WorldWideScience

Sample records for haitallisten hivenmetallien vapautuminen

  1. Ash behaviour in fluidized bed gasification and combustion: release of harmful trace elements and the behavior of alkalis; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa: Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E; Valmari, T [VTT Chemical Technology, Espoo (Finland)

    1997-10-01

    During 1996 the behaviour of alkaline metals (K and Na) during circulating fluidized bed combustion of forest residue was studied in a real-scale plant using aerosol measurement instruments (filters, impactor, DMA). Prior to heat exchangers (850 deg C) the ash mass-concentration was 1.0 - 1.3 g/Nm{sup 3} with 1 % of ash forming constituents as vapours. At least 98 % of sulphur, over 90 % of sodium and over 80 % of potassium were found in particulate phase prior to heat exchangers. On the other hand, at least 80 % of the chlorine was in vapour phase. 98 % of the ash was in coarse (> 0.3 {mu}m) particles. Coarse ash particles had an irregular surface structure often consisting of fine primary particles. The remaining 2 % was observed in fine particles of about 0.1 {mu}m. Both rounded and cornered (suggesting crystal structure) fine particles were found. The fine particles were composed of alkali chlorides and sulphates, mainly of KCl. About 80 % of the ash on mass basis was deposited onto heat exchanger surfaces when soot-blowing was not carried out. Practically all of the particles larger than 10 {mu}m were deposited. The deposition was less significant for smaller particles. The fine particle concentration before and after the heat exchangers was the same within the experimental inaccuracy. The deposited fraction of potassium, sodium and sulphur was about the same than that of the total ash: However, the deposition of chlorine was much lower since the chlorine content was low in the coarse particles that were deposited most effectively. (orig.)

  2. Agglomeration of ash during combustion of peat and biomass in fluidized-bed reactors. Development of image analysis technique based on scanning electron microscopy; Tuhkan muuntuminen leijukerroskaasutuksessa ja -poltossa. Haitallisten hivenmetallien vapautuminen ja alkalien kaeyttaeytyminen

    Energy Technology Data Exchange (ETDEWEB)

    Kauppinen, E. [VTT Chemistry, Espoo (Finland); Arpiainen, V.; Jokiniemi, J. [VTT Energy, Espoo (Finland)] [and others

    1996-12-01

    The objective of the project is to study the behaviour of alkali metals (Na and K) and hazardous trace elements (Sb, As, Be, Cd, Cr, Co, Pb, Mn, Ni, Se and Zn) during fluidized bed combustion and gasification of solid fuels. The areas of interest are the release of elements studied from the bed and the behaviour of gaseous and particle-phase species after the release from the bed. During 1995 combustion and gasification experiments of Polish coal in bubbling bed were carried out with a laboratory scale fluidized bed gasifier in atmospheric pressure. Flue gas samples were drawn from the freeboard of the reactor and cooled quickly using a dilution probe. Ash particle size distributions were determined using low pressure impactors and differential mobility analyser. The morphology of the ash particles was studied with a scanning electron microscope (SEM) and will be further studied with transmission electron microscopy (TEM). The ash matrix elements (Si, Al, Fe, Ca and Mg) and the alkali metals (Na and K) were not significantly vaporized during the combustion process. More than 99 % of each of these elements was found in ash particles larger than 0.4 {mu}m. In Polish coal the alkali metals are bound mainly in silicates. The alkali metals were not released from the silicate minerals during the combustion process. A significant fraction of As, Cd and Pb was vaporized, released as gaseous species from the fuel particle and condensed mainly on the fine ash particles. 20 - 34 % of cadmium was present in fly ash particles smaller than 0.6 {mu}m (during combustion in 950 deg C), whereas only 1 % of the total ash was in this size fraction. All of the hazardous trace elements studied (As, Be, Cd, Co, Cr, Mn and Zn) were enriched in ash size fraction 0.6 - 5 {mu}m. The enrichment of Co, Cr, Mn, Ni, Pb and Sb was more significant during combustion in 950 deg C than in lower temperature (850 deg C)

  3. Maapohjaisten suotovesialtaiden pohjamassojen haitallisten aineiden pitoisuuksien määrittäminen sekä jatkotoimenpiteet Tarastenjärven jätteenkäsittelykeskuksessa

    OpenAIRE

    Tuhola, Saara

    2013-01-01

    Tämä opinnäytetyö tehtiin yhteistyössä Pirkanmaan Jätehuolto Oy:n kanssa. Opinnäytetyön tarkoitus oli määrittää Tampereella sijaitsevan Tarastenjärven jätteenkäsittelykeskuksen kahden maapohjaisen suotovesialtaan pohjamaamassojen haitallisten aineiden pitoisuudet. Maamassojen jatkotoimenpiteet riippuivat näytteenottotuloksista. Tarastenjärven jätteenkäsittelykeskukseen on juuri valmistunut toinen betonirakenteinen suotovesiallas, joka antaa tarvittavaa lisäkapasiteettia suotovesien varas...