WorldWideScience

Sample records for halide minerals

  1. Variable Charge and Electrical Double Layer of Mineral-Water Interfaces: Silver Halides versus Metal (Hydr)Oxides

    NARCIS (Netherlands)

    Hiemstra, T.

    2012-01-01

    Classically, silver (Ag) halides have been used to understand thermodynamic principles of the charging process and the corresponding development of the electrical double layer (EDL). A mechanistic approach to the processes on the molecular level has not yet been carried out using advanced surface

  2. Minerals

    Science.gov (United States)

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  3. Photofragmentation of metal halides

    International Nuclear Information System (INIS)

    Veen, N.J.A. van.

    1980-01-01

    The author deals with photodissociation of molecules of alkali halides. It is shown that the total absorption cross section consists of two contributions arising from transitions to excited states of total electronic angular momentum Ω=0 + and Ω=1. From the inversion of the absorption continua potential energy curves of the excited states can be constructed in the Franck-Condon region. It is found that for all alkali halides the 0 + state is higher in energy than the Ω=1 state. Extensive studies are reported on three thallium halides, TlI, TlBr and TlCl at various wavelengths covering the near ultraviolet region. (Auth.)

  4. Entropy in halide perovskites

    Science.gov (United States)

    Katan, Claudine; Mohite, Aditya D.; Even, Jacky

    2018-05-01

    Claudine Katan, Aditya D. Mohite and Jacky Even discuss the possible impact of various entropy contributions (stochastic structural fluctuations, anharmonicity and lattice softness) on the optoelectronic properties of halide perovskite materials and devices.

  5. Minerals

    Science.gov (United States)

    ... Aren't minerals something you find in the earth, like iron and quartz? Well, yes, but small ... canned salmon and sardines with bones leafy green vegetables, such as broccoli calcium-fortified foods — from orange ...

  6. Minerals

    Directory of Open Access Journals (Sweden)

    Vaquero, M. P.

    1998-08-01

    Full Text Available The possible changes in the mineral composition of food during frying could be the consequence of losses by leaching, or changes in concentrations caused by exchanges between the food and culinary fat of other compounds. The net result depends on the type of food, the frying fat used and the frying process. Moreover, the modifications that frying produces in other nutrients could indirectly affect the availability of dietary minerals. The most outstanding ones are those that can take place in the fat or in the protein. With respect to the interactions between frying oils and minerals, we have recent knowledge concerning the effects of consuming vegetable oils used in repeated fryings of potatoes without turnover, on the nutritive utilization of dietary minerals. The experiments have been carried out in pregnant and growing rats, which consumed diets containing, as a sole source of fat, the testing frying oils or unused oils. It seems that the consumption of various frying oils, with a polar compound content lower or close to the maximum limit of 25% accepted for human consumption, does not alter the absorption and metabolism of calcium, phosphorous, iron or copper. Magnesium absorption from diets containing frying oils tends to increase but the urinary excretion of this element increases, resulting imperceptible the variations in the magnesium balance. The urinary excretion of Zn also increased although its balance remained unchanged. Different studies referring to the effects of consuming fried fatty fish on mineral bioavailability will also be presented. On one hand, frying can cause structural changes in fish protein, which are associated with an increase in iron absorption and a decrease in body zinc retention. The nutritive utilization of other elements such as magnesium, calcium and copper seems to be unaffected. On the other hand; it has been described that an excess of fish fatty acids in the diet produces iron depletion, but when fatty

  7. Resonant halide perovskite nanoparticles

    Science.gov (United States)

    Tiguntseva, Ekaterina Y.; Ishteev, Arthur R.; Komissarenko, Filipp E.; Zuev, Dmitry A.; Ushakova, Elena V.; Milichko, Valentin A.; Nesterov-Mueller, Alexander; Makarov, Sergey V.; Zakhidov, Anvar A.

    2017-09-01

    The hybrid halide perovskites is a prospective material for fabrication of cost-effective optical devices. Unique perovskites properties are used for solar cells and different photonic applications. Recently, perovskite-based nanophotonics has emerged. Here, we consider perovskite like a high-refractive index dielectric material, which can be considered to be a basis for nanoparticles fabrication with Mie resonances. As a result, we fabricate and study resonant perovskite nanoparticles with different sizes. We reveal, that spherical nanoparticles show enhanced photoluminescence signal. The achieved results lay a cornerstone in the field of novel types of organic-inorganic nanophotonics devices with optical properties improved by Mie resonances.

  8. Fumarolic minerals

    DEFF Research Database (Denmark)

    Balic Zunic, Tonci; Garavelli, Anna; Jakobsson, Sveinn Peter

    2016-01-01

    The fumarolic mineralogy of the Icelandic active volcanoes, the Tyrrhenian volcanic belt (Italy) and the Aegean active arc (Greece) is investigated, and literature data surveyed in order to define the characteristics of the European fumarolic systems. They show broad diversity of mineral...... associations, with Vesuvius and Vulcano being also among the world localities richest in mineral species. Volcanic systems, which show recession over a longer period, show fumarolic development from the hightemperature alkaline halide/sulphate, calcic sulphate or sulphidic parageneses, synchronous...... with or immediately following the eruptions, through mediumtemperature ammonium minerals, metal chlorides, or fluoride associations to the late low-temperature paragenesis dominated by sulphur, gypsum, alunogen, and other hydrous sulphates. The situation can be different in the systems that are not recessing but show...

  9. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.; Saidaminov, Makhsud I.; Christians, Jeffrey A.; Bakr, Osman; Kamat, Prashant V.

    2016-01-01

    To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice

  10. Development of Halide and Oxy-Halides for Isotopic Separations

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Leigh R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Aaron T. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pfeiffer, Jana [Idaho National Lab. (INL), Idaho Falls, ID (United States); Finck, Martha R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-10-01

    The goal of this project was to synthesize a volatile form of Np for introduction into mass spectrometers at INL. Volatile solids of the 5f elements are typically those of the halides (e.g. UF6), however fluorine is highly corrosive to the sensitive internal components of the mass separator, and the other volatile halides exist as several different stable isotopes in nature. However, iodide is both mono-isotopic and volatile, and as such presents an avenue for creation of a form of Np suitable for introduction into the mass separator. To accomplish this goal, the technical work in the project sought to establish a novel synthetic route for the conversion NpO2+ (dissolved in nitric acid) to NpI3 and NpI4.

  11. TRANSURANIC METAL HALIDES AND A PROCESS FOR THE PRODUCTION THEREOF

    Science.gov (United States)

    Fried, S.

    1951-03-20

    Halides of transuranic elements are prepared by contacting with aluminum and a halogen, or with an aluminum halide, a transuranic metal oxide, oxyhalide, halide, or mixture thereof at an elevated temperature.

  12. Structure of polyvalent metal halide melts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1990-12-01

    A short review is given of recent progress in determining and understanding the structure of molten halide salts involving polyvalent metal ions. It covers the following three main topics: (i) melting mechanisms and types of liquid structure for pure polyvalent-metal chlorides; (ii) geometry and stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides; and (iii) structure breaking and electron localization on addition of metal to the melt. (author). 28 refs, 3 figs, 1 tab

  13. Fullerenes doped with metal halides

    International Nuclear Information System (INIS)

    Martin, T.P.; Heinebrodt, M.; Naeher, U.; Goehlich, H.; Lange, T.; Schaber, H.

    1993-01-01

    The cage-like structure of fullerenes is a challenge to every experimental to put something inside - to dope the fullerenes. In fact, the research team that first identified C 60 as a football-like molecule quickly succeeded in trapping metal atoms inside and in shrinking the cage around this atom by photofragmentation. In this paper we report the results of ''shrink-wrapping'' the fullerenes around metal halide molecules. Of special interest is the critical size (the minimum number of carbon atoms) that can still enclose the dopant. A rough model for the space available inside a carbon cage gives good agreement with the measured shrinking limits. (author). 8 refs, 6 figs

  14. Methods for producing single crystal mixed halide perovskites

    Science.gov (United States)

    Zhu, Kai; Zhao, Yixin

    2017-07-11

    An aspect of the present invention is a method that includes contacting a metal halide and a first alkylammonium halide in a solvent to form a solution and maintaining the solution at a first temperature, resulting in the formation of at least one alkylammonium halide perovskite crystal, where the metal halide includes a first halogen and a metal, the first alkylammonium halide includes the first halogen, the at least one alkylammonium halide perovskite crystal includes the metal and the first halogen, and the first temperature is above about 21.degree. C.

  15. Thermochromic halide perovskite solar cells

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S.; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A.; Xie, Chenlu; Cui, Fan; Alivisatos, A. Paul; Limmer, David T.; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  16. Thermochromic halide perovskite solar cells.

    Science.gov (United States)

    Lin, Jia; Lai, Minliang; Dou, Letian; Kley, Christopher S; Chen, Hong; Peng, Fei; Sun, Junliang; Lu, Dylan; Hawks, Steven A; Xie, Chenlu; Cui, Fan; Alivisatos, A Paul; Limmer, David T; Yang, Peidong

    2018-03-01

    Smart photovoltaic windows represent a promising green technology featuring tunable transparency and electrical power generation under external stimuli to control the light transmission and manage the solar energy. Here, we demonstrate a thermochromic solar cell for smart photovoltaic window applications utilizing the structural phase transitions in inorganic halide perovskite caesium lead iodide/bromide. The solar cells undergo thermally-driven, moisture-mediated reversible transitions between a transparent non-perovskite phase (81.7% visible transparency) with low power output and a deeply coloured perovskite phase (35.4% visible transparency) with high power output. The inorganic perovskites exhibit tunable colours and transparencies, a peak device efficiency above 7%, and a phase transition temperature as low as 105 °C. We demonstrate excellent device stability over repeated phase transition cycles without colour fade or performance degradation. The photovoltaic windows showing both photoactivity and thermochromic features represent key stepping-stones for integration with buildings, automobiles, information displays, and potentially many other technologies.

  17. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei; Comin, Riccardo; Xu, Jixian; Ip, Alexander H.; Sargent, Edward H.

    2015-01-01

    -based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability

  18. Computational screening of mixed metal halide ammines

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich

    2013-01-01

    Metal halide ammines, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, can reversibly store ammonia, with high volumetric hydrogen storage capacities. The storage in the halide ammines is very safe, and the salts are therefore highly relevant as a carbon-free energy carrier in future transportation infrastructure...... selection. The GA is evolving from an initial (random) population and selecting those with highest fitness, a function based on e.g. stability, release temperature and storage capacity. The search space includes all alkaline, alkaline earth, 3d and 4d metals and the four lightest halides. In total...... the search spaces consists of millions combinations, which makes a GA ideal, to reduce the number of necessary calculations. We are screening for a one step release from either a hexa or octa ammine, and we have found promising candidates, which will be further investigated ? both computationally...

  19. Muonium centers in the alkali halides

    International Nuclear Information System (INIS)

    Baumeler, H.; Kiefl, R.F.; Keller, H.; Kuendig, W.; Odermatt, W.; Patterson, B.D.; Schneider, J.W.; Savic, I.M.

    1986-01-01

    Muonium centers (Mu) in single crystals and powdered alkali halides have been studied using the high-timing-resolution transverse field μSR technique. Mu has been observed and its hyperfine parameter (HF) determined in every alkali halide. For the rocksalt alkali halides, the HF parameter A μ shows a systematic dependence on the host lattice constant. A comparison of the Mu HF parameter with hydrogen ESR data suggests that the Mu center is the muonic analogue of the interstitial hydrogen H i 0 -center. The rate of Mu diffusion can be deduced from the motional narrowing of the nuclear hyperfine interaction. KBr shows two different Mu states, a low-temperature Mu I -state and a high-temperature Mu II -state. (orig.)

  20. Reactivity of halide and pseudohalide ligands

    International Nuclear Information System (INIS)

    Kukushkin, Yu.N.

    1987-01-01

    Reactivity of halide and pseudohalide (cyanide, azide, thiocyanate, cyanate) ligands tending to form bridge bonds in transition metal (Re, Mo, W) complexes is considered. Complexes where transition metal salts are ligands of other, complex-forming ion, are described. Transformation of innerspheric pseudohalide ligands is an important way of directed synthesis of these metal coordination compounds

  1. Formation of structured nanophases in halide crystals

    Czech Academy of Sciences Publication Activity Database

    Kulveit, Jan; Demo, Pavel; Polák, Karel; Sveshnikov, Alexey; Kožíšek, Zdeněk

    2013-01-01

    Roč. 5, č. 6 (2013), s. 561-564 ISSN 2164-6627 R&D Projects: GA ČR GAP108/12/0891 Institutional support: RVO:68378271 Keywords : halide crystals * nucleation Subject RIV: BM - Solid Matter Physics ; Magnetism http://www.aspbs.com/asem.html#v5n6

  2. Complexes of alkylphenols with aluminium halides

    International Nuclear Information System (INIS)

    Golounin, A.V.

    1997-01-01

    Interaction of aluminium halides with alkylphenols is studied through the NMR method. The peculiarity of complex formation of pentamethylphenol with AlI 3 is revealed. By AlI 3 action on the pentamethylphenol the complexes are formed both of keto- and oxy form [ru

  3. luminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    have studied the effect of annealing in chlorine gas on the ML of X-rayed KCl crystals. ..... high temperature because of the thermal bleaching of the coloration in alkali halide ..... [31] J Hawkins, Ph.D. Thesis (University of Reading, 1976).

  4. Monocrystalline halide perovskite nanostructures for optoelectronic applications

    NARCIS (Netherlands)

    Khoram, P.

    2018-01-01

    Halide perovskites are a promising class of materials for incorporation in optoelectronics with higher efficiency and lower cost. The solution processability of these materials provides unique opportunities for simple nanostructure fabrication. In the first half of the thesis (chapter 2 and 3) we

  5. Morphology-Controlled Synthesis of Organometal Halide Perovskite Inverse Opals.

    Science.gov (United States)

    Chen, Kun; Tüysüz, Harun

    2015-11-09

    The booming development of organometal halide perovskites in recent years has prompted the exploration of morphology-control strategies to improve their performance in photovoltaic, photonic, and optoelectronic applications. However, the preparation of organometal halide perovskites with high hierarchical architecture is still highly challenging and a general morphology-control method for various organometal halide perovskites has not been achieved. A mild and scalable method to prepare organometal halide perovskites in inverse opal morphology is presented that uses a polystyrene-based artificial opal as hard template. Our method is flexible and compatible with different halides and organic ammonium compositions. Thus, the perovskite inverse opal maintains the advantage of straightforward structure and band gap engineering. Furthermore, optoelectronic investigations reveal that morphology exerted influence on the conducting nature of organometal halide perovskites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Physicochemical properties of mixed phosphorus halides

    International Nuclear Information System (INIS)

    Sladkov, I.B.; Tugarinova, N.S.

    1996-01-01

    Certain physicochemical properties (thermodynamic characteristics at boiling point, critical constants, density of liquid on the saturation line) of mixed phosphorus halides (PI 3 , PI 2 F, PIF 2 , PI 2 Cl, PICl 2 , PI 1 Br, PIBr 2 , PIClF, PIBrCl, etc.) are determined by means of approximate methods. Reliability of the results obtained is confirmed by comparison of calculated and experimental data for phosphorus compounds of the same type. 7 refs., 3 figs., 4 tabs

  7. Unraveling halide hydration: A high dilution approach.

    Science.gov (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (ΔG [minus sign in circle symbol]hyd[H+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a ΔG [minus sign in circle symbol]hyd[H] value of -1100 kJ mol(-1) [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl(-), Br(-), and I(-) ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F(-) ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl(-), Br(-), and I(-) ions does not extend beyond the ion first hydration shell, and the structure of water in the F(-) second shell is also substantially unaffected by the ion.

  8. Thermomechanical measurements of lead halide single crystals

    Czech Academy of Sciences Publication Activity Database

    Nitsch, Karel; Rodová, Miroslava

    2002-01-01

    Roč. 234, č. 2 (2002), s. 701-709 ISSN 0370-1972 R&D Projects: GA AV ČR IAA2010926 Institutional research plan: CEZ:AV0Z1010914 Keywords : PbX 2 (X=Cl, Br, I) * coefficients of linear thermal expansion * polymorphism in lead halides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.930, year: 2002

  9. Electrochemistry of plutonium in molten halides

    International Nuclear Information System (INIS)

    McCurry, L.E.; Moy, G.M.M.; Bowersox, D.F.

    1987-01-01

    The electrochemistry of plutonium in molten halides is of technological importance as a method of purification of plutonium. Previous authors have reported that plutonium can be purified by electrorefining impure plutonium in various molten haldies. Work to eluciate the mechanism of the plutonium reduction in molten halides has been limited to a chronopotentiometric study in LiCl-KCl. Potentiometric studies have been carried out to determine the standard reduction potential for the plutonium (III) couple in various molten alkali metal halides. Initial cyclic voltammetric experiments were performed in molten KCL at 1100 K. A silver/silver chloride (10 mole %) in equimolar NaCl-KCl was used as a reference electrode. Working and counter electrodes were tungsten. The cell components and melt were contained in a quartz crucible. Background cyclic voltammograms of the KCl melt at the tungsten electrode showed no evidence of electroactive impurities in the melt. Plutonium was added to the melt as PuCl/sub 3/, which was prepared by chlorination of the oxide. At low concentrations of PuCl/sub 3/ in the melt (0.01-0.03 molar), no reduction wave due to the reduction of Pu(III) was observed in the voltammograms up to the potassium reduction limit of the melt. However on scan reversal after scanning into the potassium reduction limit a new oxidation wave was observed

  10. Complexes in polyvalent metal - Alkali halide melts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-03-01

    Experimental evidence is available in the literature on the local coordination of divalent and trivalent metal ions by halogens in some 140 liquid mixtures of their halides with alkali halides. After brief reference to classification criteria for main types of local coordination, we focus on statistical mechanical models that we are developing for Al-alkali halide mixtures. Specifically, we discuss theoretically the equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in mixtures of AlF 3 and NaF as a function of composition in the NaF-rich region, the effect of the alkali counterion on this equilibrium, the possible role of (AlF 5 ) 2- as an intermediate species in molten cryolite, and the origin of the different complexing behaviours of Al-alkali fluorides and chlorides. We also present a theoretical scenario for processes of structure breaking and electron localization in molten cryolite under addition of sodium metal. (author). 26 refs, 2 tabs

  11. Investigation of surface halide modification of nitrile butadiene rubber

    Science.gov (United States)

    Sukhareva, K. V.; Mikhailov, I. A.; Andriasyan, Yu O.; Mastalygina, E. E.; Popov, A. A.

    2017-12-01

    The investigation is devoted to the novel technology of surface halide modification of rubber samples based on nitrile butadiene rubber (NBR). 1,1,2-trifluoro-1,2,2-trichlorethane was used as halide modifier. The developed technology is characterized by production stages reduction to one by means of treating the rubber compound with a halide modifier. The surface halide modification of compounds based on nitrile butadiene rubber (NBR) was determined to result in increase of resistance to thermal oxidation and aggressive media. The conducted research revealed the influence of modification time on chemical resistance and physical-mechanical properties of rubbers under investigation.

  12. Lanthanide doped strontium-barium cesium halide scintillators

    Science.gov (United States)

    Bizarri, Gregory; Bourret-Courchesne, Edith; Derenzo, Stephen E.; Borade, Ramesh B.; Gundiah, Gautam; Yan, Zewu; Hanrahan, Stephen M.; Chaudhry, Anurag; Canning, Andrew

    2015-06-09

    The present invention provides for a composition comprising an inorganic scintillator comprising an optionally lanthanide-doped strontium-barium, optionally cesium, halide, useful for detecting nuclear material.

  13. Proton induced luminescence of minerals

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H.; Millan, A.; Calderon, T. [Depto. Geologia y Geoquimica, Universidad Autonoma de Madrid, Ctra. Colmenar, km. 15, 28049, Madrid (Spain); Beneitez, P. [Departamento Quimica Fisica Aplicada, Universidad Autonoma de Madrid Cantoblanco, Madrid (Spain); Ruvalcaba S, J.L. [lFUNAM, Circuito de la lnvestigacion Cientifica s/n, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)

    2008-07-01

    This paper presents a summary of Ionoluminescence (IL) for several minerals commonly found in jewellery pieces and/or artefacts of historical interest. Samples including silicates and non-silicates (native elements, halide, oxide, carbonate and phosphate groups) have been excited with a 1.8 MeV proton beam, and IL spectra in the range of 200- 900 nm have been collected for each one using a fiber optic coupled spectrometer. Light emissions have been related to Cr{sup 3+}, Mn{sup 2+} and Pr{sup 3+} ions, as well as intrinsic defects in these minerals. Results show the potential of IL for impurity characterization with high detection limits, local symmetry studies, and the study of the origin of minerals. (Author)

  14. Making and Breaking of Lead Halide Perovskites

    KAUST Repository

    Manser, Joseph S.

    2016-02-16

    A new front-runner has emerged in the field of next-generation photovoltaics. A unique class of materials, known as organic metal halide perovskites, bridges the gap between low-cost fabrication and exceptional device performance. These compounds can be processed at low temperature (typically in the range 80–150 °C) and readily self-assemble from the solution phase into high-quality semiconductor thin films. The low energetic barrier for crystal formation has mixed consequences. On one hand, it enables inexpensive processing and both optical and electronic tunability. The caveat, however, is that many as-formed lead halide perovskite thin films lack chemical and structural stability, undergoing rapid degradation in the presence of moisture or heat. To date, improvements in perovskite solar cell efficiency have resulted primarily from better control over thin film morphology, manipulation of the stoichiometry and chemistry of lead halide and alkylammonium halide precursors, and the choice of solvent treatment. Proper characterization and tuning of processing parameters can aid in rational optimization of perovskite devices. Likewise, gaining a comprehensive understanding of the degradation mechanism and identifying components of the perovskite structure that may be particularly susceptible to attack by moisture are vital to mitigate device degradation under operating conditions. This Account provides insight into the lifecycle of organic–inorganic lead halide perovskites, including (i) the nature of the precursor solution, (ii) formation of solid-state perovskite thin films and single crystals, and (iii) transformation of perovskites into hydrated phases upon exposure to moisture. In particular, spectroscopic and structural characterization techniques shed light on the thermally driven evolution of the perovskite structure. By tuning precursor stoichiometry and chemistry, and thus the lead halide charge-transfer complexes present in solution, crystallization

  15. The coacervation of aqueous solutions of tetraalkylammonium halides

    International Nuclear Information System (INIS)

    Mugnier de Trobriand, Anne.

    1979-09-01

    The coacervation of aqueous solutions of tatraalkylammonium halides in the presence of not of inorganic halides and acids has been studied, considering thermodynamic and spectroscopic aspects. The importance of dispersion forces as well as forces resulting from hydrophobic hydration has been assessed. The analogy between these systems and anionic ion exchange resins has been shown especially for Uranium VI extraction [fr

  16. Definition of a high intensity metal halide discharge reference lamp

    NARCIS (Netherlands)

    Stoffels, W.W.; Baede, A.H.F.M.; Mullen, van der J.J.A.M.; Haverlag, M.; Zissis, G.

    2006-01-01

    The design of a ref. metal halide discharge lamp is presented. This lamp is meant as a common study object for researchers working on metal halide discharge lamps, who by using the same design will be able to compare results between research groups, diagnostic techniques and numerical models. The

  17. Radiation damage in the alkali halide crystals

    International Nuclear Information System (INIS)

    Diller, K.M.

    1975-10-01

    A general review is given of the experimental data on radiation damage in the alkali halide crystals. A report is presented of an experimental investigation of irradiation produced interstitial dislocation loops in NaCl. These loops are found to exhibit the usual growth and coarsening behaviour during thermal annealing which operates by a glide and self-climb mechanism. It is shown that the recombination of defects in these crystals is a two stage process, and that the loss of interstitials stabilized at the loops is caused by extrinsic vacancies. The theoretical techniques used in simulating point defects in ionic crystals are described. Shell model potentials are derived for all the alkali halide crystals by fitting to bulk crystal data. The fitting is supplemented by calculations of the repulsive second neighbour interactions using methods based on the simple electron gas model. The properties of intrinsic and substitutional impurity defects are calculated. The HADES computer program is used in all the defect calculations. Finally the report returns to the problems of irradiation produced interstitial defects. The properties of H centres are discussed; their structure, formation energies, trapping at impurities and dimerization. The structure, formation energies and mobility of the intermediate and final molecular defects are then discussed. The thermodynamics of interstitial loop formation is considered for all the alklai halide crystals. The nucleation of interstitial loops in NaCl and NaBr is discussed, and the recombination of interstitial and vacancy defects. The models are found to account for all the main features of the experimental data. (author)

  18. Research Update: Luminescence in lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ajay Ram Srimath Kandada

    2016-09-01

    Full Text Available Efficiency and dynamics of radiative recombination of carriers are crucial figures of merit for optoelectronic materials. Following the recent success of lead halide perovskites in efficient photovoltaic and light emitting technologies, here we review some of the noted literature on the luminescence of this emerging class of materials. After outlining the theoretical formalism that is currently used to explain the carrier recombination dynamics, we review a few significant works which use photoluminescence as a tool to understand and optimize the operation of perovskite based optoelectronic devices.

  19. Exciton-relaxation dynamics in lead halides

    International Nuclear Information System (INIS)

    Iwanaga, Masanobu; Hayashi, Tetsusuke

    2003-01-01

    We survey recent comprehensive studies of exciton relaxation in the crystals of lead halides. The luminescence and electron-spin-resonance studies have revealed that excitons in lead bromide spontaneously dissociate and both electrons and holes get self-trapped individually. Similar relaxation has been also clarified in lead chloride. The electron-hole separation is ascribed to repulsive correlation via acoustic phonons. Besides, on the basis of the temperature profiles of self-trapped states, we discuss the origin of luminescence components which are mainly induced under one-photon excitation into the exciton band in lead fluoride, lead chloride, and lead bromide

  20. Large polarons in lead halide perovskites

    OpenAIRE

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3 ? framewor...

  1. The alkali halide disk technique in infra-red spectrometry : Anomalous behaviour of some samples dispersed in alkali halide disks

    NARCIS (Netherlands)

    Tolk, A.

    1961-01-01

    Some difficulties encountered in the application of the alkali halide disk technique in infra-red spectrometry are discussed. Complications due to interaction of the sample with the alkali halide have been studied experimentally. It was found that the anomalous behaviour of benzoic acid, succinic

  2. Finding New Perovskite Halides via Machine learning

    Directory of Open Access Journals (Sweden)

    Ghanshyam ePilania

    2016-04-01

    Full Text Available Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning via building a support vector machine (SVM based classifier that uses elemental features (or descriptors to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  3. Finding New Perovskite Halides via Machine learning

    Science.gov (United States)

    Pilania, Ghanshyam; Balachandran, Prasanna V.; Kim, Chiho; Lookman, Turab

    2016-04-01

    Advanced materials with improved properties have the potential to fuel future technological advancements. However, identification and discovery of these optimal materials for a specific application is a non-trivial task, because of the vastness of the chemical search space with enormous compositional and configurational degrees of freedom. Materials informatics provides an efficient approach towards rational design of new materials, via learning from known data to make decisions on new and previously unexplored compounds in an accelerated manner. Here, we demonstrate the power and utility of such statistical learning (or machine learning) via building a support vector machine (SVM) based classifier that uses elemental features (or descriptors) to predict the formability of a given ABX3 halide composition (where A and B represent monovalent and divalent cations, respectively, and X is F, Cl, Br or I anion) in the perovskite crystal structure. The classification model is built by learning from a dataset of 181 experimentally known ABX3 compounds. After exploring a wide range of features, we identify ionic radii, tolerance factor and octahedral factor to be the most important factors for the classification, suggesting that steric and geometric packing effects govern the stability of these halides. The trained and validated models then predict, with a high degree of confidence, several novel ABX3 compositions with perovskite crystal structure.

  4. Local polar fluctuations in lead halide perovskites

    Science.gov (United States)

    Tan, Liang; Yaffe, Omer; Guo, Yinsheng; Brus, Louis; Rappe, Andrew; Egger, David; Kronik, Leeor

    The lead halide perovskites have recently attracted much attention because of their large and growing photovoltaic power conversion efficiencies. However, questions remain regarding the temporal and spatial correlations of the structural fluctuations, their atomistic nature, and how they affect electronic and photovoltaic properties. To address these questions, we have performed a combined ab initio molecular dynamics (MD) and density functional theory (DFT) study on CsPbBr3. We have observed prevalent anharmonic motion in our MD trajectories, with local polar fluctuations involving head-to-head motion of A-site Cs cations coupled with Br window opening. We calculate Raman spectra from the polarizability auto-correlation functions obtained from these trajectories and show that anharmonic A-site cation motion manifests as a broad central peak in the Raman spectrum, which increases in intensity with temperature. A comparison of the experimental Raman spectrum of hybrid organometallic MAPbBr3 and fully inorganic CsPbBr3 suggests that structural fluctuations in lead-halide perovskites is more general than rotation of polar organic cations and is intimately coupled to the inorganic framework.

  5. Large polarons in lead halide perovskites

    Science.gov (United States)

    Miyata, Kiyoshi; Meggiolaro, Daniele; Trinh, M. Tuan; Joshi, Prakriti P.; Mosconi, Edoardo; Jones, Skyler C.; De Angelis, Filippo; Zhu, X.-Y.

    2017-01-01

    Lead halide perovskites show marked defect tolerance responsible for their excellent optoelectronic properties. These properties might be explained by the formation of large polarons, but how they are formed and whether organic cations are essential remain open questions. We provide a direct time domain view of large polaron formation in single-crystal lead bromide perovskites CH3NH3PbBr3 and CsPbBr3. We found that large polaron forms predominantly from the deformation of the PbBr3− frameworks, irrespective of the cation type. The difference lies in the polaron formation time, which, in CH3NH3PbBr3 (0.3 ps), is less than half of that in CsPbBr3 (0.7 ps). First-principles calculations confirm large polaron formation, identify the Pb-Br-Pb deformation modes as responsible, and explain quantitatively the rate difference between CH3NH3PbBr3 and CsPbBr3. The findings reveal the general advantage of the soft [PbX3]− sublattice in charge carrier protection and suggest that there is likely no mechanistic limitations in using all-inorganic or mixed-cation lead halide perovskites to overcome instability problems and to tune the balance between charge carrier protection and mobility. PMID:28819647

  6. Synthesis, Reactivity and Stability of Aryl Halide Protecting Groups towards Di-Substituted Pyridines

    Directory of Open Access Journals (Sweden)

    Ptoton Mnangat Brian

    2016-03-01

    Full Text Available This paper reports the synthesis and reactivity of different Benzyl derivative protecting groups. The synthesis and stability of Benzyl halides, 4-methoxybenzyl halides, 3,5-dimethoxybenzyl halides, 3,4-dimethoxybenzyl halides, 3,4,5-trimethoxybenzyl halide protecting groups and their reactivity towards nitrogen atom of a di-substituted pyridine ring in formation of pyridinium salts is also reported.

  7. The creation of defects in ammonium halides by excitons

    International Nuclear Information System (INIS)

    Kim, L.M.

    2002-01-01

    The ammonium halides crystals and alkali halides crystals are analogous by kind chemical bonds and crystalline lattices. The anionic sublattice is identical in this crystals. It is known the main mechanism of defect creation by irradiation is radiationless decay of excitons in alkali halides crystals. The F-, H-centers are formation in this processes. However, F, H-centres are not detected in ammonium halides. The goal of this work is investigation the creation of defects in ammonium halides by excitons. We established that excitons in ammonium chlorides and bromides are similar to excitons in alkali halides. It is known excitons are self-trapped and have identical parameters of the exciton-phonon interaction in both kind crystals. It is supposed, that processes of radiationless disintegration of excitons are identical in ammonium and alkali halides. It is necessary to understand why F-, H-centers are absent in ammonium halides. V k -centres are created by the excitation of the ammonium halides crystals in the absorption band of excitons. It was established by thermoluminescence and spectrums of absorption. The V k -centers begin to migrate at 110-120 K in ammonium chlorides and bromides. The curve of thermoluminescence have peak with maximum at this temperatures. It is known V k -centers in ammonium chlorides have the absorption band at 380 nm. We discovered this absorption band after irradiation of crystals by ultra-violet. In alkali halides F-center is anionic vacancy with electron. The wave function of electron are spread ed at the cations around anionic vacancy. We established the cation NH 4 + in ammonium halides can to capture electron. The ion NH 4 2+ is unsteady. It is disintegrated to NH 3 + and H + . We suppose that excitons in ammonium and alkali halides are disintegrated identically. When cation NH 4 + capture electron, in the anionic sublattice the configuration are created in a direction (100) The indicated configuration is unsteady in relation to a

  8. Treatment of alcaline metals halides for developing crystals

    International Nuclear Information System (INIS)

    Spurney, R.W.

    1974-01-01

    A process is described whereby crystals of an alkaline metal halide may be dried and placed in a crucible for development by the Bridgeman-Stockbarger method. Purified alkaline halides from a suspension are dried and formed into dense cakes of transverse section slightly smaller than that of the crucible, where they are packed, melted and grown into crystals according to the Bridgeman-Stockbarger technique. This method applies to the preparation of alkaline halide crystals, particularly sodium iodide for optical elements or scintillation counters [fr

  9. Alkali metal and alkali earth metal gadolinium halide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  10. Radiation chemistry of the alkali halides

    International Nuclear Information System (INIS)

    Robinson, V.J.; Chandratillake, M.R.

    1987-01-01

    By far the most thoroughly investigated group of compounds in solid-state radiation chemistry are the alkali halides. Some of the reasons are undoubtedly practical: large single crystals of high purity are readily prepared. The crystals are transparent over a wide range of wavelengths. They are more sensitive to radiation damage than most other ionic solids. The crystals have simple well-defined structures, and the products of radiolysis have also in many cases been clearly identified by a variety of experimental techniques, the most important being optical methods and electron paramagnetic resonance (EPR). In recent years the application of pulse techniques-radiolysis and laser photolysis-has yielded a wealth of information concerning the mechanisms of the primary processes of radiation damage, on the one hand, and of thermal and photolytic reactions that the radiolysis products undergo, on the other

  11. Catalytic effect of halide additives ball milled with magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Malka, I.E.; Bystrzycki, J. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Czujko, T. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); CanmetENERGY, Hydrogen Fuel Cells and Transportation Energy, Natural Resources (Canada)

    2010-02-15

    The influence of various halide additives milled with magnesium hydride (MgH{sub 2}) on its decomposition temperature was studied. The optimum amount of halide additive and milling conditions were evaluated. The MgH{sub 2} decomposition temperature and energy of activation reduction were measured by temperature programmed desorption (TPD) and differential scanning calorimetry (DSC). The difference in catalytic efficiency between chlorides and fluorides of the various metals studied is presented. The effects of oxidation state, valence and position in the periodic table for selected halides on MgH{sub 2} decomposition temperature were also studied. The best catalysts, from the halides studied, for magnesium hydride decomposition were ZrF{sub 4}, TaF{sub 5}, NbF{sub 5}, VCl{sub 3} and TiCl{sub 3}. (author)

  12. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-01-01

    Despite their outstanding charge transport characteristics, organolead halide perovskite single crystals grown by hitherto reported crystallization methods are not suitable for most optoelectronic devices due to their small aspect ratios

  13. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  14. High temperature reactions between molybdenum and metal halides

    International Nuclear Information System (INIS)

    Boeroeczki, A.; Dobos, G.; Josepovits, V.K.; Hars, Gy.

    2006-01-01

    Good colour rendering properties, high intensity and efficacy are of vital importance for high-end lighting applications. These requirements can be achieved by high intensity discharge lamps doped with different metal halide additives (metal halide lamps). To improve their reliability, it is very important to understand the different failure processes of the lamps. In this paper, the corrosion reactions between different metal halides and the molybdenum electrical feed-through electrode are discussed. The reactions were studied in the feed-through of real lamps and on model samples too. X-ray photoelectron spectroscopy (XPS) was used to establish the chemical states. In case of the model samples we have also used atomic absorption spectroscopy (AAS) to measure the reaction product amounts. Based on the measurement results we were able to determine the most corrosive metal halide components and to understand the mechanism of the reactions

  15. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from ... Acoustic emission; dislocation; alkali halide crystals; plastic deformation. ..... [5] T Nishimura, A Tahara and T Kolama, Jpn. Metal Inst. 64, 339 (2000).

  16. Systemic analysis of thermodynamic properties of lanthanide halides

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Badalov, A.; Marufi, V.K.

    1992-01-01

    System analysis of thermodynamic characteristics of lanthanide halides was carried out. A method making allowances for the influence of spin and orbital moments of momentum of the main states of lanthanide trivalent ions in their natural series was employed. Unknown in literature thermodynamic values were calculated and corrected for certain compounds. The character of lanthanide halide thermodynamic parameter change depending on ordinal number of the metals was ascertained. Pronouncement of tetrad-effect in series of compounds considered was pointed out

  17. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-01-01

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10 25 /m 3 . The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics

  18. Structure and energetics of trivalent metal halides

    International Nuclear Information System (INIS)

    Hutchinson, F.

    1999-01-01

    Metal trihalide (MX 3 ) systems represent a stern challenge in terms of constructing transferable potential models. Starting from a previously published set of potentials, 'extended' ionic models are developed which, at the outset, include only anion polarization. Deficiencies in these models, particularly for smaller (highly polarizing) cations, axe shown to be significant. For example, crystal structures different to those observed experimentally axe adopted. The potentials axe improved upon by reference to ab initio information available for alkali halides with the 'constraint' that the parameters transfer systematically in a physically transparent manner, for example, in terms of ion radii. The possible influence of anion compression ('breathing') and the relative abundance of anion-anion interactions are considered. Simulation techniques axe developed to allow for the effective simulation of any system symmetry and for the study of transitions between different crystals (constant stress). The developed models are fully tested for a large range of metal trichloride (MCl 3 ) systems. Particular attention is paid to the comparison with recent neutron and X-ray diffraction data on the liquid state. Polarization effects axe shown to be vital in reproducing strong experimental features. The excellent agreement between simulation and experiment allows for differences in experimental procedures to be highlighted. The transferability is further tested by modelling mixtures of the lanthanides with alkali halides with potentials unchanged from the pure systems. The complex evolution of the melt structure is highlighted as the concentration of MCl 3 increases. The effectiveness of the models is tested by reference to dynamical properties. Particular attention is paid to the comparison with Raman scattering data available for a wide range of systems and mixture concentrations. The simulated spectra are generated both by a simple molecular picture of the underlying

  19. Miners' welfare

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, C

    1984-06-13

    The Miners' Welfare Committee (MWC) was formed in Britain in 1921 and initiated building programmes to provide welfare amenities for miners and families, using architecture to improve the quality of a miner's working and leisure time. The article reviews the MWC's work, and assesses the design and architecture at the Selby Coalfield. (7 refs.)

  20. Excitonic Effects in Methylammonium Lead Halide Perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Beard, Matthew C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chen, Xihan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Lu, Haipeng [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yang, Ye [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-05-01

    The exciton binding energy in methylammonium lead iodide (MAPbI3) is about 10 meV, around 1/3 of the available thermal energy (kBT ~ 26 meV) at room temperature. Thus, exciton populations are not stable at room temperature at moderate photoexcited carrier densities. However, excitonic resonances dominate the absorption onset. Furthermore, these resonances determine the transient absorbance and transient reflectance spectra. The exciton binding energy is a reflection of the Coulomb interaction energy between photoexcited electrons and holes. As such, it serves as a marker for the strength of electron/hole interactions and impacts a variety of phenomena, such as, absorption, radiative recombination, and Auger recombination. In this Perspective, we discuss the role of excitons and excitonic resonances in the optical properties of lead-halide perovskite semiconductors. Finally, we discuss how the strong light-matter interactions induce an optical stark effect splitting the doubly spin degenerate ground exciton states and are easily observed at room temperature.

  1. Structured alkali halides for medical applications

    International Nuclear Information System (INIS)

    Schmitt, B.; Fuchs, M.; Hell, E.; Knuepfer, W.; Hackenschmied, P.; Winnacker, A.

    2002-01-01

    Image plates based on storage phosphors are a major application of radiation defects in insulators. Storage phosphors absorb X-ray quanta creating trapped electron-hole pairs in the material. Optical stimulation of the electron causes recombination leading to light emission. Application of image plates requires an optimal compromise between resolution (represented by the modulation transfer function (MTF)) and sensitivity. In our paper we present a new solution of the problem of combining a high MTF with a high sensitivity by structuring the image plates in form of thin needles acting as light guides. This suppresses the lateral spread of light which is detrimental to resolution. As doped CsBr, e.g. CsBr:Ga [Physica Medica XV (1999) 301], can pose a good storage phosphor evaporated layers are of interest in computed radiography. Needle structured CsI:Tl is used as scintillator in direct radiography [IEEE Trans. Nucl. Sci. 45 (3) (1998)]. CsBr layers have been produced by evaporation in vacuum and in inert gas atmosphere varying pressure and temperature. The resulting structures are of fibrous or columnar nature being in good agreement with the zone model of Thornton [Ann. Rev. Mater. Sci. 7 (1977) 239]. A zone model for CsBr has been developed. Measurements on doped alkali halide image plates having needle structure show good MTF at high sensitivity making a significant progress in image plate technology

  2. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Peng, Wei; Wang, Lingfei

    2017-01-01

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making

  3. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Science.gov (United States)

    2013-08-20

    ... merging the metal halide lamp fixture and the high-intensity discharge (HID) lamp rulemakings. This NOPR... Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Proposed Rule #0;#0;Federal...: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office of Energy Efficiency and...

  4. Solvated Positron Chemistry. Competitive Positron Reactions with Halide Ions in Water

    DEFF Research Database (Denmark)

    Christensen, Palle; Pedersen, Niels Jørgen; Andersen, J. R.

    1979-01-01

    It is shown by means of the angular correlation technique that the binding of positrons to halides is strongly influenced by solvation effects. For aqueous solutions we find increasing values for the binding energies between the halide and the positron with increasing mass of the halide...

  5. Solar cells, structures including organometallic halide perovskite monocrystalline films, and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2017-03-02

    Embodiments of the present disclosure provide for solar cells including an organometallic halide perovskite monocrystalline film (see fig. 1.1B), other devices including the organometallic halide perovskite monocrystalline film, methods of making organometallic halide perovskite monocrystalline film, and the like.

  6. Quaternary oxide halides of group 15 with zinc and cadmium

    International Nuclear Information System (INIS)

    Rueck, Nadia

    2014-01-01

    The present thesis ''Quaternary oxide halides of group 15 with zinc and cadmium'' deals with the chemical class of oxide halides, which contain d-block element cations and pnicogens. Over the past few years compounds containing pnicogene cations are intensively investigated. The reason for this is the free electron pair of the Pn"3"+ cation, which is responsible for some interesting properties. Free electron pairs do not only impact the spatial structure of molecules but also the properties of materials. The object of this work was the synthesis and characterization of compounds containing Pn"3"+ cations with free electron pairs. Due to the structure-determining effect of these free electron pairs and in combination with halides it is possible to synthesize compounds with low-dimensional structures like chains and layers. In these compounds the structure is separated into halophilic and chalcophilic sub-structures, which are held together only by weak Van der Waals forces.

  7. Two-Dimensional Halide Perovskites for Emerging New- Generation Photodetectors

    DEFF Research Database (Denmark)

    Tang, Yingying; Cao, Xianyi; Chi, Qijin

    2018-01-01

    Compared to their conventional three-dimensional (3D) counterparts, two-dimensional (2D) halide perovskites have attracted more interests recently in a variety of areas related to optoelectronics because of their unique structural characteristics and enhanced performances. In general, there are two...... distinct types of 2D halide perovskites. One represents those perovskites with an intrinsic layered crystal structure (i.e. MX6 layers, M = metal and X = Cl, Br, I), the other defines the perovskites with a 2D nanostructured morphology such as nanoplatelets and nanosheets. Recent studies have shown that 2D...... halide perovskites hold promising potential for the development of new-generation photodetectors, mainly arising from their highly efficient photoluminescence and absorbance, color tunability in the visible-light range and relatively high stability. In this chapter, we present the summary and highlights...

  8. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3 NH3 PbBr3 ) and all-inorganic (CsPbBr3 ) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3 .

  9. Halide-Dependent Electronic Structure of Organolead Perovskite Materials

    KAUST Repository

    Buin, Andrei

    2015-06-23

    © 2015 American Chemical Society. Organometal halide perovskites have recently attracted tremendous attention both at the experimental and theoretical levels. These materials, in particular methylammonium triiodide, are still limited by poor chemical and structural stability under ambient conditions. Today this represents one of the major challenges for polycrystalline perovskite-based photovoltaic technology. In addition to this, the performance of perovskite-based devices is degraded by deep localized states, or traps. To achieve better-performing devices, it is necessary to understand the nature of these states and the mechanisms that lead to their formation. Here we show that the major sources of deep traps in the different halide systems have different origin and character. Halide vacancies are shallow donors in I-based perovskites, whereas they evolve into a major source of traps in Cl-based perovskites. Lead interstitials, which can form lead dimers, are the dominant source of defects in Br-based perovskites, in line with recent experimental data. As a result, the optimal growth conditions are also different for the distinct halide perovskites: growth should be halide-rich for Br and Cl, and halide-poor for I-based perovskites. We discuss stability in relation to the reaction enthalpies of mixtures of bulk precursors with respect to final perovskite product. Methylammonium lead triiodide is characterized by the lowest reaction enthalpy, explaining its low stability. At the opposite end, the highest stability was found for the methylammonium lead trichloride, also consistent with our experimental findings which show no observable structural variations over an extended period of time.

  10. Local coordination of polyvalent metal ions in molten halide mixtures

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1989-07-01

    Ample experimental evidence is available in the literature on the geometry and the stability of local coordination for polyvalent metal ions in molten mixtures of their halides with alkali halides. Recent schemes for classifying this evidence are discussed. Dissociation of tetrahedral halocomplexes in good ionic systems can be viewed as a classical Mott problem of bound-state stability in a conducting matrix. More generally, structural coordinates can be constructed from properties of the component elements, to separate out systems with long-lived fourfold or sixfold coordination and to distinguish between these. (author). 11 refs, 1 fig

  11. Single Crystals of Organolead Halide Perovskites: Growth, Characterization, and Applications

    KAUST Repository

    Peng, Wei

    2017-04-01

    With the soaring advancement of organolead halide perovskite solar cells rising from a power conversion efficiency of merely 3% to more than 22% shortly in five years, researchers’ interests on this big material family have been greatly spurred. So far, both in-depth studies on the fundamental properties of organolead halide perovskites and their extended applications such as photodetectors, light emitting diodes, and lasing have been intensively reported. The great successes have been ascribed to various superior properties of organolead halide hybrid perovskites such as long carrier lifetimes, high carrier mobility, and solution-processable high quality thin films, as will be discussed in Chapter 1. Notably, most of these studies have been limited to their polycrystalline thin films. Single crystals, as a counter form of polycrystals, have no grain boundaries and higher crystallinity, and thus less defects. These characteristics gift single crystals with superior optical, electrical, and mechanical properties, which will be discussed in Chapter 2. For example, organolead halide perovskite single crystals have been reported with much longer carrier lifetimes and higher carrier mobilities, which are especially intriguing for optoelectronic applications. Besides their superior optoelectronic properties, organolead halide perovskites have shown large composition versatility, especially their organic components, which can be controlled to effectively adjust their crystal structures and further fundamental properties. Single crystals are an ideal platform for such composition-structure-property study since a uniform structure with homogeneous compositions and without distraction from grain boundaries as well as excess defects can provide unambiguously information of material properties. As a major part of work of this dissertation, explorative work on the composition-structure-property study of organic-cation-alloyed organolead halide perovskites using their single

  12. Metal induced gap states at alkali halide/metal interface

    International Nuclear Information System (INIS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-01-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide

  13. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    Science.gov (United States)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  14. Thallous and cesium halide materials for use in cryogenic applications

    International Nuclear Information System (INIS)

    Lawless, W.N.

    1983-01-01

    Certain thallous and cesium halides, either used alone or in combination with other ceramic materials, are provided in cryogenic applications such as heat exchange material for the regenerator section of a closed-cycle cryogenic refrigeration section, as stabilizing coatings for superconducting wires, and as dielectric insulating materials. The thallous and cesium halides possess unusually large specific heats at low temperatures, have large thermal conductivities, are nonmagnetic, and are nonconductors of electricity. They can be formed into a variety of shapes such as spheres, bars, rods, or the like and can be coated or extruded onto substrates or wires. (author)

  15. Photovoltaic Rudorffites: Lead-Free Silver Bismuth Halides Alternative to Hybrid Lead Halide Perovskites.

    Science.gov (United States)

    Turkevych, Ivan; Kazaoui, Said; Ito, Eisuke; Urano, Toshiyuki; Yamada, Koji; Tomiyasu, Hiroshi; Yamagishi, Hideo; Kondo, Michio; Aramaki, Shinji

    2017-10-09

    Hybrid CPbX 3 (C: Cs, CH 3 NH 3 ; X: Br, I) perovskites possess excellent photovoltaic properties but are highly toxic, which hinders their practical application. Unfortunately, all Pb-free alternatives based on Sn and Ge are extremely unstable. Although stable and non-toxic C 2 ABX 6 double perovskites based on alternating corner-shared AX 6 and BX 6 octahedra (A=Ag, Cu; B=Bi, Sb) are possible, they have indirect and wide band gaps of over 2 eV. However, is it necessary to keep the corner-shared perovskite structure to retain good photovoltaic properties? Here, we demonstrate another family of photovoltaic halides based on edge-shared AX 6 and BX 6 octahedra with the general formula A a B b X x (x=a+3 b) such as Ag 3 BiI 6 , Ag 2 BiI 5 , AgBiI 4 , AgBi 2 I 7 . As perovskites were named after their prototype oxide CaTiO 3 discovered by Lev Perovski, we propose to name these new ABX halides as rudorffites after Walter Rüdorff, who discovered their prototype oxide NaVO 2 . We studied structural and optoelectronic properties of several highly stable and promising Ag-Bi-I photovoltaic rudorffites that feature direct band gaps in the range of 1.79-1.83 eV and demonstrated a proof-of-concept FTO/c-m-TiO 2 /Ag 3 BiI 6 /PTAA/Au (FTO: fluorine-doped tin oxide, PTAA: poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], c: compact, m: mesoporous) solar cell with photoconversion efficiency of 4.3 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. THERMODYNAMICS OF MICELLE FORMATION BY 1-METHYL-4-ALKYLPYRIDINIUM HALIDES

    NARCIS (Netherlands)

    BIJMA, K; ENGBERTS, JBFN; HAANDRIKMAN, G; VANOS, NM; BLANDAMER, MJ; BUTT, MD; CULLIS, PM

    This paper reports enthalpies of micellization for a series of 1-methyl-4-alkylpyridinium halide surfactants at 303.2 K with different lengths and degrees of branching of the 4-alkyl chain and different sizes of counterions using two microcalorimeters (LKB 2277 and Omega Microcal). The standard

  17. Empirical formula for the parameters of metallic monovalent halides ...

    African Journals Online (AJOL)

    By collating the data on melting properties and transport coefficients obtained from various experiments and theories for certain halides of monovalent metals, allinclusive linear relationship has been fashioned out. This expression holds between the change in entropy and volume on melting; it is approximately obeyed by ...

  18. Demixing in a metal halide lamp, results from modelling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.

    2006-01-01

    Convection and diffusion in the discharge region of a metal halide lamp is studied using a computer model built with the plasma modeling package Plasimo. A model lamp contg. mercury and sodium iodide is studied. The effects of the total lamp pressure on the degree of segregation of the light

  19. Demixing in a metal halide lamp, results from modeling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    Metal Halide (MH) lamps are high pressure discharge devices, containing a complex chemical mixture, to emit light on a broad spectrum while maintaining good efficacies. Lamps of this type were first exhibited by General Electric at the 1964 World Fair in New York [1]. They typically consist of an

  20. Monocrystallomimicry in the aerosols of ammonium and cesium halides

    International Nuclear Information System (INIS)

    Melikhov, I.V.; Kitova, E.N.; Kozlovskaya, EhD.; Kamenskaya, A.N.; Mikheev, N.B.; Kulyukhin, S.A.

    1997-01-01

    It is experimentally shown that initial CsI and NH 4 Hal nanocrystals combining into mixed aggregates of polyhedral form (pseudo monocrystals) are formed in the process of cocrystallization of ammonium halide and cesium iodide. The origination and growth of the pseudo monocrystals on the account of successive addition of initial crystals is described by the Fokker-Plank equation [ru

  1. Alternative route to metal halide free ionic liquids

    International Nuclear Information System (INIS)

    Takao, Koichiro; Ikeda, Yasuhisa

    2008-01-01

    An alternative synthetic route to metal halide free ionic liquids using trialkyloxonium salt is proposed. Utility of this synthetic route has been demonstrated by preparing 1-ethyl-3-methylimidazolium tetrafluoroborate ionic liquid through the reaction between 1-methylimidazole and triethyloxonium tetra-fluoroborate in anhydrous ether. (author)

  2. Metal Halide Perovskite Polycrystalline Films Exhibiting Properties of Single Crystals

    NARCIS (Netherlands)

    Brenes, Roberto; Guo, D.; Osherov, Anna; Noel, Nakita K.; Eames, Christopher; Hutter, E.M.; Pathak, Sandeep K.; Niroui, Farnaz; Friend, Richard H.; Islam, M. Saiful; Snaith, Henry J.; Bulović, Vladimir; Savenije, T.J.; Stranks, Samuel D.

    2017-01-01

    Metal halide perovskites are generating enormous excitement for use in solar cells and light-emission applications, but devices still show substantial non-radiative losses. Here, we show that by combining light and atmospheric treatments, we can increase the internal luminescence quantum

  3. Spectroscopy on metal-halide lamps under varying gravity conditions

    NARCIS (Netherlands)

    Flikweert, A.J.

    2008-01-01

    Worldwide, 20% of all electricity is used for lighting. For this reason, efficient lamps are economically and ecologically important. High intensity discharge (HID) lamps are efficient lamps. The most common HID lamp these days is the metal-halide (MH) lamp. MH lamps have a good colour rendering

  4. Advances and Promises of Layered Halide Hybrid Perovskite Semiconductors

    NARCIS (Netherlands)

    Pedesseau, Laurent; Sapori, Daniel; Traore, Boubacar; Robles, Roberto; Fang, Hong-Hua; Loi, Maria Antonietta; Tsai, Hsinhan; Nie, Wanyi; Blancon, Jean-Christophe; Neukirch, Amanda; Tretiak, Sergei; Mohite, Aditya D.; Katan, Claudine; Even, Jacky; Kepenekian, Mikael

    2016-01-01

    Layered halide hybrid organic inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells

  5. Methyl halide emission estimates from domestic biomass burning in Africa

    Science.gov (United States)

    Mead, M. I.; Khan, M. A. H.; White, I. R.; Nickless, G.; Shallcross, D. E.

    Inventories of methyl halide emissions from domestic burning of biomass in Africa, from 1950 to the present day and projected to 2030, have been constructed. By combining emission factors from Andreae and Merlet [2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15, 955-966], the biomass burning estimates from Yevich and Logan [2003. An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochemical Cycles 17(4), 1095, doi:10.1029/2002GB001952] and the population data from the UN population division, the emission of methyl halides from domestic biomass usage in Africa has been estimated. Data from this study suggest that methyl halide emissions from domestic biomass burning have increased by a factor of 4-5 from 1950 to 2005 and based on the expected population growth could double over the next 25 years. This estimated change has a non-negligible impact on the atmospheric budgets of methyl halides.

  6. Crystal growth, structure and phase studies on gold halides

    NARCIS (Netherlands)

    Janssen, Eugenius Maria Wilhelmus Janssen

    1977-01-01

    Only very corrosive substances attack gold, the most noble metal. In this study the reactivity and the phase diagrams of gold with the halogens chlorine, bromine and iodine have been investigated. owing to the noble behaviour of gold, its halides are sensitive to heat; on heating they decompose into

  7. On the Boiling Points of the Alkyl Halides.

    Science.gov (United States)

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  8. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  9. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    AE) from alkali halide crystals. Equations are derived for the strain dependence of the transient AE pulse rate, peak value of the AE pulse rate and the total number of AE pulse emitted. It is found that the AE pulse rate should be maximum for a ...

  10. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won

    2016-01-01

    on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  11. Strong Carrier-Phonon Coupling in Lead Halide Perovskite Nanocrystals

    NARCIS (Netherlands)

    Iaru, Claudiu M; Geuchies, Jaco J|info:eu-repo/dai/nl/370526090; Koenraad, Paul M; Vanmaekelbergh, Daniël|info:eu-repo/dai/nl/304829137; Silov, Andrei Yu

    2017-01-01

    We highlight the importance of carrier-phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL

  12. Miscellaneous Lasing Actions in Organo-Lead Halide Perovskite Films.

    Science.gov (United States)

    Duan, Zonghui; Wang, Shuai; Yi, Ningbo; Gu, Zhiyuan; Gao, Yisheng; Song, Qinghai; Xiao, Shumin

    2017-06-21

    Lasing actions in organo-lead halide perovskite films have been heavily studied in the past few years. However, due to the disordered nature of synthesized perovskite films, the lasing actions are usually understood as random lasers that are formed by multiple scattering. Herein, we demonstrate the miscellaneous lasing actions in organo-lead halide perovskite films. In addition to the random lasers, we show that a single or a few perovskite microparticles can generate laser emissions with their internal resonances instead of multiple scattering among them. We experimentally observed and numerically confirmed whispering gallery (WG)-like microlasers in polygon shaped and other deformed microparticles. Meanwhile, owing to the nature of total internal reflection and the novel shape of the nanoparticle, the size of the perovskite WG laser can be significantly decreased to a few hundred nanometers. Thus, wavelength-scale lead halide perovskite lasers were realized for the first time. All of these laser behaviors are complementary to typical random lasers in perovskite film and will help the understanding of lasing actions in complex lead halide perovskite systems.

  13. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

    Science.gov (United States)

    Abdi-Jalebi, Mojtaba; Andaji-Garmaroudi, Zahra; Cacovich, Stefania; Stavrakas, Camille; Philippe, Bertrand; Richter, Johannes M.; Alsari, Mejd; Booker, Edward P.; Hutter, Eline M.; Pearson, Andrew J.; Lilliu, Samuele; Savenije, Tom J.; Rensmo, Håkan; Divitini, Giorgio; Ducati, Caterina; Friend, Richard H.; Stranks, Samuel D.

    2018-03-01

    Metal halide perovskites are of great interest for various high-performance optoelectronic applications. The ability to tune the perovskite bandgap continuously by modifying the chemical composition opens up applications for perovskites as coloured emitters, in building-integrated photovoltaics, and as components of tandem photovoltaics to increase the power conversion efficiency. Nevertheless, performance is limited by non-radiative losses, with luminescence yields in state-of-the-art perovskite solar cells still far from 100 per cent under standard solar illumination conditions. Furthermore, in mixed halide perovskite systems designed for continuous bandgap tunability (bandgaps of approximately 1.7 to 1.9 electronvolts), photoinduced ion segregation leads to bandgap instabilities. Here we demonstrate substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers. We demonstrate external photoluminescence quantum yields of 66 per cent, which translate to internal yields that exceed 95 per cent. The high luminescence yields are achieved while maintaining high mobilities of more than 40 square centimetres per volt per second, providing the elusive combination of both high luminescence and excellent charge transport. When interfaced with electrodes in a solar cell device stack, the external luminescence yield—a quantity that must be maximized to obtain high efficiency—remains as high as 15 per cent, indicating very clean interfaces. We also demonstrate the inhibition of transient photoinduced ion-migration processes across a wide range of mixed halide perovskite bandgaps in materials that exhibit bandgap instabilities when unpassivated. We validate these results in fully operating solar cells. Our work represents an important advance in the construction of tunable metal halide perovskite films and interfaces that can

  14. Aggregate and Mineral Resources - Minerals

    Data.gov (United States)

    NSGIC State | GIS Inventory — This point occurrence data set represents the current mineral and selected energy resources of Utah. The data set coordinates were derived from USGS topographic maps...

  15. Double Charged Surface Layers in Lead Halide Perovskite Crystals

    KAUST Repository

    Sarmah, Smritakshi P.

    2017-02-01

    Understanding defect chemistry, particularly ion migration, and its significant effect on the surface’s optical and electronic properties is one of the major challenges impeding the development of hybrid perovskite-based devices. Here, using both experimental and theoretical approaches, we demonstrated that the surface layers of the perovskite crystals may acquire a high concentration of positively charged vacancies with the complementary negatively charged halide ions pushed to the surface. This charge separation near the surface generates an electric field that can induce an increase of optical band gap in the surface layers relative to the bulk. We found that the charge separation, electric field, and the amplitude of shift in the bandgap strongly depend on the halides and organic moieties of perovskite crystals. Our findings reveal the peculiarity of surface effects that are currently limiting the applications of perovskite crystals and more importantly explain their origins, thus enabling viable surface passivation strategies to remediate them.

  16. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  17. Development and melt growth of novel scintillating halide crystals

    Science.gov (United States)

    Yoshikawa, Akira; Yokota, Yuui; Shoji, Yasuhiro; Kral, Robert; Kamada, Kei; Kurosawa, Shunsuke; Ohashi, Yuji; Arakawa, Mototaka; Chani, Valery I.; Kochurikhin, Vladimir V.; Yamaji, Akihiro; Andrey, Medvedev; Nikl, Martin

    2017-12-01

    Melt growth of scintillating halide crystals is reviewed. The vertical Bridgman growth technique is still considered as very popular method that enables production of relatively large and commercially attractive crystals. On the other hand, the micro-pulling-down method is preferable when fabrication of small samples, sufficient for preliminary characterization of their optical and/or scintillation performance, is required. Moreover, bulk crystal growth is also available using the micro-pulling-down furnace. The examples of growths of various halide crystals by industrially friendly melt growth techniques including Czochralski and edge-defined film-fed growth methods are also discussed. Finally, traveling molten zone growth that in some degree corresponds to horizontal zone melting is briefly overviewed.

  18. Heterofacial alkylation of alkylenediamines by higher alkyl halides

    International Nuclear Information System (INIS)

    Semenov, V.A.; Kryshko, G.M.; Sokal'skaya, L.I.; Zhukova, N.G.

    1985-01-01

    A study of the physiochemical properties of alkylenediamines substituted by lower alkyls, showed that they possess increased complex-forming ability with respect to salts of different metals as titanium, niobium, zirconium, molybdenum, and zinc. To create a simpler method of synthesis of higher tetraaklyalkylalklyenediamines, based on the use of the accessible domestic raw material, the authors investigated the reaction of alkylenediamines with various alkyl halides. It was established that the best reagents can be obtained using alkyl bromides. It is concluded that the procedure of alkylation of alkylenediamines by higher alkyl halides in the presence of water developed permits the production of terraalkylalkylenediamines in one step with good yield and with purity acceptable for use as extraction reagents

  19. Correlations between entropy and volume of melting in halide salts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-09-01

    Melting parameters and transport coefficients in the melt are collated for halides of monovalent, divalent and trivalent metals. A number of systems show a deficit of entropy of melting relative to the linear relationships between entropy change and relative volume change on melting that are found to be approximately obeyed by a majority of halides. These behaviours are discussed on the basis of structural and transport data. The deviating systems are classified into three main classes, namely (i) fast-ion conductors in the high-temperature crystal phase such as AgI, (ii) strongly structured network-like systems such as ZnCl 2 , and (iii) molecular systems melting into associated molecular liquids such as SbCl 3 . (author). 35 refs, 1 fig., 3 tabs

  20. Solution-Phase Synthesis of Cesium Lead Halide Perovskite Nanowires.

    Science.gov (United States)

    Zhang, Dandan; Eaton, Samuel W; Yu, Yi; Dou, Letian; Yang, Peidong

    2015-07-29

    Halide perovskites have attracted much attention over the past 5 years as a promising class of materials for optoelectronic applications. However, compared to hybrid organic-inorganic perovskites, the study of their pure inorganic counterparts, like cesium lead halides (CsPbX3), lags far behind. Here, a catalyst-free, solution-phase synthesis of CsPbX3 nanowires (NWs) is reported. These NWs are single-crystalline, with uniform growth direction, and crystallize in the orthorhombic phase. Both CsPbBr3 and CsPbI3 are photoluminescence active, with composition-dependent temperature and self-trapping behavior. These NWs with a well-defined morphology could serve as an ideal platform for the investigation of fundamental properties and the development of future applications in nanoscale optoelectronic devices based on all-inorganic perovskites.

  1. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; Egger, David A.; Hull, Trevor; Stoumpos, Constantinos C.; Zheng, Fan; Heinz, Tony F.; Kronik, Leeor; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Rappe, Andrew M.; Pimenta, Marcos A.; Brus, Louis E.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.

  2. Apatite and sodalite based glass-bonded waste forms for immobilization of 129I and mixed halide radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Goel, Ashutosh [Rutgers Univ., New Brunswick, NJ (United States); McCloy, John S. [Washington State Univ., Pullman, WA (United States); Riley, Brian J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-12-30

    The goal of the project was to utilize the knowledge accumulated by the team, in working with minerals for chloride wastes and biological apatites, toward the development of advanced waste forms for immobilizing 129I and mixed-halide wastes. Based on our knowledge, experience, and thorough literature review, we had selected two minerals with different crystal structures and potential for high chemical durability, sodalite and CaP/PbV-apatite, to form the basis of this project. The focus of the proposed effort was towards: (i) low temperature synthesis of proposed minerals (iodine containing sodalite and apatite) leading to the development of monolithic waste forms, (ii) development of a fundamental understanding of the atomic-scale to meso-scale mechanisms of radionuclide incorporation in them, and (iii) understanding of the mechanism of their chemical corrosion, alteration mechanism, and rates. The proposed work was divided into four broad sections. deliverables. 1. Synthesis of materials 2. Materials structural and thermal characterization 3. Design of glass compositions and synthesis glass-bonded minerals, and 4. Chemical durability testing of materials.

  3. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    OpenAIRE

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  4. Halides of BET-TTF: novel hydrated molecular metals

    Energy Technology Data Exchange (ETDEWEB)

    Laukhina, E.; Ribera, E.; Vidal-Gancedo, J.; Canadell, E.; Veciana, J.; Rovira, C. [Universidad Autonoma de Barcelona, Bellaterra (Spain). Inst. de Ciencia de Materials; Khasanov, S.; Zorina, L.; Shibaeva, R. [Rossijskaya Akademiya Nauk, Chernogolovka (Russian Federation). Inst. Fiziki Tverdogo Tela; Laukhin, V. [Inst. of Problems of Chemical Physics, RAS, Chernogolovka (Russian Federation); Honold, M.; Nam, M.-S.; Singleton, J. [Clarendon Lab., Univ. of Oxford (United Kingdom)

    2000-01-07

    A hint of superconducting transition has been observed for the first time in a cation radical salt derived from bisethylenethio-tetrathiafulvalene (BET-TTF), the salt (BET-TTF){sub 2}Br.3H{sub 2}O. Here the synthesis, X-ray structure, and physical properties of two hydrated halides of BET-TTF that are isostructural and present stable metallic properties are described. (orig.)

  5. Non-halide sediments from the Loule diapir salt mine: characterization and environmental significance

    Science.gov (United States)

    Ribeiro, Carlos; Terrinha, Pedro; Andrade, Alexandre; Fonseca, Bruno; Caetano, Miguel; Neres, Marta; Font, Eric; Mirão, José; Dias, Cristina; Rosado, Lúcia; Maurer, Anne-France; Manhita, Ana

    2017-04-01

    The sedimentary record of the Mesozoic Algarve Basin (south Portugal) spans from the Triassic to the Lower Cretaceous. Following the initial phase of Pangaea breakup and the related continental sedimentation during the Triassic, the sedimentation evolved through transitional (Triassic-Jurassic transition) to marine (Jurassic) environments. During the Hettangian a thick sequence of evaporites deposited in the basin. Most of the occurrences of these deposits have undetermined volumes, due to the post depositional diapiric movements. At the central Algarve, under the town of Loulé, a salt wall of up to > 1 km across, > 3 km in length and > 2 km in height has been exploited for the chemical industry (Loulé Diapir - LD). Most of the sediments that constitute LD are halides (> 99% halite), the exception being a package of non-halide sediments, constituted by carbonates (dolomite and magnesite) and sulphates (anhydrite) in various proportions with a maximum thickness of 3 meters. This package has a distinctive mesoscopic aspect of three layers of approximately the same thickness, different colours and primary sedimentary structures: black-brow-grey, from bottom to top. The sediments of this package were studied with a multidisciplinary approach aiming their mineralogical and chemical characterization, the determination of the organic matter content and origin, as well as the characterization and understanding of the chemical processes that occurred during the emplacement and compression of the LD: (i) X-ray diffraction for the determination of the mineral phases present and semi-quantification using the RIR-Reference Intensity Ratio method; (ii) micro analysis of the mineralogical samples by Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy; (iii) REE content determination by ICP-MS; (iv) determination of the carbon content by CHN Elemental analysis; (v) determination of the organic matter content by elemental analysis and their composition by

  6. Mineral sands

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    This paper presents an outlook of the Australian mineral sand industry and covers the major operators. It is shown that conscious of an environmentally minded public, the Australian miners have led the way in the rehabilitation of mined areas. Moreover the advanced ceramic industry is generating exciting new perspectives for zircon producers and there is a noticeable growth in the electronic market for rare earths, but in long term the success may depend as much on environmental management and communication skills as on mining and processing skills

  7. Solvation structures of lithium halides in methanol–water mixtures

    International Nuclear Information System (INIS)

    Sarkar, Atanu; Dixit, Mayank Kumar; Tembe, B.L.

    2015-01-01

    Highlights: • Potentials of mean force for Li + -halides are calculated in methanol–water mixtures. • Stable CIP for x methanol = 1.0 becomes unstable at and below x methanol = 0.75. • The Li + ion is preferentially solvated by methanol molecules. • The halide ions are preferentially solvated by water molecules. - Abstract: The potentials of mean force (PMFs) for the ion pairs, Li + −Cl − , Li + −Br − and Li + −I − have been calculated in five methanol–water compositions. The results obtained are verified by trailing the trajectories and calculating the ion pair distance residence times. Local structures around the ions are studied using the radial distribution functions, density profiles, orientational correlation functions, running coordination numbers and excess coordination numbers. The major change in PMF is observed as the methanol mole fraction (x methanol ) is changed from 1.0 to 0.75. The stable contact ion pair occurring for x methanol = 1.0 becomes unstable at and below x methanol = 0.75. The preferential solvation data show that the halide ions are always preferentially solvated by water molecules. Although the lithium ion is preferentially solvated by methanol molecules, there is significant affinity towards water molecules as well

  8. Methyl halide emissions from greenhouse-grown mangroves

    Science.gov (United States)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  9. Lasing in robust cesium lead halide perovskite nanowires

    Science.gov (United States)

    Eaton, Samuel W.; Lai, Minliang; Gibson, Natalie A.; Wong, Andrew B.; Dou, Letian; Ma, Jie; Wang, Lin-Wang; Leone, Stephen R.; Yang, Peidong

    2016-01-01

    The rapidly growing field of nanoscale lasers can be advanced through the discovery of new, tunable light sources. The emission wavelength tunability demonstrated in perovskite materials is an attractive property for nanoscale lasers. Whereas organic–inorganic lead halide perovskite materials are known for their instability, cesium lead halides offer a robust alternative without sacrificing emission tunability or ease of synthesis. Here, we report the low-temperature, solution-phase growth of cesium lead halide nanowires exhibiting low-threshold lasing and high stability. The as-grown nanowires are single crystalline with well-formed facets, and act as high-quality laser cavities. The nanowires display excellent stability while stored and handled under ambient conditions over the course of weeks. Upon optical excitation, Fabry–Pérot lasing occurs in CsPbBr3 nanowires with an onset of 5 μJ cm−2 with the nanowire cavity displaying a maximum quality factor of 1,009 ± 5. Lasing under constant, pulsed excitation can be maintained for over 1 h, the equivalent of 109 excitation cycles, and lasing persists upon exposure to ambient atmosphere. Wavelength tunability in the green and blue regions of the spectrum in conjunction with excellent stability makes these nanowire lasers attractive for device fabrication. PMID:26862172

  10. Abiotic Formation of Methyl Halides in the Terrestrial Environment

    Science.gov (United States)

    Keppler, F.

    2011-12-01

    Methyl chloride and methyl bromide are the most abundant chlorine and bromine containing organic compounds in the atmosphere. Since both compounds have relatively long tropospheric lifetimes they can effectively transport halogen atoms from the Earth's surface, where they are released, to the stratosphere and following photolytic oxidation form reactive halogen gases that lead to the chemical destruction of ozone. Methyl chloride and methyl bromide account for more than 20% of the ozone-depleting halogens delivered to the stratosphere and are predicted to grow in importance as the chlorine contribution to the stratosphere from anthropogenic CFCs decline. Today methyl chloride and methyl bromide originate mainly from natural sources with only a minor fraction considered to be of anthropogenic origin. However, until as recently as 2000 most of the methyl chloride and methyl bromide input to the atmosphere was considered to originate from the oceans, but investigations in recent years have clearly demonstrated that terrestrial sources such as biomass burning, wood-rotting fungi, coastal salt marshes, tropical vegetation and organic matter degradation must dominate the atmospheric budgets of these trace gases. However, many uncertainties still exist regarding strengths of both sources and sinks, as well as the mechanisms of formation of these naturally occurring halogenated gases. A better understanding of the atmospheric budget of both methyl chloride and methyl bromide is therefore required for reliable prediction of future ozone depletion. Biotic and abiotic methylation processes of chloride and bromide ion are considered to be the dominant pathways of formation of these methyl halides in nature. In this presentation I will focus on abiotic formation processes in the terrestrial environment and the potential parameters that control their emissions. Recent advances in our understanding of the abiotic formation pathway of methyl halides will be discussed. This will

  11. Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767)

    International Nuclear Information System (INIS)

    Kennedy, D.W.; Aust, S.D.; Bumpus, J.A.

    1990-01-01

    The ability of Phanerochaete chrysosporium to degrade six alkyl halide insecticides (aldrin, dieldrin, heptachlor, chlordane, lindane, and mirex) in liquid and soil-corncob matrices was compared by using 14 C-labeled compounds. Of these, only [ 14 C]lindane and [ 14 C]chlordane underwent extensive biodegradation, as evidenced by the fact that 9.4 to 23.4% of these compounds were degraded to 14 CO 2 in 30 days in liquid cultures and 60 days in soil-corncob cultures inoculated with P. chrysosporium. Although [ 14 C]aldrin, [ 14 C]dieldrin, [ 14 C]heptachlor, and [14D]mirex were poorly mineralized, substantial bioconversion occurred, as determined by substrate disappearance and metabolite formation. Nonbiological disappearance was observed only with chlordane and heptachlor

  12. Hydrothermal minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    flux. Circulation of seawater through the oceanic crust and upper mantle gives rise to a complex series of physical and chemical reactions that lead to the 1) formation of seafloor mineral deposits; 2) alteration of oceanic crust; 3) control... temperature in the high-temperature reaction zone near the heat source. Important parameters in determining the high- temperature fluid composition are • pressure, • temperature, • water/rock ratio, • rock composition, • recharge fluid...

  13. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Science.gov (United States)

    2010-01-01

    ... high intensity discharge fixture, the efficiency of a lamp and ballast combination, expressed as a... lamps. Metal halide lamp means a high intensity discharge lamp in which the major portion of the light... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning metal halide lamp ballasts and...

  14. Broadly tunable metal halide perovskites for solid-state light-emission applications

    NARCIS (Netherlands)

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as

  15. Thermal battery. [solid metal halide electrolytes with enhanced electrical conductance after a phase transition

    Science.gov (United States)

    Carlsten, R.W.; Nissen, D.A.

    1973-03-06

    The patent describes an improved thermal battery whose novel design eliminates various disadvantages of previous such devices. Its major features include a halide cathode, a solid metal halide electrolyte which has a substantially greater electrical conductance after a phase transition at some temperature, and a means for heating its electrochemical cells to activation temperature.

  16. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    KAUST Repository

    Moore, David T.

    2014-08-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt\\'s anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films. © 2014 Author(s).

  17. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    Directory of Open Access Journals (Sweden)

    David T. Moore

    2014-08-01

    Full Text Available The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material. Despite recent advances, however, there are still a number of fundamental aspects of their formation as well as their physical and electronic behavior that are not well understood. In this letter we explore the mechanism by which these materials crystallize by testing the outcome of each of the reagent halide salts. We find that components of both salts, lead halide and methylammonium halide, are relatively mobile and can be readily exchanged during the crystallization process when the reaction is carried out in solution or in the solid state. We exploit this fact by showing that the perovskite structure is formed even when the lead salt's anion is a non-halide, leading to lower annealing temperature and time requirements for film formation. Studies into these behaviors may ultimately lead to improved processing conditions for photovoltaic films.

  18. Metal-halide lamp design: atomic and molecular data needed

    International Nuclear Information System (INIS)

    Lapatovich, Walter P

    2009-01-01

    Metal-halide lamps are a subset of high intensity discharge (HID) lamps so named because of their high radiance. These lamps are low temperature (∼0.5 eV), weakly ionized plasmas sustained in refractory but light transmissive envelopes by the passage of electric current through atomic and molecular vapors. For commercial applications, the conversion of electric power to light must occur with good efficiency and with sufficient spectral content throughout the visible (380-780 nm) to permit the light so generated to render colors comparable to natural sunlight. This is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency (efficacy) and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The electrons, atoms and radicals are in local thermodynamic equilibrium (LTE), but not with the radiation field. Strong thermal (10 6 K m -1 ) and density gradients are sustained in the discharge. Atomic radiation produced in the high-temperature core transits through colder gas regions where it interacts with cold atoms and un-dissociated molecules before exiting the lamp. Power balance and spectral output of the lamp are directly affected by the strength of atomic transitions. Attempts to simulate the radiative output of functional metal-halide lamps have been successful only in very simple cases. More data (e.g. the atomic transition probabilities of Ce i) are necessary to improve lamp performance, to select appropriate radiators and in scaling the lamp geometry to various wattages for specific applications.

  19. Calcium phosphate cements with strontium halides as radiopacifiers.

    Science.gov (United States)

    López, Alejandro; Montazerolghaem, Maryam; Engqvist, Håkan; Ott, Marjam Karlsson; Persson, Cecilia

    2014-02-01

    High radiopacity is required to monitor the delivery and positioning of injectable implants. Inorganic nonsoluble radiopacifiers are typically used in nondegradable bone cements; however, their usefulness in resorbable cements is limited due to their low solubility. Strontium halides, except strontium fluoride, are ionic water-soluble compounds that possess potential as radiopacifiers. In this study, we compare the radiopacity, mechanical properties, composition, and cytotoxicity of radiopaque brushite cements prepared with strontium fluoride (SrF2 ), strontium chloride (SrCl2 ·6H2 O), strontium bromide (SrBr2 ), or strontium iodide (SrI2 ). Brushite cements containing 10 wt % SrCl2 ·6H2 O, SrBr2 , or SrI2 exhibited equal to or higher radiopacity than commercial radiopaque cements. Furthermore, the brushite crystal lattice in cements that contained the ionic radiopacifiers was larger than in unmodified cements and in cements that contained SrF2 , indicating strontium substitution. Despite the fact that the strontium halides increased the solubility of the cements and affected their mechanical properties, calcium phosphate cements containing SrCl2 ·6H2 O, SrBr2 , and SrI2 showed no significant differences in Saos-2 cell viability and proliferation with respect to the control. Strontium halides: SrCl2 ·6H2 O, SrBr2 , and SrI2 may be potential candidates as radiopacifiers in resorbable biomaterials although their in vivo biocompatibility, when incorporated into injectable implants, is yet to be assessed. Copyright © 2013 Wiley Periodicals, Inc.

  20. Hot working alkali halides for laser window applications

    International Nuclear Information System (INIS)

    Koepke, B.G.; Anderson, R.H.; Stokes, R.J.

    1975-01-01

    The techniques used to hot work alkali halide crystals into laser window blanks are reviewed. From the point of view of high power laser window applications one of the materials with a high figure of merit is KCl. Thus the materials examined are KCl and alloys of KCl-KBr containing 5 mole percent KBr. The fabrication techniques include conventional and constrained press forging, isostatic press forging and hot rolling. Optical properties are paramount to the ultimate usefulness of these materials. Results on the optical properties of the hot worked material are included together with mechanical properties and microstructural data

  1. Effect of chromone-substituted benzothiazolium halides on photosynthetic processes

    International Nuclear Information System (INIS)

    Kralova, K.; Sersen, F.; Gasparova, R.; Lacova, M.

    1998-01-01

    The effects of 3-R 2 -2[2-(6-R 1 -chromone-3-yl)ethenyl]benzothiazolium halides (CBH) on photosynthetic electron transport in spinach chloroplasts and in the legal suspension of Chlorella vulgaris were investigated. Using EPR spectroscopy it was confirmed that these compounds containing in their molecules two heterocyclic skeletons, namely benzothiazole and chromone, interact with the intermediate D + , corresponding to the tyrosine radical Tyr D situated in D 2 protein on the donor side of photosystem 2. Consequently, higher concentrations of CBH inhibited oxygen evolution rate in Chlorella vulgaris and the inhibitory effectiveness depended on the lipophilicity of the of the compound. (authors)

  2. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

    Science.gov (United States)

    Akkerman, Quinten A.; Rainò, Gabriele; Kovalenko, Maksym V.; Manna, Liberato

    2018-05-01

    Lead halide perovskites (LHPs) in the form of nanometre-sized colloidal crystals, or nanocrystals (NCs), have attracted the attention of diverse materials scientists due to their unique optical versatility, high photoluminescence quantum yields and facile synthesis. LHP NCs have a `soft' and predominantly ionic lattice, and their optical and electronic properties are highly tolerant to structural defects and surface states. Therefore, they cannot be approached with the same experimental mindset and theoretical framework as conventional semiconductor NCs. In this Review, we discuss LHP NCs historical and current research pursuits, challenges in applications, and the related present and future mitigation strategies explored.

  3. Status quo of ceramic material for metal halide discharge lamps

    International Nuclear Information System (INIS)

    Kappen, Theo G M M

    2005-01-01

    Polycrystalline alumina is an excellent ceramic material for use as the envelope for metal halide discharge lamps. Although this material was introduced in the mid-1960s, and is thus already known for several decades, recent years have seen considerable effort aimed at further development of these ceramic envelope materials. Developments are not only in the field of ceramic shaping technologies, but are also concentrated on the material properties of the ceramic material itself. Optical, mechanical as well as the chemical properties of the ceramic envelope are strongly controlled by the shape as well as the microstructure of the ceramics used

  4. Evaluation of field test equipment for halide and DOP testing

    International Nuclear Information System (INIS)

    Schreiber, K.L.; Kovach, J.L.

    1975-01-01

    The Nucon Testing Services Department, field testing at power reactor sites, has performed tests using R-11, R-12, and R-112 in conjunction with gas chromatographs and direct reading halide detectors. The field operational experience with these detector systems, thus sensitivity, precision, and manner of field calibration, are presented. Laboratory experiments regarding 3 H-tagged methyl iodide for in place leak testing of adsorber systems indicate a low hazard, high reliability process for leak testing in facilities where atmospheric cross contamination occurs. (U.S.)

  5. Synthesis of halide- and solvent free metal borohydrides

    DEFF Research Database (Denmark)

    Grinderslev, Jakob; Møller, Kasper Trans; Richter, Bo

    have challenges due to their high desorption kinetics and limited reversibility at moderate conditions.[2],[3],[4] In this work, we present a new approach to synthesize halide- and solvent free metal borohydrides starting from the respective metal hydride. The synthetic strategy ensures that no metal...... to the metal. Hence, the powdered M(BH4)3∙DMS is heated to 140 °C for 4 hours to obtain pure M(BH4)3. The rare-earth metal borohydrides have been investigated by infrared spectroscopy and thermal analysis (TGA-DSC-MS). Furthermore, the structural trends are investigated by synchrotron radiation powder X...

  6. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites.

    Science.gov (United States)

    Sutter-Fella, Carolin M; Ngo, Quynh P; Cefarin, Nicola; Gardner, Kira L; Tamura, Nobumichi; Stan, Camelia V; Drisdell, Walter S; Javey, Ali; Toma, Francesca M; Sharp, Ian D

    2018-06-13

    Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH 2 ) 2 CsPb-halide (FACsPb-) and CH 3 NH 3 Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

  7. Origin of halides (Cl- and Br-) and of their stable isotopes (d37Cl and d81Br) at the Tournemire URL (France) - Experimental and numerical approach

    Science.gov (United States)

    Bachir-Bey, Nassim; Matray, Jean-Michel

    2014-05-01

    This work is part of research conducted by the Institute of Radiological and Nuclear Safety (IRSN) on the geological disposal of High-Level and Intermediate-Level Long-Lived (HL-ILLL) radioactive waste in deep clayrocks. In France, the choice of the potential host rock for the geological storage is focused on the Callovian-Oxfordian (COx) of Meuse/Haute-Marne from its low permeability, capacity for self- sealing, high sorption and ability to radionuclide (RN) transport by diffusion. IRSN, which plays an expert role for ASN has its own underground research laboratory in a clayrock which has strong analogies to the COx. This is the Toarcian/Domerian clayrock located at Tournemire in southern Aveyron in France. The purpose of this study was to assess the transfer of RN in the Tournemire clayrock through the study of halides contents and of their stable isotopes (Cl-, Br-, Cl-/Br-, d37Cl, d81Br). The approach used was multiple and consisted for halides to: 1) Assess their stock in different fractions of the rock by applying several techniques including i) alkaline fusion for their total stock, ii) leaching to access their stock in porewater and to mineral phases sensitive to dissolution iii) cubic diffusion for their stock in porewater, 2) Get their diffusive transport parameters of a selection of samples from the upper Toarcian by cubic diffusion experiments modelled using the Hytec transport code developed by Mines ParisTech and 3) Model their transport after palaeohydrogeological known changes of the Tournemire massif. The experimental approach, conducted at the LAME lab, did not lead to an operational protocol for the alkaline fusion due to an incomplete rock dissolution. Leaching was used to characterize the concentrations of halides in the fractions of pore water and of minerals sensitive to dissolution. The results show levels of halides much higher than those of pore water with very low Cl/Br ratios likely resulting from the dissolution of mineral species. The

  8. Halide Perovskites: New Science or ``only'' future Energy Converters?

    Science.gov (United States)

    Cahen, David

    Over the years many new ideas and systems for photovoltaic, PV, solar to electrical energy conversion have been explored, but only a few have really impacted PV's role as a more sustainable, environmentally less problematic and safer source of electrical power than fossil or nuclear fuel-based generation. Will Halide Perovskites, HaPs, be able to join the very select group of commercial PV options? To try to address this question, we put Halide Perovskite(HaP) cells in perspective with respect to other PV cells. Doing so also allows to identify fundamental scientific issues that can be important for PV and beyond. What remains to be seen is if those issues lead to new science or scientific insights or additional use of existing models. Being more specific is problematic, given the fact that this will be 4 months after writing this abstract. Israel National Nano-initiative, Weizmann Institute of Science's Alternative sustainable Energy Research Initiative; Israel Ministries of -Science and of -Infrastructure, Energy & Water.

  9. Melting and liquid structure of polyvalent metal halides

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1992-08-01

    A short review is given of recent progress in determining and understanding liquid structure types and melting mechanisms for halides of polyvalent metals. The nature of the preferred local coordination for the polyvalent metal ion in the melt can usually be ascertained from data on liquid mixtures with halogen-donating alkali halides. The stability of these local coordination states and the connectivity that arises between them in the approach to the pure melt determines the character of its short-range and possible medium-range order. A broad classification of structural and melting behaviours can be given on the basis of measured melting parameters and transport coefficients for many compounds, in combination with the available diffraction data on the liquid structure of several compounds. Correlations have been shown to exist with a simple indicator of the nature of the chemical bond and also with appropriate parameters of ionic models, wherever the latter are usefully applicable for semiquantitative calculations of liquid structure. Consequences on the mechanisms for valence electron localization in solutions of metallic elements into strongly structured molten salts are also briefly discussed. (author). 46 refs, 4 figs, 2 tabs

  10. Sodium-metal halide and sodium-air batteries.

    Science.gov (United States)

    Ha, Seongmin; Kim, Jae-Kwang; Choi, Aram; Kim, Youngsik; Lee, Kyu Tae

    2014-07-21

    Impressive developments have been made in the past a few years toward the establishment of Na-ion batteries as next-generation energy-storage devices and replacements for Li-ion batteries. Na-based cells have attracted increasing attention owing to low production costs due to abundant sodium resources. However, applications of Na-ion batteries are limited to large-scale energy-storage systems because of their lower energy density compared to Li-ion batteries and their potential safety problems. Recently, Na-metal cells such as Na-metal halide and Na-air batteries have been considered to be promising for use in electric vehicles owing to good safety and high energy density, although less attention is focused on Na-metal cells than on Na-ion cells. This Minireview provides an overview of the fundamentals and recent progress in the fields of Na-metal halide and Na-air batteries, with the aim of providing a better understanding of new electrochemical systems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Self-trapped holes in alkali silver halide crystals

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    γ-Ray irradiation at 77 K induces defects in M 2 AgX 3 (M=Rb, K and NH 4 ; X=Br and I) crystals. The irradiation induces self-trapped holes of the form of I 0 in the case of alkali silver iodides, and (halogen) 2 - and (halogen) 0 in the case of ammonium silver halides. The (halogen) 0 is weakly coupled with the nearest alkali metal ion or ammonium ion. It is able to be denoted as RbI + , KI + , NH 4 I + or NH 4 Br + . The directions of hole distribution of (halogen) 2 - and (halogen) 0 were different in each case of the alkali silver iodides, ammonium silver halides and mixed crystal of them. The (halogen) 0 decayed at 160 K in annealing process. The (halogen) 2 - was converted into another form of (halogen) 2 - at 250 K and this decayed at 310 K. A formation of metallic layers was observed on the crystal surface parallel with the c-plane of (NH 4 ) 2 AgI 3 irradiated at room temperature. (author)

  12. Nature of the superionic transition in Ag+ and Cu+ halides

    International Nuclear Information System (INIS)

    Keen, D.A.; Hull, S.; Barnes, A.C.; Berastegui, P.; Crichton, W.A.; Madden, P.A.; Tucker, M.G.; Wilson, M.

    2003-01-01

    Silver and copper halides generally display an abrupt (first-order) transition to the superionic state. However, powder diffraction studies and molecular dynamics (MD) simulations of AgI under hydrostatic pressure both indicate that a continuous superionic transition occurs on heating. The gradual onset of the highly conducting state is accompanied by an increasing fraction of dynamic Frenkel defects, a peak in the specific heat and anomalous behavior of the lattice expansion. Similar methods have been employed to investigate the proposed continuous superionic transition between the two ambient pressure face centered cubic phases of CuI. This is difficult to examine experimentally, because the hexagonal β phase exists over a narrow temperature range between the γ (cation ordered) and α (cation disordered) phases. MD simulations performed with the simulation box constrained to remain cubic at all temperatures show that, although limited Cu + Frenkel disorder occurs within γ-CuI, CuI undergoes an abrupt superionic transition at 670 K to the superionic α phase. This is supported by powder neutron diffraction studies of CuI lightly doped with Cs + to prevent stabilization of the β phase. The implications of these results on the phase transitions of other copper and silver halide superionic conductors are discussed

  13. Protonation of octadecylamine Langmuir monolayer by adsorption of halide counterions

    Science.gov (United States)

    Sung, Woongmo; Avazbaeva, Zaure; Lee, Jonggwan; Kim, Doseok

    Langmuir monolayer consisting of octadecylamine (C18H37NH2, ODA) was investigated by heterodyne vibrational sum-frequency generation (HD-VSFG) spectroscopy in conjunction with surface pressure-area (π- A) isotherm, and the result was compared with that from cationic-lipid (DPTAP) Langmuir monolayer. In case of ODA monolayer on pure water, both SF intensity of water OH band and the surface pressure were significantly smaller than those of the DPTAP monolayer implying that only small portion of the amine groups (-NH3+ is protonated in the monolayer. In the presence of sodium halides (NaCl and NaI) in the subphase water, it was found that the sign of Imχ (2) of water OH band remained the same as that of the ODA monolayer on pure water, but there was a substantial increase in the SF amplitude. From this, we propose that surface excess of the halide counterions (Cl- and I-) makes the solution condition near the ODA monolayer/water interface more acidic so that ODA molecules in the monolayer are more positively charged, which works to align the water dipoles at the interface.

  14. Halide salts accelerate degradation of high explosives by zerovalent iron

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Shea, Patrick J.; Yang, Jae E.; Kim, Jang-Eok

    2007-01-01

    Zerovalent iron (Fe 0 , ZVI) has drawn great interest as an inexpensive and effective material to promote the degradation of environmental contaminants. A focus of ZVI research is to increase degradation kinetics and overcome passivation for long-term remediation. Halide ions promote corrosion, which can increase and sustain ZVI reactivity. Adding chloride or bromide salts with Fe 0 (1% w/v) greatly enhanced TNT, RDX, and HMX degradation rates in aqueous solution. Adding Cl or Br salts after 24 h also restored ZVI reactivity, resulting in complete degradation within 8 h. These observations may be attributed to removal of the passivating oxide layer and pitting corrosion of the iron. While the relative increase in degradation rate by Cl - and Br - was similar, TNT degraded faster than RDX and HMX. HMX was most difficult to remove using ZVI alone but ZVI remained effective after five HMX reseeding cycles when Br - was present in solution. - The addition of halide ions promotes the degradation of high explosives by zerovalent iron

  15. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements

    Science.gov (United States)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.

    2017-12-01

    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  16. Formability of ABX3 (X=F,Cl,Br,I) halide perovskites

    International Nuclear Information System (INIS)

    Li Chonghea; Lu Xionggang; Ding Weizhong; Feng Liming; Gao Yonghui; Guo Ziming

    2008-01-01

    In this study a total of 186 complex halide systems were collected; the formabilities of ABX 3 (X = F, Cl, Br and I) halide perovskites were investigated using the empirical structure map, which was constructed by Goldschmidt's tolerance factor and the octahedral factor. A model for halide perovskite formability was built up. In this model obtained, for all 186 complex halides systems, only one system (CsF-MnF 2 ) without perovskite structure and six systems (RbF-PbF 2 , CsF- BeF 2 , KCl-FeCl 2 , TlI-MnI 2 , RbI-SnI 2 , TlI-PbI 2 ) with perovskite structure were wrongly classified, so its predicting accuracy reaches 96%. It is also indicated that both the tolerance factor and the octahedral factor are a necessary but not sufficient condition for ABX 3 halide perovskite formability, and a lowest limit of the octahedral factor exists for halide perovskite formation. This result is consistent with our previous report for ABO 3 oxide perovskite, and may be helpful to design novel halide materials with the perovskite structure. (orig.)

  17. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura; Poater, Albert; Cazin, Catherine S J; Slugovc, Christian; Cavallo, Luigi

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  18. Development of halide copper vapor laser (the characteristics of using Cul)

    International Nuclear Information System (INIS)

    Oouti, Kazumi; Wada, Yukio; Sasao, Nobuyuki

    1990-01-01

    We are developing halide copper vapor laser that is high efficiency and high reputation rate visible laser. Halide copper vapor laser uses halide copper of copper vapor source. It melts low temperature in comporison with metal copper, because laser tube structure is very simple and it can operate easy. This time, we experiment to use Cul for copper vapor source. We resulted maximum output energy 17.8 (W) and maximum efficiency 0.78 (%) when operate condition was reputation rate 30 (kHz), gas pressure 90 (Torr), charging voltage 13 (kV). (author)

  19. A spectrophotometric study of aqueous Au(III) halide-hydroxide complexes at 25-80 °C

    Science.gov (United States)

    Usher, Al; McPhail, D. C.; Brugger, Joël

    2009-06-01

    The mobility and transport of gold in low-temperature waters and brines is affected by the aqueous speciation of gold, which is sensitive in particular to pH, oxidation and halide concentrations. In this study, we use UV-Vis spectrophotometry to identify and measure the thermodynamic properties of Au(III) aqueous complexes with chloride, bromide and hydroxide. Au(III) forms stable square planar complexes with hydroxide and halide ligands. Based on systematic changes in the absorption spectra of solutions in three binary systems NaCl-NaBr, NaCl-NaOH and NaBr-NaOH at 25 °C, we derived log dissociation constants for the following mixed and end-member halide and hydroxide complexes: [AuCl 3Br] -, [AuCl 2Br 2] -, [AuBr 3Cl] - and [AuBr 4] -; [AuCl 3(OH)] -, [AuCl 2(OH) 2] -, [AuCl(OH) 3] - and [Au(OH) 4] -; and [AuBr 3(OH)] -, [AuBr 2(OH) 2] - and [AuBr(OH) 3] -. These are the first reported results for the mixed chloride-bromide complexes. Increasing temperature to 80 °C resulted in an increase in the stability of the mixed chloride-bromide complexes, relative to the end-member chloride and bromide complexes. For the [AuCl (4-n)(OH) n] - series of complexes ( n = 0-4), there is an excellent agreement between our spectrophotometric results and previous electrochemical results of Chateau et al. [Chateau et al. (1966)]. In other experiments, the iodide ion (I -) was found to be unstable in the presence of Au(III), oxidizing rapidly to I 2(g) and causing Au to precipitate. Predicted Au(III) speciation indicates that Au(III) chloride-bromide complexes can be important in transporting gold in brines with high bromide-chloride ratios (e.g., >0.05), under oxidizing (atmospheric), acidic (pH < 5) conditions. Native gold solubility under atmospheric oxygen conditions is predicted to increase with decreasing pH in acidic conditions, increasing pH in alkaline conditions, increasing chloride, especially at acid pH, and increasing bromide for bromide/chloride ratios greater than 0

  20. Metal halide arc discharge lamp having short arc length

    Science.gov (United States)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  1. Structure of some complex halides of uranium(III)

    International Nuclear Information System (INIS)

    Volkov, V.A.; Suglobova, I.G.; Chirkst, D.E.

    1987-01-01

    Polycrystals of some halide complexes of uranium(III) were obtained and investigated by x-ray diffraction. The M 2 UCl 5 compounds (M = K, Rb) are isostructural with K 2 PrCl 5 ; RbU 2 Cl 7 is of the same type as RbDy 2 Cl 7 or KDy 2 Cl 7 . The coordination number of the uranium is 7. The M 2 UBr 5 compounds (M = K-Cs) are isostructural with Cs 2 DyCl 5 , and the coordination number of the uranium is 6. Rb 2 NaUCl 6 is a 12L-hexagonal polytype, the structural analog of Cs 2 NaCrF 6 . The most characteristic coordination number of uranium in the UHal 3 -MHal systems is 8 for Hal = F, 7 for Hal = Cl, and 6 for Hal = Br

  2. Phase-resolved response of a metal-halide lamp

    International Nuclear Information System (INIS)

    Flikweert, A J; Beks, M L; Nimalasuriya, T; Kroesen, G M W; Van der Mullen, J J A M; Stoffels, W W

    2009-01-01

    The metal-halide (MH) lamp sometimes shows unwanted colour segregation, caused by a combination of convection and diffusion. In the past we investigated the lamp, running on a switched dc ballast of 120 Hz, using a dc approximation for the distribution of the radiating species. Here we present phase-resolved intensity measurements to verify this approximation. The MH lamp contains Hg as buffer gas and DyI 3 as salt additive; we measure the light emitted by Dy and by Hg atoms. An intensity fluctuation of ∼25% close to the electrodes is found only. The observed fluctuations are explained by the cataphoresis effect and temperature fluctuations; the time scales are in the same order. Furthermore, measurements at higher gravity in a centrifuge (up to 10g) show that the effect becomes smaller at increasing gravity levels. From these results it is concluded that a dc approximation, which is generally assumed by lamp developers, is allowed for this MH lamp.

  3. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    International Nuclear Information System (INIS)

    Souza Camargo Junior, S.A. de.

    1982-09-01

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X 1 Σ + →a' 3 Σ + transitions of the CN - molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN - concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author) [pt

  4. Absorption lineshape of FA centers in alkali halides

    International Nuclear Information System (INIS)

    Baldacchini, G.; Giovenale, E.; De Matteis, F.; Scacco, A.; Somma, F.; Grassano, U.M.

    1988-01-01

    The line shape of the absorption bands of F A centers in alkali halides have been studied for the first time. The new method used for this investigation is based on the determination of the overlap between the F A1 and F A2 bands from luminescence measurements. The experimental results have been compared with calculated values deduced from the theoretical F A bands of different shapes. For both F A (I) centers in KCl:Na + and F A (II) centers in KCl:Li + and RbCl:Li + the absorption lineshape at low temperature is much closer to a sum of two Lorentzian curves than that of two Gaussian or Poissonian bands. This results shows an unexpected difference with the F centers, whose absorption lineshape is known to be Poissonian at the same temperatures

  5. White-Light Emission from Layered Halide Perovskites.

    Science.gov (United States)

    Smith, Matthew D; Karunadasa, Hemamala I

    2018-03-20

    With nearly 20% of global electricity consumed by lighting, more efficient illumination sources can enable massive energy savings. However, effectively creating the high-quality white light required for indoor illumination remains a challenge. To accurately represent color, the illumination source must provide photons with all the energies visible to our eye. Such a broad emission is difficult to achieve from a single material. In commercial white-light sources, one or more light-emitting diodes, coated by one or more phosphors, yield a combined emission that appears white. However, combining emitters leads to changes in the emission color over time due to the unequal degradation rates of the emitters and efficiency losses due to overlapping absorption and emission energies of the different components. A single material that emits broadband white light (a continuous emission spanning 400-700 nm) would obviate these problems. In 2014, we described broadband white-light emission upon near-UV excitation from three new layered perovskites. To date, nine white-light-emitting perovskites have been reported by us and others, making this a burgeoning field of study. This Account outlines our work on understanding how a bulk material, with no obvious emissive sites, can emit every color of the visible spectrum. Although the initial discoveries were fortuitous, our understanding of the emission mechanism and identification of structural parameters that correlate with the broad emission have now positioned us to design white-light emitters. Layered hybrid halide perovskites feature anionic layers of corner-sharing metal-halide octahedra partitioned by organic cations. The narrow, room-temperature photoluminescence of lead-halide perovskites has been studied for several decades, and attributed to the radiative recombination of free excitons (excited electron-hole pairs). We proposed that the broad white emission we observed primarily stems from exciton self-trapping. Here, the

  6. The Effect of Radiation "Memory" in Alkali-Halide Crystals

    Science.gov (United States)

    Korovkin, M. V.; Sal'nikov, V. N.

    2017-01-01

    The exposure of the alkali-halide crystals to ionizing radiation leads to the destruction of their structure, the emergence of radiation defects, and the formation of the electron and hole color centers. Destruction of the color centers upon heating is accompanied by the crystal bleaching, luminescence, and radio-frequency electromagnetic emission (REME). After complete thermal bleaching of the crystal, radiation defects are not completely annealed, as the electrons and holes released from the color centers by heating leave charged and locally uncompensated defects. Clusters of these "pre centers" lead to electric microheterogeneity of the crystal, the formation of a quasi-electret state, and the emergence of micro-discharges accompanied by radio emission. The generation of REME associated with residual defectiveness, is a manifestation of the effect of radiation "memory" in dielectrics.

  7. Coulometric thermometric titration of halides in molten calcium nitrate tetrahydrate.

    Science.gov (United States)

    Zsigrai, I J; Bartusz, D B

    1983-01-01

    A method for coulometric thermometric precipitation titrations of chloride, bromide and iodide in molten calcium nitrate tetrahydrate at 55 degrees with coulometrically generated silver ions has been developed. The change in temperature during the titration is followed with the aid of a thermistor bridge coupled to a recorder. To minimize the temperature effect of the passage of current through the melt, two thermistors are connected in opposition in the bridge, with one in the anodic and the other in the cathodic cell compartment. Amounts of 62-80 mumole of halide have been determined with relative error below 0.4% and relative standard deviation less than 2.7%. The relative error in determination of 40 mumole of iodide was + 2%.

  8. Metal Halide Perovskite Single Crystals: From Growth Process to Application

    Directory of Open Access Journals (Sweden)

    Shuigen Li

    2018-05-01

    Full Text Available As a strong competitor in the field of optoelectronic applications, organic-inorganic metal hybrid perovskites have been paid much attention because of their superior characteristics, which include broad absorption from visible to near-infrared region, tunable optical and electronic properties, high charge mobility, long exciton diffusion length and carrier recombination lifetime, etc. It is noted that perovskite single crystals show remarkably low trap-state densities and long carrier diffusion lengths, which are even comparable with the best photovoltaic-quality silicon, and thus are expected to provide better optoelectronic performance. This paper reviews the recent development of crystal growth in single-, mixed-organic-cation and fully inorganic halide perovskite single crystals, in particular the solution approach. Furthermore, the application of metal hybrid perovskite single crystals and future perspectives are also highlighted.

  9. Gas phase chromatography of halides of elements 104 and 105

    International Nuclear Information System (INIS)

    Tuerler, A.; Gregorich, K.E.; Czerwinski, K.R.; Hannink, N.J.; Henderson, R.A.; Hoffman, D.C.; Kacher, C.D.; Kadkhodayan, B.; Kreek, S.A.; Lee, D.M.; Leyba, J.D.; Nurmia, M.J.; Gaeggeler, H.W.; Jost, D.T.; Kovacs, J.; Scherer, U.W.; Vermeulen, D.; Weber, A.; Barth, H.; Gober, M.K.; Kratz, J.V.; Bruechle, W.; Schaedel, M.; Schimpf, E.; Gober, M.K.; Kratz, J.V.; Zimmermann, H.P.

    1991-04-01

    On-line isothermal gas phase chromatography was used to study halides of 261 104 (T 1/2 = 65 s) and 262,263 105 (T 1/2 = 34 s and 27 s) produced an atom-at-a time via the reactions 248 Cm( 18 O, 5n) and 249 Bk( 18 O, 5n, 4n), respectively. Using HBr and HCl gas as halogenating agents, we were able to produce volatile bromides and chlorides of the above mentioned elements and study their behavior compared to their lighter homologs in Groups 4 or 5 of the periodic table. Element 104 formed more volatile bromides than its homolog Hf. In contrast, element 105 bromides were found to be less volatile than the bromides of the group 5 elements Nb and Ta. Both 104 and Hf chlorides were observed to be more volatile than their respective bromides. 31 refs., 8 figs

  10. M-center growth in alkali halides: computer simulation

    International Nuclear Information System (INIS)

    Aguilar, M.; Jaque, F.; Agullo-Lopez, F.

    1983-01-01

    The heterogeneous interstitial nucleation model previously proposed to explain F-center growth curves in irradiated alkali halides has been extended to account for M-center kinetics. The interstitials produced during the primary irradiation event are assumed to be trapped at impurities and interstitial clusters or recombine with F and M centers. For M-center formation two cases have been considered: (a) diffusion and aggregation of F centers, and (b) statistical generation and pairing of F centers. Process (b) is the only one consistent with the quadratic relationship between M and F center concentrations. However, to account for the F/M ratios experimentally observed as well as for the role of dose-rate, a modified statistical model involving random creation and association of F + -F pairs has been shown to be adequate. (author)

  11. Irradiation damage of alkali halide crystals during positron bombardment

    International Nuclear Information System (INIS)

    Arefiev, K.P.; Arefiev, V.P.; Vorobiev, S.A.

    1978-01-01

    The bleaching effect of positron irradiation of KCl and KBr single crystals previously coloured with electrons or protons was investigated. Positrons injection in the coloured alkali halide samples reduced the F-centres concentration considerably. For KCl crystals thicker than the positrons range the appearance of additional bands in the absorption spectra is noticeable. The experimental data show that the bleaching phenomenon should be observed merely throughout the positron exposure both for irradiated and non-irradiated regions of the sample. Irradiation effects, due to positron source, on the peak counting rate of (γ-γ) angular correlation in KCl crystals under applied magnetic field were also investigated. The growth of peak counting rate shows the increase of positronium-like states formation near defects of cation sublattice. (author)

  12. Water-Induced Dimensionality Reduction in Metal-Halide Perovskites

    KAUST Repository

    Turedi, Bekir

    2018-03-30

    Metal-halide perovskite materials are highly attractive materials for optoelectronic applications. However, the instability of perovskite materials caused by moisture and heat-induced degradation impairs future prospects of using these materials. Here we employ water to directly transform films of the three-dimensional (3D) perovskite CsPbBr3 to stable two-dimensional (2D) perovskite-related CsPb2Br5. A sequential dissolution-recrystallization process governs this water induced transformation under PbBr2 rich condition. We find that these post-synthesized 2D perovskite-related material films exhibit excellent stability against humidity and high photoluminescence quantum yield. We believe that our results provide a new synthetic method to generate stable 2D perovskite-related materials that could be applicable for light emitting device applications.

  13. Phase space investigation of the lithium amide halides

    Energy Technology Data Exchange (ETDEWEB)

    Davies, Rosalind A. [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hydrogen and Fuel Cell Group, School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT (United Kingdom); Hewett, David R.; Korkiakoski, Emma [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Thompson, Stephen P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Anderson, Paul A., E-mail: p.a.anderson@bham.ac.uk [Hydrogen Storage Chemistry Group, School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2015-10-05

    Highlights: • The lower limits of halide incorporation in lithium amide have been investigated. • The only amide iodide stoichiometry observed was Li{sub 3}(NH{sub 2}){sub 2}I. • Solid solutions were observed in both the amide chloride and amide bromide systems. • A 46% reduction in chloride content resulted in a new phase: Li{sub 7}(NH{sub 2}){sub 6}Cl. • New low-chloride phase maintained improved H{sub 2} desorption properties of Li{sub 4}(NH{sub 2}){sub 3}Cl. - Abstract: An investigation has been carried out into the lower limits of halide incorporation in lithium amide (LiNH{sub 2}). It was found that the lithium amide iodide Li{sub 3}(NH{sub 2}){sub 2}I was unable to accommodate any variation in stoichiometry. In contrast, some variation in stoichiometry was accommodated in Li{sub 7}(NH{sub 2}){sub 6}Br, as shown by a decrease in unit cell volume when the bromide content was reduced. The amide chloride Li{sub 4}(NH{sub 2}){sub 3}Cl was found to adopt either a rhombohedral or a cubic structure depending on the reaction conditions. Reduction in chloride content generally resulted in a mixture of phases, but a new rhombohedral phase with the stoichiometry Li{sub 7}(NH{sub 2}){sub 6}Cl was observed. In comparison to LiNH{sub 2}, this new low-chloride phase exhibited similar improved hydrogen desorption properties as Li{sub 4}(NH{sub 2}){sub 3}Cl but with a much reduced weight penalty through addition of chloride. Attempts to dope lithium amide with fluoride ions have so far proved unsuccessful.

  14. Halide based MBE of crystalline metals and oxides

    Energy Technology Data Exchange (ETDEWEB)

    Greenlee, Jordan D.; Calley, W. Laws; Henderson, Walter; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, Atlanta, Georgia (United States)

    2012-02-15

    A halide based growth chemistry has been demonstrated which can deliver a range of transition metals using low to moderate effusion cell temperatures (30-700 C) even for high melting point metals. Previously, growth with transition metal species required difficult to control electron beam or impurity inducing metal organic sources. Both crystalline oxide and metal films exhibiting excellent crystal quality are grown using this halide-based growth chemistry. Films are grown using a plasma assisted Molecular Beam Epitaxy (MBE) system with metal-chloride precursors. Crystalline niobium, cobalt, iron, and nickel were grown using this chemistry but the technology can be generalized to almost any metal for which a chloride precursor is available. Additionally, the oxides LiNbO{sub 3} and LiNbO{sub 2} were grown with films exhibiting X-ray diffraction (XRD) rocking curve full-widths at half maximum of 150 and 190 arcseconds respectively. LiNbO{sub 2} films demonstrate a memristive response due to the rapid movement of lithium in the layered crystal structure. The rapid movement of lithium ions in LiNbO{sub 2} memristors is characterized using impedance spectroscopy measurements. The impedance spectroscopy measurements suggest an ionic current of.1 mA for a small drive voltage of 5 mV AC or equivalently an ionic current density of {proportional_to}87 A/cm{sup 2}. This high ionic current density coupled with low charge transfer resistance of {proportional_to}16.5 {omega} and a high relaxation frequency (6.6 MHz) makes this single crystal material appealing for battery applications in addition to memristors. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Dehalogenation of aromatic halides by polyaniline/zero-valent iron composite nanofiber: Kinetics and mechanisms

    CSIR Research Space (South Africa)

    Giri, S

    2016-03-01

    Full Text Available Dehalogenation of aryl halides was demonstrated using polyaniline/zero valent iron composite nanofiber (termed as PANI/Fe0) as a cheap, efficient and environmentally friendly heterogeneous catalyst. The catalyst was prepared via rapid mixing...

  16. Impact of the organic halide salt on final perovskite composition for photovoltaic applications

    KAUST Repository

    Moore, David T.; Sai, Hiroaki; Wee Tan, Kwan; Estroff, Lara A.; Wiesner, Ulrich

    2014-01-01

    The methylammonium lead halide perovskites have shown significant promise as a low-cost, second generation, photovoltaic material.Despite recent advances, however, there are still a number of fundamental aspects of their formation as well

  17. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.; Burlakov, Victor M.; Saidaminov, Makhsud I.; Alofi, Abdulilah; Haque, Mohammed; Turedi, Bekir; Davaasuren, Bambar; Dursun, Ibrahim; Cho, Nam Chul; El-Zohry, Ahmed M.; de Bastiani, Michele; Giugni, Andrea; Torre, Bruno; Di Fabrizio, Enzo M.; Mohammed, Omar F.; Rothenberger, Alexander; Wu, Tao; Goriely, Alain; Bakr, Osman

    2017-01-01

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current

  18. NEW THIO S2- ADDUCTS WITH ANTIMONY (III AND V HALIDE: SYNTHESIS AND INFRARED STUDY

    Directory of Open Access Journals (Sweden)

    HASSAN ALLOUCH

    2013-12-01

    Full Text Available Five new S2- adducts with SbIII and SbV halides have been synthesized and studied by infrared. Discrete structures have been suggested, the environment around the antimony being tetrahedral, trigonal bipyramidal or octahedral.

  19. Growth and Characterization of PDMS-Stamped Halide Perovskite Single Microcrystals

    NARCIS (Netherlands)

    Khoram, P.; Brittman, S.; Dzik, W.I.; Reek, J.N.H.; Garneett, E.C.

    2016-01-01

    Recently, halide perovskites have attracted considerable attention for optoelectronic applications, but further progress in this field requires a thorough understanding of the fundamental properties of these materials. Studying perovskites in their single-crystalline form provides a model system for

  20. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Science.gov (United States)

    Martinson, Alex B.; Kim, In Soo

    2017-09-26

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  1. Minerals Yearbook, volume I, Metals and Minerals

    Science.gov (United States)

    ,

    2018-01-01

    The U.S. Geological Survey (USGS) Minerals Yearbook discusses the performance of the worldwide minerals and materials industries and provides background information to assist in interpreting that performance. Content of the individual Minerals Yearbook volumes follows:Volume I, Metals and Minerals, contains chapters about virtually all metallic and industrial mineral commodities important to the U.S. economy. Chapters on survey methods, summary statistics for domestic nonfuel minerals, and trends in mining and quarrying in the metals and industrial mineral industries in the United States are also included.Volume II, Area Reports: Domestic, contains a chapter on the mineral industry of each of the 50 States and Puerto Rico and the Administered Islands. This volume also has chapters on survey methods and summary statistics of domestic nonfuel minerals.Volume III, Area Reports: International, is published as four separate reports. These regional reports contain the latest available minerals data on more than 180 foreign countries and discuss the importance of minerals to the economies of these nations and the United States. Each report begins with an overview of the region’s mineral industries during the year. It continues with individual country chapters that examine the mining, refining, processing, and use of minerals in each country of the region and how each country’s mineral industry relates to U.S. industry. Most chapters include production tables and industry structure tables, information about Government policies and programs that affect the country’s mineral industry, and an outlook section.The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the Minerals Yearbook are welcomed.

  2. Laboratory of minerals purification

    International Nuclear Information System (INIS)

    2002-01-01

    The laboratory of minerals purification was organized in 1962 where with application of modern physical and chemical methods were investigated the mechanism of flotation reagents interaction with minerals' surface, was elaborated technologies on rising complexity of using of republic's minerals

  3. South Africa's mineral industry

    International Nuclear Information System (INIS)

    1985-06-01

    The main aim of the Minerals Bureau in presenting this annual review is to provide an up-to-date reference document on the current state of the mineral industry in South Africa. This includes a brief look at the production, trade, economy, resources and deposits of precious metals and minerals, energy minerals, metallic minerals, and non-metallic minerals. One article discusses the production, trade, export, deposits and economy of uranium

  4. Solution enthalpies of alkali metal halides in water and heavy water mixtures with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Egorov, G.I.

    1994-01-01

    Solution enthalpies of CsF, LiCl, NaI, CsI and some other halides of alkali metals and tetrabutylammonium have been measured by the method of calorimetry. Standard solution enthalpies of all alkali metals (except rubidium) halides in water and heavy water mixtures with dimethylsulfoxide at 298.15 K have been calculated. Isotopic effects in solvation enthalpy of the electrolytes mentioned in aqueous solutions of dimethylsulfoxide have been discussed. 29 refs., 2 figs., 4 tabs

  5. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    International Nuclear Information System (INIS)

    Lamouri, A; Naruka, A; Sulcs, J; Varanasi, C V; Brumleve, T R

    2005-01-01

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  6. Transfer Hydro-dehalogenation of Organic Halides Catalyzed by Ruthenium(II) Complex.

    Science.gov (United States)

    You, Tingjie; Wang, Zhenrong; Chen, Jiajia; Xia, Yuanzhi

    2017-02-03

    A simple and efficient Ru(II)-catalyzed transfer hydro-dehalogenation of organic halides using 2-propanol solvent as the hydride source was reported. This methodology is applicable for hydro-dehalogenation of a variety of aromatic halides and α-haloesters and amides without additional ligand, and quantitative yields were achieved in many cases. The potential synthetic application of this method was demonstrated by efficient gram-scale transformation with catalyst loading as low as 0.5 mol %.

  7. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman M.

    2016-02-18

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu, and X is a halide. The method comprises the use of two reservoirs containing different precursors and allowing the vapor diffusion from one reservoir to the other one. A solar cell comprising said crystal is also disclosed.

  8. The thermo-elastic instability model of melting of alkali halides in the Debye approximation

    Science.gov (United States)

    Owens, Frank J.

    2018-05-01

    The Debye model of lattice vibrations of alkali halides is used to show that there is a temperature below the melting temperature where the vibrational pressure exceeds the electrostatic pressure. The onset temperature of this thermo-elastic instability scales as the melting temperature of NaCl, KCl, and KBr, suggesting its role in the melting of the alkali halides in agreement with a previous more rigorous model.

  9. Broadly tunable metal halide perovskites for solid-state light-emission applications

    OpenAIRE

    Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

    2017-01-01

    The past two years have witnessed heightened interest in metal-halide perovskites as promising optoelectronic materials for solid-state light emitting applications beyond photovoltaics. Metal-halide perovskites are low-cost solution-processable materials with excellent intrinsic properties such as broad tunability of bandgap, defect tolerance, high photoluminescence quantum efficiency and high emission color purity (narrow full-width at half maximum). In this review, the photophysical propert...

  10. Cation-Dependent Light-Induced Halide Demixing in Hybrid Organic-Inorganic Perovskites

    OpenAIRE

    Sutter-Fella, CM; Ngo, QP; Cefarin, N; Gardener, K; Tamura, N; Stan, CV; Drisdell, WS; Javey, A; Toma, FM; Sharp, ID

    2018-01-01

    © 2018 American Chemical Society. Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photo-induced halide demixing using in-situ photoluminescence spectroscopy and in-situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of comp...

  11. Metal halides vapor lasers with inner reactor and small active volume.

    Science.gov (United States)

    Shiyanov, D. V.; Sukhanov, V. B.; Evtushenko, G. S.

    2018-04-01

    Investigation of the energy characteristics of copper, manganese, lead halide vapor lasers with inner reactor and small active volume 90 cm3 was made. The optimal operating pulse repetition rates, temperatures, and buffer gas pressure for gas discharge tubes with internal and external electrodes are determined. Under identical pump conditions, such systems are not inferior in their characteristics to standard metal halide vapor lasers. It is shown that the use of a zeolite halogen generator provides lifetime laser operation.

  12. Silver halide photographic material providing an image and an unsharp mask

    International Nuclear Information System (INIS)

    Broadhead, P.; Farnell, G.C.

    1981-01-01

    Desirable edge effects are produced by normal imagewise exposure and processing of a sensitive radiographic film comprising a transparent film support bearing a layer of a direct-positive silver halide emulsion and a layer of a negative silver halide emulsion and wherein the film comprises means to reduce crossover between the two emulsion layers, one of said emulsion layers being adapted to record a primary image and the other being adapted to record an unsharp mask image. (author)

  13. Miscellaneous Industrial Mineral Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes miscellaneous industrial minerals operations in the United States. The data represent commodities covered by the Minerals Information Team...

  14. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J. J.; Henins, A.; Hardis, J. E. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Estupinan, E. G. [Osram Sylvania Inc., Beverly, Massachusetts 01915 (United States); Lapatovich, W. P. [Independent Consultant, 51 Pye Brook Lane, Boxford, Massachusetts 01921 (United States); Shastri, S. D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  15. Minerals from Macedonia: XV. Sivec mineral assemble

    International Nuclear Information System (INIS)

    Boev, Blazho; Jovanovski, Gligor; Makreski, Petre; Bermanec, Vladimir

    2005-01-01

    The paper presents investigations carried out on the collected minerals from the Sivec deposit. It is situated in the vicinity of the town of Prilep, representing a rare occurrence of sugary white dolomite marbles. The application of suitable methods of exploitation of decorative-dimension stones makes possible to obtain large amounts of commercial blocks well known in the world. Despite the existence of dolomite marbles, a series of exotic minerals are typical in Sivec mineralization. Among them, the most significant are: calcite, fluorite, rutile, phlogopite, corundum, diaspore, almandine, kosmatite (clintonite or margarite), clinochlore, muscovite, quartz, pyrite, tourmaline and zoisite. An attempt to identify ten collected minerals using the FT IR spectroscopy is performed. The identification of the minerals was based on the comparison of the infrared spectra of our specimens with the corresponding literature data for the mineral species originating all over the world. The coloured pictures of all studied silicate minerals are presented as well. (Author)

  16. Magnetic properties of nickel halide hydrates including deuteration effects

    Energy Technology Data Exchange (ETDEWEB)

    DeFotis, G.C., E-mail: gxdefo@wm.edu [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Van Dongen, M.J.; Hampton, A.S.; Komatsu, C.H.; Trowell, K.T.; Havas, K.C.; Davis, C.M.; DeSanto, C.L. [Chemistry Department, College of William & Mary, Williamsburg, VA, 23187 United States (United States); Hays, K.; Wagner, M.J. [Chemistry Department, George Washington University, Washington, DC, 20052 United States (United States)

    2017-01-01

    Magnetic measurements on variously hydrated nickel chlorides and bromides, including deuterated forms, are reported. Results include locations and sizes of susceptibility maxima, T{sub max} and χ{sub max}, ordering temperatures T{sub c}, Curie constants and Weiss theta in the paramagnetic regime, and primary and secondary exchange interactions from analysis of low temperature data. For the latter a 2D Heisenberg model augmented by interlayer exchange in a mean-field approximation is applied. Magnetization data to 16 kG as a function of temperature show curvature and hysteresis characteristics quite system dependent. For four materials high field magnetization data to 70 kG at 2.00 K are also obtained. Comparison is made with theoretical relations for spin-1 models. Trends are apparent, primarily that T{sub max} of each bromide hydrate is less than for the corresponding chloride, and that for a given halide nD{sub 2}O (n=1 or 2) deuterates exhibit lesser T{sub max} than do nH{sub 2}O hydrates. A monoclinic unit cell determined from powder X-ray diffraction data on NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O. This provides some rationale for the difference in magnetic properties between these. - Highlights: • The magnetism of Ni(II) chloride and bromide dihydrates and monohydrates is studied. • Effects of replacing H{sub 2}O by D{sub 2}O are examined for both hydration states and both halides. • Exchange interactions in bromides are weaker than in corresponding chlorides. • Exchange interactions are weaker in D{sub 2}O than in corresponding H{sub 2}O containing systems. • The unit cell of NiBr{sub 2}·2D{sub 2}O is different from and slightly larger than that of NiBr{sub 2}·2H{sub 2}O.

  17. Silver nanoparticles from silver halide photography to plasmonics

    CERN Document Server

    Tani, Tadaaki

    2015-01-01

    This book provides systematic knowledge and ideas on nanoparticles of Ag and related materials. While Ag and metal nanoparticles are essential for plasmonics, silver halide (AgX) photography relies to a great extent on nanoparticles of Ag and AgX which have the same crystal structure and have been studied extensively for many years. This book has been written to combine the knowledge of nanoparticles of Ag and related materials in plasmonics and AgX photography in order to provide new ideas for metal nanoparticles in plasmonics. Chapters 1–3 of this book describe the structure and formation of nanoparticles of Ag and related materials. Systematic descriptions of the structure and preparation of Ag, Au, and noble-metal nanoparticles for plasmonics are followed by and related to those of nanoparticles of Ag and AgX in AgX photography. Knowledge of the structure and preparation of Ag and AgX nanoparticles in photography covers nanoparticles with widely varying sizes, shapes, and structures, and formation proce...

  18. Modelling current transfer to cathodes in metal halide plasmas

    International Nuclear Information System (INIS)

    Benilov, M S; Cunha, M D; Naidis, G V

    2005-01-01

    This work is concerned with investigation of the main features of current transfer to cathodes under conditions characteristic of metal halide (MH) lamps. It is found that the presence of MHs in the gas phase results in a small decrease of the cathode surface temperature and of the near-cathode voltage drop in the diffuse mode of current transfer; the range of stability of the diffuse mode expands. Effects caused by a variation of the work function of the cathode surface owing to formation of a monolayer of alkali metal atoms on the surface are studied for particular cases where the monolayer is composed of sodium or caesium. It is found that the formation of the sodium monolayer affects the diffuse mode of current transfer only moderately and in the same direction that the presence of metal atoms in the gas phase affects it. Formation of the caesium monolayer produces a dramatic effect: the cathode surface temperature decreases very strongly, the diffuse-mode current-voltage characteristic becomes N-S-shaped

  19. A new fundamental hydrogen defect in alkali halides

    International Nuclear Information System (INIS)

    Morato, S.P.; Luety, F.

    1978-01-01

    Atom hydrogen in neutral (H 0 ) and negative (H - ) form on substitutional and interstitial lattice sites gives rise to well characterized model defects in alkali-halides (U,U 1 ,U 2 ,U 3 centers), which have been extensively investigated in the past. When studying the photo-decomposition of OH - defects, a new configuration of atomic charged hidrogen was discovered, which can be produced in large quantities in the crystal and is apparently not connected to any other impurity. This new hidrogen defect does not show any pronounced electronic absorption, but displays a single sharp local mode band (at 1114cm -1 in KCl) with a perfect isotope shift. The defect can be produced by various UV or X-ray techniques in crystais doped with OH - , Sh - or H - defects. A detailed study of its formation kinetics at low temperature shows that it is primarily formed by the reaction of a mobile CI 2 - crowdion (H-center) with hidrogen defects [pt

  20. Photography: enhancing sensitivity by silver-halide crystal doping

    International Nuclear Information System (INIS)

    Belloni, Jacqueline

    2003-01-01

    The physical chemistry of the silver photography processes, exposure, development and fixing, is briefly summarized. The mechanism of the autocatalytic development by the developer of the clusters produced in silver bromide crystals during the exposure which is controlled by the critical nuclearity of these clusters was understood from pulse radiolysis studies. The effective quantum yield PHI eff of photoinduced silver cluster formation in silver halide microcrystals is usually much lower than the photoionization theoretical limit PHI theor =1 electron-hole pair per photon absorbed, owing to a subsequent very fast intra-crystal recombination of a part of the electron-hole pairs. In order to inhibit this recombination and favor the silver reduction by photo-electrons, the AgX crystals were doped with the formate HCO 2 - as a specific hole scavenger. First, the dopant scavenges the photoinduced hole, thus enhancing the electron escape from the pair recombination. Second, the CO 2 ·- radical so formed transfers an electron to another silver cation, so that the PHI eff limit may be of 2Ag 0 per photon. This Photoinduced Bielectronic Transfer mechanism is strictly proportional to the light quanta absorbed and induces an exceptional efficiency for enhancing the radio- or photographic sensitivity insofar as it totally suppresses the electron-hole recombination

  1. Isotope effects in aqueous solvation of simple halides

    Science.gov (United States)

    Videla, Pablo E.; Rossky, Peter J.; Laria, D.

    2018-03-01

    We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X- and HOD⋯ X- (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F- case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X- preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectroscopic signals of the corresponding IR spectra.

  2. Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films

    Directory of Open Access Journals (Sweden)

    Cheng Li

    2016-08-01

    Full Text Available Inorganic-organic halide organometal perovskites have demonstrated very promising performance for opto-electronic applications, such as solar cells, light-emitting diodes, lasers, single-photon sources, etc. However, the little knowledge on the underlying photophysics, especially on a microscopic scale, hampers the further improvement of devices based on this material. In this communication, correlated conventional photoluminescence (PL characterization and wide-field PL imaging as a function of time are employed to investigate the spatially- and temporally-resolved PL in CH3NH3PbI3−xClx perovskite films. Along with a continuous increase of the PL intensity during light soaking, we also observe PL blinking or PL intermittency behavior in individual grains of these films. Combined with significant suppression of PL blinking in perovskite films coated with a phenyl-C61-butyric acid methyl ester (PCBM layer, it suggests that this PL intermittency is attributed to Auger recombination induced by photoionized defects/traps or mobile ions within grains. These defects/traps are detrimental for light conversion and can be effectively passivated by the PCBM layer. This finding paves the way to provide a guideline on the further improvement of perovskite opto-electronic devices.

  3. Cerium doped lanthanum halides: fast scintillators for medical imaging

    International Nuclear Information System (INIS)

    Selles, O.

    2006-12-01

    This work is dedicated to two recently discovered scintillating crystals: cerium doped lanthanum halides (LaCl 3 :Ce 3+ and LaBr 3 :Ce 3+ ).These scintillators exhibit interesting properties for gamma detection, more particularly in the field of medical imaging: a short decay time, a high light yield and an excellent energy resolution. The strong hygroscopicity of these materials requires adapting the usual experimental methods for determining physico-chemical properties. Once determined, these can be used for the development of the industrial manufacturing process of the crystals. A proper comprehension of the scintillation mechanism and of the effect of defects within the material lead to new possible ways for optimizing the scintillator performance. Therefore, different techniques are used (EPR, radioluminescence, laser excitation, thermally stimulated luminescence). Alongside Ce 3+ ions, self-trapped excitons are involved in the scintillation mechanism. Their nature and their role are detailed. The knowledge of the different processes involved in the scintillation mechanism leads to the prediction of the effect of temperature and doping level on the performance of the scintillator. A mechanism is proposed to explain the thermally stimulated luminescence processes that cause slow components in the light emission and a loss of light yield. Eventually the study of afterglow reveals a charge transfer to deep traps involved in the high temperature thermally stimulated luminescence. (author)

  4. Transmission electron microscopy of weakly deformed alkali halide crystals

    International Nuclear Information System (INIS)

    Strunk, H.

    1976-01-01

    Transmission electron microscopy (TEM) is applied to the investigation of the dislocation arrangement of [001]-orientated alkali halide crystals (orientation four quadruple slip) deformed into stage I of the work-hardenig curve. The investigations pertain mainly to NaCl - (0.1-1) mole-% NaBr crystals, because these exhibit a relatively long stage I. The time available for observing the specimens is limited by the ionization radiation damage occuring in the microscope. An optimum reduction of the damage rate is achieved by a combination of several experimental techniques that are briefly outlined. The crystals deform essentially in single glide. According to the observations, stage I deformation of pure and weakly alloyed NaCl crystals is characterized by the glide of screw dislocations, which bow out between jogs and drag dislocation dipoles behind them. In crystals with >= 0.5 mole-% NaBr this process is not observed to occur. This is attributed to the increased importance of solid solution hardening. (orig.) [de

  5. Strong Carrier–Phonon Coupling in Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    We highlight the importance of carrier–phonon coupling in inorganic lead halide perovskite nanocrystals. The low-temperature photoluminescence (PL) spectrum of CsPbBr3 has been investigated under a nonresonant and a nonstandard, quasi-resonant excitation scheme, and phonon replicas of the main PL band have been identified as due to the Fröhlich interaction. The energy of longitudinal optical (LO) phonons has been determined from the separation of the zero phonon band and phonon replicas. We reason that the observed LO phonon coupling can only be related to an orthorhombically distorted crystal structure of the perovskite nanocrystals. Additionally, the strength of carrier–phonon coupling has been characterized using the ratio between the intensities of the first phonon replica and the zero-phonon band. PL emission from localized versus delocalized carriers has been identified as the source of the observed discrepancies between the LO phonon energy and phonon coupling strength under quasi-resonant and nonresonant excitation conditions, respectively. PMID:29019652

  6. Thermodynamic origin of instability in hybrid halide perovskites

    Science.gov (United States)

    Tenuta, E.; Zheng, C.; Rubel, O.

    2016-11-01

    Degradation of hybrid halide perovskites under the influence of environmental factors impairs future prospects of using these materials as absorbers in solar cells. First principle calculations can be used as a guideline in search of new materials, provided we can rely on their predictive capabilities. We show that the instability of perovskites can be captured using ab initio total energy calculations for reactants and products augmented with additional thermodynamic data to account for finite temperature effects. Calculations suggest that the instability of CH3NH3PbI3 in moist environment is linked to the aqueous solubility of the CH3NH3I salt, thus making other perovskite materials with soluble decomposition products prone to degradation. Properties of NH3OHPbI3, NH3NH2PbI3, PH4PbI3, SbH4PbI3, CsPbBr3, and a new hypothetical SF3PbI3 perovskite are studied in the search for alternative solar cell absorber materials with enhanced chemical stability.

  7. Quantification of Ionic Diffusion in Lead Halide Perovskite Single Crystals

    KAUST Repository

    Peng, Wei

    2018-05-25

    Lead halide perovskites are mixed electronic/ionic semiconductors that have recently revolutionized the photovoltaics field. The physical characterization of the ionic conductivity has been rather elusive due to the highly intermixing of ionic and electronic current. In this work the synthesis of low defect density monocrystalline MAPbBr3 (MA=Methyl ammonium) solar cells free of hole transport layer (HTL) suppresses the effect of electronic current. Impedance spectroscopy reveals the characteristic signature of ionic diffusion (the Warburg element and transmission line equivalent circuit) and ion accumulation at the MAPbBr3/Au interface. Diffusion coefficients are calculated based on a good correlation between thickness of MAPbBr3 and characteristic diffusion transition frequency. In addition, reactive external interfaces are studied by comparison of polycrystalline MAPbBr3 devices prepared either with or without a HTL. The low frequency response in IS measurements is correlated with the chemical reactivity of moving ions with the external interfaces and diffusion into the HTL.

  8. The impact of alkali metal halide electron donor complexes in the photocatalytic degradation of pentachlorophenol

    Energy Technology Data Exchange (ETDEWEB)

    Khuzwayo, Z., E-mail: zack.khuzwayo@up.ac.za; Chirwa, E.M.N

    2017-01-05

    Highlights: • Facilitation of photocatalysis using simple metal-halides as VB hole scavengers. • Recombination prevention by coupled valence and conduction band approaches. • Determination of anions critical levels beyond which process retardation occurs. • Determination of the photocatalytic process rate of reaction kinetics. - Abstract: The performance of photocatalytic oxidation of chemical pollutants is subjected to the presence of anion complexes in natural waters. This study investigated the influence of alkali metal (Na{sup +} (sodium), K{sup +} (potassium)) halides (Cl{sup −} (chloride), Br{sup −} (bromide), F{sup −} (fluoride)) as inorganic ion sources in the photocatalytic degradation of pentachlorophenol (PCP) in batch systems. It was found that the exclusive presence of halides in the absence of an electron acceptor adequately facilitated the photocatalyst process below critical levels of anion populations, where beyond the critical point the process was significantly hindered. Below the determined critical point, the performance in some cases near matches that of the facilitation of the photocatalytic process by exclusive oxygen, acting as an electron scavenger. The coupling of halide ions and oxygenation presented significantly improved photo-oxidation of PCP, this was confirmed by the inclusion of formic acid as a comparative electron donor. The Langmuir-Hinshelwood kinetic expression was used to calculate the performance rate kinetics. The probable impact of the halide anions was discussed with regards to the process of electron hole pair recombination prevention.

  9. Iron halide mediated atom transfer radical polymerization of methyl methacrylate with N-Alkyl-2-pyridylmethanimine as the ligand

    NARCIS (Netherlands)

    Zhang, H.; Schubert, U.S.

    2004-01-01

    The controlled atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) catalyzed by iron halide/N-(n-hexyl)-2-pyridylmethanimine (NHPMI) is described. The ethyl 2-bromoisobutyrate (EBIB)-initiated ATRP with [MMA]0/[EBIB]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 was better controlled in

  10. Homocoupling of aryl halides in flow: Space integration of lithiation and FeCl3 promoted homocoupling

    Directory of Open Access Journals (Sweden)

    Aiichiro Nagaki

    2011-08-01

    Full Text Available The use of FeCl3 resulted in a fast homocoupling of aryllithiums, and this enabled its integration with the halogen–lithium exchange reaction of aryl halides in a flow microreactor. This system allows the homocoupling of two aryl halides bearing electrophilic functional groups, such as CN and NO2, in under a minute.

  11. A study on the localized corrosion of cobalt in bicarbonate solutions containing halide ions

    Energy Technology Data Exchange (ETDEWEB)

    Gallant, Danick [Departement de Biologie, Chimie et Sciences de la Sante, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada); Departement de Chimie, Universite Laval, Quebec, Que., G1K 7P4 (Canada); Simard, Stephan [Departement de Biologie, Chimie et Sciences de la Sante, Universite du Quebec a Rimouski, 300, Allee des Ursulines, Rimouski, Que., G5L 3A1 (Canada)]. E-mail: stephan_simard@uqar.qc.ca

    2005-07-01

    The localized attack of cobalt in bicarbonate aqueous solutions containing halide ions was investigated using electrochemical techniques, scanning electron microscopy, UV-visible and Raman spectroscopies. Rotating disc and rotating ring-disc electrodes were used to determine the effect of bicarbonate concentration, solution pH, nature and concentration of the halide ions, convection and potential sweep rate on the corrosion processes. These parameters were found to play a key role on the localized attack induced by halide ions by influencing the production of a Co(HCO{sub 3}){sub 2} precipitate on the pit surface. Potentiostatically generated cobalt oxide films (CoO and Co{sub 3}O{sub 4}) were found to be efficient to reduce pitting corrosion of cobalt.

  12. The role of halide ions on the electrochemical behaviour of iron in alkali solutions

    Science.gov (United States)

    Begum, S. Nathira; Muralidharan, V. S.; Basha, C. Ahmed

    2008-02-01

    Active dissolution and passivation of transition metals in alkali solutions is of technological importance in batteries. The performance of alkaline batteries is decided by the presence of halides as they influence passivation. Cyclic voltammetric studies were carried out on iron in different sodium hydroxide solutions in presence of halides. In alkali solutions iron formed hydroxo complexes and their polymers in the interfacial diffusion layer. With progress of time they formed a cation selective layer. The diffusion layer turned into bipolar ion selective layer consisted of halides, a selective inner sublayer to the metal side and cation selective outer layer to the solution side. At very high anodic potentials, dehydration and deprotonation led to the conversion of salt layer into an oxide.

  13. Holographic Optical Elements Recorded in Silver Halide Sensitized Gelatin Emulsions. Part I. Transmission Holographic Optical Elements

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Kim, Sun Il; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.

    2001-02-01

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOE s). The drawback of DCG is its low sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-high-resolution silver halide emulsions. An optimized processing technique for transmission HOE s recorded in these materials is introduced. Diffraction efficiencies over 90% can be obtained for transmissive diffraction gratings. Understanding the importance of the selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOE s.

  14. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai; Cao, Runan; Xu, Fei; Da, Peimei; Zheng, Gengfeng; Lu, Jian

    2016-01-01

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  15. Construction Minerals Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes construction minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  16. Agricultural Minerals Operations

    Data.gov (United States)

    Department of Homeland Security — This map layer includes agricultural minerals operations in the United States. The data represent commodities covered by the Minerals Information Team (MIT) of the...

  17. Ionic conductivity of N-alkyl pyridinium halides mesophases

    International Nuclear Information System (INIS)

    Meftah, Ahmed

    1980-01-01

    The quasi anhydrous N-alkyl pyridinium halides undergo at a temperature T c a phase transition from a crystalline isolating state to a conducting mesophase (σ = 3.10 -2 Ω -1 cm -1 ). The transition temperature depends on the nature on counter-ion and on the aliphatic chain length. The present study is devoted to the N-alkyl pyridinium chlorides, bromides and iodides varying the number of carbon atoms in the chain from ten to twenty two. The transition temperatures T c were found to increase from 30 deg. C up to 110 deg. C by a step of 10 deg. C for two added carbon atoms in the chain. The electrical measurements have shown that the conductivity of the mesophases which is ionic in origin is due to a large mobility of counter-ions in hydrophilic parts. At high frequencies (F > 10 3 Hz) ionic conductivity predominates in the bulk and does not depend on frequency. At low frequencies (F 3 Hz) the most important are interface phenomena depending on the square root of inverse frequency (ω -1/2 ) and being due to an electronic exchange limited by diffusion velocity of counter-ions. The electrical conductivity depends weekly on the chain length and the mesophases textures. The most conducting mesophase is the optically isotropic. The conductivity increases with increasing water content of the system and decreases with increasing atomic number of counter-ion. The diffusion measurements by radioactive tracers confirm the ionic character of charge carriers although the diffusion factors obtained by this method are largely higher than the calculated ones from the conductivity values. (author) [fr

  18. Molecular beam scattering from clean surfaces of alkali halides

    International Nuclear Information System (INIS)

    Meyers, J.A.

    1975-01-01

    Molecular beam scattering of light gases from in situ cleaved alkali halide surfaces has been studied as a means of developing molecular beam scattering as a surface characterization tool and as a means of obtaining information about the gas atom-solid surface potential interaction. For 4 He scattering from LiF carried out under improved resolution the main results are: (1) there are four bound states in the surface potential well, as energies of -5.8, -2.2, -0.6 and -0.1 MeV. (2) Most of the structure designated as ''fine structure'' is due either to transitions to these four levels via various small reciprocal lattice vectors or to the opening of diffraction channels. (3) The transitions involving the (01) and (0 anti 1) reciprocal lattice vectors (i.e., the ones nearly perpendicular to the incident wavevector) are strong; as much as 85 percent of the specular intensity may be removed. Transitions via the other small reciprocal lattice vectors are much weaker. (4) The widths of the lines are consistent with the velocity distribution, which has a half-width of about 2 percent. (5) The observed energies agree fairly well with those calculated for a zeta-function potential, but are not consistent with a Morse potential. The preliminary results for 4 He/NaF scattering are that there are three bound-states in the surface potential well and are quite similar to the LiF results. These energies are -5.0, -1.9, and -0.5 MeV. 4 He/NaF selective adsorption also shows ''fine structure'' and a more detailed analysis is called for here

  19. Studies on radiation-sensitive nonsilver halide materials, (1)

    International Nuclear Information System (INIS)

    Komizu, Hideo; Honda, Koichi; Yabe, Akira; Kawasaki, Masami; Fujii, Etsuo

    1978-01-01

    In order to discover new radiation-sensitive nonsilver halide materials, the coloration based on the formation of Stenhouse salts was studied in the following three systems: (a) furfural-amine/HCl aq/methanol solution, (b) furfural-amine/polyhalogenide/PMMA matrix, (c) furfural-amine/PVC matrix. Firstly, forty-five aromatic amines were surveyed to find out the amines suitable for the color precursors (reactant from furfural and amine) in the system (a). As a result, the five amines, which gave the precursors in good yields by the reaction with furfural, were selected: m-nitroaniline, N-methylaniline, m-methyl-N-methylaniline, aniline, and o-methoxyaniline. Secondly, the coloration induced by electron beam bombardment was studied in the systems (b) and (c) containing the color precursors (the reactants from these amines and furfural). Although the PMMA films containing the color precursors and polyhalogenides were sensitive to electron beam, they were not stable when standing under daylight at room temperature. The PVC films containing the color precursors were very stable and colored to reddish yellow (lambda sub(max) 498 - 545 nm) by electron beam bombardment. The PVC film containing N-methylaniline-furfural was the most sensitive and the increase in absorbance at 498 nm was 0.78 by electron beam bombardment of 60 kV - 7.5 x 10 -7 C/cm 2 . A good linear relationship existed between the degree of coloration and the amounts of electron beam bombardment in the range from 0 to 10 -6 C/cm 2 . (author)

  20. Origins and mechanisms of hysteresis in organometal halide perovskites

    Science.gov (United States)

    Li, Cheng; Guerrero, Antonio; Zhong, Yu; Huettner, Sven

    2017-05-01

    Inorganic-organic halide organometal perovskites, such as CH3NH3PbI3 and CsPbI3, etc, have been an unprecedented rising star in the field of photovoltaics since 2009, owing to their exceptionally high power conversion efficiency and simple fabrication processability. Despite its relatively short history of development, intensive investigations have been concentrating on this material; these have ranged from crystal structure analysis and photophysical characterization to performance optimization and device integration, etc. Yet, when applied in photovoltaic devices, this material suffers from hysteresis, that is, the difference of the current-voltage (I-V) curve during sweeping in two directions (from short-circuit towards open-circuit and vice versa). This behavior may significantly impede its large-scale commercial application. This Review will focus on the recent theoretical and experimental efforts to reveal the origin and mechanism of hysteresis. The proposed origins include (1) ferroelectric polarization, (2) charge trapping/detrapping, and (3) ion migration. Among them, recent evidence consistently supports the idea that ion migration plays a key role for the hysteretic behavior in perovskite solar cells (PSCs). Hence, this Review will summarize the recent results on ion migration such as the migrating ion species, activation energy measurement, capacitive characterization, and internal electrical field modulation, etc. In addition, this Review will also present the devices with alleviation/elimination of hysteresis by incorporating either large-size grains or phenyl-C61-butyric acid methyl ester molecules. In a different application, the hysteretic property has been utilized in photovoltaic and memristive switching devices. In sum, by examining these three possible mechanisms, it is concluded that the origin of hysteresis in PSCs is associated with a combination of effects, but mainly limited by ion/defect migration. This strong interaction between ion

  1. Bright triplet excitons in caesium lead halide perovskites

    Science.gov (United States)

    Becker, Michael A.; Vaxenburg, Roman; Nedelcu, Georgian; Sercel, Peter C.; Shabaev, Andrew; Mehl, Michael J.; Michopoulos, John G.; Lambrakos, Samuel G.; Bernstein, Noam; Lyons, John L.; Stöferle, Thilo; Mahrt, Rainer F.; Kovalenko, Maksym V.; Norris, David J.; Rainò, Gabriele; Efros, Alexander L.

    2018-01-01

    Nanostructured semiconductors emit light from electronic states known as excitons. For organic materials, Hund’s rules state that the lowest-energy exciton is a poorly emitting triplet state. For inorganic semiconductors, similar rules predict an analogue of this triplet state known as the ‘dark exciton’. Because dark excitons release photons slowly, hindering emission from inorganic nanostructures, materials that disobey these rules have been sought. However, despite considerable experimental and theoretical efforts, no inorganic semiconductors have been identified in which the lowest exciton is bright. Here we show that the lowest exciton in caesium lead halide perovskites (CsPbX3, with X = Cl, Br or I) involves a highly emissive triplet state. We first use an effective-mass model and group theory to demonstrate the possibility of such a state existing, which can occur when the strong spin-orbit coupling in the conduction band of a perovskite is combined with the Rashba effect. We then apply our model to CsPbX3 nanocrystals, and measure size- and composition-dependent fluorescence at the single-nanocrystal level. The bright triplet character of the lowest exciton explains the anomalous photon-emission rates of these materials, which emit about 20 and 1,000 times faster than any other semiconductor nanocrystal at room and cryogenic temperatures, respectively. The existence of this bright triplet exciton is further confirmed by analysis of the fine structure in low-temperature fluorescence spectra. For semiconductor nanocrystals, which are already used in lighting, lasers and displays, these excitons could lead to materials with brighter emission. More generally, our results provide criteria for identifying other semiconductors that exhibit bright excitons, with potential implications for optoelectronic devices.

  2. Mineral commodity summaries 2015

    Science.gov (United States)

    ,

    2015-01-01

    Each chapter of the 2015 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2014 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses.

  3. Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides

    International Nuclear Information System (INIS)

    Magdesieva, Tatiana V.; Graczyk, Magdalena; Vallat, Alain; Nikitin, Oleg M.; Demyanov, Petr I.; Butin, Kim P.; Vorotyntsev, Mikhail A.

    2006-01-01

    We have studied a reaction between the reduced form of titanocene dichloride (Cp 2 TiCl 2 ) and a group of organic halides: benzyl derivatives (4-X-C 6 H 4 CH 2 Cl, X = H, NO 2 , CH 3 ; 4-X-C 6 H 4 CH 2 Br, X = H, NO 2 , PhC(O); 4-X-C 6 H 4 CH 2 SCN, X = H, NO 2 ) as well as three aryl halides (4-NO 2 C 6 H 4 Hal, Hal = Cl, Br; 4-CH 3 O-C 6 H 4 Cl). It has been shown that the electrochemical reduction of Cp 2 TiCl 2 in the presence of these benzyl halides leads to a catalytic cycle resulting in the reductive dehalogenation of these organic substrates to yield mostly corresponding toluene derivatives as the main product. No dehalogenation has been observed for aryl derivatives. Based on electrochemical data and digital simulation, possible schemes of the catalytic process have been outlined. For non-substituted benzyl halides halogen atom abstraction is a key step. For the reaction of nitrobenzyl halides the complexation of Ti(III) species with the nitro group takes place, with the electron transfer from Ti(III) to this group (owing to its highest coefficient in LUMO of the nitro benzyl halide) followed by an intramolecular dissociative electron redistribution in the course of the heterolytic C-Hal bond cleavage. The results for reduced titanocene dichloride centers immobilized inside a polymer film showed that the catalytic reductive dehalogenation of the p-nitrobenzyl chloride does occur but with a low efficiency because of the partial deactivation of the film due to the blocking of the electron charge transport between the electrode and catalytic centers

  4. Nanostructure of propylammonium nitrate in the presence of poly(ethylene oxide) and halide salts

    Science.gov (United States)

    Stefanovic, Ryan; Webber, Grant B.; Page, Alister J.

    2018-05-01

    Nanoscale structure of protic ionic liquids is critical to their utility as molecular electrochemical solvents since it determines the capacity to dissolve salts and polymers such as poly(ethylene oxide) (PEO). Here we use quantum chemical molecular dynamics simulations to investigate the impact of dissolved halide anions on the nanostructure of an archetypal nanostructured protic ionic liquid, propylammonium nitrate (PAN), and how this impacts the solvation of a model PEO polymer. At the molecular level, PAN is nanostructured, consisting of charged/polar and uncharged/nonpolar domains. The charged domain consists of the cation/anion charge groups, and is formed by their electrostatic interaction. This domain solvophobically excludes the propyl chains on the cation, which form a distinct, self-assembled nonpolar domain within the liquid. Our simulations demonstrate that the addition of Cl- and Br- anions to PAN disrupts the structure within the PAN charged domain due to competition between nitrate and halide anions for the ammonium charge centre. This disruption increases with halide concentration (up to 10 mol. %). However, at these concentrations, halide addition has little effect on the structure of the PAN nonpolar domain. Addition of PEO to pure PAN also disrupts the structure within the charged domain of the liquid due to hydrogen bonding between the charge groups and the terminal PEO hydroxyl groups. There is little other association between the PEO structure and the surrounding ionic liquid solvent, with strong PEO self-interaction yielding a compact, coiled polymer morphology. Halide addition results in greater association between the ionic liquid charge centres and the ethylene oxide components of the PEO structure, resulting in reduced conformational flexibility, compared to that observed in pure PAN. Similarly, PEO self-interactions increase in the presence of Cl- and Br- anions, compared to PAN, indicating that the addition of halide salts to PAN

  5. Structures of butyl ions formed by electron impact ionization of isomeric butyl halides and alkanes

    International Nuclear Information System (INIS)

    Shold, D.M.; Ausloos, P.

    1978-01-01

    Using a pulsed ion cyclotron resonance (ICR) spectrometer, it is demonstrated that at pressures of about 10 -6 Torr and at observation times ranging from 10 -3 to 0.5 s, isobutane, neopentane, 2,2-dimethylbutane, isobutyl halides, and tert-butyl halides form C 4 H 9 + ions having the tertiary structure. In n-alkanes, 2-methylbutane, 3-methylpentane, n-butyl halides, and sec-butyl halides, both sec-C 4 H 9 + and t-C 4 H 9 + ions are observed, the sec-C 4 H 9 + ions surviving without rearrangement for at least 0.1 s. However, in the case of the halides, a collision-induced isomerization of the sec-C 4 H 9 + to the t-C 4 H 9 + ions occurs. The efficiency of this process increases with the basicity of the alkyl halide. Radiolysis experiments carried out at atmospheric pressures indicate, in agreement with ICR and solution experiments, that at times as short as 10 -10 s the majority of the i-C 4 H 9 + ions from isobutyl bromide rearrange to the t-C 4 H 9 + structure. On the other hand, in the radiolysis of both n-hexane and 3-methylpentane, the abundance of t-C 4 H 9 + relative to sec-C 4 H 9 + is substantially smaller than that observed in the ICR experiments, and decreases with decreasing collision interval. It is suggested that about 90% of the i-C 4 H 9 + can rearrange to t-C 4 H 9 + by simple 1,2-hydride shift without involving secondary or protonated methylcyclopropane structures as intermediates. 4 figures, 2 tables

  6. Plasmonic characterization of photo-induced silver nanoparticles extracted from silver halide based TEM film

    Energy Technology Data Exchange (ETDEWEB)

    Sudheer,, E-mail: sudheer@rrcat.gov.in; Tiwari, P.; Rai, V. N.; Srivastava, A. K. [Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India); Varshney, G. K. [Laser Bio-medical Applications & Instrumentation Division, Raja Ramanna Centre for Advanced Technology Indore, Madhya Pradesh 452013 (India)

    2016-05-23

    The plasmonic responses of silver nanoparticles extracted from silver halide based electron microscope film are investigated. Photo-reduction process is carried out to convert the silver halide grains into the metallic silver. The centrifuge technique is used for separating the silver nanoparticles from the residual solution. Morphological study performed by field emission scanning electron microscope (FESEM) shows that all the nanoparticles have an average diameter of ~120 nm with a high degree of mono dispersion in size. The localized surface plasmon resonance (LSPR) absorption peak at ~537 nm confirms the presence of large size silver nanoparticles.

  7. The electronic structure of the F-center in alkali-halides-The Bethe cluster - lattice

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de.

    1977-07-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Bethe Cluster lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second-neighbors to it, respectively cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides. (Author) [pt

  8. The Electrical and Optical Properties of Organometal Halide Perovskites Relevant to Optoelectronic Performance

    KAUST Repository

    Adinolfi, Valerio

    2017-10-12

    Organometal halide perovskites are under intense study for use in optoelectronics. Methylammonium and formamidinium lead iodide show impressive performance as photovoltaic materials; a premise that has spurred investigations into light-emitting devices and photodetectors. Herein, the optical and electrical material properties of organometal halide perovskites are reviewed. An overview is given on how the material composition and morphology are tied to these properties, and how these properties ultimately affect device performance. Material attributes and techniques used to estimate them are analyzed for different perovskite materials, with a particular focus on the bandgap, mobility, diffusion length, carrier lifetime, and trap-state density.

  9. Aluminum Pitting Corrosion in Halide Media: A Quantum Model and Empirical Evidence

    Science.gov (United States)

    Lashgari, Mohsen; Kianpour, Effat; Mohammadi, Esmaeil

    2013-12-01

    The phenomenon of localized damage of aluminum oxide surface in the presence of halide anions was scrutinized at an atomistic level, through the cluster approach and density functional theory. The phenomenon was also investigated empirically through Tafel polarization plots and scanning electron microscopy. A distinct behavior witnessed in the fluoride medium was justified through the hard-soft acid-base principle. The atomistic investigations revealed the greatest potency for chloride entrance into the metal oxide lattice and rationalized to the severity of damage. The interaction of halide anions with the oxide surface causing some displacements on the position of Al atoms provides a mechanistic insight of the phenomenon.

  10. Band Gap Tuning and Defect Tolerance of Atomically Thin Two- Dimensional Organic-Inorganic Halide Perovskites

    OpenAIRE

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    Organic−inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC ...

  11. Environmental Effects on the Photophysics of Organic-Inorganic Halide Perovskites.

    Science.gov (United States)

    Galisteo-López, Juan F; Anaya, M; Calvo, M E; Míguez, H

    2015-06-18

    The photophysical properties of films of organic-inorganic lead halide perovskites under different ambient conditions are herein reported. We demonstrate that their luminescent properties are determined by the interplay between photoinduced activation and darkening processes, which strongly depend on the atmosphere surrounding the samples. We have isolated oxygen and moisture as the key elements in each process, activation and darkening, both of which involve the interaction with photogenerated carriers. These findings show that environmental factors play a key role in the performance of lead halide perovskites as efficient luminescent materials.

  12. Building up an electrocatalytic activity scale of cathode materials for organic halide reductions

    International Nuclear Information System (INIS)

    Bellomunno, C.; Bonanomi, D.; Falciola, L.; Longhi, M.; Mussini, P.R.; Doubova, L.M.; Di Silvestro, G.

    2005-01-01

    A wide investigation on the electrochemical activity of four model organic bromides has been carried out in acetonitrile on nine cathodes of widely different affinity for halide anions (Pt, Zn, Hg, Sn, Bi, Pb, Au, Cu, Ag), and the electrocatalytic activities of the latter have been evaluated with respect to three possible inert reference cathode materials, i.e. glassy carbon, boron-doped diamond, and fluorinated boron-doped diamond. A general electrocatalytic activity scale for the process is proposed, with a discussion on its modulation by the configuration of the reacting molecule, and its connection with thermodynamic parameters accounting for halide adsorption

  13. Research Update: Physical and electrical characteristics of lead halide perovskites for solar cell applications

    Directory of Open Access Journals (Sweden)

    Simon A. Bretschneider

    2014-04-01

    Full Text Available The field of thin-film photovoltaics has been recently enriched by the introduction of lead halide perovskites as absorber materials, which allow low-cost synthesis of solar cells with efficiencies exceeding 16%. The exact impact of the perovskite crystal structure and composition on the optoelectronic properties of the material are not fully understood. Our progress report highlights the knowledge gained about lead halide perovskites with a focus on physical and optoelectronic properties. We discuss the crystal and band structure of perovskite materials currently implemented in solar cells and the impact of the crystal properties on ferroelectricity, ambipolarity, and the properties of excitons.

  14. A mild and efficient procedure for the synthesis of ethers from various alkyl halides

    Directory of Open Access Journals (Sweden)

    Mosstafa Kazemi

    2013-10-01

    Full Text Available A simple, mild and practical procedure has been developed for the synthesis of symmetrical and unsymmetrical ethers by using DMSO, TBAI in the presence of K2CO3. We extended the utility of Potassium carbonate as an efficient base for the preparation of ethers. A wide range of alkyl aryl and dialkyl ethers are synthezied from treatment of aliphatic alcohols and phenols with various alkyl halides in the prescence of efficient base Potassium carbonate. Secondary alkyl halides were easily converted to corresponding ethers in releatively good yields . This is a mild, simple and practical procedure for the preparation of ethers in high yields and suitable times under mild condition.

  15. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms

    DEFF Research Database (Denmark)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J.

    2014-01-01

    electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) – almost 27000 combinations, and have identified novel mixtures, with significantly improved storage......Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat...

  16. Improved catalytic properties of halohydrin dehalogenase by modification of the halide-binding site.

    Science.gov (United States)

    Tang, Lixia; Torres Pazmiño, Daniel E; Fraaije, Marco W; de Jong, René M; Dijkstra, Bauke W; Janssen, Dick B

    2005-05-03

    Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.

  17. Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

    DEFF Research Database (Denmark)

    Antonacci, Giuseppe; Ahlburg, Andreas; Fristrup, Peter

    2017-01-01

    The substrate scope and the mechanism have been investigated for the MnCl2-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group....... Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN1 mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor...

  18. A Cluster-Bethe lattice treatment for the F-center in alkali-halides

    International Nuclear Information System (INIS)

    Queiroz, S.L.A. de; Koiller, B.; Maffeo, B.; Brandi, H.S.

    1977-01-01

    The electronic structure of the F-center in alkali-halides with the NaCl structure has been studied using the Cluster-Bethe lattice method. The central cluster has been taken as constituted by the vacancy and the nearest- and second- neighbors to it, respectively, cations and anions. The optical transitions have been calculated and compared to experimental data on the location of the peak of the F-absorption band. The agreement obtained indicates that this method may be used to study properties of this defect in alkali halides [pt

  19. Spectroscopic investigation of indium halides as substitudes of mercury in low pressure discharges for lighting applications

    Energy Technology Data Exchange (ETDEWEB)

    Briefi, Stefan

    2012-05-22

    Low pressure discharges with indium halides as radiator are discussed as substitutes for hazardous mercury in conventional fluorescent lamps. In this work, the applicability of InBr and InCl in a low pressure discharge light source is investigated. The aim is to identify and understand the physical processes which determine the discharge characteristics and the efficiency of the generated near-UV emission of the indium halide molecule and of the indium atom which is created due to dissociation processes in the plasma. As discharge vessels sealed cylindrical quartz glass tubes which contain a defined amount of indium halide and a rare gas are used. Preliminary investigations showed that for a controlled variation of the indium halide density a well-defined cold spot setup is mandatory. This was realized in the utilized experimental setup. The use of metal halides raises the issue, that power coupling by internal electrodes is not possible as the electrodes would quickly be eroded by the halides. The comparison of inductive and capacitive RF-coupling with external electrodes revealed that inductively coupled discharges provide higher light output and much better long term stability. Therefore, all investigations are carried out using inductive RF-coupling. The diagnostic methods optical emission and white light absorption spectroscopy are applied. As the effects of absorption-signal saturation and reabsorption of emitted radiation within the plasma volume could lead to an underestimation of the determined population densities by orders of magnitude, these effects are considered in the data evaluation. In order to determine the electron temperature and the electron density from spectroscopic measurements, an extended corona model as population model of the indium atom has been set up. A simulation of the molecular emission spectra has been implemented to investigate the rovibrational population processes of the indium halide molecules. The impact of the cold spot

  20. Fissure minerals, literature review

    International Nuclear Information System (INIS)

    Larsson, S.Aa.

    1980-01-01

    This paper is a review of methods used for direct and indirect dating of tectonic events. Isotope geochemistry including stable isotopes as well as fission track- dating, fluid inclusion and thermoluminescens techniques have been considered. It has been concluded that an investigation of tectonic (and thermal) events should start with a detailed study of the mineral phases grown in seald fissures as well as minerals from fissure walls. This study should include phase identification, textures as well as mineral chemistry. The information from this study is fundamental for the decision of further investigations. Mineral chemistry including isotopes and fluid inclusion studies will give an essential knowledge about crystallization conditions for fissure minerals concerned. Direct dating using fission tracks as well as radioactive isotopes could be useful for some minerals. Application of thermoluminescens dating on fissure minerals is doubtful. (Auth.)

  1. Grouping Minerals by Their Formulas

    Science.gov (United States)

    Mulvey, Bridget

    2018-01-01

    Minerals are commonly taught in ways that emphasize mineral identification for its own sake or maybe to help identify rocks. But how do minerals fit in with other science content taught? The author uses mineral formulas to help Earth science students wonder about the connection between elements, compounds, mixtures, minerals, and mineral formulas.…

  2. Determination of the structural phase and octahedral rotation angle in halide perovskites

    Science.gov (United States)

    dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich

    2018-02-01

    A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.

  3. Luminescent decay and spectra of impurity-activated alkali halides under high pressure

    International Nuclear Information System (INIS)

    Klick, D.I.

    1977-01-01

    The effect of high pressure on the luminescence of alkali halides doped with the transition-metal ions Cu + and Ag + and the heavy-metal ions In + and Tl + was investigated to 140 kbar. Measurement of spectra allowed the prediction of kinetic properties, and the predictions agree with lifetime data

  4. 2-D images of the metal-halide lamp obtained by experiment and model

    NARCIS (Netherlands)

    Flikweert, A.J.; Beks, M.L.; Nimalasuriya, T.; Kroesen, G.M.W.; Mullen, van der J.J.A.M.; Stoffels, W.W.

    2008-01-01

    The metal-halide lamp shows color segregation caused by diffusion and convection. Two-dimensional imaging of the arc discharge under varying gravity conditions aids in the understanding of the flow phenomena. In this paper, we show results obtained by experiments and by numerical simulations in

  5. Organometallic halide perovskite single crystals having low deffect density and methods of preparation thereof

    KAUST Repository

    Bakr, Osman; Shi, Dong

    2016-01-01

    The present disclosure presents a method of making a single crystal organometallic halide perovskites, with the formula: AMX3, wherein A is an organic cation, M is selected from the group consisting of: Pb, Sn, Cu, Ni, Co, Fe, Mn, Pd, Cd, Ge, and Eu

  6. Trap-Free Hot Carrier Relaxation in Lead–Halide Perovskite Films

    KAUST Repository

    Bretschneider, Simon A.; Laquai, Fré dé ric; Bonn, Mischa

    2017-01-01

    Photovoltaic devices that employ lead-halide perovskites as photoactive materials exhibit power conversion efficiencies of 22%. One of the potential routes to go beyond the current efficiencies is to extract charge carriers that carry excess energy, that is, nonrelaxed or

  7. Effect of halide-mixing on the switching behaviors of organic-inorganic hybrid perovskite memory

    Science.gov (United States)

    Hwang, Bohee; Gu, Chungwan; Lee, Donghwa; Lee, Jang-Sik

    2017-03-01

    Mixed halide perovskite materials are actively researched for solar cells with high efficiency. Their hysteresis which originates from the movement of defects make perovskite a candidate for resistive switching memory devices. We demonstrate the resistive switching device based on mixed-halide organic-inorganic hybrid perovskite CH3NH3PbI3-xBrx (x = 0, 1, 2, 3). Solvent engineering is used to deposit the homogeneous CH3NH3PbI3-xBrx layer on the indium-tin oxide-coated glass substrates. The memory device based on CH3NH3PbI3-xBrx exhibits write endurance and long retention, which indicate reproducible and reliable memory properties. According to the increase in Br contents in CH3NH3PbI3-xBrx the set electric field required to make the device from low resistance state to high resistance state decreases. This result is in accord with the theoretical calculation of migration barriers, that is the barrier to ionic migration in perovskites is found to be lower for Br- (0.23 eV) than for I- (0.29-0.30 eV). The resistive switching may be the result of halide vacancy defects and formation of conductive filaments under electric field in the mixed perovskite layer. It is observed that enhancement in operating voltage can be achieved by controlling the halide contents in the film.

  8. Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review.

    Science.gov (United States)

    Sani, Faruk; Shafie, Suhaidi; Lim, Hong Ngee; Musa, Abubakar Ohinoyi

    2018-06-14

    Remarkable attention has been committed to the recently discovered cost effective and solution processable lead-free organic-inorganic halide perovskite solar cells. Recent studies have reported that, within five years, the reported efficiency has reached 9.0%, which makes them an extremely promising and fast developing candidate to compete with conventional lead-based perovskite solar cells. The major challenge associated with the conventional perovskite solar cells is the toxic nature of lead (Pb) used in the active layer of perovskite material. If lead continues to be used in fabricating solar cells, negative health impacts will result in the environment due to the toxicity of lead. Alternatively, lead free perovskite solar cells could give a safe way by substituting low-cost, abundant and non toxic material. This review focuses on formability of lead-free organic-inorganic halide perovskite, alternative metal cations candidates to replace lead (Pb), and possible substitutions of organic cations, as well as halide anions in the lead-free organic-inorganic halide perovskite architecture. Furthermore, the review gives highlights on the impact of organic cations, metal cations and inorganic anions on stability and the overall performance of lead free perovskite solar cells.

  9. Trap-Free Hot Carrier Relaxation in Lead–Halide Perovskite Films

    KAUST Repository

    Bretschneider, Simon A.

    2017-05-08

    Photovoltaic devices that employ lead-halide perovskites as photoactive materials exhibit power conversion efficiencies of 22%. One of the potential routes to go beyond the current efficiencies is to extract charge carriers that carry excess energy, that is, nonrelaxed or

  10. Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?

    NARCIS (Netherlands)

    Sherkar, Tejas; Koster, L. Jan Anton

    The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower

  11. Ligand-free, palladium-catalyzed dihydrogen generation from TMDS: dehalogenation of aryl halides on water.

    Science.gov (United States)

    Bhattacharjya, Anish; Klumphu, Piyatida; Lipshutz, Bruce H

    2015-03-06

    A mild and environmentally attractive dehalogenation of functionalized aryl halides has been developed using nanoparticles formed from PdCl2 in the presence of tetramethyldisiloxane (TMDS) on water. The active catalyst and reaction medium can be recycled. This method can also be applied to cascade reactions in a one-pot sequence.

  12. Radiation chemistry of hydrocarbon and alkyl halide systems. Progress report, August 1, 1977--August 1, 1978

    International Nuclear Information System (INIS)

    Hanrahan, R.J.

    1978-01-01

    Progress of experimental work is reported on pulse radiolysis of simple alkyl halides in the gas phase, gas phase radiolysis of CHF 3 -CH 3 I mixtures, gamma radiolysis of the system CO/H 2 , and improvements in equipment and facilities

  13. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    Energy Technology Data Exchange (ETDEWEB)

    Parent, Alexander A. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Anderson, Thomas M. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Michaelis, David J. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Jiang, Guilin [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Savage, Paul B. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Linford, Matthew R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)]. E-mail: mrlinford@chem.byu.edu

    2006-07-30

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups.

  14. Direct ToF-SIMS analysis of organic halides and amines on TLC plates

    International Nuclear Information System (INIS)

    Parent, Alexander A.; Anderson, Thomas M.; Michaelis, David J.; Jiang, Guilin; Savage, Paul B.; Linford, Matthew R.

    2006-01-01

    It has been reported that: 'direct analysis of thin layer chromatography (TLC) plates with secondary ion mass spectrometry (SIMS) yields no satisfactory results' (J. Chromatogr. A 1084 (2005) 113-118). While this statement appears to be true in general, we have identified two important classes of compounds, organic halides and amines, that appear to yield to such direct analyses. For example, five organic halides with diverse structures were eluted on normal phase TLC plates. In all cases the halide signals in the negative ion time-of-flight secondary ion mass spectrometry (ToF-SIMS) spectra were notably stronger than the background signals. Similarly, a series of five organic amines with diverse structures were directly analyzed by positive ion ToF-SIMS. In all but one of the spectra characteristic, and sometimes even quasi-molecular ions, were observed. Most likely, the good halide ion yields are largely a function of the electronegativity of the halogens. We also propose that direct analysis of amines on normal phase silica gel is facilitated by the acidity, i.e., proton donation, of surface silanol groups

  15. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    Science.gov (United States)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  16. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite.

    Science.gov (United States)

    Zhou, Chenkun; Tian, Yu; Yuan, Zhao; Lin, Haoran; Chen, Banghao; Clark, Ronald; Dilbeck, Tristan; Zhou, Yan; Hurley, Joseph; Neu, Jennifer; Besara, Tiglet; Siegrist, Theo; Djurovich, Peter; Ma, Biwu

    2017-12-27

    Organic-inorganic hybrid metal halide perovskites have emerged as a highly promising class of light emitters, which can be used as phosphors for optically pumped white light-emitting diodes (WLEDs). By controlling the structural dimensionality, metal halide perovskites can exhibit tunable narrow and broadband emissions from the free-exciton and self-trapped excited states, respectively. Here, we report a highly efficient broadband yellow light emitter based on zero-dimensional tin mixed-halide perovskite (C 4 N 2 H 14 Br) 4 SnBr x I 6-x (x = 3). This rare-earth-free ionically bonded crystalline material possesses a perfect host-dopant structure, in which the light-emitting metal halide species (SnBr x I 6-x 4- , x = 3) are completely isolated from each other and embedded in the wide band gap organic matrix composed of C 4 N 2 H 14 Br - . The strongly Stokes-shifted broadband yellow emission that peaked at 582 nm from this phosphor, which is a result of excited state structural reorganization, has an extremely large full width at half-maximum of 126 nm and a high photoluminescence quantum efficiency of ∼85% at room temperature. UV-pumped WLEDs fabricated using this yellow emitter together with a commercial europium-doped barium magnesium aluminate blue phosphor (BaMgAl 10 O 17 :Eu 2+ ) can exhibit high color rendering indexes of up to 85.

  17. Kinetics of halide release of haloalkane dehalogenase : Evidence for a slow conformational change

    NARCIS (Netherlands)

    Schanstra, JP; Janssen, DB; Schanstra, Joost P.

    1996-01-01

    Haloalkane dehalogenase converts haloalkanes to their corresponding alcohols and halides, The reaction mechanism involves the formation of a covalent alkyl-enzyme complex which is hydrolyzed by water. The active site is a hydrophobic cavity buried between the main domain and the cap domain of the

  18. Behaviour of alkali halides as materials for optical components of high power lasers

    International Nuclear Information System (INIS)

    Apostol, D.I.; Mihailescu, N.I.; Ghiordanescu, V.; Nistor, C.L.; Nistor, V.S.; Teodorescu, V.; Voda, M.

    1978-01-01

    The physical phenomena taking place in alkali halides when a CO 2 laser radiation is passing through have been reviewed. A special emphasis has been put on the specific qualities which such materials should have for being used as components for high power lasers. (author)

  19. Correlated linear response calculations of the C6 dispersion coefficients of hydrogen halides

    Czech Academy of Sciences Publication Activity Database

    Sauer, S. P. A.; Paidarová, Ivana

    2007-01-01

    Roč. 3, 2-4 (2007), s. 399-421 ISSN 1574-0404 R&D Projects: GA AV ČR IAA401870702 Institutional research plan: CEZ:AV0Z40400503 Keywords : hydrogen halides * C6 dospersion coefficients * van der Waals coefficients * polarizability at imaginary frequences * SOPPA Subject RIV: CF - Physical ; Theoretical Chemistry

  20. REPLACEMENT OF TRYPTOPHAN RESIDUES IN HALOALKANE DEHALOGENASE REDUCES HALIDE BINDING AND CATALYTIC ACTIVITY

    NARCIS (Netherlands)

    KENNES, C; PRIES, F; KROOSHOF, GH; BOKMA, E; Kingma, Jacob; JANSSEN, DB

    1995-01-01

    Haloalkane dehalogenase catalyzes the hydrolytic cleavage of carbon-halogen bonds in short-chain haloalkanes. Two tryptophan residues of the enzyme (Trp125 and Trp175) form a halide-binding site in the active-site cavity, and were proposed to play a role in catalysis. The function of these residues

  1. Relationship between thermoluminescence and X-ray induced luminescence in alkali halides

    International Nuclear Information System (INIS)

    Aguilar, M.; Lopez, F.J.; Jaque, F.

    1978-01-01

    The wavelength spectra of thermoluminescence and X-ray induced luminescence in pure and divalent cation doped alkali halides, in the temperature range LNT-RT have been studied. The more important conclusion is that the wavelength spectra in both cases are very similar. This allows a new point of view to be presented on thermoluminescence mechanisms. (author)

  2. Chemistry of gaseous lower-valent actinide halides. Technical progress report

    International Nuclear Information System (INIS)

    Hildenbrand, D.L.

    1984-01-01

    Objective is to provide thermochemical data for key actinide halide and oxyhalide systems. Progress is reported on bond dissociation energies of gaseous ThCl 4 , ThCl 3 , ThCl 2 , and ThCl; bond dissociation energies of ruthenium fluorides; and mass spectroscopy of UF 6

  3. Charge-charge liquid structure factor and the freezing of alkali halides

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-10-01

    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  4. A model for additive transport in metal halide lamps containing mercury and dysprosium tri-iodide

    NARCIS (Netherlands)

    Beks, M.L.; Haverlag, M.; Mullen, van der J.J.A.M.

    2008-01-01

    The distribution of additives in a metal halide lamp is examined through numerical modelling. A model for a lamp containing sodium iodide additives has been modified to study a discharge containing dysprosium tri-iodide salts. To study the complex chemistry the method of Gibbs minimization is used

  5. The importance of moisture in hybrid lead halide perovskite thin film fabrication

    NARCIS (Netherlands)

    Eperon, G.E.; Habisreutinger, S.N.; Leijtens, T.; Bruijnaers, B.J.; van Franeker, J.J.; deQuilettes, D.W.; Pathak, S.; Sutton, R.J.; Grancini, G.; Ginger, D.S.; Janssen, R.A.J.; Petrozza, A.; Snaith, H.J.

    2015-01-01

    Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood

  6. Electrochemical specific adsorption of halides on Cu 111, 100, and 211: A Density Functional Theory study

    International Nuclear Information System (INIS)

    McCrum, Ian T.; Akhade, Sneha A.; Janik, Michael J.

    2015-01-01

    The specific adsorption of ions onto electrode surfaces can affect electrocatalytic reactions. Density functional theory is used to investigate the specific adsorption of aqueous F − , Cl − , Br − , and I − onto Cu (111), (100), and (211) surfaces. The adsorption is increasingly favorable in the order of F − < Cl − < Br − < I − . The adsorption has a weak dependence on the surface facet, with adsorption most favorable on Cu (100) and least favorable on Cu (111). Potential ranges where specific adsorption would be expected on each facet are reported. The thermodynamics of bulk copper halide (CuX, CuX 2 ) formation are also investigated as a function of potential. CuX formation occurs at potentials slightly more positive of halide specific adsorption and of copper oxidation in aqueous electrolytes. Specifically adsorbed halides and bulk CuX may be present during a variety of electrochemical reactions carried out over a Cu electrode in halide containing electrolyte solutions

  7. Transport phenomena in metal-halide lamps : a poly-diagnostic study

    NARCIS (Netherlands)

    Nimalasuriya, T.

    2007-01-01

    Worldwide about 20% of all electricity is used for lighting. It is therefore of great interest to develop a lamp that has high e±cacy, good colour rendering and long lifetime. The metal-halide lamp is a gas discharge lamp that meets all these demands. Unfortunately there are still issues with this

  8. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    Science.gov (United States)

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.

    2014-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  9. Epitaxial Growth of a Methoxy-Functionalized Quaterphenylene on Alkali Halide Surfaces

    DEFF Research Database (Denmark)

    Balzer, Frank; Sun, Rong; Parisi, Jürgen

    2015-01-01

    The epitaxial growth of the methoxy functionalized para-quaterphenylene (MOP4) on the (001) faces of the alkali halides NaCl and KCl and on glass is investigated by a combination of lowenergy electron diffraction (LEED), polarized light microscopy (PLM), atomic force microscopy (AFM), and X...

  10. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.

    1983-01-01

    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  11. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    KAUST Repository

    Chen, Tao

    2012-08-01

    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  12. 43 CFR 19.8 - Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest...

    Science.gov (United States)

    2010-10-01

    ... patents, and mineral leasing within National Forest Wilderness. 19.8 Section 19.8 Public Lands: Interior... § 19.8 Prospecting, mineral locations, mineral patents, and mineral leasing within National Forest... locations, mineral patents, and mineral leasing within National Forest Wilderness are contained in parts...

  13. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    Science.gov (United States)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  14. Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes.

    Science.gov (United States)

    Small, A L; McFall-Ngai, M J

    1999-03-15

    An enzyme with similarities to myeloperoxidase, the antimicrobial halide peroxidase in mammalian neutrophils, occurs abundantly in the light organ tissue of Euprymna scolopes, a squid that maintains a beneficial association with the luminous bacterium Vibrio fischeri. Using three independent assays typically applied to the analysis of halide peroxidase enzymes, we directly compared the activity of the squid enzyme with that of human myeloperoxidase. One of these methods, the diethanolamine assay, confirmed that the squid peroxidase requires halide ions for its activity. The identification of a halide peroxidase in a cooperative bacterial association suggested that this type of enzyme can function not only to control pathogens, but also to modulate the interactions of host animals with their beneficial partners. To determine whether the squid peroxidase functions under both circumstances, we examined its distribution in a variety of host tissues, including those that typically interact with bacteria and those that do not. Tissues interacting with bacteria included those that have specific cooperative associations with bacteria (i.e., the light organ and accessory nidamental gland) and those that have transient nonspecific interactions with bacteria (i.e., the gills, which clear the cephalopod circulatory system of invading microorganisms). These bacteria-associated tissues were compared with the eye, digestive gland, white body, and ink-producing tissues, which do not typically interact directly with bacteria. Peroxidase enzyme assays, immunocytochemical localization, and DNA-RNA hybridizations showed that the halide-dependent peroxidase is consistently expressed in high concentration in tissues that interact bacteria. Elevated levels of the peroxidase were also found in the ink-producing tissues, which are known to have enzymatic pathways associated with antimicrobial activity. Taken together, these data suggest that the host uses a common biochemical response to

  15. Radioactive mineral deposits

    Energy Technology Data Exchange (ETDEWEB)

    1948-01-01

    This publication was designed as a guide for uranium and thorium prospectors in Australia. Physical properties, such as color, streak, luster, hardness, fracture, and specific gravity of the uranium and thorium-bearing minerals are summarized and the various methods suitable for detecting radioactivity in minerals are described. Two colored plates show samples of pitchblende (uraninite), autunite, carnotite, monazite, and others of the most important minerals sources of uranium and thorium.

  16. Brazilian minerals annual report

    International Nuclear Information System (INIS)

    1977-01-01

    Statistics of Brazilian mineral resources and production in 1977 are presented. Data included refer also to economic aspects, market, taxes, government incentives, manpower, exportation, importation, etc [pt

  17. Minerals industry survey, 1984

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    This is the seventh edition of the statistical survey commissioned by the Australian Mining Industry Council. It represents the most comprehensive review of the financial position of the Australian minerals industry and provides timely financial data on the minerals industry. The tables of this survey have been prepared for AMIC by Coopers and Lybrand, Chartered Accountants, based on information supplied to them in confidence by the respondent companies. For the purpose of the survey, the minerals industry has been defined as including exploration for, and extraction and primary processing of, minerals in Australia. The oil and gas industry is not included.

  18. Reagan issues mineral policy

    Science.gov (United States)

    The National Materials and Minerals Program plan and report that President Reagan sent to Congress on April 5 aims to ‘decrease America's minerals vulnerability’ while reducing future dependence on potentially unstable foreign sources of minerals. These goals would be accomplished by taking inventory of federal lands to determine mineral potential; by meeting the stockpile goals set by the Strategic and Critical Material Stockpiling Act; and by establishing a business and political climate that would encourage private-sector research and development on minerals.Now that the Administration has issued its plan, the Subcommittee on Mines and Mining of the House Committee on Interior and Insular Affairs will consider the National Minerals Security Act (NMSA), which was introduced 1 year ago by subcommittee chairman Jim Santini (D-Nev.) [Eos, May 19, 1981, p. 497]. The bill calls for establishing a three-member White-House-level council to coordinate the development of a national minerals policy; amending tax laws to assist the mining industry to make capital investments to locate and produce strategic materials; and creating a revolving fund for the sale and purchase of strategic minerals. In addition, the NMSA bill would allow the secretary of the interior to make previously withdrawn public lands available for mineral development. The subcommittee will hold a hearing on the Administration's plan on May 11. Interior Secretary James Watt has been invited to testify.

  19. International mineral economics

    International Nuclear Information System (INIS)

    Gocht, W.R.; Eggert, R.G.

    1988-01-01

    International Mineral Economics provides an integrated overview of the important concepts. The treatment is interdisciplinary, drawing on the fields of economics, geology, business, and mining engineering. Part I examines the technical concepts important for understanding the geology of ore deposits, the methods of exploration and deposit evaluation, and the activities of mining and mineral processing. Part II focuses on the economic and related concepts important for understanding mineral development, the evaluation of exploration and mining projects, and mineral markets and market models. Finally, Part III reviews and traces the historical development of the policies of international organizations, the industrialized countries, and the developing countries. (orig.)

  20. Mineral statistics yearbook 1994

    International Nuclear Information System (INIS)

    1994-01-01

    A summary of mineral production in Saskatchewan was compiled and presented as a reference manual. Statistical information on fuel minerals such as crude oil, natural gas, liquefied petroleum gas and coal, and of industrial and metallic minerals, such as potash, sodium sulphate, salt and uranium, was provided in all conceivable variety of tables. Production statistics, disposition and value of sales of industrial and metallic minerals were also made available. Statistical data on drilling of oil and gas reservoirs and crown land disposition were also included. figs., tabs

  1. Marine Mineral Exploration

    DEFF Research Database (Denmark)

    in EEZ areas are fairly unknown; many areas need detailed mapping and mineral exploration, and the majority of coastal or island states with large EEZ areas have little experience in exploration for marine hard minerals. This book describes the systematic steps in marine mineral exploration....... Such exploration requires knowledge of mineral deposits and models of their formation, of geophysical and geochemical exploration methods, and of data evaluation and interpretation methods. These topics are described in detail by an international group of authors. A short description is also given of marine...

  2. Mineral oil industry

    NARCIS (Netherlands)

    Brasser, L.J.; Suess, M.J.; Grefen, K.; Reinisch, D.W.

    1985-01-01

    In this chapter a general picture is presented of the air pollution aspects in the mineral oil industry. The complete field is covered, starting from drilling operations and the well head up to the delivery of the products to the consumer. A large field of activities as is given by the mineral oil

  3. Vitamins, Minerals, and Mood

    Science.gov (United States)

    Kaplan, Bonnie J.; Crawford, Susan G.; Field, Catherine J.; Simpson, J. Steven A.

    2007-01-01

    In this article, the authors explore the breadth and depth of published research linking dietary vitamins and minerals (micronutrients) to mood. Since the 1920s, there have been many studies on individual vitamins (especially B vitamins and Vitamins C, D, and E), minerals (calcium, chromium, iron, magnesium, zinc, and selenium), and vitamin-like…

  4. Mineral commodity summaries 2018

    Science.gov (United States)

    Ober, Joyce A.

    2018-01-31

    This report is the earliest Government publication to furnish estimates covering 2017 nonfuel mineral industry data. Data sheets contain information on the domestic industry structure, Government programs, tariffs, and 5-year salient statistics for more than 90 individual minerals and materials.

  5. Indochina area mineral prospects

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-05

    Prospects for commercial mining of various minerals are considered for Kampuchea (Cambodia), Laos, Vietnam, Myanmar (Burma) and Thailand. Mineral production is much below its geologic potential for economic and political reasons. Resource potential is limited to tin, tungsten, lead and zinc, barytes and gemstones, and coal. 1 fig.

  6. The chemistry of positronium. Part VI: inhibition and enhancement of positronium formation in aqueous solutions of halides, sulfide and thiocyanate

    International Nuclear Information System (INIS)

    Duplatre, G.; Abbe, J.C.; Maddock, A.G.; Haessler, A.

    1977-01-01

    The formation of positronium in aqueous solutions of halides, sulfide and thiocyanate has been investigated. Inhibiting and enhancing reactions of positronium formation are found. The results are discussed in terms of the spur model

  7. Taxation of unmined minerals

    International Nuclear Information System (INIS)

    Bremberg, B.P.

    1989-01-01

    This paper reports on the Kentucky Revenue Cabinet which began implementing its controversial unmined minerals tax program. The Revenue Cabinet should complete its first annual assessment under this program in December, 1989. The Revenue Cabinet's initial efforts to collect basic data concerning the Commonwealth's coal bearing lands has yielded data coverage for 5 million of Kentucky's 10 million acres of coal lands. Approximately 1000 detailed information returns have been filed. The returns will be used to help create an undeveloped mineral reserves inventory, determine mineral ownership, and value mineral reserves. This new program is run by the Revenue Cabinet's Mineral Valuation Section, under the Division of Technical Support, Department of Property Taxation. It has been in business since September of 1988

  8. Mineral industry in Australia

    International Nuclear Information System (INIS)

    Parbo, S.A.

    1982-01-01

    The paper reviews the history and growth of the mineral industry in Australia and its significance to the nation's economic growth and overseas trade, particularly over the last twenty years during which time production of coal, iron ore, manganese and mineral sands has increased greatly and new discoveries of petroleum, bauxite and nickel have given rise to major new industries. Australia ranks fourteenths in the value of world trade and is among the world's largest exporters of alumina, iron ore, mineral sands, coal, lead, zinc and nickel. Some details of production, processing and exports of the major minerals are given. Comment is made on the policies and roles of the six State Governments and the Federal Government in respect of ownership and control of the mining, processing and exporting of both energy and non-energy minerals. (orig.) [de

  9. Crystal structure of mineral grechishchevite synthetic analogue and Hg-X (X=S, Se, Te) bonds topology in structures of mercury chalcogenhalides

    International Nuclear Information System (INIS)

    Pervukhina, N.V.; Borisov, S.V.; Magarill, S.A.; Naumov, D.Yu.; Vasil'ev, V.I.; Nenashev, B.G.

    2004-01-01

    Structural studies of synthetic analog of mineral grechishchevite Hg 3 S 2 Br 1.00 Cl 0.50 I 0.50 were conducted, the mineral crystal structure was refined, the results of the studies being analyzed. For chalcogenhalides Hg 3 X 2 Hal 2 (X=S, Se, Te; Hal=Cl, Br, I) inventory was taken of intergrowing isolated and infinite, i.e. continuous, layered and carcass, covalently bonded Hg-X-radicals into pseudocubical matrix from halide ions [ru

  10. Methyl halide fluxes from tropical plants under controlled radiation and temperature regimes

    Science.gov (United States)

    Blei, Emanuel; Yokouchi, Yoko; Saito, Takuya; Nozoe, Susumu

    2015-04-01

    Methyl halides (CH3Cl, CH3Br, CH3I) contribute significantly to the halogen burden of the atmosphere and have the potential to influence the stratospheric ozone layer through their catalytic effect in the Chapman cycle. As such they have been studied over the years, and many plants and biota have been examined for their potential to act as a source of these gases. One of the potentially largest terrestrial sources identified was tropical vegetation such as tropical ferns and Dipterocarp trees. Most of these studies concentrated on the identification and quantification of such fluxes rather than their characteristics and often the chambers used in these studies were either opaque or only partially transparent to the full solar spectrum. Therefore it is not certain to which degree emissions of methyl halides are innate to the plants and how much they might vary due to radiation or temperature conditions inside the enclosures. In a separate development it had been proposed that UV-radiation could cause live plant materials to be become emitters of methane even under non-anoxic conditions. As methane is chemically very similar to methyl halides and had been proposed to be produced from methyl-groups ubiquitously found in plant cell material there is a relatively good chance that such a production mechanism would also apply to methyl halides. To test whether radiation can affect elevated emissions of methyl halides from plant materials and to distinguish this from temperature effects caused by heat build-up in chambers a set of controlled laboratory chamber enclosures under various radiation and temperature regimes was conducted on four different tropical plant species (Magnolia grandiflora, Cinnamonum camphora, Cyathea lepifera, Angiopteris lygodiifolia), the latter two of which had previously been identified as strong methyl halide emitters. Abscised leaf samples of these species were subjected to radiation treatments such UV-B, UV-A and broad spectrum radiation

  11. Electrochemically reduced titanocene dichloride as a catalyst of reductive dehalogenation of organic halides

    Energy Technology Data Exchange (ETDEWEB)

    Magdesieva, Tatiana V. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)]. E-mail: tvm@org.chem.msu.ru; Graczyk, Magdalena [LSEO-UMR 5188 CNRS, Universite de Bourgogne, Dijon (France); Vallat, Alain [LSEO-UMR 5188 CNRS, Universite de Bourgogne, Dijon (France); Nikitin, Oleg M. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Demyanov, Petr I. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Butin, Kim P. [Department Chemistry, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Vorotyntsev, Mikhail A. [LSEO-UMR 5188 CNRS, Universite de Bourgogne, Dijon (France)]. E-mail: MV@u-bourgogne.fr

    2006-11-12

    We have studied a reaction between the reduced form of titanocene dichloride (Cp{sub 2}TiCl{sub 2}) and a group of organic halides: benzyl derivatives (4-X-C{sub 6}H{sub 4}CH{sub 2}Cl, X = H, NO{sub 2}, CH{sub 3}; 4-X-C{sub 6}H{sub 4}CH{sub 2}Br, X = H, NO{sub 2}, PhC(O); 4-X-C{sub 6}H{sub 4}CH{sub 2}SCN, X = H, NO{sub 2}) as well as three aryl halides (4-NO{sub 2}C{sub 6}H{sub 4}Hal, Hal = Cl, Br; 4-CH{sub 3}O-C{sub 6}H{sub 4}Cl). It has been shown that the electrochemical reduction of Cp{sub 2}TiCl{sub 2} in the presence of these benzyl halides leads to a catalytic cycle resulting in the reductive dehalogenation of these organic substrates to yield mostly corresponding toluene derivatives as the main product. No dehalogenation has been observed for aryl derivatives. Based on electrochemical data and digital simulation, possible schemes of the catalytic process have been outlined. For non-substituted benzyl halides halogen atom abstraction is a key step. For the reaction of nitrobenzyl halides the complexation of Ti(III) species with the nitro group takes place, with the electron transfer from Ti(III) to this group (owing to its highest coefficient in LUMO of the nitro benzyl halide) followed by an intramolecular dissociative electron redistribution in the course of the heterolytic C-Hal bond cleavage. The results for reduced titanocene dichloride centers immobilized inside a polymer film showed that the catalytic reductive dehalogenation of the p-nitrobenzyl chloride does occur but with a low efficiency because of the partial deactivation of the film due to the blocking of the electron charge transport between the electrode and catalytic centers.

  12. Vibrational Spectra of Discrete UO22+ Halide Complexes in the Gas Phase

    International Nuclear Information System (INIS)

    Groenewold, G.S.; Van Stipdonk, Michael J.; Oomens, Jos; De Jong, Wibe A.; Gresham, Garold L.; Mcilwain, Michael

    2010-01-01

    The intrinsic binding of halide ions to the metal center in the uranyl molecule is a topic of ongoing research interest in both the actinide separations and theoretical communities. Investigations of structure in the condensed phases is frequently obfuscated by solvent interactions that can alter ligand binding and spectroscopic properties. The approach taken in this study is to move the uranyl halide complexes into the gas phase where they are free from solvent interactions, and then interrogate their vibrational spectroscopy using infrared multiple photon dissociation (IRMPD). The spectra of cationic coordination complexes having the composition (UO 2 (X)(ACO) 3 ) + (where X = F, Cl, Br and I; ACO = acetone) were acquired using electrospray for ion formation, and monitoring the ion signal from the photoelimination of ACO ligands. The studies showed that the asymmetric ν 3 UO 2 frequency was insensitive to halide identity as X was varied from Cl to I, suggesting that in these pseudo-octahedral complexes, changing the nucleophilicity of the halide did not appreciably alter its binding in the complex. The ν 3 peak in the spectrum of the F-containing complex was 9 cm -1 lower indicating stronger coordination in this complex. Similarly the ACO carbonyl stretches showed that the C=O frequency was relatively insensitive to the identity of the halide, although a modest shift to higher wavenumber was seen for the complexes with the more nucleophilic anions, consistent with the idea that they loosen solvent binding. Surprisingly, the ν 1 stretch was activated when the softer anions Cl, Br and I were present in the complexes. IR studies of the anionic complexes (UO 2 X 3 ) - (where X = Cl - , Br - and I - ) compared the ν 3 UO 2 modes versus halide, and showed that the ν 3 values decreased with increasing anion nucleophilicity. This observation was consistent with DFT calculations that indicated that (UO 2 X 2 ) - -X, and (UO 2 X 2 )·-X - dissociation energies

  13. Conformational isomerism in mixed-ligand complexes of 2,2'-bipyridine and triphenylphosphine with copper(I) halides

    International Nuclear Information System (INIS)

    Barron, P.F.; Engelhardt, L.M.; Healy, P.C.; Kildea, J.D.; White, A.H.

    1988-01-01

    Mixed-ligand complexes of triphenylphosphine and 2,2'-bipyridine and copper(I) halides have been synthesized. The 31 P NMR spectra of the complexes were measured and are reported along with data for complete structural characterization of the complexes. The results indicate a novel dichotomy of conformational isomers to be present in the chloride lattice. The Cu-P bond length was found to not vary with different halides. 8 refs., 4 figs., 6 tabs

  14. Adsorption of molecular additive onto lead halide perovskite surfaces: A computational study on Lewis base thiophene additive passivation

    Science.gov (United States)

    Zhang, Lei; Yu, Fengxi; Chen, Lihong; Li, Jingfa

    2018-06-01

    Organic additives, such as the Lewis base thiophene, have been successfully applied to passivate halide perovskite surfaces, improving the stability and properties of perovskite devices based on CH3NH3PbI3. Yet, the detailed nanostructure of the perovskite surface passivated by additives and the mechanisms of such passivation are not well understood. This study presents a nanoscopic view on the interfacial structure of an additive/perovskite interface, consisting of a Lewis base thiophene molecular additive and a lead halide perovskite surface substrate, providing insights on the mechanisms that molecular additives can passivate the halide perovskite surfaces and enhance the perovskite-based device performance. Molecular dynamics study on the interactions between water molecules and the perovskite surfaces passivated by the investigated additive reveal the effectiveness of employing the molecular additives to improve the stability of the halide perovskite materials. The additive/perovskite surface system is further probed via molecular engineering the perovskite surfaces. This study reveals the nanoscopic structure-property relationships of the halide perovskite surface passivated by molecular additives, which helps the fundamental understanding of the surface/interface engineering strategies for the development of halide perovskite based devices.

  15. Mineral facilities of Europe

    Science.gov (United States)

    Almanzar, Francisco; Baker, Michael S.; Elias, Nurudeen; Guzman, Eric

    2010-01-01

    This map displays over 1,700 records of mineral facilities within the countries of Europe and western Eurasia. Each record represents one commodity and one facility type at a single geographic location. Facility types include mines, oil and gas fields, and plants, such as refineries, smelters, and mills. Common commodities of interest include aluminum, cement, coal, copper, gold, iron and steel, lead, nickel, petroleum, salt, silver, and zinc. Records include attributes, such as commodity, country, location, company name, facility type and capacity (if applicable), and latitude and longitude geographical coordinates (in both degrees-minutes-seconds and decimal degrees). The data shown on this map and in table 1 were compiled from multiple sources, including (1) the most recently available data from the U.S. Geological Survey (USGS) Minerals Yearbook (Europe and Central Eurasia volume), (2) mineral statistics and information from the USGS Minerals Information Web site (http://minerals.usgs.gov/minerals/pubs/country/europe.html), and (3) data collected by the USGS minerals information country specialists from sources, such as statistical publications of individual countries, annual reports and press releases of operating companies, and trade journals. Data reflect the most recently published table of industry structure for each country at the time of this publication. Additional information is available from the country specialists listed in table 2.

  16. Definitions of Health Terms: Minerals

    Science.gov (United States)

    ... gov/definitions/mineralsdefinitions.html Definitions of Health Terms : Minerals To use the sharing features on this page, ... National Institutes of Health, Office of Dietary Supplements Minerals Minerals are those elements on the earth and ...

  17. Minerals industry survey 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This is the eleventh Minerals Industry Survey produced by the Australian Mining Industry Council. It represents an invaluable time series on the minerals industry's financial performance, as well as an up to date description of the industry for the latest financial year. The survey has been conceived as a supplement to and expansion of the various Australian Bureau of Statistics and Bureau of Mineral Resources, Geology and Geophysics publications which describe the exploration, mining and smelting and refining industries in Australia. The tables in this survey have been prepared by Coopers and Lybrand, Chartered Accountants, based on information supplied to them in confidence by the respondent companies.

  18. Characterization of clay minerals

    International Nuclear Information System (INIS)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A.

    2002-01-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  19. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    International Nuclear Information System (INIS)

    Rodriguez M, R.; Perez S, R.; Vazquez P, G.; Riveros, H.; Gonzalez M, P.

    2014-08-01

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl x KBr 1-x and KBr x RbBr 1-x . (Author)

  20. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    International Nuclear Information System (INIS)

    Paik, Seung Uk; Jung, Myoung Geun

    2012-01-01

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions

  1. Ground state depletion – A step towards mid-IR lasing of doped silver halides

    Energy Technology Data Exchange (ETDEWEB)

    Tsur, Yuval, E-mail: yuvaltsu@post.tau.ac.il [Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801 (Israel); Goldring, Sharone [Applied Physics Division, Soreq NRC, Yavne 81800 (Israel); Galun, Ehud [DDR& D, Ministry of Defense (Israel); Katzir, Abraham [Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801 (Israel)

    2016-07-15

    We show for the first time ground state absorption saturation in a doped silver halide crystal (AgCl{sub x}Br{sub 1−x}), specifically with cobalt. Spectroscopic studies showed absorption bands in the 1.4–2.5 μm region and emission bands in the 3.8–5.0 μm region, with a 1.5 ms lifetime at low temperatures. Absorption saturation indicates a good low and room temperature lasing feasibility at 4.1 μm. In addition, a comparison of cobalt, nickel and iron as dopants is presented. These doped silver halide crystals can be extruded to form optical fibers, possibly introducing a new family of fiber lasers for the middle infrared.

  2. Analogy between temperature dependent radiation effects in alkali halide crystals and crystalline ammonia

    International Nuclear Information System (INIS)

    Blum, A.

    1977-01-01

    Pikaev, Ershov, and Makarov recently reported the characteristic shape of Arrhenius-type dependence for F-centers slow part (millisecond) decay in alkali halide crystals irradiated at different temperatures. The decay rate is constant when the temperature is below the limiting value (T/sub lim/) and exhibits constant activation energy (E/sub A/) at temperatures above T/sub lim/ up to the melting point. A similar dependence has been observed for crystalline ammonia radiolysis yields (H 2 and N 2 ) in the temperature range from 77 to 195 0 K (ammonia melting point) with a limiting value of 105 0 K for N 2 and 119 0 K for H 2 . The coincidence between the alkali halide and ammonia data does not seem to be formal and there are indications showing a closer analogy between these two cases

  3. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site

    KAUST Repository

    Chawla, Mohit; Credendino, Raffaele; Poater, Albert; Oliva, Romina M.; Cavallo, Luigi

    2015-01-01

    Using static and dynamics DFT methods we show that the Mg2+/F-/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F- with Cl- results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.

  4. Structural stability, acidity, and halide selectivity of the fluoride riboswitch recognition site

    KAUST Repository

    Chawla, Mohit

    2015-01-14

    Using static and dynamics DFT methods we show that the Mg2+/F-/phosphate/water cluster at the center of the fluoride riboswitch is stable by its own and, once assembled, does not rely on any additional factor from the overall RNA fold. Further, we predict that the pKa of the water molecule bridging two Mg cations is around 8.4. We also demonstrate that the halide selectivity of the fluoride riboswitch is determined by the stronger Mg-F bond, which is capable of keeping together the cluster. Replacing F- with Cl- results in a cluster that is unstable under dynamic conditions. Similar conclusions on the structure and energetics of the cluster in the binding pocket of fluoride-inhibited pyrophosphatase suggest that the peculiarity of fluoride is in its ability to establish much stronger metal-halide bonds.

  5. Reaction between aminoalkyl radicals and akyl halides: Dehalogenation by electron transfer?

    Science.gov (United States)

    Lalevée, J.; Fouassier, J. P.; Blanchard, N.; Ingold, K. U.

    2011-07-01

    Aminoalkyl radicals, such as Et2NCrad HCH3, have low oxidation potentials and are therefore powerful reducing agents. We have found that Et2NCrad HCH3 reacts with CCl4 and CBr4 in di-tert-butyl peroxide with bimolecular rate constants (measured by LFP) close, or equal, to the diffusion-controlled limit. For the less reactive halide, CH2Br2, the reaction rate is increased substantially by the addition of acetonitrile as a co-solvent. It is tentatively concluded that these reactions occur by electron-transfer from the aminoalkyl to the organohalide with formation of the iminium ion, Et2N+dbnd CHCH3 (NMR detection), halide ion and a halomethyl radical, e.g., rad CCl3 and rad CHCl2 (ESR, spin-trapping detection).

  6. Quantitative positron annihilation studies in citrates, halides and oxyhalides chemisorbed on γ-alumina catalyst

    International Nuclear Information System (INIS)

    Luo, X.H.; Jean, Y.C.; Cheng, K.L.

    1987-01-01

    A quantitative study of the γ-alumina catalyst chemisorbed by nitrates, halides, and oxyhalides has been conducted with the positron annihilation spectroscopy (PAS). Catalysts containing Fe, Co, or Ni have been extensively used in chemical industry and petroleum refining. The positron or Ps annihilation can provide a profile information about the bulk, near surface, and void. It is an in-situ surface technique. The PAS technique has shown its capability to determine the nitrate or chloride in γ-alumina as low as 0.02% in solids. It is interesting to note that the PAS may offer the oxidation state information in solids. This is not surprising because the positron annihilation is sensitive to the electron density variation in environments. Positron annihilation models for halides and oxyhalides are proposed

  7. F-center and self-trapped exciton formation in strongly excited alkali halide crystals

    International Nuclear Information System (INIS)

    Kravchenko, V.A.; Yakovlev, V.Yu.

    1988-01-01

    Method of luminescent and absorption spectroscopy with time resolution was used to study the effect of density of electron pulse excitation (t p =10 -8 s, P=(10 5 -10 8 ) WXcm -2 ) on efficiency of η ε two-halide autolocalized exciton (TALE) and F-centers (η F ) formation in CsI, CsBr, KBr, KI alkali halide crystals. It was established that for all studied systems the elevation of P power of electron beam (EB) from 10 5 up to 5X10 7 WXcm -2 resulted to sufficient decrease of production efficiency and yield of TALE luminescence. In the case when F-centers of colour are induced predominantly by pulsed irradiation in crystals, F-center yield is independent of P. If F-centers and TALE are produced in comparable amounts (CsBr crystals, T=80 K), η ε decrease with P growth is accompanied by η F growth

  8. Energy distributions of atoms sputtered from alkali halides by 540 eV electrons, Ch.1

    International Nuclear Information System (INIS)

    Overeijnder, H.; Szymonski, M.; Haring, A.; Vries, A.E. de

    1978-01-01

    The emission of halogen and alkali atoms, occurring under bombardment of alkali halides with electrons has been investigated. The electron energy was 540 eV and the temperature of the target was varied between room temperature and 400 0 C. The energy distribution of the emitted neutral particles was measured with a time of flight method. It was found that either diffusing interstitial halogen atoms or moving holes dominate the sputtering process above 200 0 C. Below 150 0 C alkali halides with lattice parameters s/d >= 0.33 show emission of non-thermal halogen atoms. s is the interionic space between two halogen ions in a direction and d is the diameter of a halogen atom. In general the energy distribution of the alkali and halogen atoms is thermal above 200 0 C, but not Maxwellian. (Auth.)

  9. Efficient Photon Recycling and Radiation Trapping in Cesium Lead Halide Perovskite Waveguides

    KAUST Repository

    Dursun, Ibrahim

    2018-05-26

    Cesium lead halide perovskite materials have attracted considerable attention for potential applications in lasers, light emitting diodes and photodetectors. Here, we provide the experimental and theoretical evidence for photon recycling in CsPbBr3 perovskite microwires. Using two-photon excitation, we recorded photoluminescence (PL) lifetimes and emission spectra as a function of the lateral distance between PL excitation and collection positions along the microwire, with separations exceeding 100 µm. At longer separations, the PL spectrum develops a red-shifted emission peak accompanied by an appearance of well-resolved rise times in the PL kinetics. We developed quantitative modeling that accounts for bimolecular recombination and photon recycling within the microwire waveguide and is sufficient to account for the observed decay modifications. It relies on a high radiative efficiency in CsPbBr3 perovskite microwires and provides crucial information about the potential impact of photon recycling and waveguide trapping on optoelectronic properties of cesium lead halide perovskite materials.

  10. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  11. A Simple Halide-to-Anion Exchange Method for Heteroaromatic Salts and Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Neus Mesquida

    2012-04-01

    Full Text Available A broad and simple method permitted halide ions in quaternary heteroaromatic and ammonium salts to be exchanged for a variety of anions using an anion exchange resin (A− form in non-aqueous media. The anion loading of the AER (OH− form was examined using two different anion sources, acids or ammonium salts, and changing the polarity of the solvents. The AER (A− form method in organic solvents was then applied to several quaternary heteroaromatic salts and ILs, and the anion exchange proceeded in excellent to quantitative yields, concomitantly removing halide impurities. Relying on the hydrophobicity of the targeted ion pair for the counteranion swap, organic solvents with variable polarity were used, such as CH3OH, CH3CN and the dipolar nonhydroxylic solvent mixture CH3CN:CH2Cl2 (3:7 and the anion exchange was equally successful with both lipophilic cations and anions.

  12. Development of alkali halide-optics for high power-IR laser

    International Nuclear Information System (INIS)

    Pohl, L.

    1989-01-01

    In this work 'Development of Alkali Halide-Optics for High Power-IR Laser' we investigated the purification of sodiumchloride-, potassiumchloride- and potassiumbromide-raw materials. We succeeded to reduce the content of impurities like Cu, Pb, V, Cr, Mn, Fe, Co and Ni in these raw materials to the lower of ppb's by a Complex-Adsorption-Method (CAM). Crystals were grown from purified substances by 'Kyropoulos' method'. Windows were cur thereof, polished and measured by FTIR-spectroscopy. Analytical data showed, that the resulting crystals were of lower quality than the raw materials. Because of this fact crystal-growing-conditions have to undergo a special improvement. Alkali halide windows from other sources on the market had been tested. (orig.) [de

  13. [BMIM][PF(6)] promotes the synthesis of halohydrin esters from diols using potassium halides.

    Science.gov (United States)

    Oromí-Farrús, Mireia; Eras, Jordi; Villorbina, Gemma; Torres, Mercè; Llopis-Mestre, Veronica; Welton, Tom; Canela, Ramon

    2008-10-01

    Haloesterification of diverse diols with various carboxylic acids was achieved using potassium halides (KX) as the only halide source in ionic liquids. The best yield was obtained in [BMIM][PF(6)] when 1,2-octanediol, palmitic acid and KBr were used. This yield was 85% and the regioisomer with the bromine in primary position was present in a 75:25 ratio. The regioisomeric ratio could be improved using either KCl or some phenylcarboxylic acids. [BMIM][PF(6)] acts as both reaction media and catalyst of the reaction. To the best of our knowledge, this type of combined reaction using an ionic liquid is unprecedented. The other solvents tested did not lead either to the same yield or to the same regioisomeric ratio.

  14. Band Gap Tuning and Defect Tolerance of Atomically Thin Two- Dimensional Organic-Inorganic Halide Perovskites

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2016-01-01

    Organic−inorganic halide perovskites have proven highly successful for photovoltaics but suffer from low stability, which deteriorates their performance over time. Recent experiments have demonstrated that low dimensional phases of the hybrid perovskites may exhibit improved stability. Here we...... report first-principles calculations for isolated monolayers of the organometallic halide perovskites (C4H9NH3)2MX2Y2, where M = Pb, Ge, Sn and X,Y = Cl, Br, I. The band gaps computed using the GLLB-SC functional are found to be in excellent agreement with experimental photoluminescence data...... for the already synthesized perovskites. Finally, we study the effect of different defects on the band structure. We find that the most common defects only introduce shallow or no states in the band gap, indicating that these atomically thin 2D perovskites are likely to be defect tolerant....

  15. Energetics and dynamics in organic–inorganic halide perovskite photovoltaics and light emitters

    International Nuclear Information System (INIS)

    Sum, Tze Chien; Chen, Shi; Xing, Guichuan; Liu, Xinfeng; Wu, Bo

    2015-01-01

    The rapid transcendence of organic–inorganic metal halide perovskite solar cells to above the 20% efficiency mark has captivated the broad photovoltaic community. As the efficiency race continues unabated, it is essential that fundamental studies keep pace with these developments. Further gains in device efficiencies are expected to be increasingly arduous and harder to come by. The key to driving the perovskite solar cell efficiencies towards their Shockley–Queisser limit is through a clear understanding of the interfacial energetics and dynamics between perovskites and other functional materials in nanostructured- and heterojunction-type devices. In this review, we focus on the current progress in basic characterization studies to elucidate the interfacial energetics (energy-level alignment and band bending) and dynamical processes (from the ultrafast to the ultraslow) in organic–inorganic metal halide perovskite photovoltaics and light emitters. Major findings from these studies will be distilled. Open questions and scientific challenges will also be highlighted. (topical review)

  16. Superconducting nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I)

    Energy Technology Data Exchange (ETDEWEB)

    Schurz, Christian M.; Shlyk, Larysa; Schleid, Thomas; Niewa, Rainer [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Two different polymorphs of the metal nitride halides MNX (M = Ti, Zr, Hf; X = Cl, Br, I) are known to crystallize in layered structures. The two crystal structures differ in the way {sub {infinity}}{sup 2}{l_brace}X[M{sub 2}N{sub 2}]X{r_brace} slabs are stacked along the c-axes. Metal atoms and/or organic molecules can be intercalated into the van-der-Waals gap between these layers. After such an electron-doping via intercalation the prototypic band insulators change into superconductors with moderate high critical temperatures T{sub c} up to 25.5 K. This review gathers information on synthesis routes, structural characteristics and properties of the prototypic nitride halides and the derivatives after electron-doping with a focus on superconductivity. (orig.)

  17. Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals.

    Science.gov (United States)

    Chen, Lan; Li, Bin; Zhang, Chunfeng; Huang, Xinyu; Wang, Xiaoyong; Xiao, Min

    2018-03-14

    Perovskite semiconductor nanocrystals with different compositions have shown promise for applications in light-emitting devices. Dark excitonic states may suppress light emission from such nanocrystals by providing an additional nonradiative recombination channel. Here, we study the composition dependence of dark exciton dynamics in nanocrystals of lead halides by time-resolved photoluminescence spectroscopy at cryogenic temperatures. The presence of a spin-related dark state is revealed by magneto-optical spectroscopy. The energy splitting between bright and dark states is found to be highly sensitive to both halide elements and organic cations, which is explained by considering the effects of size confinement and charge screening, respectively, on the exchange interaction. These findings suggest the possibility of manipulating dark exciton dynamics in perovskite semiconductor nanocrystals by composition engineering, which will be instrumental in the design of highly efficient light-emitting devices.

  18. Alloying effects on superionic conductivity in lithium indium halides for all-solid-state batteries

    Science.gov (United States)

    Zevgolis, Alysia; Wood, Brandon C.; Mehmedović, Zerina; Hall, Alex T.; Alves, Thomaz C.; Adelstein, Nicole

    2018-04-01

    Alloying of anions is a promising engineering strategy for tuning ionic conductivity in halide-based inorganic solid electrolytes. We explain the alloying effects in Li3InBr6-xClx, in terms of strain, chemistry, and microstructure, using first-principles molecular dynamics simulations and electronic structure analysis. We find that strain and bond chemistry can be tuned through alloying and affect the activation energy and maximum diffusivity coefficient. The similar conductivities of the x = 3 and x = 6 compositions can be understood by assuming that the alloy separates into Br-rich and Cl-rich regions. Phase-separation increases diffusivity at the interface and in the expanded Cl-region, suggesting microstructure effects are critical. Similarities with other halide superionic conductors are highlighted.

  19. Thermoluminescence response of a mixed ternary alkali halide crystals exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez M, R.; Perez S, R. [Universidad de Sonora, Departamento de Investigacion en Fisica, Apdo. Postal 5-088, 83190 Hermosillo, Sonora (Mexico); Vazquez P, G.; Riveros, H. [UNAM, Instituto de Fisica, Apdo. Postal 20-364, 01000 Mexico D. F. (Mexico); Gonzalez M, P., E-mail: mijangos@cifus.uson.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2014-08-15

    Ionic crystals, mainly alkali halide crystals have been the subject of intense research for a better understanding of the luminescence properties of defects induced by ionizing radiation. The defects in crystals can be produced in appreciable concentration due to elastic stresses, radiation, and addition of impurities. These defects exhibit remarkable thermoluminescence properties. This work is concerned with the Tl properties of a ternary alkali halide crystal after being irradiated with gamma and beta rays. It has been found that the Tl glow peak of the crystal follows a rule of average associated to the Tl Temperatures of the components of the mixture, similarly to the response of europium doped binary mixed crystals KCl{sub x}KBr{sub 1-x} and KBr{sub x}RbBr{sub 1-x}. (Author)

  20. The nature of dynamic disorder in lead halide perovskite crystals (Conference Presentation)

    Science.gov (United States)

    Yaffe, Omer; Guo, Yinsheng; Hull, Trevor; Stoumpos, Costas; Tan, Liang Z.; Egger, David A.; Zheng, Fan; Szpak, Guilherme; Semonin, Octavi E.; Beecher, Alexander N.; Heinz, Tony F.; Kronik, Leeor; Rappe, Andrew M.; Kanatzidis, Mercouri G.; Owen, Jonathan S.; Pimenta, Marcos A.; Brus, Louis E.

    2016-09-01

    We combine low frequency Raman scattering measurements with first-principles molecular dynamics (MD) to study the nature of dynamic disorder in hybrid lead-halide perovskite crystals. We conduct a comparative study between a hybrid (CH3NH3PbBr3) and an all-inorganic lead-halide perovskite (CsPbBr3). Both are of the general ABX3 perovskite formula, and have a similar band gap and structural phase sequence, orthorhombic at low temperature, changing first to tetragonal and then to cubic symmetry as temperature increases. In the high temperature phases, we find that both compounds show a pronounced Raman quasi-elastic central peak, indicating that both are dynamically disordered.

  1. Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands

    International Nuclear Information System (INIS)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun; Gibson, John K.

    2017-01-01

    Although the first organoactinide chloride Cp_3UCl (Cp = η"5-C_5H_5) was synthesized more than 50 years ago, binuclear uranium halides remain very rare in organoactinide chemistry. Herein, a series of binuclear trivalent and tetravalent uranium halides and cyanides with cyclooctatetraene ligands, (COT)_2U_2X_n (COT = η"8-C_8H_8; X=F, Cl, CN; n=2, 4), have been systematically studied using scalar-relativistic density functional theory (DFT). The structures with bridging halide or cyanide ligands were predicted to be the most stable complexes of (COT)_2U_2X_n, and all the complexes show weak antiferromagnetic interactions between the uranium centers. However, for each species, there is no significant uranium-uranium bonding interaction. The bonding between the metal and the ligands shows some degree of covalent character, especially between the metal and terminal halide or cyanide ligands. The U-5f and 6d orbitals are predominantly involved in the metal-ligand bonding. All the (COT)_2U_2X_n species were predicted to be more stable compared to the mononuclear half-sandwich complexes at room temperature in the gas phase such that (COT)_2U_2X_4 might be accessible through the known (COT)_2U complex. The tetravalent derivatives (COT)_2U_2X_4 are more energetically favorable than the trivalent (COT)_2U_2X_2 analogs, which may be attributed to the greater number of strong metal-ligand bonds in the former complexes.

  2. Evaluation of thermodynamic data on zirconium and hafnium halides and oxyhalides by means of transport experiments

    International Nuclear Information System (INIS)

    Dittmer, G.; Niemann, U.

    1987-01-01

    A consistent set of thermodynamic data for zirconium and hafnium halides, oxides and oxyhalides was achieved. It was found that formation enthalpies of gaseous compounds could be derived from solubility measurements together with theoretical estimations and a revision of literature data. Free energy functions were calculated employing statistical mechanics. Data for liquid and solid compounds were obtained via sublimation and vaporization data. Chemical equilibria of zirconium and hafnium with halogens are discussed. 51 refs.; 16 figs.; 14 tabs

  3. Binuclear trivalent and tetravalent uranium halides and cyanides supported by cyclooctatetraene ligands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences (RAD-X); Gibson, John K. [Lawrence Berkeley National Laboratory, CA (United States). Chemical Sciences Division

    2017-03-01

    Although the first organoactinide chloride Cp{sub 3}UCl (Cp = η{sup 5}-C{sub 5}H{sub 5}) was synthesized more than 50 years ago, binuclear uranium halides remain very rare in organoactinide chemistry. Herein, a series of binuclear trivalent and tetravalent uranium halides and cyanides with cyclooctatetraene ligands, (COT){sub 2}U{sub 2}X{sub n} (COT = η{sup 8}-C{sub 8}H{sub 8}; X=F, Cl, CN; n=2, 4), have been systematically studied using scalar-relativistic density functional theory (DFT). The structures with bridging halide or cyanide ligands were predicted to be the most stable complexes of (COT){sub 2}U{sub 2}X{sub n}, and all the complexes show weak antiferromagnetic interactions between the uranium centers. However, for each species, there is no significant uranium-uranium bonding interaction. The bonding between the metal and the ligands shows some degree of covalent character, especially between the metal and terminal halide or cyanide ligands. The U-5f and 6d orbitals are predominantly involved in the metal-ligand bonding. All the (COT){sub 2}U{sub 2}X{sub n} species were predicted to be more stable compared to the mononuclear half-sandwich complexes at room temperature in the gas phase such that (COT){sub 2}U{sub 2}X{sub 4} might be accessible through the known (COT){sub 2}U complex. The tetravalent derivatives (COT){sub 2}U{sub 2}X{sub 4} are more energetically favorable than the trivalent (COT){sub 2}U{sub 2}X{sub 2} analogs, which may be attributed to the greater number of strong metal-ligand bonds in the former complexes.

  4. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    CERN Document Server

    Park, Y T; Kim, M S; Kwon, J H

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  5. Amination of Aryl Halides and Esters Using Intensified Continuous Flow Processing

    Directory of Open Access Journals (Sweden)

    Thomas M. Kohl

    2015-09-01

    Full Text Available Significant process intensification of the amination reactions of aryl halides and esters has been demonstrated using continuous flow processing. Using this technology traditionally difficult amination reactions have been performed safely at elevated temperatures. These reactions were successfully conducted on laboratory scale coil reactor modules with 1 mm internal diameter (ID and on a preparatory scale tubular reactor with 6 mm ID containing static mixers.

  6. An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides

    KAUST Repository

    Weng, Zhiqiang; He, Weiming; Chen, Chaohuang; Lee, Richmond; Tan, Davin; Lai, Zhiping; Kong, Dedao; Yuan, Yaofeng; Huang, Kuo-Wei

    2012-01-01

    A series of copper(I) trifluoromethyl thiolate complexes have been synthesized from the reaction of CuF2 with Me3SiCF 3 and S8 (see scheme; Cu red, F green, N blue, S yellow). These air-stable complexes serve as reagents for the efficient conversion of a wide range of aryl halides into the corresponding aryl trifluoromethyl thioethers in excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Sodium-Metal-Halide Battery Energy Storage for DoD Installations

    Science.gov (United States)

    2017-10-24

    electrical equipment for AC interface PDE Pacific Data Electric V&F Voltage and Frequency, power quality measurements VA Volt-Amp, units for apparent...Metal-Halide technology could operate at extreme ambient temperatures, but the early prototypes did struggle with managing sand ingress.  The...peak power Not tested 3. PV smoothing Measure improvement in power quality Power meter measurements Power quality improvements 15-min

  8. Development of processes for the production of solar grade silicon from halides and alkali metals

    Science.gov (United States)

    Dickson, C. R.; Gould, R. K.

    1980-01-01

    High temperature reactions of silicon halides with alkali metals for the production of solar grade silicon in volume at low cost were studied. Experiments were performed to evaluate product separation and collection processes, measure heat release parameters for scaling purposes, determine the effects of reactants and/or products on materials of reactor construction, and make preliminary engineering and economic analyses of a scaled-up process.

  9. UV and X radiation effects on the stability of calcium halide phosphate phosphors. 2

    International Nuclear Information System (INIS)

    Tews, W.; Getter, R.; Kleemann, M.

    1983-01-01

    Sb(V) and Sb(III) concentrations in calcium halide phosphate phosphors have been investigated as a function of time of irradiation with near UV and X radiation. It was found that the reduction of both Sb(V) and Sb(III) to elemental Sb results in intensity losses. The reductions follow consecutive first-order kinetics and first-order kinetics, respectively

  10. Experimental demonstration of correlated flux scaling in photoconductivity and photoluminescence of lead-halide perovskites

    OpenAIRE

    Yi, Hee Taek; Irkhin, Pavel; Joshi, Prakriti P.; Gartstein, Yuri N.; Zhu, Xiaoyang; Podzorov, Vitaly

    2018-01-01

    Lead-halide perovskites attracted attention as materials for high-efficiency solar cells and light emitting applications. Among their attributes are solution processability, high absorbance in the visible spectral range and defect tolerance, as manifested in long photocarrier lifetimes and diffusion lengths. The microscopic origin of photophysical properties of perovskites is, however, still unclear and under debate. Here, we have observed an interesting universal scaling behavior in a series...

  11. Phase recording for formation of holographic optical elements on silver-halide photographic emulsions

    Science.gov (United States)

    Ganzherli, Nina M.; Gulyaev, Sergey N.; Maurer, Irina A.; Chernykh, Dmitrii F.

    2009-05-01

    Holographic fabrication methods of regular and nonregular relief-phase structures on silver-halide photographic emulsions are considered. Methods of gelatin photodestruction under short-wave ultra-violet radiation and chemical hardening with the help of dichromated solutions were used as a technique for surface relief formation. The developed techniques permitted us to study specimens of holographic diffusers and microlens rasters with small absorption and high light efficiency.

  12. Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process

    NARCIS (Netherlands)

    Bae, D.; Palmstrom, A.; Roelofs, K.; Mei, Bastian Timo; Chorkendorf, I.; Bent, S.F.; Vesborg, P.C.

    2016-01-01

    Wide-band-gap mixed-halide CH3NH3PbI3–XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently,

  13. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee [Kyungpook National Univ., Daegu (Korea, Republic of)

    2002-09-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed.

  14. Photoinduced intramolecular substitution reaction of aryl halide with carbonyl oxygen of amide group

    International Nuclear Information System (INIS)

    Park, Yong Tae; Song, Myong Geun; Kim, Moon Sub; Kwon, Jeong Hee

    2002-01-01

    Photoreaction of N-(o-halophenyl)acetamide in basic acetonitrile produces an intramolecular substituted product, 2-methylbenzoxazole in addition to reduced product, acetanilide, whereas photoreaction of N-(o-halobenzyl)acetamide affords a reduced product, N-benzylacetamide only. On the basis of preparative reaction, kinetics, and UV/vis absorption behavior, an electrophilic aromatic substitution of aryl halide with oxygen of its amide bond are proposed

  15. An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides

    KAUST Repository

    Weng, Zhiqiang

    2012-12-12

    A series of copper(I) trifluoromethyl thiolate complexes have been synthesized from the reaction of CuF2 with Me3SiCF 3 and S8 (see scheme; Cu red, F green, N blue, S yellow). These air-stable complexes serve as reagents for the efficient conversion of a wide range of aryl halides into the corresponding aryl trifluoromethyl thioethers in excellent yields. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Radiophotoluminescence of alkali-halide crystals stimulated by Bessel laser beam

    CERN Document Server

    Lyakh, V V; Kochubey, D I; Gyunsburg, K E; Zvezdova, N P; Kochubey, D I; Sedova, Y G; Koronkevich, V P; Poleschuk, A G; Sedukhin, A G

    2000-01-01

    A new approach to realization of optimal high-resolution reading of deep X-ray images in X-ray-sensitive materials on the base of alkali-halide crystals modified with admixtures has been suggested and investigated experimentally. A possibility to use diffraction axicons with ring aperture for forming micron bright light beams (spatially truncated Bessel beams) which can efficiently de-excite radiophotoluminescence centers lying at large depth in crystals is also presented.

  17. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    International Nuclear Information System (INIS)

    Selling, J.

    2007-01-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl 2 nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI 2 is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu 2+ /Eu 3+ ratio in the glass ceramics should be determined and optimize favor of the Eu 2+ . We also want to distinguish between Eu 2+ in the glass matrix and Eu 2+ in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a CaF 2 host lattice were carried

  18. Effects of Annealing Conditions on Mixed Lead Halide Perovskite Solar Cells and Their Thermal Stability Investigation.

    Science.gov (United States)

    Yang, Haifeng; Zhang, Jincheng; Zhang, Chunfu; Chang, Jingjing; Lin, Zhenhua; Chen, Dazheng; Xi, He; Hao, Yue

    2017-07-21

    In this work, efficient mixed organic cation and mixed halide (MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃) perovskite solar cells are demonstrated by optimizing annealing conditions. AFM, XRD and PL measurements show that there is a better perovskite film quality for the annealing condition at 100 °C for 30 min. The corresponding device exhibits an optimized PCE of 16.76% with V OC of 1.02 V, J SC of 21.55 mA/cm² and FF of 76.27%. More importantly, the mixed lead halide perovskite MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ can significantly increase the thermal stability of perovskite film. After being heated at 80 °C for 24 h, the PCE of the MA 0.7 FA 0.3 Pb(I 0.9 Br 0.1 )₃ device still remains at 70.00% of its initial value, which is much better than the control MAPbI₃ device, where only 46.50% of its initial value could be preserved. We also successfully fabricated high-performance flexible mixed lead halide perovskite solar cells based on PEN substrates.

  19. Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices.

    Science.gov (United States)

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan

    2017-08-01

    The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo; Li, Xiaoming; Gu, Yu; Harb, Moussab; Li, Jianhai; Xie, Meiqiu; Cao, Fei; Song, Jizhong; Zhang, Shengli; Cavallo, Luigi; Zeng, Haibo

    2017-01-01

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  1. Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation.

    Science.gov (United States)

    Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao; Yang, Dongwen; Xu, Qiaoling; Yu, Liping; Wei, Su-Huai; Zhang, Lijun

    2017-02-22

    Hybrid organic-inorganic halide perovskites with the prototype material of CH 3 NH 3 PbI 3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb 2+ -need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb 2+ ions into one monovalent M + and one trivalent M 3+ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.

  2. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.

    Science.gov (United States)

    Hoke, Eric T; Slotcavage, Daniel J; Dohner, Emma R; Bowring, Andrea R; Karunadasa, Hemamala I; McGehee, Michael D

    2015-01-01

    We report on reversible, light-induced transformations in (CH 3 NH 3 )Pb(Br x I 1- x ) 3 . Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics.

  3. First-principles thermodynamics study of phase stability in inorganic halide perovskite solid solutions

    Science.gov (United States)

    Bechtel, Jonathon S.; Van der Ven, Anton

    2018-04-01

    Halide substitution gives rise to a tunable band gap as a function of composition in halide perovskite materials. However, photoinduced phase segregation, observed at room temperature in mixed halide A Pb (IxBr1-x) 3 systems, limits open circuit voltages and decreases photovoltaic device efficiencies. We investigate equilibrium phase stability of orthorhombic P n m a γ -phase CsM (XxY1-x) 3 perovskites where M is Pb or Sn, and X and Y are Br, Cl, or I. Finite-temperature phase diagrams are constructed using a cluster expansion effective Hamiltonian parameterized from first-principles density-functional-theory calculations. Solid solution phases for CsM (IxBr1-x) 3 and CsM (BrxCl1-x) 3 are predicted to be stable well below room temperature while CsM (IxCl1-x) 3 systems have miscibility gaps that extend above 400 K. The height of the miscibility gap correlates with the difference in volume between end members. Also layered ground states are found on the convex hull at x =2 /3 for CsSnBr2Cl ,CsPbI2Br , and CsPbBrCl2. The impact of these ground states on the finite temperature phase diagram is discussed in the context of the experimentally observed photoinduced phase segregation.

  4. Cuprous halides semiconductors as a new means for highly efficient light-emitting diodes

    Science.gov (United States)

    Ahn, Doyeol; Park, Seoung-Hwan

    2016-01-01

    In group-III nitrides in use for white light-emitting diodes (LEDs), optical gain, measure of luminous efficiency, is very low owing to the built-in electrostatic fields, low exciton binding energy, and high-density misfit dislocations due to lattice-mismatched substrates. Cuprous halides I-VII semiconductors, on the other hand, have negligible built-in field, large exciton binding energies and close lattice matched to silicon substrates. Recent experimental studies have shown that the luminescence of I-VII CuCl grown on Si is three orders larger than that of GaN at room temperature. Here we report yet unexplored potential of cuprous halides systems by investigating the optical gain of CuCl/CuI quantum wells. It is found that the optical gain and the luminescence are much larger than that of group III-nitrides due to large exciton binding energy and vanishing electrostatic fields. We expect that these findings will open up the way toward highly efficient cuprous halides based LEDs compatible to Si technology. PMID:26880097

  5. Preparation of gold microparticles using halide ions in bulk block copolymer phases via photoreduction

    International Nuclear Information System (INIS)

    Cha, Sang-Ho; Kim, Ki-Hyun; Lee, Won-Ki; Lee, Jong-Chan

    2009-01-01

    Gold microparticles were prepared from the gold salt in the solid bulk phase of a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer via a photoreduction process in the presence of halide ions. The shapes and sizes of the gold microparticles were found to be dependent on the types and amount of halide ions as well as the types of cations used due to the combined effects of the adsorption power and oxidative dissolution ability of the additives on gold surfaces. Gold nanorods were obtained when poly(ethylene oxide) was used instead of the block copolymer. This suggests that the poly(propylene oxide) (PPO) parts in the block copolymer are essential for the formation of gold microparticles, even though the degree of the direct interaction between the PPO blocks and gold salt is not significant. - Graphical abstract: Gold microparticles were successfully prepared using halide ions as additives in the polymeric bulk phase via photoreduction with the glow lamp irradiation.

  6. Holographic Optical Elements Recorded in Silver Halide Sensitized Gelatin Emulsions. Part 2. Reflection Holographic Optical Elements

    Science.gov (United States)

    Kim, Jong Man; Choi, Byung So; Choi, Yoon Sun; Kim, Jong Min; Bjelkhagen, Hans I.; Phillips, Nicholas J.

    2002-03-01

    Silver halide sensitized gelatin (SHSG) holograms are similar to holograms recorded in dichromated gelatin (DCG), the main recording material for holographic optical elements (HOEs). The drawback of DCG is its low energetic sensitivity and limited spectral response. Silver halide materials can be processed in such a way that the final hologram will have properties like a DCG hologram. Recently this technique has become more interesting since the introduction of new ultra-fine-grain silver halide (AgHal) emulsions. In particular, high spatial-frequency fringes associated with HOEs of the reflection type are difficult to construct when SHSG processing methods are employed. Therefore an optimized processing technique for reflection HOEs recorded in the new AgHal materials is introduced. Diffraction efficiencies over 90% can be obtained repeatably for reflection diffraction gratings. Understanding the importance of a selective hardening process has made it possible to obtain results similar to conventional DCG processing. The main advantage of the SHSG process is that high-sensitivity recording can be performed with laser wavelengths anywhere within the visible spectrum. This simplifies the manufacturing of high-quality, large-format HOEs, also including high-quality display holograms of the reflection type in both monochrome and full color.

  7. Designing mixed metal halide ammines for ammonia storage using density functional theory and genetic algorithms.

    Science.gov (United States)

    Jensen, Peter Bjerre; Lysgaard, Steen; Quaade, Ulrich J; Vegge, Tejs

    2014-09-28

    Metal halide ammines have great potential as a future, high-density energy carrier in vehicles. So far known materials, e.g. Mg(NH3)6Cl2 and Sr(NH3)8Cl2, are not suitable for automotive, fuel cell applications, because the release of ammonia is a multi-step reaction, requiring too much heat to be supplied, making the total efficiency lower. Here, we apply density functional theory (DFT) calculations to predict new mixed metal halide ammines with improved storage capacities and the ability to release the stored ammonia in one step, at temperatures suitable for system integration with polymer electrolyte membrane fuel cells (PEMFC). We use genetic algorithms (GAs) to search for materials containing up to three different metals (alkaline-earth, 3d and 4d) and two different halides (Cl, Br and I) - almost 27,000 combinations, and have identified novel mixtures, with significantly improved storage capacities. The size of the search space and the chosen fitness function make it possible to verify that the found candidates are the best possible candidates in the search space, proving that the GA implementation is ideal for this kind of computational materials design, requiring calculations on less than two percent of the candidates to identify the global optimum.

  8. Infrared Dielectric Screening Determines the Low Exciton Binding Energy of Metal-Halide Perovskites.

    Science.gov (United States)

    Umari, Paolo; Mosconi, Edoardo; De Angelis, Filippo

    2018-02-01

    The performance of lead-halide perovskites in optoelectronic devices is due to a unique combination of factors, including highly efficient generation, transport, and collection of photogenerated charge carriers. The mechanism behind efficient charge generation in lead-halide perovskites is still largely unknown. Here, we investigate the factors that influence the exciton binding energy (E b ) in a series of metal-halide perovskites using accurate first-principles calculations based on solution of the Bethe-Salpeter equation, coupled to ab initio molecular dynamics simulations. We find that E b is strongly modulated by screening from low-energy phonons, which account for a factor ∼2 E b reduction, while dynamic disorder and rotational motion of the organic cations play a minor role. We calculate E b = 15 meV for MAPbI 3 , in excellent agreement with recent experimental estimates. We then explore how different material combinations (e.g., replacing Pb → Pb:Sn→ Sn; and MA → FA → Cs) may lead to different E b values and highlight the mechanisms underlying E b tuning.

  9. Third-order elastic moduli for alkali-halide crystals possessing the sodium chloride structure

    International Nuclear Information System (INIS)

    Ray, U.

    2010-01-01

    The values of third-order elastic moduli for alkali halides, having NaCl-type crystal structure are calculated according to the Born-Mayer potential model, considering the repulsive interactions up to the second nearest neighbours and calculating the values of the potential parameters for each crystal, independently, from the compressibility data. This work presents the first published account of the calculation of the third-order elastic moduli taking the actual value of the potential parameter unlike the earlier works. Third-order elastic constants have been computed for alkali halides at 0 and 300 K. The results of the third-order elastic constants are compared with the available experimental and theoretical data. Very good agreement between experimental and theoretical third-order elastic constant data (except C 123 ) is found. We have also computed the values of the pressure derivatives of second-order elastic constants and Anderson-Grueneisen parameter for alkali halides, which agree reasonably well with the experimental values, indicating the satisfactory nature of our computed data for third-order elastic constants.

  10. Quantum confinement effect of two-dimensional all-inorganic halide perovskites

    KAUST Repository

    Cai, Bo

    2017-09-07

    Quantum confinement effect (QCE), an essential physical phenomenon of semiconductors when the size becomes comparable to the exciton Bohr radius, typically results in quite different physical properties of low-dimensional materials from their bulk counterparts and can be exploited to enhance the device performance in various optoelectronic applications. Here, taking CsPbBr3 as an example, we reported QCE in all-inorganic halide perovskite in two-dimensional (2D) nanoplates. Blue shifts in optical absorption and photoluminescence spectra were found to be stronger in thinner nanoplates than that in thicker nanoplates, whose thickness lowered below ∼7 nm. The exciton binding energy results showed similar trend as that obtained for the optical absorption and photoluminescence. Meanwile, the function of integrated intensity and full width at half maximum and temperature also showed similar results, further supporting our conclusions. The results displayed the QCE in all-inorganic halide perovskite nanoplates and helped to design the all-inorganic halide perovskites with desired optical properties.

  11. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  12. Line emissions from sonoluminescence in aqueous solutions of halide salts without noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Zhou, Chao; Cui, Weicheng; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2015-02-20

    Line emissions of trivalent terbium (Tb{sup 3+}) ion were observed from single-bubble sonoluminescence (SL) in an aqueous solution of terbium chloride (TbCl{sub 3}) that contained no noble gas. In addition, sodium (Na) lines were observed in multi-bubble SL in aqueous solutions of various halide salts that contained no noble gas. These observations show that the halide ions, such as Cl{sup −}, Br{sup −}, and I{sup −}, help for line emissions as the noble gases. The intensity of a line emission depends on both the chemical species produced by cavitation bubbles and the temperature of SL bubble that responds to the driving ultrasound pressure. With the increase of driving pressure, some line emissions attached to the continuous spectrum may become increasingly clear, while other line emissions gradually become indistinct. - Highlights: • Line emissions of Tb(III) ions were observed without the presence of noble gases. • The halide ions help to generate a line emission during sonoluminescence. • The intensity of a line emission mainly depends on the bubble's temperature. • The definition of a line emission is related to the temperature of caviation bubble and the kind of host liquid.

  13. First-principles study of γ-ray detector materials in perovskite halides

    Science.gov (United States)

    Im, Jino; Jin, Hosub; Stoumpos, Constantinos; Chung, Duck; Liu, Zhifu; Peters, John; Wessels, Bruce; Kanatzidis, Mercouri; Freeman, Arthur

    2013-03-01

    In an effort to search for good γ-ray detector materials, perovskite halide compounds containing heavy elements were investigated. Despite the three-dimensional network of the corner shared octahedra and the extended nature of the outermost shell, its strong ionic character leads to a large band gap, which is one of the essential criteria for γ-ray detector materials. Thus, considering high density and high atomic number, these pervoskite halides are possible candidate for γ-ray detector materials. We performed first-principles calculations to investigate electronic structures and thermodynamic properties of intrinsic defects in the selected perovskite halide, CsPbBr3. The screened-exchange local density approximation scheme was employed to correct the underestimation of the band gap in the LDA method. As a result, the calculated band gap of CsPbBr3 is found to be suitable for γ-ray detection. Furthermore, defect formation energy calculations allow us to predict thermodynamic and electronic properties of possible intrinsic defects, which affect detector efficiency and energy resolution. Supported by the office of Nonproliferation and Verification R &D under Contract No. DE-AC02-06CH11357

  14. Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

    Science.gov (United States)

    2017-01-01

    This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II–VI and III–V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessity to improve their stability in environmental conditions. The defect tolerance of lead halide perovskites offers an impetus to search for similar attributes in other related heavy metal-free compounds. We discuss the origins of the significantly blue-shifted emission from CsPbBr3 nanocrystals and the synthetic strategies toward fabrication of stable perovskite nanocrystal materials with emission in the red and infrared parts of the optical spectrum, which are related to fabrication of mixed cation compounds guided by Goldschmidt tolerance factor considerations. We conclude with the view on perspectives of use of the colloidal perovskite nanocrystals for applications in backlighting of liquid-crystal TV displays. PMID:28920080

  15. Law of radioactive minerals

    International Nuclear Information System (INIS)

    1980-01-01

    Legal device done in order to standardize and promote the exploration and explotation of radioactive minerals by peruvian and foreign investors. This device include the whole process, since the prospection until the development, after previous auction given by IPEN

  16. Mineral Commodity Summaries 2009

    Science.gov (United States)

    ,

    2009-01-01

    Each chapter of the 2009 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2008 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Because specific information concerning committed inventory was no longer available from the Defense Logistics Agency, National Defense Stockpile Center, that information, which was included in earlier Mineral Commodity Summaries publications, has been deleted from Mineral Commodity Summaries 2009. National reserves and reserve base information for most mineral commodities found in this report, including those for the United States, are derived from a variety of sources. The ideal source of such information would be comprehensive evaluations that apply the same criteria to deposits in different geographic areas and report the results by country. In the absence of such evaluations, national reserves and reserve base estimates compiled by countries for selected mineral commodities are a primary source of national reserves and reserve base information. Lacking national assessment information by governments, sources such as academic articles, company reports, common business practice, presentations by company representatives, and trade journal articles, or a combination of these, serve as the basis for national reserves and reserve base information reported in the mineral commodity sections of this publication. A national estimate may be assembled from the following: historically reported

  17. sequenceMiner algorithm

    Data.gov (United States)

    National Aeronautics and Space Administration — Detecting and describing anomalies in large repositories of discrete symbol sequences. sequenceMiner has been open-sourced! Download the file below to try it out....

  18. Unveiling the Shape Evolution and Halide-Ion-Segregation in Blue-Emitting Formamidinium Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform.

    Science.gov (United States)

    Lignos, Ioannis; Protesescu, Loredana; Emiroglu, Dilara Börte; Maceiczyk, Richard; Schneider, Simon; Kovalenko, Maksym V; deMello, Andrew J

    2018-02-14

    Hybrid organic-inorganic perovskites and in particular formamidinium lead halide (FAPbX 3 , X = Cl, Br, I) perovskite nanocrystals (NCs) have shown great promise for their implementation in optoelectronic devices. Specifically, the Br and I counterparts have shown unprecedented photoluminescence properties, including precise wavelength tuning (530-790 nm), narrow emission linewidths (photoluminescence quantum yields (70-90%). However, the controlled formation of blue emitting FAPb(Cl 1-x Br x ) 3 NCs lags behind their green and red counterparts and the mechanism of their formation remains unclear. Herein, we report the formation of FAPb(Cl 1-x Br x ) 3 NCs with stable emission between 440 and 520 nm in a fully automated droplet-based microfluidic reactor and subsequent reaction upscaling in conventional laboratory glassware. The thorough parametric screening allows for the elucidation of parametric zones (FA-to-Pb and Br-to-Cl molar ratios, temperature, and excess oleic acid) for the formation of nanoplatelets and/or NCs. In contrast to CsPb(Cl 1-x Br x ) 3 NCs, based on online parametric screening and offline structural characterization, we demonstrate that the controlled synthesis of Cl-rich perovskites (above 60 at% Cl) with stable emission remains a challenge due to fast segregation of halide ions.

  19. Mineral industry statistics 1975

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Production, consumption and marketing statistics are given for solid fuels (coal, peat), liquid fuels and gases (oil, natural gas), iron ore, bauxite and other minerals quarried in France, in 1975. Also accident statistics are included. Production statistics are presented of the Overseas Departments and territories (French Guiana, New Caledonia, New Hebrides). An account of modifications in the mining field in 1975 is given. Concessions, exploitation permits, and permits solely for prospecting for mineral products are discussed. (In French)

  20. Coastal placer minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Iyer, S.D.; Gujar, A.R.

    to be processed and purified to extract the metal either by sulphate or chloride route. The economical aspects of placer mining would involve the cost to benefit ratio, which would encompass the money Selective sorting has resulted in two distinct sediments... or mineral at the national and international levels. Interestingly, though gold is the most sought metal and the prices per gram keep rising, there are others that are much more costly such as diamond and rare earth metals. Uses of Heavy Minerals...

  1. [Pneumoconiosis in bauxite miners].

    Science.gov (United States)

    Molinini, R; Pesola, M; Digennaro, M A; Carino, M; Nuzzaco, A; Coviello, F

    1985-01-01

    The authors examined a group of 40 miners who were being working at an Apulian bauxite mine, presently inactive. Radiographic findings of pulmonary micronodulation without significant reduction of lung functions were showed in 15 miners. Mineralogical analysis of mine dust samples excluded any presence of more than 1% free silica. As a result of this study hypotheses have been formulated about pathogenesis of this moderated and non-invasive pneumoconiosis, showed in long exposed subjects to low silica content dusts.

  2. Mineral commodity summaries 2013

    Science.gov (United States)

    ,

    2013-01-01

    Each chapter of the 2013 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2012 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2013 are welcomed.

  3. Mineral commodity summaries 2014

    Science.gov (United States)

    ,

    2014-01-01

    Each chapter of the 2014 edition of the U.S. Geological Survey (USGS) Mineral Commodity Summaries (MCS) includes information on events, trends, and issues for each mineral commodity as well as discussions and tabular presentations on domestic industry structure, Government programs, tariffs, 5-year salient statistics, and world production and resources. The MCS is the earliest comprehensive source of 2013 mineral production data for the world. More than 90 individual minerals and materials are covered by two-page synopses. For mineral commodities for which there is a Government stockpile, detailed information concerning the stockpile status is included in the two-page synopsis. Abbreviations and units of measure, and definitions of selected terms used in the report, are in Appendix A and Appendix B, respectively. “Appendix C—Reserves and Resources” includes “Part A—Resource/Reserve Classification for Minerals” and “Part B—Sources of Reserves Data.” A directory of USGS minerals information country specialists and their responsibilities is Appendix D. The USGS continually strives to improve the value of its publications to users. Constructive comments and suggestions by readers of the MCS 2014 are welcomed.

  4. Mechanoluminescence response to the plastic flow of coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.; Bagri, A.K.; Chandra, V.K.

    2010-01-01

    The present paper reports the luminescence induced by plastic deformation of coloured alkali halide crystals using pressure steps. When pressure is applied onto a γ-irradiated alkali halide crystal, then initially the mechanoluminescence (ML) intensity increases with time, attains a peak value and later on it decreases with time. The ML of diminished intensity also appears during the release of applied pressure. The intensity I m corresponding to the peak of ML intensity versus time curve and the total ML intensity I T increase with increase in value of the applied pressure. The time t m corresponding to the ML peak slightly decreases with the applied pressure. After t m , initially the ML intensity decreases at a fast rate and later on it decreases at a slow rate. The decay time of the fast decrease in the ML intensity is equal to the pinning time of dislocations and the decay time for the slow decrease of ML intensity is equal to the diffusion time of holes towards the F-centres. The ML intensity increases with the density of F-centres and it is optimum for a particular temperature of the crystals. The ML spectra of coloured alkali halide crystals are similar to the thermoluminescence and afterglow spectra. The peak ML intensity and the total ML intensity increase drastically with the applied pressure following power law, whereby the pressure dependence of the ML intensity is related to the work-hardening exponent of the crystals. The ML also appears during the release of the applied pressure because of the movement of dislocation segments and movements of dislocation lines blocked under pressed condition. On the basis of the model based on the mechanical interaction between dislocation and F-centres, expressions are derived for the ML intensity, which are able to explain different characteristics of the ML. From the measurements of the plastico ML induced by the application of loads on γ-irradiated alkali halide crystals, the pinning time of dislocations

  5. The mineral economy of Brazil--Economia mineral do Brasil

    Science.gov (United States)

    Gurmendi, Alfredo C.; Barboza, Frederico Lopes; Thorman, Charles H.

    1999-01-01

    This study depicts the Brazilian government structure, mineral legislation and investment policy, taxation, foreign investment policies, environmental laws and regulations, and conditions in which the mineral industry operates. The report underlines Brazil's large and diversified mineral endowment. A total of 37 mineral commodities, or groups of closely related commodities, is discussed. An overview of the geologic setting of the major mineral deposits is presented. This report is presented in English and Portuguese in pdf format.

  6. Inhibition of mild steel corrosion in acidic medium using synthetic and naturally occurring polymers and synergistic halide additives

    Energy Technology Data Exchange (ETDEWEB)

    Umoren, S.A. [Department of Chemistry, Faculty of Science, University of Uyo, P.M.B 1017 Uyo (Nigeria)], E-mail: saviourumoren@yahoo.com; Ogbobe, O.; Igwe, I.O. [Department of Polymer and Textile Engineering, School of Engineering and Engineering Technology, Federal University of Technology, P.M.B. 1526 Owerri (Nigeria); Ebenso, E.E. [Department of Chemistry and Chemical Technology, National University of Lesotho, P. O. Roma180, Lesotho (South Africa)

    2008-07-15

    The corrosion inhibition of mild steel in H{sub 2}SO{sub 4} in the presence of gum arabic (GA) (naturally occurring polymer) and polyethylene glycol (PEG) (synthetic polymer) was studied using weight loss, hydrogen evolution and thermometric methods at 30-60 deg. C. PEG was found to be a better inhibitor for mild steel corrosion in acidic medium than GA. The effect of addition of halides (KCl, KBr and KI) was also studied. Results obtained showed that inhibition efficiency (I%) increased with increase in GA and PEG concentration, addition of halides and with increase in temperature. Increase in inhibition efficiency (I%) and degree of surface coverage ({theta}) was found to follow the trend Cl{sup -} < Br{sup -} < I{sup -} which indicates that the radii and electronegativity of the halide ions play a significant role in the adsorption process. GA and PEG alone and in combination with halides were found to obey Temkin adsorption isotherm. Phenomenon of chemical adsorption is proposed from the trend of inhibition efficiency with temperature and values {delta}G{sub ads}{sup 0} obtained. The synergism parameter, S{sub I} evaluated is found to be greater than unity indicating that the enhanced inhibition efficiency caused by the addition of halides is only due to synergism.

  7. Synergistic effect of halide ions on the corrosion inhibition of aluminium in H2SO4 using 2-acetylphenothiazine

    International Nuclear Information System (INIS)

    Ebenso, E.E.

    2003-01-01

    The corrosion inhibition of aluminium in H 2 SO 4 in the presence of 2-acetylphenothiazine (2APTZ) at temperature range of 30-60 deg. C was studied using the weight loss and thermometric techniques. The effect of addition of halides (KCl, KBr, KI) is also reported. The inhibition efficiency (I, %) increased with increase in concentration of 2APTZ. The addition of the halides increased the inhibition efficiency to a considerable extent. The temperature increased the corrosion rate and inhibition efficiency in the range 30-60 deg. C in the absence and presence of the inhibitor and halides. Phenomenon of chemical adsorption is proposed. Flory-Huggins adsorption isotherm equation was obeyed at all the concentrations studied. The decrease in inhibition efficiency (and surface coverage values) was found to be in the order I - >Br - >Cl - which clearly indicates that the radii and the electronegativity of halides play a significant role in the adsorption process. All the data acquired reveal that 2APTZ acts as an inhibitor in the acid environment from the two techniques used. The synergistic effect of 2APTZ and halide ions is discussed

  8. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    Mineral carbonation involves silicate dissolution and carbonate precipitation, which are both natural processes that microorganisms are able to mediate in near surface environments (Ferris et al., 1994; Eq. 1). (Ca,Mg)SiO3 + 2H2CO3 + H2O → (Ca,Mg)CO3 + H2O + H4SiO4 + O2 (1) Cyanobacteria are photoautotrophs with cell surface characteristics and metabolic processes involving inorganic carbon that can induce carbonate precipitation. This occurs partly by concentrating cations within their net-negative cell envelope and through the alkalinization of their microenvironment (Thompson & Ferris, 1990). Regions with mafic and ultramafic bedrock, such as near Atlin, British Columbia, Canada, represent the best potential sources of feedstocks for mineral carbonation. The hydromagnesite playas near Atlin are a natural biogeochemical model for the carbonation of magnesium silicate minerals (Power et al., 2009). Field-based studies at Atlin and corroborating laboratory experiments demonstrate the ability of a microbial consortium dominated by filamentous cyanobacteria to induce the precipitation of carbonate minerals. Phototrophic microbes, such as cyanobacteria, have been proposed as a means for producing biodiesel and other value added products because of their efficiency as solar collectors and low requirement for valuable, cultivable land in comparison to crops (Dismukes et al., 2008). Carbonate precipitation and biomass production could be facilitated using specifically designed ponds to collect waters rich in dissolved cations (e.g., Mg2+ and Ca2+), which would allow for evapoconcentration and provide an appropriate environment for growth of cyanobacteria. Microbially mediated carbonate precipitation does not require large quantities of energy or chemicals needed for industrial systems that have been proposed for rapid carbon capture and storage via mineral carbonation (e.g., Lackner et al., 1995). Therefore, this biogeochemical approach may represent a readily

  9. Cluster harvesting by successive reduction of a metal halide with a nonconventional reduction agent: a benefit for the exploration of metal-rich halide systems.

    Science.gov (United States)

    Ströbele, Markus; Mos, Agnieszka; Meyer, Hans-Jürgen

    2013-06-17

    The preparation of thermally labile compounds is a great temptation in chemistry which requires a careful selection of reaction media and reaction conditions. With a new scanning technique denoted here as Cluster Harvesting, a whole series of metal halide compounds is detected by differential thermal analysis (DTA) in fused silica tubes and structurally characterized by X-ray powder diffraction. Experiments of the reduction of tungsten hexahalides with elemental antimony and iron are presented. A cascade of six compounds is identified during the reduction with antimony, and five compounds or phases are monitored following the reduction with iron. The crystal structure of Fe2W2Cl10 is reported, and two other phases in the Fe-W-Cl system are discussed.

  10. 40 CFR Table 3 to Subpart Ffff of... - Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP Metals Emissions From...

    Science.gov (United States)

    2010-07-01

    ... Halogen HAP Emissions or HAP Metals Emissions From Process Vents 3 Table 3 to Subpart FFFF of Part 63... to Subpart FFFF of Part 63—Emission Limits for Hydrogen Halide and Halogen HAP Emissions or HAP... following table that applies to your process vents that contain hydrogen halide and halogen HAP emissions or...

  11. 40 CFR 63.2465 - What requirements must I meet for process vents that emit hydrogen halide and halogen HAP or HAP...

    Science.gov (United States)

    2010-07-01

    ... process vents that emit hydrogen halide and halogen HAP or HAP metals? 63.2465 Section 63.2465 Protection... and halogen HAP or HAP metals? (a) You must meet each emission limit in Table 3 to this subpart that... section. (b) If any process vents within a process emit hydrogen halide and halogen HAP, you must...

  12. A review on bis-hydrazonoyl halides: Recent advances in their synthesis and their diverse synthetic applications leading to bis-heterocycles of biological interest

    Directory of Open Access Journals (Sweden)

    Ahmad Sami Shawali

    2016-11-01

    Full Text Available This review covers a summary of the literature data published on the chemistry of bis-hydrazonoyl halides over the last four decades. The biological activities of some of the bis-heterocyclic compounds obtained from these bis-hydrazonoyl halides are also reviewed and discussed.

  13. Kinetics of cesium lead halide perovskite nanoparticle growth; focusing and de-focusing of size distribution

    Science.gov (United States)

    Koolyk, Miriam; Amgar, Daniel; Aharon, Sigalit; Etgar, Lioz

    2016-03-01

    In this work we study the kinetics of cesium lead halide perovskite nanoparticle (NP) growth; the focusing and de-focusing of the NP size distribution. Cesium lead halide perovskite NPs are considered to be attractive materials for optoelectronic applications. Understanding the kinetics of the formation of these all-inorganic perovskite NPs is critical for reproducibly and reliably generating large amounts of uniformly sized NPs. Here we investigate different growth durations for CsPbI3 and CsPbBr3 NPs, tracking their growth by high-resolution transmission electron microscopy and size distribution analysis. As a result, we are able to provide a detailed model for the kinetics of their growth. It was observed that the CsPbI3 NPs exhibit focusing of the size distribution in the first 20 seconds of growth, followed by de-focusing over longer growth durations, while the CsPbBr3 NPs show de-focusing of the size distribution starting from the beginning of the growth. The monomer concentration is depleted faster in the case of CsPbBr3 than in the case of CsPbI3, due to faster diffusion of the monomers, which increases the critical radius and results in de-focusing of the population. Accordingly, focusing is not observed within 40 seconds of growth in the case of CsPbBr3. This study provides important knowledge on how to achieve a narrow size distribution of cesium lead halide perovskite NPs when generating large amounts of these promising, highly luminescent NPs.In this work we study the kinetics of cesium lead halide perovskite nanoparticle (NP) growth; the focusing and de-focusing of the NP size distribution. Cesium lead halide perovskite NPs are considered to be attractive materials for optoelectronic applications. Understanding the kinetics of the formation of these all-inorganic perovskite NPs is critical for reproducibly and reliably generating large amounts of uniformly sized NPs. Here we investigate different growth durations for CsPbI3 and CsPbBr3 NPs, tracking

  14. Minerals in deserts

    International Nuclear Information System (INIS)

    Smith, G.I.

    1982-01-01

    Almost any kind of mineral deposit can occur in desert areas, and the lack of vegetation and soil cover makes finding them easier. Some kinds of deposits, though, are more likely to occur in deserts than elsewhere. Some of these result from processes genetically related to the present desert climate that improved lower grade deposits of ore. One such process, termed secondary enrichment, is most effective in areas with deep water tables, and many low-grade copper, silver, and uranium deposits have been converted into mineable ore by the downward migration and redeposition of soluble metals. In a desert terrane, placer processes are effective whenever running water flowing over steep slopes erodes outcropping ore bodies and transports and concentrates the heavier ore minerals at lower levels, thus converting low-grade or hard-to-mine bedrock deposits into economically workable concentrations. Other kinds of deposits are better preserved in deserts because the lower rainfall at the surface, and the lower volume of flow and the greater depths to groundwater, result in less destruction of soluble ores; deposits of salines and phosphates are the most notable ores affected by these factors. Still other ore deposits are created as a consequence of the arid climate, mostly because the high evaporation rates operating on standing bodies of water produce brines that can lead directly to concentrations of salts and indirectly to secondary minerals, such as zeolites, that are produced by reaction of silicate minerals with saline waters

  15. Carbonizing bituminous minerals

    Energy Technology Data Exchange (ETDEWEB)

    1921-05-01

    A process for carbonizing bituminous minerals, like oil-shale, in a furnace with addition of air in the presence of heat-receiving material is characterized by the fact that to the feed such solid or liquid material (with the exception of oil) is added, which, through vaporization or heat-binding decomposition or conversion, hinders the establishment of excessive temperatures.

  16. Uruguay minerals fuels

    International Nuclear Information System (INIS)

    Goso, H.

    1967-01-01

    In this report the bases for the development of the necessary works of prospection are exposed on mineral fuels of Uruguay. We have taken the set from: coal, lutitas bituminous, uranium, petroleum and disturbs. In all the cases we have talked about to the present state of the knowledge and to the works that we considered necessary to develop in each case

  17. Monitoring of heavy/toxic metals and halides in surface/ground water (abstract)

    International Nuclear Information System (INIS)

    Viqar-un-Nisa; Ahmed, R.; Husain, M.

    1999-01-01

    Water is essential for maintaining physical and social life. Human and animal consumption is perhaps the most evident essential use of water. Water quality and quantity have become critical issues, affecting all life. The importance of water in our lives, combined with the threats, make water resources use a global problem. Among the different pollutants toxic metals, metalloids and halides have special significance. Industrial effluents and municipal wastewater are normally drained into water streams, rivers and other reservoirs thus polluting these significantly. Quality of our water resources especially is an issue, which continues to arouse the attention of concerned scientists, legislators and the general public. Among various pollutant chemicals, the heavy metals and metalloids are present at trace levels in various compartments of the environment. Some metals become toxic even at trace levels because of the important features that distinguishes metals from other pollutants is that they are not biodegradable. The halides like Cl, Br, and I from different sources can enter easily into water systems and then they make their way directly into the human body. The intake of toxic as wells as essential elements through water and other food items like vegetables, milk wheat flour etc. is significant. The abundance or deficiency of these meals as well as halides results in abnormal metabolic functions. Due to excessive demand for trace analysis in water and other materials a variety of techniques and instrumentation has been developed. Determination of heavy metals ions is of the highest interest in environmental analysis. Among the food materials water is most important because of their large consumption by man. Also toxic metals in water may be in dissolved ionic form, which directly go into human metabolism and start their toxic action. Presence of even small amounts of toxic metals in drinking water can produce serious health hazards. (author)

  18. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    Science.gov (United States)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  19. Development and Application of TiO2 Nanoparticles Coupled with Silver Halide

    Directory of Open Access Journals (Sweden)

    Xiaojia Wan

    2014-01-01

    Full Text Available Titanium dioxide (TiO2 is proposed to be effective photocatalyst for wastewater treatment, air purification, and self-cleaning ability, because of its strong oxidation and superhydrophilicity. In order to conquer the limits of TiO2, a variety of methods have been used. This paper presents a critical review of novel research and achievements in the modification of TiO2 nanoparticles with silver halide (AgX, X=Cl, Br, I, which aims at enhancing the visible light absorption and photosensitivity. Herein we study the synthesis, physical and chemical properties, and the mechanism of this composite photocatalyst.

  20. EPR study of electron bombarded alkali- and alkaline-earth halide crystal surfaces

    Science.gov (United States)

    Fryburg, G. C.; Lad, R. A.

    1975-01-01

    An EPR study of electron bombarded LiF, NaCl, KCl, CaF2 and BaF2 polycrystalline surfaces has shown that small metal particles are formed on the surfaces of the crystals. Identification was made from CESR signals. The symmetric line-shape of the signals, even at 77 K, indicated that the particles were less than 0.5 micron in diameter. Signals due to F centers were observed in LiF but not in the other halides. Implications to metal deposition are considered.

  1. The Metal-Halide Lamp Under Varying Gravity Conditions Measured by Emission and Laser Absorption Spectroscopy

    Science.gov (United States)

    Flikweert, A. J.; Nimalasuriya, T.; Kroesen, G. M. W.; Haverlag, M.; Stoffels, W. W.

    2009-11-01

    Diffusive and convective processes in the metal-halide lamp cause an unwanted axial colour segregation. Convection is induced by gravity. To understand the flow phenomena in the arc discharge lamp it has been investigated under normal laboratory conditions, micro-gravity (ISS and parabolic flights) and hyper-gravity (parabolic flights 2 g, centrifuge 1 g-10 g). The measurement techniques are webcam imaging, and emission and laser absorption spectroscopy. This paper aims to give an overview of the effect of different artificial gravity conditions on the lamp and compares the results from the three measurement techniques.

  2. Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces

    Science.gov (United States)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1985-01-01

    The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.

  3. A Solvent-Free Base Liberation of a Tertiary Aminoalkyl Halide by Flow Chemistry

    DEFF Research Database (Denmark)

    Pedersen, Michael Jønch; Skovby, Tommy; Mealy, Michael J.

    2016-01-01

    A flow setup for base liberation of 3-(N,N-dimethylamino)propyl chloride hydrochloride and solvent-free separation of the resulting free base has been developed. Production in flow profits from an on-demand approach, useful for labile aminoalkyl halides. The requirement for obtaining a dry product...... has been fulfilled by the simple use of a saturated NaOH solution, followed by isolation of the liquid phases by gravimetric separation. The flow setup has an E factor reduction of nearly 50%, and a distillation step has been avoided. The method exemplifies how flow chemistry can be exploited...

  4. Barium halide nanocrystals in fluorozirconate based glass ceramics for scintillation application

    Energy Technology Data Exchange (ETDEWEB)

    Selling, J.

    2007-07-01

    Europium (Eu)-activated barium halide nanocrystals in fluorozirconate based glass ceramics represent a promising class of Xray scintillators. The scintillation in these glass ceramics is mainly caused by the emission of divalent Eu incorporated in hexagonal BaCl{sub 2} nanocrystals which are formed in the glass matrix upon appropriate annealing. Experiments with cerium (Ce)-activated fluorozironate glass ceramics showed that Ce is an interesting alternative. In order to get a better understanding of the scintillation mechanism in Eu- or Ce-activated barium halide nanocrystals, an investigation of the processes in the corresponding bulk material is essential. The objective of this thesis is the investigation of undoped, Eu-, and Ce-doped barium halides by X-ray excited luminescence (XL), pulse height, and scintillation decay spectra. That will help to figure out which of these crystals has the most promising scintillation properties and would be the best nanoparticles for the glass ceramics. Furthermore, alternative dopants like samarium (Sm) and manganese (Mn) were also investigated. Besides the above-mentioned optical investigation electron paramagnetic resonance (EPR) and Moessbauer measurements were carried out in order to complete the picture of Eu-doped barium halides. The EPR data of Eu-doped BaI{sub 2} is anticipated to yield more information about the crystal field and crystal structure that will help to understand the charge carrier process during the scintillation process. The main focus of the Moessbauer investigations was set on the Eu-doped fluorochlorozirconate glass ceramics. The results of this investigation should help to improve the glass ceramics. The Eu{sup 2+}/Eu{sup 3+} ratio in the glass ceramics should be determined and optimize favor of the Eu{sup 2+}. We also want to distinguish between Eu{sup 2+} in the glass matrix and Eu{sup 2+} in the nanocrystals. For a better understanding of Moessbauer spectroscopy on Eu also measurements on Eu in a

  5. Non-destructive measurement of Xe filling pressure in mercury-free metal halide lamp

    International Nuclear Information System (INIS)

    Motomura, Hideki; Enoki, Kyosuke; Jinno, Masafumi

    2010-01-01

    Mercury-free metal halide lamps (MHLs) for automotive purposes have been developing in the market. When mercury is not used, the electric and emission characteristics of the lamp strongly depend on the xenon filling pressure. Therefore a non-destructive gas pressure estimation technique is required to obtain stable performance of the lamps as commercial products. The authors have developed an estimation method by which the gas pressure is estimated from the current peak value at the initial stage of ignition under pulsed operation. It is shown that accuracy of the order of ±(0.1-0.3) atm is obtained using an empirical formula.

  6. High Photoluminescence Quantum Yield in Band Gap Tunable Bromide Containing Mixed Halide Perovskites

    OpenAIRE

    Carolin M. Sutter-Fella Yanbo Li Matin Amani Joel W. Ager III Francesca M. Toma; Eli Yablonovitch Ian D. Sharp and Ali Javey

    2016-01-01

    Hybrid organic–inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low cost solution processability. Here we present a two step low pressure vapor assisted solution process to grow high quality homogeneous CH3NH3PbI3–xBrx perovskite films over the full band gap range of 1.6–2.3 eV. Photoluminescence light in versus light out charac...

  7. Acoustic and photon emissions during mechanical deformation of coloured alkali halide crystals

    International Nuclear Information System (INIS)

    Chandra, B.P.

    1984-01-01

    Acoustic and photon emissions take place in the elastic and plastic as well as the fracture region of x-irradiated KBr, KCl and NaCl crystals. The rate of photon emission is linear with the strain rate: however, the RMS value of the acoustic emission is proportional to the square root of the strain rate. The acoustic emission is maximum for x-irradiated NaCl crystals; however, the photon emission is maximum for x-irradiated KBr crystals. From the similarity between the acoustic emission and the photon emission, it seems that mobile dislocations are responsible for the acoustic emission in coloured alkali halide crystals. (author)

  8. All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation

    KAUST Repository

    Ning, Zhijun

    2012-09-12

    A new solution-phase halide passivation strategy to improve the electronic properties of colloidal quantum dot films is reported. We prove experimentally that the approach leads to an order-of-magnitude increase in mobility and a notable reduction in trap state density. We build solar cells having the highest efficiency (6.6%) reported using all-inorganic colloidal quantum dots. The improved photocurrent results from increased efficiency of collection of infrared-generated photocarriers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Silver halide sensitized gelatin process effects in holographic lenses recorded on Slavich PFG-01 plates

    Science.gov (United States)

    Collados, Maria Victoria; Arias, Isabel; García, Ana; Atencia, Jesús; Quintanilla, Manuel

    2003-02-01

    In this work we study the feasibility of using silver halide sensitized gelatin based on PFG-01 (Slavich) emulsions to construct uniaxial compound lenses. This processing is able to introduce variations in the thickness and refractive index of the emulsion. We prove that these changes are not sufficient to provide the observed variations in Bragg conditions in the reconstruction and that a shear-type effect must exist to explain the performance of processed emulsions. We study the characteristics of a compound lens, obtaining acceptable image quality, good resolution, and the typical field limitation of volume holographic elements.

  10. Structural, optical, and electronic studies of wide-bandgap lead halide perovskites

    KAUST Repository

    Comin, Riccardo; Walters, Grant; Thibau, Emmanuel Sol; Voznyy, Oleksandr; Lu, Zheng-Hong; Sargent, Edward H.

    2015-01-01

    © The Royal Society of Chemistry 2015. We investigate the family of mixed Br/Cl organolead halide perovskites which enable light emission in the blue-violet region of the visible spectrum. We report the structural, optical and electronic properties of this air-stable family of perovskites, demonstrating full bandgap tunability in the 400-550 nm range and enhanced exciton strength upon Cl substitution. We complement this study by tracking the evolution of the band levels across the gap, thereby providing a foundational framework for future optoelectronic applications of these materials.

  11. An heterogeneous nucleation model for the irradiation coloring of alkali halides

    International Nuclear Information System (INIS)

    Aguilar, M.; Jaque, F.; Agullo-Lopez, F.

    1980-01-01

    An heterogeneous nucleation model for the radiation-induced coloring of alkali halides is presented. The model assumes a primary mechanism producing F and H pairs, followed by secondary thermally activated reactions including F-H recombination as well interstitial capture. The existence of a very unstable interstitial aggregate is explicitely considered. The model is able to account for the three-stages structure of the F-coloring curve and the inhibition in the occurrence of the late-stage by lowering dose-rate or by impurity doping

  12. Linkage of molecular units in the chemistry of niobium and tantalum cluster halides

    International Nuclear Information System (INIS)

    Perrin, C.; Sergent, M.

    1991-01-01

    In low valency niobium and tantalum halides, interunit linkages are observed between the (Me 6 X 12 )X 6 units. They are insulators and interesting magnetic properties are observed, due to the intrinsic potential magnetism of the Me 6 cluster and depending on the inserted cations, for instance rare earths in MM'Nb 6 Cl 18 (M = monovalent cation, M' = rare earth). Of special interest are the niobium iodides which exhibit (Me 6 X 8 )X 6 units, an exception in the niobium chemistry; interesting properties have been reported for some of these iodides

  13. All-Inorganic Colloidal Quantum Dot Photovoltaics Employing Solution-Phase Halide Passivation

    KAUST Repository

    Ning, Zhijun; Ren, Yuan; Hoogland, Sjoerd; Voznyy, Oleksandr; Levina, Larissa; Stadler, Philipp; Lan, Xinzheng; Zhitomirsky, David; Sargent, Edward H.

    2012-01-01

    A new solution-phase halide passivation strategy to improve the electronic properties of colloidal quantum dot films is reported. We prove experimentally that the approach leads to an order-of-magnitude increase in mobility and a notable reduction in trap state density. We build solar cells having the highest efficiency (6.6%) reported using all-inorganic colloidal quantum dots. The improved photocurrent results from increased efficiency of collection of infrared-generated photocarriers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Basic mechanisms of color centres production by excitons in activated alkali halides

    International Nuclear Information System (INIS)

    Vale, G.

    1981-01-01

    The paper deals with some peculiarities of colour centers formation which are caused by introduction of the activator in alkali halide crystals. The crystals of KBr and KI activated with Tl + , In + , Sn ++ in concentrations 10 17 -10 18 cm -3 and irradiated with ultraviolet light are studied. Excitation spectra of photostimulated activator luminescence and thermoluminescence were measured. The kinetics of the photostimulated activator luminescence is studied. The conclusion is made that the activator does not affect the primary reaction of exciton decay with F-H pair generation, but only the secondary reactions of colour center production [ru

  15. Aggregate and Mineral Resources - Industrial Mineral Mining Operations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Industrial Mineral Mining Operation is a DEP primary facility type related to the Industrial Mineral Mining Program. The sub-facility types are listed below:Deep...

  16. Possible configuration of two-knot auto-localized exciton in strainless and deformed alkali halide crystals

    International Nuclear Information System (INIS)

    Dzhumanov, S.; Tulepbergenov, S.K.; Shunkeev, K.Sh.

    2002-01-01

    In the paper molecular component of two-knot auto-localized exciton (TALE) occupying centrosymmetric state in alkali halide crystal cubic lattice with local D 2h symmetry is considered. In is suggested that the symmetry lowering of forming small radius auto-localized exciton (ALE) is realizing in order configuration transformation by the scenario: multi-knot continual ALE (with O h symmetry)→six-halide ALE (with O h symmetry)→TALE (with O h symmetry) or by the scenario O h →D 2h . Then for TALE with local D 2h symmetry normal molecular ion shifts are considered as well

  17. Sequential One-Pot Ruthenium-Catalyzed Azide−Alkyne Cycloaddition from Primary Alkyl Halides and Sodium Azide

    KAUST Repository

    Johansson, Johan R.

    2011-04-01

    An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh 3) 2] and the alkyne yielded the desired cycloaddition product after further microwave irradiation. © 2011 American Chemical Society.

  18. Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy

    OpenAIRE

    Kawashima, Kazuhiro; Okamoto, Yuji; Annayev, Orazmuhammet; Toyokura, Nobuo; Takahashi, Ryota; Lippmaa, Mikk; Itaka, Kenji; Suzuki, Yoshikazu; Matsuki, Nobuyuki; Koinuma, Hideomi

    2017-01-01

    Abstract As an extension of combinatorial molecular layer epitaxy via ablation of perovskite oxides by a pulsed excimer laser, we have developed a laser molecular beam epitaxy (MBE) system for parallel integration of nano-scaled thin films of organic?inorganic hybrid materials. A pulsed infrared (IR) semiconductor laser was adopted for thermal evaporation of organic halide (A-site: CH3NH3I) and inorganic halide (B-site: PbI2) powder targets to deposit repeated A/B bilayer films where the thic...

  19. Oxygen Extraction from Minerals

    Science.gov (United States)

    Muscatello, Tony

    2017-01-01

    Oxygen, whether used as part of rocket bipropellant or for astronaut life support, is a key consumable for space exploration and commercialization. In Situ Resource Utilization (ISRU) has been proposed many times as a method for making space exploration more cost effective and sustainable. On planetary and asteroid surfaces the presence of minerals in the regolith that contain oxygen is very common, making them a potential oxygen resource. The majority of research and development for oxygen extraction from minerals has been for lunar regolith although this work would generally be applicable to regolith at other locations in space. This presentation will briefly survey the major methods investigated for oxygen extraction from regolith with a focus on the current status of those methods and possible future development pathways. The major oxygen production methods are (1) extraction from lunar ilmenite (FeTiO3) with either hydrogen or carbon monoxide, (2) carbothermal reduction of iron oxides and silicates with methane, and (3) molten regolith electrolysis (MRE) of silicates. Methods (1) and (2) have also been investigated in a two-step process using CO reduction and carbon deposition followed by carbothermal reduction. All three processes have byproducts that could also be used as resources. Hydrogen or carbon monoxide reduction produce iron metal in small amounts that could potentially be used as construction material. Carbothermal reduction also makes iron metal along with silicon metal and a glass with possible applications. MRE produces iron, silicon, aluminum, titanium, and glass, with higher silicon yields than carbothermal reduction. On Mars and possibly on some moons and asteroids, water is present in the form of mineral hydrates, hydroxyl (-OH) groups on minerals, andor water adsorbed on mineral surfaces. Heating of the minerals can liberate the water which can be electrolyzed to provide a source of oxygen as well. The chemistry of these processes, some key

  20. Indústria mineral

    Directory of Open Access Journals (Sweden)

    Iran F. Machado

    1998-08-01

    Full Text Available A INDÚSTRIA mineral brasileira é analisada, de modo sucinto, face aos desafios impostos pela globalização contemporânea. As mudanças profundas ocorridas no contexto internacional na última década, abrangendo as esferas política, econômica, social e institucional, exigem uma reflexão aprofundada sobre o papel a ser desempenhado pelo Brasil no comércio internacional de bens minerais. De um lado, as oportunidades de aproveitamento de jazidas de classe internacional, principalmente na Amazônia, são bastante promissoras. Por outro, não se deve ignorar que: a explotação dessas reservas terá de obedecer a critérios de sustentabilidade, seguindo paradigmas já adotados em países desenvolvidos; o Brasil terá de garantir a sua competitividade diante dos seus principais concorrentes (Austrália, CEI, China e Índia. A questão dos minerais estratégicos é também abordada, com ênfase nas preocupações demonstradas pelo Departamento de Estado dos EUA. Finalmente, são alinhados três cenários possíveis para o desempenho futuro da mineração brasileira, instando-se o governo a dedicar maior atenção ao destino do nosso subsolo.THE MINERAL industry of Brazil is briefly analysed vis-à-vis the challenges imposed by the cruenta globalization process. The profound changes that occurred in the international framework during the last decade, encompassing the political, economic, social, and institutional structures, demand a thorough appraisal about the role to be played by Brazil in the international market of mineral commodities. On one hand, the opportunities open for world class deposits, mainly in the Amazon, are very promising. On the other hand, it is mandatory to take into account that: the exploitation of these reserves shall comply with sound sustainability criteria, following guidelines already adopted by some developed countries; Brazil will have to demonstrate its competitiveness among the major competitors (Australia

  1. Outlook 96: Minerals and Energy

    International Nuclear Information System (INIS)

    1996-01-01

    Papers discussing the future of Australia's minerals and energy are presented under the following headings: Australia in the global minerals and energy markets; minerals exploration; steelmaking raw materials; aluminium and alumina; gold; nickel; base metals; titanium minerals; energy for a sustainable future; electricity; electricity in Asia; crude oil; coal trade; natural gas in Australia and uranium. Relevant papers are individually indexed/abstracted. Tabs., figs., refs

  2. International availability of energy minerals

    Energy Technology Data Exchange (ETDEWEB)

    White, N A [Norman White Associates, London (UK)

    1979-06-01

    Whereas the ultimate world supply of energy minerals - defined as fossil fuels and fissile minerals - is controlled by geological factors, the actual supply at any particular time is controlled by economic feasibility, technological innovations and/or political decisions. This paper identifies and discusses the principal uncertainties surrounding the international availability of energy minerals from now until the end of the century. A brief comparison is also made between energy and non-energy minerals.

  3. Aggregates from mineral wastes

    Directory of Open Access Journals (Sweden)

    Baic Ireneusz

    2016-01-01

    Full Text Available The problem concerning the growing demand for natural aggregates and the need to limit costs, including transportation from remote deposits, cause the increase in growth of interest in aggregates from mineral wastes as well as in technologies of their production and recovery. The paper presents the issue related to the group of aggregates other than natural. A common name is proposed for such material: “alternative aggregates”. The name seems to be fully justified due to adequacy of this term because of this raw materials origin and role, in comparison to the meaning of natural aggregates based on gravel and sand as well as crushed stones. The paper presents characteristics of the market and basic application of aggregates produced from mineral wastes, generated in the mining, power and metallurgical industries as well as material from demolished objects.

  4. The bismuth miners study

    International Nuclear Information System (INIS)

    Grosche, B.; Kreuzer, M.; Kreisheimer, M.; Schnelzer, M.; Tschense, A.; Gottschalk, K.

    2005-01-01

    The Federal Radiation Protection Office carried out a retrospective cohort study on some 60,000 former employees of the SAG/SDAG Wismut. The purpose of the study was to validate the radon-related risk of acquiring lung cancer previously calculated from 11 jointly evaluated studies among miners on the basis of an independent, homogeneous data record of comparable size. A further goal was to study the risk of acquiring extrapulmonal tumours. This paper only briefly describes the sampling, design and methods used in the study, as these were already presented during the Radon Status Talks. The first follow-up on the cohort was completed in 2003. Around this time a job exposure matrix (JEM) suitable for scientific inquiries was made available by the professional miners' association and the roof organisation of professional trade associations (HVBG). This paper is the first to report on the outcome of the risk analysis in direct comparison with the results found by BEIR

  5. Iodine mineral waters

    Directory of Open Access Journals (Sweden)

    Iluta Alexandru

    2011-11-01

    Full Text Available Iodine mineral waters are found especially in sub-Carpathian region, also in regions with Salif deposits. Waters are currently used iodine in drinking cure for chaps and Basedow. Are also indicated in balneology. Iodine water containing at least 1 mg L, there is pure iodine is usually given the nature of other types of mineral waters further: sodium chlorinated water (Bazna (50-70 mg iodine / l, Baile Govora (50 - 70 mg / l, Bălţăteşti (4-5 mg / l, salted Monteoru (30 mg / l, mine water mixed alkaline chlorination, sulphate, which are indicated for crenoterapie (hypo or isotonic to the bathrooms Olăneşti or Călimăneşti-Căciulata.

  6. Rock and mineral magnetism

    CERN Document Server

    O’Reilly, W

    1984-01-01

    The past two decades have witnessed a revolution in the earth sciences. The quantitative, instrument-based measurements and physical models of. geophysics, together with advances in technology, have radically transformed the way in which the Earth, and especially its crust, is described. The study of the magnetism of the rocks of the Earth's crust has played a major part in this transformation. Rocks, or more specifically their constituent magnetic minerals, can be regarded as a measuring instrument provided by nature, which can be employed in the service of the earth sciences. Thus magnetic minerals are a recording magnetometer; a goniometer or protractor, recording the directions of flows, fields and forces; a clock; a recording thermometer; a position recorder; astrain gauge; an instrument for geo­ logical surveying; a tracer in climatology and hydrology; a tool in petrology. No instrument is linear, or free from noise and systematic errors, and the performance of nature's instrument must be assessed and ...

  7. Characterization lithium mineralized pegmatite

    International Nuclear Information System (INIS)

    Pereira, E.F.S.; Luz Ferreira, O. da; Cancado, R.Z.L.

    1986-01-01

    Lithium economic importance has increased in the last years. In Brazil its reserves, generally pegmatites bodies, are found in Itinga-Aracuai-MG. This study of characterization belongs to a global plan of lithium mineralized bodies research of 'Arqueana de Minerios e Metais Ltda', which purpose is to give subsidies for implementation of pegmatite unit, in order to make better use of them. (F.E.) [pt

  8. Rare earth minerals and resources in the world

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Yasuo [Human Resource Department, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)]. E-mail: y.kanazawa@aist.go.jp; Kamitani, Masaharu [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567 (Japan)

    2006-02-09

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO{sub 3})F, monazite (Ce,La)PO{sub 4}, xenotime YPO{sub 4}, and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite

  9. Rare earth minerals and resources in the world

    International Nuclear Information System (INIS)

    Kanazawa, Yasuo; Kamitani, Masaharu

    2006-01-01

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO 3 )F, monazite (Ce,La)PO 4 , xenotime YPO 4 , and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite and

  10. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions.

    Science.gov (United States)

    Samu, Gergely F; Scheidt, Rebecca A; Kamat, Prashant V; Janáky, Csaba

    2018-02-13

    The unique optoelectronic properties of lead halide perovskites have triggered a new wave of excitement in materials chemistry during the past five years. Electrochemistry, spectroelectrochemistry, and photoelectrochemistry could be viable tools both for analyzing the optoelectronic features of these materials and for assembling them into hybrid architectures (e.g., solar cells). At the same time, the instability of these materials limits the pool of solvents and electrolytes that can be employed in such experiments. The focus of our study is to establish a stability window for electrochemical tests for all-inorganic CsPbBr 3 and hybrid organic-inorganic MAPbI 3 perovskites. In addition, we aimed to understand the reduction and oxidation events that occur and to assess the damage done during these processes at extreme electrochemical conditions. In this vein, we demonstrated the chemical, structural, and morphological changes of the films in both reductive and oxidative environments. Taking all these results together as a whole, we propose a set of boundary conditions and protocols for how electrochemical experiments with lead halide perovskites should be carried out and interpreted. The presented results will contribute to the understanding of the electrochemical response of these materials and lead to a standardization of results in the literature so that comparisons can more easily be made.

  11. Excitonic and electron-hole mechanisms of the creation of Frenkel defect in alkali halides

    International Nuclear Information System (INIS)

    Lushchik, A.; Kirm, M.; Lushchik, Ch.; Vasil'chenko, E.

    2000-01-01

    Excitonic and electron-hole (e-h) mechanisms of stable F centre creation by VUV radiation in alkali halide crystals are discussed. In KCl at 4.2 K, the efficiency of stable F-H pair creation is especially high at the direct optical formation of triplet excitons with n=1. At 200-400 K, the creation processes of stable F centres in KCl are especially efficient at the formation of one-halide exciton in the Urbach tail of an exciton absorption. In KCl and KBr, the decay of a cation exciton (∼20 eV) causes the formation of two e-h pairs, while in NaCl a cation exciton (33.5 eV) decays into two e-h and an anion exciton. An elastic uniaxial stress of a crystal excited by VUV radiation decreases the mean free path of excitons before their self-trapping (KI) and increases the mean free path of hot holes before self-trapping (NaCl)

  12. Electron-stimulated desorption of lithium ions from lithium halide thin films

    International Nuclear Information System (INIS)

    Markowski, Leszek

    2007-01-01

    Electron-stimulated desorption of positive lithium ions from thin layers of lithium halides deposited onto Si(1 1 1) are investigated by the time-of-flight technique. The determined values of isotope effect of the lithium ( 6 Li + / 7 Li + ) are 1.60 ± 0.04, 1.466 ± 0.007, 1.282 ± 0.004, 1.36 ± 0.01 and 1.33 ± 0.01 for LiH, LiF, LiCl, LiBr and LiI, respectively. The observed most probable kinetic energies of 7 Li + are 1.0, 1.9, 1.1, 0.9 and 0.9 eV for LiH, LiF, LiCl, LiBr and LiI, respectively, and seem to be independent of the halide component mass. The values of lithium ion emission yield, lithium kinetic energy and lithium isotope effect suggest that the lattice relaxation is only important in the lithium ion desorption process from the LiH system. In view of possible mechanisms and processes involved into lithium ion desorption the obtained results indicate that for LiH, LiCl, LiBr and LiI the ions desorb in a rather classical way. However, for LiF, ion desorption has a more quantum character and the modified wave packet squeezing model has to be taken into account

  13. Radiation processes in organic halides (Cl, Br, I) studied by ESR spectroscopy

    International Nuclear Information System (INIS)

    Symons, M.C.R.

    1980-01-01

    Electron-loss from alkyl halides (Cl, Br, I) gives Rhal. + which may dimerise to give (Rhal-halR) + σ* radicals with characteristic ESR spectra, or may lose H + to give α-halo radicals (R 2 Chal) also with well characterised ESR spectra. Electron-capture gives dissociation, but there may be weak residual charge-transfer interaction between R. and hal - which gives rise to well defined hyperfine coupling from the halide nuclei. Loss of β-hydrogen gives β-halo radicals, R 2 C-CH 2 hal (Cl,Br) whose conformation, established by ESR spectroscopy, is such that the halogen atom lies out of the radical plane so that overlap between the half-filled 2p(π) orbital and the C-hal (σ) orbital is maximised. Electron addition to α-halocarboxylates and related compounds probably gives β-halo radical anions, (R 2 C[hal]CO 2 H) - with a similar preferred conformation. Alternative structures are considered for these species. (author)

  14. Comparative study of energy-efficiency and conservation systems for ceramic metal-halide discharge lamps

    International Nuclear Information System (INIS)

    Hermoso Orzáez, Manuel Jesús; Andrés Díaz, José Ramón de

    2013-01-01

    Interest in energy savings in urban lighting is gaining traction and has become a priority for municipal administrations. LED (light-emitting diode) technology appears to be the clear future lighting choice. However, this technology is still rapidly developing and has not been sufficiently tested. As an intermediate step, alternative proposals for energy-saving equipment for traditional discharge lamps are desirable so that the current technologies can coexist with the new LED counterparts for the short and medium term. This article provides a comparative study between two efficiency and energy-saving systems for discharge lamps with metal-halide and ceramic technologies, i.e., a lighting flow dimmer-stabilizer and a double-level electronic ballast. - Highlights: ► It has been demonstrated the possibility of regulating ceramic metal-halide lamps with lighting flow dimmer-stabilizer. ► Electronic ballasts can save approximately double quantity of energy than lighting flow dimmer-stabilizers. ► The use of lighting flow dimmer-stabilizer is more profitable than electronic ballasts due to costs and reliability

  15. High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots.

    Science.gov (United States)

    Zhang, Jian; Yang, Ying; Deng, Hui; Farooq, Umar; Yang, Xiaokun; Khan, Jahangeer; Tang, Jiang; Song, Haisheng

    2017-09-26

    Colloidal quantum dots (QDs) of lead halide perovskite have recently received great attention owing to their remarkable performances in optoelectronic applications. However, their wide applications are hindered from toxic lead element, which is not environment- and consumer-friendly. Herein, we utilized heterovalent substitution of divalent lead (Pb 2+ ) with trivalent antimony (Sb 3+ ) to synthesize stable and brightly luminescent Cs 3 Sb 2 Br 9 QDs. The lead-free, full-inorganic QDs were fabricated by a modified ligand-assisted reprecipitation strategy. A photoluminescence quantum yield (PLQY) was determined to be 46% at 410 nm, which was superior to that of other reported halide perovskite QDs. The PL enhancement mechanism was unraveled by surface composition derived quantum-well band structure and their large exciton binding energy. The Br-rich surface and the observed 530 meV exciton binding energy were proposed to guarantee the efficient radiative recombination. In addition, we can also tune the inorganic perovskite QD (Cs 3 Sb 2 X 9 ) emission wavelength from 370 to 560 nm via anion exchange reactions. The developed full-inorganic lead-free Sb-perovskite QDs with high PLQY and stable emission promise great potential for efficient emission candidates.

  16. Structural and Chemical Analysis of Gadolinium Halides Encapsulated within WS 2 Nanotubes

    KAUST Repository

    Anumol, E A

    2016-05-18

    The hollow cavities of nanotubes could serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of inorganic nanotubes of WS2 by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is a non-trivial matter due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.

  17. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions

    KAUST Repository

    Samu, Gergely F.; Scheidt, Rebecca A; Kamat, Prashant V.; Janá ky, Csaba

    2017-01-01

    The unique optoelectronic properties of lead halide perovskites have triggered a new wave of excitement in materials chemistry during the past five years. Electrochemistry, spectroelectrochemistry, and photoelectrochemistry could be viable tools both for analyzing the optoelectronic features of these materials and to assemble their hybrid architectures (e.g., solar cells). At the same time, the instability of these materials limits the pool of solvents and electrolytes that can be employed in such experiments. The focus of our study is to establish a stability window for electrochemical tests for all-inorganic CsPbBr3 and hybrid organic-inorganic MaPbI3 perovskites. In addition, we aimed to understand the reduction and oxidation events that occur and to assess the damage done during these processes at extreme electrochemical conditions. In this vein, we demonstrated the chemical, structural, and morphological changes of the films in both reductive and oxidative environments. Taking all these results together as a whole, we propose a set of boundary conditions and protocols for how electrochemical experiments with lead halide perovskites should be carried out and interpreted. We believe that the presented results will contribute to the understanding of the electrochemical response of these materials and lead to a standardization of results in the literature so that easier comparisons can be made.

  18. Molecular dispersion energy parameters for alkali and halide ions in aqueous solution

    International Nuclear Information System (INIS)

    Reiser, S.; Deublein, S.; Hasse, H.; Vrabec, J.

    2014-01-01

    Thermodynamic properties of aqueous solutions containing alkali and halide ions are determined by molecular simulation. The following ions are studied: Li + , Na + , K + , Rb + , Cs + , F − , Cl − , Br − , and I − . The employed ion force fields consist of one Lennard-Jones (LJ) site and one concentric point charge with a magnitude of ±1 e. The SPC/E model is used for water. The LJ size parameter of the ion models is taken from Deublein et al. [J. Chem. Phys. 136, 084501 (2012)], while the LJ energy parameter is determined in the present study based on experimental self-diffusion coefficient data of the alkali cations and the halide anions in aqueous solutions as well as the position of the first maximum of the radial distribution function of water around the ions. On the basis of these force field parameters, the electric conductivity, the hydration dynamics of water molecules around the ions, and the enthalpy of hydration is predicted. Considering a wide range of salinity, this study is conducted at temperatures of 293.15 and 298.15 K and a pressure of 1 bar

  19. Halide-Enhanced Catalytic Activity of Palladium Nanoparticles Comes at the Expense of Catalyst Recovery

    Directory of Open Access Journals (Sweden)

    Azzedine Bouleghlimat

    2017-09-01

    Full Text Available In this communication, we present studies of the oxidative homocoupling of arylboronic acids catalyzed by immobilised palladium nanoparticles in aqueous solution. This reaction is of significant interest because it shares a key transmetallation step with the well-known Suzuki-Miyaura cross-coupling reaction. Additives can have significant effects on catalysis, both in terms of reaction mechanism and recovery of catalytic species, and our aim was to study the effect of added halides on catalytic efficiency and catalyst recovery. Using kinetic studies, we have shown that added halides (added as NaCl and NaBr can increase the catalytic activity of the palladium nanoparticles more than 10-fold, allowing reactions to be completed in less than half a day at 30 °C. However, this increased activity comes at the expense of catalyst recovery. The results are in agreement with a reaction mechanism in which, under conditions involving high concentrations of chloride or bromide, palladium leaching plays an important role. Considering the evidence for analogous reactions occurring on the surface of palladium nanoparticles under different reaction conditions, we conclude that additives can exert a significant effect on the mechanism of reactions catalyzed by nanoparticles, including switching from a surface reaction to a solution reaction. The possibility of this switch in mechanism may also be the cause for the disagreement on this topic in the literature.

  20. Effects of Halide Ions on the Carbamidocyclophane Biosynthesis in Nostoc sp. CAVN2

    Science.gov (United States)

    Preisitsch, Michael; Heiden, Stefan E.; Beerbaum, Monika; Niedermeyer, Timo H. J.; Schneefeld, Marie; Herrmann, Jennifer; Kumpfmüller, Jana; Thürmer, Andrea; Neidhardt, Inga; Wiesner, Christoph; Daniel, Rolf; Müller, Rolf; Bange, Franz-Christoph; Schmieder, Peter; Schweder, Thomas; Mundt, Sabine

    2016-01-01

    In this study, the influence of halide ions on [7.7]paracyclophane biosynthesis in the cyanobacterium Nostoc sp. CAVN2 was investigated. In contrast to KI and KF, supplementation of the culture medium with KCl or KBr resulted not only in an increase of growth but also in an up-regulation of carbamidocyclophane production. LC-MS analysis indicated the presence of chlorinated, brominated, but also non-halogenated derivatives. In addition to 22 known cylindrocyclophanes and carbamidocyclophanes, 27 putative congeners have been detected. Nine compounds, carbamidocyclophanes M−U, were isolated, and their structural elucidation by 1D and 2D NMR experiments in combination with HRMS and ECD analysis revealed that they are brominated analogues of chlorinated carbamidocyclophanes. Quantification of the carbamidocyclophanes showed that chloride is the preferably utilized halide, but incorporation is reduced in the presence of bromide. Evaluation of the antibacterial activity of 30 [7.7]paracyclophanes and related derivatives against selected pathogenic Gram-positive and Gram-negative bacteria exhibited remarkable effects especially against methicillin- and vancomycin-resistant staphylococci and Mycobacterium tuberculosis. For deeper insights into the mechanisms of biosynthesis, the carbamidocyclophane biosynthetic gene cluster in Nostoc sp. CAVN2 was studied. The gene putatively coding for the carbamoyltransferase has been identified. Based on bioinformatic analyses, a possible biosynthetic assembly is discussed. PMID:26805858

  1. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency

    KAUST Repository

    Qin, Peng

    2014-05-12

    Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement. Here, we demonstrate the application of an effective and cheap inorganic p-type hole-transporting material, copper thiocyanate, on lead halide perovskite-based devices. With low-temperature solution-process deposition method, a power conversion efficiency of 12.4% was achieved under full sun illumination. This work represents a well-defined cell configuration with optimized perovskite morphology by two times of lead iodide deposition, and opens the door for integration of a class of abundant and inexpensive material for photovoltaic application. © 2014 Macmillan Publishers Limited.

  2. Photoinduced oxidation of sea salt halides by aromatic ketones: a source of halogenated radicals

    Directory of Open Access Journals (Sweden)

    A. Jammoul

    2009-07-01

    Full Text Available The interactions between triplet state benzophenone and halide anion species (Cl, Br and I have been studied by laser flash photolysis (at 355 nm in aqueous solutions at room temperature. The decay of the triplet state of benzophenone was followed at 525 nm. Triplet lifetime measurements gave rate constants, kq (M−1 s, close to diffusion controlled limit for iodide (~8×109 M−1 s, somewhat less for bromide (~3×108 M−1 s and much lower for chloride (<106 M−1 s. The halide (X quenches the triplet state; the resulting product has a transient absorption at 355 nm and a lifetime much longer than that of the benzophenone triplet state, is formed. This transient absorption feature matches those of the corresponding radical anion (X2. We therefore suggest that such reactive quenching is a photosensitized source of halogen in the atmosphere or the driving force for the chemical oxidation of the oceanic surface micro layer.

  3. Structural and Chemical Analysis of Gadolinium Halides Encapsulated within WS 2 Nanotubes

    KAUST Repository

    Anumol, E A; Enyashin, Andrey; Batra, Nitin M; Da Costa, Pedro M. F. J.; Francis, Leonard Deepak

    2016-01-01

    The hollow cavities of nanotubes could serve as templates for the growth of size- and shape-confined functional nanostructures, giving rise to novel materials and properties. In this work, considering their potential application as MRI contrast agents, gadolinium halides are encapsulated within the hollow cavities of inorganic nanotubes of WS2 by capillary filling to obtain GdX3@WS2 nanotubes (where X = Cl, Br or I and @ means encapsulated in). Aberration corrected scanning/transmission electron microscopy (S/TEM) and spectroscopy is employed to understand the morphology and composition of the GdI3@WS2 nanotubes. The three dimensional morphology is studied with STEM tomography but understanding the compositional information is a non-trivial matter due to the presence of multiple high atomic number elements. Therefore, energy dispersive X-ray spectroscopy (EDS) tomography was employed revealing the three dimensional chemical composition. Molecular dynamics simulations of the filling procedure shed light into the mechanics behind the formation of the confined gadolinium halide crystals. The quasi-1D system employed here serves as an example of a TEM-based chemical nanotomography method that could be extended to other materials, including beam-sensitive soft materials.

  4. Solution growth of single crystal methylammonium lead halide perovskite nanostructures for optoelectronic and photovoltaic applications.

    Science.gov (United States)

    Fu, Yongping; Meng, Fei; Rowley, Matthew B; Thompson, Blaise J; Shearer, Melinda J; Ma, Dewei; Hamers, Robert J; Wright, John C; Jin, Song

    2015-05-06

    Understanding crystal growth and improving material quality is important for improving semiconductors for electronic, optoelectronic, and photovoltaic applications. Amidst the surging interest in solar cells based on hybrid organic-inorganic lead halide perovskites and the exciting progress in device performance, improved understanding and better control of the crystal growth of these perovskites could further boost their optoelectronic and photovoltaic performance. Here, we report new insights on the crystal growth of the perovskite materials, especially crystalline nanostructures. Specifically, single crystal nanowires, nanorods, and nanoplates of methylammonium lead halide perovskites (CH3NH3PbI3 and CH3NH3PbBr3) are successfully grown via a dissolution-recrystallization pathway in a solution synthesis from lead iodide (or lead acetate) films coated on substrates. These single crystal nanostructures display strong room-temperature photoluminescence and long carrier lifetime. We also report that a solid-liquid interfacial conversion reaction can create a highly crystalline, nanostructured MAPbI3 film with micrometer grain size and high surface coverage that enables photovoltaic devices with a power conversion efficiency of 10.6%. These results suggest that single-crystal perovskite nanostructures provide improved photophysical properties that are important for fundamental studies and future applications in nanoscale optoelectronic and photonic devices.

  5. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices.

    Science.gov (United States)

    Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P

    2017-04-25

    Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH 3 NH 3 PbI 3 red/near-infrared LEDs and CH 3 NH 3 PbBr 3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

  6. Visualizing Carrier Transport in Metal Halide Perovskite Nanoplates via Electric Field Modulated Photoluminescence Imaging.

    Science.gov (United States)

    Hu, Xuelu; Wang, Xiao; Fan, Peng; Li, Yunyun; Zhang, Xuehong; Liu, Qingbo; Zheng, Weihao; Xu, Gengzhao; Wang, Xiaoxia; Zhu, Xiaoli; Pan, Anlian

    2018-05-09

    Metal halide perovskite nanostructures have recently been the focus of intense research due to their exceptional optoelectronic properties and potential applications in integrated photonics devices. Charge transport in perovskite nanostructure is a crucial process that defines efficiency of optoelectronic devices but still requires a deep understanding. Herein, we report the study of the charge transport, particularly the drift of minority carrier in both all-inorganic CsPbBr 3 and organic-inorganic hybrid CH 3 NH 3 PbBr 3 perovskite nanoplates by electric field modulated photoluminescence (PL) imaging. Bias voltage dependent elongated PL emission patterns were observed due to the carrier drift at external electric fields. By fitting the drift length as a function of electric field, we obtained the carrier mobility of about 28 cm 2 V -1 S -1 in the CsPbBr 3 perovskite nanoplate. The result is consistent with the spatially resolved PL dynamics measurement, confirming the feasibility of the method. Furthermore, the electric field modulated PL imaging is successfully applied to the study of temperature-dependent carrier mobility in CsPbBr 3 nanoplates. This work not only offers insights for the mobile carrier in metal halide perovskite nanostructures, which is essential for optimizing device design and performance prediction, but also provides a novel and simple method to investigate charge transport in many other optoelectronic materials.

  7. Observation of Quantum Confinement in Monodisperse Methylammonium Lead Halide Perovskite Nanocrystals Embedded in Mesoporous Silica.

    Science.gov (United States)

    Malgras, Victor; Tominaka, Satoshi; Ryan, James W; Henzie, Joel; Takei, Toshiaki; Ohara, Koji; Yamauchi, Yusuke

    2016-10-13

    Hybrid organic-inorganic metal halide perovskites have fascinating electronic properties and have already been implemented in various devices. Although the behavior of bulk metal halide perovskites has been widely studied, the properties of perovskite nanocrystals are less well-understood because synthesizing them is still very challenging, in part because of stability. Here we demonstrate a simple and versatile method to grow monodisperse CH 3 NH 3 PbBr x I x-3 perovskite nanocrystals inside mesoporous silica templates. The size of the nanocrystal is governed by the pore size of the templates (3.3, 3.7, 4.2, 6.2, and 7.1 nm). In-depth structural analysis shows that the nanocrystals maintain the perovskite crystal structure, but it is slightly distorted. Quantum confinement was observed by tuning the size of the particles via the template. This approach provides an additional route to tune the optical bandgap of the nanocrystal. The level of quantum confinement was modeled taking into account the dimensions of the rod-shaped nanocrystals and their close packing inside the channels of the template. Photoluminescence measurements on CH 3 NH 3 PbBr clearly show a shift from green to blue as the pore size is decreased. Synthesizing perovskite nanostructures in templates improves their stability and enables tunable electronic properties via quantum confinement. These structures may be useful as reference materials for comparison with other perovskites, or as functional materials in all solid-state light-emitting diodes.

  8. Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions.

    Science.gov (United States)

    Ono, Luis K; Juarez-Perez, Emilio J; Qi, Yabing

    2017-09-13

    Organic-inorganic halide perovskite materials (e.g., MAPbI 3 , FAPbI 3 , etc.; where MA = CH 3 NH 3 + , FA = CH(NH 2 ) 2 + ) have been studied intensively for photovoltaic applications. Major concerns for the commercialization of perovskite photovoltaic technology to take off include lead toxicity, long-term stability, hysteresis, and optimal bandgap. Therefore, there is still need for further exploration of alternative candidates. Elemental composition engineering of MAPbI 3 and FAPbI 3 has been proposed to address the above concerns. Among the best six certified power conversion efficiencies reported by National Renewable Energy Laboratory on perovskite-based solar cells, five are based on mixed perovskites (e.g., MAPbI 1-x Br x , FA 0.85 MA 0.15 PbI 2.55 Br 0.45 , Cs 0.1 FA 0.75 MA 0.15 PbI 2.49 Br 0.51 ). In this paper, we review the recent progress on the synthesis and fundamental aspects of mixed cation and halide perovskites correlating with device performance, long-term stability, and hysteresis. In the outlook, we outline the future research directions based on the reported results as well as related topics that warrant further investigation.

  9. Touching is believing: interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy

    Science.gov (United States)

    Li, Jiangyu; Huang, Boyuan; Nasr Esfahani, Ehsan; Wei, Linlin; Yao, Jianjun; Zhao, Jinjin; Chen, Wei

    2017-10-01

    Halide perovskite solar cells based on CH3NH3PbI3 and related materials have emerged as the most exciting development in the next generation photovoltaic technologies, yet the microscopic phenomena involving photo-carriers, ionic defects, spontaneous polarization, and molecular vibration and rotation interacting with numerous grains, grain boundaries, and interfaces are still inadequately understood. In fact, there is still need for an effective method to interrogate the local photovoltaic properties of halide perovskite solar cells that can be directly traced to their microstructures on one hand and linked to their device performance on the other hand. In this perspective, we propose that scanning probe microscopy (SPM) techniques have great potential to realize such promises at the nanoscale, and highlight some of the recent progresses and challenges along this line of investigation toward local probing of photocurrent, work function, ionic activities, polarization switching, and chemical degradation. We also emphasize the importance of multi-modality imaging, in-operando scanning, big data analysis, and multidisciplinary collaboration for further studies toward fully understanding of these complex systems.

  10. A comparative study of semi-empirical interionic potentials for alkali halides - II

    International Nuclear Information System (INIS)

    Khwaja, F.A.; Naqvi, S.H.

    1985-08-01

    A comprehensive study of some semi-empirical interionic potentials is carried out through the calculation of the cohesive energy, relative stability and pressure induced solid-solid phase transformations in alkali halides. The theoretical values of these properties of the alkali halides are obtained using a new set of van der Waals coefficients and zero-point energy in the expression for interionic potential. From the comparison of the present calculations with some previous sophisticated ab-initio quantum-mechanical calculations and other semi-empirical approaches, it is concluded that the present calculations in the simplest central pairwise interaction description with the new values of the van der Waals coefficients and zero-point energy are in better agreement with the experimental data than the previous calculations. It is also concluded that in some cases the better choice of the interionic potential alone in the simplest semi-empirical picture of interaction gives an agreement of the theoretical predictions with the experimental data much superior to the ab-initio quantum mechanical approaches. (author)

  11. Intrinsic Defect Physics in Indium-based Lead-free Halide Double Perovskites.

    Science.gov (United States)

    Xu, Jian; Liu, Jian-Bo; Liu, Bai-Xin; Huang, Bing

    2017-09-21

    Lead-free halide double perovskites (HDPs) are expected to be promising photovoltaic (PV) materials beyond organic-inorganic halide perovskite, which is hindered by its structural instability and toxicity. The defect- and stability-related properties of HDPs are critical for the use of HDPs as important PV absorbers, yet their reliability is still unclear. Taking Cs 2 AgInBr 6 as a representative, we have systemically investigated the defect properties of HDPs by theoretical calculations. First, we have determined the stable chemical potential regions to grow stoichiometric Cs 2 AgInBr 6 without structural decomposition. Second, we reveal that Ag-rich and Br-poor are the ideal chemical potential conditions to grow n-type Cs 2 AgInBr 6 with shallow defect levels. Third, we find the conductivity of Cs 2 AgInBr 6 can change from good n-type, to poorer n-type, to intrinsic semiconducting depending on the growth conditions. Our studies provided important guidance for experiments to fabricate Pb-free perovskite-based solar cell devices with superior PV performances.

  12. Metal-Mediated Halogen Exchange in Aryl and Vinyl Halides: a Review

    Science.gov (United States)

    Evano, Gwilherm; Nitelet, Antoine; Thilmany, Pierre; Dewez, Damien F.

    2018-04-01

    Halogenated arenes and alkenes are of prime importance in many areas of science, especially in the pharmaceutical, agrochemical and chemical industries. While the simplest ones are commercially available, some of them are still hardly accessible depending on their substitution patterns and the nature of the halogen atom. Reactions enabling the selective and efficient replacement of the halogen atom of an aryl or alkenyl halide by another one, lighter or heavier, are therefore of major importance since they can be used for example to turn a less reactive aryl/alkenyl chloride into the more reactive iodinated derivatives or, in a reversed sense, to block an undesired reactivity, for late-stage modifications or for the introduction of a radionuclide. If some halogen exchange reactions are possible with activated substrates, they usually require catalysis with metal complexes. Remarkably efficient processes have been developed for metal-mediated halogen exchange in aryl and vinyl halides: they are overviewed, in a comprehensive manner, in this review article.

  13. An objective protocol for comparing the noise performance of silver halide film and digital sensor

    Science.gov (United States)

    Cao, Frédéric; Guichard, Frédéric; Hornung, Hervé; Tessière, Régis

    2012-01-01

    Digital sensors have obviously invaded the photography mass market. However, some photographers with very high expectancy still use silver halide film. Are they only nostalgic reluctant to technology or is there more than meets the eye? The answer is not so easy if we remark that, at the end of the golden age, films were actually scanned before development. Nowadays film users have adopted digital technology and scan their film to take advantage from digital processing afterwards. Therefore, it is legitimate to evaluate silver halide film "with a digital eye", with the assumption that processing can be applied as for a digital camera. The article will describe in details the operations we need to consider the film as a RAW digital sensor. In particular, we have to account for the film characteristic curve, the autocorrelation of the noise (related to film grain) and the sampling of the digital sensor (related to Bayer filter array). We also describe the protocol that was set, from shooting to scanning. We then present and interpret the results of sensor response, signal to noise ratio and dynamic range.

  14. Linear chrono-amperometry using re-dissolution: application to halides

    International Nuclear Information System (INIS)

    Perchard, J.-P.; Buvet, M.; Molina, R.

    1966-06-01

    The possibility of applying linear chrono-amperometry to analysis was studied using a falling-drop mercury electrode. Measurements of the cations were carried out by direct reduction or by prior formation of an amalgam, which is then oxidized. Using the first technique, the minimum concentration that can be attained is about 10 -6 M and the reproducibility of the results is of the order of 2%. With the second method the sensitivity is much improved: in the concentration range of 10 -7 to 10 -8 M, the scatter of the results is less than 10% if the agitation and temperature conditions are kept constant. The halides are determined by re-dissolving the mercurous halide deposit formed by electrolysis. From the analytical point of view, the sensitivity is limited in the domain where the phenomena can be interpreted and used. In the case of the chloride ion the lower limit of this zone is close to 10 -5 M; it is 10 -6 M for the bromide and less than 10 -7 M for the iodide. For lower concentrations, simple laws that might be applied in analysis are no longer valid. However, the splitting of the peak observed during the reduction of the mercurous iodide deposit was interpreted as showing that the mono-molecular Hg 2 I 2 layer formed on the drop has particular electrochemical properties. (authors) [fr

  15. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions

    KAUST Repository

    Samu, Gergely F.

    2017-12-06

    The unique optoelectronic properties of lead halide perovskites have triggered a new wave of excitement in materials chemistry during the past five years. Electrochemistry, spectroelectrochemistry, and photoelectrochemistry could be viable tools both for analyzing the optoelectronic features of these materials and to assemble their hybrid architectures (e.g., solar cells). At the same time, the instability of these materials limits the pool of solvents and electrolytes that can be employed in such experiments. The focus of our study is to establish a stability window for electrochemical tests for all-inorganic CsPbBr3 and hybrid organic-inorganic MaPbI3 perovskites. In addition, we aimed to understand the reduction and oxidation events that occur and to assess the damage done during these processes at extreme electrochemical conditions. In this vein, we demonstrated the chemical, structural, and morphological changes of the films in both reductive and oxidative environments. Taking all these results together as a whole, we propose a set of boundary conditions and protocols for how electrochemical experiments with lead halide perovskites should be carried out and interpreted. We believe that the presented results will contribute to the understanding of the electrochemical response of these materials and lead to a standardization of results in the literature so that easier comparisons can be made.

  16. Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency

    KAUST Repository

    Qin, Peng; Tanaka, Soichiro; Ito, Seigo; Tetreault, Nicolas; Manabe, Kyohei; Nishino, Hitoshi; Nazeeruddin, Mohammad Khaja; Grä tzel, Michael

    2014-01-01

    Organo-lead halide perovskites have attracted much attention for solar cell applications due to their unique optical and electrical properties. With either low-temperature solution processing or vacuum evaporation, the overall conversion efficiencies of perovskite solar cells with organic hole-transporting material were quickly improved to over 15% during the last 2 years. However, the organic hole-transporting materials used are normally quite expensive due to complicated synthetic procedure or high-purity requirement. Here, we demonstrate the application of an effective and cheap inorganic p-type hole-transporting material, copper thiocyanate, on lead halide perovskite-based devices. With low-temperature solution-process deposition method, a power conversion efficiency of 12.4% was achieved under full sun illumination. This work represents a well-defined cell configuration with optimized perovskite morphology by two times of lead iodide deposition, and opens the door for integration of a class of abundant and inexpensive material for photovoltaic application. © 2014 Macmillan Publishers Limited.

  17. Evaluation of quaternary ammonium halides for removal of methyl iodide from flowing air streams

    International Nuclear Information System (INIS)

    Freeman, W.P.; Mohacsi, T.G.; Kovach, J.L.

    1985-01-01

    The quaternary ammonium halides of several tertiary amines were used as impregnants on activated carbon and were tested for methyl iodide penetration in accordance with test Method A, ASTM D3803, 1979, ''Standard Test Methods for Radio-iodine Testing of Nuclear Grade Gas Phase Adsorbents''. The results suggest that the primary removal mechanism for methyl iodide-131 is isotopic exchange with the quaternary ammonium halide. For example, a 5 wt% impregnation of each of the tetramethyl, tetraethyl, tetrapropyl and tetrabutyl ammonium iodides on activated carbon yielded percent penetrations of 0.47, 0.53, 0.78, and 0.08 respectively when tested according to Method A of ASTM D3803. A sample impregnated with 5% tetramethyl ammonium hydroxide gave a methyl iodide penetration of 64.87%, thus supporting the isotopic exchange mechanism for removal. It has been a generally held belief that the success of tertiary amines as impregnants for radioiodine removal is a result of their ability to complex with the methyl iodide. The results of the work indicates that the superiority of the tertiary amines similar to triethylene diamine and quinuclidine, when compared to their straight chain analogs, is a result of their ease in reacting with methyl iodide-127 to form the quaternary ammonium iodide followed by isotopic exchange

  18. TG-FTIR, DSC and quantum chemical studies of the thermal decomposition of quaternary methylammonium halides

    International Nuclear Information System (INIS)

    Sawicka, Marlena; Storoniak, Piotr; Skurski, Piotr; Blazejowski, Jerzy; Rak, Janusz

    2006-01-01

    The thermal decomposition of quaternary methylammonium halides was studied using thermogravimetry coupled to FTIR (TG-FTIR) and differential scanning calorimetry (DSC) as well as the DFT, MP2 and G2 quantum chemical methods. There is almost perfect agreement between the experimental IR spectra and those predicted at the B3LYP/6-311G(d,p) level: this has demonstrated for the first time that an equimolar mixture of trimethylamine and a methyl halide is produced as a result of decomposition. The experimental enthalpies of dissociation are 153.4, 171.2, and 186.7 kJ/mol for chloride, bromide and iodide, respectively, values that correlate well with the calculated enthalpies of dissociation based on crystal lattice energies and quantum chemical thermodynamic barriers. The experimental activation barriers estimated from the least-squares fit of the F1 kinetic model (first-order process) to thermogravimetric traces - 283, 244 and 204 kJ/mol for chloride, bromide and iodide, respectively - agree very well with theoretically calculated values. The theoretical approach assumed in this work has been shown capable of predicting the relevant characteristics of the thermal decomposition of solids with experimental accuracy

  19. Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions

    Science.gov (United States)

    2017-01-01

    The unique optoelectronic properties of lead halide perovskites have triggered a new wave of excitement in materials chemistry during the past five years. Electrochemistry, spectroelectrochemistry, and photoelectrochemistry could be viable tools both for analyzing the optoelectronic features of these materials and for assembling them into hybrid architectures (e.g., solar cells). At the same time, the instability of these materials limits the pool of solvents and electrolytes that can be employed in such experiments. The focus of our study is to establish a stability window for electrochemical tests for all-inorganic CsPbBr3 and hybrid organic–inorganic MAPbI3 perovskites. In addition, we aimed to understand the reduction and oxidation events that occur and to assess the damage done during these processes at extreme electrochemical conditions. In this vein, we demonstrated the chemical, structural, and morphological changes of the films in both reductive and oxidative environments. Taking all these results together as a whole, we propose a set of boundary conditions and protocols for how electrochemical experiments with lead halide perovskites should be carried out and interpreted. The presented results will contribute to the understanding of the electrochemical response of these materials and lead to a standardization of results in the literature so that comparisons can more easily be made. PMID:29503507

  20. Time Domain View of Liquid-like Screening and Large Polaron Formation in Lead Halide Perovskites

    Science.gov (United States)

    Joshi, Prakriti Pradhan; Miyata, Kiyoshi; Trinh, M. Tuan; Zhu, Xiaoyang

    The structural softness and dynamic disorder of lead halide perovskites contributes to their remarkable optoelectronic properties through efficient charge screening and large polaron formation. Here we provide a direct time-domain view of the liquid-like structural dynamics and polaron formation in single crystal CH3NH3PbBr3 and CsPbBr3 using femtosecond optical Kerr effect spectroscopy in conjunction with transient reflectance spectroscopy. We investigate structural dynamics as function of pump energy, which enables us to examine the dynamics in the absence and presence of charge carriers. In the absence of charge carriers, structural dynamics are dominated by over-damped picosecond motions of the inorganic PbBr3- sub-lattice and these motions are strongly coupled to band-gap electronic transitions. Carrier injection from across-gap optical excitation triggers additional 0.26 ps dynamics in CH3NH3PbBr3 that can be attributed to the formation of large polarons. In comparison, large polaron formation is slower in CsPbBr3 with a time constant of 0.6 ps. We discuss how such dynamic screening protects charge carriers in lead halide perovskites. US Department of Energy, Office of Science - Basic Energy Sciences.

  1. 76 FR 6110 - Conflict Minerals

    Science.gov (United States)

    2011-02-03

    ...-10] RIN 3235-AK84 Conflict Minerals AGENCY: Securities and Exchange Commission. ACTION: Proposed rule...'') and would require any such issuer for which conflict minerals are necessary to the functionality or... body of its annual report whether its conflict minerals originated in the Democratic Republic of the...

  2. Flotation of sulphide minerals 1990

    Energy Technology Data Exchange (ETDEWEB)

    Forssberg, K S.E. [ed.; Luleaa University of Technology, Luleaa (Sweden). Division of Mineral Processing

    1991-01-01

    A total of 27 papers presented at the workshop on flotation of sulphide minerals, reprinted from the International Journal of Mineral Processing, vol. 33, nos. 1-4, are included in this book. They cover various aspects of flotation of such minerals as chalcopyrite, pyrrhotite, galena, malachite and pyrite.

  3. Digital mineral logging system

    International Nuclear Information System (INIS)

    West, J.B.

    1980-01-01

    A digital mineral logging system acquires data from a mineral logging tool passing through a borehole and transmits the data uphole to an electronic digital signal processor. A predetermined combination of sensors, including a deviometer, is located in a logging tool for the acquisition of the desired data as the logging tool is raised from the borehole. Sensor data in analog format is converted in the logging tool to a digital format and periodically batch transmitted to the surface at a predetermined sampling rate. An identification code is provided for each mineral logging tool, and the code is transmitted to the surface along with the sensor data. The self-identifying tool code is transmitted to the digital signal processor to identify the code against a stored list of the range of numbers assigned to that type of tool. The data is transmitted up the d-c power lines of the tool by a frequency shift key transmission technique. At the surface, a frequency shift key demodulation unit transmits the decoupled data to an asynchronous receiver interfaced to the electronic digital signal processor. During a recording phase, the signals from the logging tool are read by the electronic digital signal processor and stored for later processing. During a calculating phase, the stored data is processed by the digital signal processor and the results are outputted to a printer or plotter, or both

  4. Hybrid lead halide perovskites for light energy conversion: Excited state properties and photovoltaic applications

    Science.gov (United States)

    Manser, Joseph S.

    The burgeoning class of metal halide perovskites constitutes a paradigm shift in the study and application of solution-processed semiconductors. Advancements in thin film processing and our understanding of the underlying structural, photophysical, and electronic properties of these materials over the past five years have led to development of perovskite solar cells with power conversion efficiencies that rival much more mature first and second-generation commercial technologies. It seems only a matter of time before the real-world impact of these compounds is put to the test. Like oxide perovskites, metal halide perovskites have ABX3 stoichiometry, where typically A is a monovalent cation, B a bivalent post-transition metal, and X a halide anion. Characterizing the behavior of photogenerated charges in metal halide perovskites is integral for understanding the operating principles and fundamental limitations of perovskite optoelectronics. The majority of studies outlined in this dissertation involve fundamental study of the prototypical organic-inorganic compound methylammonium lead iodide (CH3NH3PbI 3). Time-resolved pump-probe spectroscopy serves as a principle tool in these investigations. Excitation of a semiconductor can lead to formation of a number different excited state species and electronic complexes. Through analysis of excited state decay kinetics and optical nonlinearities in perovskite thin films, we identify spontaneous formation of a large fraction of free electrons and holes, whose presence is requisite for efficient photovoltaic operation. Following photogeneration of charge carriers in a semiconductor absorber, these species must travel large distances across the thickness of the material to realize large external quantum efficiencies and efficient carrier extraction. Using a powerful technique known as transient absorption microscopy, we directly image long-range carrier diffusion in a CH3NH3PbI 3 thin film. Charges are unambiguously shown to

  5. Analisa Teknis Pemakaian Kombinasi Lampu Metal Halide Dan Led Sebagai Pemikat Ikan Pada Kapal Pukat Cincin (Purse Seine Dan Pengaruhnya Terhadap Konsumsi Bahan Bakar Genset

    Directory of Open Access Journals (Sweden)

    Septian Ragil Wibisono

    2017-01-01

    Full Text Available Saat ini lampu Metal Halide dipakai sebagai pemikat ikan  oleh nelayan Purse Seine. Peggunaan lampu tersebut memerlukan daya Genset yang besar karena satu lampu Metal Halide berdaya 1500 Watt. Semakin banyak lampu Metal Halide yang digunakan semakin besar pula konsumsi bahan bakar Genset. Dalam upaya penghematan energi bahan bakar maka digunakan lampu LED sebagai alternatif pemikat ikan. Lampu LED dikenal sebagai lampu yang hemat energi. Penelitian ini ditujukan untuk mengetahui dan membandingkan konsumsi bahan bakar Genset saat menggunakan kombinasi lampu Metal Halide dan LED. Penelitian ini dilakukan dengan mengambil data konsumsi bahan bakar Genset untuk menyalakan sejumlah lampu Metal Halide dan lampu LED, kemudian dilakukan analisa regresi untuk mendapatkan model persaamaan konsumsi bahan bakar Genset. Selanjutnya dilakukan ekstrapolasi untuk memprediksi konsumsi bahan bakar saat Genset dengan jumlah lampu tertentu. Hasilnya dengan besar fluks cahaya yang hampir sama, saat penggunaan 6 lampu Metal Halide konsumsi bahan bakar sebesar 13.606,03 liter, dan saat menggunakan kombinasi lampu 1 Metal Halide dan 25 lampu LED konsumsi bahan bakar sebesar 13.255,63 liter, yang artinya terjadi penghematan bahan bakar sebesar 2,58%.

  6. Chemical Origin of the Stability Difference between Copper(I)- and Silver(I)-Based Halide Double Perovskites.

    Science.gov (United States)

    Xiao, Zewen; Du, Ke-Zhao; Meng, Weiwei; Mitzi, David B; Yan, Yanfa

    2017-09-25

    Recently, Cu I - and Ag I -based halide double perovskites have been proposed as promising candidates for overcoming the toxicity and instability issues inherent within the emerging Pb-based halide perovskite absorbers. However, up to date, only Ag I -based halide double perovskites have been experimentally synthesized; there are no reports on successful synthesis of Cu I -based analogues. Here we show that, owing to the much higher energy level for the Cu 3d 10 orbitals than for the Ag 4d 10 orbitals, Cu I atoms energetically favor 4-fold coordination, forming [CuX 4 ] tetrahedra (X=halogen), but not 6-fold coordination as required for [CuX 6 ] octahedra. In contrast, Ag I atoms can have both 6- and 4-fold coordinations. Our density functional theory calculations reveal that the synthesis of Cu I halide double perovskites may instead lead to non-perovskites containing [CuX 4 ] tetrahedra, as confirmed by our material synthesis efforts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CuI-Catalyzed: One-Pot Synthesis of Diaryl Disulfides from Aryl Halides and Carbon Disulfide

    Directory of Open Access Journals (Sweden)

    Mohammad Soleiman-Beigi

    2013-01-01

    Full Text Available A new application of carbon disulfide in the presence of KF/Al2O3 is reported for the synthesis of organic symmetrical diaryl disulfides. These products were synthesized by one-pot reaction of aryl halides with the in situ generated trithiocarbonate ion in the presence of copper under air atmosphere.

  8. Competition between convection and diffusion in a metal halide lamp, investigated by numerical simulations and imaging laser absorption spectroscopy

    NARCIS (Netherlands)

    Beks, M.L.; Flikweert, A.J.; Nimalasuriya, T.; Stoffels, W.W.; Mullen, van der J.J.A.M.

    2008-01-01

    The effect of the competition between convection and diffusion on the distribution of metal halide additives in a high pressure mercury lamp has been examined by placing COST reference lamps with mercury fillings of 5 and 10 mg in a centrifuge. By subjecting them to different accelerational

  9. Rocksalt or cesium chloride: Investigating the relative stability of the cesium halide structures with random phase approximation based methods

    Science.gov (United States)

    Nepal, Niraj K.; Ruzsinszky, Adrienn; Bates, Jefferson E.

    2018-03-01

    The ground state structural and energetic properties for rocksalt and cesium chloride phases of the cesium halides were explored using the random phase approximation (RPA) and beyond-RPA methods to benchmark the nonempirical SCAN meta-GGA and its empirical dispersion corrections. The importance of nonadditivity and higher-order multipole moments of dispersion in these systems is discussed. RPA generally predicts the equilibrium volume for these halides within 2.4% of the experimental value, while beyond-RPA methods utilizing the renormalized adiabatic LDA (rALDA) exchange-correlation kernel are typically within 1.8%. The zero-point vibrational energy is small and shows that the stability of these halides is purely due to electronic correlation effects. The rAPBE kernel as a correction to RPA overestimates the equilibrium volume and could not predict the correct phase ordering in the case of cesium chloride, while the rALDA kernel consistently predicted results in agreement with the experiment for all of the halides. However, due to its reasonable accuracy with lower computational cost, SCAN+rVV10 proved to be a good alternative to the RPA-like methods for describing the properties of these ionic solids.

  10. Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Zavadil, Jiří; Kostka, P.; Djouama, T.; Reinfelde, M.

    2017-01-01

    Roč. 254, č. 6 (2017), č. článku 1600662. ISSN 0370-1972 Institutional support: RVO:67985882 Keywords : caesium halides * chalcohalide glasses * erbium doping * transmission spectroscopy * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.674, year: 2016

  11. Photoluminescence properties of Er-doped Ge–In(Ga)–S glasses modified by caesium halides

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.G.; Zavadil, Jiří; Kostka, Petr; Djouama, T.; Reinfelde, M.

    2017-01-01

    Roč. 254, č. 6 (2017), č. článku 1600662. ISSN 0370-1972 Institutional support: RVO:67985891 Keywords : caesium halides * chalcohalide glasses * erbium doping * transmission spectroscopy * photoluminiscence Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass OBOR OECD: Ceramics Impact factor: 1.674, year: 2016

  12. Formation of random and regular relief-phase structures on silver halide photographic emulsions by holographic methods

    Science.gov (United States)

    Ganzherli, N. M.; Gulyaev, S. N.; Gurin, A. S.; Kramushchenko, D. D.; Maurer, I. A.; Chernykh, D. F.

    2009-07-01

    The formation of diffusers and microlens rasters on silver halide emulsions by holographic methods is considered. Two techniques for converting amplitude holographic recording to relief-phase recording, selective curing and irradiation of the emulsion gelatin by short-wavelength UV radiation, are compared.

  13. Optical emission spectroscopy of metal-halide lamps: Radially resolved atomic state distribution functions of Dy and Hg

    NARCIS (Netherlands)

    Nimalasuriya, T.; Flikweert, A.J.; Stoffels, W.W.; Haverlag, M.; Mullen, van der J.J.A.M.; Pupat, N.B.M.

    2006-01-01

    Absolute line intensity measurements are performed on a metal-halide lamp. Several transitions of atomic and ionic Dy and atomic Hg are measured at different radial positions from which we obtain absolute atomic and ionic Dy intensity profiles. From these profiles we construct the radially resolved

  14. Nuclear minerals in Pakistan

    International Nuclear Information System (INIS)

    Mansoor, M.

    2005-01-01

    Strategic importance of Nuclear Minerals was recognized during early formative years of the Pakistan Atomic Energy Commission, and prospecting for uranium was started in Dera Ghazi Khan in collaboration with the Geological Survey of Pakistan (GSP) as early as 1961. Later, the responsibility for countrywide surveys and exploration was fully entrusted with PAEC and in this respect a Directorate of Nuclear Minerals(DNM) was established in 1966 at Lahore. Later, DNM was shifted to the Atomic Energy Centre (AEC), Lahore building and renamed as Atomic Energy Minerals Centre. It has state-of-the-art Chemistry, Mineralogy, Remote Sensing and Electronics Laboratories and an Ore Processing Pilot Plant. The Centre has Prospecting, Exploration, Geophysics, Geochemistry, Geo-tectonics, Mining and Drilling Sections. Regional Offices have been established to facilitate work at Karachi, Quetta and Peshawar. Siwaliks were recognized as a favorable geological formation of prime importance. Sandstone-shale sequence of Siwaliks Formation is exposed in all provinces of Pakistan and in Azad Jammu and Kashmir (AJK), broadly categorized into Rajanpur-Dera Ghazi Khan, Bannu Basin-Kohat Plateau and Potwar-AJK zones. Baghalchur, Nangar Nai and Taunsa uranium deposits have been discovered in the Rajanpur- D.G. Khan Zone. Qabul Khel and Shanawah Uranium deposits have been discovered in the Shanawah-Kohat Plateau Zone. Prospection and exploration is in progress. The first uranium mine was opened at Baghalchur, and uranium mill was established at D.G Khan in 1977-78 all by indigenous effort. The uranium mine was the most advanced and mechanized mine of that time in the country. Later, a second uranium mine was opened at Qabul Khel in 1992, which was based on a new and advanced in situ leach technology, developed to suit local geological and ore zone parameters. Mining of Nanganai and Taunsa Deposits was started respectively in 1996 and 2002, and is also based on in situ leach technology which is

  15. Minerals and rumen function

    International Nuclear Information System (INIS)

    Smith, R.H.

    1984-01-01

    The mechanisms are discussed of some clinical disorders, characteristic only of ruminants and related to the effects of abnormal mineral intake on rumen function. With particular attention to tropical conditions, consideration is given to: (a) the possible effects of phosphorus deficiency on rumen microbial activity; (b) the depression of rumen microbial synthesis in sulphur deficiency; (c) the inhibition of magnesium absorption from the forestomachs; and (d) the involvement of the rumen microorganisms in leading to copper and vitamin B 12 deficiencies as a result of low intakes of cobalt. (author)

  16. Reducing coal miner absenteeism

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.H.; Clingan, M.R. (Bureau of Mines, PA (USA). Pittsburgh Research Center)

    1989-09-01

    High absenteeism at coal mines can seriously affect safety and hamper productivity. Several effective strategies for achieving high attendance which mine operators may not have considered are presented and a method is proposed for implementing programs for minimizing absenteeism among coal miners. The best strategies for improving attendance will vary according to the needs and circumstances of the particular mine, however, the process for establishing such a program is relatively invariant. A four-stage process is recommended; evaluate data from prior attendance records, communicate attendance goals and policy, develop and implement an attendance promotion program, and recycle. 12 refs., 5 figs.

  17. United States mineral resources

    Science.gov (United States)

    Brobst, Donald A.; Pratt, Walden P.

    1973-01-01

    The work on this volume began in January 1972, but in a broader sense its production began many years ago. The chapters were written by geologists most of whom have had many years of experience studying the geology of mineral deposits, and more particularly the commodities about which they have written here. A total of nearly 2,300 man-years of professional experience in the geology of mineral resources is represented by the authors of the volume, and about 30 man-years went directly into its preparation. Each chapter contains not only a synthesis of the state of knowledge of the geology of the commodity, but also an appraisal of the known resources, and an examination of the geologic possibilities for finding additional deposits. In January 1972, responsibility for the preparation of the volume was assigned to us as co-editors, and we were given a tentative list of commodities and authors. We provided each author with a suggested outline of general topics to be covered, and some guidelines as to scope and philosophy of approach, but beyond that we avoided any attempt to fit each chapter into a stereotype. Moreover, the types of commodities range from the major metals and industrial minerals such as copper, silver, and fluorspar, which have been the subject of geologic research for years, to other commodities that are of such varied geologic nature (such as pigments or gemstones) or of such minor present importance (such as scandium or thallium) that they cannot be treated from the same viewpoint as the major minerals. The chapters range, therefore, from comprehensive summary reports to general essays that reflect the individuality of the authors as well as the variation among commodities. Throughout the book the emphasis is on geology, but each chapter contains some summary information on uses, technology, and economics. These summaries are not meant to be exhaustive, however, and additional details are in the 1970 edition of "Mineral Facts and Problems" (Bulletin

  18. Refining mineral oils

    Energy Technology Data Exchange (ETDEWEB)

    1946-07-05

    A process is described refining raw oils such as mineral oils, shale oils, tar, their fractions and derivatives, by extraction with a selected solvent or a mixture of solvents containing water, forming a solvent more favorable for the hydrocarbons poor in hydrogen than for hydrocarbons rich in hydrogen, this process is characterized by the addition of an aiding solvent for the water which can be mixed or dissolved in the water and the solvent or in the dissolving mixture and increasing in this way the solubility of the water in the solvent or the dissolving mixture.

  19. RELATIVE TRACE MINERAL BIOAVAILABILITY

    OpenAIRE

    Rchard D. Miles; Peter R. Henry

    2006-01-01

    Para determinar a eficiência de utilização de elementos minerais dietéticos, deve-se conhecer a biodisponibilidade relativa de cada elemento de um determinado ingrediente ou de uma ração completa. Análises químicas da dieta ou de um determinado ingrediente não indicam a efetividade biológica de um nutriente. Existem muitos fatores que influenciam a biodisponibilidade dos minerais, especialmente dos minerais-traço, tais como: nível de consumo do mineral, forma química, digestibilidade da dieta...

  20. Iron Mineral Catalyzed C-H Activation As a Potential Pathway for Halogenation Processes

    Science.gov (United States)

    Tubbesing, C.; Schoeler, H. F.; Benzing, K.; Krause, T.; Lippe, S.; Rudloff, M.

    2014-12-01

    Due to increasing drinking water demand of mankind and an expected climate change the impact of salt lakes and salt deserts will increase within the next decades. Furthermore, a rising sea level influences coastal areas like salt marshes and abets processes which will lead to elevated organohalogen formation. An additional increase of the global warming potential, of particle formation and stratospheric ozone depletion is expected. Understanding these multifaceted processes is essential for mankind to be prepared for these alterations of the atmosphere. For example, Keppler et al. (2000) described the production of volatile halogenated organic compounds via oxidation of organic matter driven by ferric iron. However, the formation of long-chained alkyl halides in salt lakes is yet undisclosed. Despite the relative "inertness" of alkanes a direct halogenation of these compounds might be envisaged. In 2005 Vaillancourt et al. discovered a nonheme iron enzyme which is able to halogenate organic compounds via generating the high valent ferryl cation as reaction center. Based on various publications about C-H activation (Bergman, 2007) we postulate a halogenation process in which an iron containing minerals catalyse the C-H bond cleavage of organic compounds in soils. The generated organic radicals are highly reactive towards halides connected to the iron complex. We suggest that next to diagenetically altered iron containing enzymes, minerals such as oxides, hydroxides and sulfides are involved in abiotic halogenation processes. We applied the amino acid methionine as organic model compound and soluble iron species as reactants. All samples were incubated in aqueous phases containing various NaCl concentrations. As a result various halogenated ethanes and ethenes were identified as reaction products. References Bergman, R. G. (2007) Nature, 446(7134) 391-393 Keppler, F., et al. (2000) Nature, 403(6767) 298-301 Vaillancourt, F. H., et al. (2005) Nature, 436(7054) 1191-1194

  1. Mineral supplementation for grazing ruminants

    International Nuclear Information System (INIS)

    McDowell, L.R.; Conrad, J.H.; Ellis, G.L.

    1986-01-01

    Grazing ruminants to which concentrate feeds cannot be economically fed must rely on self-feeding of mineral supplements. A number of factors affect mineral consumption of free-choice mixtures. Livestock exhibit little nutritional wisdom and will select palatable mixtures in preference to mixtures designed to meet their requirements. Palatability and appetite stimulators are often used to achieve a more uniform herd-wide consumption. It is best to formulate free-choice mixtures on the basis of analyses or other available data. However, when no information on mineral status is known, a free-choice complete mineral supplement is warranted. A 'complete' mineral mixture usually includes salt, a low fluoride P source, Ca, Co, Cu, I, Mn and Zn. Selenium, Mg, K, S, Fe or additional elements can be incorporated into a mineral supplement as new information suggests a need. The detriment to ruminant production caused by providing Ca, Se and Cu in excess can be greater than any benefit derived by providing a mineral supplement. In regions where high forage Mo predominates, three to five times the Cu content in mineral mixtures is needed to counteract Mo toxicity. Supplemental minerals are most critical during the wet season, when cattle are gaining weight rapidly and energy and protein supplies are adequate. Economic return on mineral supplementation is high. (author)

  2. Aggregate and Mineral Resources - MO 2014 Industrial Mineral Mines (SHP)

    Data.gov (United States)

    NSGIC State | GIS Inventory — This data set contains names, locations and additional data for active Industrial Mineral Mines permitted with the Missouri Department of Natural Resources, Division...

  3. Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes

    Science.gov (United States)

    Shan, Xin; Bade, Sri Ganesh R.; Geske, Thomas; Davis, Melissa; Smith, Rachel; Yu, Zhibin

    2017-08-01

    Organometal halide perovskite light-emitting diodes (LEDs) with laminated carbon nanotube (CNT) electrodes are reported. The LEDs have an indium tin oxide (ITO) bottom electrode, a screen printed methylammonium lead tribromide (MAPbBr3)/polymer composite thin film as the emissive layer, and laminated CNT as the top electrode. The devices can be turned on at 2.2 V, reaching a brightness of 4,960 cd m-2 and a current efficiency of 1.54 cd A-1 at 6.9 V. The greatly simplified fabrication process in this work can potentially lead to the scalable manufacturing of large size and low cost LED panels in the future.

  4. Junction Propagation in Organometal Halide Perovskite-Polymer Composite Thin Films.

    Science.gov (United States)

    Shan, Xin; Li, Junqiang; Chen, Mingming; Geske, Thomas; Bade, Sri Ganesh R; Yu, Zhibin

    2017-06-01

    With the emergence of organometal halide perovskite semiconductors, it has been discovered that a p-i-n junction can be formed in situ due to the migration of ionic species in the perovskite when a bias is applied. In this work, we investigated the junction formation dynamics in methylammonium lead tribromide (MAPbBr 3 )/polymer composite thin films. It was concluded that the p- and n- doped regions propagated into the intrinsic region with an increasing bias, leading to a reduced intrinsic perovskite layer thickness and the formation of an effective light-emitting junction regardless of perovskite layer thicknesses (300 nm to 30 μm). The junction propagation also played a major role in deteriorating the LED operation lifetime. Stable perovskite LEDs can be achieved by restricting the junction propagation after its formation.

  5. Infrared losses from a Na/Sc metal-halide high intensity discharge arc lamp

    International Nuclear Information System (INIS)

    Smith, D J; Bonvallet, G A; Lawler, J E

    2003-01-01

    A study of the near-infrared (IR) emission from the arc of a metal-halide high intensity discharge (MH-HID) lamp with a sodium/scandium chemistry is reported. Radiometrically calibrated spectra from 0.7 to 2.5 μm were recorded as a function of position on the arc tube of a 250 W lamp. These spectra were analysed to determine the relative densities of Na and Sc atoms and the arc temperature as a function of radius. Information from these spectra, combined with absorption measurements in the companion paper (Bonvallet and Lawler 2003), were used to determine the absolute output power in the near-IR from the MH-HID lamp

  6. Double-ended metal halide arc discharge lamp with electrically isolated containment shroud

    Science.gov (United States)

    Muzeroll, Martin M. (Inventor)

    1994-01-01

    A double-ended arc discharge lamp includes a sealed, light-transmissive outer jacket, a light-transmissive shroud mounted within the outer jacket and directly supported by the outer jacket, and an arc discharge tube mounted within the shroud. The arc tube is typically a metal halide arc discharge tube. In a preferred embodiment, the shroud includes an outwardly flared portion at each end. The outwardly flared portions space the shroud from the outer jacket and support the shroud within the outer jacket. The outwardly flared portions of the shroud can be affixed to the outer jacket by fusing. The outer jacket can be provided with inwardly extending dimples for locating the shroud with respect to the outer jacket. In another embodiment, the outer jacket includes reduced diameter portions near each end which are attached to the shroud.

  7. Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma

    Science.gov (United States)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges

    2016-07-01

    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.

  8. Polarization Switching and Light-Enhanced Piezoelectricity in Lead Halide Perovskites.

    Science.gov (United States)

    Coll, Mariona; Gomez, Andrés; Mas-Marza, Elena; Almora, Osbel; Garcia-Belmonte, Germà; Campoy-Quiles, Mariano; Bisquert, Juan

    2015-04-16

    We investigate the ferroelectric properties of photovoltaic methylammonium lead halide CH3NH3PbI3 perovskite using piezoelectric force microscopy (PFM) and macroscopic polarization methods. The electric polarization is clearly observed by amplitude and phase hysteresis loops. However, the polarization loop decreases as the frequency is lowered, persisting for a short time only, in the one second regime, indicating that CH3NH3PbI3 does not exhibit permanent polarization at room temperature. This result is confirmed by macroscopic polarization measurement based on a standard capacitive method. We have observed a strong increase of piezoelectric response under illumination, consistent with the previously reported giant photoinduced dielectric constant at low frequencies. We speculate that an intrinsic charge transfer photoinduced dipole in the perovskite cage may lie at the origin of this effect.

  9. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films

    KAUST Repository

    Wu, Kewei; Bera, Ashok; Ma, Chun; Du, Yuanmin; Yang, Yang; LI, LIANG; Wu, Tao

    2014-01-01

    Organometal halide perovskites have recently attracted tremendous attention due to their potential for photovoltaic applications, and they are also considered as promising materials in light emitting and lasing devices. In this work, we investigated in detail the cryogenic steady state photoluminescence properties of a prototypical hybrid perovskite CH3NH3PbI3-xClx. The evolution of the characteristics of two excitonic peaks coincides with the structural phase transition around 160 K. Our results further revealed an exciton binding energy of 62.3 ± 8.9 meV and an optical phonon energy of 25.3 ± 5.2 meV, along with an abnormal blue-shift of the band gap in the high-temperature tetragonal phase. This journal is

  10. Rashba and Dresselhaus Couplings in Halide Perovskites: Accomplishments and Opportunities for Spintronics and Spin-Orbitronics.

    Science.gov (United States)

    Kepenekian, Mikaël; Even, Jacky

    2017-07-20

    In halide hybrid organic-inorganic perovskites (HOPs), spin-orbit coupling (SOC) presents a well-documented large influence on band structure. However, SOC may also present more exotic effects, such as Rashba and Dresselhaus couplings. In this Perspective, we start by recalling the main features of this effect and what makes HOP materials ideal candidates for the generation and tuning of spin-states. Then, we detail the main spectroscopy techniques able to characterize these effects and their application to HOPs. Finally, we discuss potential applications in spintronics and in spin-orbitronics in those nonmagnetic systems, which would complete the skill set of HOPs and perpetuate their ride on the crest of the wave of popularity started with optoelectronics and photovoltaics.

  11. Why does the lumen maintenance of sodium-scandium metal halide lamps improve by VHF operation?

    International Nuclear Information System (INIS)

    Van Erk, W; Luijks, G M J F; Hitchcock, W

    2011-01-01

    Lifetime experiments show that sodium-scandium metal halide lamps perform better on very high frequency (VHF) drivers than on low frequency (LF) constant wattage autotransformer (CWA) ballasts. The question why, will be addressed with focus on arc tube aspects. It is argued that at high frequency operation sodium loss is less, and that the absence of thermal fluctuations in the electrode tip causes less damage and cracking to this part of the electrode. Sudden lm W -1 drops, observed with CWA-operated lamps, most probably occur when the arc attaches on such a corroded and cracked surface. Thorium is effective as an emitter both in the CWA and the VHF operation mode, despite the absence of cataphoretic transport to the cathode in the VHF case.

  12. Design Principles for the Atomic and Electronic Structure of Halide Perovskite Photovoltaic Materials: Insights from Computation.

    Science.gov (United States)

    Berger, Robert F

    2018-02-09

    In the current decade, perovskite solar cell research has emerged as a remarkably active, promising, and rapidly developing field. Alongside breakthroughs in synthesis and device engineering, halide perovskite photovoltaic materials have been the subject of predictive and explanatory computational work. In this Minireview, we focus on a subset of this computation: density functional theory (DFT)-based work highlighting the ways in which the electronic structure and band gap of this class of materials can be tuned via changes in atomic structure. We distill this body of computational literature into a set of underlying design principles for the band gap engineering of these materials, and rationalize these principles from the viewpoint of band-edge orbital character. We hope that this perspective provides guidance and insight toward the rational design and continued improvement of perovskite photovoltaics. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Excited-atom production by electron and ion bombardment of alkali halides

    International Nuclear Information System (INIS)

    Walkup, R.E.; Avouris, P.; Ghosh, A.P.

    1987-01-01

    We present experimental results on the production of excited atoms by electron and ion bombardment of alkali halides. For the case of electron bombardment, Doppler shift measurements show that the electronically excited atoms have a thermal velocity distribution in equilibrium with the surface temperature. Measurements of the absolute yield of excited atoms, the distribution of population among the excited states, and the systematic dependence on incident electron current and sample temperature support a model in which the excited atoms are produced by gas-phase collisions between desorbed ground-state atoms and secondary electrons. In contrast, for the case of ion bombardment, the excited atoms are directly sputtered from the surface, with velocity distributions characteristic of a collision cascade, and with typical energies of --10 eV

  14. Why does the lumen maintenance of sodium-scandium metal halide lamps improve by VHF operation?

    Energy Technology Data Exchange (ETDEWEB)

    Van Erk, W [Philips Lighting, Sondervick 47, 5505 NB Veldhoven (Netherlands); Luijks, G M J F [Advanced Development Lighting, Philips Lighting, PO Box 80020, 5600 JM Eindhoven (Netherlands); Hitchcock, W, E-mail: Gerard.luijks@philips.com [Philips Lighting Company, 7265 Route 54, Bath, NY 14810 (United States)

    2011-06-08

    Lifetime experiments show that sodium-scandium metal halide lamps perform better on very high frequency (VHF) drivers than on low frequency (LF) constant wattage autotransformer (CWA) ballasts. The question why, will be addressed with focus on arc tube aspects. It is argued that at high frequency operation sodium loss is less, and that the absence of thermal fluctuations in the electrode tip causes less damage and cracking to this part of the electrode. Sudden lm W{sup -1} drops, observed with CWA-operated lamps, most probably occur when the arc attaches on such a corroded and cracked surface. Thorium is effective as an emitter both in the CWA and the VHF operation mode, despite the absence of cataphoretic transport to the cathode in the VHF case.

  15. Experimental and theoretical studies of thermodynamics of lithium halide solutions - ethanol mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Nasehzadeh, Asadollah E-mail: nasehzadeh@mail.uk.ac.ir; Noroozian, Ebrahim; Omrani, Hengameh

    2004-03-01

    The vapor pressures of lithium halide solutions in ethanol have been determined in the range of concentration from (0.01 to 2.0) mol {center_dot} kg{sup -1} at 298.15 K. The activity of solvent was obtained directly and the osmotic coefficients of solutions were then calculated. An accurate reference osmotic coefficient (phi{sup 0}) was obtained in a more diluted solution at a reference molality, m{sup 0} (=10{sup -3} kg {center_dot} mol{sup -1}). The ionic activity coefficient, the excess, and the change in partial molal free energy of solutions were calculated by using Gibbs-Duhem equation. The values of osmotic coefficient that obtained in this work were fitted to MSA-NRTL and Pitzer's models and the values of characteristic adjustable parameters were calculated. It is shown that the goodness and the overall quality of the fit for both models are excellent.

  16. Degradation of Highly Alloyed Metal Halide Perovskite Precursor Inks: Mechanism and Storage Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Benjia [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wheeler, Lance M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christians, Jeffrey A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moore, David [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Harvey, Steven P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Joseph J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Van Hest, Marinus F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Barnes, Frank S. [University of Colorado; Shaheen, Sean E. [University of Colorado

    2018-03-02

    Whereas the promise of metal halide perovskite (MHP) photovoltaics (PV) is that they can combine high efficiency with solution-processability, the chemistry occurring in precursor inks is largely unexplored. Herein, we investigate the degradation of MHP solutions based on the most widely used solvents, dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). For the MHP inks studied, which contain formamidinium (FA+), methylammonium (MA+), cesium (Cs+), lead (Pb2+), bromide (Br-), and iodide (I-), dramatic compositional changes are observed following storage of the inks in nitrogen in the dark. We show that hydrolysis of DMF in the precursor solution forms dimethylammonium formate, which subsequently incorporates into the MHP film to compromise the ability of Cs+ and MA+ to stabilize FA+-based MHP. The changes in solution chemistry lead to a modification of the perovskite film stoichiometry, band gap, and structure. The solid precursor salts are stable when ball-milled into a powder, allowing for the storage of large quantities of stoichiometric precursor materials.

  17. High-Purity Hybrid Organolead Halide Perovskite Nanoparticles Obtained by Pulsed-Laser Irradiation in Liquid

    KAUST Repository

    Amendola, Vincenzo

    2016-11-17

    Nanoparticles of hybrid organic-inorganic perovskites have attracted a great deal of attention due to their variety of optoelectronic properties, their low cost, and their easier integration into devices with complex geometry, compared with microcrystalline, thin-film, or bulk metal halides. Here we present a novel one-step synthesis of organolead bromide perovskite nanocrystals based on pulsed-laser irradiation in a liquid environment (PLIL). Starting from a bulk CHNHPbBr crystal, our PLIL procedure does not involve the use of high-boiling-point polar solvents or templating agents, and runs at room temperature. The resulting nanoparticles are characterized by high crystallinity and are completely free of any microscopic product or organic coating layer. We also demonstrate the straightforward inclusion of laser-generated perovskite nanocrystals in a polymeric matrix to form a nanocomposite with single- and two-photon luminescence properties.

  18. Measurements of spin-lattice relaxation time in mixed alkali halide crystals

    International Nuclear Information System (INIS)

    Tannus, A.

    1983-01-01

    Using magneto-optic techniques the ground state spin-lattice relaxation times (T1) of 'F' centers in mixed Alkali Halide cristals (KCl-KBr), was studied. A computer assisted system to optically measure short relaxation times (approx. = 1mS), was described. The technique is based on the measurement of the Magnetic Circular Dicroism (MCD) presented by F centers. The T1 magnetic field dependency at 2 K (up to 65 KGauss), was obtained as well as the MCD spectra for different relative concentration at the mixed matrices. The theory developed by Panepucci and Mollenauer for F centers spin-lattice relaxation in pure matrices was modified to explain the behaviour of T1 in mixed cristals. The Direct Process results (T approx. = 2.0 K) compared against that theory shows that the main relaxation mecanism, up to 25 KGauss, continues to be phonon modulation of the hiperfine iteraction between F electrons and surrounding nuclei. (Author) [pt

  19. Bedford-type palladacycle catalyzed Miyaura-borylation of aryl halides with tetrahydroxydiboron in water

    KAUST Repository

    Zernickel, Anna; Du, Weiyuan; Ghorpade, Seema; Sawant, Dinesh Nanaji; Makki, Arwa; Sekar, Nagaiyan; Eppinger, Jö rg

    2018-01-01

    A mild aqueous protocol for palladium catalyzed Miyaura borylation of aryl iodides, aryl bromides and aryl chlorides with tetrahydroxydiboron (BBA) as a borylating agent is developed. The developed methodology requires low catalyst loading of Bedford-type palladacycle catalyst (0.05 mol %) and works best under mild reaction conditions at 40 °C in short time of 6 hours in water. In addition, our studies show that for Miyaura borylation using BBA in aqueous condition, maintaining a neutral reaction pH is very important for reproducibility and higher yields of corresponding borylated products. Moreover, our protocol is applicable for a broad range of aryl halides, corresponding borylated products are obtained in excellent yields up to 93% with 29 examples demonstrating its broad utility and functional group tolerance.

  20. Effective dielectric functions of samples obtained by evaporation of alkali halides

    International Nuclear Information System (INIS)

    Sturm, J.; Grosse, P.; Theiss, W.

    1991-01-01

    This paper investigates the dielectric properties of inhomogeneous samples consisting of small alkali halide particles (NaCl, KBr) on gold-coated substrates. Our reflection measurements in the far infrared can be simulated as a thin layer of the power with an effective dielectric function on a perfectly reflecting substrate. Scanning electron micrographs provide useful information about sample topology. Several mixing formulas (e.g. the Maxwell-Garnett, the Bruggeman- and the Looyenga-formula) lead to effective dielectric functions neglecting the individual arrangement of the particles. The essence of our work is that, in contrast, the general ansatz of the Bergman spectral representation has to be employed in order to take into account topology effects on the dielectric function based on the so-called spectral density g adjustable to the specific situation. (orig.)

  1. UV and X radiation effects on the stability of calcium halide phosphate phosphors. 1

    International Nuclear Information System (INIS)

    Tews, W.

    1983-01-01

    Intensity losses of several calcium halide phosphate phosphors have been investigated as a function of the time of irradiation with near UV and X radiation. The results show that antimony-containing foreign phases increase such losses. The directly excited manganese centre emission is much more lowered than the sensitized one. Detrimental effects of the 185 nm UV radiation are observable not only in the first minutes of irradiation but also over considerably extended periods. The sensitization effect caused by irradiation in different gases depends on the phosphor, especially on the content of antimony, and can be explained by the sorption of gaseous impurities at the phosphor surface so that the diffusion of photochemical reaction products from the surface is inhibited

  2. Electric field gradient and electronic structure of linear-bonded halide compounds

    International Nuclear Information System (INIS)

    Ellis, D.E.; Guenzburger, D.J.R.; Jansen, H.B.

    1983-01-01

    The importance of covalent metal-ligand interactions in determining hyperfine fields and energy-level structure of MX 2 linear-bonded halide compounds has been studied, using the self-consistent local density molecular orbital approach. Results for FeCl 2 , FeBr 2 and EuCl 2 obtained using the Discrete Variational Method with numerical basis sets are presented. The high spin configuration for the iron compounds, first predicted by Berkowitz, et al., is verified; a successful comparison with gas phase photoelectron spectra is made. Variation of the predicted electric field gradient with bond length R is found to be rapid; the need for an EXAFS measurement of R for the matrix isolated species and experimental determination of the spin of the EFG is seen to be crucial for more accurate determinations of the sub(57) Fe quadrupole moment. (Author) [pt

  3. Biexciton Auger Recombination Differs in Hybrid and Inorganic Halide Perovskite Quantum Dots.

    Science.gov (United States)

    Eperon, Giles E; Jedlicka, Erin; Ginger, David S

    2018-01-04

    We use time-resolved photoluminescence measurements to determine the biexciton Auger recombination rate in both hybrid organic-inorganic and fully inorganic halide perovskite nanocrystals as a function of nanocrystal volume. We find that the volume scaling of the biexciton Auger rate in the hybrid perovskites, containing a polar organic A-site cation, is significantly shallower than in the fully inorganic Cs-based nanocrystals. As the nanocrystals become smaller, the Auger rate in the hybrid nanocrystals increases even less than expected, compared to the fully inorganic nanocrystals, which already show a shallower volume dependence than other material systems such as chalcogenide quantum dots. This finding suggests there may be differences in the strength of Coulombic interactions between the fully inorganic and hybrid perovskites, which may prove to be crucial in selecting materials to obtain the highest performing devices in the future, and hints that there could be something "special" about the hybrid materials.

  4. Laser post-processing of halide perovskites for enhanced photoluminescence and absorbance

    Science.gov (United States)

    Tiguntseva, E. Y.; Saraeva, I. N.; Kudryashov, S. I.; Ushakova, E. V.; Komissarenko, F. E.; Ishteev, A. R.; Tsypkin, A. N.; Haroldson, R.; Milichko, V. A.; Zuev, D. A.; Makarov, S. V.; Zakhidov, A. A.

    2017-11-01

    Hybrid halide perovskites have emerged as one of the most promising type of materials for thin-film photovoltaic and light-emitting devices. Further boosting their performance is critically important for commercialization. Here we use femtosecond laser for post-processing of organo-metalic perovskite (MAPbI3) films. The high throughput laser approaches include both ablative silicon nanoparticles integration and laser-induced annealing. By using these techniques, we achieve strong enhancement of photoluminescence as well as useful light absorption. As a result, we observed experimentally 10-fold enhancement of absorbance in a perovskite layer with the silicon nanoparticles. Direct laser annealing allows for increasing of photoluminescence over 130%, and increase absorbance over 300% in near-IR range. We believe that the developed approaches pave the way to novel scalable and highly effective designs of perovskite based devices.

  5. Far IR spectra of Th(IV) halide complexes of some heterocyclic bases

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Agarwal, R.K.; Srivastava, M.; Kapoor, V.; Srivastava, T.N.

    1981-01-01

    The synthesis and IR spectra of Th(IV) perchlorato, nitrato and thiocyanato complexes of some heterocyclic bases have been reported. Halogens are common ligands in coordination chemistry forming coordinate bonds with metals readily. Metal halogen (M-X) stretching bands show a strong absorption in the far-IR region. Very little information is available on Th-X stretching frequencies. In the present communication, adducts of Th(IV) halide with certain nitrogen heterocyclic bases such as pyridine, α-picoline, 2-amino pyridine, 2:4-lutidine, 2:6-lutidine, quinoline, 2,2'-bipyridine and 1,10-phenanthroline were synthesised and characterised. Experimental details are given. Results are presented and discussed. (author)

  6. Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium.

    Science.gov (United States)

    Dong, Yitong; Qiao, Tian; Kim, Doyun; Parobek, David; Rossi, Daniel; Son, Dong Hee

    2018-05-09

    Cesium lead halide (CsPbX 3 ) nanocrystals have emerged as a new family of materials that can outperform the existing semiconductor nanocrystals due to their superb optical and charge-transport properties. However, the lack of a robust method for producing quantum dots with controlled size and high ensemble uniformity has been one of the major obstacles in exploring the useful properties of excitons in zero-dimensional nanostructures of CsPbX 3 . Here, we report a new synthesis approach that enables the precise control of the size based on the equilibrium rather than kinetics, producing CsPbX 3 quantum dots nearly free of heterogeneous broadening in their exciton luminescence. The high level of size control and ensemble uniformity achieved here will open the door to harnessing the benefits of excitons in CsPbX 3 quantum dots for photonic and energy-harvesting applications.

  7. Research progress on organic-inorganic halide perovskite materials and solar cells

    Science.gov (United States)

    Ono, Luis K.; Qi, Yabing

    2018-03-01

    Owing to the intensive research efforts across the world since 2009, perovskite solar cell power conversion efficiencies (PCEs) are now comparable or even better than several other photovoltaic (PV) technologies. In this topical review article, we review recent progress in the field of organic-inorganic halide perovskite materials and solar cells. We associate these achievements with the fundamental knowledge gained in the perovskite research. The major recent advances in the fundamental perovskite material and solar cell research are highlighted, including the current efforts in visualizing the dynamical processes (in operando) taking place within a perovskite solar cell under operating conditions. We also discuss the existing technological challenges. Based on a survey of recently published works, we point out that to move the perovskite PV technology forward towards the next step of commercialization, what perovskite PV technology need the most in the coming next few years is not only further PCE enhancements, but also up-scaling, stability, and lead-toxicity.

  8. Experimental and theoretical studies of thermodynamics of lithium halide solutions - ethanol mixtures

    International Nuclear Information System (INIS)

    Nasehzadeh, Asadollah; Noroozian, Ebrahim; Omrani, Hengameh

    2004-01-01

    The vapor pressures of lithium halide solutions in ethanol have been determined in the range of concentration from (0.01 to 2.0) mol · kg -1 at 298.15 K. The activity of solvent was obtained directly and the osmotic coefficients of solutions were then calculated. An accurate reference osmotic coefficient (phi 0 ) was obtained in a more diluted solution at a reference molality, m 0 (=10 -3 kg · mol -1 ). The ionic activity coefficient, the excess, and the change in partial molal free energy of solutions were calculated by using Gibbs-Duhem equation. The values of osmotic coefficient that obtained in this work were fitted to MSA-NRTL and Pitzer's models and the values of characteristic adjustable parameters were calculated. It is shown that the goodness and the overall quality of the fit for both models are excellent

  9. Tailoring Mixed-Halide, Wide-Gap Perovskites via Multistep Conversion Process

    DEFF Research Database (Denmark)

    Bae, Dowon; Palmstrom, Axel; Roelofs, Katherine

    2016-01-01

    Wide-band-gap mixed-halide CH3NH3PbI3–XBrX-based solar cells have been prepared by means of a sequential spin-coating process. The spin-rate for PbI2 as well as its repetitive deposition are important in determining the cross-sectional shape and surface morphology of perovskite, and, consequently......, J–V performance. A perovskite solar cell converted from PbI2 with a dense bottom layer and porous top layer achieved higher device performance than those of analogue cells with a dense PbI2 top layer. This work demonstrates a facile way to control PbI2 film configuration and morphology simply...

  10. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Yajie Jiang

    2015-06-01

    Full Text Available The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1].

  11. Holographic diffuser by use of a silver halide sensitized gelatin process

    Science.gov (United States)

    Kim, Sun Il; Choi, Yoon Sun; Ham, Yong Nam; Park, Chong Yun; Kim, Jong Man

    2003-05-01

    Diffusers play an important role in liquid-crystal display (LCD) application as a beam-shaping device, a brightness homogenizer, a light-scattering device, and an imaging screen. The transmittance and diffusing angle of the diffusers are the critical aspects for the applications to the LCD. The holographic diffusers by use of various processing methods have been investigated. The diffusing characteristics of different diffusing materials and processing methods have been evaluated and compared. The micro-structures of holographic diffusers have been investigated by use of using scanning electron microscopy. The holographic diffusers by use of the silver halide sensitized gelatin (SHSG) method have the structural merits for the improvement of the quality of diffusers. The features of holographic diffuser were exceptional in terms of transmittance and diffusing angle. The replication method by use of the SHSG process can be directly used for the manufacturing of diffusers for the display application.

  12. Tunable Crystal-to-Crystal Phase Transition in a Cadmium Halide Chain Polymer

    Directory of Open Access Journals (Sweden)

    Ulli Englert

    2011-07-01

    Full Text Available The chain polymer [{Cd(μ-X2py2}1∞] (X = Cl, Br; py = pyridine undergoes a fully reversible phase transition between a monoclinic low-temperature and an orthorhombic high-temperature phase. The transformation can be directly monitored in single crystals and can be confirmed for the bulk by powder diffraction. The transition temperature can be adjusted by tuning the composition of the mixed-halide phase: Transition temperatures between 175 K up to the decomposition of the material at ca. 350 K are accessible. Elemental analysis, ion chromatography and site occupancy refinements from single-crystal X-ray diffraction agree with respect to the stoichiometric composition of the samples.

  13. Fabrication and characterization of rubidium/formamidinium-incorporated methylammonium-lead-halide perovskite solar cells

    Science.gov (United States)

    Kato, Masataka; Suzuki, Atsushi; Ohishi, Yuya; Tanaka, Hiroki; Oku, Takeo

    2018-01-01

    Fabrication and characterization of perovskite solar cells using mesoporous TiO2 as an electron transporting layer and 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene as a hole-transporting layer were performed for improving the photovoltaic performance. Additive effects of formamidinium (FA), rubidium (Rb), chlorine (Cl) and bromine (Br) into the methylammonium-lead-halide perovskite crystal on the photovoltaic properties and microstructures were investigated. The photovoltaic parameters of short-circuit current density, conversion efficiency, the surface morphology and domain in the perovskite crystal were characterized. The slight addition of FACl and RbBr to the CH3NH3PbI3 crystal provided homogeneous microstructures with the dispersed crystal domains, which improved the photovoltaic performance. The excess addition of Cl to the perovskite crystal caused nanorod-like crystals, which degraded the photovoltaic performance.

  14. Energy and geometry of boron compounds. Halides BHHal2, BHal3 and their disproportionation

    International Nuclear Information System (INIS)

    Ionov, S.P.; Kuznetsov, N.T.

    1998-01-01

    Analysis of structural and thermodynamic parameters of boron halogen derivatives was conducted on the basis of structural-thermochemical (ST) model. Equilibrium interatomic B-H distances were specified for gaseous BHF 2 , BHCl 2 and BHBr 2 molecules. They were equal to 1.199±0.002, 1.175±0.003 and 1.79±0.01 A respectively. Formation heat was determined for BHI 2 : Δ f H 298 (BHI 2 (hg) = 72±5 kJ/mol. Qualitative analysis of thermodynamics of reactions of boron halide disproportionation was performed in the framework of ST-model: BHal 3 + 4BHal 3 . It was shown that halogen atoms weakened B-H-H bridges, halogens formed weak bridges in intermediate nonstable dimers

  15. Bedford-type palladacycle catalyzed Miyaura-borylation of aryl halides with tetrahydroxydiboron in water

    KAUST Repository

    Zernickel, Anna

    2018-01-09

    A mild aqueous protocol for palladium catalyzed Miyaura borylation of aryl iodides, aryl bromides and aryl chlorides with tetrahydroxydiboron (BBA) as a borylating agent is developed. The developed methodology requires low catalyst loading of Bedford-type palladacycle catalyst (0.05 mol %) and works best under mild reaction conditions at 40 °C in short time of 6 hours in water. In addition, our studies show that for Miyaura borylation using BBA in aqueous condition, maintaining a neutral reaction pH is very important for reproducibility and higher yields of corresponding borylated products. Moreover, our protocol is applicable for a broad range of aryl halides, corresponding borylated products are obtained in excellent yields up to 93% with 29 examples demonstrating its broad utility and functional group tolerance.

  16. High Defect Tolerance in Lead Halide Perovskite CsPbBr3.

    Science.gov (United States)

    Kang, Jun; Wang, Lin-Wang

    2017-01-19

    The formation energies and charge-transition levels of intrinsic point defects in lead halide perovskite CsPbBr 3 are studied from first-principles calculations. It is shown that the formation energy of dominant defect under Br-rich growth condition is much lower than that under moderate or Br-poor conditions. Thus avoiding the Br-rich condition can help to reduce the defect concentration. Interestingly, CsPbBr 3 is found to be highly defect-tolerant in terms of its electronic structure. Most of the intrinsic defects induce shallow transition levels. Only a few defects with high formation energies can create deep transition levels. Therefore, CsPbBr 3 can maintain its good electronic quality despite the presence of defects. Such defect tolerance feature can be attributed to the lacking of bonding-antibonding interaction between the conduction bands and valence bands.

  17. Heavy metal ternary halides for room-temperature x-ray and gamma-ray detection

    Science.gov (United States)

    Liu, Zhifu; Peters, John A.; Stoumpos, Constantinos C.; Sebastian, Maria; Wessels, Bruce W.; Im, Jino; Freeman, Arthur J.; Kanatzidis, Mercouri G.

    2013-09-01

    We report our recent progress on wide bandgap ternary halide compounds CsPbBr3 and CsPbCl3 for room temperature x-ray and gamma-ray detectors. Their bandgaps are measured to be 2.24 eV and 2.86 eV, respectively. The measured mobility-lifetime products of CsPbBr3 are 1.7×10-3, 1.3×10-3 cm2/V, for electron and hole carriers, respectively, comparable to those of CdTe. We measured the room temperature spectral response of CsPbBr3 sample to Ag x-ray radiation. It has a well-resolved spectral response to the 22.4 keV Kα radiation peak and detector efficiency comparable to that of CdZnTe detector at 295 K.

  18. Shape-controlled synthesis of organolead halide perovskite nanocrystals and their tunable optical absorption

    International Nuclear Information System (INIS)

    Chen, Zhenhua; Tang, Yongbing; Huang, Xing; Lee, Chun-Sing; Li, Hui; Ho, Derek

    2014-01-01

    Hybrid organolead halide perovskites (CH 3 NH 3 PbI 3 ) with polymorphic structures have been successfully synthesized by controlling their solubility in solvents with different polarities. Crystal formation stages of the perovskites have been demonstrated for the first time. Shape changes of such perovskites are accompanied by transition in their crystal structures and variation of optical properties. Herein, a new trigonal phase for CH 3 NH 3 PbI 3 has been observed with a rod-like morphology. Photoemission study indicates a significant red shift in the perovskite nanoparticles, compared to that of the rod-like nanocrystals. This solvent-controlled formation of polymorphic phases provide an additional approach for controlling the optical properties of CH 3 NH 3 PbI 3 for various optoelectronic applications. (papers)

  19. The Role of Surface Tension in the Crystallization of Metal Halide Perovskites

    KAUST Repository

    Zhumekenov, Ayan A.

    2017-07-06

    The exciting intrinsic properties discovered in single crystals of metal halide perovskites still await their translation into optoelectronic devices. The poor understanding and control of the crystallization process of these materials are current bottlenecks retarding the shift towards single crystal-based optoelectronics. Here we theoretically and experimentally elucidate the role of surface tension in the rapid synthesis of perovskite single crystals by inverse temperature crystallization (ITC). Understanding the nucleation and growth mechanisms enabled us to exploit surface tension to direct the growth of monocrystalline films of perovskites (AMX3, where A = CH3NH3+ or MA; M = Pb2+, Sn2+; X = Br-, I-) on the solution surface. We achieve up to 1 cm2-sized monocrystalline films with thickness on the order of the charge carrier diffusion length (~5-10 µm). Our work paves the way to control the crystallization process of perovskites, including thin film deposition, which is essential to advance the performance benchmarks of perovskite optoelectronics.

  20. Geochemical study of evaporite and clay mineral-oxyhydroxide samples from the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1993-06-01

    Samples of clay minerals, insoluble oxyhydroxides, and their host evaporites from the WIPP site have been studied for their major and minor elements abundances, x-ray diffraction characteristics, K-Ar ages, and Rb-Sr ages. This study was undertaken to determine their overall geochemical characteristics and to investigate possible interactions between evaporates and insoluble constituents. The evaporite host material is water-soluble, having Cl/Br ratios typical of marine evaporites, although the Br content is low. Insoluble material (usually a mixture of clay minerals and oxyhydroxide phases) yields very high Cl/Br ratios, possibly because of Cl from admixed halide minerals. This same material yields K/Rb and Th/U ratios in the normal range for shales; suggesting little, if any, effect of evaporite-induced remobilization of U, K, or Rb in the insoluble material. The rare-earth element (REE) data also show normal REE/chondrite (REE/CHON) distribution patterns, supporting the K/Rb and Th/U data. Clay minerals yield K-Ar dates in the range 365 to 390 Ma and a Rb-Sr isochron age of 428 ± 7 Ma. These ages are well in excess of the 220- to 230-Ma formational age of the evaporites, and confirm the detrital origin of the clays. The ages also show that any evaporite or clay mineral reactions that might have occurred at or near the time of sedimentation and diagenesis were not sufficient to reset the K-Ar and Rb-Sr systematics of the clay minerals. Further, x-ray data indicate a normal evaporitic assemblage of clay minerals and Fe-rich oxyhydroxide phases. The clay minerals and other insoluble material appear to be resistant to the destructive effects of their entrapment in the evaporites, which suggests that these insoluble materials would be good getters for any radionuclides (hypothetically) released from the storage of radioactive wastes in the area

  1. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication.

    Science.gov (United States)

    Eperon, Giles E; Habisreutinger, Severin N; Leijtens, Tomas; Bruijnaers, Bardo J; van Franeker, Jacobus J; deQuilettes, Dane W; Pathak, Sandeep; Sutton, Rebecca J; Grancini, Giulia; Ginger, David S; Janssen, Rene A J; Petrozza, Annamaria; Snaith, Henry J

    2015-09-22

    Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.

  3. Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals

    Science.gov (United States)

    Vybornyi, Oleh; Yakunin, Sergii; Kovalenko, Maksym V.

    2016-03-01

    A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2.A novel synthesis of hybrid organic-inorganic lead halide perovskite nanocrystals (CH3NH3PbX3, X = Br or I) that does not involve the use of dimethylformamide or other polar solvents is presented. The reaction between methylamine and PbX2 salts is conducted in a high-boiling nonpolar solvent (1-octadecene) in the presence of oleylamine and oleic acid as coordinating ligands. The resulting nanocrystals are characterized by high photoluminescence quantum efficiencies of 15-50%, outstanding phase purity and tunable shapes (nanocubes, nanowires, and nanoplatelets). Nanoplatelets spontaneously assemble into micrometer-length wires by face-to-face stacking. In addition, we demonstrate amplified spontaneous emission from thin films of green-emitting CH3NH3PbBr3 nanowires with low pumping thresholds of 3 μJ cm-2. Electronic supplementary information (ESI) available: Materials and methods, additional figures. See DOI: 10.1039/c5nr06890h

  4. Femtosecond time-resolved photodissociation dynamics of methyl halide molecules on ultrathin gold films

    Directory of Open Access Journals (Sweden)

    Mihai E. Vaida

    2011-09-01

    Full Text Available The photodissociation of small organic molecules, namely methyl iodide, methyl bromide, and methyl chloride, adsorbed on a metal surface was investigated in real time by means of femtosecond-laser pump–probe mass spectrometry. A weakly interacting gold surface was employed as substrate because the intact adsorption of the methyl halide molecules was desired prior to photoexcitation. The gold surface was prepared as an ultrathin film on Mo(100. The molecular adsorption behavior was characterized by coverage dependent temperature programmed desorption spectroscopy. Submonolayer preparations were irradiated with UV light of 266 nm wavelength and the subsequently emerging methyl fragments were probed by photoionization and mass spectrometric detection. A strong dependence of the excitation mechanism and the light-induced dynamics on the type of molecule was observed. Possible photoexcitation mechanisms included direct photoexcitation to the dissociative A-band of the methyl halide molecules as well as the attachment of surface-emitted electrons with transient negative ion formation and subsequent molecular fragmentation. Both reaction pathways were energetically possible in the case of methyl iodide, yet, no methyl fragments were observed. As a likely explanation, the rapid quenching of the excited states prior to fragmentation is proposed. This quenching mechanism could be prevented by modification of the gold surface through pre-adsorption of iodine atoms. In contrast, the A-band of methyl bromide was not energetically directly accessible through 266 nm excitation. Nevertheless, the one-photon-induced dissociation was observed in the case of methyl bromide. This was interpreted as being due to a considerable energetic down-shift of the electronic A-band states of methyl bromide by about 1.5 eV through interaction with the gold substrate. Finally, for methyl chloride no photofragmentation could be detected at all.

  5. Low-Temperature Electron Beam-Induced Transformations of Cesium Lead Halide Perovskite Nanocrystals

    Science.gov (United States)

    2017-01-01

    Cesium lead halide perovskite (CsPbX3, with X = Br, Cl, I) nanocrystals have been found to undergo severe modifications under the high-energy electron beam irradiation of a transmission electron microscope (80/200 keV). In particular, in our previous work, together with halogen desorption, Pb2+ ions were found to be reduced to Pb0 and then diffused to form lead nanoparticles at temperatures above −40 °C. Here, we present a detailed irradiation study of CsPbBr3 nanocrystals at temperatures below −40 °C, a range in which the diffusion of Pb0 atoms/clusters is drastically suppressed. Under these conditions, the irradiation instead induces the nucleation of randomly oriented CsBr, CsPb, and PbBr2 crystalline domains. In addition to the Br desorption, which accompanies Pb2+ reduction at all the temperatures, Br is also desorbed from the CsBr and PbBr2 domains at low temperatures, leading to a more pronounced Br loss, thus the final products are mainly composed of Cs and Pb. The overall transformation involves the creation of voids, which coalesce upon further exposure, as demonstrated in both nanosheets and nanocuboids. Our results show that although low temperatures hinder the formation of Pb nanoparticles in CsPbBr3 nanocrystals when irradiated, the nanocrystals are nevertheless unstable. Consequently, we suggest that an optimum combination of temperature range, electron energy, and dose rate needs to be carefully chosen for the characterization of halide perovskite nanocrystals to minimize both the Pb nanoparticle formation and the structural decomposition. PMID:28983524

  6. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  7. Synthesis of Mixed Carbonates via a Three-Component Coupling of Alcohols, CO2, and Alkyl Halides in the Presence of K2CO3 and Tetrabutylammonium Iodide

    Directory of Open Access Journals (Sweden)

    Yu-Mei Shen

    2002-04-01

    Full Text Available Various mixed carbonates can be conveniently prepared in good yields using the corresponding alcohols, alkyl halides under CO2 atmosphere in the presence of potassium carbonate or sodium carbonate and tetrabutylammonium iodide.

  8. Synthesis of Mixed Carbonates via a Three-Component Coupling of Alcohols, CO2, and Alkyl Halides in the Presence of K2CO3 and Tetrabutylammonium Iodide

    OpenAIRE

    Yu-Mei Shen; Min Shi

    2002-01-01

    Various mixed carbonates can be conveniently prepared in good yields using the corresponding alcohols, alkyl halides under CO2 atmosphere in the presence of potassium carbonate or sodium carbonate and tetrabutylammonium iodide.

  9. Destructive textures around radioactive minerals

    International Nuclear Information System (INIS)

    Montel, J.M.; Seydoux-Guillaume, A.M.

    2009-01-01

    In most of the rocks, natural uranium and thorium are concentrated in some minerals which provide favourable crystallographic sites. These minerals are thus submitted to an intense auto-irradiation which may transform them. Using conventional investigation methods (petrographic or scanning electronic microscopy, electronic micro-probe) and less conventional ones (transmission electronic microscopy), the authors studied the interfaces between radioactive minerals and their host minerals. They comment the possible mechanical and structural aspects of this interaction by irradiation, and the influence of geological events

  10. Trace Mineral Losses in Sweat

    National Research Council Canada - National Science Library

    Chinevere, Troy D; McClung, James P; Cheuvront, Samuel N

    2007-01-01

    Copper, iron and zinc are nutritionally essential trace minerals that confer vital biological roles including the maintenance of cell structure and integrity, regulation of metabolism, immune function...

  11. Silicoaluminous minerals analysis

    International Nuclear Information System (INIS)

    Puglisi, Celia; Fina, J.P.

    1987-01-01

    A group of silicoaluminous minerals of known composition have been analyzed by means of an energy dispersive electron microprobe. The analysis has been performed using a standarless semiquantitative method. The concentration was calculated using the program included in the software of the on-line computer, based on the ZAF correction. It is well known that it is difficult to analyze Si, Al and Na by this method because the absortion correction in the range of 0.9 to 2.0 KeV is not very accurate and the background substraction is also questionable. The purpose of this work is to evaluate the errors involved in these measurements and the best operation conditions. (Author) [es

  12. Protein- mediated enamel mineralization

    Science.gov (United States)

    Moradian-Oldak, Janet

    2012-01-01

    Enamel is a hard nanocomposite bioceramic with significant resilience that protects the mammalian tooth from external physical and chemical damages. The remarkable mechanical properties of enamel are associated with its hierarchical structural organization and its thorough connection with underlying dentin. This dynamic mineralizing system offers scientists a wealth of information that allows the study of basic principals of organic matrix-mediated biomineralization and can potentially be utilized in the fields of material science and engineering for development and design of biomimetic materials. This chapter will provide a brief overview of enamel hierarchical structure and properties as well as the process and stages of amelogenesis. Particular emphasis is given to current knowledge of extracellular matrix protein and proteinases, and the structural chemistry of the matrix components and their putative functions. The chapter will conclude by discussing the potential of enamel for regrowth. PMID:22652761

  13. Mineral fibres and health

    International Nuclear Information System (INIS)

    Hoskins, J.A.

    2001-01-01

    The use of inorganic fibrous materials is a comparatively new phenomenon and was uncommon before the Industrial Revolution. Humans evolved in a comparatively fibre-free environment and consequently never fully developed the defence mechanisms needed to deal with the consequences of inhaling fibres. However, the urban environment now has an airborne fibre concentration of around 1 f.l -1 , which is a tenfold increase on the natural background. Any sample of ambient air collected indoors or outdoors will probably contain some mineral fibres, but there is little evidence that these pose any risk to human health. They come from asbestos used in brakes, glass and mineral wools used as insulation and fire proofing of buildings, gypsum from plaster and a variety of types from many sources. Few of these have the potential to do any harm. Asbestos is the only fibre of note but urban levels are insignificant compared to occupational exposures. When the health of cohorts occupationally exposed to the several types of asbestos is studied the problem can be put into perspective. Studies of workers in the chrysotile industry exposed to much higher dust levels than in a factory today show no excess lung cancer or mesothelioma. By comparison those living near crocidolite mines, let alone working in them, may develop asbestos-related disease. As always, dose is the critical factor. Chrysotile is cleared from the lungs very efficiently, only the amphiboles are well retained. The only real health problem comes from the earlier use of asbestos products that may now be old, friable and damaged and made from amphibole or mixed fibre. If though, these are still in good condition, they do not pose a health problem. Asbestos-related diseases are very rare in those not occupationally exposed. Where they exist exposure has nearly always been to crocidolite. (author)

  14. Inorganic Lead Halide Perovskite Single Crystals: Phase-Selective Low-Temperature Growth, Carrier Transport Properties, and Self-Powered Photodetection

    KAUST Repository

    Saidaminov, Makhsud I.

    2016-12-06

    A rapid, low-temperature, and solution-based route is developed for growing large-sized cesium lead halide perovskite single crystals under ambient conditions. An ultralow minority carrier concentration was measured in CsPbBr3 (≈108 holes per cm3, much lower than in any other lead halide perovskite and crystalline silicon), which enables to realize self-powered photodetectors with a high ON/OFF ratio (105).

  15. Of minerals and men. [Discovery of new mineral species

    Energy Technology Data Exchange (ETDEWEB)

    De Waal, S.W. (Council for Mineral Technology, Randburg (South Africa))

    1983-01-01

    The rate of discovery of new mineral species appears to be on the increase in Southern Africa and classification and nomenclature, once haphazard, are now subject to international scientific screening and rules. Earlier names entrenched in the literature provide a fascinating background to the minerals scene.

  16. Postsynthetic Doping of MnCl2 Molecules into Preformed CsPbBr3 Perovskite Nanocrystals via a Halide Exchange-Driven Cation Exchange.

    Science.gov (United States)

    Huang, Guangguang; Wang, Chunlei; Xu, Shuhong; Zong, Shenfei; Lu, Ju; Wang, Zhuyuan; Lu, Changgui; Cui, Yiping

    2017-08-01

    Unlike widely used postsynthetic halide exchange for CsPbX 3 (X is halide) perovskite nanocrystals (NCs), cation exchange of Pb is of a great challenge due to the rigid nature of the Pb cationic sublattice. Actually, cation exchange has more potential for rendering NCs with peculiar properties. Herein, a novel halide exchange-driven cation exchange (HEDCE) strategy is developed to prepare dually emitting Mn-doped CsPb(Cl/Br) 3 NCs via postsynthetic replacement of partial Pb in preformed perovskite NCs. The basic idea for HEDCE is that the partial cation exchange of Pb by Mn has a large probability to occur as a concomitant result for opening the rigid halide octahedron structure around Pb during halide exchange. Compared to traditional ionic exchange, HEDCE is featured by proceeding of halide exchange and cation exchange at the same time and lattice site. The time and space requirements make only MnCl 2 molecules (rather than mixture of Mn and Cl ions) capable of doping into perovskite NCs. This special molecular doping nature results in a series of unusual phenomenon, including long reaction time, core-shell structured mid states with triple emission bands, and dopant molecules composition-dependent doping process. As-prepared dual-emitting Mn-doped CsPb(Cl/Br) 3 NCs are available for ratiometric temperature sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Plant macro- and micronutrient minerals

    Science.gov (United States)

    All plants must obtain a number of inorganic mineral elements from their environment to ensure successful growth and development of both vegetative and reproductive tissues. A total of fourteen mineral nutrients are considered to be essential. Several other elements have been shown to have beneficia...

  18. Radioisotopes in plant mineral nutrition

    International Nuclear Information System (INIS)

    Singh, Bhupinder

    2016-01-01

    Extensive investigations on mineral composition of different plant species growing on various soils, helped in realizing that neither the presence nor the concentration of a mineral element in a plant can be regarded as a criterion for essentially. Plants have a limited capability for selective uptake of those mineral elements which are essential for their growth. They also take up mineral element which are not necessary for growth and may even be toxic. The mineral composition of plants growing in soils cannot, therefore, be used to establish essentially of a mineral element. Once this fact was appreciated, both water and sand culture experiments were carried out in which particular mineral elements were omitted. Von Sach and Knop are credited with reintroduction of the solution culture method using which they demonstrated the absolute requirement of ten macronutrients. As evident, these techniques made possible a more precise characterization of essentially of mineral elements and led to a better understanding of their role in plant metabolism. By the beginning of 20"t"h century importance of micronutrients like B, Mn, Cu, Mo and CI was also established

  19. Miners' strike 1984-85

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L; Salter, S [comps.

    1985-01-01

    References relating to the 1984-85 UK miners strike are listed under the following subject headings: events and analysis - a chronological record; short term effects - coal stocks and supplies, electricity supplies, financial, industrial and economic; the miners and their leadership; social aspects - civil liberties, media coverage, mining communities, picketing, policing, the future; pit closures. 240 references.

  20. Minerals From the Marine Environment

    Science.gov (United States)

    Cruickshank, Michael J.

    The current interest in minerals centering on, among other things, potential shortages, long-term needs, and deep seabed nodules, accentuates the usefulness and timeliness of this little book authored by a former chairman of the British National Environmental Research Council.In less than 100 pages, the author puts into perspective the potential for producing minerals from offshore areas of the world. After introducing the reader to the ocean environment and the extraordinary variety of the nature of the seabed, the author describes in some detail the variety of minerals found there. This is done in seven separate chapters entitled ‘Bulk and Non-Metallic Minerals From the Seas’ ‘Metals From the Shallow Seas’ ‘Metals From the Deep Oceans’ ‘Minerals From Solution’ ‘Oil and Gas from the Shallow Seas’ ‘Oil and Gas From Deep Waters’ and ‘Coal Beneath the Sea.’ The remaining chapters give a brief regional review of marine minerals distribution for eight areas of significant socioeconomic structure, and a short recapitulation of special problems of mineral recovery in the marine environment including such matters as the effect of water motion on mineral processing and of international law on investments. Glossaries of geological periods and technical terms, a short list of references, and an index complete the work.