 28 refs, 3 figs, 1 tab

  20. Lasing in robust cesium lead halide perovskite nanowires

    Science.gov (United States)

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  1. Status quo of ceramic material for metal halide discharge lamps

    International Nuclear Information System (INIS)

    Kappen, Theo G M M

    2005-01-01

    Polycrystalline alumina is an excellent ceramic material for use as the envelope for metal halide discharge lamps. Although this material was introduced in the mid-1960s, and is thus already known for several decades, recent years have seen considerable effort aimed at further development of these ceramic envelope materials. Developments are not only in the field of ceramic shaping technologies, but are also concentrated on the material properties of the ceramic material itself. Optical, mechanical as well as the chemical properties of the ceramic envelope are strongly controlled by the shape as well as the microstructure of the ceramics used

  2. Environmental Effects on the Photophysics of Organic-Inorganic Halide Perovskites.

    Science.gov (United States)

    Galisteo-López, Juan F; Anaya, M; Calvo, M E; Míguez, H

    2015-06-18

    The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials.

  3. Homogeneous scintillating LKr/Xe calorimeters

    International Nuclear Information System (INIS)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K.; Akyuz, D.; Chen, E.; Gaudreau, M.P.J.; Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V.; Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V.; Akopyan, M.; Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T.; Masuda, K.; Shibamura, E.; Ishida, N.; Sugimoto, S.

    1993-01-01

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using α's, radiation hardness as well as the uniformity required for δE/E≅0.5% for e/γ's above 50 GeV. (orig.)

  4. Fullerenes doped with metal halides

    International Nuclear Information System (INIS)

    Martin, T.P.; Heinebrodt, M.; Naeher, U.; Goehlich, H.; Lange, T.; Schaber, H.

    1993-01-01

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C 60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  5. Inorganic-organic rubbery scintillators

    CERN Document Server

    Gektin, A V; Pogorelova, N; Neicheva, S; Sysoeva, E; Gavrilyuk, V

    2002-01-01

    Spectral-kinetic luminescence properties of films, containing homogeneously dispersed scintillation particles of CsI, CsI:Tl, CsI:Na, and NaI:Tl in optically transparent organosiloxane matrix, are presented. Material is flexible and rubbery and in consequence the detectors of convenient shapes can be produced. It is found that luminescence spectra of the received films are identical whereas decay times are much shorter compared to the same ones of the corresponding single crystals. Layers with pure CsI demonstrate only the fast UV emission (307 nm, 10 ns) without blue microsecond afterglow typical for crystals. The films containing NaI:Tl are non-hygroscopic and preserve scintillation properties for a long time in humid atmosphere unlike single crystals. Organosiloxane layers with CsI:Tl particles provide high light output with good energy resolution for sup 5 sup 5 Fe, sup 1 sup 0 sup 9 Cd, sup 2 sup 4 sup 1 Am sources, and are capable of detecting both X-rays and alpha-, beta-particles.

  6. Luminescence properties and their temperature dependence of Lu.sub.2./sub.Si.sub.2./sub.O.sub.7./sub.:Ce scintillation crystals

    Czech Academy of Sciences Publication Activity Database

    Ren, G.; Feng, H.; Ding, D.; Nikl, Martin; Li, H.; Qin, L.; Pan, S.

    2010-01-01

    Roč. 57, č. 3 (2010), s. 1291-1294 ISSN 0018-9499. [International Conference on Inorganic Scintillators and their Applications /10./. Cheju Isl, 08.06.2009-12.06.2009] R&D Projects: GA MŠk ME08034 Institutional research plan: CEZ:AV0Z10100521 Keywords : light output * LPS:Ce * luminescence * oxygen vacancy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.519, year: 2010

  7. Luminescence and scintillation properties of Lu.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. nanoceramics sintered by SPS method

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Babin, Vladimir; Beitlerová, Alena; Kučerková, Romana; Pánek, D.; Barta, J.; Čuba, V.; Yamaji, A.; Kurosawa, S.; Mihóková, Eva; Ito, A.; Goto, T.; Nikl, Martin; Yoshikawa, A.

    2016-01-01

    Roč. 53, Mar (2016), s. 54-63 ISSN 0925-3467 R&D Projects: GA ČR GA13-09876S; GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : lutetium-aluminium-garnet * spark-plasma-sintering * nanoceramics * scintillator * Ce-doping Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.238, year: 2016

  8. Growth and scintillation properties of praseodymium doped (Lu,Gd).sub.3./sub.(Ga,Al).sub.5./sub.O.sub.12./sub. single crystals

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Nikl, Martin; Kurosawa, S.; Shoji, Y.; Pejchal, Jan; Ohashi, Y.; Yokota, Y.; Yoshikawa, A.

    2016-01-01

    Roč. 169, Jan (2016), s. 811-815 ISSN 0022-2313. [International Conference on Luminescence and Optical Spectroscopy of Condensed Matter /17./. Wroclaw, 13.07.2014-18.07.2014] R&D Projects: GA MŠk(CZ) LH14266 EU Projects: European Commission(XE) 316906 - LUMINET Institutional support: RVO:68378271 Keywords : single crystal growth * oxides * scintillators * praseodymium * garnet Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.686, year: 2016

  9. Improvement of the growth of Li.sub.4./sub.SiO.sub.4./sub. single crystals for neutron detection and their scintillation and luminescence properties

    Czech Academy of Sciences Publication Activity Database

    Pejchal, Jan; Babin, Vladimir; Beitlerová, Alena; Kurosawa, S.; Yokota, Y.; Yoshikawa, A.; Nikl, Martin

    2017-01-01

    Roč. 457, Jan (2017), s. 143-150 ISSN 0022-0248 R&D Projects: GA ČR GJ15-18300Y; GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : luminescence * transition metal ion doping * micro-pulling-down method * lithium silicate * scintillator materials Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.751, year: 2016

  10. Composition and properties tailoring in Mg.sup.2+./sup. codoped non-stoichiometric LuAG:Ce,Mg scintillation ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Mareš, Jiří A.; Babin, Vladimir; Hu, C.; Kou, H.; D'Ambrosio, C.; Li, J.; Pan, Y.; Nikl, Martin

    2017-01-01

    Roč. 37, č. 4 (2017), s. 1689-1694 ISSN 0955-2219 R&D Projects: GA ČR GA16-15569S Institutional support: RVO:68378271 Keywords : non-stoichiometric ceramic s * LuAG:Ce * Mg scintillator * Mg 2+ codopant * antisite defects * afterglow Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.411, year: 2016

  11. Structure and energetics of trivalent metal halides

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1999-01-01

    Metal trihalide (MX 3 ) systems represent a stern challenge in terms of constructing transferable potential models. Starting from a previously published set of potentials, 'extended' ionic models are developed which, at the outset, include only anion polarization. Deficiencies in these models, particularly for smaller (highly polarizing) cations, axe shown to be significant. For example, crystal structures different to those observed experimentally axe adopted. The potentials axe improved upon by reference to ab initio information available for alkali halides with the 'constraint' that the parameters transfer systematically in a physically transparent manner, for example, in terms of ion radii. The possible influence of anion compression ('breathing') and the relative abundance of anion-anion interactions are considered. Simulation techniques axe developed to allow for the effective simulation of any system symmetry and for the study of transitions between different crystals (constant stress). The developed models are fully tested for a large range of metal trichloride (MCl 3 ) systems. Particular attention is paid to the comparison with recent neutron and X-ray diffraction data on the liquid state. Polarization effects axe shown to be vital in reproducing strong experimental features. The excellent agreement between simulation and experiment allows for differences in experimental procedures to be highlighted. The transferability is further tested by modelling mixtures of the lanthanides with alkali halides with potentials unchanged from the pure systems. The complex evolution of the melt structure is highlighted as the concentration of MCl 3 increases. The effectiveness of the models is tested by reference to dynamical properties. Particular attention is paid to the comparison with Raman scattering data available for a wide range of systems and mixture concentrations. The simulated spectra are generated both by a simple molecular picture of the underlying

  12. Inorganic liquid scintillator

    International Nuclear Information System (INIS)

    Pavlicek, Z.; Barta, C.; Jursova, L.

    1986-01-01

    An inorganic liquid scintillator is designed which contains 1 to 30 wt.% of an inorganic molecular compound as the basic active component; the compound contains a cation with an atomic number higher than 47 and a halogen anion. The basic inorganic component is dissolved in water or in an organic solvent in form of non-dissociated molecules or self-complexes in which the bond is preserved between the cation and anion components. The light yield from these scintillators ranges between 70 and 150% of the light yield of a standard organic scintillator based on toluene. They are advantageous in that that they allow to increase the water content in the sample to up to 100%. (M.D.)

  13. Scintillator plate calorimetry

    International Nuclear Information System (INIS)

    Price, L.E.

    1990-01-01

    Calorimetry using scintillator plates or tiles alternated with sheets of (usually heavy) passive absorber has been proven over multiple generations of collider detectors. Recent detectors including UA1, CDF, and ZEUS have shown good results from such calorimeters. The advantages offered by scintillator calorimetry for the SSC environment, in particular, are speed (<10 nsec), excellent energy resolution, low noise, and ease of achieving compensation and hence linearity. On the negative side of the ledger can be placed the historical sensitivity of plastic scintillators to radiation damage, the possibility of nonuniform response because of light attenuation, and the presence of cracks for light collection via wavelength shifting plastic (traditionally in sheet form). This approach to calorimetry is being investigated for SSC use by a collaboration of Ames Laboratory/Iowa State University, Argonne National Laboratory, Bicron Corporation, Florida State University, Louisiana State University, University of Mississippi, Oak Ridge National Laboratory, Virginia Polytechnic Institute and State University, Westinghouse Electric Corporation, and University of Wisconsin

  14. Progress in PbWO4 scintillating crystal

    International Nuclear Information System (INIS)

    Fyodorov, A.; Korzhik, M.; Missevitch, O.; Pavlenko, V.; Kachanov, V.; Singovsky, A.; Annenkov, A.N.; Ligun, V.A.; Peigneux, J.P.; Vialle, J.P.

    1994-12-01

    Lead tungstate PbWO 4 (PWO) has recently been shown to be a promising scintillating material for precise electromagnetic calorimetry. Modifications of PWO technology were made to improve the uniformity of the crystal properties. A model of the scintillation mechanism for PWO was developed and served to guide the improvement. The complex spectroscopic analysis of the crystal after improvement is presented, as well as the new crystal properties achieved. (K.A.). 14 refs., 14 figs., 4 tabs

  15. Excitonic Effects in Methylammonium Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Beard, Matthew C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xihan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lu, Haipeng [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Ye [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-01

    The exciton binding energy in methylammonium lead iodide (MAPbI3) is about 10 meV, around 1/3 of the available thermal energy (kBT ~ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination, and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.

  16. Methods for producing single crystal mixed halide perovskites

    Science.gov (United States)

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  17. Scintillation proximity assay

    International Nuclear Information System (INIS)

    Hart, H.

    1980-01-01

    In a method of immunological assay two different classes of particles which interact at short distances to produce characteristic detectable signals are employed in a modification of the usual latex fixation test. In one embodiment an aqueous suspension of antigen coated tritiated latex particles (LH) and antigen coated polystyrene scintillant particles (L*) is employed to assay antibody in the aqueous medium. The amount of (LH) (L*) dimer formation and higher order aggregation induced and therefore the concentration of antibody (or antigen) present which caused the aggregation can be determined by using standard liquid scintillation counting equipment. (author)

  18. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  19. The study of light phenomena in the planetary atmosphere and the properties of water as a scintillator under the action of cosmic rays

    International Nuclear Information System (INIS)

    Caramete, Laurentiu-Ioan; Stere, Oana; Haiduc, Maria; Rusu, Mircea Victor

    2004-01-01

    Few scientific fields are so attractive and have an interdisciplinary nature like nuclear astrophysics. It covers the study of the synthesis of the elements and the evolution of cosmic sites where such synthesis takes place. The systems like early universe, interstellar medium, giant red stars, supernovae and the birth of new stars are considerable problems and modern science research themes. Huge amount of data is gathered daily, by astronomical observatories, satellites and orbital stations which have more and more complex equipment. For explaining and understanding these data, theories and very complex computerized models are used. Our proposed installation will be used for obtaining a large variety of data, parameters and values of some dimensions which make part of theoretical and simulation models for observed processes in astrophysics and astronomy. We will study the scintillation phenomena from atmosphere with applications in the study of cosmic rays, applications regarding some aspects of flash or sparking observed in the high altitude of terrestrial atmosphere and which are due to small drops of water or ice. On the other side, cosmic radiation causes a continuous bombardment of high atmosphere and such phenomena could be produced if the drops of water, in special conditions, are the place for scintillation. The fundamental interest is that a simple inorganic system, like water, could provide scintillation in pure conditions, in contamination conditions or in solid state. For this purpose we will study the following items: the possible energy levels in the water molecule in different conditions and the way in which the position of levels are changed in solution, the influence of different impurities in water, which form (in contact with water molecules) structures and different molecular groups in water which can have energy levels able to act like scintillation centers. Our purposes are the following: - making new scintillators, cheaper and more

  20. Liquid scintillation, counting, and compositions

    International Nuclear Information System (INIS)

    Sena, E.A.; Tolbert, B.M.; Sutula, C.L.

    1975-01-01

    The emissions of radioactive isotopes in both aqueous and organic samples can be measured by liquid scintillation counting in micellar systems. The micellar systems are made up of scintillation solvent, scintillation solute and a mixture of surfactants, preferably at least one of which is relatively oil-soluble water-insoluble and another which is relatively water-soluble oil-insoluble

  1. Optimization of light collection from crystal scintillators for cryogenic experiments

    International Nuclear Information System (INIS)

    Mokina, V.M.; Danevich, F.A.; Kobychev, V.V.; Kraus, H.; Mikhailik, V.B.; Nagornaya, L.L.

    2012-01-01

    Cryogenic scintillation bolometers are a promising technique to search for dark matter and neutrinoless double decay. Improvement of light collection and energy resolution are important requirements in such experiments. Energy resolutions and relative pulse amplitudes of scintillation detectors using ZnWO 4 scintillation crystals of different shapes (cylinder 20x20 mm and hexagonal prism with diagonal 20 mm and height 20 mm), reflector materials and shapes, optical contact and surface properties (polished and diffused) were measured. The crystal scintillator of hexagonal shape shows the better energy resolution and pulse amplitude. The best energy resolution (FWHM = 9.3 % for 662 keV γ quanta of 137 Cs) was obtained with a hexagonal scintillator with all surfaces diffuse, in optical contact with a PMT and surrounded by a reflector (3M) of size 26x25 mm. In the geometry w ithout optical contact r epresenting the conditions of light collection for a cryogenic scintillating bolometer the best energy resolution and relative pulse amplitude was obtained for a hexagonal shape scintillator with diffuse side and polished face surfaces, surrounded by a reflector with a gap between the scintillator and the reflector

  2. Plastic scintillators with {beta}-diketone Eu complexes for high ionizing radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Adadurov, A.F., E-mail: adadurov@isma.kharkov.ua [Institute for Scintillating Materials, NAN of Ukraine, Lenin Avenue 60, 61001 Kharkov (Ukraine); Zhmurin, P.N.; Lebedev, V.N.; Kovalenko, V.N. [Institute for Scintillating Materials, NAN of Ukraine, Lenin Avenue 60, 61001 Kharkov (Ukraine)

    2011-10-15

    Luminescent and scintillation properties of polystyrene-based plastic scintillators with {beta}-diketone Eu complexes are investigated. A scintillator with dibenzoylmethane Eu complex containing two phenyl groups demonstrates the maximum scintillating efficiency. It is shown that plastic scintillators efficiency is dramatically decreased if {beta}-diketone derivatives contain no phenyl groups as substituents. This fact can be explained by exciplex mechanism of energy transfer from a matrix to Eu complex. - Highlights: > Fluorescent properties of polystyrene scintillators with {beta}-diketone complexes of Eu were studied. > Scintillating efficiency is increased with the number of phenyl groups in Eu complex. > This is related to exciplex mechanism of energy transfer from a polymer matrix to Eu complex.

  3. Plastic scintillators with β-diketone Eu complexes for high ionizing radiation detection

    International Nuclear Information System (INIS)

    Adadurov, A.F.; Zhmurin, P.N.; Lebedev, V.N.; Kovalenko, V.N.

    2011-01-01

    Luminescent and scintillation properties of polystyrene-based plastic scintillators with β-diketone Eu complexes are investigated. A scintillator with dibenzoylmethane Eu complex containing two phenyl groups demonstrates the maximum scintillating efficiency. It is shown that plastic scintillators efficiency is dramatically decreased if β-diketone derivatives contain no phenyl groups as substituents. This fact can be explained by exciplex mechanism of energy transfer from a matrix to Eu complex. - Highlights: → Fluorescent properties of polystyrene scintillators with β-diketone complexes of Eu were studied. → Scintillating efficiency is increased with the number of phenyl groups in Eu complex. → This is related to exciplex mechanism of energy transfer from a polymer matrix to Eu complex.

  4. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

    Science.gov (United States)

    Akkerman, Quinten A.; Rainò, Gabriele; Kovalenko, Maksym V.; Manna, Liberato

    2018-05-01

    Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a `soft' and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.

  5. A study of liquid scintillator and fiber materials for use in a fiber calorimeter

    International Nuclear Information System (INIS)

    Altice, P.P. Jr.

    1990-04-01

    This reports an investigation into the performance of selected scintillation oils and fiber materials to test their applicability in high energy, liquid scintillator calorimetry. Two scintillating oils, Bicron BC-517 and an oil mixed for the MACRO experiment, and two fiber materials, Teflon and GlassClad PS-252, were tested for the following properties: light yield, attenuation length and internal reflection angle. The results of these tests indicated that the scintillation oils and the fiber materials had an overall good performance with lower energies and would meet the requirements of liquid scintillator detection at SSC energies. 6 refs

  6. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de.

    1977-07-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt

  7. A Cluster-Bethe lattice treatment for the F-center in alkali-halides

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de; Koiller, B.; Maffeo, B.; Brandi, H.S.

    1977-01-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Cluster-Bethe lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second- neighbors to it, respectively, cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides [pt

  8. Polysiloxane scintillator composition

    Science.gov (United States)

    Walker, J.K.

    1992-05-05

    A plastic scintillator useful for detecting ionizing radiation comprising a matrix which comprises an optically transparent polysiloxane having incorporated therein at least one ionizing radiation-hard fluor capable of converting electromagnetic energy produced in the polysiloxane upon absorption of ionizing radiation to detectable light.

  9. WORKSHOP: Scintillating crystals

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-12-15

    Scintillating crystals are one of the big spinoff success stories of particle physics, and from 22-26 September an international workshop in Chamonix in the French Alps looked at the increasing role of these materials in pure and applied science and in industry.

  10. WORKSHOP: Scintillating crystals

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Scintillating crystals are one of the big spinoff success stories of particle physics, and from 22-26 September an international workshop in Chamonix in the French Alps looked at the increasing role of these materials in pure and applied science and in industry

  11. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  12. Uranium-scintillator device

    International Nuclear Information System (INIS)

    Smith, S.D.

    1979-01-01

    The calorimeter subgroup of the 1977 ISABELLE Summer Workshop strongly recommended investigation of the uranium-scintillator device because of its several attractive features: (1) increased resolution for hadronic energy, (2) fast time response, (3) high density (i.e., 16 cm of calorimeter per interaction length), and, in comparison with uranium--liquid argon detectors, (4) ease of construction, (5) simple electronics, and (6) lower cost. The AFM group at the CERN ISR became interested in such a calorimeter for substantially the same reasons, and in the fall of 1977 carried out tests on a uranium-scintillator (U-Sc) calorimeter with the same uranium plates used in their 1974 studies of the uranium--liquid argon (U-LA) calorimeter. The chief disadvantage of the scintillator test was that the uranium plates were too small to fully contain the hadronic showers. However, since the scintillator and liquid argon tests were made with the plates, direct comparison of the two types of devices could be made

  13. Holographic Optical Elements Recorded in Silver Halide Sensitized Gelatin Emulsions. Part I. Transmission Holographic Optical Elements

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Kim, Sun Il; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.

    2001-02-01

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE s). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE s recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE s.

  14. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai; Cao, Runan; Xu, Fei; Da, Peimei; Zheng, Gengfeng; Lu, Jian

    2016-01-01

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  15. Development of new Polysiloxane Based Liquid Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Palma, M.; Quaranta, A. [Department of Industrial Engineering, University of Trento,Via Sommarive, 9, 38123 Trento (Italy); INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Gramegna, F.; Marchi, T.; Cinausero, M. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Carturan, S.; Collazuol, G.; Checchia, C. [INFN, Laboratori Nazionali di Legnaro,Viale dell' Universita, 2, 35020 Legnaro - Padova (Italy); Department of Physics and Astronomy, University of Padova, Via Marzolo, 8, 35131 Padova (Italy); Degerlier, M. [Department of Physics, Nevsehir Haci Bektas Veli University, Science and Art Faculty, 50300 Nevsehir (Turkey)

    2015-07-01

    In the last decade, attention toward neutron detection has been growing in the scientific community, driven by new requirements in different fields of application ranging from homeland security to medical and material analysis, from research physics, to nuclear energy production. So far neutron detection, with particular attention to fast neutrons, has been mainly based on organic liquid scintillators, owing to their good efficiency and pulse shape discrimination (PSD) capability. Most of these liquids have however some main drawbacks given by toxicity, flammability, volatility and sensitivity to dissolved oxygen that limits the duration and the quality of their performances with worse handiness and increased costs. Phenyl-substituted polysiloxanes could address most of these issues, being characterized by low toxicity, low volatility and low flammability. Their optical properties can be tailored by changing the phenyl distribution and concentration thus allowing to increase the solubility of organic dyes, to modify the fluorescence spectra and to vary the refractive index of the medium. Furthermore, polysiloxanes have been recently exploited for the production of plastic scintillators with very good chemical and thermal stability and very good radiation hardness and the development of polysiloxane liquid scintillators could allow to combine these interesting properties with the supremacy of liquid scintillators as regarding PSD over plastics. For these reasons, the properties of several phenyl-substituted polysiloxane with different phenyl amounts and different viscosities have been investigated, with particular attention to the scintillation response and the pulse shape discrimination capability, and the results of the investigation are reported in this work. More in details, the scintillation light yield towards gamma rays ({sup 60}Co and {sup 137}Cs) of several polysiloxane liquids has been analyzed and compared with the light yield of a commercial non

  16. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    Science.gov (United States)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  17. Thermochromic halide perovskite solar cells

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  18. Thermochromic halide perovskite solar cells.

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  19. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    Klick, D.I.

    1977-01-01

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu + and Ag + and the heavy-metal ions In + and Tl + was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  20. Calcium phosphate cements with strontium halides as radiopacifiers.

    Science.gov (United States)

    López, Alejandro; Montazerolghaem, Maryam; Engqvist, Håkan; Ott, Marjam Karlsson; Persson, Cecilia

    2014-02-01

    High radiopacity is required to monitor the delivery and positioning of injectable implants. Inorganic nonsoluble radiopacifiers are typically used in nondegradable bone cements; however, their usefulness in resorbable cements is limited due to their low solubility. Strontium halides, except strontium fluoride, are ionic water-soluble compounds that possess potential as radiopacifiers. In this study, we compare the radiopacity, mechanical properties, composition, and cytotoxicity of radiopaque brushite cements prepared with strontium fluoride (SrF2 ), strontium chloride (SrCl2 ·6H2 O), strontium bromide (SrBr2 ), or strontium iodide (SrI2 ). Brushite cements containing 10 wt % SrCl2 ·6H2 O, SrBr2 , or SrI2 exhibited equal to or higher radiopacity than commercial radiopaque cements. Furthermore, the brushite crystal lattice in cements that contained the ionic radiopacifiers was larger than in unmodified cements and in cements that contained SrF2 , indicating strontium substitution. Despite the fact that the strontium halides increased the solubility of the cements and affected their mechanical properties, calcium phosphate cements containing SrCl2 ·6H2 O, SrBr2 , and SrI2 showed no significant differences in Saos-2 cell viability and proliferation with respect to the control. Strontium halides: SrCl2 ·6H2 O, SrBr2 , and SrI2 may be potential candidates as radiopacifiers in resorbable biomaterials although their in vivo biocompatibility, when incorporated into injectable implants, is yet to be assessed. Copyright © 2013 Wiley Periodicals, Inc.

  1. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  2. Effect of Li.sup.+./sup. ions co-doping on luminescence, scintillation properties and defects characteristics of LuAG:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.-P.; Feng, X. Q.; Mareš, Jiří A.; Babin, Vladimir; Hu, C.; Kou, H.; D'Ambrosio, C.; Li, J.; Pan, Y.; Nikl, Martin

    2017-01-01

    Roč. 64, Feb (2017), s. 245-249 ISSN 0925-3467 R&D Projects: GA ČR GA16-15569S Grant - others:AV ČR(CZ) CAS-17-02 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : LuAG:Ce * Li ceramic s * scintillator * Li + codoping * Ce 4+ and Ce 3+ centers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  3. Crystal growth and evaluation of scintillation properties of Eu and alkali-metal co-doped LiSrAlF{sub 6} single crystals for thermal neutron detector

    Energy Technology Data Exchange (ETDEWEB)

    Wakahara, Shingo; Yokota, Yuui; Yamaji, Akihiro; Fujimoto, Yutaka; Sugiyama, Makoto; Kurosawa, Shunsuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Pejchal, Jan [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Institute of Physics AS CR, Cukrovarnicka 10, Prague 16253 (Czech Republic); Kawaguchi, Noriaki [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Fukuda, Kentaro [Tokuyama, Co. Ltd., Shibuya 3-chome, Shibuya-ku, Tokyo 150-8383 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-12-15

    In recent work, Na co-doping have found to improve the light output of Eu doped LiCaAlF{sub 6} (Eu:LiCAF) for thermal neutron scintillator. We grew Eu 2% and alkali metal 1% co-doped LiSAF crystals by Micro-Pulling down method to understand the effect of alkali metal co-doping on scintillation properties and mechanism compared with LiCAF. In photo- and {alpha}-ray induced radio-luminescence spectra of the all grown crystals, the emissions from d-f transition of Eu{sup 2+} were observed. Without relation to excitation source, decay times of co-doped LiSAF were longer than Eu only doped one. The light yield of Na, K and Cs co-doped LiSAF under {sup 252}Cf neutron excitation were improved. Especially, K co-doped Eu:LiSAF reached 33200 ph/n, which outperformed Eu only doped one by approximately 20% (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Scintillation properties of transparent Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) ceramics doped with different concentrations of Pr{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Yanagida, Takayuki; Fukabori, Akihiro; Fujimoto, Yutaka; Kamada, Kei; Yokota, Yuui; Yoshikawa, Akira; Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira Aoba-ku, 980-8577 Sendai (Japan); Ikesue, Akio [World Labo, Co. Ltd., Mutsuno 2-4-1, Atsuta, 456-0023 Nagoya (Japan); Kataoka, Jun [School of Advanced Science and Engineering,Waseda University, Ohkubo 3-4-1, Shinjuku, 169-0072 Tokyo (Japan)

    2011-01-15

    Transparent ceramics of Pr-doped (0.2 mol%, 0.6 mol%, 1 mol%, and 2 mol%) Lu{sub 3}Al{sub 5}O{sub 12} (LuAG) scintillators produced by the sintering method are discussed. These materials were cut to the specimens with physical dimensions of 5 x 5 x 2 mm{sup 3}. Similar size specimens were also prepared from Czochralski grown Pr:LuAG single crystals to compare scintillation properties. Their transmittance and radio luminescence spectra were evaluated. All specimens were highly transparent in wavelength range above 300 nm, and intense Pr{sup 3+} 5d-4f emission was detected around 310 and 370 nm under excitation with X-ray. Under {sup 137}Cs {gamma}-ray is irradiation, 2 keV photo-absorption peaks were also clearly observed in each sample. The Pr 0.6 mol% doped LuAG ceramics demonstrated highest light yield achievable among the ceramics, and it was half of that observed in the single crystals. Under pulse X-ray excitation, the decay time constants became faster when Pr concentration increased, and. the fastest decay ({proportional_to}5.7 ns time constant) was noticed in the 2 mol% doped ceramic. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Comparative study of optical and scintillation properties of YVO{sub 4}, (Lu{sub 0.5}Y{sub 0.5})VO{sub 4}, and LuVO{sub 4} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Yutaka, E-mail: fuji-you@tagen.tohoku.ac.j [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Yanagida, Takayuki; Yokota, Yuui; Chani, Valery [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Kochurikhin, Vladimir V. [General Physics Institute, 38 Vavilov Street, 119991, Federation, Moscow (Russian Federation); Yoshikawa, Akira [IMRAM, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); NICHe, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)

    2011-04-11

    Optical and scintillation properties of YVO{sub 4}, (Lu{sub 0.5}Y{sub 0.5})VO{sub 4}, and LuVO{sub 4} single crystals grown by the Czochralski (CZ) method with RF heating system are compared. All vanadate crystals show high transmittance ({approx}80%) in the 400-900 nm wavelength range. In both photo- and radio-luminescence spectra, intense peak around 400-500 nm, which was ascribed to the transition from triplet state of VO{sub 4}{sup 3-}, was clearly observed. The main decay time component was about 38 {mu}s (YVO{sub 4}), 18 {mu}s ((Lu{sub 0.5}Y{sub 0.5})VO{sub 4}), and 17 {mu}s (LuVO{sub 4}) under 340 nm excitation. The scintillation light yields of YVO{sub 4}, (Lu{sub 0.5}Y{sub 0.5})VO{sub 4}, and LuVO{sub 4} crystals (obtained from the {sup 137}Cs excited pulse height spectra) were evaluated to be about 11,200, 10,700, and 10,300 ph/MeV, respectively.

  6. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei; Comin, Riccardo; Xu, Jixian; Ip, Alexander H.; Sargent, Edward H.

    2015-01-01

    -based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability

  7. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    2013-01-01

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure...... selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d and 4d metals and the four lightest halides. In total...... the search spaces consists of millions combinations, which makes a GA ideal, to reduce the number of necessary calculations. We are screening for a one step release from either a hexa or octa ammine, and we have found promising candidates, which will be further investigated ? both computationally...

  8. Muonium centers in the alkali halides

    International Nuclear Information System (INIS)

    Baumeler, H.; Kiefl, R.F.; Keller, H.; Kuendig, W.; Odermatt, W.; Patterson, B.D.; Schneider, J.W.; Savic, I.M.

    1986-01-01

    Muonium centers (Mu) in single crystals and powdered alkali halides have been studied using the high-timing-resolution transverse field μSR technique. Mu has been observed and its hyperfine parameter (HF) determined in every alkali halide. For the rocksalt alkali halides, the HF parameter A μ shows a systematic dependence on the host lattice constant. A comparison of the Mu HF parameter with hydrogen ESR data suggests that the Mu center is the muonic analogue of the interstitial hydrogen H i 0 -center. The rate of Mu diffusion can be deduced from the motional narrowing of the nuclear hyperfine interaction. KBr shows two different Mu states, a low-temperature Mu I -state and a high-temperature Mu II -state. (orig.)

  9. GAGG:ce single crystalline films: New perspective scintillators for electron detection in SEM.

    Science.gov (United States)

    Bok, Jan; Lalinský, Ondřej; Hanuš, Martin; Onderišinová, Zuzana; Kelar, Jakub; Kučera, Miroslav

    2016-04-01

    Single crystal scintillators are frequently used for electron detection in scanning electron microscopy (SEM). We report gadolinium aluminum gallium garnet (GAGG:Ce) single crystalline films as a new perspective scintillators for the SEM. For the first time, the epitaxial garnet films were used in a practical application: the GAGG:Ce scintillator was incorporated into a SEM scintillation electron detector and it showed improved image quality. In order to prove the GAGG:Ce quality accurately, the scintillation properties were examined using electron beam excitation and compared with frequently used scintillators in the SEM. The results demonstrate excellent emission efficiency of the GAGG:Ce single crystalline films together with their very fast scintillation decay useful for demanding SEM applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Semiconductor high-energy radiation scintillation detector

    International Nuclear Information System (INIS)

    Kastalsky, A.; Luryi, S.; Spivak, B.

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability

  11. Development of water radiocontamination monitor using a plastic scintillator detector

    International Nuclear Information System (INIS)

    Mesquita, C.H. de; Madi Filho, T.; Hamada, M.M.

    1990-01-01

    An alpha, beta and gamma radiation water monitor was developed using a plastic scintillator detector with a sensitivity level of 15 bplastic scintillator detector with a sensitivity level of 15 Bq.L -1 and a counting efficiency of 25% for 131 I. It was proposed to be used in the radiation monitoring program of the research reactor swimming-pool of Sao Paulo. A simplified design and some properties of this monitor are presented. (author) [pt

  12. Scintillator detector array

    International Nuclear Information System (INIS)

    Cusano, D.A.; Dibianca, F.A.

    1981-01-01

    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  13. DETECTORS: scintillating fibres

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the continual search for improved detection techniques, new materials are continually proving profitable. A good example is scintillating plastic fibres - tiny transparent threads sometimes finer than a human hair which transmit light. The narrowness and flexibility of these fibres was a major breakthrough for endoscopy - non-invasive techniques for viewing the otherwise inaccessible in surgery or machine inspection. In a more sophisticated form, these fibres find ready application in communications technology, where the goal is to transmit information rather than electrical power, replacing conventional and unwieldy current-carrying wire conductors. In particle physics, fibres have long been used to take the tiny scintillations produced when high energy particles hit fluorescent materials and 'conduct' them to photosensitive detectors some distance away

  14. A gamma scintillation spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Symbalisty, S

    1952-07-01

    A scintillation type gamma ray spectrometer employing coincidence counting, designed and built at the Physics Department of the University of Western Ontario is described. The spectrometer is composed of two anthracene and photomultiplier radiation detectors, two pulse analyzing channels, a coincidence stage, three scalers and a high voltage stabilized supply. A preliminary experiment to test the operation of the spectrometer was performed and the results of this test are presented. (author)

  15. Modular scintillation camera

    International Nuclear Information System (INIS)

    Barrett, H. H.

    1985-01-01

    Improved optical coupling modules to be used in coded-aperture-type radiographic imaging systems. In a first system, a rotating slit coded-aperture is employed between the radioactive object and the module. The module consists of one pair of side-by-side photomultipliers receiving light rays from a scintillation crystal exposed to the object via the coded-aperture. The light rays are guided to the photomultipliers by a mask having a central transverse transparent window, or by a cylindrical lens, the mask or lens being mounted in a light-conveying quartz block assembly providing internal reflections at opposite faces of the assembly. This generates output signals from the photomultipliers which can be utilized to compute one-dimensional coordinate values for restoring the image of the radioactive object on a display screen. In another form of optical coupling module, usable with other types of coded-apertures, four square photomultipliers form a substantially square block and receive light rays from scintillations from a scintillation crystal exposed to the radioactive object via the coded-aperture. The light rays are guided to the photomultipliers by a square mask or a centrally transparent square lens configuration mounted in a light-conveying assembly formed by internally reflecting quartz blocks, the optical rays being directed to the respective photomultipliers so as to generate resultant output signals which can be utilized to compute image coordinate values for two-dimensional representation of the radioactive object being examined

  16. Homogeneous scintillating LKr/Xe calorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.; Mullins, M.; Pelly, D.; Shotkin, S.; Sumorok, K. (Lab. for Nuclear Science, MIT, Cambridge, MA (United States)); Akyuz, D.; Chen, E.; Gaudreau, M.P.J. (Plasma Fusion Center, MIT, Cambridge, MA (United States)); Bolozdynya, A.; Tchernyshev, V.; Goritchev, P.; Khovansky, V.; Koutchenkov, A.; Kovalenko, A.; Lebedenko, V.; Vinogradov, V.; Gusev, L.; Sheinkman, V. (ITEP, Moscow (Russia)); Krasnokutsky, R.N.; Shuvalov, R.S.; Fedyakin, N.N.; Sushkov, V. (IHEP, Serpukhov (Russia)); Akopyan, M. (Inst. for Nuclear Research, Moscow (Russia)); Doke, T.; Kikuchi, J.; Hitachi, A.; Kashiwagi, T. (Science and Eng. Res. Lab., Waseda Univ., Tokyo (Japan)); Masuda, K.; Shibamura, E. (Saitama Coll. of Health (Japan)); Ishida, N. (Seikei Univ. (Japan)); Sugimoto, S. (INS, Univ. Tokyo (Japan))

    1993-03-20

    Recent R and D work on full length scintillating homogeneous liquid xenon/krypton (LXe/Kr) cells has established the essential properties for precision EM calorimeters: In-situ calibration using [alpha]'s, radiation hardness as well as the uniformity required for [delta]E/E[approx equal]0.5% for e/[gamma]'s above 50 GeV. (orig.).

  17. Influence of thermal treatment and γ-radiation on absorption, luminescence and scintillation properties of Lu3Al5O12:Ce single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Pavlyk, B.; Turchak, R.; Zorenko, T.; Gorbenko, V.; Konstankevych, I.; Savchyn, V.; Voznyak, T.

    2007-01-01

    The influence of thermal treatment (TT) and irradiation by γ-quanta ( 60 Co, 1.25 MeV) in the range of absorbed doses 10 6 -10 8 R on the absorption, luminescence and light yield (LY) of scintillators based on Lu 3 Al 5 O 12 :Ce (LuAG:Ce) single crystalline films (SCF) grown by LPE from the Pb-based flux is studied. It has been shown that transformation of the Fe 3+ ↔Fe 2+ and Pb 2+ ↔Pb 4+ valent states of iron and lead trace impurities cause the change in the optical absorption of SCF induced by the TT in air and vacuum in the range of annealing temperatures of 800-1200 0 C. Possible types of radiation defects in LuAG:Ce SCF induced by γ-radiation are analyzed

  18. Crystal growth and scintillation properties of Er-doped Lu{sub 3}Al{sub 5}O{sub 12} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Makoto, E-mail: makoto.sugiyama@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Fujimoto, Yutaka [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yanagida, Takayuki [New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Totsuka, Daisuke [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Nihon Kessho Kogaku Co. Ltd., 810-5 Nobe-cho Tatebayashi Gunma (Japan); Kurosawa, Shunsuke; Futami, Yoshisuke; Yokota, Yuui; Chani, Valery [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); Yoshikawa, Akira [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan); New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan)

    2012-02-01

    Er-doped Lu{sub 3}Al{sub 5}O{sub 12} (Er:LuAG) single crystalline scintillators with different Er concentrations of 0.1, 0.5, 1, and 3% were grown by the micro-pulling-down ({mu}-PD) method. The grown crystals were composed of single-phase material, as demonstrated by powder X-ray diffraction (XRD). The radioluminescence spectra measured under {sup 241}Am {alpha}-ray excitation indicated host emission at approximately 350 nm and Er{sup 3+} 4f-4f emissions. According to the pulse height spectra recorded under {gamma}-ray irradiation, the 0.5% Er:LuAG exhibited the highest peak channel among the samples. The {gamma}-ray excited decay time profiles were well fitted by the two-component exponential approximation (0.8 {mu}s and 6-10 {mu}s).

  19. Effects of Temperature and X-rays on Plastic Scintillating Fiber and Infrared Optical Fiber.

    Science.gov (United States)

    Lee, Bongsoo; Shin, Sang Hun; Jang, Kyoung Won; Yoo, Wook Jae

    2015-05-11

    In this study, we have studied the effects of temperature and X-ray energy variations on the light output signals from two different fiber-optic sensors, a fiber-optic dosimeter (FOD) based on a BCF-12 as a plastic scintillating fiber (PSF) and a fiber-optic thermometer (FOT) using a silver halide optical fiber as an infrared optical fiber (IR fiber). During X-ray beam irradiation, the scintillating light and IR signals were measured simultaneously using a dosimeter probe of the FOD and a thermometer probe of the FOT. The probes were placed in a beaker with water on the center of a hotplate, under variation of the tube potential of a digital radiography system or the temperature of the water in the beaker. From the experimental results, in the case of the PSF, the scintillator light output at the given tube potential decreased as the temperature increased in the temperature range from 25 to 60 °C. We demonstrated that commonly used BCF-12 has a significant temperature dependence of -0.263 ± 0.028%/°C in the clinical temperature range. Next, in the case of the IR fiber, the intensity of the IR signal was almost uniform at each temperature regardless of the tube potential range from 50 to 150 kVp. Therefore, we also demonstrated that the X-ray beam with an energy range used in diagnostic radiology does not affect the IR signals transmitted via a silver halide optical fiber.

  20. Liquid scintillation counting of chlorophyll

    International Nuclear Information System (INIS)

    Fric, F.; Horickova, B.; Haspel-Horvatovic, E.

    1975-01-01

    A precise and reproducible method of liquid scintillation counting was worked out for measuring the radioactivity of 14 C-labelled chlorophyll a and chlorophyll b solutions without previous bleaching. The spurious count rate caused by luminescence of the scintillant-chlorophyll system is eliminated by using a suitable scintillant and by measuring the radioactivity at 4 to 8 0 C after an appropriate time of dark adaptation. Bleaching of the chlorophyll solutions is necessary only for measuring of very low radioactivity. (author)

  1. Neutron crosstalk between liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Verbeke, J.M., E-mail: verbeke2@llnl.gov; Prasad, M.K., E-mail: prasad1@llnl.gov; Snyderman, N.J., E-mail: snyderman1@llnl.gov

    2015-09-11

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction.

  2. Neutron crosstalk between liquid scintillators

    International Nuclear Information System (INIS)

    Verbeke, J.M.; Prasad, M.K.; Snyderman, N.J.

    2015-01-01

    A method is proposed to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators was modeled to illustrate the improvement of the mass reconstruction

  3. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  4. Formation of structured nanophases in halide crystals

    Czech Academy of Sciences Publication Activity Database

    Kulveit, Jan; Demo, Pavel; Polák, Karel; Sveshnikov, Alexey; Kožíšek, Zdeněk

    2013-01-01

    Roč. 5, č. 6 (2013), s. 561-564 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0891 Institutional support: RVO:68378271 Keywords : halide crystals * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.aspbs.com/asem.html#v5n6

  5. Complexes of alkylphenols with aluminium halides

    International Nuclear Information System (INIS)

    Golounin, A.V.

    1997-01-01

    Interaction of aluminium halides with alkylphenols is studied through the NMR method. The peculiarity of complex formation of pentamethylphenol with AlI 3 is revealed. By AlI 3 action on the pentamethylphenol the complexes are formed both of keto- and oxy form [ru

  6. luminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    have studied the effect of annealing in chlorine gas on the ML of X-rayed KCl crystals. ..... high temperature because of the thermal bleaching of the coloration in alkali halide ..... [31] J Hawkins, Ph.D. Thesis (University of Reading, 1976).

  7. Monocrystalline halide perovskite nanostructures for optoelectronic applications

    NARCIS (Netherlands)

    Khoram, P.

    2018-01-01

    Halide perovskites are a promising class of materials for incorporation in optoelectronics with higher efficiency and lower cost. The solution processability of these materials provides unique opportunities for simple nanostructure fabrication. In the first half of the thesis (chapter 2 and 3) we

  8. Scintillation Particle Detectors Based on Plastic Optical Fibres and Microfluidics

    CERN Document Server

    Mapelli, Alessandro; Renaud, Philippe

    2011-01-01

    This thesis presents the design, development, and experimental validation of two types of scintillation particle detectors with high spatial resolution. The first one is based on the well established scintillating fibre technology. It will complement the ATLAS (A Toroidal Large ApparatuS) detector at the CERN Large Hadron Collider (LHC). The second detector consists in a microfabricated device used to demonstrate the principle of operation of a novel type of scintillation detector based on microfluidics. The first part of the thesis presents the work performed on a scintillating fibre tracking system for the ATLAS experiment. It will measure the trajectory of protons elastically scattered at very small angles to determine the absolute luminosity of the CERN LHC collider at the ATLAS interaction point. The luminosity of an accelerator characterizes its performance. It is a process-independent parameter that is completely determined by the properties of the colliding beams and it relates the cross section of a ...

  9. Search of new scintillation materials for nuclear medicine application

    CERN Document Server

    Korzhik, M

    2001-01-01

    Oxide crystals have a great potential to develop new advanced scintillation materials which are dense, fast, and bright. This combination of parameters, when combined to affordable price, gives a prospect for materials to be applied in nuclear medicine devices. Some of them have been developed for the last two decades along the line of rear-earth (RE) garnet (RE//3Al//5O//1//2) oxiorthosilicate (RE//2SiO//5) and perovskite (REAlO//3) crystals doped with Ce ions. Among recently developed oxide materials the lead tungstate scintillator (PWO) becomes the most used scintillation materials in high energy physics experiments due to its application in CMS and ALICE experiments at LHC. In this paper we discuss scintillation properties of some new heavy compounds doped with Ce as well as light yield improvement of PWO crystals to apply them in low energy physics and nuclear medicine. 18 Refs.

  10. Radiation effects in polymers for plastic scintillation detectors

    International Nuclear Information System (INIS)

    Pla-Dalmau, A.; Bross, A.D.; Hurlbut, C.R.; Moser, S.W.

    1994-01-01

    Recent developments in both scintillating plastic optical fibers and photon detection devices have spawned new applications for plastic scintillator detectors. This renewed attention has encouraged research that addresses the radiation stability of plastic scintillators. The optical quality of the polymer degrades with exposure to ionizing radiation and thus the light yield of the detector decreases. A complete understanding of all the mechanisms contributing to this radiation-induced degradation of the polymer can lead to techniques that will extend the radiation stability of these materials. Various radiation damage studies have been performed under different atmospheres and dose rates. Currently, the use of additives to preserve the optical properties of the polymer matrix under radiation is being investigated. The authors discuss the effect of certain antioxidants, plasticizers, and cross-linking agents on the radiation resilience of plastic scintillators

  11. Inorganic scintillators for detector systems physical principles and crystal engineering

    CERN Document Server

    Lecoq, Paul; Korzhik, Mikhail

    2017-01-01

    This second edition features new chapters highlighting advances in our understanding of the behavior and properties of scintillators, and the discovery of new families of materials with light yield and excellent energy resolution very close to the theoretical limit. The book focuses on the discovery of next-generation scintillation materials and on a deeper understanding of fundamental processes. Such novel materials with high light yield as well as significant advances in crystal engineering offer exciting new perspectives. Most promising is the application of scintillators for precise time tagging of events, at the level of 100 ps or higher, heralding a new era in medical applications and particle physics. Since the discovery of the Higgs Boson with a clear signature in the lead tungstate scintillating blocks of the CMS Electromagnetic Calorimeter detector, the current trend in particle physics is toward very high luminosity colliders, in which timing performance will ultimately be essential to mitigating...

  12. Investigation on neutron/gamma discrimination phenomena in plastic scintillators

    International Nuclear Information System (INIS)

    Blanc, Pauline

    2014-01-01

    This PhD topic was born from misunderstandings and incomplete knowledge of the mechanism and relative effectiveness of neutron and gamma-ray (n/γ) discrimination between plastic scintillators compared to liquid scintillators. The shape of the light pulse these materials generate following interaction with an ionizing particle (predominantly recoil protons in the case of neutrons and electrons in the case of gamma-rays) is different in time in a way that depends on the detected particle (nature and energy). It is this fact that enables separation (PSD). The behavior in liquid scintillators has been extensively studied experimentally for practical applications. Only recently has it been shown that a weak separation can also be achieved using specially prepared plastics. The study of this system presents an open field and the understanding of both liquids and plastics with respect to their PSD properties is far from complete. This work is dedicated to exploring the fundamental photophysical phenomena at play in the generation of luminescence emission, following the interaction of ionizing radiation with organic scintillators. For this purpose, firstly a detailed literature review of the state-of-the-art has been conducted extending from 1960 to the present day. Secondly a complete characterization of the main scintillating materials has been conducted to define their fluorescence properties and the characteristics of their scintillation under irradiation. Thirdly a proton beam has been used to simulate recoil protons to quantify under controlled laboratory conditions their specific energy deposition in a plastic scintillator with PSD properties. The fourth part of this thesis is devoted to the study of PSD efficiency of scintillators as a function of their molecular structure. This investigation has led to a plastic scintillator prepared in our laboratory with good PSD properties and a patent submission. Finally, photophysical experiments were performed using a

  13. Fluorescent organic dyes as radiation converters in scintillation counting and laser techniques

    International Nuclear Information System (INIS)

    Guesten, H.

    1989-01-01

    PMP (1-phenyl-3-mesityl-2-pyrazoline) was selected as color quenching from the category of the sterically hindered 1,3-diphenyl-2-pyrazoline by means of comparative optimization between photo-physical and scintillation-spectroscopic and chemical properties and the costs of synthesis. It is applied in liquid scintillation detectors for the detection of β (T, C-14) and in large-volume liquid scintillators for the detection of neutrinos (Rutherford Lab.). (HP) [de

  14. PMP, a novel solute for liquid and plastic scintillation counting

    International Nuclear Information System (INIS)

    Gusten, Hans

    1983-01-01

    The excellent fluorescence properties of PMP ( 11-phenyl-3-mesityl-2-pyrazoline) such as long wavelength emission of over 400 nm, and high fluorescence quantum yield with a short decay time together with a solubility of more than one Mol/L in toluene make this compound a promising solute for scintillation counting. The Stokes' shift of PMP of over 10,000 cm -1 is twice as large as that of the commonly used PPO. Due to this unusually large Stokes' shift PMP can be used as a primary solute without requiring a secondary solute as wavelength shifter. A comparison of the scintillation properties of PMP and PPO in toluene reveals that the counting efficiency for 14 C is better for PMP while the 3 H efficiency is equally good. Due to the large Stokes' shift, PMP is about 50 percent less sensitive to color quenching than PPO. Compared to the solute combinations PPO/secondary solutes, the scintillation counting efficiency of PMP for 14 C in toluene or xylene is the same, while the absolute 3 H efficiency of PPO/secondary solutes in cocktails with emulsifiers is about 10 percent higher. The PMP scintillation efficiency for 14 C as well as 3 H in chemical quenching by urine is more or less the same as for PPO/dimethyl-POPOP. PMP is more sensitive to quenching by halogenated solvents. In the dioxane-based scintillation, this sensitivity to chemical quenching by CHCl 3 vanishes and the counting efficiencies for 14 C and 3 H are as good as for PPO/dimethyl-POPOP or PPO/bis-MSB. Due to the large Stokes' shift, the self-absorption of the scintillation light by PMP is lower than in conventional scintillators. This offers good possibilities in very large-volume applications of liquid as well as plastic scintillators

  15. Scintillating-fibre calorimetry

    International Nuclear Information System (INIS)

    Livan, M.; Vercesi, V.; Wigmans, R.

    1995-01-01

    In the past decade, calorimetry based on scintillating plastic fibres as active elements was developed from a conceptual idea to a mature detector technology, which is nowadays widely applied in particle physics experiments. This development and the performance characteristics of representative calorimeters, both for the detection of electromagnetic and hadronic showers, are reviewed. We also discuss new information on shower development processes in dense matter and its application to calorimetric principles that has emerged from some very thorough studies that were performed in the framework of this development. (orig.)

  16. Hybrid scintillators for neutron discrimination

    Science.gov (United States)

    Feng, Patrick L; Cordaro, Joseph G; Anstey, Mitchell R; Morales, Alfredo M

    2015-05-12

    A composition capable of producing a unique scintillation response to neutrons and gamma rays, comprising (i) at least one surfactant; (ii) a polar hydrogen-bonding solvent; and (iii) at least one luminophore. A method including combining at least one surfactant, a polar hydrogen-bonding solvent and at least one luminophore in a scintillation cell under vacuum or an inert atmosphere.

  17. Liquid scintillation in medical diagnosis

    International Nuclear Information System (INIS)

    Painter, K.

    1976-01-01

    With the tremendous increase in the application of radioassay, particularly radioimmunoassay, in the clinical laboratory liquid scintillation counting became an indispensable tool in diagnostic medicine. Few publications, however, have concerned themselves with problem areas which occur with the method in the clinical laboratory. The purpose of this presentation is to summarize our experiences with the liquid scintillation technique in the clinical situation

  18. A user's guide to scintillation

    International Nuclear Information System (INIS)

    Hewish, A.

    1989-01-01

    During the past four decades scintillation methods have been used for remote-sensing distant plasmas and for providing high angular resolution in radioastronomy. This brief review illustrates some of the techniques employed and explains the underlying theory in simple physical terms; it is not intended to be a complete survey of all applications of scintillation. (author)

  19. Laser Beam Scintillation with Applications

    CERN Document Server

    Andrews, Larry C; Young, Cynthia

    2001-01-01

    Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.

  20. Scintillation light transport and detection

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Lillie, R.A.

    1986-08-01

    The MORSE neutron gamma-ray transport code has been modified to allow for the transport of scintillation light. This modified code is used to analyze the light collection characteristics of a large liquid scintillator module (18 x 18 x 350 cm 3 )

  1. Extruding plastic scintillator at Fermilab

    International Nuclear Information System (INIS)

    Pla-Dalmau, Anna; Bross, Alain D.; Rykalin, Viktor V.

    2003-01-01

    An understanding of the costs involved in the production of plastic scintillators and the development of a less expensive material have become necessary with the prospects of building very large plastic scintillation detectors. Several factors contribute to the high cost of plastic scintillating sheets, but the principal reason is the labor-intensive nature of the manufacturing process. In order to significantly lower the costs, the current casting procedures had to be abandoned. Since polystyrene is widely used in the consumer industry, the logical path was to investigate the extrusion of commercial-grade polystyrene pellets with dopants to yield high quality plastic scintillator. This concept was tested and high quality extruded plastic scintillator was produced. The D0 and MINOS experiments are already using extruded scintillator strips in their detectors. An extrusion line has recently been installed at Fermilab in collaboration with NICADD (Northern Illinois Center for Accelerator and Detector Development). This new facility will serve to further develop and improve extruded plastic scintillator. This paper will discuss the characteristics of extruded plastic scintillator and its raw materials, the different manufacturing techniques and the current R andD program at Fermilab

  2. Light Collection in the High Energy X-ray Detector with the Pixelated CdWO4 Scintillator using Monte Carlo Method

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chang Hwy; Moon, Myung-Kook; Lee, Suhyun; Kim, Jongyul; Kim, Jeongho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jong Won [Korea Research Institute of Ships and Ocean Engineering, Daejeon (Korea, Republic of)

    2015-05-15

    The performance of indirect detectors, which use the scintillator as CdWO{sub 4}, BGO, CsI, NaI, etc., are effected by optical properties of scintillator and geometrical condition of scintillator. Some of generated lights by interaction between x-ray photons and scintillator are collected at the photo-sensor and others are absorbed in scintillator or escape out of detector. In order to make the high performance image detector, detector should be able to gather the generated lights as much as possible. To minimize the loss of generated lights, thickness of scintillator is to be chosen appropriately. Therefore, the quality of the image detector using the pixelated scintillator is determined by scintillator size, reflectance of scintillator surface, electric noise, etc. In this study, we carried out a study the correlation between the number of collected light and the change of thickness of scintillator using Monte Carlo method. As shown in results, the optimal thickness of a scintillator should be properly selected depending on the incident x-ray energy. In case of without reflector, the scintillator thickness range for x-ray detection is thinner than other cases (with reflector). In the case of a scintillator with reflector, number of collected light and the optima thickness of a scintillator is higher and thicker than scintillator without reflector.

  3. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    International Nuclear Information System (INIS)

    Rodriguez M, R.; Perez S, R.; Vazquez P, G.; Riveros, H.; Gonzalez M, P.

    2014-08-01

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl x KBr 1-x and KBr x RbBr 1-x . (Author)

  4. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez M, R.; Perez S, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Vazquez P, G.; Riveros, H. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Gonzalez M, P., E-mail: mijangos@cifus.uson.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl{sub x}KBr{sub 1-x} and KBr{sub x}RbBr{sub 1-x}. (Author)

  5. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    Science.gov (United States)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  6. Optoelectronic and Photovoltaic Properties of the Air-Stable Organohalide Semiconductor (CH 3 NH 3 ) 3 Bi 2 I 9

    KAUST Repository

    Abulikemu, Mutalifu; Ould-Chikh, Samy; Miao, Xiaohe; Alarousu, Erkki; Banavoth, Murali; Ngongang Ndjawa, Guy Olivier; Barbe, Jeremy; El Labban, Abdulrahman; Amassian, Aram; Del Gobbo, Silvano

    2016-01-01

    Lead halide perovskite materials have shown excellent optoelectronic as well as photovoltaic properties. However, the presence of lead and the chemical instability relegate lead halide perovskites to research applications only. Here, we investigate

  7. Determination of the structural phase and octahedral rotation angle in halide perovskites

    Science.gov (United States)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich

    2018-02-01

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.

  8. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    Science.gov (United States)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-03-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.

  9. Improved Neutron Scintillators Based on Nanomaterials

    International Nuclear Information System (INIS)

    Friesel, Dennis

    2008-01-01

    The development work conducted in this SBIR has so far not supported the premise that using nano-particles in LiFZnS:Ag foils improves their transparency to 420 (or other frequency) light. This conclusion is based solely on the light absorption properties of LiFZnS foils fabricated from nano- and from micro-particles. Furthermore, even for the case of the Gd 2 O 3 foils, the transmission of 420 nm light gained by using nano-particles all but disappears as the foil thickness is increased beyond about 0.2 mm, a practical scintillator thickness. This was not immediately apparent from the preliminary study since no foils thicker than about 0.04 mm were produced. Initially it was believed that the failure to see an improvement by using nano-particles for the LiFZnS foils was caused by the clumping of the particles in Toluene due to the polarity of the ZnS particles. However, we found, much to our surprise, that nano-particle ZnS alone in polystyrene, and in Epoxy, had worse light transmission properties than the micro-particle foils for equivalent thickness and density foils. The neutron detection measurements, while disappointing, are attributable to our inability to procure or fabricate Bulk Doped ZnS nanoparticles. The cause for the failure of nano-particles to improve the scintillation light, and hence improved neutron detection efficiency, is a fundamental one of light scattering within the scintillator. A consequence of PartTec's documentation of this is that several concepts for the fabrication of improved 6 LiFZnS scintillators were formulated that will be the subject of a future SBIR submission.

  10. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    Science.gov (United States)

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation and Detection

    International Nuclear Information System (INIS)

    Guss, Paul; Mukhopadhyay, Sanjoy; Guise, Ron; Yuan, Ding

    2010-01-01

    Scintillator materials are used to detect, and in some cases identify, gamma rays. Higher performance scintillators are expensive, hard to manufacture, fragile, and sometimes require liquid nitrogen or cooling engines. But whereas lower-quality scintillators are cheap, easy to manufacture, and more rugged, their performance is lower. At issue: can the desirable qualities of high-and low-performance scintillators be combined to achieve better performance at lower cost? Preliminary experiments show that a LaF 3 :Ce oleic acid-based nanocomposite exhibits a photopeak when exposed to 137 Cs source gamma-radiation. The chemical synthesis of the cerium-doped lanthanum halide nanoparticles are scalable and large quantities of material can be produced at a time, unlike typical crystal growth processes such as the Bridgeman process. Using a polymer composite (Figure 1), produced by LANL, initial measurements of the unloaded and 8% LaF 3 :Ce-loaded sample have been made using 137 Cs sources. Figure 2 shows an energy spectrum acquired for CeF 3 . The lighter plot is the measured polymer-only spectrum and the black plot is the spectrum from the nanocomposite scintillator. As the development of this material continues, the energy resolution is expected to improve and the photopeak-to-Compton ratio will become greater at higher loadings. These measurements show the expected Compton edge in the polymer-only sample, and the Compton edge and photo-peak expected in the nanophosphor composites that LANL has produced. Using a porous VYCORR with CdSe/ZnS core shell quantum dots, Letant has demonstrated that he has obtained signatures of the 241Am photopeak with energy resolution as good at NaI (Figure 3). We begin with the fact that CeBr 3 crystals do not have a self-activity component as strong as the lanthanum halides. The radioactive 0.090% 138 La component of lanthanum leads to significant self-activity, which will be a problem for very large detector volumes. Yet a significant

  12. Thermomechanical measurements of lead halide single crystals

    Czech Academy of Sciences Publication Activity Database

    Nitsch, Karel; Rodová, Miroslava

    2002-01-01

    Roč. 234, č. 2 (2002), s. 701-709 ISSN 0370-1972 R&D Projects: GA AV ČR IAA2010926 Institutional research plan: CEZ:AV0Z1010914 Keywords : PbX 2 (X=Cl, Br, I) * coefficients of linear thermal expansion * polymorphism in lead halides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2002

  13. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  14. Radiation damage studies on new liquid scintillators and liquid-core scintillating fibers

    International Nuclear Information System (INIS)

    Golovkin, S.V.

    1994-01-01

    The radiation resistant of some new liquid scintillation and capillaries filled with liquid scintillators has been presented. It was found that scintillation efficiency of the scintillator based on 1-methyl naphthalene with a new R39 only by 10% at the dose of 190 Mrad and the radiation resistance of thin liquid-core scintillating was decreased fibers exceeded 60 Mrad. 35 refs

  15. Metal Halide Perovskite Single Crystals: From Growth Process to Application

    Directory of Open Access Journals (Sweden)

    Shuigen Li

    2018-05-01

    Full Text Available As a strong competitor in the field of optoelectronic applications, organic-inorganic metal hybrid perovskites have been paid much attention because of their superior characteristics, which include broad absorption from visible to near-infrared region, tunable optical and electronic properties, high charge mobility, long exciton diffusion length and carrier recombination lifetime, etc. It is noted that perovskite single crystals show remarkably low trap-state densities and long carrier diffusion lengths, which are even comparable with the best photovoltaic-quality silicon, and thus are expected to provide better optoelectronic performance. This paper reviews the recent development of crystal growth in single-, mixed-organic-cation and fully inorganic halide perovskite single crystals, in particular the solution approach. Furthermore, the application of metal hybrid perovskite single crystals and future perspectives are also highlighted.

  16. Scintillators and other particle optical detectors

    International Nuclear Information System (INIS)

    Chipaux, R.

    2011-01-01

    The author reports and comments his researcher career in the field of particle optical detectors. He addresses the cases of organic scintillators (scintillating fibers, liquid scintillators), inorganic scintillators (crystals for electromagnetic calorimetry, crystals for solar neutrino spectroscopy), and Cherenkov Effect detectors. He also reports his works on Cd Te detectors and their modelling

  17. Electrochemistry of plutonium in molten halides

    International Nuclear Information System (INIS)

    McCurry, L.E.; Moy, G.M.M.; Bowersox, D.F.

    1987-01-01

    The electrochemistry of plutonium in molten halides is of technological importance as a method of purification of plutonium. Previous authors have reported that plutonium can be purified by electrorefining impure plutonium in various molten haldies. Work to eluciate the mechanism of the plutonium reduction in molten halides has been limited to a chronopotentiometric study in LiCl-KCl. Potentiometric studies have been carried out to determine the standard reduction potential for the plutonium (III) couple in various molten alkali metal halides. Initial cyclic voltammetric experiments were performed in molten KCL at 1100 K. A silver/silver chloride (10 mole %) in equimolar NaCl-KCl was used as a reference electrode. Working and counter electrodes were tungsten. The cell components and melt were contained in a quartz crucible. Background cyclic voltammograms of the KCl melt at the tungsten electrode showed no evidence of electroactive impurities in the melt. Plutonium was added to the melt as PuCl/sub 3/, which was prepared by chlorination of the oxide. At low concentrations of PuCl/sub 3/ in the melt (0.01-0.03 molar), no reduction wave due to the reduction of Pu(III) was observed in the voltammograms up to the potassium reduction limit of the melt. However on scan reversal after scanning into the potassium reduction limit a new oxidation wave was observed

  18. Complexes in polyvalent metal - Alkali halide melts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-03-01

    Experimental evidence is available in the literature on the local coordination of divalent and trivalent metal ions by halogens in some 140 liquid mixtures of their halides with alkali halides. After brief reference to classification criteria for main types of local coordination, we focus on statistical mechanical models that we are developing for Al-alkali halide mixtures. Specifically, we discuss theoretically the equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in mixtures of AlF 3 and NaF as a function of composition in the NaF-rich region, the effect of the alkali counterion on this equilibrium, the possible role of (AlF 5 ) 2- as an intermediate species in molten cryolite, and the origin of the different complexing behaviours of Al-alkali fluorides and chlorides. We also present a theoretical scenario for processes of structure breaking and electron localization in molten cryolite under addition of sodium metal. (author). 26 refs, 2 tabs

  19. Boron-Loaded Silicone Rubber Scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Z.W.; Maya, L.; Brown, G.M.; Sloop, F.V.Jr

    2003-05-12

    Silicone rubber received attention as an alternative to polyvinyltoluene in applications in which the scintillator is exposed to high doses because of the increased resistance of the rubber to the formation of blue-absorbing color centers. Work by Bowen, et al., and Harmon, et al., demonstrated their properties under gamma/x-ray irradiation, and Bell, et al. have shown their response to thermal neutrons. This last work, however, provided an example of a silicone in which both the boron and the scintillator were contained in the rubber as solutes, a formulation which led to the precipitation of solids and sublimation of the boron component. In the present work we describe a scintillator in which the boron is chemically bonded to the siloxane and so avoids the problem of precipitation and loss of boron to sublimation. Material containing up to 18% boron, by weight, was prepared, mounted on photomultipliers, and exposed to both neutron and gamma fluxes. Pulse height spectra showing the neutron and photon response were obtained, and although the light output was found to be much poorer than from samples in which boron was dissolved, the higher boron concentrations enabled essentially 100% neutron absorption in only a few millimeters' thickness of rubber.

  20. Calorimeter detector consisting of a KMgF3 scintillator and parallel-plate avalanche chamber

    International Nuclear Information System (INIS)

    Buzulutskov, A.F.; Turchanovich, L.K.; Vasil'chenko, V.G.

    1989-01-01

    Scintillations of a KMgF 3 crystal have been detected in the parallel-plate avalanche chamber with a TEA gaseous photocathode, the scintillation signal is shown to be much higher than the direct ionization one. The characteristic properties of the calorimeters on the basis of such structure with electrical and optical readout are discussed. 10 refs.; 4 figs

  1. Scintillation 1024-channel hodoscope

    International Nuclear Information System (INIS)

    Kotov, I.V.; Krasnokutskij, R.N.; Kurbakov, V.I.; Shchukin, A.V.

    1993-01-01

    Flow diagram of voltage divider for photomultiplier used in scintillation multichannel hodoscope is described. The suggested diagram of the divider allows to optimize potential distribution at the innput chamber (photocathode - modulator - first dynode) and in the tail segment of the divider (the nineth dynode-anode). Adjustment of high voltage is conducted using multirotational potentiometer switched in series with the divider. Amplifier-limiter with 80 mkA threshold set at voltage comparator is placed at divide plate. Threshold of its sensitivity constitutes 80 mkA. Hodoscope supply system consists of supply sources of comparators (+-6V) four sources of auxiliary supply sources of the last dynodes of photomultipliers and high-voltage source. Current consumption constitutes 25 A by - 6V, 23 A by + 6 V for the whole hodoscope and up to 200 mA from high-voltage source for one plane. Additional charging sources have constant consumption equal to ∼ 20 mA

  2. Encapsulated scintillation detector

    International Nuclear Information System (INIS)

    Toepke, I.L.

    1982-01-01

    A scintillation detector crystal is encapsulated in a hermetically sealed housing having a glass window. The window may be mounted in a ring by a compression seal formed during cooling of the ring and window after heating. The window may be chemically bonded to the ring with or without a compression seal. The ring is welded to the housing along thin weld flanges to reduce the amount of weld heat which must be applied. A thin section is provided to resist the flow of welding heat to the seal between the ring and the window thereby forming a thermal barrier. The thin section may be provided by a groove cut partially through the wall of the ring. A layer of PTFE between the tubular body and the crystal minimizes friction created by thermal expansion. Spring washers urge the crystal towards the window. (author)

  3. Scintillation counter, segmented shield

    International Nuclear Information System (INIS)

    Olson, R.E.; Thumim, A.D.

    1975-01-01

    A scintillation counter, particularly for counting gamma ray photons, includes a massive lead radiation shield surrounding a sample-receiving zone. The shield is disassembleable into a plurality of segments to allow facile installation and removal of a photomultiplier tube assembly, the segments being so constructed as to prevent straight-line access of external radiation through the shield into radiation-responsive areas. Provisions are made for accurately aligning the photomultiplier tube with respect to one or more sample-transmitting bores extending through the shield to the sample receiving zone. A sample elevator, used in transporting samples into the zone, is designed to provide a maximum gamma-receiving aspect to maximize the gamma detecting efficiency. (U.S.)

  4. Radiation damage in plastic scintillators

    International Nuclear Information System (INIS)

    Majewski, S.

    1990-01-01

    Results of radiation damage studies in plastic scintillators are reviewed and critically analyzed from the point of view of applications of plastic scintillators in calorimetric detectors for the SSC. Damage to transmission and to fluorescent yield in different conditions is discussed. New directions in R ampersand D are outlined. Several examples are given of the most recent data on the new scintillating materials made with old and new plastics and fluors, which are exhibiting significantly improved radiation resistance. With a present rate of a vigorous R D programme, the survival limits in the vicinity of 100 MRad seem to be feasible within a couple of years

  5. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1977-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  6. Sub-nanosecond plastic scintillators

    International Nuclear Information System (INIS)

    Lyons, P.B.; Caldwell, S.E.; Hocker, L.P.; Crandall, D.G.; Zagarino, P.A.; Cheng, J.; Tirsell, G.; Hurlbut, C.R.

    1976-01-01

    Quenched plastic scintillators have been developed that yield much faster short decay components and greatly reduced long decay components compared to conventional plastic scintillators. The plastics are produced through the addition of selected quench agents to NE111 plastic scintillator that result in reduced total light output. Eight different agents have been studied. Benzophenone and piperidine are two of the most effective quench agents. Data are presented both for short and long decay components. The plastics are expected to make significant contributions in areas of plasma diagnostics

  7. Applications of liquid scintillation tubes

    International Nuclear Information System (INIS)

    Broga, D.W.

    1977-01-01

    A new cocktail containing device for liquid scintillation counting, the scintillation tube, consists of a two-layered plastic bag which is heatsealed after the cocktail and sample have been placed in it. It is then placed in a carrying vial and counted in a conventional liquid scintillation counter. These tubes have proved to be a practical and economical alternative to vials. Some of their advantages are elimination of absorption problems, transparency, lower background and higher counting efficiency, low breakage danger and savings in waste disposal costs. Two applications for which the tubes are particularly suitable are the counting of laboratory swipes and urine analysis. (author)

  8. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  9. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure.

    Science.gov (United States)

    Wronski, M; Zhao, W; Tanioka, K; Decrescenzo, G; Rowlands, J A

    2012-11-01

    The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and the results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography∕fluoroscopy (R∕F) applications. The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant

  10. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    International Nuclear Information System (INIS)

    Wronski, M.; Zhao, W.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2012-01-01

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and the results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all

  11. Physics-informed machine learning for inorganic scintillator discovery

    Science.gov (United States)

    Pilania, G.; McClellan, K. J.; Stanek, C. R.; Uberuaga, B. P.

    2018-06-01

    Applications of inorganic scintillators—activated with lanthanide dopants, such as Ce and Eu—are found in diverse fields. As a strict requirement to exhibit scintillation, the 4f ground state (with the electronic configuration of [Xe]4fn 5d0) and 5d1 lowest excited state (with the electronic configuration of [Xe]4fn-1 5d1) levels induced by the activator must lie within the host bandgap. Here we introduce a new machine learning (ML) based search strategy for high-throughput chemical space explorations to discover and design novel inorganic scintillators. Building upon well-known physics-based chemical trends for the host dependent electron binding energies within the 4f and 5d1 energy levels of lanthanide ions and available experimental data, the developed ML model—coupled with knowledge of the vacuum referred valence and conduction band edges computed from first principles—can rapidly and reliably estimate the relative positions of the activator's energy levels relative to the valence and conduction band edges of any given host chemistry. Using perovskite oxides and elpasolite halides as examples, the presented approach has been demonstrated to be able to (i) capture systematic chemical trends across host chemistries and (ii) effectively screen promising compounds in a high-throughput manner. While a number of other application-specific performance requirements need to be considered for a viable scintillator, the scheme developed here can be a practically useful tool to systematically down-select the most promising candidate materials in a first line of screening for a subsequent in-depth investigation.

  12. Experimental demonstration of correlated flux scaling in photoconductivity and photoluminescence of lead-halide perovskites

    OpenAIRE

    Yi, Hee Taek; Irkhin, Pavel; Joshi, Prakriti P.; Gartstein, Yuri N.; Zhu, Xiaoyang; Podzorov, Vitaly

    2018-01-01

    Lead-halide perovskites attracted attention as materials for high-efficiency solar cells and light emitting applications. Among their attributes are solution processability, high absorbance in the visible spectral range and defect tolerance, as manifested in long photocarrier lifetimes and diffusion lengths. The microscopic origin of photophysical properties of perovskites is, however, still unclear and under debate. Here, we have observed an interesting universal scaling behavior in a series...

  13. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  14. Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI{sub 3−x}Br{sub x} (0 ≤ x ≤ 1) films

    Energy Technology Data Exchange (ETDEWEB)

    Atourki, Lahoucine, E-mail: lahoucine.atourki@edu.uiz.ac.ma [Materials and Renewable Energy Laboratory, Faculty of Science, Ibn Zohr University, Agadir (Morocco); Vega, Erika; Marí, Bernabé; Mollar, Miguel [Instituto de Diseño y Fabricación (IDF), Universitat Politécnica de València, València (Spain); Ait Ahsaine, Hassan [Laboratoire Matériaux et environnement LME, Faculté des Sciences d' Agadir, Université Ibn Zohr, Agadir (Morocco); Bouabid, Khalid; Ihlal, Ahmed [Materials and Renewable Energy Laboratory, Faculty of Science, Ibn Zohr University, Agadir (Morocco)

    2016-05-15

    Highlights: • X-ray diffraction analyses indicate the formation of a tetragonal phase I4/mcm up to x = 0.4 and a cubic perovskite with space group Pm3 m across in the composition range of 0.6 ≤ x ≤ 1. • Perovskite films exhibit a very high absorbance in the visible and short infrared. • As the fraction of bromide change, the adsorption edge of thin film perovskite can be tuned along the visible spectrum from 543 nm to 785 nm. • The incorporating of bromide into MAPbI{sub 3−x}Br{sub x} shifts the PL emission to shorter wavelengths. - Abstract: Mixed bromide iodide lead perovskites were prepared from methylamine, lead nitrate and the corresponding hydroX acid (X = I, Br), they were then deposited as thin films on ITO substrate by the spin coating process. X-ray diffraction analyses indicated the formation of a tetragonal phase I4/mcm up to x = 0.4 and a cubic perovskite with space group Pm3 m in the composition range of 0.6 ≤ x ≤ 1. Mixed lead perovskites showed a high absorbance in the UV–vis range. The band gap energy of thin films were estimated from absorbance spectral measurements, it was found that the onset of the absorption edge for MAPbI{sub 3−x}Br{sub x} (x < 1) thin films is ranging between 1.58 to 1.72 eV. Photoluminescence emission energies for mixed halide perovskites presented intermediate values from 781 nm (MAPbI{sub 3}) to 545 nm (MAPbBr{sub 3}).

  15. Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI_3_−_xBr_x (0 ≤ x ≤ 1) films

    International Nuclear Information System (INIS)

    Atourki, Lahoucine; Vega, Erika; Marí, Bernabé; Mollar, Miguel; Ait Ahsaine, Hassan; Bouabid, Khalid; Ihlal, Ahmed

    2016-01-01

    Highlights: • X-ray diffraction analyses indicate the formation of a tetragonal phase I4/mcm up to x = 0.4 and a cubic perovskite with space group Pm3 m across in the composition range of 0.6 ≤ x ≤ 1. • Perovskite films exhibit a very high absorbance in the visible and short infrared. • As the fraction of bromide change, the adsorption edge of thin film perovskite can be tuned along the visible spectrum from 543 nm to 785 nm. • The incorporating of bromide into MAPbI_3_−_xBr_x shifts the PL emission to shorter wavelengths. - Abstract: Mixed bromide iodide lead perovskites were prepared from methylamine, lead nitrate and the corresponding hydroX acid (X = I, Br), they were then deposited as thin films on ITO substrate by the spin coating process. X-ray diffraction analyses indicated the formation of a tetragonal phase I4/mcm up to x = 0.4 and a cubic perovskite with space group Pm3 m in the composition range of 0.6 ≤ x ≤ 1. Mixed lead perovskites showed a high absorbance in the UV–vis range. The band gap energy of thin films were estimated from absorbance spectral measurements, it was found that the onset of the absorption edge for MAPbI_3_−_xBr_x (x < 1) thin films is ranging between 1.58 to 1.72 eV. Photoluminescence emission energies for mixed halide perovskites presented intermediate values from 781 nm (MAPbI_3) to 545 nm (MAPbBr_3).

  16. Temperature dependence of plastic scintillators

    Science.gov (United States)

    Peralta, L.

    2018-03-01

    Plastic scintillator detectors have been studied as dosimeters, since they provide a cost-effective alternative to conventional ionization chambers. Several articles have reported undesired response dependencies on beam energy and temperature, which provides the motivation to determine appropriate correction factors. In this work, we studied the light yield temperature dependency of four plastic scintillators, BCF-10, BCF-60, BC-404, RP-200A and two clear fibers, BCF-98 and SK-80. Measurements were made using a 50 kVp X-ray beam to produce the scintillation and/or radioluminescence signal. The 0 to 40 °C temperature range was scanned for each scintillator, and temperature coefficients were obtained.

  17. Photon statistics in scintillation crystals

    Science.gov (United States)

    Bora, Vaibhav Joga Singh

    Scintillation based gamma-ray detectors are widely used in medical imaging, high-energy physics, astronomy and national security. Scintillation gamma-ray detectors are eld-tested, relatively inexpensive, and have good detection eciency. Semi-conductor detectors are gaining popularity because of their superior capability to resolve gamma-ray energies. However, they are relatively hard to manufacture and therefore, at this time, not available in as large formats and much more expensive than scintillation gamma-ray detectors. Scintillation gamma-ray detectors consist of: a scintillator, a material that emits optical (scintillation) photons when it interacts with ionization radiation, and an optical detector that detects the emitted scintillation photons and converts them into an electrical signal. Compared to semiconductor gamma-ray detectors, scintillation gamma-ray detectors have relatively poor capability to resolve gamma-ray energies. This is in large part attributed to the "statistical limit" on the number of scintillation photons. The origin of this statistical limit is the assumption that scintillation photons are either Poisson distributed or super-Poisson distributed. This statistical limit is often dened by the Fano factor. The Fano factor of an integer-valued random process is dened as the ratio of its variance to its mean. Therefore, a Poisson process has a Fano factor of one. The classical theory of light limits the Fano factor of the number of photons to a value greater than or equal to one (Poisson case). However, the quantum theory of light allows for Fano factors to be less than one. We used two methods to look at the correlations between two detectors looking at same scintillation pulse to estimate the Fano factor of the scintillation photons. The relationship between the Fano factor and the correlation between the integral of the two signals detected was analytically derived, and the Fano factor was estimated using the measurements for SrI2:Eu, YAP

  18. Alkali metal hafnium oxide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    2018-05-08

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A2HfO3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  19. Ionospheric Scintillation Effects on GPS

    Science.gov (United States)

    Steenburgh, R. A.; Smithtro, C.; Groves, K.

    2007-12-01

    . Ionospheric scintillation of Global Positioning System (GPS) signals threatens navigation and military operations by degrading performance or making GPS unavailable. Scintillation is particularly active, although not limited to, a belt encircling the earth within 20 degrees of the geomagnetic equator. As GPS applications and users increases, so does the potential for detrimental impacts from scintillation. We examined amplitude scintillation data spanning seven years from Ascension Island, U.K.; Ancon, Peru; and Antofagasta, Chile in the Atlantic/Americas longitudinal sector at as well as data from Parepare, Indonesia; Marak Parak, Malaysia; Pontianak, Indonesia; Guam; and Diego Garcia, U.K.; in the Pacific longitudinal sector. From these data, we calculate percent probability of occurrence of scintillation at various intensities described by the S4 index. Additionally, we determine Dilution of Precision at one minute resolution. We examine diurnal, seasonal and solar cycle characteristics and make spatial comparisons. In general, activity was greatest during the equinoxes and solar maximum, although scintillation at Antofagasta, Chile was higher during 1998 rather than at solar maximum.

  20. The coacervation of aqueous solutions of tetraalkylammonium halides

    International Nuclear Information System (INIS)

    Mugnier de Trobriand, Anne.

    1979-09-01

    The coacervation of aqueous solutions of tatraalkylammonium halides in the presence of not of inorganic halides and acids has been studied, considering thermodynamic and spectroscopic aspects. The importance of dispersion forces as well as forces resulting from hydrophobic hydration has been assessed. The analogy between these systems and anionic ion exchange resins has been shown especially for Uranium VI extraction [fr

  1. Definition of a high intensity metal halide discharge reference lamp

    NARCIS (Netherlands)

    Stoffels, W.W.; Baede, A.H.F.M.; Mullen, van der J.J.A.M.; Haverlag, M.; Zissis, G.

    2006-01-01

    The design of a ref. metal halide discharge lamp is presented. This lamp is meant as a common study object for researchers working on metal halide discharge lamps, who by using the same design will be able to compare results between research groups, diagnostic techniques and numerical models. The

  2. Luminescent properties of Cr-doped (Gd.sub.x./sub., Y.sub.1-x./sub.).sub.3./sub.Al.sub.5./sub.O.sub.12./sub. infra-red scintillator crystals

    Czech Academy of Sciences Publication Activity Database

    Suzuki, A.; Kurosawa, S.; Yamaji, A.; Shoji, Y.; Pejchal, Jan; Kamada, K.; Yokota, Y.; Yoshikawa, A.

    2014-01-01

    Roč. 36, č. 12 (2014), s. 1938-1941 ISSN 0925-3467. [International Symposium on Laser, Scintillator and Non Linear Optical Materials (ISLNOM) /6./. Shanghai, 20.10.2013-23.10.2013] Institutional support: RVO:68378271 Keywords : infra-red scintillator * patient dosimetry * Cr-doped oxide garnet * bulk crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.981, year: 2014

  3. Scintillation counter based radiation dosimeter

    International Nuclear Information System (INIS)

    Shin, Jeong Hyun

    2009-02-01

    The average human exposure per year is about 240mrem which is come from Radon and human body and terrestrial and cosmic radiation and man-made source. Specially radiation exposure through air from environmental radiation sources is 80mrem/yr(= 0.01mR/hr) which come from Terrestrial and cosmic radiation. Radiation dose is defined as energy deposit/mass. There are two major methods to detect radiation. First method is the energy integration using Air equivalent material like GM counter wall material. Second method is the spectrum to dose conversion method using NaI(Tl), HPGe. These two methods are using generally to detect radiation. But these methods are expensive. So we need new radiation detection method. The research purpose is the development of economical environmental radiation dosimeter. This system consists of Plastic/Inorganic scintillator and Si photo-diode based detector and counting based circuitry. So count rate(cps) can be convert to air exposure rate(R/hr). There are three major advantages in this system. First advantages is no high voltage power supply like GM counter. Second advantage is simple electronics. Simple electronics system can be achieved by Air-equivalent scintillation detector with Al filter for the same detection efficiency vs E curve. From former two advantages, we can know the most important advantages of the this system. Third advantage is economical system. The price of typical GM counter is about $1000. But the price of our system is below $100 because of plastic scintillator and simple electronics. The role of scintillation material is emitting scintillation which is the flash of light produced in certain materials when they absorb ionizing radiation. Plastic scintillator is organic scintillator which is kind of hydrocarbons. The special point are cheap price, large size production(∼ton), moderate light output, fast light emission(ns). And the role of Al filter is equalizing counting efficiency of air and scintillator for

  4. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun [Hanyang University, Seoul (Korea, Republic of)

    2016-10-15

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator.

  5. Decay Time Measurement for Different Energy Depositions of Plastic Scintillator Fabricated by High Temperature Polymerization Reaction

    International Nuclear Information System (INIS)

    Lee, Cheol Ho; Son, Jaebum; Lee, Sangmin; Kim, Tae Hoon; Kim, Yong-Kyun

    2016-01-01

    Plastic scintillators are based on organic fluorite. They have many advantages such as fast rise and decay time, high optical transmission, ease of manufacturing, low cost, and large available size. For these reasons they are widely used for particle identification. Also, protection of people against a variety of threats (such as nuclear, radiological, and explosive) represents a true challenge along with the continuing development of science and technology. The plastic scintillator is widely used in various devise, which serves for nuclear, photonics, quantum, and high-energy physics. The plastic scintillator is probably the most widely used organic detector, and polystyrene is one of the most widely used materials in the making of the plastic scintillator detector. Thus, a styrene monomer as a solvent was used to fabricate the plastic scintillator by using high temperature polymerization reaction, and then the emission wavelength and the decay times for different energy depositions were measured by using the fabricated plastic scintillator. A plastic scintillator was fabricated to measure decay time for different energy depositions using the high temperature polymerization. Emission wavelength was measured of 426.05 nm to confirm a scintillator property using the spectrophotometer. Four gamma-ray sources (Cs-137, Co-60, Na-22, and Ba-133) were used to evaluate effect for decay time of different energy depositions. The average decay time of the fabricated plastic scintillator was measured to approximately 4.72 ns slightly higher more than commercial plastic scintillator. In future, light output and linearity will be measured to evaluate other property compared with the commercial scintillator

  6. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada

    2016-09-01

    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  7. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  8. Scintillation of sapphire under particle excitation at low temperature

    International Nuclear Information System (INIS)

    Amare, J; Beltran, B; Cebrian, S; Coron, N; Dambier, G; GarcIa, E; Gomez, H; Irastorza, I G; Leblanc, J; Luzon, G; Marcillac, P de; Martinez, M; Morales, J; Ortiz de Solorzano, A; Pobes, C; Puimedon, J; Redon, T; RodrIguez, A; Ruz, J; Sarsa, M L; Torres, L; Villar, J A

    2006-01-01

    The scintillation properties of undoped sapphire at very low temperature have been studied in the framework of the ROSEBUD (Rare Objects SEarch with Bolometers UnDerground) Collaboration devoted to dark matter searches. We present an estimation of its light yield under gamma, alpha and neutron excitation

  9. Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides

    KAUST Repository

    Dursun, Ibrahim

    2018-05-26

    Cesium lead halide perovskite materials have attracted considerable attention for potential applications in lasers, light emitting diodes and photodetectors. Here, we provide the experimental and theoretical evidence for photon recycling in CsPbBr3 perovskite microwires. Using two-photon excitation, we recorded photoluminescence (PL) lifetimes and emission spectra as a function of the lateral distance between PL excitation and collection positions along the microwire, with separations exceeding 100 µm. At longer separations, the PL spectrum develops a red-shifted emission peak accompanied by an appearance of well-resolved rise times in the PL kinetics. We developed quantitative modeling that accounts for bimolecular recombination and photon recycling within the microwire waveguide and is sufficient to account for the observed decay modifications. It relies on a high radiative efficiency in CsPbBr3 perovskite microwires and provides crucial information about the potential impact of photon recycling and waveguide trapping on optoelectronic properties of cesium lead halide perovskite materials.

  10. Superconducting nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Energy Technology Data Exchange (ETDEWEB)

    Schurz, Christian M.; Shlyk, Larysa; Schleid, Thomas; Niewa, Rainer [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Two different polymorphs of the metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) are known to crystallize in layered structures. The two crystal structures differ in the way {sub {infinity}}{sup 2}{l_brace}X[M{sub 2}N{sub 2}]X{r_brace} slabs are stacked along the c-axes. Metal atoms and/or organic molecules can be intercalated into the van-der-Waals gap between these layers. After such an electron-doping via intercalation the prototypic band insulators change into superconductors with moderate high critical temperatures T{sub c} up to 25.5 K. This review gathers information on synthesis routes, structural characteristics and properties of the prototypic nitride halides and the derivatives after electron-doping with a focus on superconductivity. (orig.)

  11. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo; Li, Xiaoming; Gu, Yu; Harb, Moussab; Li, Jianhai; Xie, Meiqiu; Cao, Fei; Song, Jizhong; Zhang, Shengli; Cavallo, Luigi; Zeng, Haibo

    2017-01-01

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  12. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation.

    Science.gov (United States)

    Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao; Yang, Dongwen; Xu, Qiaoling; Yu, Liping; Wei, Su-Huai; Zhang, Lijun

    2017-02-22

    Hybrid organic-inorganic halide perovskites with the prototype material of CH 3 NH 3 PbI 3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb 2+ -need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb 2+ ions into one monovalent M + and one trivalent M 3+ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

  13. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo

    2017-09-07

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  14. First-principles study of γ-ray detector materials in perovskite halides

    Science.gov (United States)

    Im, Jino; Jin, Hosub; Stoumpos, Constantinos; Chung, Duck; Liu, Zhifu; Peters, John; Wessels, Bruce; Kanatzidis, Mercouri; Freeman, Arthur

    2013-03-01

    In an effort to search for good γ-ray detector materials, perovskite halide compounds containing heavy elements were investigated. Despite the three-dimensional network of the corner shared octahedra and the extended nature of the outermost shell, its strong ionic character leads to a large band gap, which is one of the essential criteria for γ-ray detector materials. Thus, considering high density and high atomic number, these pervoskite halides are possible candidate for γ-ray detector materials. We performed first-principles calculations to investigate electronic structures and thermodynamic properties of intrinsic defects in the selected perovskite halide, CsPbBr3. The screened-exchange local density approximation scheme was employed to correct the underestimation of the band gap in the LDA method. As a result, the calculated band gap of CsPbBr3 is found to be suitable for γ-ray detection. Furthermore, defect formation energy calculations allow us to predict thermodynamic and electronic properties of possible intrinsic defects, which affect detector efficiency and energy resolution. Supported by the office of Nonproliferation and Verification R &D under Contract No. DE-AC02-06CH11357

  15. The alkali halide disk technique in infra-red spectrometry : Anomalous behaviour of some samples dispersed in alkali halide disks

    NARCIS (Netherlands)

    Tolk, A.

    1961-01-01

    Some difficulties encountered in the application of the alkali halide disk technique in infra-red spectrometry are discussed. Complications due to interaction of the sample with the alkali halide have been studied experimentally. It was found that the anomalous behaviour of benzoic acid, succinic

  16. Characteristics of ionospheric irregularities causing scintillations at VHF/UHF

    International Nuclear Information System (INIS)

    Vats, H.O.; Deshpande, M.R.; Rastogi, R.G.

    1978-01-01

    Some properties of ionization irregularities using amplitude scintillation records of radio beacons from ATS-6 (phase II) at Ootacamund, India have been investigated. For the estimation of scale-size and strength of the irregularities a simple diffraction model has been used which explains only weak and moderate equatorial scintillation observations. It was found that the scale sizes of day time E-region irregularities are smaller than those in the F-region during night time in addition, irregularities are generated initially at large scale sizes which later break up into smaller scale sizes

  17. Postsynthetic Doping of MnCl2 Molecules into Preformed CsPbBr3 Perovskite Nanocrystals via a Halide Exchange-Driven Cation Exchange.

    Science.gov (United States)

    Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping

    2017-08-01

    Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  19. Cherenkov and scintillation light separation in organic liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D. [University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-12-15

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ{sub r} = 0.72 ± 0.33 ns. (orig.)

  20. Cherenkov and scintillation light separation in organic liquid scintillators

    International Nuclear Information System (INIS)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D.; Yeh, M.

    2017-01-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns. (orig.)

  1. Neutrons detection by scintillation; Detection de neutrons par scintillations

    Energy Technology Data Exchange (ETDEWEB)

    Giraudon, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-01-15

    The absence of charge of neutrons and their elevated penetration power make difficult their detection. Techniques vary otherwise with the energy of the particle. The author proposes the realization of a scintillation detector with a big volume of liquid scintillator and containing boron for the detection of slowing-down neutrons in the domain of intermediate energies from 1 to 10{sup 5} eV about. (M.B.) [French] L'absence de charge du neutron et son pouvoir de penetration eleve rendent difficile sa detection. Les techniques par ailleurs varient avec l'energie de cette particule. L'auteur propose la realisation d'un detecteur a scintillations comprenant un grand volume de scintillateur liquide et contenant du bore pour la detection des neutrons en ralentissement dans le domaine des energies intermediaires de 1 a 10{sup 5} eV environ. (M.B.)

  2. Simulation of light collection in calcium tungstate scintillation detectors

    Directory of Open Access Journals (Sweden)

    F. A. Danevich

    2015-12-01

    Full Text Available Due to high operational properties, the oxide scintillators are perspective for cryogenic scintillation experiments with aim of study rare nuclear processes. In order to optimize light yield and the energy resolution we performed calculations of the efficiency of light collection for different geometries of scintillation detector with CaWO4 crystal by Monte-Carlo method using Litrani, Geant4 and Zemax packages. The calculations were compared with experimental data in the same configurations, depending on the crystal shape, surface treatment, material and shape of the reflector and presence of optical contact. The best results were obtained with crystals shaped as the right prism with triangle base, with completely diffused surfaces, using mirror reflector shaped as a truncated cone. Simulations by using Litrani have shown the best agreement with experimental results.

  3. Effect of Aspect Ratio on the Light Output of Scintillators

    CERN Document Server

    Pauwels, Kristof; Gundacker, S.; Knapitsch, A.; Lecoq, P.

    2012-01-01

    The influence of the geometry of the scintillators is presented in this paper. We focus on the effect of narrowing down the section of crystals that have a given length. The light output of a set of crystals with very similar scintillating properties but different geometries measured with several coupling/wrapping configurations is provided. We observe that crystals shaped in thin rods have a lower light output as compared to bulk or sliced crystals. The effect of unpolishing the crystal faces is also investigated, and it is shown that highest light outputs are not necessarily obtained with crystals having all faces polished. Simulation results based on a realistic model of the crystal that implements light scattering on the crystal edges are in agreement with the experimental data. Fine-tuning of this model would allow us to further explore the details of light propagation in scintillators and would be highly valuable to fast timing detection and highly granular detectors.

  4. Vibrational Spectra of Discrete UO22+ Halide Complexes in the Gas Phase

    International Nuclear Information System (INIS)

    Groenewold, G.S.; Van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; Gresham, Garold L.; Mcilwain, Michael

    2010-01-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition (UO 2 (X)(ACO) 3 ) + (where X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric ν 3 UO 2 frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo-octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter its binding in the complex. The ν 3 peak in the spectrum of the F-containing complex was 9 cm -1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to higher wavenumber was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the ν 1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes (UO 2 X 3 ) - (where X = Cl - , Br - and I - ) compared the ν 3 UO 2 modes versus halide, and showed that the ν 3 values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that (UO 2 X 2 ) - -X, and (UO 2 X 2 )·-X - dissociation energies

  5. The Production and Qualification of Scintillator Tiles for the ATLAS Hadronic Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; Diakov, E; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Konsnantinov, V; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitskii, Yu A; Kurochkin, Yu; Kuzhir, P; Lapin, V; LeCompte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, a L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Rusakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tischenko, M; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zaytsev, Yu; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The production of the scintillator tiles for the ATLAS Tile Calorimeter is presented. In addition to the manufacture and production, the properties of the tiles will be presented including light yield, uniformity and stability.

  6. Tracking heliospheric disturbances by interplanetary scintillation

    Directory of Open Access Journals (Sweden)

    M. Tokumaru

    2006-01-01

    Full Text Available Coronal mass ejections are known as a solar cause of significant geospace disturbances, and a fuller elucidation of their physical properties and propagation dynamics is needed for space weather predictions. The scintillation of cosmic radio sources caused by turbulence in the solar wind (interplanetary scintillation; IPS serves as an effective ground-based method for monitoring disturbances in the heliosphere. We studied global properties of transient solar wind streams driven by CMEs using 327-MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL of Nagoya University. In this study, we reconstructed three-dimensional features of the interplanetary (IP counterpart of the CME from the IPS data by applying the model fitting technique. As a result, loop-shaped density enhancements were deduced for some CME events, whereas shell-shaped high-density regions were observed for the other events. In addition, CME speeds were found to evolve significantly during the propagation between the corona and 1 AU.

  7. Position-Sensitive Organic Scintillation Detectors for Nuclear Material Accountancy

    International Nuclear Information System (INIS)

    Hausladen, P.; Newby, J.; Blackston, M.

    2015-01-01

    Recent years have seen renewed interest in fast organic scintillators with pulse shape properties that enable neutron-gamma discrimination, in part because of the present shortage of He3, but primarily because of the diagnostic value of timing and pulse height information available from such scintillators. Effort at Oak Ridge National Laboratory (ORNL) associated with fast organic scintillators has concentrated on development of position-sensitive fast-neutron detectors for imaging applications. Two aspects of this effort are of interest. First, the development has revisited the fundamental limitations on pulseshape measurement imposed by photon counting statistics, properties of the scintillator, and properties of photomultiplier amplification. This idealized limit can then be used to evaluate the performance of the detector combined with data acquisition and analysis such as free-running digitizers with embedded algorithms. Second, the development of position sensitive detectors has enabled a new generation of fast-neutron imaging instruments and techniques with sufficient resolution to give new capabilities relevant to safeguards. Toward this end, ORNL has built and demonstrated a number of passive and active fast-neutron imagers, including a proof-of-concept passive imager capable of resolving individual fuel pins in an assembly via their neutron emanations. This presentation will describe the performance and construction of position-sensing fast-neutron detectors and present results of imaging measurements. (author)

  8. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods

    Science.gov (United States)

    Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.

    2018-03-01

    The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.

  9. Scintillation-Hardened GPS Receiver

    Science.gov (United States)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  10. Development of radiation hard scintillators

    International Nuclear Information System (INIS)

    Markley, F.; Woods, D.; Pla-Dalmau, A.; Foster, G.; Blackburn, R.

    1992-05-01

    Substantial improvements have been made in the radiation hardness of plastic scintillators. Cylinders of scintillating materials 2.2 cm in diameter and 1 cm thick have been exposed to 10 Mrads of gamma rays at a dose rate of 1 Mrad/h in a nitrogen atmosphere. One of the formulations tested showed an immediate decrease in pulse height of only 4% and has remained stable for 12 days while annealing in air. By comparison a commercial PVT scintillator showed an immediate decrease of 58% and after 43 days of annealing in air it improved to a 14% loss. The formulated sample consisted of 70 parts by weight of Dow polystyrene, 30 pbw of pentaphenyltrimethyltrisiloxane (Dow Corning DC 705 oil), 2 pbw of p-terphenyl, 0.2 pbw of tetraphenylbutadiene, and 0.5 pbw of UVASIL299LM from Ferro

  11. Cerium doped GSO scintillators and its application to position sensitive detectors

    International Nuclear Information System (INIS)

    Ishibashi, H.; Shimizu, K.; Susa, K.; Kubota, S.

    1989-01-01

    The dependence of the light output and the decay times of Ce doped Gd/sub 2/SiO/sub 5/ on Ce concentration is measured. By using the difference in decay times on Ce concentration for GSO(Ce), the combination of different concentration of GSO(Ce) scintillators is shown to be useful as position sensitive detectors. A Ce doped Gd/sub 2/SiO/sub 5/ (GSO(Ce)) single crystal is an excellent scintillator featuring, a large light output, a short decay time and a high absorption coefficient. Further investigation aimed at its implementation to scintillators has been carried out previously. An application of the GSO(Ce) scintillators to the gamma-ray detectors of positron emission computed tomography has also been shown. The authors have investigated the dependence of its scintillation properties on the Ce concentration and its application to position sensitive detectors

  12. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    CERN Document Server

    Jivan, Harshna; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter of the ATLAS detector, is a hadronic calorimeter responsible for detecting hadrons as well as accommodating for the missing transverse energy that result from the p-p collisions within the LHC. Plastic scintillators form an integral component of this calorimeter due to their ability to undergo prompt fluorescence when exposed to ionising particles. The scintillators employed are specifically chosen for their properties of high optical transmission and fast rise and decay time which enables efficient data capture since fast signal pulses can be generated. The main draw-back of plastic scintillators however is their susceptibility to radiation damage. The damage caused by radiation exposure reduces the scintillation light yield and introduces an error into the time-of flight data acquired. During Run 1 of the LHC data taking period, plastic scintillators employed within the GAP region between the Tile Calorimeter’s central and extended barrels sustained a significant amount of damage. Wit...

  13. Synthesis, Reactivity and Stability of Aryl Halide Protecting Groups towards Di-Substituted Pyridines

    Directory of Open Access Journals (Sweden)

    Ptoton Mnangat Brian

    2016-03-01

    Full Text Available This paper reports the synthesis and reactivity of different Benzyl derivative protecting groups. The synthesis and stability of Benzyl halides, 4-methoxybenzyl halides, 3,5-dimethoxybenzyl halides, 3,4-dimethoxybenzyl halides, 3,4,5-trimethoxybenzyl halide protecting groups and their reactivity towards nitrogen atom of a di-substituted pyridine ring in formation of pyridinium salts is also reported.

  14. A transport-based model of material trends in nonproportionality of scintillators

    International Nuclear Information System (INIS)

    Li Qi; Grim, Joel Q.; Williams, R. T.; Bizarri, G. A.; Moses, W. W.

    2011-01-01

    Electron-hole pairs created by the passage of a high-energy electron in a scintillator radiation detector find themselves in a very high radial concentration gradient of the primary electron track. Since nonlinear quenching that is generally regarded to be at the root of nonproportional response depends on the fourth or sixth power of the track radius in a cylindrical track model, radial diffusion of charge carriers and excitons on the ∼10 picosecond duration typical of nonlinear quenching can compete with and thereby modify that quenching. We use a numerical model of transport and nonlinear quenching to examine trends affecting local light yield versus excitation density as a function of charge carrier and exciton diffusion coefficients. Four trends are found: (1) nonlinear quenching associated with the universal 'roll-off' of local light yield versus dE/dx is a function of the lesser of mobilities μ e and μ h or of D EXC as appropriate, spanning a broad range of scintillators and semiconductor detectors; (2) when μ e ≅μ h , excitons dominate free carriers in transport, the corresponding reduction of scattering by charged defects and optical phonons increases diffusion out of the track in competition with nonlinear quenching, and a rise in proportionality is expected; (3) when μ h e as in halide scintillators with hole self-trapping, the branching between free carriers and excitons varies strongly along the track, leading to a 'hump' in local light yield versus dE/dx; (4) anisotropic mobility can promote charge separation along orthogonal axes and leads to a characteristic shift of the 'hump' in halide local light yield. Trends 1 and 2 have been combined in a quantitative model of nonlinear local light yield which is predictive of empirical nonproportionality for a wide range of oxide and semiconductor radiation detector materials where band mass or mobility data are the determinative material parameters.

  15. Nanophosphor composite scintillator with a liquid matrix

    Science.gov (United States)

    McKigney, Edward Allen; Burrell, Anthony Keiran; Bennett, Bryan L.; Cooke, David Wayne; Ott, Kevin Curtis; Bacrania, Minesh Kantilal; Del Sesto, Rico Emilio; Gilbertson, Robert David; Muenchausen, Ross Edward; McCleskey, Thomas Mark

    2010-03-16

    An improved nanophosphor scintillator liquid comprises nanophosphor particles in a liquid matrix. The nanophosphor particles are optionally surface modified with an organic ligand. The surface modified nanophosphor particle is essentially surface charge neutral, thereby preventing agglomeration of the nanophosphor particles during dispersion in a liquid scintillator matrix. The improved nanophosphor scintillator liquid may be used in any conventional liquid scintillator application, including in a radiation detector.

  16. Improvements to well scintillation counters

    International Nuclear Information System (INIS)

    Farukhi, M.R.; Mataraza, G.A.; Wimer, O.D.

    1977-01-01

    This invention relates to the field of ionising radiation detection. It concerns in particular scintillation detectors of the type that is commonly used in conjunction with a photomultiplier tube and that is used for monitoring radiation, for instance in the clinical measurements of isotopes. This invention enables well scintillation counters to be made, characterised by a high efficiency in measuring the thindown rate of radio-pharmaceutical solutions and to resolve the distribution of energy emanating from the radioactive source. It particularly consists in improving the uniformity of the luminous efficiency, the quality of the resolution and the efficiency whilst improving the reception of light [fr

  17. Magnetic fields and scintillator performance

    International Nuclear Information System (INIS)

    Green, D.; Ronzhin, A.; Hagopian, V.

    1995-06-01

    Experimental data have shown that the light output of a scintillator depends on the magnitude of the externally applied magnetic fields, and that this variation can affect the calorimeter calibration and possibly resolution. The goal of the measurements presented here is to study the light yield of scintillators in high magnetic fields in conditions that are similar to those anticipated for the LHC CMS detector. Two independent measurements were performed, the first at Fermilab and the second at the National High Magnetic Field Laboratory at Florida State University

  18. Development of scintillating fiber tracker

    International Nuclear Information System (INIS)

    Ishikawa, Shuzo; Kawai, Toshihide; Kozaki, Tetsuo

    1995-01-01

    In order to use thin scintillating fiber (diameter 500 micron) as a particle tracking detector, we have developed a method to construct precise multi-layer scintillating fiber sheets. We have also developed dedicated machines for this purpose. This paper presents the details of the method and the machines. Using these machines, we have produced fiber sheets for CERN WA95/CHORUS, which intend to detect a neutrino oscillation in the νμ-ντ channel using Hybrid Emulsion Set-up. Fiber Trackers are used as a vertex detector which support the neutrino event location in the nuclear emulsion target. (author)

  19. The creation of defects in ammonium halides by excitons

    International Nuclear Information System (INIS)

    Kim, L.M.

    2002-01-01

    The ammonium halides crystals and alkali halides crystals are analogous by kind chemical bonds and crystalline lattices. The anionic sublattice is identical in this crystals. It is known the main mechanism of defect creation by irradiation is radiationless decay of excitons in alkali halides crystals. The F-, H-centers are formation in this processes. However, F, H-centres are not detected in ammonium halides. The goal of this work is investigation the creation of defects in ammonium halides by excitons. We established that excitons in ammonium chlorides and bromides are similar to excitons in alkali halides. It is known excitons are self-trapped and have identical parameters of the exciton-phonon interaction in both kind crystals. It is supposed, that processes of radiationless disintegration of excitons are identical in ammonium and alkali halides. It is necessary to understand why F-, H-centers are absent in ammonium halides. V k -centres are created by the excitation of the ammonium halides crystals in the absorption band of excitons. It was established by thermoluminescence and spectrums of absorption. The V k -centers begin to migrate at 110-120 K in ammonium chlorides and bromides. The curve of thermoluminescence have peak with maximum at this temperatures. It is known V k -centers in ammonium chlorides have the absorption band at 380 nm. We discovered this absorption band after irradiation of crystals by ultra-violet. In alkali halides F-center is anionic vacancy with electron. The wave function of electron are spread ed at the cations around anionic vacancy. We established the cation NH 4 + in ammonium halides can to capture electron. The ion NH 4 2+ is unsteady. It is disintegrated to NH 3 + and H + . We suppose that excitons in ammonium and alkali halides are disintegrated identically. When cation NH 4 + capture electron, in the anionic sublattice the configuration are created in a direction (100) The indicated configuration is unsteady in relation to a

  20. Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices.

    Science.gov (United States)

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan

    2017-08-01

    The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Holographic Optical Elements Recorded in Silver Halide Sensitized Gelatin Emulsions. Part 2. Reflection Holographic Optical Elements

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.

    2002-03-01

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.

  2. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  3. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

    Science.gov (United States)

    2017-01-01

    This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II–VI and III–V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessity to improve their stability in environmental conditions. The defect tolerance of lead halide perovskites offers an impetus to search for similar attributes in other related heavy metal-free compounds. We discuss the origins of the significantly blue-shifted emission from CsPbBr3 nanocrystals and the synthetic strategies toward fabrication of stable perovskite nanocrystal materials with emission in the red and infrared parts of the optical spectrum, which are related to fabrication of mixed cation compounds guided by Goldschmidt tolerance factor considerations. We conclude with the view on perspectives of use of the colloidal perovskite nanocrystals for applications in backlighting of liquid-crystal TV displays. PMID:28920080

  4. Time resolution research in liquid scintillating detection

    International Nuclear Information System (INIS)

    He Hongkun; Shi Haoshan

    2006-01-01

    The signal processing design method is introduced into liquid scintillating detection system design. By analyzing the signal of liquid scintillating detection, improving time resolution is propitious to upgrade efficiency of detecting. The scheme of realization and satisfactory experiment data is demonstrated. Besides other types of liquid scintillating detection is the same, just using more high speed data signal processing techniques and elements. (authors)

  5. Photonic crystal scintillators and methods of manufacture

    Science.gov (United States)

    Torres, Ricardo D.; Sexton, Lindsay T.; Fuentes, Roderick E.; Cortes-Concepcion, Jose

    2015-08-11

    Photonic crystal scintillators and their methods of manufacture are provided. Exemplary methods of manufacture include using a highly-ordered porous anodic alumina membrane as a pattern transfer mask for either the etching of underlying material or for the deposition of additional material onto the surface of a scintillator. Exemplary detectors utilizing such photonic crystal scintillators are also provided.

  6. Linkage of molecular units in the chemistry of niobium and tantalum cluster halides

    International Nuclear Information System (INIS)

    Perrin, C.; Sergent, M.

    1991-01-01

    In low valency niobium and tantalum halides, interunit linkages are observed between the (Me 6 X 12 )X 6 units. They are insulators and interesting magnetic properties are observed, due to the intrinsic potential magnetism of the Me 6 cluster and depending on the inserted cations, for instance rare earths in MM'Nb 6 Cl 18 (M = monovalent cation, M' = rare earth). Of special interest are the niobium iodides which exhibit (Me 6 X 8 )X 6 units, an exception in the niobium chemistry; interesting properties have been reported for some of these iodides

  7. Gammastic: towards a pseudo-gamma spectrometry in plastic scintillators

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Dehe-Pittance, Chrystele; Coulon, Romain; Carrel, Frederick; Pillot, Philippe; Barat, Eric; Dautremer, Thomas; Montagu, Thierry; Normand, Stephane

    2013-06-01

    War against CBRN-E threats needs to continuously develop sensors with improved detection efficiency. More particularly, this topic concerns the NR controls for homeland security. A first analysis requires indeed a fast gamma spectrometry so as to detect potential special nuclear materials (SNM). To this aim, plastic scintillators could represent the best alternative for the production of large-scale, low-cost radiation portal monitors to be deployed on boarders, tolls, etc. Although they are known to be highly sensitive to gamma rays, due to their poor resolution, information relative to the nature of the SNM is tricky. Thus, only the Compton edge is obtained after interaction, and no information of the photoelectric peak is observed. This project concerns new developments on a possible pseudo-gamma spectrometry performed with plastic scintillators. This project is articulated on a combination of two developments: - The design of new materials most suitable for recovering the photoelectric peak after gamma interaction with the scintillator. This work concerns mainly plastic scintillators loading with heavy elements, such as lead or bismuth. - The analysis of the resulting signal with smart algorithms. This work is thus a pluri-disciplinary work performed at CEA LIST and embeds 4 main disciplines: MCNPX simulations (simulated spectra), chemistry of materials (preparation of various plastic scintillators with different properties), instrumentation (lab experiments) and smart algorithms. Really impressive results were obtained with the unfolding of simulated spectra at various energies (from 241 Am to 60 Co) and an innovative approach was proposed to counter-balance the quenching effect of luminescence by heavy elements in plastic scintillators. (authors)

  8. New scintillating media based on liquid crystals for particle detectors

    International Nuclear Information System (INIS)

    Barnik, M.I.; Yudin, S.G.; Vasil'chenko, V.G.; Golovkin, S.V.; Medvedkov, A.M.; Solovjev, A.S.

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors

  9. New scintillating media based on liquid crystals for particle detectors

    CERN Document Server

    Barnik, M I; Vasilchenko, V G; Golovkin, S V; Medvedkov, A M; Soloviev, A S

    2000-01-01

    The study results of optical, photoluminiscent and scintillation properties of a liquid crystal 4-pentyl-4'-cyanobiphenyl are presented. The scintillation light output of this liquid crystal is about 35% of crystal anthracene, its main decay time constants are 4 and 14 ns, and the maximum of light emission spectrum is about 400 nm. The light output of a dissolution of green emitting light scintillation dopant R6 in the liquid crystal is about 120% of crystal anthracene. The light output of the frozen dissolution measured at -112 deg. C is about 2.5 times higher as observed at +20 deg. C. In the uniaxially oriented liquid crystal, the predominant intensity direction of emitted light is pointed perpendicular to the liquid crystal director and an appreciable part of the emitted light is elliptically polarized. The possibility to use scintillation properties of liquid crystals is considered both for the improvement of existing particle detector characteristics and for the creation of new gated particle detectors.

  10. Radiation chemistry of the alkali halides

    International Nuclear Information System (INIS)

    Robinson, V.J.; Chandratillake, M.R.

    1987-01-01

    By far the most thoroughly investigated group of compounds in solid-state radiation chemistry are the alkali halides. Some of the reasons are undoubtedly practical: large single crystals of high purity are readily prepared. The crystals are transparent over a wide range of wavelengths. They are more sensitive to radiation damage than most other ionic solids. The crystals have simple well-defined structures, and the products of radiolysis have also in many cases been clearly identified by a variety of experimental techniques, the most important being optical methods and electron paramagnetic resonance (EPR). In recent years the application of pulse techniques-radiolysis and laser photolysis-has yielded a wealth of information concerning the mechanisms of the primary processes of radiation damage, on the one hand, and of thermal and photolytic reactions that the radiolysis products undergo, on the other

  11. R&D on scintillation materials for novel ionizing radiation detectors for High Energy Physics, medical imaging and industrial applications

    CERN Multimedia

    Chipaux, R; Rinaldi, D; Boursier, Y M; Vasilyev, A; Tikhomirov, V; Morel, C; Choi, Y; Tamulaitis, G

    2002-01-01

    The Crystal Clear Collaboration (CCC) was approved by the Detector R&D Committee as RD18 in 1990 with the objective of developing new inorganic scintillators suitable for crystal electromagnetic calorimeters of LHC experiments. From 1990 to 1994, CCC made an intensive investigation for the quest of the most adequate ideal scintillator for the LHC; three main candidates were identified and extensively studied : CeF$_{3}$, PbWO$_{4}$ and heavy scintillating glasses. Lead tungstate was chosen by CMS and ALICE as the most cost effective crystal compliant to LHC conditions. Today 76648 PWO crystals are installed in CMS and 17920 in ALICE. After this success Crystal clear has continued its investigation on new scintillators and the understanding of scintillation mechanisms and light transfer properties in particular : The understanding of cerium ion as activator, The development of LuAP, LuYAP crystals for medical imaging applications, (CERN patent) Investigation of Ytterbium based scintillators for solar ne...

  12. Shock-resistant scintillation detector

    International Nuclear Information System (INIS)

    Novak, W.P.

    1979-01-01

    A unique scintillation detector unit is disclosed which employs a special light transfer and reflector means that encases and protects the scintillator crystal against high g forces. The light transfer means comprises a flexible silicon rubber optical material bonded between the crystal and the optical window and having an axial thickness sufficient to allow the scintillator to move axially inside the container under high g forces without destroying the bonds. The reflector means comprises a soft elastic silicone rubber sleeve having a multiplicity of closely arranged tapered protrusions radiating toward and engaging the periphery of the scintillator crystal to cushion shocks effectively and having a reflective material, such as aluminum oxide powder, in the spaces between the protrusions. The reflector means provides improved shock absorption because of the uniform support and cushioning action of the protrusions and also provides the detector with high efficiency. The silicon rubber composition is specially compounded to include a large amount of aluminum oxide which enables the rubber to function effectively as a light reflector

  13. Photoluminescence and scintillation properties of Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) crystals

    Science.gov (United States)

    Igashira, Takuya; Kawano, Naoki; Okada, Go; Kawaguchi, Noriaki; Yanagida, Takayuki

    2018-05-01

    Apatite crystals with chemical compositions of 0.5% Ce-doped Sr2(Gd1-xLux)8(SiO4)6O2 (x = 0.1, 0.2, 0.4, 0.5, 0.6) were synthesized by the Floating Zone method, and then we evaluated their photoluminescence (PL) and scintillation properties. All the Ce-doped samples exhibited PL and scintillation with an intense broad emission in 400-550 nm in which the origin was attributed to the 5d-4f transition of Ce3+, and the emission peak became broader with increasing the concentration of Lu3+. Both PL and scintillation decay time profiles were best-approximated by a sum of two exponential decay functions, and the origin of slower component was attributed to the 5d-4f transition of Ce3+. In the X-ray induced afterglow measurements, the Ce-doped Sr2(Gd0.4Lu0.6)8(SiO4)6O2 sample exhibited the lowest afterglow level. Furthermore, the Ce-doped Sr2(Gd0.5Lu0.5)8(SiO4)6O2 and Sr2(Gd0.4Lu0.6)8(SiO4)6O2 samples showed a clear full energy deposited peak under 5.5 MeV 241Am α-ray irradiation, and the estimated absolute scintillation light yields were around 290 and 1300 ph/5.5 MeV-α, respectively.

  14. Catalytic effect of halide additives ball milled with magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Malka, I.E.; Bystrzycki, J. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Czujko, T. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); CanmetENERGY, Hydrogen Fuel Cells and Transportation Energy, Natural Resources (Canada)

    2010-02-15

    The influence of various halide additives milled with magnesium hydride (MgH{sub 2}) on its decomposition temperature was studied. The optimum amount of halide additive and milling conditions were evaluated. The MgH{sub 2} decomposition temperature and energy of activation reduction were measured by temperature programmed desorption (TPD) and differential scanning calorimetry (DSC). The difference in catalytic efficiency between chlorides and fluorides of the various metals studied is presented. The effects of oxidation state, valence and position in the periodic table for selected halides on MgH{sub 2} decomposition temperature were also studied. The best catalysts, from the halides studied, for magnesium hydride decomposition were ZrF{sub 4}, TaF{sub 5}, NbF{sub 5}, VCl{sub 3} and TiCl{sub 3}. (author)

  15. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-01-01

    Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios

  16. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  17. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from ... Acoustic emission; dislocation; alkali halide crystals; plastic deformation. ..... [5] T Nishimura, A Tahara and T Kolama, Jpn. Metal Inst. 64, 339 (2000).

  18. Microcolumnar and polycrystalline growth of LaBr3:Ce scintillator

    Science.gov (United States)

    Nagarkar, V. V.; Miller, S.; Sia, R.; Gaysinskiy, V.

    2011-05-01

    While a wide variety of new scintillators are now available, cerium-doped lanthanide halide scintillators have shown a strong potential toward fulfilling the needs of highly demanding applications such as radioisotope identification at room temperature, homeland security, quantitative molecular imaging for medical diagnostics, and disease staging and research. Despite their extraordinary advantages in terms of light yield and response uniformity over a wide energy range, issues related to reliable, large volume manufacturing of these high-light-yield materials in a rapid and economic manner has not been resolved or purposefully addressed. Here we report on synthesizing LaBr3:Ce scintillator using a thermal evaporation technique, which offers the potential to synthesize large quantities of small-to-large volume, high-quality material in a time-efficient and cost-effective manner. To date we have successfully applied this method to form both microcolumnar films and thick polycrystalline slabs of LaBr3:Ce, and have characterized their light yield, response linearity, decay time and afterglow.

  19. Scintillators for positron emission tomography

    International Nuclear Information System (INIS)

    Moses, W.W.; Derenzo, S.E.

    1995-09-01

    Like most applications that utilize scintillators for gamma detection, Positron Emission Tomography (PET) desires materials with high light output, short decay time, and excellent stopping power that are also inexpensive, mechanically rugged, and chemically inert. Realizing that this ''ultimate'' scintillator may not exist, this paper evaluates the relative importance of these qualities and describes their impact on the imaging performance of PET. The most important PET scintillator quality is the ability to absorb 511 keV photons in a small volume, which affects the spatial resolution of the camera. The dominant factor is a short attenuation length (≤ 1.5 cm is required), although a high photoelectric fraction is also important (> 30% is desired). The next most important quality is a short decay time, which affects both the dead time and the coincidence timing resolution. Detection rates for single 511 keV photons can be extremely high, so decay times ≤ 500 ns are essential to avoid dead time losses. In addition, positron annihilations are identified by time coincidence so ≤5 ns fwhm coincidence pair timing resolution is required to identify events with narrow coincidence windows, reducing contamination due to accidental coincidences. Current trends in PET cameras are toward septaless, ''fully-3D'' cameras, which have significantly higher count rates than conventional 2-D cameras and so place higher demands on scintillator decay time. Light output affects energy resolution, and thus the ability of the camera to identify and reject events where the initial 511 keV photon has undergone Compton scatter in the patient. The scatter to true event fraction is much higher in fully-3D cameras than in 2-D cameras, so future PET cameras would benefit from scintillators with a 511 keV energy resolution < 10--12% fwhm

  20. Highly lead-loaded red plastic scintillators as an X-ray imaging system for the laser Mega Joule

    International Nuclear Information System (INIS)

    Hamel, Matthieu; Normand, Stephane; Turk, Gregory; Darbon, Stephane

    2012-01-01

    The scope of this project intends to record spatially resolved images of core shape and size of a deuterium-tritium micro-balloon during inertial confinement fusion (ICF) experiments at Laser Mega Joule facility (LMJ). We need to develop an x-ray imaging system which can operate in the hard radiative background generated by an ignition shot of ICF. The scintillator is a part of the imaging system and has to gather a compromise of scintillating properties (scintillating efficiency, decay time, emission wavelength) so as to both operate in the hard radiative environment and to allow the acquisition of spatially resolved images. Inorganic scintillators cannot be used because no compromise can be found regarding the expected scintillating properties. Most of them are not fast enough and emit blue light. Organic scintillators are generally fast, but present low x-ray photoelectric absorption in the 10 to 40 keV range. This does not enable the acquisition of spatially resolved images. To this aim, we have developed highly lead-loaded and red-fluorescent fast plastic scintillators. Such a combination is not currently available via scintillator suppliers, since they propose only blue-fluorescent plastic scintillators doped with up to 12 wt% Pb. Thus, incorporation ratio up to 27 wt% Pb has been reached in our laboratory, which can afford a plastic scintillator with an outstanding Z(eff) close to 50. X-rays in the 10 to 40 keV range can thus interact with a higher probability of photoelectric effect than for classic organic scintillators, such as NE-102. The strong orange-red fluorescence can be filtered, so that we can eliminate residual Cerenkov light, generated by gamma-ray absorption in glass parts of the imaging system. Characteristic decay times of our scintillators evaluated under UV excitation were estimated to be in the range 10 to 13 ns. (authors)

  1. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Jakob C., E-mail: jakob.larsson@biox.kth.se; Lundström, Ulf; Hertz, Hans M. [Biomedical and X-ray Physics, Department of Applied Physics, KTH Royal Institute of Technology/Albanova, Stockholm 10691 (Sweden)

    2016-06-15

    Purpose: High-spatial-resolution x-ray imaging in the few-ten-keV range is becoming increasingly important in several applications, such as small-animal imaging and phase-contrast imaging. The detector properties critically influence the quality of such imaging. Here the authors present a quantitative comparison of scintillator-based detectors for this energy range and at high spatial frequencies. Methods: The authors determine the modulation transfer function, noise power spectrum (NPS), and detective quantum efficiency for Gadox, needle CsI, and structured CsI scintillators of different thicknesses and at different photon energies. An extended analysis of the NPS allows for direct measurements of the scintillator effective absorption efficiency and effective light yield as well as providing an alternative method to assess the underlying factors behind the detector properties. Results: There is a substantial difference in performance between the scintillators depending on the imaging task but in general, the CsI based scintillators perform better than the Gadox scintillators. At low energies (16 keV), a thin needle CsI scintillator has the best performance at all frequencies. At higher energies (28–38 keV), the thicker needle CsI scintillators and the structured CsI scintillator all have very good performance. The needle CsI scintillators have higher absorption efficiencies but the structured CsI scintillator has higher resolution. Conclusions: The choice of scintillator is greatly dependent on the imaging task. The presented comparison and methodology will assist the imaging scientist in optimizing their high-resolution few-ten-keV imaging system for best performance.

  2. 2 inch diameter single crystal growth and scintillation properties of Ce:Gd.sub.3./sub.Al.sub.2./sub.Ga.sub.3./sub.O.sub.12./sub..

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Yanagida, T.; Endo, T.; Tsutumi, K.; Usuki, Y.; Nikl, Martin; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A.

    2012-01-01

    Roč. 352, č. 1 (2012), s. 88-90 ISSN 0022-0248 Grant - others:AV ČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : Czochralski method * oxides * scintillator materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.552, year: 2012

  3. Scintillation properties of Ce doped Gd.sub.2./sub.Lu.sub.1./sub.(Ga,Al).sub.5./sub.O.sub.12./sub. single crystal grown by the micro-pulling-down method

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Yanagida, T.; Pejchal, Jan; Nikl, Martin; Endo, T.; Tsutumi, K.; Usuki, Y.; Fujimoto, Y.; Fukabori, A.; Yoshikawa, A.

    2012-01-01

    Roč. 352, č. 1 (2012), s. 35-38 ISSN 0022-0248 Grant - others:AV ČR(CZ) M100100910 Institutional research plan: CEZ:AV0Z10100521 Keywords : single crystal growth * oxides * scintillator materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.552, year: 2012

  4. Crystal growth and luminescence properties of Yb-doped Gd.sub.3./sub.Al.sub.2./sub.Ga.sub.3./sub.O.sub.12./sub. infra-red scintillator

    Czech Academy of Sciences Publication Activity Database

    Suzuki, A.; Kurosawa, S.; Nagata, S.; Yamamura, T.; Pejchal, Jan; Yamaji, A.; Yokota, Y.; Shirasaki, K.; Homma, Y.; Aoki, D.; Shikama, T.; Yoshikawa, A.

    2014-01-01

    Roč. 36, č. 9 (2014), s. 1484-1487 ISSN 0925-3467 Institutional support: RVO:68378271 Keywords : infra-red scintillator * radiation therapy * Yb:GAGG * bulk crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.981, year: 2014

  5. First-principles Electronic Structure Calculations for Scintillation Phosphor Nuclear Detector Materials

    Science.gov (United States)

    Canning, Andrew

    2013-03-01

    Inorganic scintillation phosphors (scintillators) are extensively employed as radiation detector materials in many fields of applied and fundamental research such as medical imaging, high energy physics, astrophysics, oil exploration and nuclear materials detection for homeland security and other applications. The ideal scintillator for gamma ray detection must have exceptional performance in terms of stopping power, luminosity, proportionality, speed, and cost. Recently, trivalent lanthanide dopants such as Ce and Eu have received greater attention for fast and bright scintillators as the optical 5d to 4f transition is relatively fast. However, crystal growth and production costs remain challenging for these new materials so there is still a need for new higher performing scintillators that meet the needs of the different application areas. First principles calculations can provide a useful insight into the chemical and electronic properties of such materials and hence can aid in the search for better new scintillators. In the past there has been little first-principles work done on scintillator materials in part because it means modeling f electrons in lanthanides as well as complex excited state and scattering processes. In this talk I will give an overview of the scintillation process and show how first-principles calculations can be applied to such systems to gain a better understanding of the physics involved. I will also present work on a high-throughput first principles approach to select new scintillator materials for fabrication as well as present more detailed calculations to study trapping process etc. that can limit their brightness. This work in collaboration with experimental groups has lead to the discovery of some new bright scintillators. Work supported by the U.S. Department of Homeland Security and carried out under U.S. Department of Energy Contract no. DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory.

  6. LiCaAlF sub 6 :Ce crystal: a new scintillator

    CERN Document Server

    Gektin, A V; Neicheva, S; Gavrilyuk, V; Bensalah, A; Fukuda, T; Shimamura, K

    2002-01-01

    Scintillation properties of LiCaAlF sub 6 :Ce crystal, well known as the effective UV laser material, is reported. Ce sup 3 sup + emission at 286-305 nm with a single exponential decay time of 35 ns provides a scintillation pulse. Radiation damage in pure and Ce-doped crystals is studied. In contrast to the majority of fluoride crystals, cerium is responsible for the ultradeep traps formation revealing thermostimulated luminescence. Overlapping of color center absorption and Ce sup 3 sup + ion emission bands limits the scintillation efficiency of LiCaAlF sub 6 :Ce at high radiation doses.

  7. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-01-01

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10 25 /m 3 . The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics

  8. Thermodynamic origin of instability in hybrid halide perovskites

    Science.gov (United States)

    Tenuta, E.; Zheng, C.; Rubel, O.

    2016-11-01

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability.

  9. Water-equivalent plastic scintillation detectors for radiotherapy dosimetry

    International Nuclear Information System (INIS)

    Beddar, A.S.

    1995-01-01

    Plastic scintillation dosimetry is a promising new method of measuring absorbed dose for high energy radiotherapy beams. The theory behind this concept will be presented along with the many advantages that it offers over conventional dosimetry. A variety of plastic scintillation detector systems have been recently developed for photon and electron dosimetry. These new water-equivalent detectors use small to miniature plastic scintillators. Their attractive feature lies in their use for field mapping in water, particularly for small fields, high dose gradient regions, and near inhomogeneous interfaces, or for in-vivo insertions. The physical characteristics and the dosimetric properties of these scintillators will be presented, discussed, and compared to the commonly used detectors in radiation dosimetry. The system first used successfully for multi-purpose radiotherapy field mapping, as well as other systems, will be described. The technical challenges of the design of these detectors including the optical coupling to small fibers will be discussed. One of the limitations, at the present time, is the radiation-induced light produced in the optical fibers that are used to transmit the signal to the photodetectors. The mechanisms of these spurious effects will be identified and discussed with emphasis on signal-to-noise improvements

  10. A helical scintillating fiber hodoscope

    CERN Document Server

    Altmeier, M; Bisplinghoff, J; Bissel, T; Bollmann, R; Busch, M; Büsser, K; Colberg, T; Demiroers, L; Diehl, O; Dohrmann, F; Engelhardt, H P; Eversheim, P D; Felden, O; Gebel, R; Glende, M; Greiff, J; Gross, A; Gross-Hardt, R; Hinterberger, F; Jahn, R; Jeske, M; Jonas, E; Krause, H; Lahr, U; Langkau, R; Lindemann, T; Lindlein, J; Maier, R; Maschuw, R; Mayer-Kuckuck, T; Meinerzhagen, A; Naehle, O; Pfuff, M; Prasuhn, D; Rohdjess, H; Rosendaal, D; Von Rossen, P; Sanz, B; Schirm, N; Schulz-Rojahn, M; Schwarz, V; Scobel, W; Thomas, S; Trelle, H J; Weise, E; Wellinghausen, A; Wiedmann, W; Woller, K; Ziegler, R

    1999-01-01

    A novel scintillating fiber hodoscope in helically cylindric geometry has been developed for detection of low multiplicity events of fast protons and other light charged particles in the internal target experiment EDDA at the Cooler Synchrotron COSY. The hodoscope consists of 640 scintillating fibers (2.5 mm diameter), arranged in four layers surrounding the COSY beam pipe. The fibers are helically wound in opposing directions and read out individually using 16-channel photomultipliers connected to a modified commercial encoding system. The detector covers an angular range of 9 deg. <= THETA<=72 deg. and 0 deg. <=phi (cursive,open) Greek<=360 deg. in the lab frame. The detector length is 590 mm, the inner diameter 161 mm. Geometry and granularity of the hodoscope afford a position resolution of about 1.3 mm. The detector design took into consideration a maximum of reliability and a minimum of maintenance. An LED array may be used for monitoring purposes. (author)

  11. Silicon photomultipliers for scintillating trackers

    Energy Technology Data Exchange (ETDEWEB)

    Rabaioli, S., E-mail: simone.rabaioli@gmail.com [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Berra, A.; Bolognini, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Bonvicini, V. [INFN sezione di Trieste (Italy); Bosisio, L. [Universita degli Studi di Trieste and INFN sezione di Trieste (Italy); Ciano, S.; Iugovaz, D. [INFN sezione di Trieste (Italy); Lietti, D. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Penzo, A. [INFN sezione di Trieste (Italy); Prest, M. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); INFN sezione di Milano Bicocca (Italy); Rashevskaya, I.; Reia, S. [INFN sezione di Trieste (Italy); Stoppani, L. [Universita degli Studi dell' Insubria, Via Valleggio, 11 - 22100 Como (Italy); Vallazza, E. [INFN sezione di Trieste (Italy)

    2012-12-11

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain ({approx}10{sup 6}). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  12. Silicon photomultipliers for scintillating trackers

    Science.gov (United States)

    Rabaioli, S.; Berra, A.; Bolognini, D.; Bonvicini, V.; Bosisio, L.; Ciano, S.; Iugovaz, D.; Lietti, D.; Penzo, A.; Prest, M.; Rashevskaya, I.; Reia, S.; Stoppani, L.; Vallazza, E.

    2012-12-01

    In recent years, silicon photomultipliers (SiPMs) have been proposed as a new kind of readout device for scintillating detectors in many experiments. A SiPM consists of a matrix of parallel-connected pixels, which are independent photon counters working in Geiger mode with very high gain (∼106). This contribution presents the use of an array of eight SiPMs (manufactured by FBK-irst) for the readout of a scintillating bar tracker (a small size prototype of the Electron Muon Ranger detector for the MICE experiment). The performances of the SiPMs in terms of signal to noise ratio, efficiency and time resolution will be compared to the ones of a multi-anode photomultiplier tube (MAPMT) connected to the same bars. Both the SiPMs and the MAPMT are interfaced to a VME system through a 64 channel MAROC ASIC.

  13. LHCb Upgrade: Scintillating Fibre Tracker

    International Nuclear Information System (INIS)

    Tobin, Mark

    2016-01-01

    The LHCb detector will be upgraded during the Long Shutdown 2 (LS2) of the LHC in order to cope with higher instantaneous luminosities and to read out the data at 40 MHz using a trigger-less read-out system. All front-end electronics will be replaced and several sub-detectors must be redesigned to cope with higher occupancy. The current tracking detectors downstream of the LHCb dipole magnet will be replaced by the Scintillating Fibre (SciFi) Tracker. The SciFi Tracker will use scintillating fibres read out by Silicon Photomultipliers (SiPMs). State-of-the-art multi-channel SiPM arrays are being developed to read out the fibres and a custom ASIC will be used to digitise the signals from the SiPMs. The evolution of the design since the Technical Design Report in 2014 and the latest R & D results are presented.

  14. Development and Application of TiO2 Nanoparticles Coupled with Silver Halide

    Directory of Open Access Journals (Sweden)

    Xiaojia Wan

    2014-01-01

    Full Text Available Titanium dioxide (TiO2 is proposed to be effective photocatalyst for wastewater treatment, air purification, and self-cleaning ability, because of its strong oxidation and superhydrophilicity. In order to conquer the limits of TiO2, a variety of methods have been used. This paper presents a critical review of novel research and achievements in the modification of TiO2 nanoparticles with silver halide (AgX, X=Cl, Br, I, which aims at enhancing the visible light absorption and photosensitivity. Herein we study the synthesis, physical and chemical properties, and the mechanism of this composite photocatalyst.

  15. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  16. All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation

    KAUST Repository

    Ning, Zhijun

    2012-09-12

    A new solution-phase halide passivation strategy to improve the electronic properties of colloidal quantum dot films is reported. We prove experimentally that the approach leads to an order-of-magnitude increase in mobility and a notable reduction in trap state density. We build solar cells having the highest efficiency (6.6%) reported using all-inorganic colloidal quantum dots. The improved photocurrent results from increased efficiency of collection of infrared-generated photocarriers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structural, optical, and electronic studies of wide-bandgap lead halide perovskites

    KAUST Repository

    Comin, Riccardo; Walters, Grant; Thibau, Emmanuel Sol; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.

    2015-01-01

    © The Royal Society of Chemistry 2015. We investigate the family of mixed Br/Cl organolead halide perovskites which enable light emission in the blue-violet region of the visible spectrum. We report the structural, optical and electronic properties of this air-stable family of perovskites, demonstrating full bandgap tunability in the 400-550 nm range and enhanced exciton strength upon Cl substitution. We complement this study by tracking the evolution of the band levels across the gap, thereby providing a foundational framework for future optoelectronic applications of these materials.

  18. All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation

    KAUST Repository

    Ning, Zhijun; Ren, Yuan; Hoogland, Sjoerd; Voznyy, Oleksandr; Levina, Larissa; Stadler, Philipp; Lan, Xinzheng; Zhitomirsky, David; Sargent, Edward H.

    2012-01-01

    A new solution-phase halide passivation strategy to improve the electronic properties of colloidal quantum dot films is reported. We prove experimentally that the approach leads to an order-of-magnitude increase in mobility and a notable reduction in trap state density. We build solar cells having the highest efficiency (6.6%) reported using all-inorganic colloidal quantum dots. The improved photocurrent results from increased efficiency of collection of infrared-generated photocarriers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Charged particle scintillation mass spectrometer

    International Nuclear Information System (INIS)

    Baranov, P.S.; Zhuravlev, E.E.; Nafikov, A.A.; Osadchi , A.I.; Raevskij, V.G.; Smirnov, P.A.; Cherepnya, S.N.; Yanulis, Yu.P.

    1982-01-01

    A scintillation mass-spectrometer for charged particle identification by the measured values of time-of-flight and energy operating on line with the D-116 computer is described. Original time detectors with 100x100x2 mm 3 and 200x2 mm 2 scintillators located on the 1- or 2 m path length are used in the spectrometer. The 200x200x200 mm 3 scintillation unit is used as a E-counter. Time-of-flight spectra of the detected particles on the 2 m path length obtained in spectrometer test in the beam of charged particles escaping from the carbon target at the angle of 130 deg under 1.2 GeV bremsstrahlung beam of the ''Pakhra'' PIAS synchrotron are presented. Proton and deuteron energy spectra as well as mass spectrum of all the particles detected by the spectrometer are given. Mass resolution obtained on the 2 m path length for π-mesons is +-25%, for protons is +-5%, for deuterons is +-3%

  20. Liquid scintillation alpha spectrometry techniques

    International Nuclear Information System (INIS)

    McKlveen, J.W.; McDowell, W.J.

    1984-01-01

    Accurate, quantitative determinations of alpha emitting nuclides by conventional plate counting methods are difficult, because of sample self-absorption problems in counting and because of non-reproducible losses in conventional sample separation methods. Liquid scintillation alpha spectrometry offers an attractive alternative with no sample self-absorption or geometry problems and with 100% counting efficiency. Sample preparation may include extraction of the alpha emitter of interest by a specific organic phase-soluble compound directly into the liquid scintillation counting medium. Detection electronics use energy and pulse-shape discrimination, to yield alpha spectra without beta and gamma background interference. Specific procedures have been developed for gross alpha, uranium, plutonium, thorium and colonium assay. Possibilities for a large number of other applications exist. Accuracy and reproducibility are typically in the 1% range. Backgrounds of the order of 0.01 cpm are readily achievable. The paper will present an overview of liquid scintillation alpha counting techniques and some of the results achieved for specific applications. (orig.)

  1. Ionospheric scintillation monitoring and modelling

    Directory of Open Access Journals (Sweden)

    Mariusz Pozoga

    2009-06-01

    Full Text Available

    This paper presents a review of the ionospheric scintillation monitoring and modelling by the European groups

    involved in COST 296. Several of these groups have organized scintillation measurement campaigns at low and

    high latitudes. Some characteristic results obtained from the measured data are presented. The paper also addresses the modeling activities: four models, based on phase screen techniques, with different options and application domains are detailed. Finally some new trends for research topics are given. This includes the wavelet analysis, the high latitudes analysis, the construction of scintillation maps and the mitigation techniques.


  2. Scintillators for fiber optics: system sensitivity and bandwidth as a function of fiber length

    International Nuclear Information System (INIS)

    Lutz, S.S.; Franks, L.A.; Fluornoy, J.M.; Lyons, P.B.

    1981-01-01

    Scintillators have been employed for several years as ionizing radiation-to-light converters in plasma diagnostic experiments that utilize fiber optics. Until recently, nanosecond and subnanosecond scintillators were available only in the near ultraviolet. However, the bandwidth and transmission properties of fiber optics both strongly favor operation at longer wavelengths. More recently, nanosecond and subnanosecond scintillators with emission peaks around 480 nm have been reported. A time-resolved plasma-imaging experiment using one of these scintillators and 100 channels of graded-index fiber, each 500 m long, has been successfully tested on a nuclear event at the Nevada Test Site. During the past year we have developed several new scintillator systems with emission wavelengths more compatible with fiber optics and with response times in the nanosecond and subnanosecond time region. One scintillator, based on Kodak dye 14567 (DCM), has an emission maximum at 650 nm and a response time (FWHM) of 1.2 ns. Experimental data on system sensitivity and bandwidth versus fiber length are presented for three fluor-fiber systems. Data on fluor formulation, response time, and linearity-of-response are given, and a model for scintillator nonlinearity, based on solvent, radiation-induced, transient absorption, is presented

  3. Simulating response functions and pulse shape discrimination for organic scintillation detectors with Geant4

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, Zachary S., E-mail: hartwig@psfc.mit.edu [Department of Nuclear Science and Engineering, MIT, Cambridge MA (United States); Gumplinger, Peter [TRIUMF, Vancouver, BC (Canada)

    2014-02-11

    We present new capabilities of the Geant4 toolkit that enable the precision simulation of organic scintillation detectors within a comprehensive Monte Carlo code for the first time. As of version 10.0-beta, the Geant4 toolkit models the data-driven photon production from any user-defined scintillator, photon transportation through arbitrarily complex detector geometries, and time-resolved photon detection at the light readout device. By fully specifying the optical properties and geometrical configuration of the detector, the user can simulate response functions, photon transit times, and pulse shape discrimination. These capabilities enable detector simulation within a larger experimental environment as well as computationally evaluating novel scintillators, detector geometry, and light readout configurations. We demonstrate agreement of Geant4 with the NRESP7 code and with experiments for the spectroscopy of neutrons and gammas in the ranges 0–20 MeV and 0.511–1.274 MeV, respectively, using EJ301-based organic scintillation detectors. We also show agreement between Geant4 and experimental modeling of the particle-dependent detector pulses that enable simulated pulse shape discrimination. -- Highlights: • New capabilities enable the modeling of organic scintillation detectors in Geant4. • Detector modeling of complex scintillators, geometries, and light readout. • Enables particle- and energy-dependent production of scintillation photons. • Provides ability to generate response functions with precise optical physics. • Provides ability to computationally evaluate pulse shape discrimination.

  4. Scintillation and optical stimulated luminescence of Ce-doped CaF2

    International Nuclear Information System (INIS)

    Yanagida, Takayuki; Fujimoto, Yutaka; Watanabe, Kenichi; Fukuda, Kentaro; Kawaguchi, Noriaki; Miyamoto, Yuka; Nanto, Hidehito

    2014-01-01

    Scintillation and optical stimulated luminescence of Ce 0.1–20% doped CaF 2 crystals prepared by Tokuyama Corp. were investigated. In X-ray induced scintillation spectra, luminescence due to Ce 3+ 5d–4f transition appeared around 320 nm with typically 40 ns decay time. By 241 Am 5.5 MeV α-ray irradiation, 0.1% doped one showed the highest scintillation light yield and the light yield monotonically decreased with Ce concentrations. Optically stimulated luminescence after X-ray irradiation was observed around 320 nm under 550 or 830 nm stimulation in all samples. As a result, intensities of optically stimulated luminescence were proportional to Ce concentrations. Consequently, scintillation and optically stimulated luminescence resulted to have a complementary relation in Ce-doped CaF 2 system. - Highlights: • Optical, scintillation, and OSL properties of Ce 0.1–20% doped CaF 2 were studied. • Scintillation light yield exhibited inverse proportionality to Ce concentrations. • OSL intensities showed proportionality to Ce concentrations. • Complementary relation of scintillation and OSL was experimentally confirmed

  5. Heat- and radiation-resistant scintillator for electron microscopes

    International Nuclear Information System (INIS)

    Kosov, A.V.; Petrov, S.A.; Puzyr', A.P.; Chetvergov, N.A.

    1987-01-01

    The use of a scintillator consisting of a single crystal of bismuth orthogermanate, which has high heat and radiation resistance, in REM-100, REM-200, and REM-100U electron microscopes is described. A study of the heat and radiation stabilities of single crystals of bismuth orthogermanate (Bi 4 Ge 3 O 12 ) has shown that they withstood multiple electron-beam heating redness (T ∼ 800 0 C) without changes in their properties

  6. A variety of neutron sensors based on scintillating glass waveguides

    International Nuclear Information System (INIS)

    Bliss, M.; Craig, R.A.

    1995-05-01

    Pacific Northwest Laboratory (PNL) has fabricated cerium-activated, lithium-silicate glass scintillating fiber neutron sensors via a hot-downdraw process. These fibers typically have a transmission length (e -1 length) of greater than 2 meters. The underlying physics of, the properties of, and selected devices incorporating these fibers are described. These fibers constitute an enabling technology for a wide variety of neutron sensors

  7. A new water-based liquid scintillator and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, M., E-mail: yeh@bnl.gov [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R.L. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Diwan, M.V.; Jaffe, D.E.; Kettell, S.H.; Littenberg, L. [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2011-12-21

    In this paper we describe a new type of scintillating liquid based on water. We describe the concept, preparation, and properties of this liquid, and how it could be used for a very large, but economical detector. The applications of such a detector range from fundamental physics such as nucleon decay and neutrino physics to physics with broader application such as neutron detection. We briefly describe the scientific requirements of these applications, and how they can be satisfied by the new material.

  8. Multi element high resolution scintillator structure

    International Nuclear Information System (INIS)

    Cusano, D.A.

    1980-01-01

    A gamma camera scintillator structure, suitable for detecting high energy gamma photons which, in a single scintillator camera, would require a comparatively thick scintillator crystal, so resulting in unacceptable dispersion of light photons, comprises a collimator array of a high Z material with elongated, parallel wall channels with the scintillator material being disposed in one end of the channels so as to form an integrated collimator/scintillator structure. The collimator channel walls are preferably coated with light reflective material and further light reflective surfaces being translucent to gamma photons, may be provided in each channel. The scintillators may be single crystals or preferably comprise a phosphor dispersed in a thermosetting translucent matrix as disclosed in GB2012800A. The light detectors of the assembled camera may be photomultiplier tubes charge coupled devices or charge injection devices. (author)

  9. 4 GHz ionospheric scintillations observed at Taipei

    International Nuclear Information System (INIS)

    Huang, Y.N.; Jeng, B.S.

    1978-01-01

    In a study of ionospheric scintillations 3950 MHz beacon signals from geostationary communication satellites Intelsat-IV-F8 and Intelsat-IV-F1 were recorded on a strip chart and magnetic tape at the Taipei Earth Station. While the strip charts were used to monitor the occurrence of the scintillation, the magnetic tape output was digitized and processed by a computerized system to yield a detailed analysis of scintillation events. It was found that diurnal variations were similar to the diurnal patterns of sporadic E at greater than 5 MHz and VHF band ionospheric scintillations during daytime as reported by Huang (1978). Eight typical scintillation events were selected for the calculation of the scintillation index, S4, and other parameters. The mean S4 index for the 8 events was found to be 0.15. Numerical and graphic results are presented for the cumulative amplitude distributions, message reliability, autocorrelation functions and power spectra

  10. A Review of Ionospheric Scintillation Models.

    Science.gov (United States)

    Priyadarshi, S

    This is a general review of the existing climatological models of ionospheric radio scintillation for high and equatorial latitudes. Trans-ionospheric communication of radio waves from transmitter to user is affected by the ionosphere which is highly variable and dynamic in both time and space. Scintillation is the term given to irregular amplitude and phase fluctuations of the received signals and related to the electron density irregularities in the ionosphere. Key sources of ionospheric irregularities are plasma instabilities; every irregularities model is based on the theory of radio wave propagation in random media. It is important to understand scintillation phenomena and the approach of different theories. Therefore, we have briefly discussed the theories that are used to interpret ionospheric scintillation data. The global morphology of ionospheric scintillation is also discussed briefly. The most important (in our opinion) analytical and physical models of scintillation are reviewed here.

  11. Morphology of auroral zone radio wave scintillation

    International Nuclear Information System (INIS)

    Rino, C.L.; Matthews, S.J.

    1980-01-01

    This paper describes the morphology of midnight sector and morning sector auroral zone scintillation observations made over a two-year period using the Wideband satelite, which is in a sun-synchronous, low-altitude orbit. No definitive seasonal variation was found. The nighttime data showed the highest scintillation ocurrence levels, but significant amounts of morning scintillation were observed. For the most part the scintillation activity followed the general pattern of local magnetic activity. The most prominent feature in the nightime data is a localized amplitude and phase scintillation enhancement at the point where the propagation vector lies within an L shell. A geometrical effect due to a dynamic slab of sheetlike structures in the F region is hypothesized as the source of his enhancement. The data have been sorted by magnetic activity, proximity to local midnight, and season. The general features of the data are in agreement with the accepted morphology of auroral zone scintillation

  12. Unveiling the Shape Evolution and Halide-Ion-Segregation in Blue-Emitting Formamidinium Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform.

    Science.gov (United States)

    Lignos, Ioannis; Protesescu, Loredana; Emiroglu, Dilara Börte; Maceiczyk, Richard; Schneider, Simon; Kovalenko, Maksym V; deMello, Andrew J

    2018-02-14

    Hybrid organic-inorganic perovskites and in particular formamidinium lead halide (FAPbX 3 , X = Cl, Br, I) perovskite nanocrystals (NCs) have shown great promise for their implementation in optoelectronic devices. Specifically, the Br and I counterparts have shown unprecedented photoluminescence properties, including precise wavelength tuning (530-790 nm), narrow emission linewidths (photoluminescence quantum yields (70-90%). However, the controlled formation of blue emitting FAPb(Cl 1-x Br x ) 3 NCs lags behind their green and red counterparts and the mechanism of their formation remains unclear. Herein, we report the formation of FAPb(Cl 1-x Br x ) 3 NCs with stable emission between 440 and 520 nm in a fully automated droplet-based microfluidic reactor and subsequent reaction upscaling in conventional laboratory glassware. The thorough parametric screening allows for the elucidation of parametric zones (FA-to-Pb and Br-to-Cl molar ratios, temperature, and excess oleic acid) for the formation of nanoplatelets and/or NCs. In contrast to CsPb(Cl 1-x Br x ) 3 NCs, based on online parametric screening and offline structural characterization, we demonstrate that the controlled synthesis of Cl-rich perovskites (above 60 at% Cl) with stable emission remains a challenge due to fast segregation of halide ions.

  13. Optimization of the scintillation parameters of the lead tungstate crystals for their application in high precision electromagnetic calorimetry; Optimisation des parametres de scintillation des cristaux de tungstate de plomb pour leur application dans la calorimetrie electromagnetique de haute precision

    Energy Technology Data Exchange (ETDEWEB)

    Drobychev, G

    2000-04-12

    In the frame of this dissertation work scintillation properties of the lead tungstate crystals (PWO) and possibilities of their use were studied foreseeing their application for electromagnetic calorimetry in extreme radiation environment conditions of new colliders. The results of this work can be summarized in the following way. 1. A model of the scintillations origin in the lead tungstate crystals which includes processes influencing on the crystals radiation hardness and presence of slow components in scintillations was developed. 2. An analysis of the influences of the PWO scintillation properties changes on the parameters of the electromagnetic calorimeter was done. 3. Methods of the light collection from the large scintillation elements of complex shape made of the birefringent scintillation crystal with high refraction index and low light yield in case of signal registration by a photodetector with sensitive surface small in compare with the output face of scintillator were Studied. 4. Physical principles of the methodology of the scintillation crystals certification during their mass production foreseeing their installation into a calorimeter electromagnetic were developed. Correlations between the results of measurements of the PWO crystals parameters by different methods were found. (author)

  14. X-ray absorption tomography of a high-pressure metal-halide lamp with a bent arc due to Lorentz-forces

    NARCIS (Netherlands)

    Denisova, N.; Haverlag, M.; Ridderhof, E.J.; Nimalasuriya, T.; Mullen, van der J.J.A.M.

    2007-01-01

    The arc temperature is one of the most important characteristics which cotrol the emission properties of plasma light sources. X-ray absorption technique has received some attention as a powerful method to determine the temperature in high-pressure metal-halide lamps. An important advantage of x-ray

  15. Measurements of energy resolution with hemispheric scintillators

    International Nuclear Information System (INIS)

    Mendonca, A.C.S.; Binns, D.A.C.; Tauhata, L.; Poledna, R.

    1980-01-01

    The hemispheric configuration is used for plastic scintillators type NE 102 with the aiming to optimize the light collect. Scintillators at this configuration, with radii of 3,81 cm and 2,54 cm, are showing improvement about 16-17% in the energy resolution, on cilyndric scintillators with the same volume, for gamma rays of 511-1275 KeV. (E.G.) [pt

  16. 2 inch size Czochralski growth and scintillation properties of Li.sup.+./sup.-co-doped Ce:Gd.sub.3./sub.Ga.sub.3./sub.Al.sub.2./sub.O.sub.12./sub.

    Czech Academy of Sciences Publication Activity Database

    Kamada, K.; Shoji, Y.; Kochurikhin, V.V.; Yoshino, M.; Okumura, S.; Yamamoto, S.; Yeom, J.Y.; Kurosawa, S.; Yokota, Y.; Ohashi, Y.; Nikl, Martin; Yoshikawa, A.

    2017-01-01

    Roč. 65, Mar (2017), s. 52-55 ISSN 0925-3467 R&D Projects: GA ČR GJ15-18300Y EU Projects: European Commission(XE) 644260 - INTELUM Institutional support: RVO:68378271 Keywords : scintillator * garnet * single crystal * crystal growth Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  17. Scintillation properties of Zr co-doped Ce:(Gd, La).sub.2./sub.Si.sub.2./sub.O.sub.7./sub. grown by the Czochralski process

    Czech Academy of Sciences Publication Activity Database

    Murakami, R.; Kurosawa, S.; Shoji, Y.; Jarý, Vítězslav; Ohashi, Y.; Pejchal, Jan; Yokota, Y.; Kamada, K.; Nikl, Martin; Yoshikawa, A.

    2016-01-01

    Roč. 90, Jul (2016), s. 162-165 ISSN 1350-4487. [International Conference on Luminescent Detectors and Transformers of Ionizing Radiation (LUMDETR). Tartu (Estonsko), 20.09.2015-25.09.2015] R&D Projects: GA MŠk(CZ) LH14266 Institutional support: RVO:68378271 Keywords : scintillator * pyrosilicate * La- GPS * Czochralski process * co-doping effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.442, year: 2016

  18. Effect of reducing Lu.sup.3+./sup. content on the fabrication and scintillation properties of non-stoichiometric Lu.sub.3-x./sub.Al.sub.5./sub.O.sub.12./sub.:Ce ceramics

    Czech Academy of Sciences Publication Activity Database

    Liu, S.; Mareš, Jiří A.; Babin, Vladimir; Hu, C.; Kou, H.; D'Ambrosio, C.; Pan, Y.; Nikl, Martin

    2017-01-01

    Roč. 63, Jan-Sl (2017), s. 179-184 ISSN 0925-3467 R&D Projects: GA ČR GAP204/12/0805 Institutional support: RVO:68378271 Keywords : LuAG:Ce ceramics * Lu 3+ deficiency * scintillation light yield * non-stoichiometry * antisite defects Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.238, year: 2016

  19. Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica.

    Science.gov (United States)

    Malgras, Victor; Tominaka, Satoshi; Ryan, James W; Henzie, Joel; Takei, Toshiaki; Ohara, Koji; Yamauchi, Yusuke

    2016-10-13

    Hybrid organic-inorganic metal halide perovskites have fascinating electronic properties and have already been implemented in various devices. Although the behavior of bulk metal halide perovskites has been widely studied, the properties of perovskite nanocrystals are less well-understood because synthesizing them is still very challenging, in part because of stability. Here we demonstrate a simple and versatile method to grow monodisperse CH 3 NH 3 PbBr x I x-3 perovskite nanocrystals inside mesoporous silica templates. The size of the nanocrystal is governed by the pore size of the templates (3.3, 3.7, 4.2, 6.2, and 7.1 nm). In-depth structural analysis shows that the nanocrystals maintain the perovskite crystal structure, but it is slightly distorted. Quantum confinement was observed by tuning the size of the particles via the template. This approach provides an additional route to tune the optical bandgap of the nanocrystal. The level of quantum confinement was modeled taking into account the dimensions of the rod-shaped nanocrystals and their close packing inside the channels of the template. Photoluminescence measurements on CH 3 NH 3 PbBr clearly show a shift from green to blue as the pore size is decreased. Synthesizing perovskite nanostructures in templates improves their stability and enables tunable electronic properties via quantum confinement. These structures may be useful as reference materials for comparison with other perovskites, or as functional materials in all solid-state light-emitting diodes.

  20. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Peng, Wei; Wang, Lingfei

    2017-01-01

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making