WorldWideScience

Sample records for hair cell dysfunction

  1. Selective Inner Hair Cell Dysfunction in Chinchillas Impairs Hearing-in-Noise in the Absence of Outer Hair Cell Loss.

    Science.gov (United States)

    Lobarinas, Edward; Salvi, Richard; Ding, Dalian

    2016-04-01

    Poorer hearing in the presence of background noise is a significant problem for the hearing impaired. Ototoxic drugs, ageing, and noise exposure can damage the sensory hair cells of the inner ear that are essential for normal hearing sensitivity. The relationship between outer hair cell (OHC) loss and progressively poorer hearing sensitivity in quiet or in competing background noise is supported by a number of human and animal studies. In contrast, the effect of moderate inner hair cell (IHC) loss or dysfunction shows almost no impact on behavioral measures of hearing sensitivity in quiet, when OHCs remain intact, but the relationship between selective IHC loss and hearing in noise remains relatively unknown. Here, a moderately high dose of carboplatin (75 mg/kg) that produced IHC loss in chinchillas ranging from 40 to 80 % had little effect on thresholds in quiet. However, when tested in the presence of competing broadband (BBN) or narrowband noise (NBN), thresholds increased significantly. IHC loss >60 % increased signal-to-noise ratios (SNRs) for tones (500-11,300 Hz) in competing BBN by 5-10 dB and broadened the masking function under NBN. These data suggest that IHC loss or dysfunction may play a significant role in listening in noise independent of OHC integrity and that these deficits may be present even when thresholds in quiet are within normal limits.

  2. Zebrafish Models for the Mechanosensory Hair Cell Dysfunction in Usher Syndrome 3 Reveal That Clarin-1 Is an Essential Hair Bundle Protein.

    Science.gov (United States)

    Gopal, Suhasini R; Chen, Daniel H-C; Chou, Shih-Wei; Zang, Jingjing; Neuhauss, Stephan C F; Stepanyan, Ruben; McDermott, Brian M; Alagramam, Kumar N

    2015-07-15

    Usher syndrome type III (USH3) is characterized by progressive loss of hearing and vision, and varying degrees of vestibular dysfunction. It is caused by mutations that affect the human clarin-1 protein (hCLRN1), a member of the tetraspanin protein family. The missense mutation CLRN1(N48K), which affects a conserved N-glycosylation site in hCLRN1, is a common causative USH3 mutation among Ashkenazi Jews. The affected individuals hear at birth but lose that function over time. Here, we developed an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype. Immunolabeling demonstrated that Clrn1 localized to the hair cell bundles (hair bundles). The clrn1 mutants generated by zinc finger nucleases displayed aberrant hair bundle morphology with diminished function. Two transgenic zebrafish that express either hCLRN1 or hCLRN1(N48K) in hair cells were produced to examine the subcellular localization patterns of wild-type and mutant human proteins. hCLRN1 localized to the hair bundles similarly to zebrafish Clrn1; in contrast, hCLRN1(N48K) largely mislocalized to the cell body with a small amount reaching the hair bundle. We propose that this small amount of hCLRN1(N48K) in the hair bundle provides clarin-1-mediated function during the early stages of life; however, the presence of hCLRN1(N48K) in the hair bundle diminishes over time because of intracellular degradation of the mutant protein, leading to progressive loss of hair bundle integrity and hair cell function. These findings and genetic tools provide an understanding and path forward to identify therapies to mitigate hearing loss linked to the CLRN1 mutation. Mutations in the clarin-1 gene affect eye and ear function in humans. Individuals with the CLRN1(N48K) mutation are born able to hear but lose that function over time. Here, we develop an animal model system using zebrafish transgenesis and gene targeting to provide an explanation for this phenotype

  3. A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells

    OpenAIRE

    Michael S. Detamore; Keerthana Devarajan; Hinrich Staecker

    2011-01-01

    Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominan...

  4. A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells

    Directory of Open Access Journals (Sweden)

    Michael S. Detamore

    2011-09-01

    Full Text Available Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  5. A review of gene delivery and stem cell based therapies for regenerating inner ear hair cells.

    Science.gov (United States)

    Devarajan, Keerthana; Staecker, Hinrich; Detamore, Michael S

    2011-09-13

    Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominant strategies have developed to restore hair cells: transfer of genes responsible for hair cell genesis and replacement of missing cells via transfer of stem cells. In this review article, we evaluate the use of several genes involved in hair cell regeneration, the advantages and disadvantages of the different viral vectors employed in inner ear gene delivery and the insights gained from the use of embryonic, adult and induced pluripotent stem cells in generating inner ear hair cells. Understanding the role of genes, vectors and stem cells in therapeutic strategies led us to explore potential solutions to overcome the limitations associated with their use in hair cell regeneration.

  6. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells.

    Science.gov (United States)

    Koehler, Karl R; Nie, Jing; Longworth-Mills, Emma; Liu, Xiao-Ping; Lee, Jiyoon; Holt, Jeffrey R; Hashino, Eri

    2017-06-01

    The derivation of human inner ear tissue from pluripotent stem cells would enable in vitro screening of drug candidates for the treatment of hearing and balance dysfunction and may provide a source of cells for cell-based therapies of the inner ear. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and WNT signaling to generate multiple otic-vesicle-like structures from a single stem-cell aggregate. Over 2 months, the vesicles develop into inner ear organoids with sensory epithelia that are innervated by sensory neurons. Additionally, using CRISPR-Cas9, we generate an ATOH1-2A-eGFP cell line to detect hair cell induction and demonstrate that derived hair cells exhibit electrophysiological properties similar to those of native sensory hair cells. Our culture system should facilitate the study of human inner ear development and research on therapies for diseases of the inner ear.

  7. Usher protein functions in hair cells and photoreceptors.

    Science.gov (United States)

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Zebrafish hair cell mechanics and physiology through the lens of noise-induced hair cell death

    Science.gov (United States)

    Coffin, Allison B.; Xu, Jie; Uribe, Phillip M.

    2018-05-01

    Hair cells are exquisitely sensitive to auditory stimuli, but also to damage from a variety of sources including noise trauma and ototoxic drugs. Mammals cannot regenerate cochlear hair cells, while non-mammalian vertebrates exhibit robust regenerative capacity. Our research group uses the lateral line system of larval zebrafish to explore the mechanisms underlying hair cell damage, identify protective therapies, and determine molecular drivers of innate regeneration. The lateral line system contains externally located sensory organs called neuromasts, each composed of ˜8-20 hair cells. Lateral line hair cells are homologous to vertebrate inner ear hair cells and share similar susceptibility to ototoxic damage. In the last decade, the lateral line has emerged as a powerful model system for understanding hair cell death mechanisms and for identifying novel protective compounds. Here we demonstrate that the lateral line is a tractable model for noise-induced hair cell death. We have developed a novel noise damage system capable of inducing over 50% loss of lateral line hair cells, with hair cell death occurring in a dose- and time-dependent manner. Cell death is greatest 72 hours post-exposure. However, early signs of hair cell damage, including changes in membrane integrity and reduced mechanotransduction, are apparent within hours of noise exposure. These features, early signs of damage followed by delayed hair cell death, are consistent with mammalian data, suggesting that noise acts similarly on zebrafish and mammalian hair cells. In our future work we will use our new model system to investigate noise damage events in real time, and to develop protective therapies for future translational research.

  9. The genetics of hair-cell function in zebrafish.

    Science.gov (United States)

    Nicolson, Teresa

    2017-09-01

    Our ears are remarkable sensory organs, providing the important senses of balance and hearing. The complex structure of the inner ear, or 'labyrinth', along with the assorted neuroepithelia, have evolved to detect head movements and sounds with impressive sensitivity. The rub is that the inner ear is highly vulnerable to genetic lesions and environmental insults. According to National Institute of Health estimates, hearing loss is one of the most commonly inherited or acquired sensorineural diseases. To understand the causes of deafness and balance disorders, it is imperative to understand the underlying biology of the inner ear, especially the inner workings of the sensory receptors. These receptors, which are termed hair cells, are particularly susceptible to genetic mutations - more than two dozen genes are associated with defects in this cell type in humans. Over the past decade, a substantial amount of progress has been made in working out the molecular basis of hair-cell function using vertebrate animal models. Given the transparency of the inner ear and the genetic tools that are available, zebrafish have become an increasingly popular animal model for the study of deafness and vestibular dysfunction. Mutagenesis screens for larval defects in hearing and balance have been fruitful in finding key components, many of which have been implicated in human deafness. This review will focus on the genes that are required for hair-cell function in zebrafish, with a particular emphasis on mechanotransduction. In addition, the generation of new tools available for the characterization of zebrafish hair-cell mutants will be discussed.

  10. Distinct roles of Eps8 in the maturation of cochlear and vestibular hair cells.

    Science.gov (United States)

    Tavazzani, Elisa; Spaiardi, Paolo; Zampini, Valeria; Contini, Donatella; Manca, Marco; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Masetto, Sergio

    2016-07-22

    Several genetic mutations affecting the development and function of mammalian hair cells have been shown to cause deafness but not vestibular defects, most likely because vestibular deficits are sometimes centrally compensated. The study of hair cell physiology is thus a powerful direct approach to ascertain the functional status of the vestibular end organs. Deletion of Epidermal growth factor receptor pathway substrate 8 (Eps8), a gene involved in actin remodeling, has been shown to cause deafness in mice. While both inner and outer hair cells from Eps8 knockout (KO) mice showed abnormally short stereocilia, inner hair cells (IHCs) also failed to acquire mature-type ion channels. Despite the fact that Eps8 is also expressed in vestibular hair cells, Eps8 KO mice show no vestibular deficits. In the present study we have investigated the properties of vestibular Type I and Type II hair cells in Eps8-KO mice and compared them to those of cochlear IHCs. In the absence of Eps8, vestibular hair cells show normally long kinocilia, significantly shorter stereocilia and a normal pattern of basolateral voltage-dependent ion channels. We have also found that while vestibular hair cells from Eps8 KO mice show normal voltage responses to injected sinusoidal currents, which were used to mimic the mechanoelectrical transducer current, IHCs lose their ability to synchronize their responses to the stimulus. We conclude that the absence of Eps8 produces a weaker phenotype in vestibular hair cells compared to cochlear IHCs, since it affects the hair bundle morphology but not the basolateral membrane currents. This difference is likely to explain the absence of obvious vestibular dysfunction in Eps8 KO mice. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Alternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia

    Directory of Open Access Journals (Sweden)

    Seham Ebrahim

    2016-05-01

    Full Text Available WHRN (DFNB31 mutations cause diverse hearing disorders: profound deafness (DFNB31 or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L and short (WHRN-S isoforms of WHRN have distinct localizations within stereocilia and also across hair cell types. Lack of both isoforms causes abnormally short stereocilia and profound deafness and vestibular dysfunction. WHRN-S expression, however, is sufficient to maintain stereocilia bundle morphology and function in a subset of hair cells, resulting in some auditory response and no overt vestibular dysfunction. WHRN-S interacts with EPS8, and both are required at stereocilia tips for normal length regulation. WHRN-L localizes midway along the shorter stereocilia, at the level of inter-stereociliary links. We propose that differential isoform expression underlies the variable auditory and vestibular phenotypes associated with WHRN mutations.

  12. Improved biolistic transfection of hair cells.

    Directory of Open Access Journals (Sweden)

    Hongyu Zhao

    Full Text Available Transient transfection of hair cells has proven challenging. Here we describe modifications to the Bio-Rad Helios Gene Gun that, along with an optimized protocol, improve transfection of bullfrog, chick, and mouse hair cells. The increased penetrating power afforded by our method allowed us to transfect mouse hair cells from the basal side, through the basilar membrane; this configuration protects hair bundles from damage during the procedure. We characterized the efficiency of transfection of mouse hair cells with fluorescently-tagged actin fusion protein using both the optimized procedure and a published procedure; while the efficiency of the two methods was similar, the morphology of transfected hair cells was improved with the new procedure. In addition, using the improved method, we were able to transfect hair cells in the bullfrog sacculus and chick cochlea for the first time. We used fluorescent-protein fusions of harmonin b (USH1C and PMCA2 (ATP2B2; plasma-membrane Ca(2+-ATPase isoform 2 to examine protein distribution in hair cells. While PMCA2-EGFP localization was similar to endogenous PMCA2 detected with antibodies, high levels of harmonin-EGFP were found at stereocilia tapers in bullfrog and chick, but not mouse; by contrast, harmonin-EGFP was concentrated in stereocilia tips in mouse hair cells.

  13. Alternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia.

    Science.gov (United States)

    Ebrahim, Seham; Ingham, Neil J; Lewis, Morag A; Rogers, Michael J C; Cui, Runjia; Kachar, Bechara; Pass, Johanna C; Steel, Karen P

    2016-05-03

    WHRN (DFNB31) mutations cause diverse hearing disorders: profound deafness (DFNB31) or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L) and short (WHRN-S) isoforms of WHRN have distinct localizations within stereocilia and also across hair cell types. Lack of both isoforms causes abnormally short stereocilia and profound deafness and vestibular dysfunction. WHRN-S expression, however, is sufficient to maintain stereocilia bundle morphology and function in a subset of hair cells, resulting in some auditory response and no overt vestibular dysfunction. WHRN-S interacts with EPS8, and both are required at stereocilia tips for normal length regulation. WHRN-L localizes midway along the shorter stereocilia, at the level of inter-stereociliary links. We propose that differential isoform expression underlies the variable auditory and vestibular phenotypes associated with WHRN mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    Science.gov (United States)

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic

    2012-01-01

    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448

  15. Role for a novel Usher protein complex in hair cell synaptic maturation.

    Directory of Open Access Journals (Sweden)

    Marisa Zallocchi

    Full Text Available The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23, protocadherin-15 (PCDH15 and the very large G-protein coupled receptor 1 (VLGR1 have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1-/- mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzer(av3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well.

  16. The pluripotency of hair follicle stem cells.

    Science.gov (United States)

    Hoffman, Robert M

    2006-02-01

    The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, is also expressed in follicle stem cells as well as their immediate differentiated progeny. The nestin-expressing hair follicle stem cells differentiated into neurons, glial cells, keratinocytes and smooth muscle cells in vitro. Hair-follicle stem cells were implanted into the gap region of a severed sciatic nerve. The hair follicle stem cells greatly enhanced the rate of nerve regeneration and the restoration of nerve function. The follicle stem cells transdifferentiated largely into Schwann cells which are known to support neuron regrowth. Function of the rejoined sciatic nerve was measured by contraction of the gastrocnemius muscle upon electrical stimulation. After severing the tibial nerve and subsequent transplantation of hair-follicle stem cells, the transplanted mice recovered the ability to walk normally. These results suggest that hair-follicle stem cells provide an important accessible, autologous source of adult stem cells for regenerative medicine.

  17. Partial Aminoglycoside Lesions in Vestibular Epithelia Reveal Broad Sensory Dysfunction Associated with Modest Hair Cell Loss and Afferent Calyx Retraction.

    Science.gov (United States)

    Sultemeier, David R; Hoffman, Larry F

    2017-01-01

    Although the effects of aminoglycoside antibiotics on hair cells have been investigated for decades, their influences on the dendrites of primary afferent neurons have not been widely studied. This is undoubtedly due to the difficulty in disassociating pathology to dendritic processes from that resulting from loss of the presynaptic hair cell. This was overcome in the present investigation through development of a preparation using Chinchilla laniger that enabled direct perilymphatic infusion. Through this strategy we unmasked gentamicin's potential effects on afferent calyces. The pathophysiology of the vestibular neuroepithelia after post-administration durations of 0.5 through 6 months was assessed using single-neuron electrophysiology, immunohistochemistry, and confocal microscopy. Hair cell densities within cristae central zones (0.5-, 1-, 2-, and 6-months) and utricle peri- and extrastriola (6-months) regions were determined, and damage to calretinin-immunoreactive calyces was quantified. Gentamicin-induced hair cell loss exhibited a profile that reflected elimination of a most-sensitive group by 0.5-months post-administration (18.2%), followed by loss of a second group (20.6%) over the subsequent 5.5 months. The total hair cell loss with this gentamicin dose (approximately 38.8%) was less than the estimated fraction of type I hair cells in the chinchilla's crista central zone (approximately 60%), indicating that viable type I hair cells remained. Extensive lesions to afferent calyces were observed at 0.5-months, though stimulus-evoked modulation was intact at this post-administration time. Widespread compromise to calyx morphology and severe attenuation of stimulus-evoked afferent discharge modulation was found at 1 month post-administration, a condition that persisted in preparations examined through the 6-month post-administration interval. Spontaneous discharge was robust at all post-administration intervals. All calretinin-positive calyces had retracted

  18. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Quanwen Liu

    2016-01-01

    Full Text Available In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  19. Hair follicle stem cell proliferation, Akt and Wnt signaling activation in TPA-induced hair regeneration.

    Science.gov (United States)

    Qiu, Weiming; Lei, Mingxing; Zhou, Ling; Bai, Xiufeng; Lai, Xiangdong; Yu, Yu; Yang, Tian; Lian, Xiaohua

    2017-06-01

    Regeneration of hair follicles relies on activation of hair follicle stem cells during telogen to anagen transition process in hair cycle. This process is rigorously controlled by intrinsic and environmental factors. 12-o-tetradecanoylphorbol-13-acetate (TPA), a tumor promoter, accelerates reentry of hair follicles into anagen phase. However, it is unclear that how TPA promotes the hair regeneration. In the present study, we topically applied TPA onto the dorsal skin of 2-month-old C57BL/6 female mice to examine the activity of hair follicle stem cells and alteration of signaling pathways during hair regeneration. We found that refractory telogen hair follicles entered anagen prematurely after TPA treatment, with the enhanced proliferation of CD34-positive hair follicle stem cells. Meanwhile, we observed Akt signaling was activated in epidermis, hair infundibulum, bulge and hair bulb, and Wnt signaling was also activated after hair follicle stem cells proliferation. Importantly, after overexpression of DKK1, a specific Wnt signaling inhibitor, the accelerated reentry of hair follicles into anagen induced by TPA was abolished. Our data indicated that TPA-induced hair follicle regeneration is associated with activation of Akt and Wnt/β-catenin signaling.

  20. Sensory hair cell death and regeneration in fishes

    Directory of Open Access Journals (Sweden)

    Jerry D. Monroe

    2015-04-01

    Full Text Available Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation versus direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

  1. Motility of vestibular hair cells in the chick.

    Science.gov (United States)

    Ogata, Y; Sekitani, T

    1993-01-01

    Recent studies of the outer hair cells in cochlea have demonstrated active motilities. However, very little study has been done on the vestibular hair cells (VHCs). The present study shows the motile response of the VHCs induced by application of Ca2+/ATP promoting contraction. Reversible cell shape changes could be shown in 10 of 16 isolated type I hair cells and 9 of 15 isolated type II hair cells by applying the contraction solution. Furthermore, the sensory hair bundles in the utricular epithelium pivoted around the base and stood perpendicularly to the apical borderline of the epithelium in response to the application of the same solution. It is suggested that the contraction of the isolated VHCs may be transferred to tension which causes the sensory hair bundles to restrict their motion in normal tissue, instead of changing the cell shape.

  2. Activation of CHK1 in Supporting Cells Indirectly Promotes Hair Cell Survival

    Directory of Open Access Journals (Sweden)

    Azadeh Jadali

    2017-05-01

    Full Text Available The sensory hair cells of the inner ear are exquisitely sensitive to ototoxic insults. Loss of hair cells after exposure to ototoxic agents causes hearing loss. Chemotherapeutic agents such as cisplatin causes hair cell loss. Cisplatin forms DNA mono-adducts as well as intra- and inter-strand DNA crosslinks. DNA cisplatin adducts are repaired through the DNA damage response. The decision between cell survival and cell death following DNA damage rests on factors that are involved in determining damage tolerance, cell survival and apoptosis. Cisplatin damage on hair cells has been the main focus of many ototoxic studies, yet the effect of cisplatin on supporting cells has been largely ignored. In this study, the effects of DNA damage response in cochlear supporting cells were interrogated. Supporting cells play a major role in the development, maintenance and oto-protection of hair cells. Loss of supporting cells may indirectly affect hair cell survival or maintenance. Activation of the Phosphoinositide 3-Kinase (PI3K signaling was previously shown to promote hair cell survival. To test whether activating PI3K signaling promotes supporting cell survival after cisplatin damage, cochlear explants from the neural subset (NS Cre Pten conditional knockout mice were employed. Deletion of Phosphatase and Tensin Homolog (PTEN activates PI3K signaling in multiple cell types within the cochlea. Supporting cells lacking PTEN showed increased cell survival after cisplatin damage. Supporting cells lacking PTEN also showed increased phosphorylation of Checkpoint Kinase 1 (CHK1 levels after cisplatin damage. Nearest neighbor analysis showed increased numbers of supporting cells with activated PI3K signaling in close proximity to surviving hair cells in cisplatin damaged cochleae. We propose that increased PI3K signaling promotes supporting cell survival through phosphorylation of CHK1 and increased survival of supporting cells indirectly increases hair cell

  3. Hair cell regeneration in the avian auditory epithelium.

    Science.gov (United States)

    Stone, Jennifer S; Cotanche, Douglas A

    2007-01-01

    Regeneration of sensory hair cells in the mature avian inner ear was first described just over 20 years ago. Since then, it has been shown that many other non-mammalian species either continually produce new hair cells or regenerate them in response to trauma. However, mammals exhibit limited hair cell regeneration, particularly in the auditory epithelium. In birds and other non-mammals, regenerated hair cells arise from adjacent non-sensory (supporting) cells. Hair cell regeneration was initially described as a proliferative response whereby supporting cells re-enter the mitotic cycle, forming daughter cells that differentiate into either hair cells or supporting cells and thereby restore cytoarchitecture and function in the sensory epithelium. However, further analyses of the avian auditory epithelium (and amphibian vestibular epithelium) revealed a second regenerative mechanism, direct transdifferentiation, during which supporting cells change their gene expression and convert into hair cells without dividing. In the chicken auditory epithelium, these two distinct mechanisms show unique spatial and temporal patterns, suggesting they are differentially regulated. Current efforts are aimed at identifying signals that maintain supporting cells in a quiescent state or direct them to undergo direct transdifferentiation or cell division. Here, we review current knowledge about supporting cell properties and discuss candidate signaling molecules for regulating supporting cell behavior, in quiescence and after damage. While significant advances have been made in understanding regeneration in non-mammals over the last 20 years, we have yet to determine why the mammalian auditory epithelium lacks the ability to regenerate hair cells spontaneously and whether it is even capable of significant regeneration under additional circumstances. The continued study of mechanisms controlling regeneration in the avian auditory epithelium may lead to strategies for inducing

  4. Mechanically Gated Ion Channels in Mammalian Hair Cells

    Directory of Open Access Journals (Sweden)

    Xufeng Qiu

    2018-04-01

    Full Text Available Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS/LHFPL5, transmembrane inner ear (TMIE and transmembrane channel-like proteins 1 and 2 (TMC1/2. However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.

  5. Regeneration of hair cells in the mammalian vestibular system.

    Science.gov (United States)

    Li, Wenyan; You, Dan; Chen, Yan; Chai, Renjie; Li, Huawei

    2016-06-01

    Hair cells regenerate throughout the lifetime of non-mammalian vertebrates, allowing these animals to recover from hearing and balance deficits. Such regeneration does not occur efficiently in humans and other mammals. Thus, balance deficits become permanent and is a common sensory disorder all over the world. Since Forge and Warchol discovered the limited spontaneous regeneration of vestibular hair cells after gentamicininduced damage in mature mammals, significant efforts have been exerted to trace the origin of the limited vestibular regeneration in mammals after hair cell loss. Moreover, recently many strategies have been developed to promote the hair cell regeneration and subsequent functional recovery of the vestibular system, including manipulating the Wnt, Notch and Atoh1. This article provides an overview of the recent advances in hair cell regeneration in mammalian vestibular epithelia. Furthermore, this review highlights the current limitations of hair cell regeneration and provides the possible solutions to regenerate functional hair cells and to partially restore vestibular function.

  6. Biophysics of Hair Cell Sensory Systems

    NARCIS (Netherlands)

    Duifhuis, Hendrikus; Horst, Johannes; van Dijk, Pim; van Netten, Sietse

    1993-01-01

    The last decade revealed to auditory researchers that hair cells can not only detect and process mechanical energy, but are also able to produce it. Thanks to the active hair cell, ears can produce otoacoustic emissions. This book gives the newest insights into the biophysics and physiology of

  7. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  8. Sensory Hair Cells: An Introduction to Structure and Physiology.

    Science.gov (United States)

    McPherson, Duane R

    2018-06-18

    Sensory hair cells are specialized secondary sensory cells that mediate our senses of hearing, balance, linear acceleration, and angular acceleration (head rotation). In addition, hair cells in fish and amphibians mediate sensitivity to water movement through the lateral line system, and closely related electroreceptive cells mediate sensitivity to low-voltage electric fields in the aquatic environment of many fish species and several species of amphibian.Sensory hair cells share many structural and functional features across all vertebrate groups, while at the same time they are specialized for employment in a wide variety of sensory tasks. The complexity of hair cell structure is large, and the diversity of hair cell applications in sensory systems exceeds that seen for most, if not all, sensory cell types. The intent of this review is to summarize the more significant structural features and some of the more interesting and important physiological mechanisms that have been elucidated thus far. Outside vertebrates, hair cells are only known to exist in the coronal organ of tunicates. Electrical resonance, electromotility, and their exquisite mechanical sensitivity all contribute to the attractiveness of hair cells as a research subject.

  9. LSD1 is Required for Hair Cell Regeneration in Zebrafish.

    Science.gov (United States)

    He, Yingzi; Tang, Dongmei; Cai, Chengfu; Chai, Renjie; Li, Huawei

    2016-05-01

    Lysine-specific demethylase 1 (LSD1/KDM1A) plays an important role in complex cellular processes such as differentiation, proliferation, apoptosis, and cell cycle progression. It has recently been demonstrated that during development, downregulation of LSD1 inhibits cell proliferation, modulates the expression of cell cycle regulators, and reduces hair cell formation in the zebrafish lateral line, which suggests that LSD1-mediated epigenetic regulation plays a key role in the development of hair cells. However, the role of LSD1 in hair cell regeneration after hair cell loss remains poorly understood. Here, we demonstrate the effect of LSD1 on hair cell regeneration following neomycin-induced hair cell loss. We show that the LSD1 inhibitor trans-2-phenylcyclopropylamine (2-PCPA) significantly decreases the regeneration of hair cells in zebrafish after neomycin damage. In addition, immunofluorescent staining demonstrates that 2-PCPA administration suppresses supporting cell proliferation and alters cell cycle progression. Finally, in situ hybridization shows that 2-PCPA significantly downregulates the expression of genes related to Wnt/β-catenin and Fgf activation. Altogether, our data suggest that downregulation of LSD1 significantly decreases hair cell regeneration after neomycin-induced hair cell loss through inactivation of the Wnt/β-catenin and Fgf signaling pathways. Thus, LSD1 plays a critical role in hair cell regeneration and might represent a novel biomarker and potential therapeutic approach for the treatment of hearing loss.

  10. Study of inner ear and lateral line hair cell regeneration

    OpenAIRE

    Piqué Borràs, Maria Riera

    2013-01-01

    Death of sensory hair cells in the inner ear results in two global health problems that millions of people around the world suffer: hearing loss and balance disorders. Hair cells convert sound vibrations and head movements into electrical signals that are conveyed to the brain, and as a result of aging, exposure to noise, modern drugs or genetic predisposition, hair cells die. In mammals, the great majority of hair cells are produced during embryogenesis, and hair cells that ar...

  11. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    Science.gov (United States)

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  12. Stem cell plasticity enables hair regeneration following Lgr5+ cell loss.

    Science.gov (United States)

    Hoeck, Joerg D; Biehs, Brian; Kurtova, Antonina V; Kljavin, Noelyn M; de Sousa E Melo, Felipe; Alicke, Bruno; Koeppen, Hartmut; Modrusan, Zora; Piskol, Robert; de Sauvage, Frederic J

    2017-06-01

    Under injury conditions, dedicated stem cell populations govern tissue regeneration. However, the molecular mechanisms that induce stem cell regeneration and enable plasticity are poorly understood. Here, we investigate stem cell recovery in the context of the hair follicle to understand how two molecularly distinct stem cell populations are integrated. Utilizing diphtheria-toxin-mediated cell ablation of Lgr5 + (leucine-rich repeat-containing G-protein-coupled receptor 5) stem cells, we show that killing of Lgr5 + cells in mice abrogates hair regeneration but this is reversible. During recovery, CD34 + (CD34 antigen) stem cells activate inflammatory response programs and start dividing. Pharmacological attenuation of inflammation inhibits CD34 + cell proliferation. Subsequently, the Wnt pathway controls the recovery of Lgr5 + cells and inhibition of Wnt signalling prevents Lgr5 + cell and hair germ recovery. Thus, our study uncovers a compensatory relationship between two stem cell populations and the underlying molecular mechanisms that enable hair follicle regeneration.

  13. Eps8 regulates hair bundle length and functional maturation of mammalian auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Valeria Zampini

    2011-04-01

    Full Text Available Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.

  14. Eps8 regulates hair bundle length and functional maturation of mammalian auditory hair cells.

    Science.gov (United States)

    Zampini, Valeria; Rüttiger, Lukas; Johnson, Stuart L; Franz, Christoph; Furness, David N; Waldhaus, Jörg; Xiong, Hao; Hackney, Carole M; Holley, Matthew C; Offenhauser, Nina; Di Fiore, Pier Paolo; Knipper, Marlies; Masetto, Sergio; Marcotti, Walter

    2011-04-01

    Hair cells of the mammalian cochlea are specialized for the dynamic coding of sound stimuli. The transduction of sound waves into electrical signals depends upon mechanosensitive hair bundles that project from the cell's apical surface. Each stereocilium within a hair bundle is composed of uniformly polarized and tightly packed actin filaments. Several stereociliary proteins have been shown to be associated with hair bundle development and function and are known to cause deafness in mice and humans when mutated. The growth of the stereociliar actin core is dynamically regulated at the actin filament barbed ends in the stereociliary tip. We show that Eps8, a protein with actin binding, bundling, and barbed-end capping activities in other systems, is a novel component of the hair bundle. Eps8 is localized predominantly at the tip of the stereocilia and is essential for their normal elongation and function. Moreover, we have found that Eps8 knockout mice are profoundly deaf and that IHCs, but not OHCs, fail to mature into fully functional sensory receptors. We propose that Eps8 directly regulates stereocilia growth in hair cells and also plays a crucial role in the physiological maturation of mammalian cochlear IHCs. Together, our results indicate that Eps8 is critical in coordinating the development and functionality of mammalian auditory hair cells.

  15. Feathers and fins: non-mammalian models for hair cell regeneration.

    Science.gov (United States)

    Brignull, Heather R; Raible, David W; Stone, Jennifer S

    2009-06-24

    Death of mechanosensory cells in the inner ear results in two profound disabilities: hearing loss and balance disorders. Although mammals lack the capacity to regenerate hair cells, recent studies in mice and other rodents have offered valuable insight into strategies for stimulating hair cell regeneration in mammals. Investigations of model organisms that retain the ability to form new hair cells after embryogenesis, such as fish and birds, are equally important and have provided clues as to the cellular and molecular mechanisms that may block hair cell regeneration in mammals. Here, we summarize studies on hair cell regeneration in the chicken and the zebrafish, discuss specific advantages of each model, and propose future directions for the use of non-mammalian models in understanding hair cell regeneration.

  16. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  17. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  18. Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells.

    Science.gov (United States)

    White, Patricia M; Doetzlhofer, Angelika; Lee, Yun Shain; Groves, Andrew K; Segil, Neil

    2006-06-22

    Sensory hair cells of the mammalian organ of Corti in the inner ear do not regenerate when lost as a consequence of injury, disease, or age-related deafness. This contrasts with other vertebrates such as birds, where the death of hair cells causes surrounding supporting cells to re-enter the cell cycle and give rise to both new hair cells and supporting cells. It is not clear whether the lack of mammalian hair cell regeneration is due to an intrinsic inability of supporting cells to divide and differentiate or to an absence or blockade of regenerative signals. Here we show that post-mitotic supporting cells purified from the postnatal mouse cochlea retain the ability to divide and trans-differentiate into new hair cells in culture. Furthermore, we show that age-dependent changes in supporting cell proliferative capacity are due in part to changes in the ability to downregulate the cyclin-dependent kinase inhibitor p27(Kip1) (also known as Cdkn1b). These results indicate that postnatal mammalian supporting cells are potential targets for therapeutic manipulation.

  19.  Hair follicle as a novel source of stem cells

    Directory of Open Access Journals (Sweden)

    Romana Joachimiak

    2012-04-01

    Full Text Available  Tissue engineering as a rapidly developing branch of science offers hope for the use of its products in medical practice. Among the components of tissue substitutes are different types of cells, especially stem cells. A promising source of adult stem cells is hair follicles. Development of follicles in the skin takes place even during fetal life. They arise due to the impact of epidermal and mesenchymal cells. The next steps in the formation of hair follicles are under the control of many factors. Hair follicles are the niche of various stem cell populations and are a major source of cells responsible for regeneration of the hair, sebaceous glands and epidermis. The term „hair follicle stem cells” is most often used in relation to the epithelial cell population. Hair follicle stem cell studies are complicated by the fact that these stem cells divide relatively rarely.The aim of this study is to present the characteristics of cells isolated from the hair follicle in the light of recent research.

  20. Stimulation of hair cells with ultraviolet light

    Science.gov (United States)

    Azimzadeh, Julien B.; Fabella, Brian A.; Hudspeth, A. J.

    2018-05-01

    Hair bundles are specialized organelles that transduce mechanical inputs into electrical outputs. To activate hair cells, physiologists have resorted to mechanical methods of hair-bundle stimulation. Here we describe a new method of hair-bundle stimulation, irradiation with ultraviolet light. A hair bundle illuminated by ultraviolet light rapidly moves towards its tall edge, a motion typically associated with excitatory stimulation. The motion disappears upon tip-link rupture and is associated with the opening of mechanotransduction channels. Hair bundles can be induced to move sinusoidally with oscillatory modulation of the stimulation power. We discuss the implications of ultraviolet stimulation as a novel hair-bundle stimulus.

  1. Development and regeneration of vestibular hair cells in mammals.

    Science.gov (United States)

    Burns, Joseph C; Stone, Jennifer S

    2017-05-01

    Vestibular sensation is essential for gaze stabilization, balance, and perception of gravity. The vestibular receptors in mammals, Type I and Type II hair cells, are located in five small organs in the inner ear. Damage to hair cells and their innervating neurons can cause crippling symptoms such as vertigo, visual field oscillation, and imbalance. In adult rodents, some Type II hair cells are regenerated and become re-innervated after damage, presenting opportunities for restoring vestibular function after hair cell damage. This article reviews features of vestibular sensory cells in mammals, including their basic properties, how they develop, and how they are replaced after damage. We discuss molecules that control vestibular hair cell regeneration and highlight areas in which our understanding of development and regeneration needs to be deepened. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Live cell imaging of Arabidopsis root hairs

    NARCIS (Netherlands)

    Ketelaar, T.

    2014-01-01

    Root hairs are tubular extensions from the root surface that expand by tip growth. This highly focused type of cell expansion, combined with position of root hairs on the surface of the root, makes them ideal cells for microscopic observation. This chapter describes the method that is routinely used

  3. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    Science.gov (United States)

    Baird, Richard A.; Torres, M. A.; Schuff, N. R.

    1994-01-01

    Adult bullfrogs were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 (mu) M gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence of absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest sterocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier times than hair cell types with shorter kinocilia. In the same sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  4. Paraquat initially damages cochlear support cells leading to anoikis-like hair cell death.

    Science.gov (United States)

    Zhang, Jianhui; Sun, Hong; Salvi, Richard; Ding, Dalian

    2018-07-01

    Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and β-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Usher protein functions in hair cells and photoreceptors

    OpenAIRE

    Cosgrove, Dominic; Zallocchi, Marisa

    2013-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber,...

  6. Protein biosynthesis in cultured human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1980-10-31

    A new technique has been used for culturing human keratinocytes. The cells grow on the basement membrane-like capsules of bovine lenses. Lens cells were removed from the capsules by rigid trypsinization. In order to exclude any contamination with remaining living cells the isolated capsules were irradiated with X-rays at a dose of 10,000 rad. In this way human epithelial cells can be brought in culture from individual hair follicles. Since feeder cells are not used in this culture technique, the biosynthesis of keratinocyte proteins can be studied in these cultures. The newly synthesized proteins can be separated into a water-soluble, a urea-soluble, and a urea-insoluble fraction. Product analysis has been performed on the first two fractions revealing protein patterns identical to those of intact hair follicles. Product analysis of the urea-soluble fractions of microdissected hair follicles shows that the protein pattern of the cultured keratinocytes resembles the protein pattern of the hair follicle sheath. Studies on the metabolism of benzo(a)pyrene revealed that the enzyme aryl hydrocarbon hydroxylase (AHH) is present in cultured hair follicle cells. A possible use of our culture system for eventual detection of inherited predisposition for smoking-dependent lung cancer is discussed.

  7. Streptomycin ototoxicity and hair cell regeneration in the adult pigeon utricle

    Science.gov (United States)

    Frank, T. C.; Dye, B. J.; Newlands, S. D.; Dickman, J. D.

    1999-01-01

    OBJECTIVE: The purpose of this study was to develop a technique to investigate the regeneration of utricular hair cells in the adult pigeon (Columba livia) following complete hair cell loss through administration of streptomycin. STUDY DESIGN: Experimental animal study. METHODS: Animals were divided into four groups. Group 1 received 10 to 15 days of systemic streptomycin injections. Animals in Groups 2 and 3 received a single direct placement of a 1-, 2-, 4-, or 8-mg streptomycin dose into the perilymphatic space. Animals in Groups 1 and 2 were analyzed within 1 week from injection to investigate hair cell destruction, whereas Group 3 was investigated at later dates to study hair cell recovery. Group 4 animals received a control injection of saline into the perilymphatic space. Damage and recovery were quantified by counting hair cells in isolated utricles using scanning electron microscopy. RESULTS: Although systemic injections failed to reliably achieve complete utricular hair cell destruction, a single direct placement of a 2-, 4-, or 8-mg streptomycin dose caused complete destruction within the first week. Incomplete hair cell loss was observed with the 1-mg dose. Over the long term, regeneration of the hair cells was seen with the 2-mg dose but not the 8-mg dose. Control injections of saline into the perilymphatic space caused no measurable hair cell loss. CONCLUSIONS: Direct placement of streptomycin into the perilymph is an effective, reliable method for complete destruction of utricular hair cells while preserving the regenerative potential of the neuroepithelium.

  8. Coenzyme Q10 protects hair cells against aminoglycoside.

    Directory of Open Access Journals (Sweden)

    Kazuma Sugahara

    Full Text Available It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10 is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group. In the neomycin group, utricles were cultured with neomycin (1 mM to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30-0.3 µM. Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear.

  9. Conditional deletion of pejvakin in adult outer hair cells causes progressive hearing loss in mice.

    Science.gov (United States)

    Harris, Suzan L; Kazmierczak, Marcin; Pangršič, Tina; Shah, Prahar; Chuchvara, Nadiya; Barrantes-Freer, Alonso; Moser, Tobias; Schwander, Martin

    2017-03-06

    Mutations in the Pejvakin (Pjvk) gene cause autosomal recessive hearing loss DFNB59 with audiological features of auditory neuropathy spectrum disorder (ANSD) or cochlear dysfunction. The precise mechanisms underlying the variable clinical phenotypes of DFNB59 remain unclear. Here, we demonstrate that mice with conditional ablation of the Pjvk gene in all sensory hair cells or only in outer hair cells (OHCs) show similar auditory phenotypes with early-onset profound hearing loss. By contrast, loss of Pjvk in adult OHCs causes a slowly progressive hearing loss associated with OHC degeneration and delayed loss of inner hair cells (IHCs), indicating a primary role for pejvakin in regulating OHC function and survival. Consistent with this model, synaptic transmission at the IHC ribbon synapse is largely unaffected in sirtaki mice that carry a C-terminal deletion mutation in Pjvk. Using the C-terminal domain of pejvakin as bait, we identified in a cochlear cDNA library ROCK2, an effector for the small GTPase Rho, and the scaffold protein IQGAP1, involved in modulating actin dynamics. Both ROCK2 and IQGAP1 associate via their coiled-coil domains with pejvakin. We conclude that pejvakin is required to sustain OHC activity and survival in a cell-autonomous manner likely involving regulation of Rho signaling. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Stem cell dynamics in the hair follicle niche

    Science.gov (United States)

    Rompolas, Panteleimon; Greco, Valentina

    2014-01-01

    Hair follicles are skin appendages of the mammalian skin that have the ability to periodically and stereotypically regenerate in order to continuously produce new hair over our lifetime. The ability of the hair follicle to regenerate is due to the presence of stem cells that along with other cell populations and non-cellular components, including molecular signals and extracellular material, make up a niche microenvironment. Mounting evidence suggests that the niche is critical for regulating stem cell behavior and thus the process of regeneration. Here we review the literature concerning past and current studies that have utilized mouse genetic models, combined with other approaches to dissect the molecular and cellular composition of the hair follicle niche. We also discuss our current understanding of how stem cells operate within the niche during the process of tissue regeneration and the factors that regulate their behavior. PMID:24361866

  11. Sonic Hedgehog Initiates Cochlear Hair Cell Regeneration through Downregulation of Retinoblastoma Protein

    Science.gov (United States)

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration. PMID:23211596

  12. Repair of traumatized mammalian hair cells via sea anemone repair proteins.

    Science.gov (United States)

    Tang, Pei-Ciao; Smith, Karen Müller; Watson, Glen M

    2016-08-01

    Mammalian hair cells possess only a limited ability to repair damage after trauma. In contrast, sea anemones show a marked capability to repair damaged hair bundles by means of secreted repair proteins (RPs). Previously, it was found that recovery of traumatized hair cells in blind cavefish was enhanced by anemone-derived RPs; therefore, the ability of anemone RPs to assist recovery of damaged hair cells in mammals was tested here. After a 1 h incubation in RP-enriched culture media, uptake of FM1-43 by experimentally traumatized murine cochlear hair cells was restored to levels comparable to those exhibited by healthy controls. In addition, RP-treated explants had significantly more normally structured hair bundles than time-matched traumatized control explants. Collectively, these results indicate that anemone-derived RPs assist in restoring normal function and structure of experimentally traumatized hair cells of the mouse cochlea. © 2016. Published by The Company of Biologists Ltd.

  13. Lgr5 marks cycling, yet long-lived, hair follicle stem cells.

    NARCIS (Netherlands)

    Jaks, V.; Barker, N.; Kasper, M.; van Es, J.H.; Snippert, H.J.G.; Clevers, H.; Toftgard, R.

    2008-01-01

    In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair

  14. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    International Nuclear Information System (INIS)

    Lu, Na; Chen, Yan; Wang, Zhengmin; Chen, Guoling; Lin, Qin; Chen, Zheng-Yi; Li, Huawei

    2013-01-01

    Highlights: ► Shh activation in neonatal cochleae enhances sensory cell proliferation. ► Proliferating supporting cells can transdifferentiate into hair cells. ► Shh promotes proliferation by transiently modulating pRb activity. ► Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  15. Melatonin mitigates neomycin-induced hair cell injury in zebrafish.

    Science.gov (United States)

    Oh, Kyoung Ho; Rah, Yoon Chan; Hwang, Kyu Ho; Lee, Seung Hoon; Kwon, Soon Young; Cha, Jae Hyung; Choi, June

    2017-10-01

    Ototoxicity due to medications, such as aminoglycosides, is irreversible, and free radicals in the inner ear are assumed to play a major role. Because melatonin has an antioxidant property, we hypothesize that it might mitigate hair cell injury by aminoglycosides. The objective of this study was to evaluate whether melatonin has an alleviative effect on neomycin-induced hair cell injury in zebrafish (Danio rerio). Various concentrations of melatonin were administered to 5-day post-fertilization zebrafish treated with 125 μM neomycin for 1 h. Surviving hair cells within four neuromasts were compared with that of a control group. Apoptosis was assessed via terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. The changes of ultrastructure were confirmed using a scanning electron microscope. Melatonin alleviated neomycin-induced hair cell injury in neuromasts (neomycin + melatonin 100 μM: 13.88 ± 0.91 cells, neomycin only: 7.85 ± 0.90 cells; n = 10, p melatonin for 1 h in SEM findings. Melatonin is effective in alleviating aminoglycoside-induced hair cell injury in zebrafish. The results of this study demonstrated that melatonin has the potential to reduce apoptosis induced by aminoglycosides in zebrafish.

  16. The electrical properties of auditory hair cells in the frog amphibian papilla.

    Science.gov (United States)

    Smotherman, M S; Narins, P M

    1999-07-01

    The amphibian papilla (AP) is the principal auditory organ of the frog. Anatomical and neurophysiological evidence suggests that this hearing organ utilizes both mechanical and electrical (hair cell-based) frequency tuning mechanisms, yet relatively little is known about the electrophysiology of AP hair cells. Using the whole-cell patch-clamp technique, we have investigated the electrical properties and ionic currents of isolated hair cells along the rostrocaudal axis of the AP. Electrical resonances were observed in the voltage response of hair cells harvested from the rostral and medial, but not caudal, regions of the AP. Two ionic currents, ICa and IK(Ca), were observed in every hair cell; however, their amplitudes varied substantially along the epithelium. Only rostral hair cells exhibited an inactivating potassium current (IA), whereas an inwardly rectifying potassium current (IK1) was identified only in caudal AP hair cells. Electrically tuned hair cells exhibited resonant frequencies from 50 to 375 Hz, which correlated well with hair cell position and the tonotopic organization of the papilla. Variations in the kinetics of the outward current contribute substantially to the determination of resonant frequency. ICa and IK(Ca) amplitudes increased with resonant frequency, reducing the membrane time constant with increasing resonant frequency. We conclude that a tonotopically organized hair cell substrate exists to support electrical tuning in the rostromedial region of the frog amphibian papilla and that the cellular mechanisms for frequency determination are very similar to those reported for another electrically tuned auditory organ, the turtle basilar papilla.

  17. Damage of Inner Ear Sensory Hair Cells via Mitochondrial Loss in a Murine Model of Sleep Apnea With Chronic Intermittent Hypoxia.

    Science.gov (United States)

    Seo, Young Joon; Ju, Hyun Mi; Lee, Sun Hee; Kwak, Sang Hyun; Kang, Min Jung; Yoon, Joo-Heon; Kim, Chang-Hoon; Cho, Hyung-Ju

    2017-09-01

    Investigating the exact pathophysiology of obstructive sleep apnea syndrome (OSAS)-induced hearing loss is critical. We sought to verify the hypothesis that a correlation exists between mitochondrial dysfunction in inner ear hair cells and the auditory dysfunction induced by chronic intermittent hypoxia (CIH) in a murine model of sleep apnea. C57BL/6J adult male mice were randomized to 4 weeks of CIH (n = 12) or normoxia (Sham) (n = 12). Hearing threshold was determined by auditory brainstem response. The activity of mitochondria was compared between CIH and Sham mice. Histological assessment and transmission electron microscopy were performed for assessing morphologic changes in mitochondria. The number of mtDNA copies as well as the levels of PGC1-α, Tfam, and VDAC (voltage-dependent anion channel) were determined in the hair cells of CIH mice. We observed that hearing ability in CIH mice was impaired and hair-cell mitochondria in CIH mice were fewer compared to that in Sham and also displayed an aberrant morphology. The mRNA levels of PGC-1α and Tfam were higher in the CIH group than in the Sham group. Moreover, the expression of VDAC was increased in the tectorial membrane, the basilar membrane, and especially in the inner hair cells of CIH mice. This study using CIH mice as a model for OSAS provides evidence of an association between OSAS and auditory function alteration, as well as of mitochondria being part of the pathophysiology of hearing impairment. Further investigation is required to determine whether mitochondria could serve as a valid target for preventive or therapeutic purposes. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  18. Feathers and Fins: Non-mammalian models for hair cell regeneration

    OpenAIRE

    Brignull, Heather R.; Raible, David W.; Stone, Jennifer S.

    2009-01-01

    Death of mechanosensory cells in the inner ear results in two profound disabilities: hearing loss and balance disorders. Although mammals lack the capacity to regenerate hair cells, recent studies in mice and other rodents have offered valuable insight into strategies for stimulating hair cell regeneration in mammals. Investigations of model organisms that retain the ability to form new hair cells after embryogenesis, such as fish and chicks, are equally important and have provided clues as t...

  19. Allicin protects against cisplatin-induced vestibular dysfunction by inhibiting the apoptotic pathway.

    Science.gov (United States)

    Wu, Xianmin; Cai, Jing; Li, Xiaofei; Li, He; Li, Jianfeng; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-06-15

    Cisplatin is an anticancer drug that causes the impairment of inner ear function as side effects, including hearing loss and balance dysfunction. The purpose of this study was to investigate the effects of allicin against cisplatin-induced vestibular dysfunction in mice and to make clear the mechanism underlying the protective effects of allicin on oto-vestibulotoxicity. Mice intraperitoneally injected with cisplatin exhibited vestibular dysfunction in swimming test, which agreed with impairment in vestibule. However, these impairments were significantly prevented by pre-treatment with allicin. Allicin markedly reduced cisplatin-activated expression of cleaved-caspase-3 in hair cells and vascular layer cells of utricule, saccule and ampulla, but also decreased AIF nuclear translocation of hair cells in utricule, saccule and ampulla. These results showed that allicin played an effective role in protecting vestibular dysfunction induced by cisplatin via inhibiting caspase-dependent and caspase-independent apoptotic pathways. Therefore, allicin may be useful in preventing oto-vestibulotoxicity mediated by cisplatin. Copyright © 2017. Published by Elsevier B.V.

  20. Sonic hedgehog initiates cochlear hair cell regeneration through downregulation of retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Na [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Chen, Yan [Central Laboratory, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Wang, Zhengmin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Chen, Guoling [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Lin, Qin [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Department of Otolaryngology, First Affiliated Hospital of Fujian Medical University, Otolaryngology Institute of Fujian Province, Fuzhou (China); Chen, Zheng-Yi, E-mail: Zheng-yi_chen@meei.harvard.edu [Department of Otolaryngology and Program in Neuroscience, Harvard Medical School and Eaton Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA 02114 (United States); Li, Huawei, E-mail: hwli@shmu.edu.cn [Otology Skull Base Surgery Department, Hearing Research Institute, Eye and ENT Hospital of Shanghai Medical School, Fudan University, Shanghai 200031 (China); Institute of Biomedical Sciences, Fudan University, Shanghai 200032 (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer Shh activation in neonatal cochleae enhances sensory cell proliferation. Black-Right-Pointing-Pointer Proliferating supporting cells can transdifferentiate into hair cells. Black-Right-Pointing-Pointer Shh promotes proliferation by transiently modulating pRb activity. Black-Right-Pointing-Pointer Shh inhibits pRb by inhibiting transcription and increasing phosphorylation of pRb. -- Abstract: Cell cycle re-entry by cochlear supporting cells and/or hair cells is considered one of the best approaches for restoring hearing loss as a result of hair cell damage. To identify mechanisms that can be modulated to initiate cell cycle re-entry and hair cell regeneration, we studied the effect of activating the sonic hedgehog (Shh) pathway. We show that Shh signaling in postnatal rat cochleae damaged by neomycin leads to renewed proliferation of supporting cells and hair cells. Further, proliferating supporting cells are likely to transdifferentiate into hair cells. Shh treatment leads to inhibition of retinoblastoma protein (pRb) by increasing phosphorylated pRb and reducing retinoblastoma gene transcription. This results in upregulation of cyclins B1, D2, and D3, and CDK1. These results suggest that Shh signaling induces cell cycle re-entry in cochlear sensory epithelium and the production of new hair cells, in part by attenuating pRb function. This study provides an additional route to modulate pRb function with important implications in mammalian hair cell regeneration.

  1. Spontaneous hair cell regeneration in the mouse utricle following gentamicin ototoxicity.

    Science.gov (United States)

    Kawamoto, Kohei; Izumikawa, Masahiko; Beyer, Lisa A; Atkin, Graham M; Raphael, Yehoash

    2009-01-01

    Whereas most epithelial tissues turn-over and regenerate after a traumatic lesion, this restorative ability is diminished in the sensory epithelia of the inner ear; it is absent in the cochlea and exists only in a limited capacity in the vestibular epithelium. The extent of regeneration in vestibular hair cells has been characterized for several mammalian species including guinea pig, rat, and chinchilla, but not yet in mouse. As the fundamental model species for investigating hereditary disease, the mouse can be studied using a wide variety of genetic and molecular tools. To design a mouse model for vestibular hair cell regeneration research, an aminoglycoside-induced method of complete hair cell elimination was developed in our lab and applied to the murine utricle. Loss of utricular hair cells was observed using scanning electron microscopy, and corroborated by a loss of fluorescent signal in utricles from transgenic mice with GFP-positive hair cells. Regenerative capability was characterized at several time points up to six months following insult. Using scanning electron microscopy, we observed that as early as two weeks after insult, a few immature hair cells, demonstrating the characteristic immature morphology indicative of regeneration, could be seen in the utricle. As time progressed, larger numbers of immature hair cells could be seen along with some mature cells resembling surface morphology of type II hair cells. By six months post-lesion, numerous regenerated hair cells were present in the utricle, however, neither their number nor their appearance was normal. A BrdU assay suggested that at least some of the regeneration of mouse vestibular hair cells involved mitosis. Our results demonstrate that the vestibular sensory epithelium in mice can spontaneously regenerate, elucidate the time course of this process, and identify involvement of mitosis in some cases. These data establish a road map of the murine vestibular regenerative process, which can be

  2. Hair cell regeneration in sensory epithelia from the inner ear of a urodele amphibian.

    Science.gov (United States)

    Taylor, Ruth R; Forge, Andrew

    2005-03-28

    The capacity of urodele amphibians to regenerate a variety of body parts is providing insight into mechanisms of tissue regeneration in vertebrates. In this study the ability of the newt, Notophthalmus viridescens, to regenerate inner ear hair cells in vitro was examined. Intact otic capsules were maintained in organotypic culture. Incubation in 2 mM gentamicin for 48 hours resulted in ablation of all hair cells from the saccular maculae. Thus, any hair cell recovery was not due to repair of damaged hair cells. Immature hair cells were subsequently observed at approximately 12 days posttreatment. Their number increased over the following 7-14 days to reach approximately 30% of the normal number. Following incubation of damaged tissue with bromodeoxyuridine (BrdU), labeled nuclei were confined strictly within regions of hair cell loss, indicating that supporting cells entered S-phase. Double labeling of tissue with two different hair cell markers and three different antibodies to BrdU in various combinations, however, all showed that the nuclei of cells that labeled with hair cell markers did not label for BrdU. This suggested that the new hair cells were not derived from those cells that had undergone mitosis. When mitosis was blocked with aphidicolin, new hair cells were still generated. The results suggest that direct phenotypic conversion of supporting cells into hair cells without an intervening mitotic event is a major mechanism of hair cell regeneration in the newt. A similar mechanism has been proposed for the hair cell recovery phenomenon observed in the vestibular organs of mammals. Copyright 2005 Wiley-Liss, Inc.

  3. The Effects of Urethane on Rat Outer Hair Cells

    Directory of Open Access Journals (Sweden)

    Mingyu Fu

    2016-01-01

    Full Text Available The cochlea converts sound vibration into electrical impulses and amplifies the low-level sound signal. Urethane, a widely used anesthetic in animal research, has been shown to reduce the neural responses to auditory stimuli. However, the effects of urethane on cochlea, especially on the function of outer hair cells, remain largely unknown. In the present study, we compared the cochlear microphonic responses between awake and urethane-anesthetized rats. The results revealed that the amplitude of the cochlear microphonic was decreased by urethane, resulting in an increase in the threshold at all of the sound frequencies examined. To deduce the possible mechanism underlying the urethane-induced decrease in cochlear sensitivity, we examined the electrical response properties of isolated outer hair cells using whole-cell patch-clamp recording. We found that urethane hyperpolarizes the outer hair cell membrane potential in a dose-dependent manner and elicits larger outward current. This urethane-induced outward current was blocked by strychnine, an antagonist of the α9 subunit of the nicotinic acetylcholine receptor. Meanwhile, the function of the outer hair cell motor protein, prestin, was not affected. These results suggest that urethane anesthesia is expected to decrease the responses of outer hair cells, whereas the frequency selectivity of cochlea remains unchanged.

  4. Semicircular canals circumvent Brownian Motion overload of mechanoreceptor hair cells

    DEFF Research Database (Denmark)

    Muller, Mees; Heeck, Kier; Elemans, Coen P H

    2016-01-01

    Vertebrate semicircular canals (SCC) first appeared in the vertebrates (i.e. ancestral fish) over 600 million years ago. In SCC the principal mechanoreceptors are hair cells, which as compared to cochlear hair cells are distinctly longer (70 vs. 7 μm), 10 times more compliant to bending (44 vs. 500...... nN/m), and have a 100-fold higher tip displacement threshold (hair cells where the bundle is approximated as a stiff, cylindrical elastic rod subject to friction and thermal agitation. Our models suggest that the above...... differences aid SCC hair cells in circumventing the masking effects of Brownian motion noise of about 70 nm, and thereby permit transduction of very low frequency (

  5. Diffuse large B-cell lymphoma chemotherapy reveals a combined immunodeficiency syndrome in cartilage hair hypoplasia.

    Science.gov (United States)

    Nguyen, Alexandre; Martin Silva, Nicolas; de Boysson, Hubert; Damaj, Gandhi; Aouba, Achille

    2018-04-24

    Cartilage hair hypoplasia (CHH) is a rare autosomal recessive ribosomopathy characterised by skeletal and integumentary system manifestations. It may also present with varied forms and intensities of haematopoietic and/or immune disorders. We report a 27-year-old female who presented a picture of combined immunodeficiency after receiving an adriamycin-based chemotherapy regimen followed by autologous stem cell transplantation. Her medical history indicated neonatal dwarfism, recurrent ear, nose and throat and respiratory infections, and hypogammaglobulinaemia, which were suggestive of a primary minor B-cell immune deficiency. Taken together, the diagnosis of cartilage hair hypoplasia was suspected and confirmed by means of molecular biological analysis. Here, we discuss the causal relationship and molecular mechanisms existing between both primary immunodeficiency and lymphoma conditions and between chemotherapy cytotoxicity and aggravation of the immune system and associated hematopoietic dysfunction, considering the role of all these components in light of the initially undiagnosed cartilage hair hypoplasia. Finally, this case highlights the importance of screening for primary immunodeficiencies in the setting of a diagnosis of lymphoma and/or dwarfism; moreover, CHH must be distinguished from other causes of small size; its diagnosis and complete check-up must include the molecular characterisation, and its management must be global in collaboration with haematologists, immunologists and internists.

  6. Artifactual voltage response recorded from hair cells with patch-clamp amplifiers.

    Science.gov (United States)

    Masetto, S; Weng, T; Valli, P; Correia, M J

    1999-06-23

    Patch-clamp amplifiers (PCAs) are commonly used to characterize voltage- and current-clamp responses in the same cell. However, the cell membrane voltage response can be severely distorted by PCAs working in the current-clamp mode. Here we compare the voltage response of pigeon semicircular canal hair cells in situ, recorded with two different PCAs, and with a classic microelectrode bridge amplifier (BA). We found that the voltage response of hair cells recorded with PCAs differed significantly from that recorded with the BA. The true hair cell membrane voltage response to positive current steps was characterized by a strongly damped oscillation, whose frequency and duration depended on hair cell location in the sensory crista ampullaris.

  7. Static length changes of cochlear outer hair cells can tune low-frequency hearing.

    Directory of Open Access Journals (Sweden)

    Nikola Ciganović

    2018-01-01

    Full Text Available The cochlea not only transduces sound-induced vibration into neural spikes, it also amplifies weak sound to boost its detection. Actuators of this active process are sensory outer hair cells in the organ of Corti, whereas the inner hair cells transduce the resulting motion into electric signals that propagate via the auditory nerve to the brain. However, how the outer hair cells modulate the stimulus to the inner hair cells remains unclear. Here, we combine theoretical modeling and experimental measurements near the cochlear apex to study the way in which length changes of the outer hair cells deform the organ of Corti. We develop a geometry-based kinematic model of the apical organ of Corti that reproduces salient, yet counter-intuitive features of the organ's motion. Our analysis further uncovers a mechanism by which a static length change of the outer hair cells can sensitively tune the signal transmitted to the sensory inner hair cells. When the outer hair cells are in an elongated state, stimulation of inner hair cells is largely inhibited, whereas outer hair cell contraction leads to a substantial enhancement of sound-evoked motion near the hair bundles. This novel mechanism for regulating the sensitivity of the hearing organ applies to the low frequencies that are most important for the perception of speech and music. We suggest that the proposed mechanism might underlie frequency discrimination at low auditory frequencies, as well as our ability to selectively attend auditory signals in noisy surroundings.

  8. Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior.

    Science.gov (United States)

    Weitzel, Erik K; Tasker, Ron; Brownell, William E

    2003-09-01

    Stretching or compressing an outer hair cell alters its membrane potential and, conversely, changing the electrical potential alters its length. This bi-directional energy conversion takes place in the cell's lateral wall and resembles the direct and converse piezoelectric effects both qualitatively and quantitatively. A piezoelectric model of the lateral wall has been developed that is based on the electrical and material parameters of the lateral wall. An equivalent circuit for the outer hair cell that includes piezoelectricity shows a greater admittance at high frequencies than one containing only membrane resistance and capacitance. The model also predicts resonance at ultrasonic frequencies that is inversely proportional to cell length. These features suggest all mammals use outer hair cell piezoelectricity to support the high-frequency receptor potentials that drive electromotility. It is also possible that members of some mammalian orders use outer hair cell piezoelectric resonance in detecting species-specific vocalizations.

  9. Neuromast hair cells retain the capacity of regeneration during heavy metal exposure.

    Science.gov (United States)

    Montalbano, G; Capillo, G; Laurà, R; Abbate, F; Levanti, M; Guerrera, M C; Ciriaco, E; Germanà, A

    2018-07-01

    The neuromast is the morphological unit of the lateral line of fishes and is composed of a cluster of central sensory cells (hair cells) surrounded by support and mantle cells. Heavy metals exposure leads to disruption of hair cells within the neuromast. It is well known that the zebrafish has the ability to regenerate the hair cells after damage caused by toxicants. The process of regeneration depends on proliferation, differentiation and cellular migration of sensory and non-sensory progenitor cells. Therefore, our study was made in order to identify which cellular types are involved in the complex process of regeneration during heavy metals exposure. For this purpose, adult zebrafish were exposed to various heavy metals (Arsenic, cadmium and zinc) for 72h. After acute (24h) exposure, immunohistochemical localization of S100 (a specific marker for hair cells) in the neuromasts highlighted the hair cells loss. The immunoreaction for Sox2 (a specific marker for stem cells), at the same time, was observed in the support and mantle cells, after exposure to arsenic and cadmium, while only in the support cells after exposure to zinc. After chronic (72h) exposure the hair cells were regenerated, showing an immunoreaction for S100 protein. At the same exposure time to the three metals, a Sox2 immunoreaction was expressed in support and mantle cells. Our results showed for the first time the regenerative capacity of hair cells, not only after, but also during exposure to heavy metals, demonstrated by the presence of different stem cells that can diversify in hair cells. Copyright © 2018 Elsevier GmbH. All rights reserved.

  10. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis.

    Science.gov (United States)

    Herget, Meike; Scheibinger, Mirko; Guo, Zhaohua; Jan, Taha A; Adams, Christopher M; Cheng, Alan G; Heller, Stefan

    2013-01-01

    Mechanosensitive hair cells and supporting cells comprise the sensory epithelia of the inner ear. The paucity of both cell types has hampered molecular and cell biological studies, which often require large quantities of purified cells. Here, we report a strategy allowing the enrichment of relatively pure populations of vestibular hair cells and non-sensory cells including supporting cells. We utilized specific uptake of fluorescent styryl dyes for labeling of hair cells. Enzymatic isolation and flow cytometry was used to generate pure populations of sensory hair cells and non-sensory cells. We applied mass spectrometry to perform a qualitative high-resolution analysis of the proteomic makeup of both the hair cell and non-sensory cell populations. Our conservative analysis identified more than 600 proteins with a false discovery rate of Analysis of proteins exclusively detected in either population revealed 64 proteins that were specific to hair cells and 103 proteins that were only detectable in non-sensory cells. Statistical analyses extended these groups by 53 proteins that are strongly upregulated in hair cells versus non-sensory cells and vice versa by 68 proteins. Our results demonstrate that enzymatic dissociation of styryl dye-labeled sensory hair cells and non-sensory cells is a valid method to generate pure enough cell populations for flow cytometry and subsequent molecular analyses.

  11. Regional analysis of whole cell currents from hair cells of the turtle posterior crista.

    Science.gov (United States)

    Brichta, Alan M; Aubert, Anne; Eatock, Ruth Anne; Goldberg, Jay M

    2002-12-01

    The turtle posterior crista is made up of two hemicristae, each consisting of a central zone containing type I and type II hair cells and a surrounding peripheral zone containing only type II hair cells and extending from the planum semilunatum to the nonsensory torus. Afferents from various regions of a hemicrista differ in their discharge properties. To see if afferent diversity is related to the basolateral currents of the hair cells innervated, we selectively harvested type I and II hair cells from the central zone and type II hair cells from two parts of the peripheral zone, one near the planum and the other near the torus. Voltage-dependent currents were studied with the whole cell, ruptured-patch method and characterized in voltage-clamp mode. We found regional differences in both outwardly and inwardly rectifying voltage-sensitive currents. As in birds and mammals, type I hair cells have a distinctive outwardly rectifying current (I(K,L)), which begins activating at more hyperpolarized voltages than do the outward currents of type II hair cells. Activation of I(K,L) is slow and sigmoidal. Maximal outward conductances are large. Outward currents in type II cells vary in their activation kinetics. Cells with fast kinetics are associated with small conductances and with partial inactivation during 200-ms depolarizing voltage steps. Almost all type II cells in the peripheral zone and many in the central zone have fast kinetics. Some type II cells in the central zone have large outward currents with slow kinetics and little inactivation. Although these currents resemble I(K,L), they can be distinguished from the latter both electrophysiologically and pharmacologically. There are two varieties of inwardly rectifying currents in type II hair cells: activation of I(K1) is rapid and monoexponential, whereas that of I(h) is slow and sigmoidal. Many type II cells either have both inward currents or only have I(K1); very few cells only have I(h). Inward currents are

  12. Limited hair cell induction from human induced pluripotent stem cells using a simple stepwise method.

    Science.gov (United States)

    Ohnishi, Hiroe; Skerleva, Desislava; Kitajiri, Shin-ichiro; Sakamoto, Tatsunori; Yamamoto, Norio; Ito, Juichi; Nakagawa, Takayuki

    2015-07-10

    Disease-specific induced pluripotent stem cells (iPS) cells are expected to contribute to exploring useful tools for studying the pathophysiology of inner ear diseases and to drug discovery for treating inner ear diseases. For this purpose, stable induction methods for the differentiation of human iPS cells into inner ear hair cells are required. In the present study, we examined the efficacy of a simple induction method for inducing the differentiation of human iPS cells into hair cells. The induction of inner ear hair cell-like cells was performed using a stepwise method mimicking inner ear development. Human iPS cells were sequentially transformed into the preplacodal ectoderm, otic placode, and hair cell-like cells. As a first step, preplacodal ectoderm induction, human iPS cells were seeded on a Matrigel-coated plate and cultured in a serum free N2/B27 medium for 8 days according to a previous study that demonstrated spontaneous differentiation of human ES cells into the preplacodal ectoderm. As the second step, the cells after preplacodal ectoderm induction were treated with basic fibroblast growth factor (bFGF) for induction of differentiation into otic-placode-like cells for 15 days. As the final step, cultured cells were incubated in a serum free medium containing Matrigel for 48 days. After preplacodal ectoderm induction, over 90% of cultured cells expressed the genes that express in preplacodal ectoderm. By culture with bFGF, otic placode marker-positive cells were obtained, although their number was limited. Further 48-day culture in serum free media resulted in the induction of hair cell-like cells, which expressed a hair cell marker and had stereocilia bundle-like constructions on their apical surface. Our results indicate that hair cell-like cells are induced from human iPS cells using a simple stepwise method with only bFGF, without the use of xenogeneic cells. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Retinoic Acid Signaling Mediates Hair Cell Regeneration by Repressing p27kip and sox2 in Supporting Cells.

    Science.gov (United States)

    Rubbini, Davide; Robert-Moreno, Àlex; Hoijman, Esteban; Alsina, Berta

    2015-11-25

    During development, otic sensory progenitors give rise to hair cells and supporting cells. In mammalian adults, differentiated and quiescent sensory cells are unable to generate new hair cells when these are lost due to various insults, leading to irreversible hearing loss. Retinoic acid (RA) has strong regenerative capacity in several organs, but its role in hair cell regeneration is unknown. Here, we use genetic and pharmacological inhibition to show that the RA pathway is required for hair cell regeneration in zebrafish. When regeneration is induced by laser ablation in the inner ear or by neomycin treatment in the lateral line, we observe rapid activation of several components of the RA pathway, with dynamics that position RA signaling upstream of other signaling pathways. We demonstrate that blockade of the RA pathway impairs cell proliferation of supporting cells in the inner ear and lateral line. Moreover, in neuromast, RA pathway regulates the transcription of p27(kip) and sox2 in supporting cells but not fgf3. Finally, genetic cell-lineage tracing using Kaede photoconversion demonstrates that de novo hair cells derive from FGF-active supporting cells. Our findings reveal that RA has a pivotal role in zebrafish hair cell regeneration by inducing supporting cell proliferation, and shed light on the underlying transcriptional mechanisms involved. This signaling pathway might be a promising approach for hearing recovery. Hair cells are the specialized mechanosensory cells of the inner ear that capture auditory and balance sensory input. Hair cells die after acoustic trauma, ototoxic drugs or aging diseases, leading to progressive hearing loss. Mammals, in contrast to zebrafish, lack the ability to regenerate hair cells. Here, we find that retinoic acid (RA) pathway is required for hair cell regeneration in vivo in the zebrafish inner ear and lateral line. RA pathway is activated very early upon hair cell loss, promotes cell proliferation of progenitor cells

  14. Membrane properties of chick semicircular canal hair cells in situ during embryonic development.

    Science.gov (United States)

    Masetto, S; Perin, P; Malusà, A; Zucca, G; Valli, P

    2000-05-01

    The electrophysiological properties of developing vestibular hair cells have been investigated in a chick crista slice preparation, from embryonic day 10 (E10) to E21 (when hatching would occur). Patch-clamp whole-cell experiments showed that different types of ion channels are sequentially expressed during development. An inward Ca(2+) current and a slow outward rectifying K(+) current (I(K(V))) are acquired first, at or before E10, followed by a rapid transient K(+) current (I(K(A))) at E12, and by a small Ca-dependent K(+) current (I(KCa)) at E14. Hair cell maturation then proceeds with the expression of hyperpolarization-activated currents: a slow I(h) appears first, around E16, followed by the fast inward rectifier I(K1) around E19. From the time of its first appearance, I(K(A)) is preferentially expressed in peripheral (zone 1) hair cells, whereas inward rectifying currents are preferentially expressed in intermediate (zone 2) and central (zone 3) hair cells. Each conductance conferred distinctive properties on hair cell voltage response. Starting from E15, some hair cells, preferentially located at the intermediate region, showed the amphora shape typical of type I hair cells. From E17 (a time when the afferent calyx is completed) these cells expressed I(K, L), the signature current of mature type I hair cells. Close to hatching, hair cell complements and regional organization of ion currents appeared similar to those reported for the mature avian crista. By the progressive acquisition of different types of inward and outward rectifying currents, hair cell repolarization after both positive- and negative-current injections is greatly strengthened and speeded up.

  15. Characterization of Rat Hair Follicle Stem Cells Selected by Vario Magnetic Activated Cell Sorting System

    International Nuclear Information System (INIS)

    Huang, Enyi; Lian, Xiaohua; Chen, Wei; Yang, Tian; Yang, Li

    2009-01-01

    Hair follicle stem cells (HfSCs) play crucial roles in hair follicle morphogenesis and hair cycling. These stem cells are self-renewable and have the multi-lineage potential to generate epidermis, sebaceous glands, and hair follicle. The separation and identification of hair follicle stem cells are important for further research in stem cell biology. In this study, we report on the successful enrichment of rat hair follicle stem cells through vario magnetic activated cell sorting (Vario MACS) and the biological characteristics of the stem cells. We chose the HfSCs positive surface markers CD34, α6-integrin and the negative marker CD71 to design four isolation strategies: positive selection with single marker of CD34, positive selection with single marker of α6-integrin, CD71 depletion followed by CD34 positive selection, and CD71 depletion followed by α6-integrin positive selection. The results of flow cytometry analysis showed that all four strategies had ideal effects. Specifically, we conducted a series of researches on HfSCs characterized by their high level of CD34, termed CD34 bri cells, and low to undetectable expression of CD34, termed CD34 dim cells. CD34 bri cells had greater proliferative potential and higher colony-forming ability than CD34 dim cells. Furthermore, CD34 bri cells had some typical characteristics as progenitor cells, such as large nucleus, obvious nucleolus, large nuclear:cytoplasmic ratio and few cytoplasmic organelles. Our findings clearly demonstrated that HfSCs with high purity and viability could be successfully enriched with Vario MACS

  16. Trichotillomania In A Patient With Sexual Dysfunction

    Directory of Open Access Journals (Sweden)

    Aswathi Krishna

    2016-10-01

    Full Text Available Trichotillomania is a chronic psychiatric disorder characterized by pulling out one's own hair, which results in an obvious loss of hair. Hair pulling was first described in Henri Allopeau in 1889. The term "trichotillomania" comes from the Greek words "thrix" - hair, "tillein" - to pull and "Mania" madness or frenzy. 30 year old man presented with complaints of hairpulling behavior and associated erectile dysfunction. His hairpulling behavior improved on treating his sexual dysfunction.

  17. Efferent control of the electrical and mechanical properties of hair cells in the bullfrog's sacculus.

    Directory of Open Access Journals (Sweden)

    Manuel Castellano-Muñoz

    2010-10-01

    Full Text Available Hair cells in the auditory, vestibular, and lateral-line systems respond to mechanical stimulation and transmit information to afferent nerve fibers. The sensitivity of mechanoelectrical transduction is modulated by the efferent pathway, whose activity usually reduces the responsiveness of hair cells. The basis of this effect remains unknown.We employed immunocytological, electrophysiological, and micromechanical approaches to characterize the anatomy of efferent innervation and the effect of efferent activity on the electrical and mechanical properties of hair cells in the bullfrog's sacculus. We found that efferent fibers form extensive synaptic terminals on all macular and extramacular hair cells. Macular hair cells expressing the Ca(2+-buffering protein calretinin contain half as many synaptic ribbons and are innervated by twice as many efferent terminals as calretinin-negative hair cells. Efferent activity elicits inhibitory postsynaptic potentials in hair cells and thus inhibits their electrical resonance. In hair cells that exhibit spiking activity, efferent stimulation suppresses the generation of action potentials. Finally, efferent activity triggers a displacement of the hair bundle's resting position.The hair cells of the bullfrog's sacculus receive a rich efferent innervation with the heaviest projection to calretinin-containing cells. Stimulation of efferent axons desensitizes the hair cells and suppresses their spiking activity. Although efferent activation influences mechanoelectrical transduction, the mechanical effects on hair bundles are inconsistent.

  18. Making sense of Wnt signaling – linking hair cell regeneration to development

    Directory of Open Access Journals (Sweden)

    Lina eJansson

    2015-03-01

    Full Text Available Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.

  19. Genetically induced cell death in bulge stem cells reveals their redundancy for hair and epidermal regeneration.

    Science.gov (United States)

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2015-03-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Setd8 eliminated the contribution of bulge cells to hair follicle regeneration through inhibition of cell division and induction of cell death, but the growth and morphology of hair follicles were unaffected. Furthermore, ablation of Setd8 in the hair follicle bulge blocked the contribution of K19-postive stem cells to wounded epidermis, but the wound healing process was unaltered. Our data indicate that quiescent bulge stem cells are dispensable for hair follicle regeneration and epidermal injury in the short term and support the hypothesis that quiescent and cycling stem cell populations are equipotent. © 2014 AlphaMed Press.

  20. Natural bizbenzoquinoline derivatives protect zebrafish lateral line sensory hair cells from aminoglycoside toxicity

    Directory of Open Access Journals (Sweden)

    Matthew eKruger

    2016-03-01

    Full Text Available Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

  1. Unleashing the potential of the root hair cell as a single plant cell type model in root systems biology

    Directory of Open Access Journals (Sweden)

    Zhenzhen eQiao

    2013-11-01

    Full Text Available Plant root is an organ composed of multiple cell types with different functions. This multicellular complexity limits our understanding of root biology because –omics studies performed at the level of the entire root reflect the average responses of all cells composing the organ. To overcome this difficulty and allow a more comprehensive understanding of root cell biology, an approach is needed that would focus on one single cell type in the plant root. Because of its biological functions (i.e. uptake of water and various nutrients; primary site of infection by nitrogen-fixing bacteria in legumes, the root hair cell is an attractive single cell model to study root cell response to various stresses and treatments. To fully study their biology, we have recently optimized procedures in obtaining root hair cell samples. We culture the plants using an ultrasound aeroponic system maximizing root hair cell density on the entire root systems and allowing the homogeneous treatment of the root system. We then isolate the root hair cells in liquid nitrogen. Isolated root hair yields could be up to 800 to 1000 mg of plant cells from 60 root systems. Using soybean as a model, the purity of the root hair was assessed by comparing the expression level of genes previously identified as soybean root hair specific between preparations of isolated root hair cells and stripped roots, roots devoid in root hairs. Enlarging our tests to include other plant species, our results support the isolation of large quantities of highly purified root hair cells which is compatible with a systems biology approach.

  2. Distribution and time course of hair cell regeneration in the pigeon utricle

    Science.gov (United States)

    Dye, B. J.; Frank, T. C.; Newlands, S. D.; Dickman, J. D.

    1999-01-01

    Vestibular and cochlear regeneration following ototoxic insult from aminoglycoside antibiotics has been well documented, particularly in birds. In the present study, intraotic application of a 2 mg streptomycin paste was used to achieve complete vestibular hair cell destruction in pigeons (Columba livia) while preserving regenerative ability. Scanning electron microscopy was used to quantify hair cell density longitudinally during regeneration in three different utricular macula locations, including the striola, central and peripheral regions. The utricular epithelium was void of stereocilia (indicating hair cell loss) at 4 days after intraotic treatment with streptomycin. At 2 weeks the stereocilia began to appear randomly and mostly in an immature form. However, when present most kinocilia were polarized toward the developing striola. Initially, regeneration occurred more rapidly in the central and peripheral regions of the utricle as compared to the striola. As regeneration proceeded from 2 to 12 weeks, hair cell density in the striola region equaled the density noted in the central and peripheral regions. At 24 weeks, hair cell density of the central and peripheral regions was equal to normal values, however the striola region had a slightly greater hair cell density than that observed for normal animals.

  3. Enhancement of cell wall protein SRPP expression during emergent root hair development in Arabidopsis.

    Science.gov (United States)

    Uno, Hiroshi; Tanaka-Takada, Natsuki; Sato, Ryosuke; Maeshima, Masayoshi

    2017-10-03

    SRPP is a protein expressed in seeds and root hairs and is significantly induced in root hairs under phosphate (Pi)-deficient conditions. Root hairs in the knockout mutant srpp-1 display defects, i.e., suppression of cell growth and cell death. Here, we analyzed the expression profile of SRPP during cell elongation of root hairs and compared the transcript levels in several mutants with short root hairs. The mRNA level was increased in wild-type plants and decreased in mutants with short root hairs. Induction of SRPP expression by Pi starvation occurred one or two days later than induction of Pi-deficient sensitive genes, such as PHT1 and PHF1. These results indicate that the expression of SRPP is coordinated with root hair elongation. We hypothesize that SRPP is essential for structural robustness of the cell walls of root hairs.

  4. REGULATED VESICULAR TRAFFICKING OF SPECIFIC PCDH15 AND VLGR1 VARIANTS IN AUDITORY HAIR CELLS

    Science.gov (United States)

    Zallocchi, Marisa; Delimont, Duane; Meehan, Daniel T.; Cosgrove, Dominic

    2012-01-01

    Usher syndrome is a genetically heterogeneous disorder characterized by hearing and balance dysfunction and progressive retinitis pigmentosa. Mouse models carrying mutations for the nine Usher-associated genes have splayed stereocilia and some show delayed maturation of ribbon synapses suggesting these proteins may play different roles in terminal differentiation of auditory hair cells. The presence of the Usher proteins at the basal and apical aspects of the neurosensory epithelia suggests the existence of regulated trafficking through specific transport proteins and routes. Immature mouse cochleae and UB/OC-1 cells were used in this work to address whether specific variants of PCDH15 and VLGR1 are being selectively transported to opposite poles of the hair cells. Confocal co-localization studies between apical and basal vesicular markers and the different PCDH15 and VLGR1 variants along with sucrose density gradients and the use of vesicle trafficking inhibitors show the existence of Usher protein complexes in at least two vesicular sub-pools. The apically trafficked pool co-localized with the early endosomal vesicle marker, rab5, while the basally trafficked pool associates with membrane microdomains and SNAP25. Moreover, co-immunoprecipitation experiments between SNAP25 and VLGR1 show a physical interaction of these two proteins in organ of Corti and brain. Collectively, these findings establish the existence of a differential vesicular trafficking mechanism for specific Usher protein variants in mouse cochlear hair cells, with the apical variants playing a potential role in endosomal recycling and stereocilia development/maintenance and the basolateral variants involved in vesicle docking and/or fusion through SNAP25-mediated interactions. PMID:23035094

  5. Daunomycin accumulation and induction of programmed cell death in rat hair follicles

    DEFF Research Database (Denmark)

    Shin, Masashi; Larsson, Lars-Inge; Hougaard, David M.

    2009-01-01

    The anthracycline antibiotic daunomycin (DM) is useful for the treatment of leukemia but has side-effects such as alopecia. Using immunocytochemistry, we show that, after a single i.v. injection, DM accumulates in the nuclei of matrix cells and in the outer root sheath of hair follicles. DM......-positive matrix cells are detectable up to 48 h after injection and exhibit a characteristic granular morphology, which is not observed in saline-injected controls. TUNEL-staining has revealed that DM injection induces programmed cell death (PCD) in rat hair follicles. Cells undergoing PCD are detectable as late...... (PCD type 2). Interestingly, little, if any, DM accumulation or apoptosis has been detected in the dermal hair papillae. This may have a bearing on potential regeneration of the hair follicles. Thus, DM accumulates in a characteristic pattern in hair follicles. This accumulation is associated...

  6. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    Science.gov (United States)

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves.

    Science.gov (United States)

    Amoh, Yasuyuki; Li, Lingna; Campillo, Raul; Kawahara, Katsumasa; Katsuoka, Kensei; Penman, Sheldon; Hoffman, Robert M

    2005-12-06

    The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, also is expressed in follicle stem cells and their immediate, differentiated progeny. The fluorescent protein GFP, whose expression is driven by the nestin regulatory element in transgenic mice, served to mark the follicle cell fate. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34 but negative for keratinocyte marker keratin 15, suggesting their relatively undifferentiated state. These cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In vivo studies show the nestin-driven GFP hair follicle stem cells can differentiate into blood vessels and neural tissue after transplantation to the subcutis of nude mice. Equivalent hair follicle stem cells derived from transgenic mice with beta-actin-driven GFP implanted into the gap region of a severed sciatic nerve greatly enhance the rate of nerve regeneration and the restoration of nerve function. The follicle cells transdifferentiate largely into Schwann cells, which are known to support neuron regrowth. Function of the rejoined sciatic nerve was measured by contraction of the gastrocnemius muscle upon electrical stimulation. After severing the tibial nerve and subsequent transplantation of hair follicle stem cells, walking print length and intermediate toe spread significantly recovered, indicating that the transplanted mice recovered the ability to walk normally. These results suggest that hair follicle stem cells provide an important, accessible, autologous source of adult stem cells for regenerative medicine.

  8. Hair regrowth in alopecia areata patients following Stem Cell Educator therapy.

    Science.gov (United States)

    Li, Yanjia; Yan, Baoyong; Wang, Hepeng; Li, Heng; Li, Quanhai; Zhao, Dong; Chen, Yana; Zhang, Ye; Li, Wenxia; Zhang, Jun; Wang, Shanfeng; Shen, Jie; Li, Yunxiang; Guindi, Edward; Zhao, Yong

    2015-04-20

    Alopecia areata (AA) is one of the most common autoimmune diseases and targets the hair follicles, with high impact on the quality of life and self-esteem of patients due to hair loss. Clinical management and outcomes are challenged by current limited immunosuppressive and immunomodulating regimens. We have developed a Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates mononuclear cells from the whole blood, allows the cells to briefly interact with adherent human cord blood-derived multipotent stem cells (CB-SC), and returns the "educated" autologous cells to the patient's circulation. In an open-label, phase 1/phase 2 study, patients (N = 9) with severe AA received one treatment with the Stem Cell Educator therapy. The median age was 20 years (median alopecic duration, 5 years). Clinical data demonstrated that patients with severe AA achieved improved hair regrowth and quality of life after receiving Stem Cell Educator therapy. Flow cytometry revealed the up-regulation of Th2 cytokines and restoration of balancing Th1/Th2/Th3 cytokine production in the peripheral blood of AA subjects. Immunohistochemistry indicated the formation of a "ring of transforming growth factor beta 1 (TGF-β1)" around the hair follicles, leading to the restoration of immune privilege of hair follicles and the protection of newly generated hair follicles against autoimmune destruction. Mechanistic studies revealed that co-culture with CB-SC may up-regulate the expression of coinhibitory molecules B and T lymphocyte attenuator (BTLA) and programmed death-1 receptor (PD-1) on CD8β(+)NKG2D(+) effector T cells and suppress their proliferation via herpesvirus entry mediator (HVEM) ligands and programmed death-1 ligand (PD-L1) on CB-SCs. Current clinical data demonstrated the safety and efficacy of the Stem Cell Educator therapy for the treatment of AA. This innovative approach produced lasting improvement in hair regrowth in

  9. Heat pulse excitability of vestibular hair cells and afferent neurons.

    Science.gov (United States)

    Rabbitt, Richard D; Brichta, Alan M; Tabatabaee, Hessam; Boutros, Peter J; Ahn, JoongHo; Della Santina, Charles C; Poppi, Lauren A; Lim, Rebecca

    2016-08-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in protein biophysics and manipulate cellular excitability. Copyright © 2016 the American Physiological Society.

  10. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    Science.gov (United States)

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  11. Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.

    Science.gov (United States)

    Smith, Michael E; Monroe, J David

    2016-01-01

    Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes.

  12. 2,3-Dihydroxybenzoic acid attenuates kanamycin-induced volume reduction in mouse utricular type I hair cells

    DEFF Research Database (Denmark)

    Severinsen, Stig Åvall; Kirkegaard, Mette; Nyengaard, Jens Randel

    2006-01-01

    injection. Total volume of the utricle, as well as total number of hair and supporting cells, were estimated on light microscopic sections. Total volume and mean volume of hair cell types I and II and supporting cells were estimated on digital transmission electron micrographs. Total volume of the utricular...... macula, hair cell type I and supporting cells decreased significantly in animals injected with kanamycin but not in animals co-treated with DHB. Hair and supporting cell numbers remained unchanged in all three groups. In conclusion, the kanamycin-induced volume reduction of type I hair cells...

  13. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    OpenAIRE

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing ther...

  14. Monitoring intracellular calcium ion dynamics in hair cell populations with Fluo-4 AM.

    Directory of Open Access Journals (Sweden)

    Kateri J Spinelli

    Full Text Available We optimized Fluo-4 AM loading of chicken cochlea to report hair-bundle Ca(2+ signals in populations of hair cells. The bundle Ca(2+ signal reported the physiological state of the bundle and cell; extruding cells had very high bundle Fluo-4 fluorescence, cells with intact bundles and tip links had intermediate fluorescence, and damaged cells with broken tip links had low fluorescence. Moreover, Fluo-4 fluorescence in the bundle correlated with Ca(2+ entry through transduction channels; mechanically activating transduction channels increased the Fluo-4 signal, while breaking tip links with Ca(2+ chelators or blocking Ca(2+ entry through transduction channels each caused bundle and cell-body Fluo-4 fluorescence to decrease. These results show that when tip links break, bundle and soma Ca(2+ decrease, which could serve to stimulate the hair cell's tip-link regeneration process. Measurement of bundle Ca(2+ with Fluo-4 AM is therefore a simple method for assessing mechanotransduction in hair cells and permits an increased understanding of the interplay of tip links, transduction channels, and Ca(2+ signaling in the hair cell.

  15. Tauroursodeoxycholic acid attenuates gentamicin-induced cochlear hair cell death in vitro.

    Science.gov (United States)

    Jia, Zhanwei; He, Qiang; Shan, Chunguang; Li, Fengyi

    2018-09-15

    Gentamycin is one of the most clinically used aminoglycoside antibiotics which induce intrinsic apoptosis of hair cells. Tauroursodeoxycholic acid (TUDCA) is known as safe cell-protective agent in disorders associated with apoptosis. We aimed to investigate the protective effects of TUDCA against gentamicin-induced ototoxicity. House Ear Institute-Organ of Corti 1(HEI-OC1) cells and explanted cochlear tissue were treated with gentamicin and TUDCA, followed by serial analyses including cell viability assay, hair cell staining, qPCR, ELISA and western blotting to determine the cell damage by the parameters relevant to cell apoptosis and endoplasmic reticulum stress. TUDCA significantly attenuated gentamicin-induced cell damage in cultured HEI-OC1 cells and explanted cochlear hair cells. TUDCA alleviated gentamicin-induced cell apoptosis, supported by the decreased Bax/Bcl2 ratio compared with that of gentamicin treated alone. TUDCA decreased gentamicin-induced nitric oxide production and protein nitration in both models. In addition, TUDCA suppressed gentamicin-induced endoplasmic reticulum stress as reflected by inversing the expression levels of Binding immunoglobulin protein (Bip), CCAAT/-enhancer-binding protein homologous protein (CHOP) and Caspase 3. TUDCA attenuated gentamicin-induced hair cell death by inhibiting protein nitration activation and ER stress, providing new insights into the new potential therapies for sensorineural deafness. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Heat pulse excitability of vestibular hair cells and afferent neurons

    Science.gov (United States)

    Brichta, Alan M.; Tabatabaee, Hessam; Boutros, Peter J.; Ahn, JoongHo; Della Santina, Charles C.; Poppi, Lauren A.; Lim, Rebecca

    2016-01-01

    In the present study we combined electrophysiology with optical heat pulse stimuli to examine thermodynamics of membrane electrical excitability in mammalian vestibular hair cells and afferent neurons. We recorded whole cell currents in mammalian type II vestibular hair cells using an excised preparation (mouse) and action potentials (APs) in afferent neurons in vivo (chinchilla) in response to optical heat pulses applied to the crista (ΔT ≈ 0.25°C per pulse). Afferent spike trains evoked by heat pulse stimuli were diverse and included asynchronous inhibition, asynchronous excitation, and/or phase-locked APs synchronized to each infrared heat pulse. Thermal responses of membrane currents responsible for APs in ganglion neurons were strictly excitatory, with Q10 ≈ 2. In contrast, hair cells responded with a mix of excitatory and inhibitory currents. Excitatory hair cell membrane currents included a thermoelectric capacitive current proportional to the rate of temperature rise (dT/dt) and an inward conduction current driven by ΔT. An iberiotoxin-sensitive inhibitory conduction current was also evoked by ΔT, rising in heat pulse excitability in vestibular sensory organs and provide quantitative methods for rational application of optical heat pulses to examine protein biophysics and manipulate cellular excitability. PMID:27226448

  17. ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells.

    Science.gov (United States)

    Poppi, Lauren A; Tabatabaee, Hessam; Drury, Hannah R; Jobling, Phillip; Callister, Robert J; Migliaccio, Americo A; Jordan, Paivi M; Holt, Joseph C; Rabbitt, Richard D; Lim, Rebecca; Brichta, Alan M

    2018-01-01

    In the mammalian vestibular periphery, electrical activation of the efferent vestibular system (EVS) has two effects on afferent activity: 1) it increases background afferent discharge and 2) decreases afferent sensitivity to rotational stimuli. Although the cellular mechanisms underlying these two contrasting afferent responses remain obscure, we postulated that the reduction in afferent sensitivity was attributed, in part, to the activation of α9- containing nicotinic acetylcholine (ACh) receptors (α9*nAChRs) and small-conductance potassium channels (SK) in vestibular type II hair cells, as demonstrated in the peripheral vestibular system of other vertebrates. To test this hypothesis, we examined the effects of the predominant EVS neurotransmitter ACh on vestibular type II hair cells from wild-type (wt) and α9-subunit nAChR knockout (α9 -/- ) mice. Immunostaining for choline acetyltransferase revealed there were no obvious gross morphological differences in the peripheral EVS innervation among any of these strains. ACh application onto wt type II hair cells, at resting potentials, produced a fast inward current followed by a slower outward current, resulting in membrane hyperpolarization and decreased membrane resistance. Hyperpolarization and decreased resistance were due to gating of SK channels. Consistent with activation of α9*nAChRs and SK channels, these ACh-sensitive currents were antagonized by the α9*nAChR blocker strychnine and SK blockers apamin and tamapin. Type II hair cells from α9 -/- mice, however, failed to respond to ACh at all. These results confirm the critical importance of α9nAChRs in efferent modulation of mammalian type II vestibular hair cells. Application of exogenous ACh reduces electrical impedance, thereby decreasing type II hair cell sensitivity. NEW & NOTEWORTHY Expression of α9 nicotinic subunit was crucial for fast cholinergic modulation of mammalian vestibular type II hair cells. These findings show a multifaceted

  18. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration

    Directory of Open Access Journals (Sweden)

    Rahul Mittal

    2017-07-01

    Full Text Available Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.

  19. Protective effects of edaravone against cisplatin-induced hair cell damage in zebrafish.

    Science.gov (United States)

    Hong, Seok Jin; Im, Gi Jung; Chang, Jiwon; Chae, Sung Won; Lee, Seung Hoon; Kwon, Soon Young; Jung, Hak Hyun; Chung, Ah Young; Park, Hae Chul; Choi, June

    2013-06-01

    Edaravone is known to have a potent free radical scavenging effect. The objective of the present study was to evaluate the effects of edaravone on cisplatin-induced ototoxicity in transgenic zebrafish (Brn3C: EGFP). Five day post-fertilization zebrafish larvae were exposed to 1000 μM cisplatin and 50 μM, 100 μM, 250 μM, 500 μM, 750 μM, and 1000 μM concentrations of edaravone for 4h. Hair cells within neuromasts of the supraorbital (SO1 and SO2), otic (O1), and occipital (OC1) lateral lines were analyzed by fluorescence microscopy and confocal microscopy (n=10). Hair cell survival was calculated as a percentage of the hair cells in the control group that were not exposed to cisplatin. Ultrastructural changes were evaluated using scanning electron microscopy and transmission electron microscopy. Edaravone protected cisplatin-induced hair cell loss of neuromasts (edaravone 750 μM: 8.7 ± 1.5 cells, cisplatin 1000 μM only: 3.7 ± 0.9 cells; n=10, pedaravone for 4h. Edaravone attenuated cisplatin-induced hair cell damage in zebrafish. The results of the current study suggest that cisplatin induces apoptosis, and the apoptotic cell death can be prevented by treatment with edaravone in zebrafish. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Up-to-date Clinical Trials of Hair Regeneration Using Conditioned Media of Adipose-Derived Stem Cells in Male and Female Pattern Hair Loss.

    Science.gov (United States)

    Shin, Hyoseung; Won, Chong Hyun; Chung, Woon-Kyung; Park, Byung-Soon

    2017-01-01

    The primary roles of mesenchymal stem cells (MSCs) are to maintain the stem cell niche, facilitate recovery after injury, and ensure healthy aging and the homeostasis of organ and tissues. MSCs have recently emerged as a new therapeutic option for hair loss. Since adipose-derived stem cells (ADSCs) are the most accessible sources of MSCs, ADSCbased hair regeneration is investigated. Besides replacing degenerated cells in affected organs, ADSCs exhibit their beneficial effects through the paracrine actions of various cytokines and growth factors. Several laboratory experiments and animal studies have shown that ADSC-related proteins can stimulate hair growth. In addition, we introduce our clinical pilot studies using conditioned media of ADSCs for pattern hair loss in men and women. We believe that conditioned media of ADSCs represents a promising alternative therapeutic strategy for hair loss. We also discuss practical therapeutic challenges and the direction of future research. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish.

    Science.gov (United States)

    Kim, Chang Woo; Han, Ji Hyuk; Wu, Ling; Choi, Jae Young

    2018-01-01

    microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 μM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration. © Copyright: Yonsei University College of Medicine 2018

  2. Reduced systemic toxicity and preserved vestibular toxicity following co-treatment with nitriles and CYP2E1 inhibitors: a mouse model for hair cell loss.

    Science.gov (United States)

    Saldaña-Ruíz, Sandra; Boadas-Vaello, Pere; Sedó-Cabezón, Lara; Llorens, Jordi

    2013-10-01

    Several nitriles, including allylnitrile and cis-crotononitrile, have been shown to be ototoxic and cause hair cell degeneration in the auditory and vestibular sensory epithelia of mice. However, these nitriles can also be lethal due in large part to the microsomal metabolic release of cyanide, which is mostly dependent on the activity of the 2E1 isoform of the cytochrome P450 (CYP2E1). In this study, we co-administered mice with a nitrile and, to reduce their lethal effects, a selective CYP2E1 inhibitor: diallylsulfide (DAS) or trans-1,2-dichloroethylene (TDCE). Both in female 129S1/SvImJ (129S1) mice co-treated with DAS and cis-crotononitrile and in male RjOrl:Swiss/CD-1 (Swiss) mice co-treated with TDCE and allylnitrile, the nitrile caused a dose-dependent loss of vestibular function, as assessed by a specific behavioral test battery, and of hair cells, as assessed by hair bundle counts using scanning electron microscopy. In the experiments, the CYP2E1 inhibitors provided significant protection against the lethal effects of the nitriles and did not diminish the vestibular toxicity as assessed by behavioral effects in comparison to animals receiving no inhibitor. Additional experiments using a single dose of allylnitrile demonstrated that TDCE does not cause hair cell loss on its own and does not modify the vestibular toxicity of the nitrile in either male or female 129S1 mice. In all the experiments, high vestibular dysfunction scores in the behavioral test battery predicted extensive to complete loss of hair cells in the utricles. This provides a means of selecting animals for subsequent studies of vestibular hair cell regeneration or replacement.

  3. An Analogue VLSI Implementation of the Meddis Inner Hair Cell Model

    Science.gov (United States)

    McEwan, Alistair; van Schaik, André

    2003-12-01

    The Meddis inner hair cell model is a widely accepted, but computationally intensive computer model of mammalian inner hair cell function. We have produced an analogue VLSI implementation of this model that operates in real time in the current domain by using translinear and log-domain circuits. The circuit has been fabricated on a chip and tested against the Meddis model for (a) rate level functions for onset and steady-state response, (b) recovery after masking, (c) additivity, (d) two-component adaptation, (e) phase locking, (f) recovery of spontaneous activity, and (g) computational efficiency. The advantage of this circuit, over other electronic inner hair cell models, is its nearly exact implementation of the Meddis model which can be tuned to behave similarly to the biological inner hair cell. This has important implications on our ability to simulate the auditory system in real time. Furthermore, the technique of mapping a mathematical model of first-order differential equations to a circuit of log-domain filters allows us to implement real-time neuromorphic signal processors for a host of models using the same approach.

  4. A role for CSLD3 during cell-wall synthesis in apical plasma membranes of tip-growing root-hair cells.

    Science.gov (United States)

    Park, Sungjin; Szumlanski, Amy L; Gu, Fangwei; Guo, Feng; Nielsen, Erik

    2011-07-17

    In plants, cell shape is defined by the cell wall, and changes in cell shape and size are dictated by modification of existing cell walls and deposition of newly synthesized cell-wall material. In root hairs, expansion occurs by a process called tip growth, which is shared by root hairs, pollen tubes and fungal hyphae. We show that cellulose-like polysaccharides are present in root-hair tips, and de novo synthesis of these polysaccharides is required for tip growth. We also find that eYFP-CSLD3 proteins, but not CESA cellulose synthases, localize to a polarized plasma-membrane domain in root hairs. Using biochemical methods and genetic complementation of a csld3 mutant with a chimaeric CSLD3 protein containing a CESA6 catalytic domain, we provide evidence that CSLD3 represents a distinct (1→4)-β-glucan synthase activity in apical plasma membranes during tip growth in root-hair cells.

  5. The design, calibration, and use of a water microjet for stimulating hair cell sensory hair bundles.

    Science.gov (United States)

    Saunders, J C; Szymko, Y M

    1989-11-01

    The design, calibration, and use of a noninvasive, noncontact device for stimulating hair cell hair bundles in vitro are described. This device employed a piezoelectric crystal, driven at high frequencies, to generate sinusoidal pressure in a contained fluid volume. The pressure was propagated to the tip of a glass micropipette and the oscillating water jet stimulus produced at the tip was used to stimulate sensory hair bundles. The movements of glass microbeads, caught in the oscillating pressure field of the water jet, provided a means of calibrating this stimulus. The linearity of the jet, its waveform and frequency response, the influence of pipette shape and tip diameter, as well as models to explain the operation of the water jet, are described. The use of this stimulus for measuring hair bundle micromechanics at high frequencies is then demonstrated.

  6. Numerical simulation of the hair formation -modeling of hair cycle

    Science.gov (United States)

    Kajihara, Narumichi; Nagayama, Katsuya

    2018-01-01

    In the recent years, the fields of study of anti-aging, health and beauty, cosmetics, and hair diseases have attracted significant attention. In particular, human hair is considered to be an important aspect with regard to an attractive appearance. To this end, many workers have sought to understand the formation mechanism of the hair root. However, observing growth in the hair root is difficult, and a detailed mechanism of the process has not yet been elucidated. Hair repeats growth, retraction, and pause cycles (hair cycle) in a repetitive process. In the growth phase, hair is formed through processes of cell proliferation and differentiation (keratinization). During the retraction phase, hair growth stops, and during the resting period, hair fall occurs and new hair grows. This hair cycle is believed to affect the elongation rate, thickness, strength, and shape of hair. Therefore, in this study, we introduce a particle model as a new method to elucidate the unknown process of hair formation, and to model the hair formation process accompanying the proliferation and differentiation of the hair root cells in all three dimensions. In addition, to the growth period, the retraction and the resting periods are introduced to realize the hair cycle using this model.

  7. Falsification of the ionic channel theory of hair cell transduction.

    Science.gov (United States)

    Rossetto, Michelangelo

    2013-11-01

    The hair cell provides the transduction of mechanical vibrations in the balance and acoustic sense of all vertebrates that swim, walk, or fly. The current theory places hair cell transduction in a mechanically controlled ion channel. Although the theory of a mechanical input modulating the flow of ions through an ion pore has been a useful tool, it is falsified by experimental data in the literature and can be definitively falsified by a proposed experiment.

  8. Low density of membrane particles in auditory hair cells of lizards and birds suggests an absence of somatic motility.

    Science.gov (United States)

    Köppl, Christine; Forge, Andrew; Manley, Geoffrey A

    2004-11-08

    Hair cells are the mechanoreceptive cells of the vertebrate lateral line and inner ear. In addition to their sensory function, hair cells display motility and thus themselves generate mechanical energy, which is thought to enhance sensitivity. Two principal cellular mechanism are known that can mediate hair-cell motility in vitro. One of these is based on voltage-dependent changes of an intramembrane protein and has so far been demonstrated only in outer hair cells of the mammalian cochlea. Correlated with this, the cell membranes of outer hair cells carry an extreme density of embedded particles, as revealed by freeze fracturing. The present study explored the possibility of membrane-based motility in hair cells of nonmammals, by determining their density of intramembrane particles. Replicas of freeze-fractured membrane were prepared from auditory hair cells of a lizard, the Tokay gecko, and a bird, the barn owl. These species were chosen because of independent evidence for active cochlear mechanics, in the form of spontaneous otoacoustic emissions. For quantitative comparison, mammalian inner and outer hair cells, as well as vestibular hair, cells were reevaluated. Lizard and bird hair cells displayed median densities of 2,360 and 1,880 intramembrane particles/microm2, respectively. This was not significantly different from the densities in vestibular and mammalian inner hair cells; however, it was about half the density in of mammalian outer hair cells. This suggests that nonmammalian hair cells do not possess high densities of motor protein in their membranes and are thus unlikely to be capable of somatic motility. 2004 Wiley-Liss, Inc.

  9. An Analogue VLSI Implementation of the Meddis Inner Hair Cell Model

    Directory of Open Access Journals (Sweden)

    Alistair McEwan

    2003-06-01

    Full Text Available The Meddis inner hair cell model is a widely accepted, but computationally intensive computer model of mammalian inner hair cell function. We have produced an analogue VLSI implementation of this model that operates in real time in the current domain by using translinear and log-domain circuits. The circuit has been fabricated on a chip and tested against the Meddis model for (a rate level functions for onset and steady-state response, (b recovery after masking, (c additivity, (d two-component adaptation, (e phase locking, (f recovery of spontaneous activity, and (g computational efficiency. The advantage of this circuit, over other electronic inner hair cell models, is its nearly exact implementation of the Meddis model which can be tuned to behave similarly to the biological inner hair cell. This has important implications on our ability to simulate the auditory system in real time. Furthermore, the technique of mapping a mathematical model of first-order differential equations to a circuit of log-domain filters allows us to implement real-time neuromorphic signal processors for a host of models using the same approach.

  10. Discussion: Changes in Vocal Production and Auditory Perception after Hair Cell Regeneration.

    Science.gov (United States)

    Ryals, Brenda M.; Dooling, Robert J.

    2000-01-01

    A bird study found that with sufficient time and training after hair cell and hearing loss and hair cell regeneration, the mature avian auditory system can accommodate input from a newly regenerated periphery sufficiently to allow for recognition of previously familiar vocalizations and the learning of new complex acoustic classifications.…

  11. Cytoplasm localization of aminopeptidase M1 and its functional activity in root hair cells and BY-2 cells.

    Science.gov (United States)

    Lee, Ok Ran; Cho, Hyung-Taeg

    2012-12-01

    Aminopeptidase M1 (APM1) was the first M1 metallopeptidase family member identified in Arabidopsis, isolated by its affinity for the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). A loss-of-function mutation showed various developmental defects in cell division and auxin transport. APM1 was shown to be localized in endomembrane structures, the cytoplasm, and the plasma membrane. These previous results suggested that APM1 has diverse functional roles in different cell and tissue types. Here we report that APM1 localized to the cytoplasm, and its over-expression in the root hair cell caused longer root hair phenotypes. Treatment of aminopeptidase inhibitors caused internalization of auxin efflux PIN-FORMED proteins in root hair cells and suppressed short root hair phenotype of PIN3 overexpression line (PIN3ox). APM1 also localized to the cytoplasm in tobacco BY-2 cells, its over-expression had little effect on auxin transport in these cells.

  12. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    Science.gov (United States)

    He, Yingzi; Cai, Chengfu; Tang, Dongmei; Sun, Shan; Li, Huawei

    2014-01-01

    In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, non-mammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well-suited for studying hair cell development and regeneration. Histone deacetylase (HDAC) activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU) incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA) or valproic acid (VPA) increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line. PMID:25431550

  13. Effect of histone deacetylase inhibitors trichostatin A and valproic acid on hair cell regeneration in zebrafish lateral line neuromasts

    Directory of Open Access Journals (Sweden)

    Yingzi eHe

    2014-11-01

    Full Text Available In humans, auditory hair cells are not replaced when injured. Thus, cochlear hair cell loss causes progressive and permanent hearing loss. Conversely, nonmammalian vertebrates are capable of regenerating lost sensory hair cells. The zebrafish lateral line has numerous qualities that make it well suited for studying hair cell development and regeneration. Histone deacetylase (HDAC activity has been shown to have an important role in regenerative processes in vertebrates, but its function in hair cell regeneration in vivo is not fully understood. Here, we have examined the role of HDAC activity in hair cell regeneration in the zebrafish lateral line. We eliminated lateral line hair cells of 5-day post-fertilization larvae using neomycin and then treated the larvae with HDAC inhibitors. To assess hair cell regeneration, we used 5-bromo-2-deoxyuridine (BrdU incorporation in zebrafish larvae to label mitotic cells after hair cell loss. We found that pharmacological inhibition of HDACs using trichostatin A (TSA or valproic acid (VPA increased histone acetylation in the regenerated neuromasts following neomycin-induced damage. We also showed that treatment with TSA or VPA decreased the number of supporting cells and regenerated hair cells in response to hair cell damage. Additionally, BrdU immunostaining and western blot analysis showed that TSA or VPA treatment caused a significant decrease in the percentage of S-phase cells and induced p21Cip1 and p27Kip1 expression, both of which are likely to explain the decrease in the amount of newly regenerated hair cells in treated embryos. Finally, we showed that HDAC inhibitors induced no observable cell death in neuromasts as measured by cleaved caspase-3 immunohistochemistry and western blot analysis. Taken together, our results demonstrate that HDAC activity has an important role in the regeneration of hair cells in the lateral line.

  14. Intercellular K⁺ accumulation depolarizes Type I vestibular hair cells and their associated afferent nerve calyx.

    Science.gov (United States)

    Contini, D; Zampini, V; Tavazzani, E; Magistretti, J; Russo, G; Prigioni, I; Masetto, S

    2012-12-27

    Mammalian vestibular organs contain two types of sensory receptors, named Type I and Type II hair cells. While Type II hair cells are contacted by several small afferent nerve terminals, the basolateral surface of Type I hair cells is almost entirely enveloped by a single large afferent nerve terminal, called calyx. Moreover Type I, but not Type II hair cells, express a low-voltage-activated outward K(+) current, I(K,L), which is responsible for their much lower input resistance (Rm) at rest as compared to Type II hair cells. The functional meaning of I(K,L) and associated calyx is still enigmatic. By combining the patch-clamp whole-cell technique with the mouse whole crista preparation, we have recorded the current- and voltage responses of in situ hair cells. Outward K(+) current activation resulted in K(+) accumulation around Type I hair cells, since it induced a rightward shift of the K(+) reversal potential the magnitude of which depended on the amplitude and duration of K(+) current flow. Since this phenomenon was never observed for Type II hair cells, we ascribed it to the presence of a residual calyx limiting K(+) efflux from the synaptic cleft. Intercellular K(+) accumulation added a slow (τ>100ms) depolarizing component to the cell voltage response. In a few cases we were able to record from the calyx and found evidence for intercellular K(+) accumulation as well. The resulting depolarization could trigger a discharge of action potentials in the afferent nerve fiber. Present results support a model where pre- and postsynaptic depolarization produced by intercellular K(+) accumulation cooperates with neurotransmitter exocytosis in sustaining afferent transmission arising from Type I hair cells. While vesicular transmission together with the low Rm of Type I hair cells appears best suited for signaling fast head movements, depolarization produced by intercellular K(+) accumulation could enhance signal transmission during slow head movements. Copyright

  15. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  16. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea.

    Science.gov (United States)

    Chen, Qianqian; Quan, Yizhou; Wang, Naitao; Xie, Chengying; Ji, Zhongzhong; He, Hao; Chai, Renjie; Li, Huawei; Yin, Shankai; Chin, Y Eugene; Wei, Xunbin; Gao, Wei-Qiang

    2017-07-11

    Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment. Copyright © 2017 International Society for Stem Cell Research. Published by Elsevier Inc. All rights reserved.

  17. Effect of JNK inhibitor SP600125 on hair cell regeneration in zebrafish (Danio rerio) larvae

    Science.gov (United States)

    Sun, Shaoyang; Wang, Xu; Li, Wenyan; Li, Huawei

    2016-01-01

    The c-Jun amino-terminal kinase (JNK) proteins are a subgroup of the mitogen-activated protein kinase family. They play a complex role in cell proliferation, survival, and apoptosis. Here, we report a novel role of JNK signalling in hair cell regeneration. We eliminated hair cells of 5-day post-fertilization zebrafish larvae using neomycin followed by JNK inhibition with SP600125. JNK inhibition strongly decreased the number of regenerated hair cells in response to neomycin damage. These changes were associated with reduced proliferation. JNK inhibition also increased cleaved caspase-3 activity and induced apoptosis in regenerating neuromasts. Finally, JNK inhibition with SP600125 decreased the expression of genes related to Wnt. Over-activation of the Wnt signalling pathway partly rescued the hair cell regeneration defects induced by JNK inhibition. Together, our findings provide novel insights into the function of JNK and show that JNK inhibition blocks hair cell regeneration by controlling the Wnt signalling pathway. PMID:27438150

  18. Pairwise coupling of hair cell transducer channels links auditory sensitivity and dynamic range

    NARCIS (Netherlands)

    van Netten, Sietse M.; Meulenberg, Cecil J. W.; Lennan, George W. T.; Kros, Corne J.

    Hair cells in the inner ear provide the basis for the exquisite hearing capabilities of mammals. These cells transduce sound-induced displacements of their mechanosensitive hair bundle into electrical currents within a fraction of a millisecond and with nanometer fidelity. Excitatory displacements

  19. Inactivation of STAT3 Signaling Impairs Hair Cell Differentiation in the Developing Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    2017-07-01

    Full Text Available Although STAT3 signaling is demonstrated to regulate sensory cell differentiation and regeneration in the zebrafish, its exact role is still unclear in mammalian cochleae. Here, we report that STAT3 and its activated form are specifically expressed in hair cells during mouse cochlear development. Importantly, conditional cochlear deletion of Stat3 leads to an inhibition on hair cell differentiation in mice in vivo and in vitro. By cell fate analysis, inactivation of STAT3 signaling shifts the cell division modes from asymmetric to symmetric divisions from supporting cells. Moreover, inhibition of Notch signaling stimulates STAT3 phosphorylation, and inactivation of STAT3 signaling attenuates production of supernumerary hair cells induced by a Notch pathway inhibitor. Our findings highlight an important role of the STAT3 signaling during mouse cochlear hair cell differentiation and may have clinical implications for the recovery of hair cell loss-induced hearing impairment.

  20. Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice

    International Nuclear Information System (INIS)

    Chen, Mo; Wang, Qin; Zhu, Gang-Hua; Hu, Peng; Zhou, Yuan; Wang, Tian; Lai, Ruo-Sha; Xiao, Zi-An; Xie, Ding-Hua

    2016-01-01

    The TPRN gene encodes taperin, which is prominently present at the taper region of hair cell stereocilia. Mutations in TPRN have been reported to cause autosomal recessive nonsyndromic deafness 79(DFNB 79). To investigate the role of taperin in pathogenesis of hearing loss, we generated TPRN knockout mice using TALEN technique. Sanger sequencing confirmed an 11 bp deletion at nucleotide 177–187 in exon 1 of TPRN, which results in a truncated form of taperin protein. Heterozygous TPRN +/− mice showed apparently normal auditory phenotypes to their wide-type (WT) littermates. Homozygous TPRN −/− mice exhibited progressive sensorineural hearing loss as reflected by auditory brainstem response to both click and tone burst stimuli at postnatal days 15 (P15), 30 (P30), and 60 (P60). Alex Fluor-594 phalloidin labeling showed no obvious difference in hair cell numbers in the cochlea between TPRN −/− mice and WT mice under light microscope. However, scanning electronic microscopy revealed progressive degeneration of inner hair cell stereocilia, from apparently normal at postnatal days 3 (P3) to scattered absence at P15 and further to substantial loss at P30. The outer hair cell stereocilia also showed progressive degeneration, though much less severe, Collectively, we conclude that taperin plays an important role in maintenance of hair cell stereocilia. Establishment of TPRN knockout mice enables further investigation into the function of this gene. - Highlights: • TPRN −/− mice were generated using TALEN technique. • TPRN −/− mice presented progressive hearing loss. • WT and TPRN −/− mice showed no difference in hair cell numbers. • TPRN −/− mice showed progressive degeneration of hair cell stereocilia.

  1. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK

    Science.gov (United States)

    Hill, Kayla; Yuan, Hu; Wang, Xianren

    2016-01-01

    Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. SIGNIFICANCE STATEMENT Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy. PMID:27413159

  2. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK.

    Science.gov (United States)

    Hill, Kayla; Yuan, Hu; Wang, Xianren; Sha, Su-Hua

    2016-07-13

    Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy. Copyright © 2016 the authors 0270-6474/16/367497-14$15.00/0.

  3. Maintained expression of the planar cell polarity molecule Vangl2 and reformation of hair cell orientation in the regenerating inner ear.

    Science.gov (United States)

    Warchol, Mark E; Montcouquiol, Mireille

    2010-09-01

    The avian inner ear possesses a remarkable ability to regenerate sensory hair cells after ototoxic injury. Regenerated hair cells possess phenotypes and innervation that are similar to those found in the undamaged ear, but little is known about the signaling pathways that guide hair cell differentiation during the regenerative process. The aim of the present study was to examine the factors that specify the orientation of hair cell stereocilia bundles during regeneration. Using organ cultures of the chick utricle, we show that hair cells are properly oriented after having regenerated entirely in vitro and that orientation is not affected by surgical removal of the striolar reversal zone. These results suggest that the orientation of regenerating stereocilia is not guided by the release of a diffusible morphogen from the striolar reversal zone but is specified locally within the regenerating sensory organ. In order to determine the nature of the reorientation cues, we examined the expression patterns of the core planar cell polarity molecule Vangl2 in the normal and regenerating utricle. We found that Vangl2 is asymmetrically expressed on cells within the sensory epithelium and that this expression pattern is maintained after ototoxic injury and throughout regeneration. Notably, treatment with a small molecule inhibitor of c-Jun-N-terminal kinase disrupted the orientation of regenerated hair cells. Both of these results are consistent with the hypothesis that noncanonical Wnt signaling guides hair cell orientation during regeneration.

  4. Mobilizing Transit-Amplifying Cell-Derived Ectopic Progenitors Prevents Hair Loss from Chemotherapy or Radiation Therapy.

    Science.gov (United States)

    Huang, Wen-Yen; Lai, Shih-Fan; Chiu, Hsien-Yi; Chang, Michael; Plikus, Maksim V; Chan, Chih-Chieh; Chen, You-Tzung; Tsao, Po-Nien; Yang, Tsung-Lin; Lee, Hsuan-Shu; Chi, Peter; Lin, Sung-Jan

    2017-11-15

    Genotoxicity-induced hair loss from chemotherapy and radiotherapy is often encountered in cancer treatment, and there is a lack of effective treatment. In growing hair follicles (HF), quiescent stem cells (SC) are maintained in the bulge region, and hair bulbs at the base contain rapidly dividing, yet genotoxicity-sensitive transit-amplifying cells (TAC) that maintain hair growth. How genotoxicity-induced HF injury is repaired remains unclear. We report here that HFs mobilize ectopic progenitors from distinct TAC compartments for regeneration in adaptation to the severity of dystrophy induced by ionizing radiation (IR). Specifically, after low-dose IR, keratin 5 + basal hair bulb progenitors, rather than bulge SCs, were quickly activated to replenish matrix cells and regenerated all concentric layers of HFs, demonstrating their plasticity. After high-dose IR, when both matrix and hair bulb cells were depleted, the surviving outer root sheath cells rapidly acquired an SC-like state and fueled HF regeneration. Their progeny then homed back to SC niche and supported new cycles of HF growth. We also revealed that IR induced HF dystrophy and hair loss and suppressed WNT signaling in a p53- and dose-dependent manner. Augmenting WNT signaling attenuated the suppressive effect of p53 and enhanced ectopic progenitor proliferation after genotoxic injury, thereby preventing both IR- and cyclophosphamide-induced alopecia. Hence, targeted activation of TAC-derived progenitor cells, rather than quiescent bulge SCs, for anagen HF repair can be a potential approach to prevent hair loss from chemotherapy and radiotherapy. Cancer Res; 77(22); 6083-96. ©2017 AACR . ©2017 American Association for Cancer Research.

  5. Re-Emergent Inhibition of Cochlear Inner Hair Cells in a Mouse Model of Hearing Loss.

    Science.gov (United States)

    Zachary, Stephen Paul; Fuchs, Paul Albert

    2015-07-01

    Hearing loss among the elderly correlates with diminished social, mental, and physical health. Age-related cochlear cell death does occur, but growing anatomical evidence suggests that synaptic rearrangements on sensory hair cells also contribute to auditory functional decline. Here we present voltage-clamp recordings from inner hair cells of the C57BL/6J mouse model of age-related hearing loss, which reveal that cholinergic synaptic inputs re-emerge during aging. These efferents are functionally inhibitory, using the same ionic mechanisms as do efferent contacts present transiently before the developmental onset of hearing. The strength of efferent inhibition of inner hair cells increases with hearing threshold elevation. These data indicate that the aged cochlea regains features of the developing cochlea and that efferent inhibition of the primary receptors of the auditory system re-emerges with hearing impairment. Synaptic changes in the auditory periphery are increasingly recognized as important factors in hearing loss. To date, anatomical work has described the loss of afferent contacts from cochlear hair cells. However, relatively little is known about the efferent innervation of the cochlea during hearing loss. We performed intracellular recordings from mouse inner hair cells across the lifespan and show that efferent innervation of inner hair cells arises in parallel with the loss of afferent contacts and elevated hearing threshold during aging. These efferent neurons inhibit inner hair cells, raising the possibility that they play a role in the progression of age-related hearing loss. Copyright © 2015 the authors 0270-6474/15/359701-06$15.00/0.

  6. Type I hair cell degeneration in the utricular macula of the waltzing guinea pig

    DEFF Research Database (Denmark)

    Severinsen, Stig A; Raarup, Merete Krog; Ulfendahl, Mats

    2008-01-01

    Waltzing guinea pigs are an inbred guinea pig strain with a congenital and progressive balance and hearing disorder. A unique rod-shaped structure is found in the type I vestibular hair cells, that traverses the cell in an axial direction, extending towards the basement membrane. The present study...... estimates the total number of utricular hair cells and supporting cells in waltzing guinea pigs and age-matched control animals using the optical fractionator method. Animals were divided into four age groups (1, 7, 49 and 343 day-old). The number of type I hair cells decreased by 20% in the 343 day......-old waltzing guinea pigs compared to age-matched controls and younger animals. Two-photon confocal laser scanning microscopy using antibodies against fimbrin and betaIII-tubulin showed that the rods were exclusive to type I hair cells. There was no significant change in the length of the filament rods with age...

  7. XIRP2, an Actin-Binding Protein Essential for Inner Ear Hair-Cell Stereocilia

    Directory of Open Access Journals (Sweden)

    Déborah I. Scheffer

    2015-03-01

    Full Text Available Hair cells of the inner ear are mechanoreceptors for hearing and balance, and proteins highly enriched in hair cells may have specific roles in the development and maintenance of the mechanotransduction apparatus. We identified XIRP2/mXinβ as an enriched protein likely to be essential for hair cells. We found that different isoforms of this protein are expressed and differentially located: short splice forms (also called XEPLIN are targeted more to stereocilia, whereas two long isoforms containing a XIN-repeat domain are in both stereocilia and cuticular plates. Mice lacking the Xirp2 gene developed normal stereocilia bundles, but these degenerated with time: stereocilia were lost and long membranous protrusions emanated from the nearby apical surfaces. At an ultrastructural level, the paracrystalline actin filaments became disorganized. XIRP2 is apparently involved in the maintenance of actin structures in stereocilia and cuticular plates of hair cells, and perhaps in other organs where it is expressed.

  8. FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells.

    Science.gov (United States)

    Nguyen, Minh Binh; Cohen, Idan; Kumar, Vinod; Xu, Zijian; Bar, Carmit; Dauber-Decker, Katherine L; Tsai, Pai-Chi; Marangoni, Pauline; Klein, Ophir D; Hsu, Ya-Chieh; Chen, Ting; Mikkola, Marja L; Ezhkova, Elena

    2018-06-13

    Merkel cells are innervated mechanosensory cells responsible for light-touch sensations. In murine dorsal skin, Merkel cells are located in touch domes and found in the epidermis around primary hairs. While it has been shown that Merkel cells are skin epithelial cells, the progenitor cell population that gives rise to these cells is unknown. Here, we show that during embryogenesis, SOX9-positive (+) cells inside hair follicles, which were previously known to give rise to hair follicle stem cells (HFSCs) and cells of the hair follicle lineage, can also give rise to Merkel Cells. Interestingly, while SOX9 is critical for HFSC specification, it is dispensable for Merkel cell formation. Conversely, FGFR2 is required for Merkel cell formation but is dispensable for HFSCs. Together, our studies uncover SOX9(+) cells as precursors of Merkel cells and show the requirement for FGFR2-mediated epithelial signalling in Merkel cell specification.

  9. Investigation of hair dye deposition, hair color loss, and hair damage during multiple oxidative dyeing and shampooing cycles.

    Science.gov (United States)

    Zhang, Guojin; McMullen, Roger L; Kulcsar, Lidia

    2016-01-01

    Color fastness is a major concern for consumers and manufacturers of oxidative hair dye products. Hair dye loss results from multiple wash cycles in which the hair dye is dissolved by water and leaches from the hair shaft. In this study, we carried out a series of measurements to help us better understand the kinetics of the leaching process and pathways associated with its escape from the fiber. Hair dye leaching kinetics was measured by suspending hair in a dissolution apparatus and monitoring the dye concentration in solution (leached dye) with an ultraviolet-visible spectrophotometer. The physical state of dye deposited in hair fibers was evaluated by a reflectance light microscopy technique, based on image stacking, allowing enhanced depth of field imaging. The dye distribution within the fiber was monitored by infrared spectroscopic imaging of hair fiber cross sections. Damage to the ultrafine structure of the hair cuticle (surface, endocuticle, and cell membrane complex) and cortex (cell membrane complex) was determined in hair cross sections and on the hair fiber surface with atomic force microscopy. Using differential scanning calorimetry, we investigated how consecutive coloring and leaching processes affect the internal proteins of hair. Further, to probe the surface properties of hair we utilized contact angle measurements. This study was conducted on both pigmented and nonpigmented hair to gain insight into the influence of melanin on the hair dye deposition and leaching processes. Both types of hair were colored utilizing a commercial oxidative hair dye product based on pyrazole chemistry.

  10. The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine.

    Science.gov (United States)

    Kiani, Mehrdad T; Higgins, Claire A; Almquist, Benjamin D

    2018-04-09

    The hair follicle is one of only two structures within the adult body that selectively degenerates and regenerates, making it an intriguing organ to study and use for regenerative medicine. Hair follicles have been shown to influence wound healing, angiogenesis, neurogenesis, and harbor distinct populations of stem cells; this has led to cells from the follicle being used in clinical trials for tendinosis and chronic ulcers. In addition, keratin produced by the follicle in the form of a hair fiber provides an abundant source of biomaterials for regenerative medicine. In this review, we provide an overview of the structure of a hair follicle, explain the role of the follicle in regulating the microenvironment of skin and the impact on wound healing, explore individual cell types of interest for regenerative medicine, and cover several applications of keratin-based biomaterials.

  11. Stem Cell Therapy for Erectile Dysfunction.

    Science.gov (United States)

    Matz, Ethan L; Terlecki, Ryan; Zhang, Yuanyuan; Jackson, John; Atala, Anthony

    2018-04-06

    The prevalence of erectile dysfunction (ED) is substantial and continues to rise. Current therapeutics for ED consist of oral medications, intracavernosal injections, vacuum erection devices, and penile implants. While such options may manage the disease state, none of these modalities, however, restore function. Stem cell therapy has been evaluated for erectile restoration in animal models. These cells have been derived from multiple tissues, have varied potential, and may function via local engraftment or paracrine signaling. Bone marrow-derived stem cells (BMSC) and adipose-derived stem cells (ASC) have both been used in these models with noteworthy effects. Herein, we will review the pathophysiology of ED, animal models, current and novel stem-cell based therapeutics, clinical trials and areas for future research. The relevant literature and contemporary data using keywords, "stem cells and erectile dysfunction" was reviewed. Examination of evidence supporting the association between erectile dysfunction and adipose derived stem cells, bone marrow derived stem cells, placental stem cells, urine stem cells and stem cell therapy respectively. Placental-derived stem cells and urine-derived stem cells possess many similar properties as BMSC and ASC, but the methods of acquisition are favorable. Human clinical trials have already demonstrated successful use of stem cells for improvement of erectile function. The future of stem cell research is constantly being evaluated, although, the evidence suggests a place for stem cells in erectile dysfunction therapeutics. Matz EL, Terlecki R, Zhang Y, et al. Stem Cell Therapy for Erectile Dysfunction. Sex Med Rev 2018;XX:XXX-XXX. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  12. ROOT HAIR DEFECTIVE SIX-LIKE Class I Genes Promote Root Hair Development in the Grass Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Chul Min Kim

    2016-08-01

    Full Text Available Genes encoding ROOT HAIR DEFECTIVE SIX-LIKE (RSL class I basic helix loop helix proteins are expressed in future root hair cells of the Arabidopsis thaliana root meristem where they positively regulate root hair cell development. Here we show that there are three RSL class I protein coding genes in the Brachypodium distachyon genome, BdRSL1, BdRSL2 and BdRSL3, and each is expressed in developing root hair cells after the asymmetric cell division that forms root hair cells and hairless epidermal cells. Expression of BdRSL class I genes is sufficient for root hair cell development: ectopic overexpression of any of the three RSL class I genes induces the development of root hairs in every cell of the root epidermis. Expression of BdRSL class I genes in root hairless Arabidopsis thaliana root hair defective 6 (Atrhd6 Atrsl1 double mutants, devoid of RSL class I function, restores root hair development indicating that the function of these proteins has been conserved. However, neither AtRSL nor BdRSL class I genes is sufficient for root hair development in A. thaliana. These data demonstrate that the spatial pattern of class I RSL activity can account for the pattern of root hair cell differentiation in B. distachyon. However, the spatial pattern of class I RSL activity cannot account for the spatial pattern of root hair cells in A. thaliana. Taken together these data indicate that that the functions of RSL class I proteins have been conserved among most angiosperms-monocots and eudicots-despite the dramatically different patterns of root hair cell development.

  13. Serum drug level-related sodium valproate-induced hair loss.

    Science.gov (United States)

    Ramakrishnappa, Suresh K; Belhekar, Mahesh N

    2013-01-01

    Sodium valproate is a well-established treatment in epilepsy and mood disorders. Its utility is compromised by its adverse effects such as tremor, weight gain, hair loss, and liver dysfunction. Hair loss may occur when drug is used in higher dose. Drug-induced hair loss is diffused and non-scarring, which is reversible upon withdrawal. But there are no case reports showing relation between serum levels of valproate and occurrence of hair loss. So we took interest in reporting this case report.

  14. Role of somatostatin receptor-2 in gentamicin-induced auditory hair cell loss in the Mammalian inner ear.

    Directory of Open Access Journals (Sweden)

    Yves Brand

    Full Text Available Hair cells and spiral ganglion neurons of the mammalian auditory system do not regenerate, and their loss leads to irreversible hearing loss. Aminoglycosides induce auditory hair cell death in vitro, and evidence suggests that phosphatidylinositol-3-kinase/Akt signaling opposes gentamicin toxicity via its downstream target, the protein kinase Akt. We previously demonstrated that somatostatin-a peptide with hormone/neurotransmitter properties-can protect hair cells from gentamicin-induced hair cell death in vitro, and that somatostatin receptors are expressed in the mammalian inner ear. However, it remains unknown how this protective effect is mediated. In the present study, we show a highly significant protective effect of octreotide (a drug that mimics and is more potent than somatostatin on gentamicin-induced hair cell death, and increased Akt phosphorylation in octreotide-treated organ of Corti explants in vitro. Moreover, we demonstrate that somatostatin receptor-1 knockout mice overexpress somatostatin receptor-2 in the organ of Corti, and are less susceptible to gentamicin-induced hair cell loss than wild-type or somatostatin-1/somatostatin-2 double-knockout mice. Finally, we show that octreotide affects auditory hair cells, enhances spiral ganglion neurite number, and decreases spiral ganglion neurite length.

  15. Inositol bisphosphate and inositol trisphosphate inhibit cell-to-cell passage of carboxyfluorescein in staminal hairs ofSetcreasea purpurea.

    Science.gov (United States)

    Tucker, E B

    1988-06-01

    pH-buffered carboxyfluorescein (Buffered-CF) alone (control), or Buffered-CF solutions containing one of the following: (1)D-myo-inositol (I); (2)D-myo-inositol 2-monophosphate (IP1); (3)D-myo-inositol 1,4-bisphosphate (IP2); (4)D-myo-inositol 1,4,5-trisphosphate (IP3); (5)D-fructose 2,6-diphosphate (F-2,6P2) were microinjected into the terminal cells of staminal hairs ofSetcreasea purpurea Boom. Passage of the CF from this terminal cell along the chain of cells towards the filament was monitored for 5 min using fluorescence microscopy and quantified using computer-assisted fluorescence-intensity video analysis. Cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either I, IP1 or F-2,6P2 was similar to that in hairs microinjected with Buffered-CF only. On the other hand, cell-to-cell transport of CF in hairs microinjected with Buffered-CF containing either IP2 or IP3 was inhibited. These results indicate that polyphosphoinositols may be involved in the regulation of intercellular transport of low-molecular-weight, hydrophilic molecules in plants.

  16. Developing an active artificial hair cell using nonlinear feedback control

    Science.gov (United States)

    Joyce, Bryan S.; Tarazaga, Pablo A.

    2015-09-01

    The hair cells in the mammalian cochlea convert sound-induced vibrations into electrical signals. These cells have inspired a variety of artificial hair cells (AHCs) to serve as biologically inspired sound, fluid flow, and acceleration sensors and could one day replace damaged hair cells in humans. Most of these AHCs rely on passive transduction of stimulus while it is known that the biological cochlea employs active processes to amplify sound-induced vibrations and improve sound detection. In this work, an active AHC mimics the active, nonlinear behavior of the cochlea. The AHC consists of a piezoelectric bimorph beam subjected to a base excitation. A feedback control law is used to reduce the linear damping of the beam and introduce a cubic damping term which gives the AHC the desired nonlinear behavior. Model and experimental results show the AHC amplifies the response due to small base accelerations, has a higher frequency sensitivity than the passive system, and exhibits a compressive nonlinearity like that of the mammalian cochlea. This bio-inspired accelerometer could lead to new sensors with lower thresholds of detection, improved frequency sensitivities, and wider dynamic ranges.

  17. Effect of low-level laser treatment on cochlea hair-cell recovery after ototoxic hearing loss

    Science.gov (United States)

    Rhee, Chung-Ku; He, Peijie; Jung, Jae Yun; Ahn, Jin-Chul; Chung, Phil-Sang; Lee, Min Young; Suh, Myung-Whan

    2013-12-01

    The primary cause of hearing loss includes damage to cochlear hair cells. Low-level laser therapy (LLLT) has become a popular treatment for damaged nervous systems. Based on the idea that cochlea hair cells and neural cells are from same developmental origin, the effect of LLLT on hearing loss in animal models is evaluated. Hearing loss animal models were established, and the animals were irradiated by 830-nm diode laser once a day for 10 days. Power density of the laser treatment was 900 mW/cm2, and the fluence was 162 to 194 J. The tympanic membrane was evaluated after LLLT. Thresholds of auditory brainstem responses were evaluated before treatment, after gentamicin, and after 10 days of LLLT. Quantitative scanning electron microscopic (SEM) observations were done by counting remaining hair cells. Tympanic membranes were intact at the end of the experiment. No adverse tissue reaction was found. On SEM images, LLLT significantly increased the number of hair cells in middle and basal turns. Hearing was significantly improved by laser irradiation. After LLLT treatment, both the hearing threshold and hair-cell count significantly improved.

  18. The delayed rectifier, IKI, is the major conductance in type I vestibular hair cells across vestibular end organs

    Science.gov (United States)

    Ricci, A. J.; Rennie, K. J.; Correia, M. J.

    1996-01-01

    Hair cells were dissociated from the semicircular canal, utricle, lagena and saccule of white king pigeons. Type I hair cells were identified morphologically based on the ratios of neck width to cuticular plate width (NPR rectifier characterized previously in semicircular canal hair cells as IKI.

  19. S-nitrosoglutathione promotes cell wall remodelling, alters the transcriptional profile and induces root hair formation in the hairless root hair defective 6 (rhd6) mutant of Arabidopsis thaliana.

    Science.gov (United States)

    Moro, Camila Fernandes; Gaspar, Marilia; da Silva, Felipe Rodrigues; Pattathil, Sivakumar; Hahn, Michael G; Salgado, Ione; Braga, Marcia Regina

    2017-03-01

    Nitric oxide (NO) exerts pleiotropic effects on plant development; however, its involvement in cell wall modification during root hair formation (RHF) has not yet been addressed. Here, mutants of Arabidopsis thaliana with altered root hair phenotypes were used to assess the involvement of S-nitrosoglutathione (GSNO), the primary NO source, in cell wall dynamics and gene expression in roots induced to form hairs. GSNO and auxin restored the root hair phenotype of the hairless root hair defective 6 (rhd6) mutant. A positive correlation was observed between increased NO production and RHF induced by auxin in rhd6 and transparent testa glabra (ttg) mutants. Deposition of an epitope within rhamnogalacturonan-I recognized by the CCRC-M2 antibody was delayed in root hair cells (trichoblasts) compared with nonhair cells (atrichoblasts). GSNO, but not auxin, restored the wild-type root glycome and transcriptome profiles in rhd6, modulating the expression of a large number of genes related to cell wall composition and metabolism, as well as those encoding ribosomal proteins, DNA and histone-modifying enzymes and proteins involved in post-translational modification. Our results demonstrate that NO plays a key role in cell wall remodelling in trichoblasts and suggest that it also participates in chromatin modification in root cells of A. thaliana. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  20. Mutations in ap1b1 cause mistargeting of the Na(+/K(+-ATPase pump in sensory hair cells.

    Directory of Open Access Journals (Sweden)

    Rachel Clemens Grisham

    Full Text Available The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1 gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na(+/K(+-ATPase pump (NKA was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na(+ levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells.

  1. Ca(2+) currents and voltage responses in Type I and Type II hair cells of the chick embryo semicircular canal.

    Science.gov (United States)

    Masetto, Sergio; Zampini, Valeria; Zucca, Giampiero; Valli, Paolo

    2005-11-01

    Type I and Type II hair cells, and Type II hair cells located in different zones of the semicircular canal crista, express different patterns of voltage-dependent K channels, each one specifically shaping the hair cell receptor potential. We report here that, close to hatching, chicken embryo semicircular canal Type I and Type II hair cells express a similar voltage-dependent L-type calcium current (I(Ca)), whose main features are: activation above -60 mV, fast activation kinetics, and scarce inactivation. I(Ca) should be already active at rest in Zone 1 Type II hair cells, whose resting membrane potential was on average slightly less negative than -60 mV. Conversely, I(Ca) would not be active at rest in Type II hair cells from Zone 2 and 3, nor in Type I hair cells, since their resting membrane potential was significantly more negative than -60 mV. However, even small depolarising currents would activate I(Ca) steadily in Zone 2 and 3 Type II hair cells, but not in Type I hair cells because of the robust repolarising action of their specific array of K(+) currents. The implications of the present findings in the afferent discharge are discussed.

  2. Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium.

    Science.gov (United States)

    Lepelletier, Léa; de Monvel, Jacques Boutet; Buisson, Johanna; Desdouets, Chantal; Petit, Christine

    2013-07-02

    Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements of the kinocilium basal body (mother centriole) and its daughter centriole, which we analyzed using particle tracking and modeling. We found that both hair cell centrioles undergo confined Brownian movements around their equilibrium positions, under the apparent constraint of a radial restoring force of ∼0.1 pN. This magnitude depended little on centriole position, suggesting nonlinear interactions with constraining, presumably cytoskeletal elements. The only dynamic change observed during the period of kinocilium migration was a doubling of the centrioles' confinement area taking place early in the process. It emerges from these static and dynamic observations that kinocilia migrate gradually in parallel with the organization of hair cells into rows during cochlear neuroepithelium extension. Analysis of the confined motion of hair cell centrioles under normal and pathological conditions should help determine which structures contribute to the restoring force exerting on them. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Nahyun Choi

    2018-02-01

    Full Text Available Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs. We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif ligand 1 (CXCL1, platelet-derived endothelial cell growth factor (PD-ECGF, and platelet-derived growth factor-C (PDGF-C. Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2 phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  4. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    Science.gov (United States)

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  5. The structural and functional differentiation of hair cells in a lizard's basilar papilla suggests an operational principle of amniote cochleas.

    Science.gov (United States)

    Chiappe, M Eugenia; Kozlov, Andrei S; Hudspeth, A J

    2007-10-31

    The hair cells in the mammalian cochlea are of two distinct types. Inner hair cells are responsible for transducing mechanical stimuli into electrical responses, which they forward to the brain through a copious afferent innervation. Outer hair cells, which are thought to mediate the active process that sensitizes and tunes the cochlea, possess a negligible afferent innervation. For every inner hair cell, there are approximately three outer hair cells, so only one-quarter of the hair cells directly deliver information to the CNS. Although this is a surprising feature for a sensory system, the occurrence of a similar innervation pattern in birds and crocodilians suggests that the arrangement has an adaptive value. Using a lizard with highly developed hearing, the tokay gecko, we demonstrate in the present study that the same principle operates in a third major group of terrestrial animals. We propose that the differentiation of hair cells into signaling and amplifying classes reflects incompatible strategies for the optimization of mechanoelectrical transduction and of an active process based on active hair-bundle motility.

  6. Stria vascularis and cochlear hair cell changes in syphilis: A human temporal bone study.

    Science.gov (United States)

    Hızlı, Ömer; Kaya, Serdar; Hızlı, Pelin; Paparella, Michael M; Cureoglu, Sebahattin

    2016-12-01

    To observe any changes in stria vascularis and cochlear hair cells in patients with syphilis. We examined 13 human temporal bone samples from 8 patients with syphilis (our syphilis group), as well as 12 histopathologically normal samples from 9 age-matched patients without syphilis (our control group). We compared, between the two groups, the mean area of the stria vascularis (measured with conventional light microscopy connected to a personal computer) and the mean percentage of cochlear hair cell loss (obtained from cytocochleograms). In our syphilis group, only 1 (7.7%) of the 13 samples had precipitate in the endolymphatic or perilymphatic spaces; 8 (61.5%) of the samples revealed the presence of endolymphatic hydrops (4 cochlear, 4 saccular). The mean area of the stria vascularis did not significantly differ, in any turn of the cochlea, between the 2 groups (P>0.1). However, we did find significant differences between the 2 groups in the mean percentage of outer hair cells in the apical turn (Psyphilis group, we observed either complete loss of the organ of Corti or a flattened organ of Corti without any cells in addition to the absence of both outer and inner hair cells. In this study, syphilis led either to complete loss of the organ of Corti or to significant loss of cochlear hair cells, in addition to cochleosaccular hydrops. But the area of the stria vascularis did not change. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Organ-level quorum sensing directs regeneration in hair stem cell populations

    Science.gov (United States)

    Chen, Chih-Chiang; Wang, Lei; Plikus, Maksim V.; Jiang, Ting Xin; Murray, Philip J.; Ramos, Raul; Guerrero-Juarez, Christian F.; Hughes, Michael W; Lee, Oscar K.; Shi, Songtao; Widelitz, Randall B.; Lander, Arthur D.; Chuong, Cheng Ming

    2015-01-01

    SUMMARY Coordinated organ behavior is crucial for an effective response to environmental stimuli. By studying regeneration of hair follicles in response to patterned hair removal, we demonstrate that organ-level quorum sensing allows coordinated responses to skin injury. Removing hair at different densities leads to a regeneration of up to 5 times more neighboring, unplucked resting hairs, indicating activation of a collective decision-making process. Through data modeling, the range of the quorum signal was estimated to be on the order of 1 mm, greater than expected for a diffusible molecular cue. Molecular and genetic analysis uncovered a two-step mechanism, where release of CCL2 from injured hairs leads to recruitment of TNF-α secreting macrophages, which accumulate and signal to both plucked and unplucked follicles. By coupling immune response with regeneration, this mechanism allows skin to respond predictively to distress, disregarding mild injury, while meeting stronger injury with full-scale cooperative activation of stem cells. PMID:25860610

  8. Ethanol extract of Piper longum L. attenuates gentamicin-induced hair cell loss in neonatal cochlea cultures.

    Science.gov (United States)

    Du, Xiao Fei; Song, Jae-Jun; Hong, Seungug; Kim, Jihye

    2012-06-01

    Piper longum L. (PL), also as known as long pepper, a well-known spice and traditional medicine in Asia and Pacific islands, has been reported to exhibit wide spectrum activity including antioxidant activity. However, little information is available on its protective effect on gentamicin (GM) induced ototoxicity which is commonly regarded as being mediated by reactive oxygen species and reactive nitrogen species. This study was undertaken to investigate the protective effect of PL ethanol extract on gentamicin-induced hair cell loss in neonatal cochlea cultures. Cochlea cultures from postnatal day 2-3 mice were used for analysis of the protective effects of PL against gentamicin-induced hair cell loss by phalloidin staining. E. coil cultures were used to determine whether PL interferes with the antibiotic activity of GM. Nitric oxide (NO)-scavenging activity of PL was also measured in vitro. GM induced significant dose-dependent hair cell loss in cochlea cultures. However, without interfering with the antibiotic activity of GM, PL showed a significant and concentration-dependent protective effect against GM-induced hair cell loss, and hair cells retained their stereocilia well. In addition, PL expressed direct scavenging activity toward NO radical liberated within solution of sodium nitroprusside. These findings demonstrate the protective effect of PL on GM-induced hair cell loss in neonatal cochlea cultures, and suggest that it might be of therapeutic benefit for treatment of GM-induced ototoxicity.

  9. Continuous Hair Cell Turnover in the Inner Ear Vestibular Organs of a Mammal, the Daubenton's Bat (Myotis daubentonii)

    Science.gov (United States)

    Kirkegaard, M.; Jørgensen, J. M.

    In both humans and mice the number of hair cells in the inner ear sensory epithelia declines with age, indicating cell death (Park et al. 1987; Rosenhall 1973). However, recent reports demonstrate the ability of the vestibular sensory epithelia to regenerate after injury (Forge et al. 1993, 1998; Kuntz and Oesterle 1998; Li and Forge 1997; Rubel et al. 1995; Tanyeri et al. 1995). Still, a continuous hair cell turnover in the vestibular epithelia has not previously been demonstrated in mature mammals. Bats are the only flying mammals, and they are known to live to a higher age than animals of equal size. The maximum age of many species is 20years, with average lifespans of 4-6years (Schober and Grimmberger 1989). Further, the young are fully developed and able to fly at the age of 2months, and thus the vestibular organs are thought to be differentiated at that age. Consequently, long-lived mammals such as bats might compensate for the loss of hair cells by producing new hair cells in their postembryonic life. Here we show that the utricular macula of adult Daubenton's bats (more than 6months old) contains innervated immature hair cells as well as apoptotic hair cells, which strongly indicates a continuous turnover of hair cells, as previously demonstrated in birds.

  10. Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing.

    Science.gov (United States)

    Taylor, Ruth R; Jagger, Daniel J; Saeed, Shakeel R; Axon, Patrick; Donnelly, Neil; Tysome, James; Moffatt, David; Irving, Richard; Monksfield, Peter; Coulson, Chris; Freeman, Simon R; Lloyd, Simon K; Forge, Andrew

    2015-06-01

    Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We demonstrate the viability of the tissue and labeling with specific markers of hair cell function and of ion homeostasis in the epithelium. Samples obtained from the oldest patients revealed a significant loss of hair cells across the tissue surface, but we found immature hair bundles present in epithelia harvested from patients >60 years of age. These results suggest that the environment of the human vestibular sensory epithelium could be responsive to stimulation of developmental pathways to enhance hair cell regeneration, as has been demonstrated successfully in the vestibular organs of adult mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Effect of N-Acetylcysteine in Protecting from Simultaneous Noise and Carbon Monoxide Induced Hair Cell Loss

    Directory of Open Access Journals (Sweden)

    Akram Pourbakht

    2011-06-01

    Full Text Available Background and Aim: N-acetylcysteine, a glutathione precursor and reactive oxygen species scavenger, is reported to be effective in reducing noise-induced hearing loss. Many workers in industry are exposed simultaneously to noise and chemical pollutants such as carbon monoxide. We investigated effectiveness of N-acetylcysteine in protecting the cochlea from simultaneous noise and carbon monoxide damages.Methods: Twelve rabbits were exposed simeltaneously to 100 dB sound pressure level of broad band noise and carbon monoxide 8 hours a day for 5 days. One hour before exposure, experimental group received 325 mg/kg of N-acetylcysteine while normal saline was administered for the control group. The protective effect of N-acetylcysteine was evaluated 3 weeks after exposure by histological assessment of the hair cells.Results: Simultaneous exposure to noise and carbon monoxide resulted in a considerable damage to the outer hair cells; however, the inner hair cells and the pillar cells remained intact. Use of N-acetylcysteine in the experimental group significantly reduced the extent of outer hair cell loss.Conclusion: N-acetylcysteine attenuates simultaneous noise and carbon monoxide induced hair cell damage in rabbits.

  12. Expression and localization of VEGFR-2 in hair follicles during induced hair growth in mice.

    Science.gov (United States)

    Wu, Xian-Jie; Jing, Jing; Lu, Zhong-Fa; Zheng, Min

    2018-06-16

    Recently, VEGFR-2 has been detected not only in vascular and lymphatic endothelial cells but also in some non-vascular endothelial cells, particularly human hair follicles, sebaceous glands, and sweat glands. In addition, VEGFR-2 has been confirmed to play direct roles in hair follicle keratinocyte regulation beyond simply angiogenesis. To elucidate whether VEGFR-2 activation plays a role in hair follicle cycling regulation, immunofluorescence of VEGFR-2 expression was performed during hair cycling of the dorsum of the mouse induced by hair plucking. We observed that staining for VEGFR-2 in hair follicles during anagen II and IV was much stronger than during anagen VI, catagen and telogen. During anagen II, intense staining for VEGFR-2 was observed on the keratinocyte strands of the hair follicle. Subsequently, we detected intense staining for VEGFR-2 in the ORS, IRS and hair bulb during anagen IV. Moderate staining for VEGFR-2 was detected in the ORS and hair bulb, but staining was most intense in IRS during anagen VI. During catagen, staining for VEGFR-2 in the IRS remained intense, while staining in the ORS and hair bulb was significantly weakened and was negative in the dermal papilla. During telogen, we detected VEGFR-2 in germ cells, cap, and club hair adjoining the epidermis. In conclusion, VEGFR-2 was expressed on the hair follicles of the dorsum of the mouse and varied in expression on the mouse hair follicles during hair cycling, suggesting that VEGFR-2 may exert roles in hair cycle regulation in hair follicles on the dorsum of mice.

  13. ER stress inhibitor attenuates hearing loss and hair cell death in Cdh23erl/erl mutant mice.

    Science.gov (United States)

    Hu, Juan; Li, Bo; Apisa, Luke; Yu, Heping; Entenman, Shami; Xu, Min; Stepanyan, Ruben; Guan, Bo-Jhih; Müller, Ulrich; Hatzoglou, Maria; Zheng, Qing Yin

    2016-11-24

    Hearing loss is one of the most common sensory impairments in humans. Mouse mutant models helped us to better understand the mechanisms of hearing loss. Recently, we have discovered that the erlong (erl) mutation of the cadherin23 (Cdh23) gene leads to hearing loss due to hair cell apoptosis. In this study, we aimed to reveal the molecular pathways upstream to apoptosis in hair cells to exploit more effective therapeutics than an anti-apoptosis strategy. Our results suggest that endoplasmic reticulum (ER) stress is the earliest molecular event leading to the apoptosis of hair cells and hearing loss in erl mice. We also report that the ER stress inhibitor, Salubrinal (Sal), could delay the progression of hearing loss and preserve hair cells. Our results provide evidence that therapies targeting signaling pathways in ER stress development prevent hair cell apoptosis at an early stage and lead to better outcomes than those targeting downstream factors, such as tip-link degeneration and apoptosis.

  14. Cholesterol influences voltage-gated calcium channels and BK-type potassium channels in auditory hair cells.

    Directory of Open Access Journals (Sweden)

    Erin K Purcell

    Full Text Available The influence of membrane cholesterol content on a variety of ion channel conductances in numerous cell models has been shown, but studies exploring its role in auditory hair cell physiology are scarce. Recent evidence shows that cholesterol depletion affects outer hair cell electromotility and the voltage-gated potassium currents underlying tall hair cell development, but the effects of cholesterol on the major ionic currents governing auditory hair cell excitability are unknown. We investigated the effects of a cholesterol-depleting agent (methyl beta cyclodextrin, MβCD on ion channels necessary for the early stages of sound processing. Large-conductance BK-type potassium channels underlie temporal processing and open in a voltage- and calcium-dependent manner. Voltage-gated calcium channels (VGCCs are responsible for calcium-dependent exocytosis and synaptic transmission to the auditory nerve. Our results demonstrate that cholesterol depletion reduced peak steady-state calcium-sensitive (BK-type potassium current by 50% in chick cochlear hair cells. In contrast, MβCD treatment increased peak inward calcium current (~30%, ruling out loss of calcium channel expression or function as a cause of reduced calcium-sensitive outward current. Changes in maximal conductance indicated a direct impact of cholesterol on channel number or unitary conductance. Immunoblotting following sucrose-gradient ultracentrifugation revealed BK expression in cholesterol-enriched microdomains. Both direct impacts of cholesterol on channel biophysics, as well as channel localization in the membrane, may contribute to the influence of cholesterol on hair cell physiology. Our results reveal a new role for cholesterol in the regulation of auditory calcium and calcium-activated potassium channels and add to the growing evidence that cholesterol is a key determinant in auditory physiology.

  15. No Correlates for Somatic Motility in Freeze-Fractured Hair-Cell Membranes of Lizards and Birds

    Science.gov (United States)

    Köppl, C.; Forge, A.; Manley, G. A.

    2003-02-01

    It is not known whether active processes in mammals and non-mammals are due to the same underlying mechanism. To address this, we studied the size and density of particles in hair-cell membranes in mammals, in a lizard, the Tokay gecko, and in a bird, the barn owl. We surmised that if the prominent particles described in mammalian outer-hair-cell membranes are responsible for cochlear motility, a similar occurrence in non-mammalian hair cells would argue for similar mechanisms. Particle densities differed, however, substantially from those of mammals, suggesting that non-mammals have no membrane-based motility.

  16. The amelioration of cardiac dysfunction after myocardial infarction by the injection of keratin biomaterials derived from human hair.

    Science.gov (United States)

    Shen, Deliang; Wang, Xiaofang; Zhang, Li; Zhao, Xiaoyan; Li, Jingyi; Cheng, Ke; Zhang, Jinying

    2011-12-01

    Cardiac dysfunction following acute myocardial infarction is a major cause of advanced cardiomyopathy. Conventional pharmacological therapies rely on prompt reperfusion and prevention of repetitive maladaptive pathways. Keratin biomaterials can be manufactured in an autologous fashion and are effective in various models of tissue regeneration. However, its potential application in cardiac regeneration has not been tested. Keratin biomaterials were derived from human hair and its structure morphology, carryover of beneficial factors, biocompatibility with cardiomyocytes, and in vivo degradation profile were characterized. After delivery into infarcted rat hearts, the keratin scaffolds were efficiently infiltrated by cardiomyocytes and endothelial cells. Injection of keratin biomaterials promotes angiogenesis but does not exacerbate inflammation in the post-MI hearts. Compared to control-injected animals, keratin biomaterials-injected animals exhibited preservation of cardiac function and attenuation of adverse ventricular remodeling over the 8 week following time course. Tissue western blot analysis revealed up-regulation of beneficial factors (BMP4, NGF, TGF-beta) in the keratin-injected hearts. The salient functional benefits, the simplicity of manufacturing and the potentially autologous nature of this biomaterial provide impetus for further translation to the clinic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. The structural and functional differentiation of hair cells in a lizard’s basilar papilla suggests an operational principle of amniote cochleas

    Science.gov (United States)

    Chiappe, M. Eugenia; Kozlov, Andrei S.; Hudspeth, A. J.

    2007-01-01

    The hair cells in the mammalian cochlea are of two distinct types. Inner hair cells are responsible for transducing mechanical stimuli into electrical responses, which they forward to the brain through a copious afferent innervation. Outer hair cells, which are thought to mediate the active process that sensitizes and tunes the cochlea, possess a negligible afferent innervation. For every inner hair cell there are approximately three outer hair cells, so only a quarter of the hair cells directly deliver information to the central nervous system. Although this is a surprising feature for a sensory system, the occurrence of a similar innervation pattern in birds and crocodilians suggests that the arrangement has an adaptive value. Using a lizard with highly developed hearing, the tokay gecko, we demonstrate in the present study that the same principle operates in a third major group of terrestrial animals. We propose that the differentiation of hair cells into signaling and amplifying classes reflects incompatible strategies for the optimization of mechanoelectrical transduction and of an active process based on active hair-bundle motility. PMID:17978038

  18. The function and molecular identity of inward rectifier channels in vestibular hair cells of the mouse inner ear

    Science.gov (United States)

    Levin, Michaela E.

    2012-01-01

    Inner ear hair cells respond to mechanical stimuli with graded receptor potentials. These graded responses are modulated by a host of voltage-dependent currents that flow across the basolateral membrane. Here, we examine the molecular identity and the function of a class of voltage-dependent ion channels that carries the potassium-selective inward rectifier current known as IK1. IK1 has been identified in vestibular hair cells of various species, but its molecular composition and functional contributions remain obscure. We used quantitative RT-PCR to show that the inward rectifier gene, Kir2.1, is highly expressed in mouse utricle between embryonic day 15 and adulthood. We confirmed Kir2.1 protein expression in hair cells by immunolocalization. To examine the molecular composition of IK1, we recorded voltage-dependent currents from type II hair cells in response to 50-ms steps from −124 to −54 in 10-mV increments. Wild-type cells had rapidly activating inward currents with reversal potentials close to the K+ equilibrium potential and a whole-cell conductance of 4.8 ± 1.5 nS (n = 46). In utricle hair cells from Kir2.1-deficient (Kir2.1−/−) mice, IK1 was absent at all stages examined. To identify the functional contribution of Kir2.1, we recorded membrane responses in current-clamp mode. Hair cells from Kir2.1−/− mice had significantly (P < 0.001) more depolarized resting potentials and larger, slower membrane responses than those of wild-type cells. These data suggest that Kir2.1 is required for IK1 in type II utricle hair cells and contributes to hyperpolarized resting potentials and fast, small amplitude receptor potentials in response to current inputs, such as those evoked by hair bundle deflections. PMID:22496522

  19. Minocycline attenuates streptomycin-induced cochlear hair cell death by inhibiting protein nitration and poly (ADP-ribose) polymerase activation.

    Science.gov (United States)

    Wang, Ping; Li, Haonan; Yu, Shuyuan; Jin, Peng; Hassan, Abdurahman; Du, Bo

    2017-08-24

    This study aimed to elucidate the protective effect of minocycline against streptomycin-induced damage of cochlear hair cells and its mechanism. Cochlear membranes were isolated from newborn Wistar rats and randomly divided into control, 500μmol/L streptomycin, 100μmol/L minocycline, and streptomycin and minocycline treatment groups. Hair cell survival was analyzed by detecting the expression of 3-nitrotyrosine (3-NT) in cochlear hair cells by immunofluorescence and an enzyme-linked immunosorbent assay. Expression of 3-NT and inducible nitric oxide synthase (iNOS), and poly (ADP-Ribose) polymerase (PARP) and caspase-3 activation were evaluated by western blotting. The results demonstrated hair cell loss at 24h after streptomycin treatment. No change was found in supporting cells of the cochleae. Minocycline pretreatment improved hair cell survival and significantly reduced the expression of iNOS and 3-NT in cochlear tissues compared with the streptomycin treatment group. PARP and caspase-3 activation was increased in the streptomycin treatment group compared with the control group, and pretreatment with minocycline decreased cleaved PARP and activated caspase-3 expression. Minocycline protected cochlear hair cells from injury caused by streptomycin in vitro. The mechanism underlying the protective effect may be associated with the inhibition of excessive formation of nitric oxide, reduction of the nitration stress reaction, and inhibition of PARP and caspase-3 activation in cochlear hair cells. Combined minocycline therapy can be applied to patients requiring streptomycin treatment. Copyright © 2017. Published by Elsevier B.V.

  20. Hair cell regeneration or the expression of related factors that regulate the fate specification of supporting cells in the cochlear ducts of embryonic and posthatch chickens.

    Science.gov (United States)

    Jiang, Lingling; Jin, Ran; Xu, Jincao; Ji, Yubin; Zhang, Meiguang; Zhang, Xuebo; Zhang, Xinwen; Han, Zhongming; Zeng, Shaoju

    2016-02-01

    Hair cells in posthatch chickens regenerate spontaneously through mitosis or the transdifferentiation of supporting cells in response to antibiotic injury. However, how embryonic chicken cochleae respond to antibiotic treatment remains unknown. This study is the first to indicate that unlike hair cells in posthatch chickens, the auditory epithelium was free from antibiotic injury (25-250 mg gentamicin/kg) in embryonic chickens, although FITC-conjugated gentamicin actually reached embryonic hair cells. Next, we examined and counted the cells and performed labeling for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) (triple or double labeling) in the injured cochlea ducts after gentamicin treatment at 2 h (h), 15 h, 24 h, 2 days (d), 3 d and 7 d after BrdU treatment in posthatch chickens. Our results indicated that following gentamicin administration, proliferating cells (BrdU+) were labeled for Atoh1/Math1 in the damaged areas 3d after gentamicin administration, whereas hair cells (PV+) renewed through mitosis (BrdU+) or direct transdifferentiation (BrdU-) were evident only after 5 d of gentamicin administration. In addition, Sox2 expression was up-regulated in triggered supporting cells at an early stage of regeneration, but stopped at the advent of mature hair cells. Our study also indicated that p27(kip1) was expressed in both hair cells and supporting cells but was down-regulated in a subgroup of the supporting cells that gave rise to hair cells. These data and the obtained dynamic changes of the cells labeled for BrdU, Sox2, Atoh1/Math1, PV or p27(kip1) are useful for understanding supporting cell behaviors and their fate specification during hair cell regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics

    NARCIS (Netherlands)

    van Netten, SM; Kros, CJ

    2000-01-01

    We quantified the molecular energies and forces involved in opening and closing of mechanoelectrical transducer channels in hair cells using a novel generally applicable method. It relies on a thermodynamic description of the free energy of an ion channel in terms of its open probability. The

  2. Hair cosmetics and camouflage technics

    Directory of Open Access Journals (Sweden)

    Zahide Eriş Eken

    2014-06-01

    Full Text Available Hair is composed of a mixture of trace elements in small quantities, proteins, lipids and water. Proteins consist of helical polypeptide amino acid molecules. In the hair cells; polypeptide chains of keratin protein would be organized in filaments. In recent years, hair cosmetics showed a significant change and development. The content of shampoos which is used to cleanse the hair has enhanced significantly. Hair conditioner, hair styling products, pomades, brilliantine, and gloss sprays, hair protective products, camouflage products are most commonly used hair cosmetics. Hair shaping procedures are frequently applied.

  3. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  4. Selective deletion of cochlear hair cells causes rapid age-dependent changes in spiral ganglion and cochlear nucleus neurons.

    Science.gov (United States)

    Tong, Ling; Strong, Melissa K; Kaur, Tejbeer; Juiz, Jose M; Oesterle, Elizabeth C; Hume, Clifford; Warchol, Mark E; Palmiter, Richard D; Rubel, Edwin W

    2015-05-20

    During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival. Copyright © 2015 the authors 0270-6474/15/357878-14$15.00/0.

  5. Possible biological dosimeters in skin and hair

    International Nuclear Information System (INIS)

    Potten, C.S.

    1986-01-01

    The hair follicle, when producing hair, contains rapidly proliferating cells, some of which are very sensitive to radiation. These can be detected by studying the incidence of dead or dying (apoptotic) cells which reach peak yields 12 h after irradiation. The yield of apoptotic cells in the follicle has been studied after various doses. The response is dose-dependent and sensitive down to levels of a few cGy. Any reduction in cell production resulting from mitotic delay or cell death might be expressed as a reduction in the width of the hair. This has been studied and the abnormality referred to as dysplasia of the hair. The fraction of dysplastic hairs is strongly dose dependent over the range 2-10 Gy. More detailed studies using higher magnification and numerous measurements of hair width should make this end-point an even more sensitive assay for radiation exposure. Preliminary measurements on the average width at a critical point along the length of the hair illustrate that doses between 1.0 and 1.5 Gy can be detected. The width of the hair is dose dependent. The length of the affected region of the hair is also probably dose dependent. Estimates for the full reduction in volume of hair should increase the sensitivity further. (orig./MG)

  6. Biotechnology in the Treatment of Sensorineural Hearing Loss: Foundations and Future of Hair Cell Regeneration

    Science.gov (United States)

    Parker, Mark A.

    2011-01-01

    Purpose: To provide an overview of the methodologies involved in the field of hair cell regeneration. First, the author provides a tutorial on the biotechnological foundations of this field to assist the reader in the comprehension and interpretation of the research involved in hair cell regeneration. Next, the author presents a review of stem…

  7. Targeted inactivation of integrin-linked kinase in hair follicle stem cells reveals an important modulatory role in skin repair after injury.

    Science.gov (United States)

    Nakrieko, Kerry-Ann; Rudkouskaya, Alena; Irvine, Timothy S; D'Souza, Sudhir J A; Dagnino, Lina

    2011-07-15

    Integrin-linked kinase (ILK) is key for normal epidermal morphogenesis, but little is known about its role in hair follicle stem cells and epidermal regeneration. Hair follicle stem cells are important contributors to newly formed epidermis following injury. We inactivated the Ilk gene in the keratin 15--expressing stem cell population of the mouse hair follicle bulge. Loss of ILK expression in these cells resulted in impaired cutaneous wound healing, with substantially decreased wound closure rates. ILK-deficient stem cells produced very few descendants that moved toward the epidermal surface and into the advancing epithelium that covers the wound. Furthermore, those few mutant cells that homed in the regenerated epidermis exhibited a reduced residence time. Paradoxically, ILK-deficient bulge stem cells responded to anagen growth signals and contributed to newly regenerated hair follicles during this phase of hair follicle growth. Thus ILK plays an important modulatory role in the normal contribution of hair follicle stem cell progeny to the regenerating epidermis following injury.

  8. Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken.

    Science.gov (United States)

    Masetto, S; Bosica, M; Correia, M J; Ottersen, O P; Zucca, G; Perin, P; Valli, P

    2003-08-01

    In birds, type I and type II hair cells differentiate before birth. Here we describe that chick hair cells, from the semicircular canals, begin expressing a voltage-dependent Na current (INa) from embryonic day 14 (E14) and continue to express the current up to hatching (E21). During this period, INa was present in most (31/43) type I hair cells irrespective of their position in the crista, in most type II hair cells located far from the planum semilunatum (48/63), but only occasionally in type II hair cells close to the planum semilunatum (2/35). INa activated close to -60 mV, showed fast time- and voltage-dependent activation and inactivation, and was completely, and reversibly, blocked by submicromolar concentrations of tetrodotoxin (Kd = 17 nM). One peculiar property of INa concerns its steady-state inactivation, which is complete at -60 mV (half-inactivating voltage = -96 mV). INa was found in type I and type II hair cells from the adult chicken as well, where it had similar, although possibly not identical, properties and regional distribution. Current-clamp experiments showed that INa could contribute to the voltage response provided that the cell membrane was depolarized from holding potentials more negative than -80 mV. When recruited, INa produced a significant acceleration of the cell membrane depolarization, which occasionally elicited a large rapid depolarization followed by a rapid repolarization (action-potential-like response). Possible physiological roles for INa in the embryo and adult chicken are discussed.

  9. A novel Atoh1 "self-terminating" mouse model reveals the necessity of proper Atoh1 level and duration for hair cell differentiation and viability.

    Directory of Open Access Journals (Sweden)

    Ning Pan

    Full Text Available Atonal homolog1 (Atoh1 is a bHLH transcription factor essential for inner ear hair cell differentiation. Targeted expression of Atoh1 at various stages in development can result in hair cell differentiation in the ear. However, the level and duration of Atoh1 expression required for proper hair cell differentiation and maintenance remain unknown. We generated an Atoh1 conditional knockout (CKO mouse line using Tg(Atoh1-cre, in which the cre expression is driven by an Atoh1 enhancer element that is regulated by Atoh1 protein to "self-terminate" its expression. The mutant mice show transient, limited expression of Atoh1 in all hair cells in the ear. In the organ of Corti, reduction and delayed deletion of Atoh1 result in progressive loss of almost all the inner hair cells and the majority of the outer hair cells within three weeks after birth. The remaining cells express hair cell marker Myo7a and attract nerve fibers, but do not differentiate normal stereocilia bundles. Some Myo7a-positive cells persist in the cochlea into adult stages in the position of outer hair cells, flanked by a single row of pillar cells and two to three rows of disorganized Deiters cells. Gene expression analyses of Atoh1, Barhl1 and Pou4f3, genes required for survival and maturation of hair cells, reveal earlier and higher expression levels in the inner compared to the outer hair cells. Our data show that Atoh1 is crucial for hair cell mechanotransduction development, viability, and maintenance and also suggest that Atoh1 expression level and duration may play a role in inner vs. outer hair cell development. These genetically engineered Atoh1 CKO mice provide a novel model for establishing critical conditions needed to regenerate viable and functional hair cells with Atoh1 therapy.

  10. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system.

    Science.gov (United States)

    Dong, Liang; Hao, Haojie; Liu, Jiejie; Tong, Chuan; Ti, Dongdong; Chen, Deyun; Chen, Li; Li, Meirong; Liu, Huiling; Fu, Xiaobing; Han, Weidong

    2017-05-01

    Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Micronucleus frequency in exfoliated buccal cells from hairdresser who expose to hair products

    Directory of Open Access Journals (Sweden)

    Koh Hui Yee

    2015-06-01

    Full Text Available Background: Hairdresser is one of the fastest growing occupations in today’s society. Hairdresser help styling, cutting, colouring, perming, curling, straightening hair and various treatment to customer. Somehow, hairdresser are constantly exposed to chemical substances such as aromatic amines, hydrogen peroxide, thioglycolic acid, formaldehyde in hair products which can cause damage to human’s genome. Micronucleus is one of the effective biomarker for processes associated with the induction of DNA damage. Purpose: The aim of this study was to determine the micronucleus frequencies in buccal mucosa epithelial cells of hairdresser who were exposed to chemical of hair products. Method: This study was conducted on twenty female subjects, who were divided into 2 groups: exposed and non-exposed (control group. All subjects recruited were working in the same beauty salon. Buccal cells were obtained from each individual by using cytobrush. The cells were stained with modified Feulgen-Ronssenback method and counting of micronucleus per 1000 cell was done under light microscope. The data were analyzed using independent t-test and one-way Anova (p<0.05. Result: The result showed a significant difference in micronucleus frequency between 2 groups. There were a significantly increase of micronucleus frequency in hairdressers and increase of  micronucleus frequency with the longer duration of exposure. Conclusion: It concluded that the chemical substances of hair products had affected the micronucleus frequency ofthe epithelial cells in buccal mucosa of hairdressers.

  12. Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea.

    Science.gov (United States)

    He, David Z Z; Jia, Shuping; Dallos, Peter

    2004-06-17

    Sensory receptor cells of the mammalian cochlea are morphologically and functionally dichotomized. Inner hair cells transmit auditory information to the brain, whereas outer hair cells (OHC) amplify the mechanical signal, which is then transduced by inner hair cells. Amplification by OHCs is probably mediated by their somatic motility in a mechanical feedback process. OHC motility in vivo is thought to be driven by the cell's receptor potential. The first steps towards the generation of the receptor potential are the deflection of the stereociliary bundle, and the subsequent flow of transducer current through the mechanosensitive transducer channels located at their tips. Quantitative relations between transducer currents and basilar membrane displacements are lacking, as well as their variation along the cochlear length. To address this, we simultaneously recorded OHC transducer currents (or receptor potentials) and basilar membrane motion in an excised and bisected cochlea, the hemicochlea. This preparation permits recordings from adult OHCs at various cochlear locations while the basilar membrane is mechanically stimulated. Furthermore, the stereocilia are deflected by the same means of stimulation as in vivo. Here we show that asymmetrical transducer currents and receptor potentials are significantly larger than previously thought, they possess a highly restricted dynamic range and strongly depend on cochlear location.

  13. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration.

    Science.gov (United States)

    Plikus, Maksim V; Mayer, Julie Ann; de la Cruz, Damon; Baker, Ruth E; Maini, Philip K; Maxson, Robert; Chuong, Cheng-Ming

    2008-01-17

    In the age of stem cell engineering it is critical to understand how stem cell activity is regulated during regeneration. Hairs are mini-organs that undergo cyclic regeneration throughout adult life, and are an important model for organ regeneration. Hair stem cells located in the follicle bulge are regulated by the surrounding microenvironment, or niche. The activation of such stem cells is cyclic, involving periodic beta-catenin activity. In the adult mouse, regeneration occurs in waves in a follicle population, implying coordination among adjacent follicles and the extrafollicular environment. Here we show that unexpected periodic expression of bone morphogenetic protein 2 (Bmp2) and Bmp4 in the dermis regulates this process. This BMP cycle is out of phase with the WNT/beta-catenin cycle, thus dividing the conventional telogen into new functional phases: one refractory and the other competent for hair regeneration, characterized by high and low BMP signalling, respectively. Overexpression of noggin, a BMP antagonist, in mouse skin resulted in a markedly shortened refractory phase and faster propagation of the regenerative wave. Transplantation of skin from this mutant onto a wild-type host showed that follicles in donor and host can affect their cycling behaviours mutually, with the outcome depending on the equilibrium of BMP activity in the dermis. Administration of BMP4 protein caused the competent region to become refractory. These results show that BMPs may be the long-sought 'chalone' inhibitors of hair growth postulated by classical experiments. Taken together, results presented in this study provide an example of hierarchical regulation of local organ stem cell homeostasis by the inter-organ macroenvironment. The expression of Bmp2 in subcutaneous adipocytes indicates physiological integration between these two thermo-regulatory organs. Our findings have practical importance for studies using mouse skin as a model for carcinogenesis, intra-cutaneous drug

  14. Inexhaustible hair-cell regeneration in young and aged zebrafish

    Directory of Open Access Journals (Sweden)

    Filipe Pinto-Teixeira

    2015-07-01

    Full Text Available Animals have evolved two general strategies to counter injury and maintain physiological function. The most prevalent is protection by isolating vital organs into body cavities. However, protection is not optimal for sensory systems because their external components need to be exposed to the environment to fulfill their receptive function. Thus, a common strategy to maintain sensory abilities against persistent environmental insult involves repair and regeneration. However, whether age or frequent injuries affect the regenerative capacity of sensory organs remains unknown. We have found that neuromasts of the zebrafish lateral line regenerate mechanosensory hair cells after recurrent severe injuries and in adulthood. Moreover, neuromasts can reverse transient imbalances of Notch signaling that result in defective organ proportions during repair. Our results reveal inextinguishable hair-cell regeneration in the lateral line, and suggest that the neuromast epithelium is formed by plastic territories that are maintained by continuous intercellular communication.

  15. A method for culturing human hair follicle cells.

    Science.gov (United States)

    Weterings, P J; Vermorken, A J; Bloemendal, H

    1981-01-01

    For the first time a method for culturing human hair follicle cells is described. The bovine eye lens capsule, a basement membrane-like structure, is used as the substrate for the cultures. In a culture medium supplemented with hydrocortisone and insulin about 70% of the original follicles will form growing colonies of diploid keratinocytes.

  16. An allosteric gating model recapitulates the biophysical properties of IK,L expressed in mouse vestibular type I hair cells.

    Science.gov (United States)

    Spaiardi, Paolo; Tavazzani, Elisa; Manca, Marco; Milesi, Veronica; Russo, Giancarlo; Prigioni, Ivo; Marcotti, Walter; Magistretti, Jacopo; Masetto, Sergio

    2017-11-01

    Vestibular type I and type II hair cells and their afferent fibres send information to the brain regarding the position and movement of the head. The characteristic feature of type I hair cells is the expression of a low-voltage-activated outward rectifying K + current, I K,L , whose biophysical properties and molecular identity are still largely unknown. In vitro, the afferent nerve calyx surrounding type I hair cells causes unstable intercellular K + concentrations, altering the biophysical properties of I K,L . We found that in the absence of the calyx, I K,L in type I hair cells exhibited unique biophysical activation properties, which were faithfully reproduced by an allosteric channel gating scheme. These results form the basis for a molecular and pharmacological identification of I K,L . Type I and type II hair cells are the sensory receptors of the mammalian vestibular epithelia. Type I hair cells are characterized by their basolateral membrane being enveloped in a single large afferent nerve terminal, named the calyx, and by the expression of a low-voltage-activated outward rectifying K + current, I K,L . The biophysical properties and molecular profile of I K,L are still largely unknown. By using the patch-clamp whole-cell technique, we examined the voltage- and time-dependent properties of I K,L in type I hair cells of the mouse semicircular canal. We found that the biophysical properties of I K,L were affected by an unstable K + equilibrium potential (V eq K + ). Both the outward and inward K + currents shifted V eq K + consistent with K + accumulation or depletion, respectively, in the extracellular space, which we attributed to a residual calyx attached to the basolateral membrane of the hair cells. We therefore optimized the hair cell dissociation protocol in order to isolate mature type I hair cells without their calyx. In these cells, the uncontaminated I K,L showed a half-activation at -79.6 mV and a steep voltage dependence (2.8 mV). I K,L also

  17. Resveratrol attenuates CoCl2-induced cochlear hair cell damage through upregulation of Sirtuin1 and NF-κB deacetylation.

    Directory of Open Access Journals (Sweden)

    Ping Wang

    Full Text Available The goals of this study were to investigate the effects of hypoxia on cochlear hair cell damage, and to explore the role of sirtuin1 in hypoxia-induced hair cell damage. Cochlear organotypic cultures from postnatal day 4 rats were used in this study. Hypoxia was induced by treating cochlear explants with CoCl2. Cochlear cultures were treated with CoCl2 alone or in combination with the sirtuin1 activator resveratrol and the sirtuin1 inhibitor sirtinol. Hair cell damage was identified by phalloidin staining and imaged using scanning electron microscopy. RT-PCR and Western blot analyses were used to detect the expression of sirtuin1 and acetylated nuclear factor-κB (NF-κB. Low concentrations of CoCl2 (100-200 μM did not cause an obvious change in the number and morphology of hair cells, whereas higher concentrations of CoCl2 (300-400 μM induced swelling of hair cells, accompanied by cell loss. Increased sirtuin1 expression was induced by CoCl2 at 100 to 200 μM, but not at 400 μM. NF-κB acetylation was significantly increased in explants treated with 400 μM CoCl2. Pretreatment with resveratrol prevented CoCl2-induced hair cell loss and acetylation of NF-κB. The protective effect of resveratrol was significantly reduced by sirtinol. CoCl2 induces hair cell damage in organotypic cochleae cultures. Resveratrol attenuates CoCl2-induced cochlear hair cell damage possibly via activation of sirtuin1, which deacetylates NF-κB.

  18. Confirming a Role for α9nAChRs and SK Potassium Channels in Type II Hair Cells of the Turtle Posterior Crista

    Directory of Open Access Journals (Sweden)

    Xiaorong Xu Parks

    2017-11-01

    Full Text Available In turtle posterior cristae, cholinergic vestibular efferent neurons (VENs synapse on type II hair cells, bouton afferents innervating type II hair cells, and afferent calyces innervating type I hair cells. Electrical stimulation of VENs releases acetylcholine (ACh at these synapses to exert diverse effects on afferent background discharge including rapid inhibition of bouton afferents and excitation of calyx-bearing afferents. Efferent-mediated inhibition is most pronounced in bouton afferents innervating type II hair cells near the torus, but becomes progressively smaller and briefer when moving longitudinally through the crista toward afferents innervating the planum. Sharp-electrode recordings have inferred that efferent-mediated inhibition of bouton afferents requires the sequential activation of alpha9-containing nicotinic ACh receptors (α9*nAChRs and small-conductance, calcium-dependent potassium channels (SK in type II hair cells. Gradations in the strength of efferent-mediated inhibition across the crista likely reflect variations in α9*nAChRs and/or SK activation in type II hair cells from those different regions. However, in turtle cristae, neither inference has been confirmed with direct recordings from type II hair cells. To address these gaps, we performed whole-cell, patch-clamp recordings from type II hair cells within a split-epithelial preparation of the turtle posterior crista. Here, we can easily visualize and record hair cells while maintaining their native location within the neuroepithelium. Consistent with α9*nAChR/SK activation, ACh-sensitive currents in type II hair cells were inward at hyperpolarizing potentials but reversed near −90 mV to produce outward currents that typically peaked around −20 mV. ACh-sensitive currents were largest in torus hair cells but absent from hair cells near the planum. In current clamp recordings under zero-current conditions, ACh robustly hyperpolarized type II hair cells. ACh

  19. Unravelling hair follicle-adipocyte communication.

    Science.gov (United States)

    Schmidt, Barbara; Horsley, Valerie

    2012-11-01

    Here, we explore the established and potential roles for intradermal adipose tissue in communication with hair follicle biology. The hair follicle delves deep into the rich dermal macroenvironment as it grows to maturity where it is surrounded by large lipid-filled adipocytes. Intradermal adipocytes regenerate with faster kinetics than other adipose tissue depots and in parallel with the hair cycle, suggesting an interplay exists between hair follicle cells and adipocytes. While adipocytes have well-established roles in metabolism and energy storage, until recently, they were overlooked as niche cells that provide important growth signals to neighbouring skin cells. We discuss recent data supporting adipocytes as niche cells for the skin and skin pathologies that may be related to alterations in skin adipose tissue defects. © 2012 John Wiley & Sons A/S.

  20. d-Tubocurarine and Berbamine: Alkaloids That Are Permeant Blockers of the Hair Cell's Mechano-Electrical Transducer Channel and Protect from Aminoglycoside Toxicity

    Directory of Open Access Journals (Sweden)

    Nerissa K. Kirkwood

    2017-09-01

    Full Text Available Aminoglycoside antibiotics are widely used for the treatment of life-threatening bacterial infections, but cause permanent hearing loss in a substantial proportion of treated patients. The sensory hair cells of the inner ear are damaged following entry of these antibiotics via the mechano-electrical transducer (MET channels located at the tips of the hair cell's stereocilia. d-Tubocurarine (dTC is a MET channel blocker that reduces the loading of gentamicin-Texas Red (GTTR into rat cochlear hair cells and protects them from gentamicin treatment. Berbamine is a structurally related alkaloid that reduces GTTR labeling of zebrafish lateral-line hair cells and protects them from aminoglycoside-induced cell death. Both compounds are thought to reduce aminoglycoside entry into hair cells through the MET channels. Here we show that dTC (≥6.25 μM or berbamine (≥1.55 μM protect zebrafish hair cells in vivo from neomycin (6.25 μM, 1 h. Protection of zebrafish hair cells against gentamicin (10 μM, 6 h was provided by ≥25 μM dTC or ≥12.5 μM berbamine. Hair cells in mouse cochlear cultures are protected from longer-term exposure to gentamicin (5 μM, 48 h by 20 μM berbamine or 25 μM dTC. Berbamine is, however, highly toxic to mouse cochlear hair cells at higher concentrations (≥30 μM whilst dTC is not. The absence of toxicity in the zebrafish assays prompts caution in extrapolating results from zebrafish neuromasts to mammalian cochlear hair cells. MET current recordings from mouse outer hair cells (OHCs show that both compounds are permeant open-channel blockers, rapidly and reversibly blocking the MET channel with half-blocking concentrations of 2.2 μM (dTC and 2.8 μM (berbamine in the presence of 1.3 mM Ca2+ at −104 mV. Berbamine, but not dTC, also blocks the hair cell's basolateral K+ current, IK,neo, and modeling studies indicate that berbamine permeates the MET channel more readily than dTC. These studies reveal key properties of

  1. Inner hair cell stereocilia movements captured in-situ by a high-speed camera with subpixel image processing

    Science.gov (United States)

    Wang, Yanli; Puria, Sunil; Steele, Charles R.; Ricci, Anthony J.

    2018-05-01

    Mechanical stimulation of the stereocilia hair bundles of the inner and outer hair cells (IHCs and OHCs, respectively) drives IHC synaptic release and OHC electromotility. The modes of hair-bundle motion can have a dramatic influence on the electrophysiological responses of the hair cells. The in vivo modes of motion are, however, unknown for both IHC and OHC bundles. In this work, we are developing technology to investigate the in situ hair-bundle motion in excised mouse cochleae, for which the hair bundles of the OHCs are embedded in the tectorial membrane but those of the IHCs are not. Motion is generated by pushing onto the stapes at 1 kHz with a glass probe coupled to a piezo stack, and recorded using a high-speed camera at 10,000 frames per second. The motions of individual IHC stereocilia and the cell boundary are analyzed using 2D and 1D Gaussian fitting algorithms, respectively. Preliminary results show that the IHC bundle moves mainly in the radial direction and exhibits a small degree of splay, and that the stereocilia in the second row move less than those in the first row, even in the same focal plane.

  2. Protective effect of hexane and ethanol extract of piper longum L. On gentamicin-induced hair cell loss in neonatal cultures.

    Science.gov (United States)

    Yadav, Mukesh Kumar; Choi, June; Song, Jae-Jun

    2014-03-01

    Gentamicin (GM) is a commonly used aminoglycoside antibiotic that generates free oxygen radicals within the inner ear, which can cause vestibulo-cochlear toxicity and permanent damage to the sensory hair cells and neurons. Piper longum L. (PL) is a well-known spice and traditional medicine in Asia and Pacific islands, which has been reported to exhibit a wide spectrum of activity, including antioxidant activity. In this study, we evaluated the effect of hexane:ethanol (2:8) PL extract (subfraction of PL [SPL] extract) on GM-induced hair cell loss in basal, middle and apical regions in a neonatal cochlea cultures. The protective effects of SPL extract were measured by phalloidin staining of cultures from postnatal day 2-3 mice with GM-induced hair cell loss. The anti-apoptosis activity of SPL extract was measured using double labeling by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and myosin-7a staining. The radical-scavenging activity of SPL extract was assessed using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. SPL extract at a concentration of 1 µg/mL significantly inhibited GM-induced hair cell loss at basal and middle region of cochlea, while 5 µg/mL was effective against apical region hair cell loss. The protective effect of SPL extract was concentration dependent and hair cells retained their stereocilia in explants treated with SPL extract prior to treatment with 0.3 mM GM. SPL extract decreased GM-induced apoptosis of hair cells as assessed by TUNEL staining. The outer hair and inner hair counts were not decreased in SPL extract treated groups in compare to GM treated explants. Additionally, SPL extract showed concentration dependent radical scavenging activity in a DPPH assay. An anti-apoptosis effect and potent radical scavenger activity of SPL extract protects from GM-induced hair cell loss at basal, middle and apical regions in neonatal cochlea cultures.

  3. A central to peripheral progression of cell cycle exit and hair cell differentiation in the developing mouse cristae.

    Science.gov (United States)

    Slowik, Amber D; Bermingham-McDonogh, Olivia

    2016-03-01

    The inner ear contains six distinct sensory organs that each maintains some ability to regenerate hair cells into adulthood. In the postnatal cochlea, there appears to be a relationship between the developmental maturity of a region and its ability to regenerate as postnatal regeneration largely occurs in the apical turn, which is the last region to differentiate and mature during development. In the mature cristae there are also regional differences in regenerative ability, which led us to hypothesize that there may be a general relationship between the relative maturity of a region and the regenerative competence of that region in all of the inner ear sensory organs. By analyzing adult mouse cristae labeled embryonically with BrdU, we found that hair cell birth starts in the central region and progresses to the periphery with age. Since the peripheral region of the adult cristae also maintains active Notch signaling and some regenerative competence, these results are consistent with the hypothesis that the last regions to develop retain some of their regenerative ability into adulthood. Further, by analyzing embryonic day 14.5 inner ears we provide evidence for a wave of hair cell birth along the longitudinal axis of the cristae from the central regions to the outer edges. Together with the data from the adult inner ears labeled with BrdU as embryos, these results suggest that hair cell differentiation closely follows cell cycle exit in the cristae, unlike in the cochlea where they are uncoupled. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors.

    Science.gov (United States)

    Wang, Xiaoxiao; Wang, Xusheng; Liu, Jianjun; Cai, Ting; Guo, Ling; Wang, Shujuan; Wang, Jinmei; Cao, Yanpei; Ge, Jianfeng; Jiang, Yuyang; Tredget, Edward E; Cao, Mengjun; Wu, Yaojiong

    2016-12-01

    : Stem cell-based organ regeneration is purported to enable the replacement of impaired organs in the foreseeable future. Here, we demonstrated that a combination of cultured epidermal stem cells (Epi-SCs) derived from the epidermis and skin-derived precursors (SKPs) was capable of reconstituting functional hair follicles and sebaceous glands (SG). When Epi-SCs and SKPs were mixed in a hydrogel and implanted into an excisional wound in nude mice, the Epi-SCs formed de novo epidermis along with hair follicles, and SKPs contributed to dermal papilla in the neogenic hair follicles. Notably, a combination of culture-expanded Epi-SCs and SKPs derived from the adult human scalp were sufficient to generate hair follicles and hair. Bone morphogenetic protein 4, but not Wnts, sustained the expression of alkaline phosphatase in SKPs in vitro and the hair follicle-inductive property in vivo when SKPs were engrafted with neonatal epidermal cells into excisional wounds. In addition, Epi-SCs were capable of differentiating into sebocytes and formed de novo SGs, which excreted lipids as do normal SGs. Thus our results indicate that cultured Epi-SCs and SKPs are sufficient to generate de novo hair follicles and SGs, implying great potential to develop novel bioengineered skin substitutes with appendage genesis capacity. In postpartum humans, skin appendages lost in injury are not regenerated, despite the considerable achievement made in skin bioengineering. In this study, transplantation of a combination of culture-expanded epidermal stem cells and skin-derived progenitors from mice and adult humans led to de novo regeneration of functional hair follicles and sebaceous glands. The data provide transferable knowledge for the development of novel bioengineered skin substitutes with epidermal appendage regeneration capacity. ©AlphaMed Press.

  5. Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves

    OpenAIRE

    Amoh, Yasuyuki; Li, Lingna; Campillo, Raul; Kawahara, Katsumasa; Katsuoka, Kensei; Penman, Sheldon; Hoffman, Robert M.

    2005-01-01

    The hair follicle bulge area is an abundant, easily accessible source of actively growing, pluripotent adult stem cells. Nestin, a protein marker for neural stem cells, also is expressed in follicle stem cells and their immediate, differentiated progeny. The fluorescent protein GFP, whose expression is driven by the nestin regulatory element in transgenic mice, served to mark the follicle cell fate. The pluripotent nestin-driven GFP stem cells are positive for the stem cell marker CD34 but ne...

  6. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    Directory of Open Access Journals (Sweden)

    Xiaojie Wang

    2015-01-01

    Full Text Available Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1 or fibroblasts (FB, group 2 under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P<0.001 without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation.

  7. Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea.

    Directory of Open Access Journals (Sweden)

    Ruth R Taylor

    Full Text Available BACKGROUND: Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. METHODOLOGY/PRINCIPAL FINDINGS: Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca's, suggesting genetic background influences the rate of re-organisation. CONCLUSIONS/SIGNIFICANCE: The lack of dedifferentiation amongst supporting cells and their replacement by cells from the outer side of the organ of Corti are factors that may need to be considered in any attempt to promote endogenous hair cell regeneration. The variability of the cellular environment along an individual cochlea arising from patch-like generation of flat epithelium, and the possible variability between individuals

  8. The actin-binding proteins eps8 and gelsolin have complementary roles in regulating the growth and stability of mechanosensory hair bundles of mammalian cochlear outer hair cells.

    Directory of Open Access Journals (Sweden)

    Jennifer Olt

    Full Text Available Sound transduction depends upon mechanosensitive channels localized on the hair-like bundles that project from the apical surface of cochlear hair cells. Hair bundles show a stair-case structure composed of rows of stereocilia, and each stereocilium contains a core of tightly-packed and uniformly-polarized actin filaments. The growth and maintenance of the stereociliary actin core are dynamically regulated. Recently, it was shown that the actin-binding protein gelsolin is expressed in the stereocilia of outer hair cells (OHCs and in its absence they become long and straggly. Gelsolin is part of a whirlin scaffolding protein complex at the stereocilia tip, which has been shown to interact with other actin regulatory molecules such as Eps8. Here we investigated the physiological effects associated with the absence of gelsolin and its possible overlapping role with Eps8. We found that, in contrast to Eps8, gelsolin does not affect mechanoelectrical transduction during immature stages of development. Moreover, OHCs from gelsolin knockout mice were able to mature into fully functional sensory receptors as judged by the normal resting membrane potential and basolateral membrane currents. Mechanoelectrical transducer current in gelsolin-Eps8 double knockout mice showed a profile similar to that observed in the single mutants for Eps8. We propose that gelsolin has a non-overlapping role with Eps8. While Eps8 is mainly involved in the initial growth of stereocilia in both inner hair cells (IHCs and OHCs, gelsolin is required for the maintenance of mature hair bundles of low-frequency OHCs after the onset of hearing.

  9. The acquisition of mechano-electrical transducer current adaptation in auditory hair cells requires myosin VI

    NARCIS (Netherlands)

    Marcotti, Walter; Corns, Laura F.; Goodyear, Richard J.; Rzadzinska, Agnieszka K.; Avraham, Karen B.; Steel, Karen P.; Richardson, Guy P.; Kros, Corne J.

    2016-01-01

    The transduction of sound into electrical signals occurs at the hair bundles atop sensory hair cells in the cochlea, by means of mechanosensitive ion channels, the mechano-electrical transducer (MET) channels. The MET currents decline during steady stimuli; this is termed adaptation and ensures they

  10. Tissue-engineered skin preserving the potential of epithelial cells to differentiate into hair after grafting.

    Science.gov (United States)

    Larouche, Danielle; Cuffley, Kristine; Paquet, Claudie; Germain, Lucie

    2011-03-01

    The aim of this study was to evaluate whether tissue-engineered skin produced in vitro was able to sustain growth of hair follicles in vitro and after grafting. Different tissues were designed. Dissociated newborn mouse keratinocytes or newborn mouse hair buds (HBs) were added onto dermal constructs consisting of a tissue-engineered cell-derived matrix elaborated from either newborn mouse or adult human fibroblasts cultured with ascorbic acid. After 7-21 days of maturation at the air-liquid interface, no hair was noticed in vitro. Epidermal differentiation was observed in all tissue-engineered skin. However, human fibroblast-derived tissue-engineered dermis (hD) promoted a thicker epidermis than mouse fibroblast-derived tissue-engineered dermis (mD). In association with mD, HBs developed epithelial cyst-like inclusions presenting outer root sheath-like attributes. In contrast, epidermoid cyst-like inclusions lined by a stratified squamous epithelium were present in tissues composed of HBs and hD. After grafting, pilo-sebaceous units formed and hair grew in skin elaborated from HBs cultured 10-26 days submerged in culture medium in association with mD. However, the number of normal hair follicles decreased with longer culture time. This hair-forming capacity after grafting was not observed in tissues composed of hD overlaid with HBs. These results demonstrate that epithelial stem cells can be kept in vitro in a permissive tissue-engineered dermal environment without losing their potential to induce hair growth after grafting.

  11. Auditory hair cell defects as potential cause for sensorineural deafness in Wolf-Hirschhorn syndrome

    Directory of Open Access Journals (Sweden)

    Mohi Ahmed

    2015-09-01

    Full Text Available WHSC1 is a histone methyltransferase (HMT that catalyses the addition of methyl groups to lysine 36 on histone 3. In humans, WHSC1 haploinsufficiency is associated with all known cases of Wolf-Hirschhorn syndrome (WHS. The cardinal feature of WHS is a craniofacial dysmorphism, which is accompanied by sensorineural hearing loss in 15% of individuals with WHS. Here, we show that WHSC1-deficient mice display craniofacial defects that overlap with WHS, including cochlea anomalies. Although auditory hair cells are specified normally, their stereocilia hair bundles required for sound perception fail to develop the appropriate morphology. Furthermore, the orientation and cellular organisation of cochlear hair cells and their innervation are defective. These findings identify, for the first time, the likely cause of sensorineural hearing loss in individuals with WHS.

  12. Effects of neuroactive steroids on cochlear hair cell death induced by gentamicin.

    Science.gov (United States)

    Nakamagoe, Mariko; Tabuchi, Keiji; Nishimura, Bungo; Hara, Akira

    2011-12-11

    As neuroactive steroids, sex steroid hormones have non-reproductive effects. We previously reported that 17β-estradiol (βE2) had protective effects against gentamicin (GM) ototoxicity in the cochlea. In the present study, we examined whether the protective action of βE2 on GM ototoxicity is mediated by the estrogen receptor (ER) and whether other estrogens (17α-estradiol (αE2), estrone (E1), and estriol (E3)) and other neuroactive steroids, dehydroepiandrosterone (DHEA) and progesterone (P), have similar protective effects. The basal turn of the organ of Corti was dissected from Sprague-Dawley rats and cultured in a medium containing 100 μM GM for 48h. The effects of βE2 and ICI 182,780, a selective ER antagonist, were examined. In addition, the effects of other estrogens, DHEA and P were tested using this culture system. Loss of outer hair cells induced by GM exposure was compared among groups. βE2 exhibited a protective effect against GM ototoxicity, but its protective effect was antagonized by ICI 182,780. αE2, E1, and E3 also protected hair cells against gentamicin ototoxicity. DHEA showed a protective effect; however, the addition of ICI 182,780 did not affect hair cell loss. P did not have any effect on GM-induced outer hair cell death. The present findings suggest that estrogens and DHEA are protective agents against GM ototoxicity. The results of the ER antagonist study also suggest that the protective action of βE2 is mediated via ER but that of DHEA is not related to its conversion to estrogen and binding to ER. Further studies on neuroactive steroids may lead to new insights regarding cochlear protection. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Rescue of Outer Hair Cells with Antisense Oligonucleotides in Usher Mice Is Dependent on Age of Treatment.

    Science.gov (United States)

    Ponnath, Abhilash; Depreux, Frederic F; Jodelka, Francine M; Rigo, Frank; Farris, Hamilton E; Hastings, Michelle L; Lentz, Jennifer J

    2018-02-01

    The absence of functional outer hair cells is a component of several forms of hereditary hearing impairment, including Usher syndrome, the most common cause of concurrent hearing and vision loss. Antisense oligonucleotide (ASO) treatment of mice with the human Usher mutation, Ush1c c.216G>A, corrects gene expression and significantly improves hearing, as measured by auditory-evoked brainstem responses (ABRs), as well as inner and outer hair cell (IHC and OHC) bundle morphology. However, it is not clear whether the improvement in hearing achieved by ASO treatment involves the functional rescue of outer hair cells. Here, we show that Ush1c c.216AA mice lack OHC function as evidenced by the absence of distortion product otoacoustic emissions (DPOAEs) in response to low-, mid-, and high-frequency tone pairs. This OHC deficit is rescued by treatment with an ASO that corrects expression of Ush1c c.216G>A. Interestingly, although rescue of inner hairs cells, as measured by ABR, is achieved by ASO treatment as late as 7 days after birth, rescue of outer hair cells, measured by DPOAE, requires treatment before post-natal day 5. These results suggest that ASO-mediated rescue of both IHC and OHC function is age dependent and that the treatment window is different for the different cell types. The timing of treatment for congenital hearing disorders is of critical importance for the development of drugs such ASO-29 for hearing rescue.

  14. Age-related hair pigment loss.

    Science.gov (United States)

    Tobin, Desmond J

    2015-01-01

    Humans are social animals that communicate disproportionately via potent genetic signals imbued in the skin and hair, including racial, ethnic, health, gender, and age status. For the vast majority of us, age-related hair pigment loss becomes the inescapable signal of our disappearing youth. The hair follicle (HF) pigmentary unit is a wonderful tissue for studying mechanisms generally regulating aging, often before this becomes evident elsewhere in the body. Given that follicular melanocytes (unlike those in the epidermis) are regulated by the hair growth cycle, this cycle is likely to impact the process of aging in the HF pigmentary unit. The formal identification of melanocyte stem cells in the mouse skin has spurred a flurry of reports on the potential involvement of melanocyte stem cell depletion in hair graying (i.e., canities). Caution is recommended, however, against simple extrapolation of murine data to humans. Regardless, hair graying in both species is likely to involve an age-related imbalance in the tissue's oxidative stress handling that will impact not only melanogenesis but also melanocyte stem cell and melanocyte homeostasis and survival. There is some emerging evidence that the HF pigmentary unit may have regenerative potential, even after it has begun to produce white hair fibers. It may therefore be feasible to develop strategies to modulate some aging-associated changes to maintain melanin production for longer. © 2015 S. Karger AG, Basel.

  15. 3-Deoxysappanchalcone Promotes Proliferation of Human Hair Follicle Dermal Papilla Cells and Hair Growth in C57BL/6 Mice by Modulating WNT/β-Catenin and STAT Signaling

    Science.gov (United States)

    Kim, Young Eun; Choi, Hyung Chul; Lee, In-Chul; Yuk, Dong Yeon; Lee, Hyosung; Choi, Bu Young

    2016-01-01

    3-Deoxysappanchalcone (3-DSC) has been reported to possess anti-allergic, antiviral, anti-inflammatory and antioxidant activities. In the present study, we investigated the effects of 3-DSC on the proliferation of human hair follicle dermal papilla cells (HDPCs) and mouse hair growth in vivo. A real-time cell analyzer system, luciferase assay, Western blot and real-time polymerase chain reaction (PCR) were employed to measure the biochemical changes occurring in HDPCs in response to 3-DSC treatment. The effect of 3-DSC on hair growth in C57BL/6 mice was also examined. 3-DSC promoted the proliferation of HDPCs, similar to Tofacitinib, an inhibitor of janus-activated kinase (JAK). 3-DSC promoted phosphorylation of β-catenin and transcriptional activation of the T-cell factor. In addition, 3-DSC potentiated interleukin-6 (IL-6)-induced phosphorylation and subsequent transactivation of signal transducer and activator of transcription-3 (STAT3), thereby increasing the expression of cyclin-dependent kinase-4 (Cdk4), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF). On the contrary, 3-DSC attenuated STAT6 mRNA expression and IL4-induced STAT6 phosphorylation in HDPCs. Finally, we observed that topical application of 3-DSC promoted the anagen phase of hair growth in C57BL/6 mice. 3-DSC stimulates hair growth possibly by inducing proliferation of follicular dermal papilla cells via modulation of WNT/β-catenin and STAT signaling. PMID:27795451

  16. miR-96 regulates the progression of differentiation in mammalian cochlear inner and outer hair cells.

    Science.gov (United States)

    Kuhn, Stephanie; Johnson, Stuart L; Furness, David N; Chen, Jing; Ingham, Neil; Hilton, Jennifer M; Steffes, Georg; Lewis, Morag A; Zampini, Valeria; Hackney, Carole M; Masetto, Sergio; Holley, Matthew C; Steel, Karen P; Marcotti, Walter

    2011-02-08

    MicroRNAs (miRNAs) are small noncoding RNAs able to regulate a broad range of protein-coding genes involved in many biological processes. miR-96 is a sensory organ-specific miRNA expressed in the mammalian cochlea during development. Mutations in miR-96 cause nonsyndromic progressive hearing loss in humans and mice. The mouse mutant diminuendo has a single base change in the seed region of the Mir96 gene leading to widespread changes in the expression of many genes. We have used this mutant to explore the role of miR-96 in the maturation of the auditory organ. We found that the physiological development of mutant sensory hair cells is arrested at around the day of birth, before their biophysical differentiation into inner and outer hair cells. Moreover, maturation of the hair cell stereocilia bundle and remodelling of auditory nerve connections within the cochlea fail to occur in miR-96 mutants. We conclude that miR-96 regulates the progression of the physiological and morphological differentiation of cochlear hair cells and, as such, coordinates one of the most distinctive functional refinements of the mammalian auditory system.

  17. Neomycin damage and regeneration of hair cells in both mechanoreceptor and electroreceptor lateral line organs of the larval Siberian sturgeon (Acipenser baerii).

    Science.gov (United States)

    Fan, Chunxin; Zou, Sha; Wang, Jian; Zhang, Bo; Song, Jiakun

    2016-05-01

    The lateral line found in some amphibians and fishes has two distinctive classes of sensory organs: mechanoreceptors (neuromasts) and electroreceptors (ampullary organs). Hair cells in neuromasts can be damaged by aminoglycoside antibiotics and they will regenerate rapidly afterward. Aminoglycoside sensitivity and the capacity for regeneration have not been investigated in ampullary organs. We treated Siberian sturgeon (Acipenser baerii) larvae with neomycin and observed loss and regeneration of sensory hair cells in both organs by labeling with DASPEI and scanning electron microscopy (SEM). The numbers of sensory hair cells in both organs were reduced to the lowest levels at 6 hours posttreatment (hpt). New sensory hair cells began to appear at 12 hpt and were regenerated completely in 7 days. To reveal the possible mechanism for ampullary hair cell regeneration, we analyzed cell proliferation and the expression of neural placodal gene eya1 during regeneration. Both cell proliferation and eya1 expression were concentrated in peripheral mantle cells and both increased to the highest level at 12 hpt, which is consistent with the time course for regeneration of the ampullary hair cells. Furthermore, we used Texas Red-conjugated gentamicin in an uptake assay following pretreatment with a cation channel blocker (amiloride) and found that entry of the antibiotic was suppressed in both organs. Together, our results indicate that ampullary hair cells in Siberian sturgeon larvae can be damaged by neomycin exposure and they can regenerate rapidly. We suggest that the mechanisms for aminoglycoside uptake and hair cell regeneration are conserved for mechanoreceptors and electroreceptors. J. Comp. Neurol. 524:1443-1456, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. External light activates hair follicle stem cells through eyes via an ipRGC-SCN-sympathetic neural pathway.

    Science.gov (United States)

    Fan, Sabrina Mai-Yi; Chang, Yi-Ting; Chen, Chih-Lung; Wang, Wei-Hung; Pan, Ming-Kai; Chen, Wen-Pin; Huang, Wen-Yen; Xu, Zijian; Huang, Hai-En; Chen, Ting; Plikus, Maksim V; Chen, Shih-Kuo; Lin, Sung-Jan

    2018-06-29

    Changes in external light patterns can alter cell activities in peripheral tissues through slow entrainment of the central clock in suprachiasmatic nucleus (SCN). It remains unclear whether cells in otherwise photo-insensitive tissues can achieve rapid responses to changes in external light. Here we show that light stimulation of animals' eyes results in rapid activation of hair follicle stem cells with prominent hair regeneration. Mechanistically, light signals are interpreted by M1-type intrinsically photosensitive retinal ganglion cells (ipRGCs), which signal to the SCN via melanopsin. Subsequently, efferent sympathetic nerves are immediately activated. Increased norepinephrine release in skin promotes hedgehog signaling to activate hair follicle stem cells. Thus, external light can directly regulate tissue stem cells via an ipRGC-SCN autonomic nervous system circuit. Since activation of sympathetic nerves is not limited to skin, this circuit can also facilitate rapid adaptive responses to external light in other homeostatic tissues.

  19. Auditory hair cell defects as potential cause for sensorineural deafness in Wolf-Hirschhorn syndrome.

    Science.gov (United States)

    Ahmed, Mohi; Ura, Kiyoe; Streit, Andrea

    2015-09-01

    WHSC1 is a histone methyltransferase (HMT) that catalyses the addition of methyl groups to lysine 36 on histone 3. In humans, WHSC1 haploinsufficiency is associated with all known cases of Wolf-Hirschhorn syndrome (WHS). The cardinal feature of WHS is a craniofacial dysmorphism, which is accompanied by sensorineural hearing loss in 15% of individuals with WHS. Here, we show that WHSC1-deficient mice display craniofacial defects that overlap with WHS, including cochlea anomalies. Although auditory hair cells are specified normally, their stereocilia hair bundles required for sound perception fail to develop the appropriate morphology. Furthermore, the orientation and cellular organisation of cochlear hair cells and their innervation are defective. These findings identify, for the first time, the likely cause of sensorineural hearing loss in individuals with WHS. © 2015. Published by The Company of Biologists Ltd.

  20. The role of hair cells, cilia and ciliary motility in otolith formation in the zebrafish otic vesicle.

    Science.gov (United States)

    Stooke-Vaughan, Georgina A; Huang, Peng; Hammond, Katherine L; Schier, Alexander F; Whitfield, Tanya T

    2012-05-01

    Otoliths are biomineralised structures required for the sensation of gravity, linear acceleration and sound in the zebrafish ear. Otolith precursor particles, initially distributed throughout the otic vesicle lumen, become tethered to the tips of hair cell kinocilia (tether cilia) at the otic vesicle poles, forming two otoliths. We have used high-speed video microscopy to investigate the role of cilia and ciliary motility in otolith formation. In wild-type ears, groups of motile cilia are present at the otic vesicle poles, surrounding the immotile tether cilia. A few motile cilia are also found on the medial wall, but most cilia (92-98%) in the otic vesicle are immotile. In mutants with defective cilia (iguana) or ciliary motility (lrrc50), otoliths are frequently ectopic, untethered or fused. Nevertheless, neither cilia nor ciliary motility are absolutely required for otolith tethering: a mutant that lacks cilia completely (MZovl) is still capable of tethering otoliths at the otic vesicle poles. In embryos with attenuated Notch signalling [mindbomb mutant or Su(H) morphant], supernumerary hair cells develop and otolith precursor particles bind to the tips of all kinocilia, or bind directly to the hair cells' apical surface if cilia are absent [MZovl injected with a Su(H)1+2 morpholino]. However, if the first hair cells are missing (atoh1b morphant), otolith formation is severely disrupted and delayed. Our data support a model in which hair cells produce an otolith precursor-binding factor, normally localised to tether cell kinocilia. We also show that embryonic movement plays a minor role in the formation of normal otoliths.

  1. Frequency response for electromotility of isolated outer hair cells of the guinea pig

    NARCIS (Netherlands)

    Wit, HP; vanDijk, P; Segenhout, HM

    1996-01-01

    Frequency and impulse responses were determined for isolated guinea pig outer hair cells by electrically stimulating the cells between two wire electrodes with white noise. Cells were attached to the bottom of a small culture dish at one end while the other end was freely moving. Results have the

  2. Cilia-driven fluid flow as an epigenetic cue for otolith biomineralization on sensory hair cells of the inner ear.

    Science.gov (United States)

    Yu, Xianwen; Lau, Doreen; Ng, Chee Peng; Roy, Sudipto

    2011-02-01

    Ciliary motility is necessary for many developmental and physiological processes in animals. In zebrafish, motile cilia are thought to be required for the deposition of otoliths, which comprise crystals of protein and calcium carbonate, on hair cells of the inner ear. The identity of the motile cilia and their role in otolith biogenesis, however, remain controversial. Here, we show that the ear vesicle differentiates numerous motile cilia, the spatial distribution of which changes as a function of the expression pattern of the ciliogenic gene foxj1b. By contrast, the hair cells develop immotile kinocilia that serve as static tethers for otolith crystallization. In ears devoid of all cilia, otoliths can form but they are of irregular shapes and sizes and appear to attach instead to the hair cell apical membranes. Moreover, overproduction of motile cilia also disrupts otolith deposition through sustained agitation of the precursor particles. Therefore, the correct spatial and temporal distribution of the motile cilia is crucial for proper otolith formation. Our findings support the view that the hair cells express a binding factor for the otolith precursors, while the motile cilia ensure that the precursors do not sediment prematurely and are efficiently directed towards the hair cells. We also provide evidence that the kinocilia are modified motile cilia that depend on Foxj1b for their differentiation. We propose that in hair cells, a Foxj1b-dependent motile ciliogenic program is altered by the proneural Atoh proteins to promote the differentiation of immotile kinocilia.

  3. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis of sensory hair cells in the mouse inner ear

    Directory of Open Access Journals (Sweden)

    Neil eSegil

    2015-05-01

    Full Text Available Aminoglycoside antibiotics are the drug of choice for treating many bacterial infections, but their administration results in hearing loss in nearly one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 hours of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternative pathway regulating gentamicin-induced hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contribute to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside

  4. Molecular Conversations and the Development of the Hair Follicle and Basal Cell Carcinoma

    OpenAIRE

    Harris, Pamela Jo; Takebe, Naoko; Ivy, S. Percy

    2010-01-01

    The understanding of the anatomy and development of fetal and adult hair follicles and molecular study of the major embryonic pathways that regulate the hair follicle have led to exciting discoveries concerning the development of basal cell carcinoma (BCC). These studies have shed light on the major roles of Sonic hedgehog (Shh) signaling and its interactions with the insulin-like growth factor (IGF) axis in BCC development. New work, for example, explores a link between Shh signaling and IGF...

  5. Root hair defective4 encodes a phosphatidylinositol-4-phosphate phosphatase required for proper root hair development in Arabidopsis thaliana

    NARCIS (Netherlands)

    Thole, J.M.; Vermeer, J.E.M.; Zhang, Y.; Gadella, Th.W.J.; Nielsen, E.

    2008-01-01

    Polarized expansion of root hair cells in Arabidopsis thaliana is improperly controlled in root hair-defective rhd4-1 mutant plants, resulting in root hairs that are shorter and randomly form bulges along their length. Using time-lapse fluorescence microscopy in rhd4-1 root hairs, we analyzed

  6. Strategies to reverse endothelial progenitor cell dysfunction in diabetes.

    Science.gov (United States)

    Petrelli, Alessandra; Di Fenza, Raffaele; Carvello, Michele; Gatti, Francesca; Secchi, Antonio; Fiorina, Paolo

    2012-01-01

    Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial), their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs). Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  7. Strategies to Reverse Endothelial Progenitor Cell Dysfunction in Diabetes

    Directory of Open Access Journals (Sweden)

    Alessandra Petrelli

    2012-01-01

    Full Text Available Bone-marrow-derived cells-mediated postnatal vasculogenesis has been reported as the main responsible for the regulation of vascular homeostasis in adults. Since their discovery, endothelial progenitor cells have been depicted as mediators of postnatal vasculogenesis for their peculiar phenotype (partially staminal and partially endothelial, their ability to differentiate in endothelial cell line and to be incorporated into the vessels wall during ischemia/damage. Diabetes mellitus, a condition characterized by cardiovascular disease, nephropathy, and micro- and macroangiopathy, showed a dysfunction of endothelial progenitor cells. Herein, we review the mechanisms involved in diabetes-related dysfunction of endothelial progenitor cells, highlighting how hyperglycemia affects the different steps of endothelial progenitor cells lifetime (i.e., bone marrow mobilization, trafficking into the bloodstream, differentiation in endothelial cells, and homing in damaged tissues/organs. Finally, we review preclinical and clinical strategies that aim to revert diabetes-induced dysfunction of endothelial progenitor cells as a means of finding new strategies to prevent diabetic complications.

  8. Three-dimensional architecture of hair-cell linkages as revealedby electron-microscopic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Manfred; Koster, Bram; Ziese, Ulrike; Bajaj, Chandrajit; Volkmann, Niels; Wang, Da Neng; Hudspeth, A. James

    2006-07-28

    The senses of hearing and balance rest upon mechanoelectrical transduction by the hair bundles of hair cells in the inner ear. Located at the apical cellular surface, each hair bundle comprises several tens of stereocilia and a single kinocilium that are interconnected by extracellular proteinaceous links. Using electron-microscopic tomography of bullfrog saccular sensory epithelia, we examined the three-dimensional structures of ankle or basal links, kinociliary links, and tip links. We observed clear differences in the dimensions and appearances of the three links. We found two distinct populations of tip links suggestive of the involvement of two proteins or splice variants. We noted auxiliary links connecting the upper portions of tip links to the taller stereocilia. Tip links and auxiliary links show a tendency to adopt a globular conformation when disconnected from the membrane surface.

  9. Serenoa repens extracts promote hair regeneration and repair of hair loss mouse models by activating TGF-β and mitochondrial signaling pathway.

    Science.gov (United States)

    Zhu, H-L; Gao, Y-H; Yang, J-Q; Li, J-B; Gao, J

    2018-06-01

    Plenty of plant extracts have been used for treating hair loss. This study aims to investigate the effects of liposterolic extracts of Serenoa repens (LSESr) on hair cell growth and regeneration of hair, and clarify the associated mechanisms. Human keratinocyte cells (HACAT) were cultured, incubated with dihydrotestosterone (DHT) and treated with LSESr. Cell viability was examined by using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H- tetrazolium bromide (MTT) assay. Hair loss C57BL/6 mouse model was established by inducing with DHT. Hair growth, density, and thickness were evaluated. Back skin samples were collected and stained with hematoxylin and eosin (HE) assay. B-cell lymphoma-2 (Bcl-2), Bcl-2 associated protein X (Bax), cleaved caspase 3 and transforming growth factor β2 (TGF-β2) were examined using Western blot assay. LSESr treatment significantly increased HACAT cell viabilities compared to DHT-only treated cells (p<0.05). LSESr treatment post injection of DHT significantly converted skin color from pink to gray and increased hair density, weight and thickness compared to DHT-only treated mice (p<0.05). LSESr treatment significantly triggered follicle growth and decreased inflammatory response. LSESr treatment significantly decreased TGF-β2 and cleaved caspase 3 expression of hair loss mouse models compared to that of DHT treated mice (p<0.05). LSESr treatment significantly enhanced Bcl-2 expression and reduced Bax expression compared to that of DHT treated mice (p<0.05). Meanwhile, effects of LSESr were substantial even achieving to the potential of finasteride. LSESr promoted the hair regeneration and repair of hair loss mouse models by activating TGF-β signaling and mitochondrial signaling pathway.

  10. A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicle.

    Science.gov (United States)

    Buscone, Serena; Mardaryev, Andrei N; Raafs, Bianca; Bikker, Jan W; Sticht, Carsten; Gretz, Norbert; Farjo, Nilofer; Uzunbajakava, Natallia E; Botchkareva, Natalia V

    2017-09-01

    Though devices for hair growth based on low levels of light have shown encouraging results, further improvements of their efficacy is impeded by a lack of knowledge on the exact molecular targets that mediate physiological response in skin and hair follicle. The aim of this study was to investigate the expression of selected light-sensitive receptors in the human hair follicle and to study the impact of UV-free blue light on hair growth ex vivo. The expression of Opsin receptors in human skin and hair follicles has been characterized using RT-qPCR and immunofluorescence approaches. The functional significance of Opsin 3 was assessed by silencing its expression in the hair follicle cells followed by a transcriptomic profiling. Proprietary LED-based devices emitting two discrete visible wavelengths were used to access the effects of selected optical parameters on hair growth ex vivo and outer root sheath cells in vitro. The expression of OPN2 (Rhodopsin) and OPN3 (Panopsin, Encephalopsin) was detected in the distinct compartments of skin and anagen hair follicle. Treatment with 3.2 J/cm 2 of blue light with 453 nm central wavelength significantly prolonged anagen phase in hair follicles ex vivo that was correlated with sustained proliferation in the light-treated samples. In contrast, hair follicle treatment with 3.2 J/cm 2 of 689 nm light (red light) did not significantly affect hair growth ex vivo. Silencing of OPN3 in the hair follicle outer root sheath cells resulted in the altered expression of genes involved in the control of proliferation and apoptosis, and abrogated stimulatory effects of blue light (3.2 J/cm 2 ; 453 nm) on proliferation in the outer root sheath cells. We provide the first evidence that (i) OPN2 and OPN3 are expressed in human hair follicle, and (ii) A 453 nm blue light at low radiant exposure exerts a positive effect on hair growth ex vivo, potentially via interaction with OPN3. Lasers Surg. Med. 49:705-718, 2017. © 2017 Wiley

  11. Gene expression underlying enhanced, steroid-dependent auditory sensitivity of hair cell epithelium in a vocal fish.

    Science.gov (United States)

    Fergus, Daniel J; Feng, Ni Y; Bass, Andrew H

    2015-10-14

    Successful animal communication depends on a receiver's ability to detect a sender's signal. Exemplars of adaptive sender-receiver coupling include acoustic communication, often important in the context of seasonal reproduction. During the reproductive summer season, both male and female midshipman fish (Porichthys notatus) exhibit similar increases in the steroid-dependent frequency sensitivity of the saccule, the main auditory division of the inner ear. This form of auditory plasticity enhances detection of the higher frequency components of the multi-harmonic, long-duration advertisement calls produced repetitively by males during summer nights of peak vocal and spawning activity. The molecular basis of this seasonal auditory plasticity has not been fully resolved. Here, we utilize an unbiased transcriptomic RNA sequencing approach to identify differentially expressed transcripts within the saccule's hair cell epithelium of reproductive summer and non-reproductive winter fish. We assembled 74,027 unique transcripts from our saccular epithelial sequence reads. Of these, 6.4 % and 3.0 % were upregulated in the reproductive and non-reproductive saccular epithelium, respectively. Gene ontology (GO) term enrichment analyses of the differentially expressed transcripts showed that the reproductive saccular epithelium was transcriptionally, translationally, and metabolically more active than the non-reproductive epithelium. Furthermore, the expression of a specific suite of candidate genes, including ion channels and components of steroid-signaling pathways, was upregulated in the reproductive compared to the non-reproductive saccular epithelium. We found reported auditory functions for 14 candidate genes upregulated in the reproductive midshipman saccular epithelium, 8 of which are enriched in mouse hair cells, validating their hair cell-specific functions across vertebrates. We identified a suite of differentially expressed genes belonging to neurotransmission and

  12. Titrated extract of Centella asiatica increases hair inductive property through inhibition of STAT signaling pathway in three-dimensional spheroid cultured human dermal papilla cells.

    Science.gov (United States)

    Choi, Yeong Min; An, Sungkwan; Lee, Junwoo; Lee, Jae Ho; Lee, Jae Nam; Kim, Young Sam; Ahn, Kyu Joong; An, In-Sook; Bae, Seunghee

    2017-12-01

    Dermal papilla (DP) is a pivotal part of hair follicle, and the smaller size of the DP is related with the hair loss. In this study, we investigated the effect of titrated extract of Centella asiatica (TECA) on hair growth inductive property on 3D spheroid cultured human DP cells (HDP cells). Significantly increased effect of TECA on cell viability was only shown in 3D sphered HPD cells, not in 2D cultured HDP cells. Also, TECA treatment increased the sphere size of HDP cells. The luciferase activity of STAT reporter genes and the expression of STAT-targeted genes, SOCS1 and SOCS3, were significantly decreased. Also, TECA treatment increased the expression of the hair growth-related signature genes in 3D sphered HDP cells. Furthermore, TECA led to downregulation of the level of phosphorylated STAT proteins in 3D sphered HDP cells. Overall, TECA activates the potential of hair inductive capacity in HDP cells.

  13. The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene.

    Science.gov (United States)

    Geng, Ruishuang; Melki, Sami; Chen, Daniel H-C; Tian, Guilian; Furness, David N; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey R; Imanishi, Yoshikazu; Alagramam, Kumar N

    2012-07-11

    Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.

  14. Inhibition of nitrogen-fixing activity of the cyanobiont affects the localization of glutamine synthetase in hair cells of Azolla.

    Science.gov (United States)

    Uheda, Eiji; Maejima, Kazuhiro

    2009-10-15

    In the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.2) in hair cells, which are specialized cells protruding into the leaf cavity. In order to clarify the regulatory mechanism underlying ammonium assimilation in the Azolla-Anabaena association, Azolla plants were grown under an argon environment (Ar), in which the nitrogen-fixing activity of the cyanobiont was inhibited specifically and completely. The localization of GS in hair cells was determined by immunoelectron microscopy and quantitative analysis of immunogold labeling. Azolla plants grew healthily under Ar when nitrogen sources, such as NO(3)(-) and NH(4)(+), were provided in the growth medium. Both the number of cyanobacterial cells per leaf and the heterocyst frequency of the plants under Ar were similar to those of plants in a nitrogen environment (N(2)). In hair cells of plants grown under Ar, regardless of the type of nitrogen source provided, only weak labeling of GS was observed in the cytoplasm and in chloroplasts. In contrast, in hair cells of plants grown under N(2), abundant labeling of GS was observed in both sites. These findings indicate that specific inhibition of the nitrogen-fixing activity of the cyanobiont affects the localization of GS isoenzymes. Ammonium fixed and released by the cyanobiont could stimulate GS synthesis in hair cells. Simultaneously, the abundant GS, probably GS1, in these cells, could assimilate ammonium rapidly.

  15. Expression of EFR3A in the mouse cochlea during degeneration of spiral ganglion following hair cell loss.

    Directory of Open Access Journals (Sweden)

    Chen Nie

    Full Text Available Retrograde degeneration of spiral ganglion cells in the cochlea following hair cell loss is similar to dying back in pathology. The EFR3A gene has recently been discovered to be involved in the pathogenesis of dying back. The relationship of EFR3A and spiral ganglion degeneration, however, was rarely investigated. In this study, we destroyed the hair cells of the mouse cochlea by co-administration of kanamycin and furosemide and then investigated the EFR3A expression during the induced spiral ganglion cell degeneration. Our results revealed that co-administration of kanamycin and furosemide quickly induced hair cell loss in the C57BL/6J mice and then resulted in progressive degeneration of the spiral ganglion beginning at day 5 following drug administration. The number of the spiral ganglion cells began to decrease at day 15. The expression of EFR3A increased remarkably in the spiral ganglion at day 5 and then decreased to near normal level within the next 10 days. Our study suggested that the change of EFR3A expression in the spiral ganglion was coincident with the time of the spiral ganglion degeneration, which implied that high expression of EFR3A may be important to prompt initiation of spiral ganglion degeneration following hair cell loss.

  16. Loss of Slc4a1b chloride/bicarbonate exchanger function protects mechanosensory hair cells from aminoglycoside damage in the zebrafish mutant persephone.

    Directory of Open Access Journals (Sweden)

    Dale W Hailey

    Full Text Available Mechanosensory hair cell death is a leading cause of hearing and balance disorders in the human population. Hair cells are remarkably sensitive to environmental insults such as excessive noise and exposure to some otherwise therapeutic drugs. However, individual responses to damaging agents can vary, in part due to genetic differences. We previously carried out a forward genetic screen using the zebrafish lateral line system to identify mutations that alter the response of larval hair cells to the antibiotic neomycin, one of a class of aminoglycoside compounds that cause hair cell death in humans. The persephone mutation confers resistance to aminoglycosides. 5 dpf homozygous persephone mutants are indistinguishable from wild-type siblings, but differ in their retention of lateral line hair cells upon exposure to neomycin. The mutation in persephone maps to the chloride/bicarbonate exchanger slc4a1b and introduces a single Ser-to-Phe substitution in zSlc4a1b. This mutation prevents delivery of the exchanger to the cell surface and abolishes the ability of the protein to import chloride across the plasma membrane. Loss of function of zSlc4a1b reduces hair cell death caused by exposure to the aminoglycosides neomycin, kanamycin, and gentamicin, and the chemotherapeutic drug cisplatin. Pharmacological block of anion transport with the disulfonic stilbene derivatives DIDS and SITS, or exposure to exogenous bicarbonate, also protects hair cells against damage. Both persephone mutant and DIDS-treated wild-type larvae show reduced uptake of labeled aminoglycosides. persephone mutants also show reduced FM1-43 uptake, indicating a potential impact on mechanotransduction-coupled activity in the mutant. We propose that tight regulation of the ionic environment of sensory hair cells, mediated by zSlc4a1b activity, is critical for their sensitivity to aminoglycoside antibiotics.

  17. Drive mechanisms to the inner and outer hair cell stereocilia

    Science.gov (United States)

    Maftoon, Nima; Motallebzadeh, Hamid; Guinan, John J.; Puria, Sunil

    2018-05-01

    It has been long believed that inner hair cell (IHC) stimulation can be gleaned from the classic ter-Kuile shear motion between the reticular lamina (RL) and tectorial membrane (TM). The present study explores this and other IHC stimulation mechanisms using a finite-element-model representation of an organ of Corti (OoC) cross section with fluid-structure interaction. A 3-D model of a cross section of the OoC including soft tissue and the fluid in the sub-tectorial space, tunnel of Corti and above the TM was formulated based on anatomical measurements from the gerbil apical turn. The outer hair cells (OHCs), Deiter's cells and their phalangeal processes are represented as Y-shaped building-block elements. Each of the IHC and OHC bundles is represented by a single sterocilium. Linearized Navier-Stokes equations coupled with linear-elastic equations discretized with tetrahedral elements are solved in the frequency domain. We evaluated the dynamic changes in the OoC motion including sub-tectorial gap dimensions for 0.1 to 10 kHz input frequencies. Calculations show the classic ter-Kuile motion but more importantly they show that the gap-height changes which produce oscillatory radial flow in the subtectorial space. Phase changes in the stereocilia across OHC rows and the IHC are also observed.

  18. Round window administration of gentamicin: a new method for the study of ototoxicity of cochlear hair cells.

    Science.gov (United States)

    Husmann, K R; Morgan, A S; Girod, D A; Durham, D

    1998-11-01

    Damage to inner ear sensory hair cells after systemic administration of ototoxic drugs has been documented in humans and animals. Birds have the ability to regenerate new hair cells to replace those damaged by drugs or noise. Unfortunately, the systemic administration of gentamicin damages both ears in a variable fashion with potentially confounding systemic drug effects. We developed a method of direct application of gentamicin to one cochlea of hatchling chickens, allowing the other ear to serve as a within-animal control. We tested variables including the vehicle for application, location of application, dosage, and duration of gentamicin exposure. After 5 or 28 days survival, the percent length damage to the cochlea and regeneration of hair cells was evaluated using scanning electron microscopy. Controls consisted of the opposite unexposed cochlea and additional animals which received saline instead of gentamicin. Excellent damage was achieved using gentamicin-soaked Gelfoam pledgets applied to the round window membrane. The percent length damage could be varied from 15 to 100% by changing the dosage of gentamicin, with exposures as short as 30 min. No damage was observed in control animals. Regeneration of hair cells was observed in both the base and apex by 28 days survival.

  19. l-N-acetylcysteine protects outer hair cells against TNFα initiated ototoxicity in vitro.

    Science.gov (United States)

    Tillinger, Joshua A; Gupta, Chhavi; Ila, Kadri; Ahmed, Jamal; Mittal, Jeenu; Van De Water, Thomas R; Eshraghi, Adrien A

    2018-03-07

    The present study is aimed at determining the efficacy and exploring the mechanisms by which l-N-acetylcysteine (l-NAC) provides protection against tumor necrosis factor-alpha (TNFα)-induced oxidative stress damage and hair cell loss in 3-day-old rat organ of Corti (OC) explants. Previous work has demonstrated a high level of oxidative stress in TNFα-challenged OC explants. TNFα can potentially play a significant role in hair cell loss following an insult to the inner ear. l-NAC has shown to provide effective protection against noise-induced hearing loss in laboratory animals but mechanisms of this otoprotective effect are not well-defined. Rat OC explants were exposed to either: (1) saline control (N = 12); (2) TNFα (2 μg/ml, N = 12); (3) TNFα+l-NAC (5 mM, N = 12); (4) TNFα+l-NAC (10 mM, N = 12); or (5) l-NAC (10 mM, N = 12). Outer hair cell (OHC) density, levels of reactive oxygen species (ROS), lipid peroxidation of cell membranes, gluthathione activity, and mitochondrial viability were assayed. l-NAC (5 and 10 mM) provided protection for OHCs from ototoxic level of TNFα in OC explants. Groups treated with TNFα+l-NAC (5 mM) showed a highly significant reduction of both ROS (p l-NAC (5 mM) treated explants (p l-NAC is a promising treatment for protecting auditory HCs from TNFα-induced oxidative stress and subsequent loss via programmed cell death.

  20. Characterization of Wnt and Notch-Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle

    Science.gov (United States)

    You, Dan; Guo, Luo; Li, Wenyan; Sun, Shan; Chen, Yan; Chai, Renjie; Li, Huawei

    2018-01-01

    Dysfunctions in hearing and balance are largely connected with hair cell (HC) loss. Although regeneration of HCs in the adult cochlea does not occur, there is still limited capacity for HC regeneration in the mammalian utricle from a distinct population of supporting cells (SCs). In response to HC damage, these Lgr5+ SCs, especially those in the striolar region, can regenerate HCs. In this study, we isolated Lgr5+ SCs and Plp1+ SCs (which originate from the striolar and extrastriolar regions, respectively) from transgenic mice by flow cytometry so as to compare the properties of these two subsets of SCs. We found that the Lgr5+ progenitors had greater proliferation and HC regeneration ability than the Plp1+ SCs and that the Lgr5+ progenitors responded more strongly to Wnt and Notch signaling than Plp1+ SCs. We then compared the gene expression profiles of the two populations by RNA-Seq and identified several genes that were significantly differentially expressed between the two populations, including genes involved in the cell cycle, transcription and cell signaling pathways. Targeting these genes and pathways might be a potential way to activate HC regeneration. PMID:29760650

  1. Isolation of hair follicle bulge stem cells from YFP-expressing reporter mice.

    Science.gov (United States)

    Nakrieko, Kerry-Ann; Irvine, Timothy S; Dagnino, Lina

    2013-01-01

    In this article we provide a method to isolate hair follicle stem cells that have undergone targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26-yellow fluorescent protein (YFP) reporter background, which results in YFP expression in the targeted stem cell population. These cells are isolated and purified by fluorescence-activated cell sorting, using epidermal stem cell-specific markers in conjunction with YFP fluorescence. The purified cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as viability and capacity for directional migration.

  2. Characterisation of cell cycle arrest and terminal differentiation in a maximally proliferative human epithelial tissue: Lessons from the human hair follicle matrix.

    Science.gov (United States)

    Purba, Talveen S; Brunken, Lars; Peake, Michael; Shahmalak, Asim; Chaves, Asuncion; Poblet, Enrique; Ceballos, Laura; Gandarillas, Alberto; Paus, Ralf

    2017-09-01

    Human hair follicle (HF) growth and hair shaft formation require terminal differentiation-associated cell cycle arrest of highly proliferative matrix keratinocytes. However, the regulation of this complex event remains unknown. CIP/KIP family member proteins (p21 CIP1 , p27 KIP1 and p57 KIP2 ) regulate cell cycle progression/arrest, endoreplication, differentiation and apoptosis. Since they have not yet been adequately characterized in the human HF, we asked whether and where CIP/KIP proteins localise in the human hair matrix and pre-cortex in relation to cell cycle activity and HF-specific epithelial cell differentiation that is marked by keratin 85 (K85) protein expression. K85 expression coincided with loss or reduction in cell cycle activity markers, including in situ DNA synthesis (EdU incorporation), Ki-67, phospho-histone H3 and cyclins A and B1, affirming a post-mitotic state of pre-cortical HF keratinocytes. Expression of CIP/KIP proteins was found abundantly within the proliferative hair matrix, concomitant with a role in cell cycle checkpoint control. p21 CIP1 , p27 KIP1 and cyclin E persisted within post-mitotic keratinocytes of the pre-cortex, whereas p57 KIP2 protein decreased but became nuclear. These data imply a supportive role for CIP/KIP proteins in maintaining proliferative arrest, differentiation and anti-apoptotic pathways, promoting continuous hair bulb growth and hair shaft formation in anagen VI. Moreover, post-mitotic hair matrix regions contained cells with enlarged nuclei, and DNA in situ hybridisation showed cells that were >2N in the pre-cortex. This suggests that CIP/KIP proteins might counterbalance cyclin E to control further rounds of DNA replication in a cell population that has a propensity to become tetraploid. These data shed new light on the in situ-biography of human hair matrix keratinocytes on their path of active cell cycling, arrest and terminal differentiation, and showcase the human HF as an excellent, clinically

  3. ILK modulates epithelial polarity and matrix formation in hair follicles.

    Science.gov (United States)

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-03-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical-basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.

  4. Preorchiectomy Leydig Cell Dysfunction in Patients With Testicular Cancer.

    Science.gov (United States)

    Bandak, Mikkel; Jørgensen, Niels; Juul, Anders; Lauritsen, Jakob; Gundgaard Kier, Maria Gry; Mortensen, Mette Saksø; Daugaard, Gedske

    2017-02-01

    Little is known about preorchiectomy Leydig cell function in patients with testicular germ cell cancer (TGCC). The aim was to estimate the prevalence of preorchiectomy Leydig cell dysfunction and evaluate factors associated with this condition in a cohort of patients with TGCC. We evaluated luteinizing hormone (LH), total testosterone (TT), calculated free T (cFT), estradiol, and sex hormone-binding globulin (SHBG) preorchiectomy in 561 patients with TGCC and compared with 561 healthy controls. We calculated TT/LH and cFT/LH ratios and constructed bivariate charts of TT/LH and cFT/LH from the controls. Logistic regression analysis with an abnormal cFT/LH ratio as outcome and clinical stage, tumor size, age, histology, presence of contralateral germ cell neoplasia in situ (GCNIS), and bilateral tumors as covariates was performed. In patients who were negative for human chorionic gonadotropin (hCG) (n = 374), TT (P = .004), cFT (P < .001), TT/LH ratio (P = .003), and cFT/LH ratio (P = .002) were lower than in controls. A total of 95 (25%) and 91 (24%) of hCG-negative patients had abnormal values when using combined evaluation of TT/LH and cFT/LH, respectively. Increasing tumor size, contralateral GCNIS, and increasing age were associated with Leydig cell dysfunction. In patients positive for hCG (n = 187), all reproductive hormones except SHBG were different from controls (P < .001). Patients with TGCC are at increased risk of Leydig cell dysfunction before orchiectomy. Contralateral GCNIS, increasing age, and increasing tumor size are associated with Leydig cell dysfunction. We hypothesize that patients with preexisting Leydig cell dysfunction are at increased risk of testosterone deficiency following treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Effect of inner and outer hair cell lesions on electrically evoked otoacoustic emissions.

    Science.gov (United States)

    Reyes, S; Ding, D; Sun, W; Salvi, R

    2001-08-01

    When the cochlea is stimulated by a sinusoidal current, the inner ear emits an acoustic signal at the stimulus frequency, termed the electrically evoked otoacoustic emission (EEOAE). Recent studies have found EEOAEs in birds lacking outer hair cells (OHCs), raising the possibility that other types of hair cells, including inner hair cells (IHCs), may generate EEOAEs. To determine the relative contribution of IHCs and OHCs to the generation of the EEOAE, we measured the amplitude of EEOAEs, distortion product otoacoustic emissions (DPOAEs), the cochlear microphonic (CM) and the compound action potential (CAP) in normal chinchillas and chinchillas with IHC lesions or IHC plus OHC lesions induced by carboplatin. Selective IHC loss had little or no effect on CM amplitude and caused a slight reduction in mean DPOAE amplitude. However, IHC loss resulted in a massive reduction in CAP amplitude. Importantly, selective IHC lesions did not reduce EEOAE amplitude, but instead, EEOAE amplitude increased at high frequencies. When both IHCs and OHCs were destroyed, the amplitude of the CM, DPOAE and EEOAE all decreased. The increase in EEOAE amplitude seen with IHC loss may be due to (1) loss of tonic efferent activity to the OHCs, (2) change in the mechanical properties of the cochlea or (3) elimination of EEOAEs produced by IHCs in phase opposition to those from OHCs.

  6. Functional anatomy of the hair follicle: The Secondary Hair Germ.

    Science.gov (United States)

    Panteleyev, Andrey A

    2018-07-01

    The secondary hair germ (SHG)-a transitory structure in the lower portion of the mouse telogen hair follicle (HF)-is directly involved in anagen induction and eventual HF regrowth. Some crucial aspects of SHG functioning and ontogenetic relations with other HF parts, however, remain undefined. According to recent evidence (in contrast to previous bulge-centric views), the SHG is the primary target of anagen-inducing signalling and a source of both the outer root sheath (ORS) and ascending HF layers during the initial (morphogenetic) anagen subphase. The SHG is comprised of two functionally distinct cell populations. Its lower portion (originating from lower HF cells that survived catagen) forms all ascending HF layers, while the upper SHG (formed by bulge-derived cells) builds up the ORS. The predetermination of SHG cells to a specific morphogenetic fate contradicts their attribution to the "stem cell" category and supports SHG designation as a "germinative" or a "founder" cell population. The mechanisms of this predetermination driving transition of the SHG from "refractory" to the "competent" state during the telogen remain unknown. Functionally, the SHG serves as a barrier, protecting the quiescent bulge stem cell niche from the extensive follicular papilla/SHG signalling milieu. The formation of the SHG is a prerequisite for efficient "precommitment" of these cells and provides for easier sensing and a faster response to anagen-inducing signals. In general, the formation of the SHG is an evolutionary adaptation, which allowed the ancestors of modern Muridae to acquire a specific, highly synchronized pattern of hair cycling. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Trace element distribution in the hair of some sickle cell anemia patients and controls

    International Nuclear Information System (INIS)

    Oluwole, A.F.; Asubiojo, O.I.; Adekile, A.D.; Filby, R.H.; Bragg, A.; Grimm, C.I.

    1990-01-01

    Hair samples of some young sickle cell anemia (SCA) and Control patients in Nigeria were analyzed for 12 elements, viz, Se, Hg, Cr, Fe, Zn, Co, Cu, Br, As, Sb, Na, and Sc, using instrumental Neutron Activation Analysis (INAA). With the exception of Cu, which was found to be significantly higher in the hair of SCA patients (at the 0.05 level of the t-test), there were generally no significant differences in elemental concentrations within the two groups. A preliminary study of the elemental contents of the fingernails of the same subjects showed a higher abundance of most of the elements in nail than in hair. These preliminary results were compared with similar studies form some other parts of the world

  8. Serial cultivation of human scalp hair follicle keratinocytes.

    Science.gov (United States)

    Weterings, P J; Roelofs, H M; Vermorken, A J; Bloemendal, H

    1983-01-01

    A method is described for the serial cultivation of adult human hair follicle keratinocytes. Plucked scalp hair follicles, placed on bovine eye lens capsules as a growth substrate, give rise to quickly expanding colonies within a few days. After trypsinization, the cells are replated with irradiated 3T3 cells as 'feeders'. Using this combination of techniques the keratinocytes can be subcultured up to four times. In this way about 10(7) keratinocytes can be generated from one single hair follicle. Moreover, the technique enables cryogenic storage of the cells, allowing for instance, convenient transportation. Subcultured hair follicle keratinocytes can be plated on glass coverslips. This allows immunofluorescence studies. The keratin cytoskeletons visualized using an antiserum against human keratin.

  9. Cockayne syndrome group B (Csb) and group a (Csa) deficiencies predispose to hearing loss and cochlear hair cell degeneration in mice.

    Science.gov (United States)

    Nagtegaal, A Paul; Rainey, Robert N; van der Pluijm, Ingrid; Brandt, Renata M C; van der Horst, Gijsbertus T J; Borst, J Gerard G; Segil, Neil

    2015-03-11

    Sensory hair cells in the cochlea, like most neuronal populations that are postmitotic, terminally differentiated, and non-regenerating, depend on robust mechanisms of self-renewal for lifelong survival. We report that hair cell homeostasis requires a specific sub-branch of the DNA damage nucleotide excision repair pathway, termed transcription-coupled repair (TCR). Cockayne syndrome (CS), caused by defects in TCR, is a rare DNA repair disorder with a broad clinical spectrum that includes sensorineural hearing loss. We tested hearing and analyzed the cellular integrity of the organ of Corti in two mouse models of this disease with mutations in the Csb gene (CSB(m/m) mice) and Csa gene (Csa(-/-) mice), respectively. Csb(m/m) and Csa(-/-) mice manifested progressive hearing loss, as measured by an increase in auditory brainstem response thresholds. In contrast to wild-type mice, mutant mice showed reduced or absent otoacoustic emissions, suggesting cochlear outer hair cell impairment. Hearing loss in Csb(m/m) and Csa(-/-) mice correlated with progressive hair cell loss in the base of the organ of Corti, starting between 6 and 13 weeks of age, which increased by 16 weeks of age in a basal-to-apical gradient, with outer hair cells more severely affected than inner hair cells. Our data indicate that the hearing loss observed in CS patients is reproduced in mouse models of this disease. We hypothesize that accumulating DNA damage, secondary to the loss of TCR, contributes to susceptibility to hearing loss. Copyright © 2015 the authors 0270-6474/15/354280-07$15.00/0.

  10. Mutations in Three Genes Encoding Proteins Involved in Hair Shaft Formation Cause Uncombable Hair Syndrome

    DEFF Research Database (Denmark)

    Ü Basmanav, F Buket; Cau, Laura; Tafazzoli, Aylar

    2016-01-01

    Uncombable hair syndrome (UHS), also known as "spun glass hair syndrome," "pili trianguli et canaliculi," or "cheveux incoiffables" is a rare anomaly of the hair shaft that occurs in children and improves with age. UHS is characterized by dry, frizzy, spangly, and often fair hair that is resistant...... in the majority of UHS case subjects. The two enzymes PADI3 and TGM3, responsible for posttranslational protein modifications, and their target structural protein TCHH are all involved in hair shaft formation. Elucidation of the molecular outcomes of the disease-causing mutations by cell culture experiments...... and tridimensional protein models demonstrated clear differences in the structural organization and activity of mutant and wild-type proteins. Scanning electron microscopy observations revealed morphological alterations in hair coat of Padi3 knockout mice. All together, these findings elucidate the molecular genetic...

  11. Erectile Dysfunction in patients with Sickle Cell Anaemia | Ibidapo ...

    African Journals Online (AJOL)

    Erectile Dysfunction in patients with Sickle Cell Anaemia. ... leading to an increased haemolysis as well as vaso-occlusive complications including ... bone pain crises, blood transfusion (over a 3 year period) as well as erectile dysfunction.

  12. Calcium-loaded 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocks cell-to-cell diffusion of carboxyfluorescein in staminal hairs of Setcreasea purpurea.

    Science.gov (United States)

    Tucker, E B

    1990-08-01

    The effect of microinjected calcium-loaded 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (CaBAPTA) on cell-to-cell diffusion of carboxyfluorescein (CF) was examined in staminal hairs of S. purpurea Boom. The CaBAPTA was microinjected into the cytoplasm of the staminal hairs either with CF or prior to a subsequent microinjection of CF. The cell-to-cell diffusion of CF along the hair was monitored using enhanced-fluorescence video microscopy. Cytoplasmic streaming stopped in cells treated with CaBAPTA, indicating that intracellular Ca(2+) had increased. Cell-to-cell diffusion of CF was blocked in cells treated with Ca-BAPTA. An inhibition of cytoplasmic streaming and cell-to-cell diffusion was observed in the cells adjoining the CaBAPTA-microinjected cell, indicating that the Ca-BAPTA appeared to pass through plasmodesmata. While cytoplasmic streaming resumed 5-10 min after CaBAPTA treatment, cell-to-cell diffusion did not resume until 30-120 min later. These data support an involvement of calcium in the regulation of cell-to-cell communication in plants.

  13. Localization and expression of clarin-1, the Clrn1 gene product, in auditory hair cells and photoreceptors

    Science.gov (United States)

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Askew, Charles; Garrige, Suneetha; Gratton, Michael Anne; Rothermund-Franklin, Christie A.; Cosgrove, Dominic

    2009-01-01

    The Usher syndrome 3A (CLRN1) gene encodes clarin-1, which is a member of the tetraspanin family of transmembrane proteins. Although identified more than 6 years ago, little is known about its localization or function in the eye and ear. We developed a polyclonal antibody that react with all clarin-1 isoforms and used it to characterize protein expression in cochlea and retina. In the cochlea, we observe clarin-1expression in the stereocilia of P0 mice, and in synaptic terminals present at the base of the auditory hair cells from E18 to P6. In the retina, clarin-1 localizes to the connecting cilia, inner segment of photoreceptors and to the ribbon synapses. RT-PCR from P0 cochlea and P28 retina show mRNAs encoding only isoforms 2 and 3. Western-blots show that only isoform 2 is present in protein extracts from these same tissues. We examined clarin-1 expression in the immortomouse-derived hair cell line UB/OC-1. Only isoform 2 is expressed in UB/OC-1 at both mRNA and protein levels, suggesting this isoform is biologically relevant to hair cell function. The protein co-localizes with microtubules and post-transgolgi vesicles. The sub-cellular localization of clarin-1 in hair cells and photoreceptors suggests it functions at both the basal and apical poles of neurosensoriepithelia. PMID:19539019

  14. The hair follicle bulge: a niche for adult stem cells.

    Science.gov (United States)

    Pasolli, Hilda Amalia

    2011-08-01

    Adult stem cells (SCs) are essential for tissue homeostasis and wound repair. They have the ability to both self-renew and differentiate into multiple cell types. They often reside in specialized microenvironments or niches that preserve their proliferative and tissue regenerative capacity. The murine hair follicle (HF) has a specialized and permanent compartment--the bulge, which safely lodges SCs and provides the necessary molecular cues to regulate their function. The HF undergoes cyclic periods of destruction, regeneration, and rest, making it an excellent system to study SC biology.

  15. Elementary properties of Ca(2+) channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses.

    Science.gov (United States)

    Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L; Masetto, Sergio

    2015-01-01

    Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca(2+) entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca(2+) channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses.

  16. Elementary properties of Ca2+ channels and their influence on multivesicular release and phase-locking at auditory hair cell ribbon synapses

    Science.gov (United States)

    Magistretti, Jacopo; Spaiardi, Paolo; Johnson, Stuart L.; Masetto, Sergio

    2015-01-01

    Voltage-gated calcium (Cav1.3) channels in mammalian inner hair cells (IHCs) open in response to sound and the resulting Ca2+ entry triggers the release of the neurotransmitter glutamate onto afferent terminals. At low to mid sound frequencies cell depolarization follows the sound sinusoid and pulses of transmitter release from the hair cell generate excitatory postsynaptic currents (EPSCs) in the afferent fiber that translate into a phase-locked pattern of action potential activity. The present article summarizes our current understanding on the elementary properties of single IHC Ca2+ channels, and how these could have functional implications for certain, poorly understood, features of synaptic transmission at auditory hair cell ribbon synapses. PMID:25904847

  17. Hair curvature: a natural dialectic and review.

    Science.gov (United States)

    Nissimov, Joseph N; Das Chaudhuri, Asit Baran

    2014-08-01

    Although hair forms (straight, curly, wavy, etc.) are present in apparently infinite variations, each fibre can be reduced to a finite sequence of tandem segments of just three types: straight, bent/curly, or twisted. Hair forms can thus be regarded as resulting from genetic pathways that induce, reverse or modulate these basic curvature modes. However, physical interconversions between twists and curls demonstrate that strict one-to-one correspondences between them and their genetic causes do not exist. Current hair-curvature theories do not distinguish between bending and twisting mechanisms. We here introduce a multiple papillary centres (MPC) model which is particularly suitable to explain twisting. The model combines previously known features of hair cross-sectional morphology with partially/completely separated dermal papillae within single follicles, and requires such papillae to induce differential growth rates of hair cortical material in their immediate neighbourhoods. The MPC model can further help to explain other, poorly understood, aspects of hair growth and morphology. Separate bending and twisting mechanisms would be preferentially affected at the major or minor ellipsoidal sides of fibres, respectively, and together they exhaust the possibilities for influencing hair-form phenotypes. As such they suggest dialectic for hair-curvature development. We define a natural-dialectic (ND) which could take advantage of speculative aspects of dialectic, but would verify its input data and results by experimental methods. We use this as a top-down approach to first define routes by which hair bending or twisting may be brought about and then review evidence in support of such routes. In particular we consider the wingless (Wnt) and mammalian target of rapamycin (mTOR) pathways as paradigm pathways for molecular hair bending and twisting mechanisms, respectively. In addition to the Wnt canonical pathway, the Wnt/Ca(2+) and planar cell polarity (PCP) pathways

  18. Local Mechanisms for Loud Sound-Enhanced Aminoglycoside Entry into Outer Hair Cells

    Directory of Open Access Journals (Sweden)

    Hongzhe eLi

    2015-04-01

    Full Text Available Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs. Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy.Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR for 30 minutes prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy.We found wide-band noise (WBN levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS.These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic

  19. MicroRNAs in Hyperglycemia Induced Endothelial Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Maskomani Silambarasan

    2016-04-01

    Full Text Available Hyperglycemia is closely associated with prediabetes and Type 2 Diabetes Mellitus. Hyperglycemia increases the risk of vascular complications such as diabetic retinopathy, diabetic nephropathy, peripheral vascular disease and cerebro/cardiovascular diseases. Under hyperglycemic conditions, the endothelial cells become dysfunctional. In this study, we investigated the miRNA expression changes in human umbilical vein endothelial cells exposed to different glucose concentrations (5, 10, 25 and 40 mM glucose and at various time intervals (6, 12, 24 and 48 h. miRNA microarray analyses showed that there is a correlation between hyperglycemia induced endothelial dysfunction and miRNA expression. In silico pathways analyses on the altered miRNA expression showed that the majority of the affected biological pathways appeared to be associated to endothelial cell dysfunction and apoptosis. We found the expression of ten miRNAs (miR-26a-5p, -26b-5p, 29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -140-5p, -192-5p, -221-3p and -320a to increase gradually with increasing concentration of glucose. These miRNAs were also found to be involved in endothelial dysfunction. At least seven of them, miR-29b-3p, -29c-3p, -125b-1-3p, -130b-3p, -221-3p, -320a and -192-5p, can be correlated to endothelial cell apoptosis.

  20. Localization of calcium in the sensory cells of the Dionaea trigger hair by laser micro-mass analysis (LAMMA)

    International Nuclear Information System (INIS)

    Buchen, B.; Schröder, W.H.

    1986-01-01

    In Dionaea, mechanical bending of the trigger hair induces action potentials which spread over the trap lobes to the motor cells (review Bentrup 1979). The perception of the stimulus and its transformation into a physiological signal occurs in a ring of specialized epidermal cells in the indentation zone of the trigger hair. These sensory cells (Haberlandt 1906) are characterized by a highly evolved ER complex at the apical and the basal cell pole. The ER surrounds several vacuoles containing poly phenols (Buchen et al. 1983). In order to study the function of these cell structures in sensory transduction, we examined the development of the trigger hair (Casser et al. 1985). During its development, a change in the membrane potential could be measured for the first time when the structural polarity of the sensory cell was established. Yet the short action potentials which are necessary for trap closure were fired only if the typical ER complex in the cell poles was visible. Since membrane potential changes are mediated by ions, we tried to identify and to localize ions possibly involved in these processes. Here we present the first results

  1. Single-channel L-type Ca2+ currents in chicken embryo semicircular canal type I and type II hair cells.

    Science.gov (United States)

    Zampini, Valeria; Valli, Paolo; Zucca, Giampiero; Masetto, Sergio

    2006-08-01

    Few data are available concerning single Ca channel properties in inner ear hair cells and particularly none in vestibular type I hair cells. By using the cell-attached configuration of the patch-clamp technique in combination with the semicircular canal crista slice preparation, we determined the elementary properties of voltage-dependent Ca channels in chicken embryo type I and type II hair cells. The pipette solutions included Bay K 8644. With 70 mM Ba(2+) in the patch pipette, Ca channel activity appeared as very brief openings at -60 mV. Ca channel properties were found to be similar in type I and type II hair cells; therefore data were pooled. The mean inward current amplitude was -1.3 +/- 0.1 (SD) pA at - 30 mV (n = 16). The average slope conductance was 21 pS (n = 20). With 5 mM Ba(2+) in the patch pipette, very brief openings were already detectable at -80 mV. The mean inward current amplitude was -0.7 +/- 0.2 pA at -40 mV (n = 9). The average slope conductance was 11 pS (n = 9). The mean open time and the open probability increased significantly with depolarization. Ca channel activity was still present and unaffected when omega-agatoxin IVA (2 microM) and omega-conotoxin GVIA (3.2 microM) were added to the pipette solution. Our results show that types I and II hair cells express L-type Ca channels with similar properties. Moreover, they suggest that in vivo Ca(2+) influx might occur at membrane voltages more negative than -60 mV.

  2. Effects of ultraviolet-visible irradiation in the presence of melanin isolated from human black or red hair upon Ehrlich ascites carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Menon, I.A.; Persad, S.; Ranadive, N.S.; Haberman, H.F.

    1983-07-01

    The present study is an attempt to investigate the possibility that ultraviolet irradiation in the presence of pheomelanin may be more harmful to cells than the irradiation in the presence of eumelanin. The effects of UV-visible irradiation upon Ehrlich ascites carcinoma cells in the presence of the melanin isolated from human black hair (eumelanin) or from red hair (pheomelanin) were investigated. Irradiation of these cells was found to produce cell lysis, as observed by leakage of 51Cr from labeled cells and intracellular lactic dehydrogenase from the cells and decrease in cell viability demonstrated by the trypan blue exclusion test. The three parameters were quantitatively parallel to one another under various experimental conditions, namely different periods of irradiation and irradiation in the presence of different concentrations of melanin. The above effects were more pronounced when the irradiation was carried out in the presence of melanin from red hair than in the presence of black-hair melanin. In the absence of either melanin, the irradiation did not produce any significant effect in cell viability or cell lysis. Irradiation of the cells in the presence of red-hair melanin also decreased the transplantability of these cells. These observations clearly show that irradiation of cells in the presence of pheomelanin could produce cytotoxic effects. The present experimental design may have application in the development of in vitro models for the study of UV radiation-induced cutaneous carcinogenesis. The reactions of pheomelanin may be related to the susceptibility of ''Celtic'' skin to UV radiation-induced skin damage and carcinogenesis.

  3. Is there any relationship between decreased AgNOR protein synthesis and human hair loss?

    Science.gov (United States)

    Eroz, R; Tasdemir, S; Dogan, H

    2012-11-01

    Argyrophilic nucleolar organizing region associated proteins (AgNORs) play roles in cell proliferation and a variety of diseases. We attempted to determine whether decreased NOR protein synthesis causes human hair loss. We studied 21 healthy males who suffered hair loss on the frontal/vertex portion of the head. Hair root cells from normal and hair loss sites were stained for AgNOR. One hundred nuclei per site were evaluated and the AgNOR number and NORa/TNa proportions of individual cells were determined using a computer program. The cells from normal sites had significantly higher AgNOR counts than those from hair loss sites. Also, the cells from the normal sites had significantly higher NORa/TNa than cells from the hair loss sites. In the normal sites, the cells demonstrated more NOR protein synthesis than cells in hair loss sites. Therefore, decreased NOR protein synthesis appears to be related to hair loss in humans.

  4. Multifunctional Merkel cells: their roles in electromagnetic reception, finger-print formation, Reiki, epigenetic inheritance and hair form.

    Science.gov (United States)

    Irmak, M Kemal

    2010-08-01

    Merkel cells are located in glabrous and hairy skin and in some mucosa. They are characterized by dense-core secretory granules and cytoskeletal filaments. They are attached to neighboring keratinocytes by desmosomes and contain melanosomes similar to keratinocytes. They are excitable cells in close contact with sensory nerve endings but their function is still unclear. In this review, following roles are attributed for the first time to the Merkel cells: (1) melanosomes in Merkel cells may be involved in mammalian magnetoreception. In this model melanosome as a biological magnetite is connected by cytoskeletal filaments to mechanically gated ion channels embedded in the Merkel cell membrane. The movement of melanosome with the changing electromagnetic field may open ion channels directly producing a receptor potential that can be transmitted to brain via sensory neurons. (2) Merkel cells may be involved in finger-print formation: Merkel cells in glabrous skin are located at the base of the epidermal ridges the type of which defines the finger-print pattern. Finger-print formation starts at the 10th week of pregnancy after the arrival of Merkel cells. Keratinocyte proliferation and the buckling process observed in the basal layer of epidermis resulting in the epidermal ridges may be controlled and formed by Merkel cells. (3) Brain-Merkel cell connection is bi-directional and Merkel cells not only absorb but also radiate the electromagnetic frequencies. Hence, efferent aspects of the palmar and plantar Merkel nerve endings may form the basis of the biofield modalities such as Reiki, therapeutic touch and telekinesis. (4) Adaptive geographic variations such as skin color, craniofacial morphology and hair form result from interactions between environmental factors and epigenetic inheritance system. While environmental factors produce modifications in the body, they simultaneously induce epigenetic modifications in the oocytes and in this way adaptive changes could be

  5. Espins and the actin cytoskeleton of hair cell stereocilia and sensory cell microvilli

    Science.gov (United States)

    Sekerková, Gabriella; Zheng, Lili; Loomis, Patricia A.; Mugnaini, Enrico; Bartles, James R.

    2008-01-01

    The espins are novel actin-bundling proteins that are produced in multiple isoforms from a single gene. They are present at high concentration in the parallel actin bundle of hair cell stereocilia and are the target of deafness mutations in mice and humans. Espins are also enriched in the microvilli of taste receptor cells, solitary chemoreceptor cells, vomeronasal sensory neurons and Merkel cells, suggesting that espins play important roles in the microvillar projections of vertebrate sensory cells. Espins are potent actin-bundling proteins that are not inhibited by Ca2+. In cells, they efficiently elongate parallel actin bundles and, thereby, help determine the steady-state length of microvilli and stereocilia. Espins bind actin monomer via their WH2 domain and can assemble actin bundles in cells. Certain espin isoforms can also bind phosphatidylinositol 4,5-bisphosphate, profilins or SH3 proteins. These biological activities distinguish espins from other actin-bundling proteins and may make them well-suited to sensory cells. PMID:16909209

  6. Increased root hair density by loss of WRKY6 in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Markus G. Stetter

    2017-01-01

    Full Text Available Root hairs are unicellular elongations of certain rhizodermal cells that improve the uptake of sparingly soluble and immobile soil nutrients. Among different Arabidopsis thaliana genotypes, root hair density, length and the local acclimation to low inorganic phosphate (Pi differs considerably, when analyzed on split agar plates. Here, genome-wide association fine mapping identified significant single nucleotide polymorphisms associated with the increased root hair density in the absence of local phosphate on chromosome 1. A loss-of-functionmutant of the candidate transcription factor gene WRKY6, which is involved in the acclimation of plants to low phosphorus, had increased root hair density. This is partially explained by a reduced cortical cell diameter in wrky6-3, reducing the rhizodermal cell numbers adjacent to the cortical cells. As a consequence, rhizodermal cells in positions that are in contact with two cortical cells are found more often, leading to higher hair density. Distinct cortical cell diameters and epidermal cell lengths distinguish other Arabidopsis accessions with distinct root hair density and −Pi response from diploid Col-0, while tetraploid Col-0 had generally larger root cell sizes, which explain longer hairs. A distinct radial root morphology within Arabidopsis accessions and wrky6-3explains some, but not all, differences in the root hair acclimation to –Pi.

  7. Thinning Hair and Hair Loss: Could it be Female Pattern Hair Loss?

    Science.gov (United States)

    ... mcat1=de12", ]; for (var c = 0; c Thinning hair and hair loss: Could it be female pattern hair loss? Female pattern hair loss: Without treatment, female ... can I tell if I have female pattern hair loss? It’s best to make an appointment to ...

  8. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Science.gov (United States)

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  9. Constitutive transgene expression of Stem Cell Antigen-1 in the hair follicle alters the sensitivity to tumor formation and progression

    Directory of Open Access Journals (Sweden)

    Rikke Christensen

    2017-08-01

    Full Text Available The cell surface protein Stem Cell Antigen-1 (Sca-1 marks stem or progenitor cells in several murine tissues and is normally upregulated during cancer development. Although the specific function of Sca-1 remains unknown, Sca-1 seems to play a role in proliferation, differentiation and cell migration in a number of tissues. In the skin epithelium, Sca-1 is highly expressed in the interfollicular epidermis but is absent in most compartments of the hair follicle; however, the function of Sca-1 in the skin has not been investigated. To explore the role of Sca-1 in normal and malignant skin development we generated transgenic mice that express Sca-1 in the hair follicle stem cells that are normally Sca-1 negative. Development of hair follicles and interfollicular epidermis appeared normal in Sca-1 mutant mice; however, follicular induction of Sca-1 expression in bulge region and isthmus stem cells reduced the overall yield of papillomas in a chemical carcinogenesis protocol. Despite that fewer papillomas developed in transgenic mice a higher proportion of the papillomas underwent malignant conversion. These findings suggest that overexpression of Sca-1 in the hair follicle stem cells contributes at different stages of tumour development. In early stages, overexpression of Sca-1 decreases tumour formation while at later stages overexpression of Sca-1 seems to drive tumours towards malignant progression.

  10. Leydig cell dysfunction, systemic inflammation and metabolic syndrome in long-term testicular cancer survivors.

    Science.gov (United States)

    Bandak, M; Jørgensen, N; Juul, A; Lauritsen, J; Oturai, P S; Mortensen, J; Hojman, P; Helge, J W; Daugaard, G

    2017-10-01

    Twenty to thirty percent of testicular cancer (TC) survivors have elevated serum levels of luteinising hormone (LH) with or without corresponding low testosterone levels (Leydig cell dysfunction) during clinical follow-up for TC. However, it remains to be clarified if this subgroup of TC survivors has an increased long-term risk of systemic inflammation and metabolic syndrome (MetS) when compared with TC survivors with normal Leydig cell function during follow-up. TC survivors with Leydig cell dysfunction and a control group of TC survivors with normal Leydig cell function during follow-up were eligible for participation in the study. Markers of systemic inflammation and prevalence of MetS were compared between TC survivors with Leydig cell dysfunction and the control group. Of 158 included TC survivors, 28 (18%) had uncompensated Leydig cell dysfunction, 59 (37%) had compensated Leydig cell dysfunction and 71 (45%) had normal Leydig cell function during follow-up. MetS and markers of systemic inflammation were evaluated at a median follow-up of 9.7 years (interquartile range 4.1-17.1) after TC treatment. The prevalence of MetS was significantly lower among patients with compensated Leydig cell dysfunction during follow-up (12% versus 27%, p = 0.04), whereas there was no difference between TC survivors with uncompensated Leydig cell dysfunction and controls (33% versus 27%, p = 0.5). Apart from high-sensitivity C-reactive protein which was higher in TC survivors with uncompensated Leydig cell dysfunction during follow-up, there was no evidence of increased systemic inflammation in patients with Leydig cell dysfunction during clinical follow-up. Total testosterone at follow-up was significantly associated with MetS, whereas there was no association between LH and MetS. We did not find evidence that TC survivors with Leydig cell dysfunction during clinical follow-up had increased long-term risk of MetS. Total testosterone at follow-up was significantly associated

  11. The Mechanosensory Structure of the Hair Cell Requires Clarin-1, a Protein Encoded by Usher Syndrome III Causative Gene

    Science.gov (United States)

    Geng, Ruishuang; Melki, Sami; Chen, Daniel H.-C.; Tian, Guilian; Furness, David; Oshima-Takago, Tomoko; Neef, Jakob; Moser, Tobias; Askew, Charles; Horwitz, Geoff; Holt, Jeffrey; Imanishi, Yoshikazu; Alagramam, Kumar N.

    2012-01-01

    Mutation in the clarin-1 gene results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 (Clrn1−/−) gene show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca2+ currents and membrane capacitance from IHCs that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 loading and transduction currents pointed to diminished cochlear hair bundle function in Clrn1−/− mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip-links and staircase arrangement of stereocilia were not primarily affected by Clrn1−/− mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant, p.N48K, failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p. N48K in clarin-1 (Clrn1N48K) supports our in vitro and Clrn1−/− mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Further, the ear phenotype in the Clrn1N48K mouse suggests that it is a valuable model for ear disease in CLRN1N48K, the most prevalent Usher III mutation in North America. PMID:22787034

  12. Mammalian Cochlear Hair Cell Regeneration and Ribbon Synapse Reformation

    Directory of Open Access Journals (Sweden)

    Xiaoling Lu

    2016-01-01

    Full Text Available Hair cells (HCs are the sensory preceptor cells in the inner ear, which play an important role in hearing and balance. The HCs of organ of Corti are susceptible to noise, ototoxic drugs, and infections, thus resulting in permanent hearing loss. Recent approaches of HCs regeneration provide new directions for finding the treatment of sensor neural deafness. To have normal hearing function, the regenerated HCs must be reinnervated by nerve fibers and reform ribbon synapse with the dendrite of spiral ganglion neuron through nerve regeneration. In this review, we discuss the research progress in HC regeneration, the synaptic plasticity, and the reinnervation of new regenerated HCs in mammalian inner ear.

  13. Hair Dye and Hair Relaxers

    Science.gov (United States)

    ... For Consumers Consumer Information by Audience For Women Hair Dye and Hair Relaxers Share Tweet Linkedin Pin it More sharing ... products. If you have a bad reaction to hair dyes and relaxers, you should: Stop using the ...

  14. The microRNA-200 family coordinately regulates cell adhesion and proliferation in hair morphogenesis.

    Science.gov (United States)

    Hoefert, Jaimee E; Bjerke, Glen A; Wang, Dongmei; Yi, Rui

    2018-06-04

    The microRNA (miRNA)-200 (miR-200) family is highly expressed in epithelial cells and frequently lost in metastatic cancer. Despite intensive studies into their roles in cancer, their targets and functions in normal epithelial tissues remain unclear. Importantly, it remains unclear how the two subfamilies of the five-miRNA family, distinguished by a single nucleotide within the seed region, regulate their targets. By directly ligating miRNAs to their targeted mRNA regions, we identify numerous miR-200 targets involved in the regulation of focal adhesion, actin cytoskeleton, cell cycle, and Hippo/Yap signaling. The two subfamilies bind to largely distinct target sites, but many genes are coordinately regulated by both subfamilies. Using inducible and knockout mouse models, we show that the miR-200 family regulates cell adhesion and orientation in the hair germ, contributing to precise cell fate specification and hair morphogenesis. Our findings demonstrate that combinatorial targeting of many genes is critical for miRNA function and provide new insights into miR-200's functions. © 2018 Hoefert et al.

  15. Hair follicle proteoglycans

    DEFF Research Database (Denmark)

    Couchman, J R

    1993-01-01

    that are present in the epithelial and stromal compartments of hair follicles. However, the transmembrane proteoglycan syndecan may be important in follicle morphogenesis, both with respect to the epithelium and dermal papilla cells. Syndecan may possess both heparan and chondroitin sulfate chains, interacts...... basement membranes, including those surrounding the epithelial compartment of hair follicles. Additionally, and quite unlike the dermis, the dermal papilla is enriched in basement-membrane components, especially a chondroitin 6-sulfate-containing proteoglycan, BM-CSPG. The function of this proteoglycan...... is not known, but developmental studies indicate that it may have a role in stabilizing basement membranes. In the hair cycle, BM-CSPG decreases through catagen and is virtually absent from the telogen papilla. One or more heparan sulfate proteoglycans, including perlecan, are also present in papilla...

  16. Hair growth promoting effect of white wax and policosanol from white wax on the mouse model of testosterone-induced hair loss.

    Science.gov (United States)

    Wang, Zhan-di; Feng, Ying; Ma, Li-Yi; Li, Xian; Ding, Wei-Feng; Chen, Xiao-Ming

    2017-05-01

    White wax (WW) has been traditionally used to treat hair loss in China. However there has been no reporter WW and its extract responsible for hair growth-promoting effect on androgenetic alopecia. In this paper, we examined the hair growth-promoting effects of WW and policosanol of white wax (WWP) on model animal of androgenetic alopecia and the potential target cell of WW and WWP. WW (1, 10 and 20%) and WWP (0.5, 1 and 2%) were applied topically to the backs of mice. Finasteride (2%) was applied topically as a positive control. MTS assays were performed to evaluate cell proliferation in culture human follicle dermal papilla cells (HFDPCs). The inhibition of WW and WWP for 5α- reductase were tested in Vitro. Results showed more lost hairs were clearly seen in mice treated with TP only and TP plus vehicle. Mice which received TP plus WW and WWP showed less hair loss. WW and WWP showed an outstanding hair growth-promoting activity as reflected by the follicular length, follicular density, A/T ratio, and hair bulb diameter. The optimal treatment effect was observed at 10% WW and 1% WWP, which were better than 2% finasteride treatment. MTS assay results suggested that WW and WWP remarkably increased the proliferation of HFDPCs. Inhibitor assay of 5α- reductase showed that WW and WWP inhibited significantly the conversion of testosterone to dihydrotesterone, and the IC 50 values of WW and WWP were higher than that of finasteride. In Conclusion, WW and WWP could act against testosterone-induced alopecia in mice, and they promoted hair growth by inhibiting 5α-reductase activity and HFDPCs proliferation. DPCs is the target cell of WW and WWP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Discrimination between basal cell carcinoma and hair follicles in skin tissue sections by Raman micro-spectroscopy

    Science.gov (United States)

    Larraona-Puy, M.; Ghita, A.; Zoladek, A.; Perkins, W.; Varma, S.; Leach, I. H.; Koloydenko, A. A.; Williams, H.; Notingher, I.

    2011-05-01

    Skin cancer is the most common human malignancy and basal cell carcinoma (BCC) represents approximately 80% of the non-melanoma cases. Current methods of treatment require histopathological evaluation of the tissues by qualified personnel. However, this method is subjective and in some cases BCC can be confused with other structures in healthy skin, including hair follicles. In this preliminary study, we investigated the potential of Raman micro-spectroscopy (RMS) to discriminate between hair follicles and BCC in skin tissue sections excised during Mohs micrographic surgery (MMS). Imaging and diagnosis of skin sections was automatically generated using ' a priori'-built spectral model based on LDA. This model had 90 ± 9% sensitivity and 85 ± 9% specificity for discrimination of BCC from dermis and epidermis. The model used selected Raman bands corresponding to the largest spectral differences between the Raman spectra of BCC and the normal skin regions, associated mainly with nucleic acids and collagen type I. Raman spectra corresponding to the epidermis regions of the hair follicles were found to be closer to those of healthy epidermis rather than BCC. Comparison between Raman spectral images and the gold standard haematoxylin and eosin (H&E) histopathology diagnosis showed good agreement. Some hair follicle regions were misclassified as BCC; regions corresponded mainly to the outermost layer of hair follicle (basal cells) which are expected to have higher nucleic acid concentration. This preliminary study shows the ability of RMS to distinguish between BCC and other tissue structures associated to healthy skin which can be confused with BCC due to their similar morphology.

  18. Spaceflight-induced synaptic modifications within hair cells of the mammalian utricle.

    Science.gov (United States)

    Sultemeier, David R; Choy, Kristel R; Schweizer, Felix E; Hoffman, Larry F

    2017-06-01

    Exposure to the microgravity conditions of spaceflight alleviates the load normally imposed by the Earth's gravitational field on the inner ear utricular epithelia. Previous ultrastructural investigations have shown that spaceflight induces an increase in synapse density within hair cells of the rat utricle. However, the utricle exhibits broad physiological heterogeneity across different epithelial regions, and it is unknown whether capabilities for synaptic plasticity generalize to hair cells across its topography. To achieve systematic and broader sampling of the epithelium than was previously conducted, we used immunohistochemistry and volumetric image analyses to quantify synapse distributions across representative utricular regions in specimens from mice exposed to spaceflight (a 15-day mission of the space shuttle Discovery). These measures were compared with similarly sampled Earth-bound controls. Following paraformaldehyde fixation and microdissection, immunohistochemistry was performed on intact specimens to label presynaptic ribbons (anti-CtBP2) and postsynaptic receptor complexes (anti-Shank1A). Synapses were identified as closely apposed pre- and postsynaptic puncta. Epithelia from horizontal semicircular canal cristae served as "within-specimen" controls, whereas utricles and cristae from Earth-bound cohorts served as experimental controls. We found that synapse densities decreased in the medial extrastriolae of microgravity specimens compared with experimental controls, whereas they were unchanged in the striolae and horizontal cristae from the two conditions. These data demonstrate that structural plasticity was topographically localized to the utricular region that encodes very low frequency and static changes in linear acceleration, and illuminates the remarkable capabilities of utricular hair cells for synaptic plasticity in adapting to novel gravitational environments. NEW & NOTEWORTHY Spaceflight imposes a radically different sensory environment

  19. Gene Expression in Hair Follicle Dermal Papilla Cells after Treatment with Stanozolol

    Directory of Open Access Journals (Sweden)

    M. Reiter

    2009-01-01

    Full Text Available Doping with anabolic agents is a topic in sports where strength is crucial, e.g. sprinting, weight lifting and many more. Testosterone and its functional analogs are the drugs of choice taken as pills, creams, tape or injections to increase muscle mass and body performance, and to reduce body fat. Stanozolol (17β-hydroxy-17α-methyl-5α-androst- 2-eno[3,2c]pyrazol is a testosterone analogue with the same anabolic effect like testosterone but its ring structure makes it possible to take it orally. Therefore, stanozolol is one of the most frequently used anabolic steroids. Common verification methods for anabolic drugs exist, identifying the chemicals in tissues, like hair or blood samples. The idea of this feasibility study was to search for specific gene expression regulations induced by stanozolol to identify the possible influence of the synthetically hormone on different metabolic pathways. Finding biomarkers for anabolic drugs could be supportive of the existing methods and an additional proof for illegal drug abuse. In two separate cell cultures, human HFDPC (hair follicle dermal papilla cells from a female and a male donor were treated with stanozolol. In the female cell culture treatment concentrations of 0 nM (control, 1 nM, 10 nM and 100 nM were chosen. Cells were taken 0 h, 6 h, 24 h and 48 h after stimulation and totalRNA was extracted. Learning from the results of the pilot experiment, the male cell culture was treated in 10 nM and 100 nM concentrations and taken after 0 h, 6 h, 24 h and 72 h. Using quantitative real-time RT-PCR expression of characteristics of different target genes were analysed. Totally 13 genes were selected according to their functionality by screening the actual literature and composed to functional groups: factors of apoptosis regulation were Fas Ligand (FasL, its receptor (FasR, Caspase 8 and Bcl-2. Androgen receptor (AR and both estrogen receptors (ERα, ERβ were summarized in the steroid receptor group

  20. Eye and hair colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma. A Danish case-control study

    DEFF Research Database (Denmark)

    Lock-Andersen, J; Drzewiecki, K T; Wulf, H C

    1999-01-01

    To assess the importance of hair and eye colour, skin type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous malignant melanoma in fair-skinned Caucasians, we conducted two identical case-control studies in Denmark. We studied 145 cases with basal cell...... the present hair colour and eye colour, and the constitutive skin pigmentation was measured objectively by skin reflectance of UV unexposed buttock skin. There were no differences between basal cell carcinoma cases and controls in hair colour or eye colour or constitutive skin pigmentation, but more cases...... were of skin type II than skin type IV; skin type 11 was a risk factor for basal cell carcinoma with an odds ratio (OR) of 2.3. For cutaneous malignant melanoma, more cases than controls were red-haired or blond and of skin type II, but there was no difference in constitutive skin pigmentation. Hair...

  1. Preclinical and Clinical Studies Demonstrate That the Proprietary Herbal Extract DA-5512 Effectively Stimulates Hair Growth and Promotes Hair Health

    Directory of Open Access Journals (Sweden)

    Jae Young Yu

    2017-01-01

    Full Text Available The proprietary DA-5512 formulation comprises six herbal extracts from traditional oriental plants historically associated with therapeutic and other applications related to hair. Here, we investigated the effects of DA-5512 on the proliferation of human dermal papilla cells (hDPCs in vitro and on hair growth in C57BL/6 mice and conducted a clinical study to evaluate the efficacy and safety of DA-5512. DA-5512 significantly enhanced the viability of hDPCs in a dose-dependent manner (p<0.05, and 100 ppm of DA-5512 and 1 μM minoxidil (MXD significantly increased the number of Ki-67-positive cells, compared with the control group (p<0.05. MXD (3% and DA-5512 (1%, 5% significantly stimulated hair growth and increased the number and length of hair follicles (HFs versus the controls (each p<0.05. The groups treated with DA-5512 exhibited hair growth comparable to that induced by MXD. In clinical study, we detected a statistically significant increase in the efficacy of DA-5512 after 16 weeks compared with the groups treated with placebo or 3% MXD (p<0.05. In conclusion, DA-5512 might promote hair growth and enhance hair health and can therefore be considered an effective option for treating hair loss.

  2. MicroRNA-148b promotes proliferation of hair follicle cells by targeting NFAT5

    Directory of Open Access Journals (Sweden)

    Wanbao YANG,Qinqun LI,Bo SU,Mei YU

    2016-03-01

    Full Text Available MicroRNAs (miRNAs, small non-coding RNAs, are involved in many aspects of biological processes. Previous studies have indicated that miRNAs are important for hair follicle development and growth. In our study, we found by qRT-PCR that miR-148b was significantly upregulated in sheep wool follicle bulbs in anagen phase compared with the telogen phase of the hair follicle cycle. Overexpression of miR-148b promoted proliferation of both HHDPC and HHGMC. By using the TOPFlash system we demonstrated that miR-148b could activate Wnt/β-catenin pathway and b-catenin, cycD, c-jun and PPARD were consistently upregulated accordingly. Furthermore, transcript factor nuclear factor of activated T cells type 5 (NFAT5 and Wnt10b were predicted to be the target of miR-148b and this was substantiated using a Dual-Luciferase reporter system. Subsequently NFAT5 was further identified as the target of miR-148b using western blotting. These results were considered to indicate that miR-148b could activate the Wnt/β-catenin signal pathway by targeting NFAT5 to promote the proliferation of human hair follicle cells.

  3. Hair dyeing, hair washing and hair cortisol concentrations among women from the healthy start study

    DEFF Research Database (Denmark)

    Kristensen, Sheila K.; Larsen, Sofus C.; Olsen, Nanna J.

    2017-01-01

    Background: Hair cortisol concentration (HCC) has been suggested as a promising marker for chronic stress. However, studies investigating the influence of hair dyeing and hair washing frequency on HCC have shown inconsistent results. Objective: To examine associations between HCC and hair dyeing...... status or weekly hair washing frequency among women. Methods: This cross-sectional study was based on data from 266 mothers participating in the Healthy Start intervention study. HCC was measured in the proximal end of the hair (1–2 cm closest to the scalp) while hair dyeing status, frequency of hair...... washing and covariates were reported by the women. Linear regression analyses were applied to assess the associations between HCC and hair dyeing or weekly frequency of hair washing. Results: No statistically significant difference (p = 0.91) in HCC was found between women who dyed hair (adjusted mean...

  4. Temporary corneal stem cell dysfunction after radiation therapy

    International Nuclear Information System (INIS)

    Hiroshi, Fujishima; Kazuo, Tsubota

    1996-01-01

    Radiation therapy can cause corneal and conjuctival abnormalities that sometimes require surgical treatment. Corneal stem cell dysfunction is described, which recovered after the cessation of radiation. Methods - A 44-year-old man developed a corneal epithelial abnormality associated with conjuctival and corneal inflammation following radiation therapy for maxillary cancer. Examination of brush cytology samples showed goblet cells in the upper and lower parts of the cornea, which showed increased fluorescein permeability, and intraepithelial lymphocytes. Impression cytology showed goblet cells in the same part of the cornea. Specular microscopy revealed spindle type epithelial cells. Patient follow up included artificial tears and an antibiotic ophthalmic ointment. The corneal abnormalities resolved after 4 months with improved visual acuity without any surgical intervention, but the disappearance of the palisades of Vogt did not recover at 1 year after radiation. Radiation therapy in this patient caused temporary stem cell dysfunction which resulted in conjunctivalisation in a part of the cornea. Although limbal stem cell function did not fully recover, this rare case suggested that medical options should be considered before surgery. (Author)

  5. Body hair transplant: An additional source of donor hair in hair restoration surgery

    Directory of Open Access Journals (Sweden)

    Poswal Arvind

    2007-01-01

    Full Text Available Androgenic alopecia (pattern baldness is a condition in which there is androgen mediated progressive miniaturization and loss of hair follicles in a genetically susceptible individual. A 47-year-old male patient with advanced degree of hair loss (Norwood 6 category wanted to go for full hair restoration surgery. Due to the limited availability of donor hair in the scalp, a small session with 700-chest hair was performed. On follow-up at eight months it was observed that chest hair grew and formed a cosmetically acceptable forelock.

  6. Hair Dyes Resorcinol and Lawsone Reduce Production of Melanin in Melanoma Cells by Tyrosinase Activity Inhibition and Decreasing Tyrosinase and Microphthalmia-Associated Transcription Factor (MITF Expression

    Directory of Open Access Journals (Sweden)

    Shu-Mei Lee

    2015-01-01

    Full Text Available Hair coloring products are one of the most important cosmetics for modern people; there are three major types of hair dyes, including the temporary, semi-permanent and permanent hair dyes. The selected hair dyes (such as ammonium persulfate, sodium persulfate, resorcinol and lawsone are the important components for hair coloring products. Therefore, we analyzed the effects of these compounds on melanogenesis in B16-F10 melanoma cells. The results proved that hair dyes resorcinol and lawsone can reduce the production of melanin. The results also confirmed that resorcinol and lawsone inhibit mushroom and cellular tyrosinase activities in vitro. Resorcinol and lawsone can also downregulate the protein levels of tyrosinase and microphthalmia-associated transcription factor (MITF in B16-F10 cells. Thus, we suggest that frequent use of hair dyes may have the risk of reducing natural melanin production in hair follicles. Moreover, resorcinol and lawsone may also be used as hypopigmenting agents to food, agricultural and cosmetic industry in the future.

  7. Regeneration of Murine Hair Follicles is Inhibited by Low-Dose-Rate Gamma Irradiation.

    Science.gov (United States)

    Sugaya, Kimihiko; Hirobe, Tomohisa; Ishihara, Yoshie; Inoue, Sonoe

    2016-10-01

    To determine whether the effects of low-dose-rate gamma (γ) irradiation are identifiable in the regeneration of murine hair follicles, we irradiated whole bodies of C57BL/10JHir mice in the first telogen phase of the hair cycle with 137 Cs γ-rays. The mice were examined for effects on hair follicles, including number, morphology, and pigmentation in the second anagen phase. Effects of γ-radiation on melanocyte stem cells were also investigated by the indirect immunolabeling of tyrosinase-related protein 2 (TRP2). Irradiated skin showed a decrease in hair follicle density and the induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs. There was a small, but not significant, change in the number of TRP2-positive melanocyte stem cells in the hair bulge region of the irradiated skin. These results suggest that low-dose rate γ-irradiation does not deplete melanocyte stem cells, but can damage stem cells and progenitors for both keratinocytes and melanocytes, thereby affecting the structure and pigmentation of regenerated hair follicles in the 2 nd anagen phase.

  8. The morphology of hairs in species of Plantago L. sectio Oreades Decne

    Directory of Open Access Journals (Sweden)

    Emilia Andrzejewska-Golec

    2014-01-01

    Full Text Available The hairs of three taxa of sectio Oreades Decne genus Plantago have been studied. We have found that hair typical for the majority of representatives of the genus Plantago, that is, with a unicellular stalk and head vertically divided into two cells, occur in these studied taxa. Some of the headless hairs occurring here are similar to those occurring in sectio Arnoglossum Decne. Rahn's (1978 suggestion of transferring sectio Oreades to the subgenus Psyllium seems wrong since the representatives of this section, in contrast to subgenus Psyllium, do not have hairs with the stalks consisting of several cells and unicellular heads, club-like hairs or iridoid-plantarenaloside. They contain, however, hairs with overlapping cells and iridoid-catapol, which is absent in the taxa of subgenus Psyllium.

  9. Immune responses to hair dyes containing toluene-2,5-diamine

    DEFF Research Database (Denmark)

    Schmidt, J D; Johansen, J D; Nielsen, M M

    2014-01-01

    BACKGROUND: Toluene-2,5-diamine (PTD) is the most frequently used dye in oxidative hair dyes on the Scandinavian market. However, little is known about immune responses to PTD-containing oxidative hair dyes. OBJECTIVES: To study immune responses induced by PTD-containing hair dyes in mice. METHODS......: Immune responses against two different permanent hair dye products containing 1·60% (w/w) and 0·48% (w/w) PTD within the colour gel, and various concentrations of pure PTD were studied. The local inflammatory response was measured by ear swelling and cell infiltration, and T- and B-cell infiltration...... and proliferation was determined in the draining lymph nodes. RESULTS: Concentration-dependent immune responses were seen to PTD both in the skin and draining lymph nodes. The hair dye containing 1·60% PTD induced strong local inflammation and caused T- and B-cell infiltration and proliferation as well...

  10. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches.

    Science.gov (United States)

    Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N; Belkadi, Abdelmadjid; Veniaminova, Natalia A; Verhaegen, Monique E; Bichakjian, Christopher K; Ward, Nicole L; Dlugosz, Andrzej A; Wong, Sunny Y

    2015-04-02

    Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Differentiation of human scalp hair follicle keratinocytes in culture.

    Science.gov (United States)

    Weterings, P J; Verhagen, H; Wirtz, P; Vermorken, A J

    1984-01-01

    The morphology of human scalp hair follicle keratinocytes, cultured on the bovine eye lens capsule, is studied by light and electron microscopy. The hair follicle keratinocytes in the stratified cultures are characterized by the presence of numerous tonofilaments, desmosomes and lysosomes and by the presence of glycogen accumulations. The cells in the upper layers develop a cornified envelope. Moreover, an incomplete basal lamina is found between the capsule and the basal cells. However, some features of epidermal keratinocytes in vivo, such as keratohyalin granules and stratum corneum formation, are absent. Analysis of the polypeptides by sodium dodecylsulfate polyacrylamide gel electrophoresis also reveals differences between the cultured hair follicle cells and epidermis, whilst the patterns of cultured cells and hair follicle sheaths are similar. The morphological and protein biosynthetic aspects of terminal differentiation of the keratinocytes in vitro are correlated. These results are discussed in the light of the findings with cultured epidermal keratinocytes, reported in the literature.

  12. Body Hair

    Science.gov (United States)

    ... girlshealth.gov/ Home Body Puberty Body hair Body hair Even before you get your first period , you ... removing pubic hair Ways to get rid of hair top Removing body hair can cause skin irritation, ...

  13. Disappearance of the telomere dysfunction-induced stress response in fully senescent cells.

    Science.gov (United States)

    Bakkenist, Christopher J; Drissi, Rachid; Wu, Jing; Kastan, Michael B; Dome, Jeffrey S

    2004-06-01

    Replicative senescence is a natural barrier to cellular proliferation that is triggered by telomere erosion and dysfunction. Here, we demonstrate that ATM activation and H2AX-gamma nuclear focus formation are sensitive markers of telomere dysfunction in primary human fibroblasts. Whereas the activated form of ATM and H2AX-gamma foci were rarely observed in early-passage cells, they were readily detected in late-passage cells. The ectopic expression of telomerase in late-passage cells abrogated ATM activation and H2AX-gamma focus formation, suggesting that these stress responses were the consequence of telomere dysfunction. ATM activation was induced in quiescent fibroblasts by inhibition of TRF2 binding to telomeres, indicating that telomere uncapping is sufficient to initiate the telomere signaling response; breakage of chromosomes with telomeric associations is not required for this activation. Although ATM activation and H2AX-gamma foci were readily observed in late-passage cells, they disappeared once cells became fully senescent, indicating that constitutive signaling from dysfunctional telomeres is not required for the maintenance of senescence.

  14. Hair cosmetics

    Directory of Open Access Journals (Sweden)

    Nina Madnani

    2013-01-01

    Full Text Available The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dry, dry-damaged, oily, colored, and gray hair. Other products are formulated to alter the color or structure of the hair shaft, for example, hair dyes, perming/relaxing. Hair sprays and waxes/gels, can alter the ′lift′ of the hair-shaft. Although dermatologists are experts in managing scalp and hair diseases, the esthetic applications of newer cosmetic therapies still remain elusive. This article attempts to fill the lacunae in our knowledge of hair cosmetics and esthetic procedures relevant in today′s rapidly changing beauty-enhancing industry, with special emphasis on the Indian scenario for chemical and ′natural′ hair products.

  15. Pancreatic Cancer-Derived Exosomes Cause Paraneoplastic β-cell Dysfunction.

    Science.gov (United States)

    Javeed, Naureen; Sagar, Gunisha; Dutta, Shamit K; Smyrk, Thomas C; Lau, Julie S; Bhattacharya, Santanu; Truty, Mark; Petersen, Gloria M; Kaufman, Randal J; Chari, Suresh T; Mukhopadhyay, Debabrata

    2015-04-01

    Pancreatic cancer frequently causes diabetes. We recently proposed adrenomedullin as a candidate mediator of pancreatic β-cell dysfunction in pancreatic cancer. How pancreatic cancer-derived adrenomedullin reaches β cells remote from the cancer to induce β-cell dysfunction is unknown. We tested a novel hypothesis that pancreatic cancer sheds adrenomedullin-containing exosomes into circulation, which are transported to β cells and impair insulin secretion. We characterized exosomes from conditioned media of pancreatic cancer cell lines (n = 5) and portal/peripheral venous blood of patients with pancreatic cancer (n = 20). Western blot analysis showed the presence of adrenomedullin in pancreatic cancer-exosomes. We determined the effect of adrenomedullin-containing pancreatic cancer exosomes on insulin secretion from INS-1 β cells and human islets, and demonstrated the mechanism of exosome internalization into β cells. We studied the interaction between β-cell adrenomedullin receptors and adrenomedullin present in pancreatic cancer-exosomes. In addition, the effect of adrenomedullin on endoplasmic reticulum (ER) stress response genes and reactive oxygen/nitrogen species generation in β cells was shown. Exosomes were found to be the predominant extracellular vesicles secreted by pancreatic cancer into culture media and patient plasma. Pancreatic cancer-exosomes contained adrenomedullin and CA19-9, readily entered β cells through caveolin-mediated endocytosis or macropinocytosis, and inhibited insulin secretion. Adrenomedullin in pancreatic cancer exosomes interacted with its receptor on β cells. Adrenomedullin receptor blockade abrogated the inhibitory effect of exosomes on insulin secretion. β cells exposed to adrenomedullin or pancreatic cancer exosomes showed upregulation of ER stress genes and increased reactive oxygen/nitrogen species. Pancreatic cancer causes paraneoplastic β-cell dysfunction by shedding adrenomedullin(+)/CA19-9(+) exosomes into

  16. Fractalkine Signaling Regulates Macrophage Recruitment into the Cochlea and Promotes the Survival of Spiral Ganglion Neurons after Selective Hair Cell Lesion.

    Science.gov (United States)

    Kaur, Tejbeer; Zamani, Darius; Tong, Ling; Rubel, Edwin W; Ohlemiller, Kevin K; Hirose, Keiko; Warchol, Mark E

    2015-11-11

    Macrophages are recruited into the cochlea in response to injury caused by acoustic trauma or ototoxicity, but the nature of the interaction between macrophages and the sensory structures of the inner ear remains unclear. The present study examined the role of fractalkine signaling in regulating the injury-evoked behavior of macrophages following the selective ablation of cochlear hair cells. We used a novel transgenic mouse model in which the human diphtheria toxin receptor (huDTR) is selectively expressed under the control of Pou4f3, a hair cell-specific transcription factor. Administration of diphtheria toxin (DT) to these mice resulted in nearly complete ablation of cochlear hair cells, with no evident pathology among supporting cells, spiral ganglion neurons, or cells of the cochlear lateral wall. Hair cell death led to an increase in macrophages associated with the sensory epithelium of the cochlea. Their numbers peaked at 14 days after DT and then declined at later survival times. Increased macrophages were also observed within the spiral ganglion, but their numbers remained elevated for (at least) 56 d after DT. To investigate the role of fractalkine signaling in macrophage recruitment, we crossed huDTR mice to a mouse line that lacks expression of the fractalkine receptor (CX3CR1). Disruption of fractalkine signaling reduced macrophage recruitment into both the sensory epithelium and spiral ganglion and also resulted in diminished survival of spiral ganglion neurons after hair cell death. Our results suggest a fractalkine-mediated interaction between macrophages and the neurons of the cochlea. It is known that damage to the inner ear leads to recruitment of inflammatory cells (macrophages), but the chemical signals that initiate this recruitment and the functions of macrophages in the damaged ear are unclear. Here we show that fractalkine signaling regulates macrophage recruitment into the cochlea and also promotes the survival of cochlear afferents after

  17. Kidney dysfunction after allogeneic stem cell transplantation

    NARCIS (Netherlands)

    Kersting, S.

    2008-01-01

    Allogeneic stem cell transplantation (SCT) is a widely accepted approach for malignant and nonmalignant hematopoietic diseases. Unfortunately complications can occur because of the treatment, leading to treatment-related mortality. We studied kidney dysfunction after allogeneic SCT in 2 cohorts of

  18. Ingrown Hair

    Science.gov (United States)

    Ingrown hair Overview An ingrown hair occurs when a shaved or tweezed hair grows back into the skin. It can cause inflammation, pain and tiny bumps in the area where the hair was removed. Ingrown hair is a common condition ...

  19. Simulating psychophysical tuning curves in listeners with dead regions

    DEFF Research Database (Denmark)

    Warnaar, Bastiaan; Jepsen, Morten Løve; Dreschler, Wouter A.

    2013-01-01

    loss of inner hair cells (IHC), dysfunction of outer hair cells (OHC), complete loss of IHCs in combination with OHC dysfunction, and IHC insensitivity. The model predictions were verified through comparison with experimental data. Study sample: This study compares PTC data of five normal...

  20. Plucked Human Hair Shafts and Biomolecular Medical Research

    Directory of Open Access Journals (Sweden)

    Kevin Schembri

    2013-01-01

    Full Text Available The hair follicle is a skin integument at the boundary between an organism and its immediate environment. The biological role of the human hair follicle has lost some of its ancestral importance. However, an indepth investigation of this miniorgan reveals hidden complexity with huge research potential. An essential consideration when dealing with human research is the awareness of potential harm and thus the absolute need not to harm—a rule aptly qualified by the Latin term “primum non nocere” (first do no harm. The plucked hair shaft offers such advantages. The use of stem cells found in hair follicles cells is gaining momentum in the field of regenerative medicine. Furthermore, current diagnostic and clinical applications of plucked hair follicles include their use as autologous and/or three-dimensional epidermal equivalents, together with their utilization as surrogate tissue in pharmacokinetic and pharmacodynamics studies. Consequently, the use of noninvasive diagnostic procedures on hair follicle shafts, posing as a surrogate molecular model for internal organs in the individual patient for a spectrum of human disease conditions, can possibly become a reality in the near future.

  1. A Hospital-based Study to Determine Causes of Diffuse Hair Loss in Women.

    Science.gov (United States)

    Malkud, Shashikant

    2015-08-01

    Diffuse hair loss is a common complaint encountered by dermatologists in their daily clinical practice. Hair loss in women is a distressing condition. Various underlying factors individually or in combination contribute to the pathogenesis. To determine causes of diffuse hair loss in women and to find the association between probable causes and relevant laboratory parameters, wherever applicable. One hundred and eighty women with diffuse hair loss were included in the study. Detailed history and clinical examination including hair pull test and hair microscopy were done in all study subjects. Specific laboratory investigations for determining iron deficiency anaemia, thyroid dysfunction and parasitic infestation were done. Among 180 patients, 116 (64.44%) had telogen effluvium, 28 (15.55%) had CTE, 21 (11.66%) had FPHL and 1 (0.55%) had AE. Fourteen patients (7.77%) had more than one aetiological diagnosis of diffuse hair loss. TE was the commonest type of diffuse hair loss. Incidence of TE and FPHL were highest in the age group of 21-30 years, whereas CTE in 30-40 years. Psychological stress and iron deficiency anaemia were the most common underlying aetiological factors for TE, which is statistically significant (phair loss is a multifactorial condition. A detailed history, thorough clinical examination and appropriate investigations help to identify the causative factors and treat them accordingly.

  2. VEGF induces proliferation of human hair follicle dermal papilla cells through VEGFR-2-mediated activation of ERK

    International Nuclear Information System (INIS)

    Li, Wei; Man, Xiao-Yong; Li, Chun-Ming; Chen, Jia-Qi; Zhou, Jiong; Cai, Sui-Qing; Lu, Zhong-Fa; Zheng, Min

    2012-01-01

    Vascular endothelial growth factor (VEGF) is one of the strongest regulators of physiological and pathological angiogenesis. VEGF receptor 2 (VEGFR-2), the primary receptor for VEGF, is thought to mediate major functional effects of VEGF. Previously, we have localized both VEGF and VEGFR-2 in human hair follicles. In this study, we further defined the expression and roles of VEGFR-2 on human hair follicle dermal papilla (DP) cells. The expression of VEGFR-2 on DP cells was examined by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis separately, and localization of VEGFR-2 was defined by immunofluorescence. The effect of VEGF on DP cells was analyzed by MTT assays and specific inhibitors. Finally, the role of VEGF involved in the signaling pathways was investigated by Western blot. RT-PCR and Western blot analysis demonstrated the expression of VEGFR-2 on DP cells. Immunostaining for VEGFR-2 showed strong signal on cultured human DP cells in vitro. Exogenous VEGF 165 stimulated proliferation of DP cells in a dose-dependent manner. Furthermore, this stimulation was blocked by a VEGFR-2 neutralizing antibody (MAB3571) and an ERK inhibitor (PD98059). VEGF 165 -induced phosphorylation of ERK1/2 was abolished by MAB3571 and PD98059, while the phosphorylation of p38, JNK and AKT were not changed by VEGF 165 . Taken together, VEGFR-2 is expressed on primary human hair follicle DP cells and VEGF induces proliferation of DP cells through VEGFR-2/ERK pathway, but not p38, JNK or AKT signaling. -- Highlights: ► We examine the expression of VEGFR-2 on cultured human dermal papilla (DP) cells. ► VEGF 165 stimulated proliferation of human DP cells in a dose-dependent manner. ► This stimulation was through VEGFR-2-mediated activation of ERK.

  3. Lipotoxicity, β cell dysfunction, and gestational diabetes.

    Science.gov (United States)

    Nolan, Christopher J

    2014-04-01

    Gestational diabetes (GDM) is caused by failure of islet β cells to meet the increased insulin requirements of pregnancy. Recently, Prentice et al. (2014) discovered a 7-fold elevation of the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanopropanoic acid (CMPF) in plasma of women with GDM and showed that CMPF directly induces β cell dysfunction. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Hemolytic anemia after ingestion of the natural hair dye Lawsonia inermis (henna) in a dog.

    Science.gov (United States)

    Jardes, Daniel J; Ross, Linda A; Markovich, Jessica E

    2013-01-01

    To describe the clinical presentation and case management of a dog that developed hemolytic anemia and evidence of renal tubular dysfunction after ingestion of a natural hair dye containing Lawsonia inermis (henna). To review cases of henna toxicity reported in the human literature. An 8-year-old female spayed Border Collie was presented 5 days after ingestion of a box of natural hair dye. The dog was showing signs of lethargy, vomiting, diarrhea, and weakness. A serum biochemistry profile, complete blood count, and urinalysis demonstrated evidence of renal tubular dysfunction and a regenerative anemia without spherocytosis. The dog was treated with a transfusion of packed RBCs and IV fluids, resulting in significant clinical improvement. Repeat diagnostics showed resolution of the anemia and no lasting evidence of tubular dysfunction. To the authors' knowledge, this is the first reported case in the veterinary literature of toxicity following ingestion of Lawsonia inermis (henna). Henna ingestion was associated with the development of hemolytic anemia and acute kidney injury. © Veterinary Emergency and Critical Care Society 2013.

  5. Functional recovery of anterior semicircular canal afferents following hair cell regeneration in birds

    Science.gov (United States)

    Boyle, Richard; Highstein, Stephen M.; Carey, John P.; Xu, Jinping

    2002-01-01

    Streptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and

  6. Advances in Bone Marrow Stem Cell Therapy for Retinal Dysfunction

    Science.gov (United States)

    Park, Susanna S.; Moisseiev, Elad; Bauer, Gerhard; Anderson, Johnathon D.; Grant, Maria B.; Zam, Azhar; Zawadzki, Robert J.; Werner, John S.; Nolta, Jan A.

    2016-01-01

    The most common cause of untreatable vision loss is dysfunction of the retina. Conditions, such as age-related macular degeneration, diabetic retinopathy and glaucoma remain leading causes of untreatable blindness worldwide. Various stem cell approaches are being explored for treatment of retinal regeneration. The rationale for using bone marrow stem cells to treat retinal dysfunction is based on preclinical evidence showing that bone marrow stem cells can rescue degenerating and ischemic retina. These stem cells have primarily paracrine trophic effects although some cells can directly incorporate into damaged tissue. Since the paracrine trophic effects can have regenerative effects on multiple cells in the retina, the use of this cell therapy is not limited to a particular retinal condition. Autologous bone marrow-derived stem cells are being explored in early clinical trials as therapy for various retinal conditions. These bone marrow stem cells include mesenchymal stem cells, mononuclear cells and CD34+ cells. Autologous therapy requires no systemic immunosuppression or donor matching. Intravitreal delivery of CD34+ cells and mononuclear cells appears to be tolerated and is being explored since some of these cells can home into the damaged retina after intravitreal administration. The safety of intravitreal delivery of mesenchymal stem cells has not been well established. This review provides an update of the current evidence in support of the use of bone marrow stem cells as treatment for retinal dysfunction. The potential limitations and complications of using certain forms of bone marrow stem cells as therapy are discussed. Future directions of research include methods to optimize the therapeutic potential of these stem cells, non-cellular alternatives using extracellular vesicles, and in vivo high-resolution retinal imaging to detect cellular changes in the retina following cell therapy. PMID:27784628

  7. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    Directory of Open Access Journals (Sweden)

    Ohlemiller Kevin K

    2010-07-01

    Full Text Available Abstract Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family.

  8. Distribution of epidermal growth factor receptors in rat tissues during embryonic skin development, hair formation, and the adult hair growth cycle

    DEFF Research Database (Denmark)

    Green, M R; Couchman, J R

    1984-01-01

    on the binding distribution of [125I]EGF, representing the tissue localization of available EGF receptors, during embryonic rat skin development including hair follicle formation and the adult hair growth cycle. At 16 days embryonic development a relatively low receptor density is seen over all the epidermal...... condensates marking the first stage of hair follicle development. This restricted and temporary loss of EGF receptors above these specialized mesenchymal condensates implies a role for the EGF receptor and possibly EGF or an EGF-like ligand in stimulating the epithelial downgrowth required for hair follicle...... development. In the anagen hair bulb, receptors for EGF are detected over the outer root sheath and the epithelial cell layers at the base of the follicle and show a correlation with the areas of epithelial proliferation in the hair bulb. During the catagen and telogen phases of the hair cycle, receptors...

  9. Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique

    Energy Technology Data Exchange (ETDEWEB)

    Wei Guohua [Nanotribology Laboratory for Information Storage and MEMS/NEMS, Ohio State University, 650 Ackerman Road, Suite 255, Columbus, OH 43202 (United States); Bhushan, Bharat [Nanotribology Laboratory for Information Storage and MEMS/NEMS, Ohio State University, 650 Ackerman Road, Suite 255, Columbus, OH 43202 (United States)]. E-mail: bhushan.2@osu.edu

    2006-06-15

    Human hair ({approx}50-100 {mu}m in diameter) is a nanocomposite biological fiber with well-characterized microstructures, and is of great interest for both cosmetic science and materials science. Characterization of nanotribological and nanomechanical properties of human hair including the coefficient of friction and scratch resistance is essential to develop better shampoo and conditioner products and advance biological and cosmetic science. In this paper, the coefficient of friction and scratch resistance of Caucasian and Asian hair at virgin, chemo-mechanically damaged, and conditioner-treated conditions are measured using a nanoscratch technique with a Nano Indenter II system. The scratch tests were performed on both the single cuticle cell and multiple cuticle cells of each hair sample, and the scratch wear tracks were studied using scanning electron microscopy (SEM) after the scratch tests. The effect of soaking on the coefficient of friction, scratch resistance, hardness and Young's modulus of hair surface were also studied by performing experiments on hair samples which had been soaked in de-ionized water for 5 min. The nanotribological and nanomechanical properties of human hair as a function of hair structure (hair of different ethnicity), damage, treatment and soaking are discussed.

  10. Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat

    2006-01-01

    Human hair (∼50-100 μm in diameter) is a nanocomposite biological fiber with well-characterized microstructures, and is of great interest for both cosmetic science and materials science. Characterization of nanotribological and nanomechanical properties of human hair including the coefficient of friction and scratch resistance is essential to develop better shampoo and conditioner products and advance biological and cosmetic science. In this paper, the coefficient of friction and scratch resistance of Caucasian and Asian hair at virgin, chemo-mechanically damaged, and conditioner-treated conditions are measured using a nanoscratch technique with a Nano Indenter II system. The scratch tests were performed on both the single cuticle cell and multiple cuticle cells of each hair sample, and the scratch wear tracks were studied using scanning electron microscopy (SEM) after the scratch tests. The effect of soaking on the coefficient of friction, scratch resistance, hardness and Young's modulus of hair surface were also studied by performing experiments on hair samples which had been soaked in de-ionized water for 5 min. The nanotribological and nanomechanical properties of human hair as a function of hair structure (hair of different ethnicity), damage, treatment and soaking are discussed

  11. Valproic acid induces hair regeneration in murine model and activates alkaline phosphatase activity in human dermal papilla cells.

    Directory of Open Access Journals (Sweden)

    Soung-Hoon Lee

    Full Text Available Alopecia is the common hair loss problem that can affect many people. However, current therapies for treatment of alopecia are limited by low efficacy and potentially undesirable side effects. We have identified a new function for valproic acid (VPA, a GSK3β inhibitor that activates the Wnt/β-catenin pathway, to promote hair re-growth in vitro and in vivo.Topical application of VPA to male C3H mice critically stimulated hair re-growth and induced terminally differentiated epidermal markers such as filaggrin and loricrin, and the dermal papilla marker alkaline phosphatase (ALP. VPA induced ALP in human dermal papilla cells by up-regulating the Wnt/β-catenin pathway, whereas minoxidil (MNX, a drug commonly used to treat alopecia, did not significantly affect the Wnt/β-catenin pathway. VPA analogs and other GSK3β inhibitors that activate the Wnt/β-catenin pathway such as 4-phenyl butyric acid, LiCl, and BeCl(2 also exhibited hair growth-promoting activities in vivo. Importantly, VPA, but not MNX, successfully stimulate hair growth in the wounds of C3H mice.Our findings indicate that small molecules that activate the Wnt/β-catenin pathway, such as VPA, can potentially be developed as drugs to stimulate hair re-growth.

  12. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells.

    Science.gov (United States)

    Zhang, Lichun; Engler, Sina; Koepcke, Lena; Steenken, Friederike; Köppl, Christine

    2018-07-01

    The Mongolian gerbil is a classic animal model for age-related hearing loss. As a prerequisite for studying age-related changes, we characterized cochlear afferent synaptic morphology in young adult gerbils, using immunolabeling and quantitative analysis of confocal microscopic images. Cochlear wholemounts were triple-labeled with a hair-cell marker, a marker of presynaptic ribbons, and a marker of postsynaptic AMPA-type glutamate receptors. Seven cochlear positions covering an equivalent frequency range from 0.5 - 32 kHz were evaluated. The spatial positions of synapses were determined in a coordinate system with reference to their individual inner hair cell. Synapse numbers confirmed previous reports for gerbils (on average, 20-22 afferents per inner hair cell). The volumes of presynaptic ribbons and postsynaptic glutamate receptor patches were positively correlated: larger ribbons associated with larger receptor patches and smaller ribbons with smaller patches. Furthermore, the volumes of both presynaptic ribbons and postsynaptic receptor patches co-varied along the modiolar-pillar and the longitudinal axes of their hair cell. The gradients in ribbon volume are consistent with previous findings in cat, guinea pig, mouse and rat and further support a role in differentiating the physiological properties of type I afferents. However, the positive correlation between the volumes of pre- and postsynaptic elements in the gerbil is different to the opposing gradients found in the mouse, suggesting species-specific differences in the postsynaptic AMPA receptors that are unrelated to the fundamental classes of type I afferents. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Hair Transplants

    Science.gov (United States)

    ... Search Skin Experts Skin Treatments Hair Transplants Share » HAIR TRANSPLANTS Before (left) and after (right) - front of ... transplant. Photo courtesy of N. Sadick What are hair transplants? In punch transplanting, a plug containing hair ...

  14. From Hair in India to Hair India.

    Science.gov (United States)

    Trüeb, Ralph M

    2017-01-01

    In all cultures, human hair and hairdo have been a powerful metaphor. Tracing back the importance and significance of human hair to the dawn of civilization on the Indian subcontinent, we find that all the Vedic gods are depicted as having uncut hair in mythological stories as well as in legendary pictures. The same is true of the Hindu avatars, and the epic heroes of the Ramayana, and the Mahabharata. Finally, there are a number of hair peculiarities in India pertinent to the creed and religious practices of the Hindu, the Jain, and the Sikh. Shiva Nataraja is a depiction of the Hindu God Shiva as the cosmic dancer who performs his divine dance as creator, preserver, and destroyer of the universe and conveys the Indian conception of the never-ending cycle of time. The same principle manifests in the hair cycle, in which perpetual cycles of growth, regression, and resting underly the growth and shedding of hair. Finally, The Hair Research Society of India was founded as a nonprofit organisation dedicated to research and education in the science of hair. Notably, the HRSI reached milestones in the journey of academic pursuit with the launch of the International Journal of Trichology, and with the establishment of the Hair India conference. Ultimately, the society aims at saving the public from being taken for a ride by quackery, and at creating the awareness that the science of hair represents a subspecialty of Dermatology. In analogy again, the dwarf on which the Nataraja dances represents the demon of egotism, and thus symbolizes Shiva's, respectively, the HRSI's victory over ignorance.

  15. Hair Removal

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Hair Removal KidsHealth / For Teens / Hair Removal What's in ... you need any of them? Different Types of Hair Before removing hair, it helps to know about ...

  16. Your Hair

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Hair KidsHealth / For Kids / Your Hair What's in this ... eyes from sweat dripping down from your forehead. Hair Comes From Where? Whether hair is growing out ...

  17. Diversification of Root Hair Development Genes in Vascular Plants.

    Science.gov (United States)

    Huang, Ling; Shi, Xinhui; Wang, Wenjia; Ryu, Kook Hui; Schiefelbein, John

    2017-07-01

    The molecular genetic program for root hair development has been studied intensively in Arabidopsis ( Arabidopsis thaliana ). To understand the extent to which this program might operate in other plants, we conducted a large-scale comparative analysis of root hair development genes from diverse vascular plants, including eudicots, monocots, and a lycophyte. Combining phylogenetics and transcriptomics, we discovered conservation of a core set of root hair genes across all vascular plants, which may derive from an ancient program for unidirectional cell growth coopted for root hair development during vascular plant evolution. Interestingly, we also discovered preferential diversification in the structure and expression of root hair development genes, relative to other root hair- and root-expressed genes, among these species. These differences enabled the definition of sets of genes and gene functions that were acquired or lost in specific lineages during vascular plant evolution. In particular, we found substantial divergence in the structure and expression of genes used for root hair patterning, suggesting that the Arabidopsis transcriptional regulatory mechanism is not shared by other species. To our knowledge, this study provides the first comprehensive view of gene expression in a single plant cell type across multiple species. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea.

    Directory of Open Access Journals (Sweden)

    Michael Gelfand

    2010-06-01

    Full Text Available The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions.We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators.A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko.

  19. Interactions between hair cells shape spontaneous otoacoustic emissions in a model of the tokay gecko's cochlea.

    Science.gov (United States)

    Gelfand, Michael; Piro, Oreste; Magnasco, Marcelo O; Hudspeth, A J

    2010-06-15

    The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ensembles of such cells collude to power observable emissions. We have measured and modeled spontaneous otoacoustic emissions from the ear of the tokay gecko, a convenient experimental subject that produces robust emissions. Using a van der Pol formulation to represent each cluster of hair cells within a tonotopic array, we have examined the factors that influence the cooperative interaction between oscillators. A model that includes viscous interactions between adjacent hair cells fails to produce emissions similar to those observed experimentally. In contrast, elastic coupling yields realistic results, especially if the oscillators near the ends of the array are weakened so as to minimize boundary effects. Introducing stochastic irregularity in the strength of oscillators stabilizes peaks in the spectrum of modeled emissions, further increasing the similarity to the responses of actual ears. Finally, and again in agreement with experimental findings, the inclusion of a pure-tone external stimulus repels the spectral peaks of spontaneous emissions. Our results suggest that elastic coupling between oscillators of slightly differing strength explains several properties of the spontaneous otoacoustic emissions in the gecko.

  20. Hair Removal

    DEFF Research Database (Denmark)

    Hædersdal, Merete

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  1. Hair removal

    DEFF Research Database (Denmark)

    Haedersdal, Merete; Haak, Christina S

    2011-01-01

    Hair removal with optical devices has become a popular mainstream treatment that today is considered the most efficient method for the reduction of unwanted hair. Photothermal destruction of hair follicles constitutes the fundamental concept of hair removal with red and near-infrared wavelengths...... suitable for targeting follicular and hair shaft melanin: normal mode ruby laser (694 nm), normal mode alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), long-pulse Nd:YAG laser (1,064 nm), and intense pulsed light (IPL) sources (590-1,200 nm). The ideal patient has thick dark terminal hair......, white skin, and a normal hormonal status. Currently, no method of lifelong permanent hair eradication is available, and it is important that patients have realistic expectations. Substantial evidence has been found for short-term hair removal efficacy of up to 6 months after treatment with the available...

  2. T Follicular Helper Cells and B Cell Dysfunction in Aging and HIV-1 Infection.

    Science.gov (United States)

    Pallikkuth, Suresh; de Armas, Lesley; Rinaldi, Stefano; Pahwa, Savita

    2017-01-01

    T follicular helper (Tfh) cells are a subset of CD4 T cells that provide critical signals to antigen-primed B cells in germinal centers to undergo proliferation, isotype switching, and somatic hypermutation to generate long-lived plasma cells and memory B cells during an immune response. The quantity and quality of Tfh cells therefore must be tightly controlled to prevent immune dysfunction in the form of autoimmunity and, on the other hand, immune deficiency. Both Tfh and B cell perturbations appear during HIV infection resulting in impaired antibody responses to vaccines such as seasonal trivalent influenza vaccine, also seen in biologic aging. Although many of the HIV-associated defects improve with antiretroviral therapy (ART), excess immune activation and antigen-specific B and T cell responses including Tfh function are still impaired in virologically controlled HIV-infected persons on ART. Interestingly, HIV infected individuals experience increased risk of age-associated pathologies. This review will discuss Tfh and B cell dysfunction in HIV infection and highlight the impact of chronic HIV infection and aging on Tfh-B cell interactions.

  3. β-Lapachone attenuates mitochondrial dysfunction in MELAS cybrid cells.

    Science.gov (United States)

    Jeong, Moon Hee; Kim, Jin Hwan; Seo, Kang-Sik; Kwak, Tae Hwan; Park, Woo Jin

    2014-11-21

    Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disease caused by mutations in the mitochondrial genome. This study investigated the efficacy of β-lapachone (β-lap), a natural quinone compound, in rescuing mitochondrial dysfunction in MELAS cybrid cells. β-Lap significantly restored energy production and mitochondrial membrane potential as well as normalized the elevated ROS level in MELAS cybrid cells. Additionally, β-lap reduced lactic acidosis and restored glucose uptake in the MELAS cybrid cells. Finally, β-lap activated Sirt1 by increasing the intracellular NAD(+)/NADH ratio, which was accompanied by increased mtDNA content. Two other quinone compounds (idebenone and CoQ10) that have rescued mitochondrial dysfunction in previous studies of MELAS cybrid cells had a minimal effect in the current study. Taken together, these results demonstrated that β-lap may provide a novel therapeutic modality for the treatment of MELAS. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Hair follicle defects and squamous cell carcinoma formation in Smad4 conditional knockout mouse skin.

    Science.gov (United States)

    Qiao, W; Li, A G; Owens, P; Xu, X; Wang, X-J; Deng, C-X

    2006-01-12

    Smad4 is the common mediator for TGFbeta signals, which play important functions in many biological processes. To study the role of Smad4 in skin development and epidermal tumorigenesis, we disrupted this gene in skin using the Cre-loxP approach. We showed that absence of Smad4 blocked hair follicle differentiation and cycling, leading to a progressive hair loss of mutant (MT) mice. MT hair follicles exhibited diminished expression of Lef1, and increased proliferative cells in the outer root sheath. Additionally, the skin of MT mice exhibited increased proliferation of basal keratinocytes and epidermal hyperplasia. Furthermore, we provide evidence that the absence of Smad4 resulted in a block of both TGFbeta and bone morphogenetic protein (BMP) signaling pathways, including p21, a well-known cyclin-dependent kinase inhibitor. Consequently, all MT mice developed spontaneous malignant skin tumors from 3 months to 13 months of age. The majority of tumors are malignant squamous cell carcinomas. A most notable finding is that tumorigenesis is accompanied by inactivation of phosphatase and tensin homolog deleted on chromosome 10 (Pten), activation of AKT, fast proliferation and nuclear accumulation of cyclin D1. These observations revealed the essential functions of Smad4-mediated signals in repressing skin tumor formation through the TGFbeta/BMP pathway, which interacts with the Pten signaling pathway.

  5. Peroxynitrite induces apoptosis of mouse cochlear hair cells via a Caspase-independent pathway in vitro.

    Science.gov (United States)

    Cao, Zhixin; Yang, Qianqian; Yin, Haiyan; Qi, Qi; Li, Hongrui; Sun, Gaoying; Wang, Hongliang; Liu, Wenwen; Li, Jianfeng

    2017-11-01

    Peroxynitrite (ONOO - ) is a potent and versatile oxidant implicated in a number of pathophysiological processes. The present study was designed to investigate the effect of ONOO - on the cultured cochlear hair cells (HCs) of C57BL/6 mice in vitro as well as the possible mechanism underlying the action of such an oxidative stress. The in vitro primary cultured cochlear HCs were subjected to different concentrations of ONOO - , then, the cell survival and morphological changes were examined by immunofluorescence and transmission electron microscopy (TEM), the apoptosis was determined by Terminal deoxynucleotidyl transferase dUNT nick end labeling (TUNEL) assay, the mRNA expressions of Caspase-3, Caspase-8, Caspase-9, Apaf1, Bcl-2, and Bax were analyzed by RT-PCR, and the protein expressions of Caspase-3 and AIF were assessed by immunofluorescence. This work demonstrated that direct exposure of primary cultured cochlear HCs to ONOO - could result in a base-to-apex gradient injury of HCs in a concentration-dependent manner. Furthermore, ONOO - led to much more losses of outer hair cells than inner hair cells mainly through the induction of apoptosis of HCs as evidenced by TEM and TUNEL assays. The mRNA expressions of Caspase-8, Caspase-9, Apaf1, and Bax were increased and, meanwhile, the mRNA expression of Bcl-2 was decreased in response to ONOO - treatment. Of interesting, the expression of Caspase-3 had no significant change, whereas, the expression alteration of AIF was observed. These results suggested that ONOO - can effectively damage the survival of cochlear HCs via triggering the apoptotic pathway. The findings from this work suggest that ONOO - -induced apoptosis is mediated, at least in part, via a Caspase-independent pathway in cochlear HCs.

  6. Stem Cell-Associated Marker Expression in Canine Hair Follicles.

    Science.gov (United States)

    Gerhards, Nora M; Sayar, Beyza S; Origgi, Francesco C; Galichet, Arnaud; Müller, Eliane J; Welle, Monika M; Wiener, Dominique J

    2016-03-01

    Functional hair follicle (HF) stem cells (SCs) are crucial to maintain the constant recurring growth of hair. In mice and humans, SC subpopulations with different biomarker expression profiles have been identified in discrete anatomic compartments of the HF. The rare studies investigating canine HF SCs have shown similarities in biomarker expression profiles to that of mouse and human SCs. The aim of our study was to broaden the current repertoire of SC-associated markers and their expression patterns in the dog. We combined analyses on the expression levels of CD34, K15, Sox9, CD200, Nestin, LGR5 and LGR6 in canine skin using RT-qPCR, the corresponding proteins in dog skin lysates, and their expression patterns in canine HFs using immunohistochemistry. Using validated antibodies, we were able to define the location of CD34, Sox9, Keratin15, LGR5 and Nestin in canine HFs and confirm that all tested biomarkers are expressed in canine skin. Our results show similarities between the expression profile of canine, human and mouse HF SC markers. This repertoire of biomarkers will allow us to conduct functional studies and investigate alterations in the canine SC compartment of different diseases, like alopecia or skin cancer with the possibility to extend relevant findings to human patients. © 2016 The Histochemical Society.

  7. Association of intracellular and synaptic organization in cochlear inner hair cells revealed by 3D electron microscopy

    OpenAIRE

    Bullen, Anwen; West, Timothy; Moores, Carolyn; Ashmore, Jonathan; Fleck, Roland A.; MacLellan-Gibson, Kirsty; Forge, Andrew

    2015-01-01

    ABSTRACT The ways in which cell architecture is modelled to meet cell function is a poorly understood facet of cell biology. To address this question, we have studied the cytoarchitecture of a cell with highly specialised organisation, the cochlear inner hair cell (IHC), using multiple hierarchies of three-dimensional (3D) electron microscopy analyses. We show that synaptic terminal distribution on the IHC surface correlates with cell shape, and the distribution of a highly organised network ...

  8. The tip-link antigen, a protein associated with the transduction complex of sensory hair cells, is protocadherin-15.

    Science.gov (United States)

    Ahmed, Zubair M; Goodyear, Richard; Riazuddin, Saima; Lagziel, Ayala; Legan, P Kevin; Behra, Martine; Burgess, Shawn M; Lilley, Kathryn S; Wilcox, Edward R; Riazuddin, Sheikh; Griffith, Andrew J; Frolenkov, Gregory I; Belyantseva, Inna A; Richardson, Guy P; Friedman, Thomas B

    2006-06-28

    Sound and acceleration are detected by hair bundles, mechanosensory structures located at the apical pole of hair cells in the inner ear. The different elements of the hair bundle, the stereocilia and a kinocilium, are interconnected by a variety of link types. One of these links, the tip link, connects the top of a shorter stereocilium with the lateral membrane of an adjacent taller stereocilium and may gate the mechanotransducer channel of the hair cell. Mass spectrometric and Western blot analyses identify the tip-link antigen, a hitherto unidentified antigen specifically associated with the tip and kinocilial links of sensory hair bundles in the inner ear and the ciliary calyx of photoreceptors in the eye, as an avian ortholog of human protocadherin-15, a product of the gene for the deaf/blindness Usher syndrome type 1F/DFNB23 locus. Multiple protocadherin-15 transcripts are shown to be expressed in the mouse inner ear, and these define four major isoform classes, two with entirely novel, previously unidentified cytoplasmic domains. Antibodies to the three cytoplasmic domain-containing isoform classes reveal that each has a different spatiotemporal expression pattern in the developing and mature inner ear. Two isoforms are distributed in a manner compatible for association with the tip-link complex. An isoform located at the tips of stereocilia is sensitive to calcium chelation and proteolysis with subtilisin and reappears at the tips of stereocilia as transduction recovers after the removal of calcium chelators. Protocadherin-15 is therefore associated with the tip-link complex and may be an integral component of this structure and/or required for its formation.

  9. A Case of Basal Cell Carcinoma with Outer Hair Follicle Sheath Differentiation

    Directory of Open Access Journals (Sweden)

    Masazumi Onishi

    2015-12-01

    Full Text Available A 70-year-old Japanese man presented at our hospital with an asymptomatic, blackish, irregularly shaped plaque with a gray nodule in the periphery on his left lower leg. The lesion had been present for 10 years and had recently enlarged, associated with bleeding. Histopathologically, the tumor consisted of three distinct parts: The first part showed massive aggregation of basophilic basaloid cells with peripheral palisading and abundant melanin granules, and was diagnosed as solid-type basal cell carcinoma. The second part showed aggregation of clear cells with squamous eddies, and was diagnosed as proliferating trichilemmal tumor. The third part showed reticular aggregation of basaloid cells with infundibular cysts in the papillary dermis, and was diagnosed as infundibulocystic basal cell carcinoma. We diagnosed this tumor as basal cell carcinoma with various forms of hair follicle differentiation, including differentiation into the outer root sheath.

  10. Tetrahydroxystilbene Glucoside Effectively Prevents Apoptosis Induced Hair Loss

    Directory of Open Access Journals (Sweden)

    Lulu Chen

    2018-01-01

    Full Text Available The effect of Polygonum multiflorum against hair loss has been widely recognized. 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG is the main component of Polygonum multiflorum; however, its role in hair regeneration has not been established. To evaluate the hair growth-promoting activity of TSG, depilated C57BL/6J mice were topically treated with normal saline, TSG, Pifithrin-α, Minoxidil for 2 weeks. In this study, we identified that p53, Caspase-3, Active Caspase-3, and Caspase-9 were obviously upregulated in the skin of human and mice with hair loss by western blot analysis. Depilated mice treated with TSG showed markedly hair regrowth. TUNEL+ cells were also reduced in mice with TSG. These changes were accompanied with inhibition of Fas, p53, Bax, Active Caspase-3, and Procaspase-9 activities. These results demonstrated that TSG exerts great hair regrowth effect on hair loss, which was probably mediated by inhibition of p53, Fas, and Bax induced apoptosis.

  11. Influence of leisure-time noise on outer hair cell activity in medical students.

    Science.gov (United States)

    Rosanowski, Frank; Eysholdt, Ulrich; Hoppe, Ulrich

    2006-10-01

    Noise exceeding a certain level can damage outer hair cells and thus cause hearing loss. In the past, noise-induced hearing loss was mainly caused by occupational noise. Leisure-time noise may be a promoting factor, particularly in young adults. The purpose of this study was to investigate whether transient evoked otoacoustic emissions (TEOAE) can be used to evaluate outer hair cell damage in young adults with no history of hearing complaints. The data obtained from the measurement of TEOAE were correlated with the participants' listening habits and exposure to leisure-time noise. Eighty-eight young adults (47 women, 41 men; age 22.9+/-2.9 years) were examined. TEOAE were measured using standard ILO 88 equipment. All participants had normal hearing (hearing thresholds better than 20 dB HL; frequency range 0.125-10 kHz). None of the participants suffered from permanent tinnitus. All participants answered a questionnaire concerning their listening habits. On average, the participants frequented a discotheque 1.4 times a month; 25% had never visited a discotheque, 35% visited once a month and 32% twice or three times a month. Sixteen per cent reported transient tinnitus after every visit to a discotheque and 58% after nearly every visit. Eight per cent suffered from transient hearing loss after every visit to a disco and 37% after nearly every visit. Three per cent (4%) reported tinnitus (nearly) every morning after visiting a discotheque. The TEOAE level was above 6 dB in all participants [9.2+/-3.6 dB (mean +/- SD)] and reproducibility was above 60% (90+/-9%). All values matched pass criteria for normal TEOAE under clinical conditions. However, TEOAE levels and reproducibility decreased significantly with an increased number of visits to discotheques. Outer hair cell damage could be measured using TEOAE in individuals exposed to leisure-time noise, although these individuals exhibited no measurable puretone hearing loss.

  12. Dysfunctional Natural Killer Cells in the Aftermath of Cancer Surgery.

    Science.gov (United States)

    Angka, Leonard; Khan, Sarwat T; Kilgour, Marisa K; Xu, Rebecca; Kennedy, Michael A; Auer, Rebecca C

    2017-08-17

    The physiological changes that occur immediately following cancer surgeries initiate a chain of events that ultimately result in a short pro-, followed by a prolonged anti-, inflammatory period. Natural Killer (NK) cells are severely affected during this period in the recovering cancer patient. NK cells play a crucial role in anti-tumour immunity because of their innate ability to differentiate between malignant versus normal cells. Therefore, an opportunity arises in the aftermath of cancer surgery for residual cancer cells, including distant metastases, to gain a foothold in the absence of NK cell surveillance. Here, we describe the post-operative environment and how the release of sympathetic stress-related factors (e.g., cortisol, prostaglandins, catecholamines), anti-inflammatory cytokines (e.g., IL-6, TGF-β), and myeloid derived suppressor cells, mediate NK cell dysfunction. A snapshot of current and recently completed clinical trials specifically addressing NK cell dysfunction post-surgery is also discussed. In collecting and summarizing results from these different aspects of the surgical stress response, a comprehensive view of the NK cell suppressive effects of surgery is presented. Peri-operative therapies to mitigate NK cell suppression in the post-operative period could improve curative outcomes following cancer surgery.

  13. Blimp-1–mediated CD4 T cell exhaustion causes CD8 T cell dysfunction during chronic toxoplasmosis

    Science.gov (United States)

    Cobb, Dustin A.; Bhadra, Rajarshi

    2016-01-01

    CD8, but not CD4, T cells are considered critical for control of chronic toxoplasmosis. Although CD8 exhaustion has been previously reported in Toxoplasma encephalitis (TE)–susceptible model, our current work demonstrates that CD4 not only become exhausted during chronic toxoplasmosis but this dysfunction is more pronounced than CD8 T cells. Exhausted CD4 population expressed elevated levels of multiple inhibitory receptors concomitant with the reduced functionality and up-regulation of Blimp-1, a transcription factor. Our data demonstrates for the first time that Blimp-1 is a critical regulator for CD4 T cell exhaustion especially in the CD4 central memory cell subset. Using a tamoxifen-dependent conditional Blimp-1 knockout mixed bone marrow chimera as well as an adoptive transfer approach, we show that CD4 T cell–intrinsic deletion of Blimp-1 reversed CD8 T cell dysfunction and resulted in improved pathogen control. To the best of our knowledge, this is a novel finding, which demonstrates the role of Blimp-1 as a critical regulator of CD4 dysfunction and links it to the CD8 T cell dysfunctionality observed in infected mice. The critical role of CD4-intrinsic Blimp-1 expression in mediating CD4 and CD8 T cell exhaustion may provide a rational basis for designing novel therapeutic approaches. PMID:27481131

  14. Drug discovery for alopecia: gone today, hair tomorrow.

    Science.gov (United States)

    Santos, Zenildo; Avci, Pinar; Hamblin, Michael R

    2015-03-01

    Hair loss or alopecia affects the majority of the population at some time in their life, and increasingly, sufferers are demanding treatment. Three main types of alopecia (androgenic [AGA], areata [AA] and chemotherapy-induced [CIA]) are very different, and have their own laboratory models and separate drug-discovery efforts. In this article, the authors review the biology of hair, hair follicle (HF) cycling, stem cells and signaling pathways. AGA, due to dihydrotesterone, is treated by 5-α reductase inhibitors, androgen receptor blockers and ATP-sensitive potassium channel-openers. AA, which involves attack by CD8(+)NK group 2D-positive (NKG2D(+)) T cells, is treated with immunosuppressives, biologics and JAK inhibitors. Meanwhile, CIA is treated by apoptosis inhibitors, cytokines and topical immunotherapy. The desire to treat alopecia with an easy topical preparation is expected to grow with time, particularly with an increasing aging population. The discovery of epidermal stem cells in the HF has given new life to the search for a cure for baldness. Drug discovery efforts are being increasingly centered on these stem cells, boosting the hair cycle and reversing miniaturization of HF. Better understanding of the molecular mechanisms underlying the immune attack in AA will yield new drugs. New discoveries in HF neogenesis and low-level light therapy will undoubtedly have a role to play.

  15. A function for Rac1 in the terminal differentiation and pigmentation of hair

    DEFF Research Database (Denmark)

    Behrendt, Kristina; Klatte, Jennifer; Pofahl, Ruth

    2012-01-01

    in the regulation of terminal hair follicle differentiation. To address this, we have expressed a constitutively active mutant of Rac1, L61Rac1, only in the basal epidermal layer and outer root sheath of mice possessing an epidermis-specific deletion of endogenous Rac1, which experience severe hair loss......The small GTPase Rac1 is ubiquitously expressed in proliferating and differentiating layers of the epidermis and hair follicles. Previously, Rac1 was shown to regulate stem cell behaviour in these compartments. We have asked whether Rac1 has, in addition, a specific, stem-cell-independent function....... The resulting 'rescue' mice exhibited a hair coat throughout their lives. Therefore, expression of Rac1 activity in the keratin-14-positive compartment of the skin is sufficient for the formation of hair follicles and hair in normal quantities. The quality of hair formed in rescue mice was, however, not normal...

  16. Human epithelial hair follicle stem cells and their progeny: current state of knowledge, the widening gap in translational research and future challenges.

    Science.gov (United States)

    Purba, Talveen S; Haslam, Iain S; Poblet, Enrique; Jiménez, Francisco; Gandarillas, Alberto; Izeta, Ander; Paus, Ralf

    2014-05-01

    Epithelial hair follicle stem cells (eHFSCs) are required to generate, maintain and renew the continuously cycling hair follicle (HF), supply cells that produce the keratinized hair shaft and aid in the reepithelialization of injured skin. Therefore, their study is biologically and clinically important, from alopecia to carcinogenesis and regenerative medicine. However, human eHFSCs remain ill defined compared to their murine counterparts, and it is unclear which murine eHFSC markers really apply to the human HF. We address this by reviewing current concepts on human eHFSC biology, their immediate progeny and their molecular markers, focusing on Keratin 15 and 19, CD200, CD34, PHLDA1, and EpCAM/Ber-EP4. After delineating how human eHFSCs may be selectively targeted experimentally, we close by defining as yet unmet key challenges in human eHFSC research. The ultimate goal is to transfer emerging concepts from murine epithelial stem cell biology to human HF physiology and pathology. © 2014 WILEY Periodicals, Inc.

  17. Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S

    2015-10-06

    Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).

  18. Transdifferentiation of Human Hair Follicle Mesenchymal Stem Cells into Red Blood Cells by OCT4

    Directory of Open Access Journals (Sweden)

    Zhijing Liu

    2015-01-01

    Full Text Available Shortage of red blood cells (RBCs, erythrocytes can have potentially life-threatening consequences for rare or unusual blood type patients with massive blood loss resulting from various conditions. Erythrocytes have been derived from human pluripotent stem cells (PSCs, but the risk of potential tumorigenicity cannot be ignored, and a majority of these cells produced from PSCs express embryonic ε- and fetal γ-globins with little or no adult β-globin and remain nucleated. Here we report a method to generate erythrocytes from human hair follicle mesenchymal stem cells (hHFMSCs by enforcing OCT4 gene expression and cytokine stimulation. Cells generated from hHFMSCs expressed mainly the adult β-globin chain with minimum level of the fetal γ-globin chain. Furthermore, these cells also underwent multiple maturation events and formed enucleated erythrocytes with a biconcave disc shape. Gene expression analyses showed that OCT4 regulated the expression of genes associated with both pluripotency and erythroid development during hHFMSC transdifferentiation toward erythroid cells. These findings show that mature erythrocytes can be generated from adult somatic cells, which may serve as an alternative source of RBCs for potential autologous transfusion.

  19. Complex Regulation of Prolyl-4-Hydroxylases Impacts Root Hair Expansion

    DEFF Research Database (Denmark)

    Velasquez, Silvia M; Ricardi, Martiniano M; Poulsen, Christian Peter

    2015-01-01

    Root hairs are single cells that develop by tip growth, a process shared with pollen tubes, axons, and fungal hyphae. However, structural plant cell walls impose constraints to accomplish tip growth. In addition to polysaccharides, plant cell walls are composed of hydroxyproline-rich glycoproteins......5, and to a lesser extent P4H2 and P4H13, are pivotal for root hair tip growth. Second, we demonstrate that P4H5 has in vitro preferred specificity for EXT substrates rather than for other HRGPs. Third, by P4H promoter and protein swapping approaches, we show that P4H2 and P4H13 have interchangeable...... peptidyl-proline hydroxylation on EXTs, and possibly in other HRGPs, is required for proper cell wall self-assembly and hence root hair elongation in Arabidopsis thaliana....

  20. Medical application of laser hair removal

    International Nuclear Information System (INIS)

    Fadlalla, Alwalled Hussein Ataalmannan

    2015-12-01

    The use of laser in medical treatment has become of paramount importance proportional to what has high therapeutic privileges such as speed and accuracy in penetrating tissues and high quality especially when used in hair removal which is the subject of our study, this laser operates cards may cause some change in the color of the skin when used in a manner that is correct ratio of the thermal impact force in the laser hair removal process, or if it is exposed directly to his eye. This study is a comparison between the physical properties of laser of lasers used in hair removal, according to previous studies to be the basis for the benefit of doctors who use lasers for hair removal. The aim of this study was to study the effect of laser hair removal using the Nd: YAG laser with a wavelength 1064 nm as well as the risks airing from the assessment. The aim of this study was to identify the appropriate laser energy that absorbed in the hair follicle with a dark color and the appropriate thermal effect occurs to vaporize the follicle cell, a 40 J/cm"2 is to be significant without side effects for healthy tissue. In this study doses for a few laser beam is considered when compared to previous studies. Laser danger to the patient during the operation increases with increasing laser energy emitted during treatment. Laser hair removal by the user and energy emitted by wavelength of the laser device also depends on the hair color and roughness as well as skin color. (Author)

  1. Hair loss and hair-pulling in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Lutz, Corrine K; Coleman, Kristine; Worlein, Julie; Novak, Melinda A

    2013-07-01

    Alopecia is a common problem in rhesus macaque colonies. A possible cause of this condition is hair-pulling; however the true relationship between hair-pulling and alopecia is unknown. The purpose of this study was to examine the relationship between hair loss and hair-pulling in 1258 rhesus macaques housed in 4 primate colonies across the United States. Alopecia levels ranged from 34.3% to 86.5% (mean, 49.3%) at the primate facilities. At facilities reporting a sex-associated difference, more female macaques were reported to exhibit alopecia than were males. In contrast, more males were reported to hair-pull. Animals reported to hair-pull were significantly more likely to have some amount of alopecia, but rates of hair-pulling were substantially lower than rates of alopecia, ranging from 0.6% to 20.5% (mean, 7.7%) of the populations. These results further demonstrate that hair-pulling plays only a small role in alopecia in rhesus macaques.

  2. Hair Loss

    Science.gov (United States)

    ... is why some people with eating disorders like anorexia and bulimia lose their hair: The body isn't getting enough protein, vitamins, and minerals to support hair growth. Some teens who are vegetarians also lose their hair if ...

  3. Removing Hair Safely

    Science.gov (United States)

    ... For Consumers Home For Consumers Consumer Updates Removing Hair Safely Share Tweet Linkedin Pin it More sharing ... related to common methods of hair removal. Laser Hair Removal In this method, a laser destroys hair ...

  4. Hair Loss (Alopecia)

    Science.gov (United States)

    ... care Kids’ zone Video library Find a dermatologist Hair loss Overview Hereditary hair loss: Millions of men ... of hair loss can often be successfully treated. Hair loss: Overview Also called alopecia (al-o-PEE- ...

  5. Repeated exposure to hair dye induces regulatory T cells in mice

    DEFF Research Database (Denmark)

    Rubin, I M C; Dabelsteen, S; Nielsen, M M

    2010-01-01

    We have recently shown that commercial p-phenylenediamine (PPD)-containing hair dyes are potent immune activators that lead to severe contact hypersensitivity in an animal model. However, only a minority of people exposed to permanent hair dyes develops symptomatic contact hypersensitivity...

  6. Parietal scalp is another affected area in female pattern hair loss: an analysis of hair density and hair diameter

    Directory of Open Access Journals (Sweden)

    Rojhirunsakool S

    2017-12-01

    Full Text Available Salinee Rojhirunsakool, Poonkiat Suchonwanit Department of Medicine, Division of Dermatology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand Purpose: Female pattern hair loss (FPHL is a common hair disease. However, studies of the quantitative measurement of FPHL are still limited. The aim of this study was to investigate the characteristics of hair density and hair diameter in normal women and FPHL patients, and further correlate the quantitative measurement with the clinical presentation of FPHL.Patients and methods: An evaluation of 471 FPHL patients and 236 normal women was carried out according to the Ludwig classification, and analysis was performed by using a computerized handheld USB camera with computer-assisted software. Various areas of the scalp, including frontal, parietal, midscalp, and occipital, were analyzed for hair density, non-vellus hair diameter, and percentage of miniaturized hair.Results: The hair density in normal women was the highest and the lowest in the midscalp and parietal areas, respectively. The FPHL group revealed the lowest hair density in the parietal area. Significant differences in hair density, non-vellus hair diameter, and percentage of miniaturized hair between the normal and FPHL groups were observed, especially in the midscalp and parietal areas.Conclusion: The parietal area is another important affected area in FPHL in addition to the midscalp area. This finding provides novel important information of FPHL and will be useful for hair transplant surgeons choosing the optimal donor sites for hair transplantation in women. Keywords: androgenetic alopecia, alopecia, phototrichogram, miniaturization

  7. Hair cosmetics

    OpenAIRE

    Nina Madnani; Kaleem Khan

    2013-01-01

    The hair cosmetic industry has undergone a revolutionary change over the last two decades. The focus has dramatically veered from merely cleaning to repair, increasing the tensile strength, reducing oxidative damage, and stimulating growth. Newer shorter procedures to make hair look naturally more lustrous, smooth, and manageable have evolved. Specialized grooming products have been formulated to cleanse, calm, and condition the hair, and are tailored for different hair-types, for example, dr...

  8. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells.

    Science.gov (United States)

    Parker, Andrew; Cross, Sally H; Jackson, Ian J; Hardisty-Hughes, Rachel; Morse, Susan; Nicholson, George; Coghill, Emma; Bowl, Michael R; Brown, Steve D M

    2015-12-01

    Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs) that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182) in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss. © 2015. Published by The Company of

  9. The goya mouse mutant reveals distinct newly identified roles for MAP3K1 in the development and survival of cochlear sensory hair cells

    Directory of Open Access Journals (Sweden)

    Andrew Parker

    2015-12-01

    Full Text Available Mitogen-activated protein kinase, MAP3K1, plays an important role in a number of cellular processes, including epithelial migration during eye organogenesis. In addition, studies in keratinocytes indicate that MAP3K1 signalling through JNK is important for actin stress fibre formation and cell migration. However, MAP3K1 can also act independently of JNK in the regulation of cell proliferation and apoptosis. We have identified a mouse mutant, goya, which exhibits the eyes-open-at-birth and microphthalmia phenotypes. In addition, these mice also have hearing loss. The goya mice carry a splice site mutation in the Map3k1 gene. We show that goya and kinase-deficient Map3k1 homozygotes initially develop supernumerary cochlear outer hair cells (OHCs that subsequently degenerate, and a progressive profound hearing loss is observed by 9 weeks of age. Heterozygote mice also develop supernumerary OHCs, but no cellular degeneration or hearing loss is observed. MAP3K1 is expressed in a number of inner-ear cell types, including outer and inner hair cells, stria vascularis and spiral ganglion. Investigation of targets downstream of MAP3K1 identified an increase in p38 phosphorylation (Thr180/Tyr182 in multiple cochlear tissues. We also show that the extra OHCs do not arise from aberrant control of proliferation via p27KIP1. The identification of the goya mutant reveals a signalling molecule involved with hair-cell development and survival. Mammalian hair cells do not have the ability to regenerate after damage, which can lead to irreversible sensorineural hearing loss. Given the observed goya phenotype, and the many diverse cellular processes that MAP3K1 is known to act upon, further investigation of this model might help to elaborate upon the mechanisms underlying sensory hair cell specification, and pathways important for their survival. In addition, MAP3K1 is revealed as a new candidate gene for human sensorineural hearing loss.

  10. Clinical Features and Management of Cartilage-Hair Hypoplasia: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Kobra Shiasi Arani

    2015-01-01

    Full Text Available Context: Cartilage-hair hypoplasia is a rare hereditary cause of short stature. The aim of this study was to familiarize physicians with this rare but important disease. Evidence Acquisition: This article is a narrative review of the scientific literature to inform about clinical features and management of Cartilage-hair hypoplasia. A systematic search identified 127 papers include original and review articles and case reports. Results: Cartilage-Hair Hypoplasia characterized by short-limb dwarfism associated with metaphyseal chondrodysplasia. The inheritance is autosomal recessive. Other findings include hair hypoplasia, anemia, immunodeficiency, propensity to infections, gastrointestinal disorders (Hirschsprung disease, anal stenosis, esophageal atresia and malabsorption, defective spermatogenesis, increased risk of malignancies and higher rate of mortality. Immunodeficiency in cartilage-hair hypoplasia may be an isolated B-cell or isolated T-cell immunodeficiency or combined B and T-cell immunodeficiency; however, severe combined immunodeficiency is rare. There is no known treatment for hair hypoplasia. Growth hormone was used with conflicting results for short stature in children with Cartilage-hair hypoplasia. Skeletal problems must be managed with physiotherapy and appropriate orthopedic interventions. Hirschsprung disease, anal stenosis and esophageal atresia should be surgically corrected. Patients with severe hypoplastic anemia require repeated transfusions. Bone marrow transplantation may be required for patients with severe combined immunodeficiency or severe persistent hypoplastic anemia. Treatment with G-CSF is useful for neutropenia. Patients should be monitored closely for developing malignancy such as skin neoplasms, lymphomas and leukemias. Conclusions: Cartilage-hair hypoplasia is an important hereditary disease with different medical aspects. The high rate of consanguineous marriages in Iran necessitates considering CHH in any

  11. Immunohistochemical localization of basement membrane components during hair follicle morphogenesis

    DEFF Research Database (Denmark)

    Westgate, G E; Shaw, D A; Harrap, G J

    1984-01-01

    Specific antisera were used to investigate the distributions of several basement membrane zone (BMZ) components, namely, bullous pemphigoid antigen (BPA), heparan sulfate proteoglycan (HSPG), laminin, and type IV collagen, during the development of hair follicles in late embryo rats. BPA was not ......Specific antisera were used to investigate the distributions of several basement membrane zone (BMZ) components, namely, bullous pemphigoid antigen (BPA), heparan sulfate proteoglycan (HSPG), laminin, and type IV collagen, during the development of hair follicles in late embryo rats. BPA...... of the elongating follicle. HSPG was associated with the basal cell layer prior to the appearance of hair follicle primordia and became BMZ-associated before birth but after follicle buds were first observed. HSPG was also found to be associated with the basal cell surfaces in the epidermis, but not in the hair...... follicle. Laminin and type IV collagen were continually present in epidermal and follicular BMZ both before and during development of hair follicles and were later present in the dermal papilla matrix. From these observations we conclude that (1) laminin and type IV collagen are functionally important...

  12. Hair Interactions

    OpenAIRE

    Cani , Marie-Paule; Bertails , Florence

    2006-01-01

    International audience; Processing interactions is one of the main challenges in hair animation. Indeed, in addition to the collisions with the body, an extremely large number of contacts with high friction rates are permanently taking place between individual hair strands. Simulating the latter is essential: without hair self-interactions, strands would cross each other during motion or come to rest at the same location, yielding unrealistic behavior and a visible lack of hair volume. This c...

  13. Localization of Myosin and Actin in the Pelage and Whisker Hair Follicles of Rat

    International Nuclear Information System (INIS)

    Morioka, Kiyokazu; Matsuzaki, Toshiyuki; Takata, Kuniaki

    2006-01-01

    The combined effects of myosin II and actin enable muscle and nonmuscle cells to generate forces required for muscle contraction, cell division, cell migration, cellular morphological changes, the maintenance of cellular tension and polarity, and so on. However, except for the case of muscle contraction, the details are poorly understood. We focus on nonmuscle myosin and actin in the formation and maintenance of hair and skin, which include highly active processes in mammalian life with respect to the cellular proliferation, differentiation, and movement. The localization of nonmuscle myosin II and actin in neonatal rat dorsal skin, mystacial pad, hair follicles, and vibrissal follicles was studied by immunohistochemical technique to provide the basis for the elucidation of the roles of these proteins. Specificities of the antibodies were verified by using samples from the relevant tissues and subjecting them to immunoblotting test prior to morphological analyses. The myosin and actin were abundant and colocalized in the spinous and granular layers but scarce in the basal layer of the dorsal and mystacial epidermis. In hair and vibrissal follicles, nonmuscle myosin and actin were colocalized in the outer root sheath and some hair matrix cells adjoining dermal papillae. In contrast, most areas of the inner root sheath and hair matrix appeared to comprise very small amounts of myosin and actin. Hair shaft may comprise significant myosin during the course of its keratinization. These results suggest that the actin-myosin system plays a part in cell movement, differentiation, protection and other key functions of skin and hair cells

  14. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Holly A.; Nguyen, Lynn Y. [Bioengineering, University of Utah, Salt Lake City, Utah (United States); Tran, Vy M.; Arungundram, Sailaja; Kalita, Mausam [Medicinal Chemistry, University of Utah, Salt Lake City, Utah (United States); Kuberan, Balagurunathan [Medicinal Chemistry, University of Utah, Salt Lake City, Utah (United States); Neuroscience Program, University of Utah, Salt Lake City, Utah (United States); Rabbitt, Richard D. [Bioengineering, University of Utah, Salt Lake City, Utah (United States); Neuroscience Program, University of Utah, Salt Lake City, Utah (United States); Otolaryngology, University of Utah, Salt Lake City, Utah (United States); Marine Biological Laboratory, Woods Hole, Massachusetts (United States)

    2015-12-31

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear.

  15. Xyloside primed glycosaminoglycans alter hair bundle micromechanical coupling and synaptic transmission: Pharmacokinetics

    International Nuclear Information System (INIS)

    Holman, Holly A.; Nguyen, Lynn Y.; Tran, Vy M.; Arungundram, Sailaja; Kalita, Mausam; Kuberan, Balagurunathan; Rabbitt, Richard D.

    2015-01-01

    Glycosaminoglycans (GAGs) are ubiquitous in the inner ear, and disorders altering their structure or production often result in debilitating hearing and balance deficits. The specific mechanisms responsible for loss of hair-cell function are not well understood. We recently reported that introduction of a novel BODIPY conjugated xyloside (BX) into the endolymph primes fluorescent GAGs in vivo [6, 15]. Confocal and two-photon fluorescence imaging revealed rapid turnover and assembly of a glycocalyx enveloping the kinocilia and extending into the cupula, a structure that presumably serves as a mechanical link between the hair bundle and the cupula. Extracellular fluorescence was also observed around the basolateral surface of hair cells and surrounding afferent nerve projections into the crista. Single unit afferent recordings during mechanical hair bundle stimulation revealed temporary interruption of synaptic transmission following BX administration followed by recovery, demonstrating an essential role for GAGs in function of the hair cell synapse. In the present work we present a pharmacokinetic model to quantify the time course of BX primed GAG production and turnover in the ear

  16. Distinguishing diffuse alopecia areata (AA) from pattern hair loss (PHL) using CD3(+) T cells.

    Science.gov (United States)

    Kolivras, Athanassios; Thompson, Curtis

    2016-05-01

    Distinguishing between diffuse subacute alopecia areata (AA), in which the peribulbar infiltrate is absent, and pattern hair loss is challenging, particularly in cases that lack marked follicular miniaturization and a marked catagen/telogen shift. We sought to distinguish diffuse AA from pattern hair loss using CD3(+) T lymphocytes. A total of 28 cases of subacute AA and 31 cases of pattern hair loss were selected and a 4-mm punch biopsy was performed. All the specimens were processed using the "HoVert" (horizontal and vertical) technique. In all cases, hematoxylin-eosin and immunohistochemical stains for CD3, CD4, CD8, and CD20 were performed. The presence of CD3(+) lymphocytes within empty follicular fibrous tracts (stela), even without a concomitant peribulbar infiltrate, is a reliable histopathological clue in supporting a diagnosis of AA (sensitivity 0.964, specificity 1, P ≤ .001). Limited tissue for analysis remained in the clinical sample tissue blocks. The presence of CD3(+) T-cells within empty follicular fibrous tracts (stela) supports a diagnosis of AA. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  17. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.

    Science.gov (United States)

    Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I

    2016-12-01

    The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.

  18. A precise automatic system for the hair assessment in hair-care diagnosis applications.

    Science.gov (United States)

    Shih, H

    2015-11-01

    One emerging subject in medical image processing is to quantitatively assess the health and the properties of cranial hairs, including density, diameter, length, level of oiliness, and others. This information helps hair specialists with making a more accurate diagnosis and the therapy required. We develop a practical hair counting algorithm. This analytic system calculates the number of hairs on a scalp using a digital microscope camera, providing accurate information for both the hair specialist and the patient. Our proposed hair counting algorithm is substantially more accurate than the Hough-based one, and is robust to curls, oily scalp, noise-corruption, and overlapping hairs, under various levels of illumination. Rather than manually counting the hairs on a person's scalp, the proposed system determines the density, diameter, length, and level of oiliness of the hairs. We propose an automated system for counting the amount of hairs in the microscopy images. To reduce the effect of bright spots, we develop a robust morphological algorithm for color to smooth out the color and preserve the fidelity of the hair. Then, we utilize a modified Hough transform algorithm to detect the different hair lengths and to reduce any false detection due to noise. Our proposed system enables us to look at curved hairs as multiple pieces of straight lines. To avoid missing hairs when the thinning process is applied, we use edge information to discover any hidden or overlapping hairs. Finally, we employ a mutually associative regression method to label a group of line segments into a meaningful 'hair'. We demonstrated a novel approach for accurately computing the number of hairs, and successfully solved the three main obstacles in automated hair counting, including (i) oily and moist hairs, (ii) wavy and curly hairs, and (iii) under-estimation of the number of hairs occurs when hairs cross and occlude each other. The framework of this paper can be seen as the first step toward

  19. Transitory endolymph leakage induced hearing loss and tinnitus: depolarization, biphasic shortening and loss of electromotility of outer hair cells

    Science.gov (United States)

    Zenner, H. P.; Reuter, G.; Zimmermann, U.; Gitter, A. H.; Fermin, C.; LePage, E. L.

    1994-01-01

    There are types of deafness and tinnitus in which ruptures or massive changes in the ionic permeability of the membranes lining the endolymphatic space [e.g., of the reticular lamina (RL)] are believed to allow potassium-rich endolymph to deluge the low [K+] perilymphatic fluid (e.g., in the small spaces of Nuel). This would result in a K+ intoxication of sensory and neural structures. Acute attacks of Meniere's disease have been suggested to be an important example for this event. The present study investigated the effects of transiently elevated [K+] due to the addition of artificial endolymph to the basolateral cell surface of outer hair cells (OHC) in replicating endolymph-induced K+ intoxication of the perilymph in the small spaces of Nuel. The influence of K+ intoxication of the basolateral OHC cell surface on the transduction was then examined. Intoxication resulted in an inhibition of the physiological repolarizing K+ efflux from hair cells. This induced unwanted depolarizations of the hair cells, interfering with mechanoelectrical transduction. A pathological longitudinal OHC shortening was also found, with subsequent compression of the organ of Corti possibly influencing the micromechanics of the mechanically active OHC. Both micromechanical and electrophysiological alterations are proposed to contribute to endolymph leakage induced attacks of deafness and possibly also to tinnitus. Moreover, repeated or long-lasting K+ intoxications of OHC resulted in a chronic and complete loss of OHC motility. This is suggested to be a pathophysiological basis in some patients with chronic hearing loss resulting from Meniere's syndrome.

  20. Temperature dependency of cupular mechanics and hair cell frequency selectivity in the fish canal lateral line organ

    NARCIS (Netherlands)

    Wiersinga-Post, JEC; van Netten, SM

    2000-01-01

    The mechanical frequency selectivity of the cupula located in the supraorbital lateral line canal and the frequency selectivity of the hair cells driven by the cupula were measured simultaneously in vivo. Laser interferometry was used to measure cupular mechanics and extracellular receptor

  1. Characterization of Lgr6+ Cells as an Enriched Population of Hair Cell Progenitors Compared to Lgr5+ Cells for Hair Cell Generation in the Neonatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Yanping Zhang

    2018-05-01

    Full Text Available Hair cell (HC loss is irreversible because only very limited HC regeneration has been observed in the adult mammalian cochlea. Wnt/β-catenin signaling regulates prosensory cell proliferation and differentiation during cochlear development, and Wnt activation promotes the proliferation of Lgr5+ cochlear HC progenitors in newborn mice. Similar to Lgr5, Lgr6 is also a Wnt downstream target gene. Lgr6 is reported to be present in adult stem cells in the skin, nail, tongue, lung, and mammary gland, and this protein is very important for adult stem cell maintenance in rapidly proliferating organs. Our previous studies showed that Lgr6+ cells are a subpopulation of Lgr5+ progenitor cells and that both Lgr6+ and Lgr5+ progenitors can generate Myosin7a+ HCs in vitro. Thus we hypothesized that Lgr6+ cells are an enriched population of cochlear progenitor cells. However, the detailed distinctions between the Lgr5+ and Lgr6+ progenitors are unclear. Here, we systematically compared the proliferation, HC differentiation, and detailed transcriptome expression profiles of these two progenitor populations. We found that the same number of isolated Lgr6+ progenitors generated significantly more Myosin7a+ HCs compared to Lgr5+ progenitors; however, Lgr5+ progenitors formed more epithelial colonies and more spheres than Lgr6+ progenitors in vitro. Using RNA-Seq, we compared the transcriptome differences between Lgr5+ and Lgr6+ progenitors and identified a list of significantly differential expressed genes that might regulate the proliferation and differentiation of these HC progenitors, including 4 cell cycle genes, 9 cell signaling pathway genes, and 54 transcription factors. In conclusion, we demonstrate that Lgr6+ progenitors are an enriched population of inner ear progenitors that generate more HCs compared to Lgr5+ progenitors in the newborn mouse cochlea, and the our research provides a series of genes that might regulate the proliferation of progenitors

  2. Gentamicin differentially alters cellular metabolism of cochlear hair cells as revealed by NAD(P)H fluorescence lifetime imaging

    Science.gov (United States)

    Zholudeva, Lyandysha V.; Ward, Kristina G.; Nichols, Michael G.; Smith, Heather Jensen

    2015-05-01

    Aminoglycoside antibiotics are implicated as culprits of hearing loss in more than 120,000 individuals annually. Research has shown that the sensory cells, but not supporting cells, of the cochlea are readily damaged and/or lost after use of such antibiotics. High-frequency outer hair cells (OHCs) show a greater sensitivity to antibiotics than high- and low-frequency inner hair cells (IHCs). We hypothesize that variations in mitochondrial metabolism account for differences in susceptibility. Fluorescence lifetime microscopy was used to quantify changes in NAD(P)H in sensory and supporting cells from explanted murine cochleae exposed to mitochondrial uncouplers, inhibitors, and an ototoxic antibiotic, gentamicin (GM). Changes in metabolic state resulted in a redistribution of NAD(P)H between subcellular fluorescence lifetime pools. Supporting cells had a significantly longer lifetime than sensory cells. Pretreatment with GM increased NAD(P)H intensity in high-frequency sensory cells, as well as the NAD(P)H lifetime within IHCs. GM specifically increased NAD(P)H concentration in high-frequency OHCs, but not in IHCs or pillar cells. Variations in NAD(P)H intensity in response to mitochondrial toxins and GM were greatest in high-frequency OHCs. These results demonstrate that GM rapidly alters mitochondrial metabolism, differentially modulates cell metabolism, and provides evidence that GM-induced changes in metabolism are significant and greatest in high-frequency OHCs.

  3. Signal detection by active, noisy hair bundles

    Science.gov (United States)

    O'Maoiléidigh, Dáibhid; Salvi, Joshua D.; Hudspeth, A. J.

    2018-05-01

    Vertebrate ears employ hair bundles to transduce mechanical movements into electrical signals, but their performance is limited by noise. Hair bundles are substantially more sensitive to periodic stimulation when they are mechanically active, however, than when they are passive. We developed a model of active hair-bundle mechanics that predicts the conditions under which a bundle is most sensitive to periodic stimulation. The model relies only on the existence of mechanotransduction channels and an active adaptation mechanism that recloses the channels. For a frequency-detuned stimulus, a noisy hair bundle's phase-locked response and degree of entrainment as well as its detection bandwidth are maximized when the bundle exhibits low-amplitude spontaneous oscillations. The phase-locked response and entrainment of a bundle are predicted to peak as functions of the noise level. We confirmed several of these predictions experimentally by periodically forcing hair bundles held near the onset of self-oscillation. A hair bundle's active process amplifies the stimulus preferentially over the noise, allowing the bundle to detect periodic forces less than 1 pN in amplitude. Moreover, the addition of noise can improve a bundle's ability to detect the stimulus. Although, mechanical activity has not yet been observed in mammalian hair bundles, a related model predicts that active but quiescent bundles can oscillate spontaneously when they are loaded by a sufficiently massive object such as the tectorial membrane. Overall, this work indicates that auditory systems rely on active elements, composed of hair cells and their mechanical environment, that operate on the brink of self-oscillation.

  4. Module-based complexity formation: periodic patterning in feathers and hairs.

    Science.gov (United States)

    Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall

    2013-01-01

    Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. © 2012 Wiley Periodicals, Inc.

  5. Mybs in mouse hair follicle development

    Czech Academy of Sciences Publication Activity Database

    Veselá, Barbora; Švandová, Eva; Šmarda, J.; Matalová, Eva

    2014-01-01

    Roč. 46, č. 5 (2014), s. 352-355 ISSN 0040-8166 R&D Projects: GA ČR GCP302/12/J059 Institutional support: RVO:67985904 Keywords : hair follicle * stem cells * c-Myb * B-Myb * development Subject RIV: EA - Cell Biology Impact factor: 1.252, year: 2014

  6. In Vivo Interplay between p27Kip1, GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice

    Directory of Open Access Journals (Sweden)

    Bradley J. Walters

    2017-04-01

    Full Text Available Summary: Hearing loss is widespread and persistent because mature mammalian auditory hair cells (HCs are nonregenerative. In mice, the ability to regenerate HCs from surrounding supporting cells (SCs declines abruptly after postnatal maturation. We find that combining p27Kip1 deletion with ectopic ATOH1 expression surmounts this age-related decline, leading to conversion of SCs to HCs in mature mouse cochleae and after noise damage. p27Kip1 deletion, independent of canonical effects on Rb-family proteins, upregulated GATA3, a co-factor for ATOH1 that is lost from SCs with age. Co-activation of GATA3 or POU4F3 and ATOH1 promoted conversion of SCs to HCs in adult mice. Activation of POU4F3 alone also converted mature SCs to HCs in vivo. These data illuminate a genetic pathway that initiates auditory HC regeneration and suggest p27Kip1, GATA3, and POU4F3 as additional therapeutic targets for ATOH1-mediated HC regeneration. : Auditory hair cells are nonregenerative, resulting in persistent hearing loss upon damage. Walters et al. find that manipulating two genes, p27Kip1 and Atoh1, induces the conversion of nonsensory cells to hair cells in adult mice. This effect is mediated by GATA3 and POU4F3, where POU4F3 alone was found to convert nonsensory cells. Keywords: regeneration, aging, differentiation, proliferation, development, cancer, sensory, cochlea, hearing

  7. Androgenetic alopecia: new insights into the pathogenesis and mechanism of hair loss

    Science.gov (United States)

    Sinclair, Rodney; Torkamani, Niloufar; Jones, Leslie

    2015-01-01

    The hair follicle is a complete mini-organ that lends itself as a model for investigation of a variety of complex biological phenomena, including stem cell biology, organ regeneration and cloning.  The arrector pili muscle inserts into the hair follicle at the level of the bulge- the epithelial stem cell niche.  The arrector pili muscle has been previously thought to be merely a bystander and not to have an active role in hair disease. Computer generated 3D reconstructions of the arrector pili muscle have helped explain why women with androgenetic alopecia (AGA) experience diffuse hair loss rather than the patterned baldness seen in men.  Loss of attachment between the bulge stem cell population and the arrector pili muscle also explains why miniaturization is irreversible in AGA but not alopecia areata. A new model for the progression of AGA is presented. PMID:26339482

  8. T cell dysfunction in the diabetes-prone BB rat. A role for thymic migrants that are not T cell precursors

    International Nuclear Information System (INIS)

    Georgiou, H.M.; Lagarde, A.C.; Bellgrau, D.

    1988-01-01

    Diabetes-prone BB (BB-DP) rats express several T cell dysfunctions which include poor proliferative and cytotoxic responses to alloantigen. The goal of this study was to determine the origin of these T cell dysfunctions. When BB-DP rats were thymectomized, T cell depleted, and transplanted with neonatal thymus tissue from diabetes-resistant and otherwise normal DA/BB F1 rats, the early restoration of T cell function proceeded normally on a cell-for-cell basis; i.e., peripheral T cells functioned like those from the thymus donor. Because the thymus in these experiments was subjected to gamma irradiation before transplantation and there was no evidence of F1 chimerism in the transplanted BB-DP rats, it appeared that the BB-DP T cell precursors could mature into normally functioning T cells if the maturation process occurred in a normal thymus. If the F1 thymus tissue was treated with dGua before transplantation, the T cells of these animals functioned poorly like those from untreated BB-DP rats. dGua poisons bone marrow-derived cells, including gamma radiation-resistant cells of the macrophage/dendritic cell lineages, while sparing the thymic epithelium. Therefore, the reversal of the T cell dysfunction depends on the presence in the F1 thymus of gamma radiation-resistant, dGua-sensitive F1 cells. Conversely, thymectomized and T cell-depleted F1 rats expressed T cell dysfunction when transplanted with gamma-irradiated BB thymus grafts. T cell responses were normal in animals transplanted with dGua-treated BB thymus grafts. With increasing time after thymus transplantation, T cells from all animals gradually expressed the functional phenotype of the bone marrow donor. Taken together these results suggest that BB-DP bone marrow-derived cells that are not T cell precursors influence the maturation environment in the thymus of otherwise normal BB-DP T cell precursors

  9. Hydrogels from feather keratin show higher viscoelastic properties and cell proliferation than those from hair and wool keratins.

    Science.gov (United States)

    Esparza, Yussef; Bandara, Nandika; Ullah, Aman; Wu, Jianping

    2018-09-01

    Hydrogel prepared from keratin shows potential applications in tissue engineering. However, the importance of the keratin sources has not been considered. The objectives of this study were to characterize and compare the rheological (storage modulus), physical (porosity, pore size, swelling capacity, and water contact angle) and in vitro cell compatibility of hydrogel scaffolds prepared from various keratin sources. Keratins were characterized by means of their molecular weight, amino acid composition, thermal and conformational properties. Hydrogels from chicken feather keratins demonstrated substantially higher storage modulus (G') than hair and wool keratin hydrogels. However, higher swelling capacity (>3000%) was determined in hair and wool over feather keratin (1500%) hydrogels. Our results suggest that small molecular weight and β-sheet conformation of feather keratin (~10 kDa) facilitated the self-assembly of rigid hydrogels through disulfide bond re-oxidation. Whereas, high molecular weight (10-75 kDa) stretchable α-helix conformation in hair and wool keratins resulted in weaker hydrogels. The cell cultures using fibroblasts showed the highest proliferation rate on chicken feather keratin hydrogel scaffolds. After 15 days of culture, partial breakdown of keratin fibers was observed. Results indicate that stiffer avian keratins can be used to fabricate more mechanically robust biomaterials than mammalian keratins. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Hair Loss Myths.

    Science.gov (United States)

    DiMarco, Gabriella; McMichael, Amy

    2017-07-01

    INTRODUCTION: Hair loss is a common complaint seen in dermatology clinics. From frustration and attempts at self-help, patients with hair loss may present to the dermatologist with false beliefs, or myths, about the causes of their condition and what treatments are effective. METHODS: We identified 12 common myths about hair loss, categorized as myths about minoxidil treatment, vitamin and mineral supplements, natural topical treatments, and hair care practices. We performed a PubMed search to find evidence to support or refute each myth. RESULTS: We found that there is little evidence to support many of these common hair loss myths. In some cases, randomized controlled trials have investigated the effects of particular therapies and point to the effectiveness of certain hair loss treatments. DISCUSSION: In many cases, there have not been sufficient randomized controlled trials to evaluate the effect of different therapies and hair care practices on hair loss. It is best to guide patients toward treatments with a long track record of efficacy and away from those where little is known scientifically. J Drugs Dermatol. 2017;16(7):690-694..

  11. Ethnic hair care products may increase false positives in hair drug testing.

    Science.gov (United States)

    Kidwell, David A; Smith, Frederick P; Shepherd, Arica R

    2015-12-01

    The question of why different races appear more susceptible to hair contamination by external drugs remains controversial. This research studied susceptibility of head hair to external cocaine and methamphetamine when hair products have been applied. Three different chemical classes of ethnic hair products were applied to Caucasian, Asian, and African hair. Some products increased the methamphetamine and cocaine concentrations in all hair types. A unique finding of this research is that certain ethnic hair products can replace moisture as a diffusion medium, thereby increasing the susceptibility to contamination over 100-fold compared to petroleum-based products. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Cow placenta extract promotes murine hair growth through enhancing the insulin - like growth factor-1

    Directory of Open Access Journals (Sweden)

    Dongliang Zhang

    2011-01-01

    Full Text Available Background: Hair loss is seen as an irreversible process. Most research concentrates on how to elongate the anagen, reduce the negative factors of obstructing hair growth and improve the hair number and size. Aim: In our experiment, we tried to prove that the cow placenta extract can promote hair growth by elongating hair shaft and increasing hair follicle number. Materials and Methods: Cow placenta extract (CPE, water and minoxidil applied separately on the back of depilated B57CL/6 mice for the case, negative and positive control respectively. We checked the proliferation of cells which are resident in hair sheath, and the expression of a few growth factors which stimulate hair growth. Results: Result shows that placenta extract more efficiently accelerates cell division and growth factor expression, by raising the insulin-like growth factor (IGF-1 mRNA and protein level to increase HF size and hair length. Conclusions: The extract is not a purified product; so, it is less effective than minoxidil, which is approved by the US FDA for the treatment of male pattern baldness. If refinement is done, the placenta extract would be a good candidate medicine for hair loss.

  13. Hair loss in women: medical and cosmetic approaches to increase scalp hair fullness.

    Science.gov (United States)

    Sinclair, R; Patel, M; Dawson, T L; Yazdabadi, A; Yip, L; Perez, A; Rufaut, N W

    2011-12-01

    Androgenetic alopecia affects both men and women. In men it produces male pattern hair loss with bitemporal recession and vertex baldness. In women it produces female pattern hair loss (FPHL) with diffuse alopecia over the mid-frontal scalp. FPHL occurs as a result of nonuniform hair follicle miniaturization within follicular units. Diffuse alopecia is produced by a reduction in the number of terminal fibres per follicular unit. Baldness occurs only when all hairs within the follicular units are miniaturized and is a relatively late event in women. The concepts of follicular units and primary and secondary hair follicles within follicular units are well established in comparative mammalian studies, particularly in sheep. However, discovery of these structures in the human scalp hair and investigation of the changes in follicular unit anatomy during the development of androgenetic alopecia have provided a clearer understanding of the early stages of androgenetic alopecia and how the male and female patterns of hair loss are related. FPHL is the most common cause of alopecia in women and approximately one-third of adult caucasian women experience hair loss. The impact of FPHL is predominantly psychological. While men anticipate age-related hair loss, hair loss in women is usually unexpected and unwelcome at any age. Treatment options to arrest hair loss progression and stimulate partial hair regrowth for FPHL include the androgen receptor antagonists spironolactone and cyproterone acetate, the 5α-reductase inhibitor finasteride and the androgen-independent hair growth stimulator minoxidil. These treatments appear to work best when initiated early. Hair transplantation should be considered in advanced FPHL that is resistant to medical treatments. Hair transplantation requires well-preserved hair growth over the occipital donor area. The psychological impact of FPHL may also be reduced by cosmetic products that improve the appearance of the hair. These agents work to

  14. [Hormones and hair growth].

    Science.gov (United States)

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  15. Hair cosmetics: dyes.

    Science.gov (United States)

    Guerra-Tapia, A; Gonzalez-Guerra, E

    2014-11-01

    Hair plays a significant role in body image, and its appearance can be changed relatively easily without resort to surgical procedures. Cosmetics and techniques have therefore been used to change hair appearance since time immemorial. The cosmetics industry has developed efficient products that can be used on healthy hair or act on concomitant diseases of the hair and scalp. Dyes embellish the hair by bleaching or coloring it briefly, for temporary periods of longer duration, or permanently, depending on the composition of a dye (oxidative or nonoxidative) and its degree of penetration of the hair shaft. The dermatologist's knowledge of dyes, their use, and their possible side effects (contact eczema, cancer, increased porosity, brittleness) can extend to an understanding of cosmetic resources that also treat hair and scalp conditions. Copyright © 2013 Elsevier España, S.L.U. and AEDV. All rights reserved.

  16. Rat hair follicle dermal papillae have an extracellular matrix containing basement membrane components

    DEFF Research Database (Denmark)

    Couchman, J R

    1986-01-01

    , to be replaced by synthesis of other components including type I and III collagens. It seems likely therefore that the dermal papilla cells in vivo synthesize a basement membrane type of extracellular matrix, although a contribution from epithelial, and in some cases capillary endothelial, cells cannot be ruled......Dermal papillae are small mesenchymally derived zones at the bases of hair follicles which have an important role in hair morphogenesis in the embryo and control of the hair growth cycle in postnatal mammals. The cells of the papilla are enmeshed in a dense extracellular matrix which undergoes...... extensive changes in concert with the hair cycle. Here it is shown that this matrix in anagen pelage follicles of postnatal rats contains an abundance of basement membrane components rather than dermal components such as interstitial collagens. In particular, type IV collagen, laminin, and basement membrane...

  17. Hair and bare skin discrimination for laser-assisted hair removal systems.

    Science.gov (United States)

    Cayir, Sercan; Yetik, Imam Samil

    2017-07-01

    Laser-assisted hair removal devices aim to remove body hair permanently. In most cases, these devices irradiate the whole area of the skin with a homogenous power density. Thus, a significant portion of the skin, where hair is not present, is burnt unnecessarily causing health risks. Therefore, methods that can distinguish hair regions automatically would be very helpful avoiding these unnecessary applications of laser. This study proposes a new system of algorithms to detect hair regions with the help of a digital camera. Unlike previous limited number of studies, our methods are very fast allowing for real-time application. Proposed methods are based on certain features derived from histograms of hair and skin regions. We compare our algorithm with competing methods in terms of localization performance and computation time and show that a much faster real-time accurate localization of hair regions is possible with the proposed method. Our results show that the algorithm we have developed is extremely fast (around 45 milliseconds) allowing for real-time application with high accuracy hair localization ( 96.48 %).

  18. Transplantation of an LGR6+ Epithelial Stem Cell-Enriched Scaffold for Repair of Full-Thickness Soft-Tissue Defects: The In Vitro Development of Polarized Hair-Bearing Skin.

    Science.gov (United States)

    Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W

    2016-02-01

    Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.

  19. Hair and stress: A pilot study of hair and cytokine balance alteration in healthy young women under major exam stress.

    Directory of Open Access Journals (Sweden)

    Eva M J Peters

    Full Text Available Mouse models show that experimental stress mimicking prolonged life-stress exposure enhances neurogenic inflammation, induces adaptive immunity cytokine-imbalance characterized by a shift to Type 1 T-helper cell cytokines and increases apoptosis of epithelial cells. This affects hair growth in otherwise healthy animals. In this study, we investigate whether a prolonged naturalistic life-stress exposure affects cytokine balance and hair parameters in healthy humans. 33 (18 exam, 15 comparison female medical students with comparable sociobiological status were analyzed during a stressful final examination period, at three points in time (T 12 weeks apart. T1 was before start of the learning period, T2 between the three-day written exam and an oral examination, and T3 after a 12 week rest and recovery from the stress of the examination period. Assessments included: self-reported distress and coping strategies (Perceived Stress Questionnaire [PSQ], Trier Inventory for the Assessment of Chronic Stress [TICS], COPE, cytokines in supernatants of stimulated peripheral blood mononucleocytes (PBMCs, and trichogram (hair cycle and pigmentation analysis. Comparison between students participating in the final medical exam at T2 and non-exam students, revealed significantly higher stress perception in exam students. Time-wise comparison revealed that stress level, TH1/TH2 cytokine balance and hair parameters changed significantly from T1 to T2 in the exam group, but not the control. However, no group differences were found for cytokine balance or hair parameters at T2. The study concludes that in humans, naturalistic stress, as perceived during participation in a major medical exam, has the potential to shift the immune response to TH1 and transiently hamper hair growth, but these changes stay within a physiological range. Findings are instructive for patients suffering from hair loss in times of high stress. Replication in larger and more diverse sample

  20. Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: an advantageous alternative to ES and iPS cells.

    Science.gov (United States)

    Amoh, Yasuyuki; Kanoh, Maho; Niiyama, Shiro; Hamada, Yuko; Kawahara, Katsumasa; Sato, Yuichi; Hoffman, Robert M; Katsuoka, Kensei

    2009-08-01

    The optimal source of stem cells for regenerative medicine is a major question. Embryonic stem (ES) cells have shown promise for pluripotency but have ethical issues and potential to form teratomas. Pluripotent stem cells have been produced from skin cells by either viral-, plasmid- or transposon-mediated gene transfer. These stem cells have been termed induced pluripotent stem cells or iPS cells. iPS cells may also have malignant potential and are inefficiently produced. Embryonic stem cells may not be suited for individualized therapy, since they can undergo immunologic rejection. To address these fundamental problems, our group is developing hair follicle pluripotent stem (hfPS) cells. Our previous studies have shown that mouse hfPS cells can differentiate to neurons, glial cells in vitro, and other cell types, and can promote nerve and spinal cord regeneration in vivo. hfPS cells are located above the hair follicle bulge in what we have termed the hfPS cell area (hfPSA) and are nestin positive and keratin 15 (K-15) negative. Human hfPS cells can also differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. In the present study, human hfPS cells were transplanted in the severed sciatic nerve of the mouse where they differentiated into glial fibrillary-acidic-protein (GFAP)-positive Schwann cells and promoted the recovery of pre-existing axons, leading to nerve generation. The regenerated nerve recovered function and, upon electrical stimulation, contracted the gastrocnemius muscle. The hfPS cells can be readily isolated from the human scalp, thereby providing an accessible, autologous and safe source of stem cells for regenerative medicine that have important advantages over ES or iPS cells. (c) 2009 Wiley-Liss, Inc.

  1. Artificial Cochlear Sensory Epithelium with Functions of Outer Hair Cells Mimicked Using Feedback Electrical Stimuli

    Directory of Open Access Journals (Sweden)

    Tetsuro Tsuji

    2018-05-01

    Full Text Available We report a novel vibration control technique of an artificial auditory cochlear epithelium that mimics the function of outer hair cells in the organ of Corti. The proposed piezoelectric and trapezoidal membrane not only has the acoustic/electric conversion and frequency selectivity of the previous device developed mainly by one of the authors and colleagues, but also has a function to control local vibration according to sound stimuli. Vibration control is achieved by applying local electrical stimuli to patterned electrodes on an epithelium made using micro-electro-mechanical system technology. By choosing appropriate phase differences between sound and electrical stimuli, it is shown that it is possible to both amplify and dampen membrane vibration, realizing better control of the response of the artificial cochlea. To be more specific, amplification and damping are achieved when the phase difference between the membrane vibration by sound stimuli and electrical stimuli is zero and π , respectively. We also demonstrate that the developed control system responds automatically to a change in sound frequency. The proposed technique can be applied to mimic the nonlinear response of the outer hair cells in a cochlea, and to realize a high-quality human auditory system.

  2. The roles of USH1 proteins and PDZ domain-containing USH proteins in USH2 complex integrity in cochlear hair cells.

    Science.gov (United States)

    Zou, Junhuang; Chen, Qian; Almishaal, Ali; Mathur, Pranav Dinesh; Zheng, Tihua; Tian, Cong; Zheng, Qing Y; Yang, Jun

    2017-02-01

    Usher syndrome (USH) is the most common cause of inherited deaf-blindness, manifested as USH1, USH2 and USH3 clinical types. The protein products of USH2 causative and modifier genes, USH2A, ADGRV1, WHRN and PDZD7, interact to assemble a multiprotein complex at the ankle link region of the mechanosensitive stereociliary bundle in hair cells. Defects in this complex cause stereociliary bundle disorganization and hearing loss. The four USH2 proteins also interact in vitro with USH1 proteins including myosin VIIa, USH1G (SANS), CIB2 and harmonin. However, it is unclear whether the interactions between USH1 and USH2 proteins occur in vivo and whether USH1 proteins play a role in USH2 complex assembly in hair cells. In this study, we identified a novel interaction between myosin VIIa and PDZD7 by FLAG pull-down assay. We further investigated the role of the above-mentioned four USH1 proteins in the cochlear USH2 complex assembly using USH1 mutant mice. We showed that only myosin VIIa is indispensable for USH2 complex assembly at ankle links, indicating the potential transport and/or anchoring role of myosin VIIa for USH2 proteins in hair cells. However, myosin VIIa is not required for USH2 complex assembly in photoreceptors. We further showed that, while PDZ protein harmonin is not involved, its paralogous USH2 proteins, PDZD7 and whirlin, function synergistically in USH2 complex assembly in cochlear hair cells. In summary, our studies provide novel insight into the functional relationship between USH1 and USH2 proteins in the cochlea and the retina as well as the disease mechanisms underlying USH1 and USH2. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Management of hair loss diseases

    Directory of Open Access Journals (Sweden)

    Manabu Ohyama

    2010-12-01

    Full Text Available The treatment of hair loss diseases is sometimes difficult because of insufficient efficacy and limited options. However, recent advances in understanding of the pathophysiology and development of new remedies have improved the treatment of refractory hair loss conditions. In this article, an update on the management of hair loss diseases is provided, especially focusing on recently reported therapeutic approaches for alopecia areata (AA. An accurate diagnosis is indispensable to optimize treatment. Dry dermoscopy represents new diagnostic techniques, which could enable the differentiation of barely indistinguishable alopecias, e.g. AA and trichotillomania. An organized scalp biopsy adopting both vertical and transverse sectioning approaches also provides a deep insight into the pathophysiology of ongoing alopecias. Among various treatments for AA, intraregional corticosteroid and contact immunotherapy have been recognized as first-line therapies. However, some AA cases are refractory to both treatments. Recent studies have demonstrated the efficacy of pulse corticosteroid therapy or the combination of oral psoralen ultraviolet A therapy and systemic corticosteroids for severe AA. Previous clinical observations have suggested the potential role of antihistamines as supportive medications for AA. Experimental evaluation using AA model mice further supports their effectiveness in AA treatment. Finasteride opens up new possibilities for the treatment of androgenetic alopecia. For androgenetic alopecia patients refractory to finasteride, the combination of finasteride with topical minoxidil or the administration of dutasteride, another 5 alpha-reductase inhibitor, may provide better outcomes. Scarring alopecia is the most difficult form of hair loss disorder to treat. The bulge stem cell area is destroyed by unnecessary immune reactions with resultant permanent loss of hair follicle structures in scarring alopecia. Currently, treatment options for

  4. Cigarette Smoke-Induced Cell Death Causes Persistent Olfactory Dysfunction in Aged Mice

    Directory of Open Access Journals (Sweden)

    Rumi Ueha

    2018-06-01

    Full Text Available Introduction: Exposure to cigarette smoke is a cause of olfactory dysfunction. We previously reported that in young mice, cigarette smoke damaged olfactory progenitors and decreased mature olfactory receptor neurons (ORNs, then, mature ORNs gradually recovered after smoking cessation. However, in aged populations, the target cells in ORNs by cigarette smoke, the underlying molecular mechanisms by which cigarette smoke impairs the regenerative ORNs, and the degree of ORN regeneration after smoking cessation remain unclear.Objectives: To explore the effects of cigarette smoke on the ORN cell system using an aged mouse model of smoking, and to investigate the extent to which smoke-induced damage to ORNs recovers following cessation of exposure to cigarette smoke in aged mice.Methods: We intranasally administered a cigarette smoke solution (CSS to 16-month-old male mice over 24 days, then examined ORN existence, cell survival, changes of inflammatory cytokines in the olfactory epithelium (OE, and olfaction using histological analyses, gene analyses and olfactory habituation/dishabituation tests.Results: CSS administration reduced the number of mature ORNs in the OE and induced olfactory dysfunction. These changes coincided with an increase in the number of apoptotic cells and Tumor necrosis factor (TNF expression and a decrease in Il6 expression. Notably, the reduction in mature ORNs did not recover even on day 28 after cessation of treatment with CSS, resulting in persistent olfactory dysfunction.Conclusion: In aged mice, by increasing ORN death, CSS exposure could eventually overwhelm the regenerative capacity of the OE, resulting in continued reduction in the number of mature ORNs and olfactory dysfunction.

  5. Effect of outer hair cell piezoelectricity on high-frequency receptor potentials.

    Science.gov (United States)

    Spector, Alexander A; Brownell, William E; Popel, Aleksander S

    2003-01-01

    The low-pass voltage response of outer hair cells predicted by conventional equivalent circuit analysis would preclude the active force production at high frequencies. We have found that the band pass characteristics can be improved by introducing the piezoelectric properties of the cell wall. In contrast to the conventional analysis, the receptor potential does not tend to zero and at any frequency is greater than a limiting value. In addition, the phase shift between the transduction current and receptor potential tends to zero. The piezoelectric properties cause an additional, strain-dependent, displacement current in the cell wall. The wall strain is estimated on the basis of a model of the cell deformation in the organ of Corti. The limiting value of the receptor potential depends on the ratio of a parameter determined by the piezoelectric coefficients and the strain to the membrane capacitance. In short cells, we have found that for the low-frequency value of about 2-3 mV and the strain level of 0.1% the receptor potential can reach 0.4 mV throughout the whole frequency range. In long cells, we have found that the effect of the piezoelectric properties is much weaker. These results are consistent with major features of the cochlear amplifier.

  6. Hair Pulling (Trichotillomania)

    Science.gov (United States)

    ... for Families - Vietnamese Spanish Facts for Families Guide Hair Pulling (Trichotillomania) No. 96; Reviewed July 2013 It ... for children and adolescents to play with their hair. However, frequent or obsessive hair pulling can lead ...

  7. Cadherin-23 may be dynamic in hair bundles of the model sea anemone Nematostella vectensis.

    Directory of Open Access Journals (Sweden)

    Pei-Ciao Tang

    Full Text Available Cadherin 23 (CDH23, a component of tip links in hair cells of vertebrate animals, is essential to mechanotransduction by hair cells in the inner ear. A homolog of CDH23 occurs in hair bundles of sea anemones. Anemone hair bundles are located on the tentacles where they detect the swimming movements of nearby prey. The anemone CDH23 is predicted to be a large polypeptide featuring a short exoplasmic C-terminal domain that is unique to sea anemones. Experimentally masking this domain with antibodies or mimicking this domain with free peptide rapidly disrupts mechanotransduction and morphology of anemone hair bundles. The loss of normal morphology is accompanied, or followed by a decrease in F-actin in stereocilia of the hair bundles. These effects were observed at very low concentrations of the reagents, 0.1-10 nM, and within minutes of exposure. The results presented herein suggest that: (1 the interaction between CDH23 and molecular partners on stereocilia of hair bundles is dynamic and; (2 the interaction is crucial for normal mechanotransduction and morphology of hair bundles.

  8. Preorchiectomy Leydig Cell Dysfunction in Patients With Testicular Cancer

    DEFF Research Database (Denmark)

    Bandak, Mikkel; Jørgensen, Niels; Juul, Anders

    2017-01-01

    BACKGROUND: Little is known about preorchiectomy Leydig cell function in patients with testicular germ cell cancer (TGCC). The aim was to estimate the prevalence of preorchiectomy Leydig cell dysfunction and evaluate factors associated with this condition in a cohort of patients with TGCC. PATIENTS...... AND METHODS: We evaluated luteinizing hormone (LH), total testosterone (TT), calculated free T (cFT), estradiol, and sex hormone-binding globulin (SHBG) preorchiectomy in 561 patients with TGCC and compared with 561 healthy controls. We calculated TT/LH and cFT/LH ratios and constructed bivariate charts of TT...

  9. Consumer available permanent hair dye products cause major allergic immune activation in an animal model

    DEFF Research Database (Denmark)

    Bonefeld, C M; Larsen, J M; Dabelsteen, S

    2010-01-01

    Background p-Phenylenediamine (PPD) and related substances are ingredients of more than two-thirds of oxidative (permanent) hair dyes currently used. Although PPD is a potent skin sensitizer in predictive assays, the extent to which permanent hair dyes sensitize humans has been questioned due...... to the in-use conditions, e.g. the presence of couplers in the hair dye gel and rapid oxidation using a developer. Objectives To study the skin sensitizing potential of permanent hair dyes in mice. Methods Two different permanent hair dye products containing PPD were studied in CBA mice using a modified......-cell proliferation within the draining lymph nodes. Treatment with the mixture induced at least 20% more skin inflammation, cytokine production and CD4+ T-cell activation compared with the colour gel alone. Conclusions Consumer available PPD-containing permanent hair dyes can be potent and rapid immune activators...

  10. A Study on Scalp Hair Health and Hair Care Practices among Malaysian Medical Students.

    Science.gov (United States)

    Nayak, B Satheesha; Ann, Chua Yuet; Azhar, Azeldeen Bin; Ling, Emily Chan Su; Yen, Wong Hui; Aithal, P Ashwini

    2017-01-01

    Scalp care is essential because it determines the health and condition of the hair and prevents the diseases of scalp and hair. The objectives of our study were to correlate race and hair types, to determine the awareness of hair care among Malaysian medical students, and to distinguish the factors that affect the health of hair and scalp. It was a cross-sectional study wherein validated questionnaires were given to 240 medical undergraduate students who belonged to three ethnic races of Malaysia, i.e., Chinese, Malay, and Malaysian Indians after their informed consent. The results were then analyzed using percentage statistics. Chinese students had comparatively healthier scalp without dandruff. Most Chinese and Indians had silky type of hair while Malay had dry, rough hair. Chinese and Indians colored their hair and used various styling methods; while among the Malays, this percentage was very less. Regarding hair care practices, males used only shampoo and females used shampoo and conditioner for hair wash. Students also faced dietary and examination-related stress. Results indicate that there exist morphological differences in hair among the studied population. Since most students color their hair and employ various hairstyling methods, they should be educated regarding best hair care practices to improve their scalp hair condition and health.

  11. Nitrate induction of root hair density is mediated by TGA1/TGA4 and CPC transcription factors in Arabidopsis thaliana.

    Science.gov (United States)

    Canales, Javier; Contreras-López, Orlando; Álvarez, José M; Gutiérrez, Rodrigo A

    2017-10-01

    Root hairs are specialized cells that are important for nutrient uptake. It is well established that nutrients such as phosphate have a great influence on root hair development in many plant species. Here we investigated the role of nitrate on root hair development at a physiological and molecular level. We showed that nitrate increases root hair density in Arabidopsis thaliana. We found that two different root hair defective mutants have significantly less nitrate than wild-type plants, suggesting that in A. thaliana root hairs have an important role in the capacity to acquire nitrate. Nitrate reductase-null mutants exhibited nitrate-dependent root hair phenotypes comparable with wild-type plants, indicating that nitrate is the signal that leads to increased formation of root hairs. We examined the role of two key regulators of root hair cell fate, CPC and WER, in response to nitrate treatments. Phenotypic analyses of these mutants showed that CPC is essential for nitrate-induced responses of root hair development. Moreover, we showed that NRT1.1 and TGA1/TGA4 are required for pathways that induce root hair development by suppression of longitudinal elongation of trichoblast cells in response to nitrate treatments. Our results prompted a model where nitrate signaling via TGA1/TGA4 directly regulates the CPC root hair cell fate specification gene to increase formation of root hairs in A. thaliana. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets

    NARCIS (Netherlands)

    Dijkstra, Marcel; van Baar, J.J.J.; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; de Boer, J.H.; Krijnen, Gijsbertus J.M.

    2005-01-01

    This paper presents the modelling, design, fabrication and characterization of flow sensors based on the wind-receptor hairs of crickets. Cricket sensory hairs are highly sensitive to drag-forces exerted on the hair shaft. Artificial sensory hairs have been realized in SU-8 on suspended SixNy

  13. Serially cultured keratinocytes from human scalp hair follicles: a tool for cytogenetic studies.

    Science.gov (United States)

    Weterings, P J; Roelofs, H M; Jansen, B A; Vermorken, A J

    1983-01-01

    Keratinocytes originating from adult human hair follicles, the most convenient biopsy tissue, can be serially cultured using a combination of two techniques. Primary cultures are established using plucked scalp hair follicles and the bovine eye lens capsule as a growth substrate. Subsequently, cells from these cultures are serially cultivated in the presence of irradiated 3T3 cells as feeders. By this combination of techniques many keratinocytes can be generated from one single hair follicle. These cultures, appropriately treated with colchicine, can provide an adequate number of metaphases suitable for chromosome studies.

  14. Expression of basement membrane components through morphological changes in the hair growth cycle

    DEFF Research Database (Denmark)

    Couchman, J R; Gibson, W T

    1985-01-01

    The amount and distribution of fibronectin associated with hair follicles was found to vary during the hair growth cycle in the rat. Immunocytochemical staining of follicles in mid-late anagen (the growth stage) revealed the presence of fibronectin in the dermal papilla matrix, in the basement...... membrane separating this from the epithelial cells of the hair bulb, and in the basement membrane and connective tissue sheath which underly the cells of the outer root sheath. Early in catagen, the transitional stage, staining of the dermal papilla matrix disappeared. Fibronectin persisted in the basement...

  15. Microscopic identification of the remnant hair or feather of five animal drug components in Shenrongbian pill

    Directory of Open Access Journals (Sweden)

    Tingguo Kang

    2012-06-01

    Full Text Available A comparative study was performed to identify the microscopic characteristics of hair or feather in the five animal drug components contained in Shenrongbian pill. Penis et Testis Canis is 40±0.07 in the medulla index, with long circular, banana or triangular circular shaped medulla cells arranged in one line or network, and the hair cuticle is in imbrication (d, m and flat wave (p shape. Penis et Testis Equi is 66±0.10 in the medulla index, with ellipse, spindle or long strip-shaped medulla cells arranged in network, and the hair cuticle is in flat wave shape. Penis et Testis Bovis is 67±0.05 in the medulla index, with rectangle, spindle or polygon-shaped medulla cells arranged in ladder or network form, and the hair cuticle is in flat wave shape. Penis et Testis Mustelae is 29±0.05 in the medulla index, with ellipse-like, square-like or circular shaped medulla cells arranged in one line generally, and the hair cuticle is in acuminate (d, m, imbrication (m,p and slightly flat wave (p shape. Musculus et Bonis Passeris is 24±0.05 in the medulla index, with bamboo joint-shaped barbs and unclear medulla cells, without hair cuticle.

  16. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes

    DEFF Research Database (Denmark)

    Brakebusch, C; Grose, R; Quondamatteo, F

    2000-01-01

    developed severe hair loss due to a reduced proliferation of hair matrix cells and severe hair follicle abnormalities. Eventually, the malformed hair follicles were removed by infiltrating macrophages. The epidermis of the back skin became hyperthickened, the basal keratinocytes showed reduced expression......, the integrity of the basement membrane surrounding the beta 1-deficient hair follicle was not affected. Finally, the dermis became fibrotic. These results demonstrate an important role of beta 1 integrins in hair follicle morphogenesis, in the processing of basement membrane components, in the maintenance...

  17. Exposure to non-ionizing electromagnetic fields emitted from mobile phones induced DNA damage in human ear canal hair follicle cells.

    Science.gov (United States)

    Akdag, Mehmet; Dasdag, Suleyman; Canturk, Fazile; Akdag, Mehmet Zulkuf

    2018-01-01

    The aim of this study was to investigate effect of radiofrequency radiation (RFR) emitted from mobile phones on DNA damage in follicle cells of hair in the ear canal. The study was carried out on 56 men (age range: 30-60 years old)in four treatment groups with n = 14 in each group. The groups were defined as follows: people who did not use a mobile phone (Control), people use mobile phones for 0-30 min/day (second group), people use mobile phones for 30-60 min/day (third group) and people use mobile phones for more than 60 min/day (fourth group). Ear canal hair follicle cells taken from the subjects were analyzed by the Comet Assay to determine DNA damages. The Comet Assay parameters measured were head length, tail length, comet length, percentage of head DNA, tail DNA percentage, tail moment, and Olive tail moment. Results of the study showed that DNA damage indicators were higher in the RFR exposure groups than in the control subjects. In addition, DNA damage increased with the daily duration of exposure. In conclusion, RFR emitted from mobile phones has a potential to produce DNA damage in follicle cells of hair in the ear canal. Therefore, mobile phone users have to pay more attention when using wireless phones.

  18. Aryl hydrocarbon receptor overexpression in miniaturized follicles in female pattern hair loss.

    Science.gov (United States)

    Ramos, Paulo Müller; Brianezi, Gabrielli; Martins, Ana Carolina Pereira; Silva, Márcia Guimarães da; Marques, Mariângela Esther Alencar; Miot, Hélio Amante

    2017-01-01

    The etiopathogenesis of female pattern hair loss is still poorly understood. In addition to genetic and hormonal elements, environmental factors could be involved. The aryl hydrocarbon receptor is expressed in keratinocytes and can be activated by environmental pollutants leading to alterations in the cell cycle, inflammation, and apoptosis. Here we demonstrate the overexpression of nuclear aryl hydrocarbon receptors in miniaturized hair follicles in female pattern hair loss.

  19. Oestrogen receptor evaluation in Pomeranian dogs with hair cycle arrest (alopecia X) on melatonin supplementation.

    Science.gov (United States)

    Frank, Linda A; Donnell, Robert L; Kania, Stephen A

    2006-08-01

    The role of oestrogen receptors in dogs with hair cycle arrest (alopecia X) was investigated by immunohistochemistry. The purpose of this study was to determine if hair regrowth in dogs with hair cycle arrest treated with melatonin was associated with a decrease in follicular oestrogen receptors. Fifteen Pomeranians (excluding intact females) with hair cycle arrest were enrolled. Two biopsies were obtained from alopecic areas of the trunk before and after 3 months on melatonin. Haematoxylin and eosin-stained tissues were examined and oestrogen receptor-alpha was demonstrated immunohistochemically. Common histopathological findings included hyperkeratosis, follicular keratosis, excessive tricholemmal keratinization (flame follicles), thin epidermis, few small anagen bulbs, epidermal pigmentation and melanin aggregates within follicular keratin. Melanin aggregates within basal cells and hair were an occasional finding. After 3 months, 40% (six) dogs had mild to moderate hair regrowth. Biopsies from six dogs showed histological evidence of an increase in anagen hairs and eight dogs had a decrease in epidermal pigmentation. Moderate to marked staining intensity of oestrogen receptor-alpha was noted in all sebaceous gland basal cells, all small hair bulbs and follicular epithelium of telogen hairs. There was no oestrogen receptor-alpha staining of nuclei within the epidermis, apocrine glands or dermal fibroblasts. Large anagen hair bulbs had minimal to no oestrogen receptor staining. Hair regrowth was not associated with a change in oestrogen receptor-alpha staining.

  20. Activation of Arabidopsis seed hair development by cotton fiber-related genes.

    Directory of Open Access Journals (Sweden)

    Xueying Guan

    Full Text Available Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1 that is negatively regulated by TRIPTYCHON (TRY. Using laser capture microdissection and microarray analysis, we found that many putative MYB transcription factor and structural protein genes were differentially expressed in fiber and non-fiber tissues. Gossypium hirsutum MYB2 (GhMYB2, a putative GL1 homolog, and its downstream gene, GhRDL1, were highly expressed during fiber cell initiation. GhRDL1, a fiber-related gene with unknown function, was predominately localized around cell walls in stems, sepals, seed coats, and pollen grains. GFP:GhRDL1 and GhMYB2:YFP were co-localized in the nuclei of ectopic trichomes in siliques. Overexpressing GhRDL1 or GhMYB2 in A. thaliana Columbia-0 (Col-0 activated fiber-like hair production in 4-6% of seeds and had on obvious effects on trichome development in leaves or siliques. Co-overexpressing GhRDL1 and GhMYB2 in A. thaliana Col-0 plants increased hair formation in ∼8% of seeds. Overexpressing both GhRDL1 and GhMYB2 in A. thaliana Col-0 try mutant plants produced seed hair in ∼10% of seeds as well as dense trichomes inside and outside siliques, suggesting synergistic effects of GhRDL1 and GhMYB2 with try on development of trichomes inside and outside of siliques and seed hair in A. thaliana. These data suggest that a different combination of factors is required for the full development of trichomes (hairs in leaves, siliques, and seeds. A. thaliana can be developed as a model a system for discovering additional genes that control seed hair development in general and cotton fiber in particular.

  1. Hair restoration.

    Science.gov (United States)

    Rawnsley, Jeffrey D

    2008-08-01

    The impact of male hair loss as a personal and social marker of aging is tremendous and its persistence as a human concern throughout recorded history places it in the forefront of male concern about the physical signs of aging. Restoration of the frontal hairline has the visual effect of re-establishing facial symmetry and turning back time. Follicular unit transplantation has revolutionized hair restoration, with its focus on redistributing large numbers of genetically stable hair to balding scalp in a natural distribution. Follicular unit hair restoration surgery is a powerful tool for the facial plastic surgeon in male aesthetic facial rejuvenation because it offers high-impact, natural-appearing results with minimal downtime and risk for adverse outcome.

  2. Propionyl-L-Carnitine Enhances Wound Healing and Counteracts Microvascular Endothelial Cell Dysfunction.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Scioli

    Full Text Available Impaired wound healing represents a high cost for health care systems. Endothelial dysfunction characterizes dermal microangiopathy and contributes to delayed wound healing and chronic ulcers. Endothelial dysfunction impairs cutaneous microvascular blood flow by inducing an imbalance between vasorelaxation and vasoconstriction as a consequence of reduced nitric oxide (NO production and the increase of oxidative stress and inflammation. Propionyl-L-carnitine (PLC is a natural derivative of carnitine that has been reported to ameliorate post-ischemic blood flow recovery.We investigated the effects of PLC in rat skin flap and cutaneous wound healing. A daily oral PLC treatment improved skin flap viability and associated with reactive oxygen species (ROS reduction, inducible nitric oxide synthase (iNOS and NO up-regulation, accelerated wound healing and increased capillary density, likely favoring dermal angiogenesis by up-regulation for iNOS, vascular endothelial growth factor (VEGF, placental growth factor (PlGF and reduction of NADPH-oxidase 4 (Nox4 expression. In serum-deprived human dermal microvascular endothelial cell cultures, PLC ameliorated endothelial dysfunction by increasing iNOS, PlGF, VEGF receptors 1 and 2 expression and NO level. In addition, PLC counteracted serum deprivation-induced impairment of mitochondrial β-oxidation, Nox4 and cellular adhesion molecule (CAM expression, ROS generation and leukocyte adhesion. Moreover, dermal microvascular endothelial cell dysfunction was prevented by Nox4 inhibition. Interestingly, inhibition of β-oxidation counteracted the beneficial effects of PLC on oxidative stress and endothelial dysfunction.PLC treatment improved rat skin flap viability, accelerated wound healing and dermal angiogenesis. The beneficial effects of PLC likely derived from improvement of mitochondrial β-oxidation and reduction of Nox4-mediated oxidative stress and endothelial dysfunction. Antioxidant therapy and

  3. Tumor-Induced CD8+ T-Cell Dysfunction in Lung Cancer Patients

    Directory of Open Access Journals (Sweden)

    Heriberto Prado-Garcia

    2012-01-01

    Full Text Available Lung cancer is the leading cause of cancer deaths worldwide and one of the most common types of cancers. The limited success of chemotherapy and radiotherapy regimes have highlighted the need to develop new therapies like antitumor immunotherapy. CD8+ T-cells represent a major arm of the cell-mediated anti-tumor response and a promising target for developing T-cell-based immunotherapies against lung cancer. Lung tumors, however, have been considered to possess poor immunogenicity; even so, lung tumor-specific CD8+ T-cell clones can be established that possess cytotoxicity against autologous tumor cells. This paper will focus on the alterations induced in CD8+ T-cells by lung cancer. Although memory CD8+ T-cells infiltrate lung tumors, in both tumor-infiltrating lymphocytes (TILs and malignant pleural effusions, these cells are dysfunctional and the effector subset is reduced. We propose that chronic presence of lung tumors induces dysfunctions in CD8+ T-cells and sensitizes them to activation-induced cell death, which may be associated with the poor clinical responses observed in immunotherapeutic trials. Getting a deeper knowledge of the evasion mechanisms lung cancer induce in CD8+ T-cells should lead to further understanding of lung cancer biology, overcome tumor evasion mechanisms, and design improved immunotherapeutic treatments for lung cancer.

  4. Diffuse alopecia areata is associated with intense inflammatory infiltration and CD8+ T cells in hair loss regions and an increase in serum IgE level

    Directory of Open Access Journals (Sweden)

    Ying Zhao

    2012-01-01

    Full Text Available Background: Mechanism leading to an abrupt hair loss in diffuse alopecia areata (AA remains unclear. Aims: To explore the characteristics of diffuse AA and possible factors involved in its pathogenesis. Methods: Clinical and laboratory data of 17 diffuse AA patients and 37 patchy AA patients were analyzed retrospectively. Serum IgE level was evaluated in all diffuse and patchy AA patients, as well as 27 healthy subjects without hair loss to serve as normal control. Univariate analysis was performed using Fisher′s exact test and Wilcoxon rank-sum test. Associations between inflammatory cell infiltration and laboratory values were analyzed using Spearman rank correlation test. Results: The mean age of patients with diffuse AA was 27 years with a mean disease duration of 1.77 months. All of them presented in spring or summer with an acute onset of diffuse hair loss preceded by higher incidence of scalp pruritus. Although no statistically significant difference on the incidence of atopic disease among three groups has been found, serum IgE level in diffuse AA was higher than that in healthy controls, but was comparable to that in patchy AA group. Histopathology of lesional scalp biopsies showed more intense infiltration comprising of mononuclear cells, eosinophils, CD3 + , and CD8 + T cells around hair bulbs in diffuse AA group than in patchy AA group. Moreover, IgE level in diffuse AA patients positively correlated with intensity of infiltration by mononuclear cells, eosinophils, and CD8 + T cells. Conclusions: Hypersensitivity may be involved in pathogenesis of diffuse AA. The acute onset of diffuse AA may be related to intense local inflammatory infiltration of hair loss region and an increase in serum IgE level.

  5. Neuronal differentiation of hair-follicle-bulge-derived stem cells co-cultured with mouse cochlear modiolus explants.

    Directory of Open Access Journals (Sweden)

    Timo Schomann

    Full Text Available Stem-cell-based repair of auditory neurons may represent an attractive therapeutic option to restore sensorineural hearing loss. Hair-follicle-bulge-derived stem cells (HFBSCs are promising candidates for this type of therapy, because they (1 have migratory properties, enabling migration after transplantation, (2 can differentiate into sensory neurons and glial cells, and (3 can easily be harvested in relatively high numbers. However, HFBSCs have never been used for this purpose. We hypothesized that HFBSCs can be used for cell-based repair of the auditory nerve and we have examined their migration and incorporation into cochlear modiolus explants and their subsequent differentiation. Modiolus explants obtained from adult wild-type mice were cultured in the presence of EF1α-copGFP-transduced HFBSCs, constitutively expressing copepod green fluorescent protein (copGFP. Also, modiolus explants without hair cells were co-cultured with DCX-copGFP-transduced HFBSCs, which demonstrate copGFP upon doublecortin expression during neuronal differentiation. Velocity of HFBSC migration towards modiolus explants was calculated, and after two weeks, co-cultures were fixed and processed for immunohistochemical staining. EF1α-copGFP HFBSC migration velocity was fast: 80.5 ± 6.1 μm/h. After arrival in the explant, the cells formed a fascicular pattern and changed their phenotype into an ATOH1-positive neuronal cell type. DCX-copGFP HFBSCs became green-fluorescent after integration into the explants, confirming neuronal differentiation of the cells. These results show that HFBSC-derived neuronal progenitors are migratory and can integrate into cochlear modiolus explants, while adapting their phenotype depending on this micro-environment. Thus, HFBSCs show potential to be employed in cell-based therapies for auditory nerve repair.

  6. Suppression of Cpn10 increases mitochondrial fission and dysfunction in neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    So Jung Park

    Full Text Available To date, several regulatory proteins involved in mitochondrial dynamics have been identified. However, the precise mechanism coordinating these complex processes remains unclear. Mitochondrial chaperones regulate mitochondrial function and structure. Chaperonin 10 (Cpn10 interacts with heat shock protein 60 (HSP60 and functions as a co-chaperone. In this study, we found that down-regulation of Cpn10 highly promoted mitochondrial fragmentation in SK-N-MC and SH-SY5Y neuroblastoma cells. Both genetic and chemical inhibition of Drp1 suppressed the mitochondrial fragmentation induced by Cpn10 reduction. Reactive oxygen species (ROS generation in 3-NP-treated cells was markedly enhanced by Cpn10 knock down. Depletion of Cpn10 synergistically increased cell death in response to 3-NP treatment. Furthermore, inhibition of Drp1 recovered Cpn10-mediated mitochondrial dysfunction in 3-NP-treated cells. Moreover, an ROS scavenger suppressed cell death mediated by Cpn10 knockdown in 3-NP-treated cells. Taken together, these results showed that down-regulation of Cpn10 increased mitochondrial fragmentation and potentiated 3-NP-mediated mitochondrial dysfunction in neuroblastoma cells.

  7. Viking Age Hair

    Directory of Open Access Journals (Sweden)

    Elisabeth Arwill-Nordbladh

    2016-11-01

    Full Text Available A study of hair in the Viking Age. The article draws on medieval Icelandic and Scandinavian texts for interpretation. Further information is taken from pictoral representations of viking hair styles and decoration, hairdressing artefacts, figurines and actual remains of hair.

  8. LGR4 and LGR5 regulate hair cell differentiation in the sensory epithelium of the developing mouse cochlea

    NARCIS (Netherlands)

    Zak, Magdalena; Van Oort, Thijs; Hendriksen, Ferry G.; Garcia, Marie Isabelle; Vassart, Gilbert; Grolman, Wilko

    2016-01-01

    In the developing cochlea, Wnt/β-catenin signaling positively regulates the proliferation of precursors and promotes the formation of hair cells by up-regulating Atoh1 expression. Not much, however, is known about the regulation of Wnt/β-catenin activity in the cochlea. In multiple tissues, the

  9. Hair loss in infancy.

    Science.gov (United States)

    Moreno-Romero, J A; Grimalt, R

    2014-02-01

    Hair diseases represent a significant portion of cases seen by pediatric dermatologists although hair has always been a secondary aspect in pediatricians and dermatologists training, on the erroneous basis that there is not much information extractable from it. Dermatologists are in the enviable situation of being able to study many disorders with simple diagnostic techniques. The hair is easily accessible to examination but, paradoxically, this approach is often disregarded by non-dermatologist. This paper has been written on the purpose of trying to serve in the diagnostic process of daily practice, and trying to help, for example, to distinguish between certain acquired and some genetically determined hair diseases. We will focus on all the data that can be obtained from our patients' hair and try to help on using the messages given by hair for each patient. Quite often it is extremely hard to distinguish between abnormality and normality in neonatal hair aspects. We will specially focus in the most common physiological changes that may mislead to an incorrect diagnosis. Specific treatment for those hair diseases that do have one, and basic general approach to improve the cosmetic appearance of hair, will be also be discussed for those hair disturbances that do not have a specific treatment.

  10. Selective hair therapy: bringing science to the fiction.

    Science.gov (United States)

    Vogt, Annika; Blume-Peytavi, Ulrike

    2014-02-01

    Investigations on carrier-based drug delivery systems for higher selectivity in hair therapy have clearly evolved from dye release and model studies to highly sophisticated approaches, many of which specifically tackle hair indications and the delivery of hair-relevant molecules. Here, we group recent hair disease-oriented work into efforts towards (i) improved delivery of conventional drugs, (ii) delivery of novel drug classes, for example biomolecules and (iii) targeted delivery on the cellular/molecular level. Considering the solid foundation of experimental work, it does not take a large step outside the current box of thinking to follow the idea of using large carriers (>500 nm, unlikely to penetrate as a whole) for follicular penetration, retention and protection of sensitive compounds. Yet, reports on particles <200 nm being internalized by keratinocytes and dendritic cells at sites of barrier disruption (e.g., hair follicles) combined with recent advances in nanodermatology add interesting new facets to the possibilities carrier technologies could offer, for example, unprecedented levels of selectivity. The authors provide thought-provoking ideas on how smart delivery technologies and advances in our molecular understanding of hair pathophysiology could result in a whole new era of hair therapeutics. As the field still largely remains in preclinical investigation, determined efforts towards production of medical grade material and truly translational work are needed to demonstrate surplus value of carrier systems for clinical applications. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Hair loss in women.

    Science.gov (United States)

    Harfmann, Katya L; Bechtel, Mark A

    2015-03-01

    Hair loss is a common cause of morbidity for many women. As a key member of the woman's health care team, the obstetrician/gynecologist may be the first person to evaluate the complaint of hair loss. Common types of nonscarring hair loss, including female pattern hair loss and telogen effluvium, may be diagnosed and managed by the obstetrician/gynecologist. A systematic approach to diagnosis and management of these common forms of hair loss is presented.

  12. Biomechanics of hair cell kinocilia: experimental measurement of kinocilium shaft stiffness and base rotational stiffness with Euler–Bernoulli and Timoshenko beam analysis

    Science.gov (United States)

    Spoon, Corrie; Grant, Wally

    2011-01-01

    Vestibular hair cell bundles in the inner ear contain a single kinocilium composed of a 9+2 microtubule structure. Kinocilia play a crucial role in transmitting movement of the overlying mass, otoconial membrane or cupula to the mechanotransducing portion of the hair cell bundle. Little is known regarding the mechanical deformation properties of the kinocilium. Using a force-deflection technique, we measured two important mechanical properties of kinocilia in the utricle of a turtle, Trachemys (Pseudemys) scripta elegans. First, we measured the stiffness of kinocilia with different heights. These kinocilia were assumed to be homogenous cylindrical rods and were modeled as both isotropic Euler–Bernoulli beams and transversely isotropic Timoshenko beams. Two mechanical properties of the kinocilia were derived from the beam analysis: flexural rigidity (EI) and shear rigidity (kGA). The Timoshenko model produced a better fit to the experimental data, predicting EI=10,400 pN μm2 and kGA=247 pN. Assuming a homogenous rod, the shear modulus (G=1.9 kPa) was four orders of magnitude less than Young's modulus (E=14.1 MPa), indicating that significant shear deformation occurs within deflected kinocilia. When analyzed as an Euler–Bernoulli beam, which neglects translational shear, EI increased linearly with kinocilium height, giving underestimates of EI for shorter kinocilia. Second, we measured the rotational stiffness of the kinocilium insertion (κ) into the hair cell's apical surface. Following BAPTA treatment to break the kinocilial links, the kinocilia remained upright, and κ was measured as 177±47 pN μm rad–1. The mechanical parameters we quantified are important for understanding how forces arising from head movement are transduced and encoded by hair cells. PMID:21307074

  13. Hair casts

    OpenAIRE

    Sweta S Parmar; Kirti S Parmar; Bela J Shah

    2014-01-01

    Hair casts or pseudonits are circumferential concretions, which cover the hair shaft in such a way that, it could be easily removed. They are thin, cylindrical, and elongated in length. We present an unusual case of an 8-year-old girl presenting with hair casts. Occurrence of these is unusual, and they may have varied associations. This patient was suffering from developmental delay. It is commonly misdiagnosed as and very important to differentiate from pediculosis capitis.

  14. Hair removal in adolescence

    Directory of Open Access Journals (Sweden)

    Sandra Pereira

    2015-06-01

    Full Text Available Introduction: Due to hormonal stimulation during puberty, changes occur in hair type and distribution. In both sexes, body and facial unwanted hair may have a negative psychological impact on the teenager. There are several available methods of hair removal, but the choice of the most suitable one for each individual can raise doubts. Objective: To review the main methods of hair removal and clarify their indications, advantages and disadvantages. Development: There are several removal methods currently available. Shaving and depilation with chemicals products are temporary methods, that need frequent repetition, because hair removal is next to the cutaneous surface. The epilating methods in which there is full hair extraction include: epilation with wax, thread, tweezers, epilating machines, laser, intense pulsed light, and electrolysis. Conclusions: The age of beginning hair removal and the method choice must be individualized and take into consideration the skin and hair type, location, dermatological and endocrine problems, removal frequency, cost and personal preferences.

  15. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells

    Science.gov (United States)

    Johnson, Stuart L.; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M.; Roberts, Terri P.; Masetto, Sergio; Knipper, Marlies; Kros, Corné J.; Marcotti, Walter

    2011-01-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion cells and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials are intrinsically generated by immature IHCs of altricial rodents and that apical IHCs exhibit bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter ACh, by fine-tuning the IHC’s resting membrane potential (Vm), is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the Vm of apical and basal IHCs by activating SK2 channels. We hypothesize that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway. PMID:21572434

  16. Fluorine-induced apoptosis and lipid peroxidation in human hair follicles in vitro.

    Science.gov (United States)

    Wang, Zheng-hui; Li, Xiao-li; Yang, Zhuang-qun; Xu, Min

    2010-12-01

    Fluoride is an essential trace element for human body; however, exposure to high amounts of fluoride has been documented to be correlated with an increasing risk of hair loss. To date, little is known about the mechanism(s) of how fluoride affects hair follicles. Here, we demonstrated that middle (1.0 mmol/L) and high (10.0 mmol/L) concentrations of sodium fluoride (NaF) significantly inhibited hair follicle elongation in vitro, but low NaF (0.1 mmol/L) showed little influence. Moreover, treatment with high levels of NaF resulted in a marked increase in terminal dUTP nick end labeling-positive cells in the outer layer of the outer root sheath, the dermal sheath, and the lower bulb matrix surrounding dermal papilla. Furthermore, the enhanced apoptosis was coupled with an increased oxidative stress manifested as higher malondialdehyde content. Additionally, the presence of selenium considerably antagonized the effects of middle NaF on hair follicles, with regard to either the suppression of hair growth or the induction of oxidative stress and apoptosis. In conclusion, exposure to high levels of fluoride compromises hair follicle growth and accelerate cell apoptosis in vitro. The toxicity of fluoride can be reduced by selenium, at least partially via the suppression of intracellular oxidative stress.

  17. White piedra of scalp hair by Trichosporon inkin.

    Science.gov (United States)

    Viswanath, Vishalakshi; Kriplani, Dimple; Miskeen, Autar Kishen; Patel, Bharti; Torsekar, Raghunandan Govind

    2011-01-01

    White piedra is a rare fungal infection of hair and is reported to be all the more rare on scalp. Trichosporon inkin is usually associated with white piedra of pubic hair. We report a case of white piedra of scalp hair caused by T. inkin. This is the first case reported from India and the fifth case reported worldwide. A 50-year-old Muslim female presented with white knots over scalp hair. Diagnosis of Trichosporon was made by examining KOH mounts of epilated hair and Lactophenol Cotton Blue preparations of the growth in culture. Automated mini-API test (for biochemical profiles) and Electronmicroscopy studies (for cell wall structures) helped in identification of the species. Mini-API test was also positive for Cryptococcus curvatus which could be due to similarity in biochemical and physiological properties of the two species. Absence of C. curvatus on culture further supports this view. Topical antifungal therapy resulted in clinical clearance within 2 months. Higher incidence of scalp white piedra is observed in Muslim females; contributing factor being the custom of using a veil, leading to higher humidity and limited sunlight exposure.

  18. The morphology of hairs in species of Plantago L. Sections: Novorbis Decne and Mesembrynia Decne

    Directory of Open Access Journals (Sweden)

    Emilia Andrzejewska-Golec

    2014-01-01

    Full Text Available This paper is a continuation of the investigation of hairs in representatives of various sections of the genus Plantago L.(Andrzejewska-Golec and Świętosławski 1987, 1988, 1989 a, b, 1991, in press 2. It deals with the species of the related sections: Novorbis Decne (3 species and Mesembrynia Decne (5 species. The investigated taxa of both sections have one type of headed hair (typical of the representatives of the genus Plantago as well as three types of headless hairs: 1 1-3-celled-bristle-shaped, 2 consisting of several cells, and 3 multicellular-web-like. Only slight differences between the hairs of the investigated taxa of sections Novorbis and Mesembrynia were noticed. The hairs of the representatives of these sections are also similar to the hairs of representatives of another section, related to those mentioned above, viz. Lamprosantha Decne (Andrzejewska-Golec and Świętosławski 1991.

  19. Hair Follicle: A Novel Source of Multipotent Stem Cells for Tissue Engineering and Regenerative Medicine

    Science.gov (United States)

    Mistriotis, Panagiotis

    2013-01-01

    The adult body harbors powerful reservoirs of stem cells that enable tissue regeneration under homeostatic conditions or in response to disease or injury. The hair follicle (HF) is a readily accessible mini organ within the skin and contains stem cells from diverse developmental origins that were shown to have surprisingly broad differentiation potential. In this review, we discuss the biology of the HF with particular emphasis on the various stem cell populations residing within the tissue. We summarize the existing knowledge on putative HF stem cell markers, the differentiation potential, and technologies to isolate and expand distinct stem cell populations. We also discuss the potential of HF stem cells for drug and gene delivery, tissue engineering, and regenerative medicine. We propose that the abundance of stem cells with broad differentiation potential and the ease of accessibility makes the HF an ideal source of stem cells for gene and cell therapies. PMID:23157470

  20. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells.

    Science.gov (United States)

    Shi, Xu; Lv, Shuang; He, Xia; Liu, Xiaomei; Sun, Meiyu; Li, Meiying; Chi, Guangfan; Li, Yulin

    2016-10-01

    Due to the limitations of organ donors and immune rejection in severe liver diseases, stem cell-based therapy presents a promising application for tissue repair and regeneration. As a novel cell source, mesenchymal stem cells separated from human hair follicles (HF-MSCs) are convenient to obtain and have no age limit. To date, the differentiation of HF-MSCs into hepatocytes has not been reported. In this study, we explored whether HF-MSCs and HF-MSC-derived-induced pluripotent stem cells (HF-iPS) could differentiate into hepatocytes in vitro. Flow cytometry, Oil Red O stain and Alizarin Red stain were used to identify the characteristics of HF-MSCs. The expression of liver-specific gene was detected by immunofluorescence and Quantitative Polymerase Chain Reaction. Periodic Acid-Schiff stain, Indocyanine Green stain and Low-Density Lipoprotein stain were performed to evaluate the functions of induced hepatocyte-like cells (HLCs). HF-MSCs were unable to differentiate into HLCs using previously reported procedures for MSCs from other tissues. However, HF-iPS efficiently induced the generation of HLCs that expressed hepatocyte markers and drug metabolism-related genes. HF-iPS can be used as novel and alternative cellular tools for inducing hepatocytes in vitro, simultaneously benefiting from utilizing HF-MSCs as a noninvasive and convenient cell source for reprogramming.

  1. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    International Nuclear Information System (INIS)

    Su, Chen-Ming; Wang, Shih-Wei; Lee, Tzong-Huei; Tzeng, Wen-Pei; Hsiao, Che-Jen; Liu, Shih-Chia; Tang, Chih-Hsin

    2013-01-01

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  2. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen-Ming [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Wang, Shih-Wei [Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (China); Lee, Tzong-Huei [Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan (China); Tzeng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan (China); Hsiao, Che-Jen [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Liu, Shih-Chia [Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  3. Feasibility of human hair follicle-derived mesenchymal stem cells/CultiSpher(®)-G constructs in regenerative medicine.

    Science.gov (United States)

    Li, Pengdong; Liu, Feilin; Wu, Chunling; Jiang, Wenyue; Zhao, Guifang; Liu, Li; Bai, Tingting; Wang, Li; Jiang, Yixu; Guo, Lili; Qi, Xiaojuan; Kou, Junna; Fan, Ruirui; Hao, Deshun; Lan, Shaowei; Li, Yulin; Liu, Jin Yu

    2015-10-01

    The use of human mesenchymal stem cells (hMSCs) in cell therapies has increased the demand for strategies that allow efficient cell scale-up. Preliminary data on the three-dimensional (3D) spinner culture describing the potential use of microcarriers for hMSCs culture scale-up have been reported. We exploited a rich source of autologous stem cells (human hair follicle) and demonstrated the robust in vitro long-term expansion of human hair follicle-derived mesenchymal stem cells (hHF-MSCs) by using CultiSpher(®)-G microcarriers. We analyzed the feasibility of 3D culture by using hHF-MSCs/CultiSpher(®)-G microcarrier constructs for its potential applicability in regenerative medicine by comparatively analyzing the performance of hHF-MSCs adhered to the CultiSpher(®)-G microspheres in 3D spinner culture and those grown on the gelatin-coated plastic dishes (2D culture), using various assays. We showed that the hHF-MSCs seeded at various densities quickly adhered to and proliferated well on the microspheres, thus generating at least hundreds of millions of hHF-MSCs on 1 g of CultiSpher(®)-G within 12 days. This resulted in a cumulative cell expansion of greater than 26-fold. Notably, the maximum and average proliferation rates in 3D culture were significantly greater than that of the 2D culture. However, the hHF-MSCs from both the cultures retained surface marker and nestin expression, proliferation capacity and differentiation potentials toward adipocytes, osteoblasts and smooth muscle cells and showed no significant differences as evidenced by Edu incorporation, cell cycle, colony formation, apoptosis, biochemical quantification and qPCR assays.

  4. The Root Hair Specific SYP123 Regulates the Localization of Cell Wall Components and Contributes to Rizhobacterial Priming of Induced Systemic Resistance

    Directory of Open Access Journals (Sweden)

    Cecilia Rodriguez-Furlán

    2016-07-01

    Full Text Available Root hairs are important for nutrient and water uptake and are also critically involved the interaction with soil inhabiting microbiota. Root hairs are tubular-shaped outgrowths that emerge from trichoblasts. This polarized elongation is maintained and regulated by a robust mechanism involving the endomembrane secretory and endocytic system. Members of the syntaxin family of SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptor in plants (SYP, have been implicated in regulation of the fusion of vesicles with the target membranes in both exocytic and endocytic pathways. One member of this family, SYP123, is expressed specifically in the root hairs and accumulated in the growing tip region. This study shows evidence of the SYP123 role in polarized trafficking using knockout insertional mutant plants. We were able to observe defects in the deposition of cell wall proline rich protein PRP3 and cell wall polysaccharides. In a complementary strategy, similar results were obtained using a plant expressing a dominant negative soluble version of SYP123 (SP2 fragment lacking the transmembrane domain. The evidence presented indicates that SYP123 is also regulating PRP3 protein distribution by recycling by endocytosis. We also present evidence that indicates that SYP123 is necessary for the response of roots to plant growth promoting rhizobacterium (PGPR in order to trigger trigger induced systemic response (ISR. Plants with a defective SYP123 function were unable to mount a systemic acquired resistance (SAR in response to bacterial pathogen infection and induced systemic resistance (ISR upon interaction with rhizobacteria. These results indicated that SYP123 was involved in the polarized localization of protein and polysaccharides in growing root hairs and that this activity also contributed to the establishment of effective plant defense responses. Root hairs represent very plastic structures were many biotic and abiotic factors

  5. "I think gorilla-like back effusions of hair are rather a turn-off": 'Excessive hair' and male body hair (removal) discourse.

    Science.gov (United States)

    Terry, Gareth; Braun, Virginia

    2016-06-01

    Men's hair removal practices are becoming mainstream, seen as a consequence of changing masculine norms and men's relationships to their bodies. This is often presented as a straightforward 'shift' from men's ideal bodies as naturally hairy, to increased hairlessness, and the consequence on men's body concerns as inevitable. This paper analyses qualitative survey data from Aotearoa/New Zealand using critical thematic analysis, and describes three themes. Two themes capture contradictory ideas: that men's body hair is natural, and that men's body hair is unpleasant. A third theme introduces the concept of 'excess' hair, which allowed sense-making of this contradiction, mandating men's grooming of 'excessive' hair. However its vagueness as a concept may provoke anxiety for men resulting in hair removal. This paper adds to a body of research demonstrating a cultural transition: the ways changing masculinities, increased commodification of male bodies, and shifting gender roles impact on men's hair removal practices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. CLRN1 is nonessential in the mouse retina but is required for cochlear hair cell development.

    Directory of Open Access Journals (Sweden)

    Scott F Geller

    2009-08-01

    Full Text Available Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3, a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5-6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH, laser capture microdissection (LCM, and RT-PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT-PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal

  7. Hair dye contact allergy

    DEFF Research Database (Denmark)

    Søsted, Heidi; Rastogi, Suresh Chandra; Andersen, Klaus Ejner

    2004-01-01

    Colouring of hair can cause severe allergic contact dermatitis. The most frequently reported hair dye allergens are p-phenylenediamine (PPD) and toluene-2,5-diamine, which are included in, respectively, the patch test standard series and the hairdressers series. The aim of the present study...... was to identify dye precursors and couplers in hair dyeing products causing clinical hair dye dermatitis and to compare the data with the contents of these compounds in a randomly selected set of similar products. The patient material comprised 9 cases of characteristic clinical allergic hair dye reaction, where...... exposure history and patch testing had identified a specific hair dye product as the cause of the reaction. The 9 products used by the patients were subjected to chemical analysis. 8 hair dye products contained toluene-2,5-diamine (0.18 to 0.98%). PPD (0.27%) was found in 1 product, and m-aminophenol (0...

  8. Trps1 deficiency inhibits the morphogenesis of secondary hair follicles via decreased Noggin expression

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yujing [Department of Pathology, School of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan 250012 (China); Nakanishi, Masako; Sato, Fuyuki; Oikawa, Kosuke [First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012 (Japan); Muragaki, Yasuteru, E-mail: ymuragak@wakayama-med.ac.jp [First Department of Pathology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama 641-0012 (Japan); Zhou, Gengyin, E-mail: zhougy@sdu.edu.cn [Department of Pathology, School of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan 250012 (China)

    2015-01-16

    Highlights: • The number of secondary hair follicles is reduced by half in Trps1 KO embryonic skin compared to wild-type skin. • Noggin expression is significantly decreased and BMP signaling is promoted in Trps1 KO embryonic skin. • Treatment with a Noggin or BMP inhibitor rescued the decreased number of hair follicles in Trps1 KO skin graft cultures. • Cell proliferation and apoptosis of the epidermis were normalized by Noggin treatment. - Abstract: A representative phenotype of patients with tricho-rhino-phalangeal syndrome (TRPS) is sparse hair. To understand the developmental defects of these patient’s hair follicles, we analyzed the development of hair follicles histologically and biochemically using Trps1 deficient (KO) mice. First, we compared the numbers of primary hair follicles in wild-type (WT) and KO embryos at different developmental stages. No differences were observed in the E14.5 skins of WT and KO mice. However, at later time points, KO fetal skin failed to properly develop secondary hair follicles, and the number of secondary hair follicles present in E18.5 KO skin was approximately half compared to that of WT skin. Sonic hedgehog expression was significantly decreased in E17.5 KO skin, whereas no changes were observed in Eda/Edar expression in E14.5 or E17.5 skins. In addition, Noggin expression was significantly decreased in E14.5 and E17.5 KO skin compared to WT skin. In parallel with the suppression of Noggin expression, BMP signaling was promoted in the epidermal cells of KO skins compared to WT skins as determined by immunohistochemistry for phosphorylated Smad1/5/8. The reduced number of secondary hair follicles was restored in skin graft cultures treated with a Noggin and BMP inhibitor. Furthermore, decreased cell proliferation, and increased apoptosis in KO skin was rescued by Noggin treatment. Taken together, we conclude that hair follicle development in Trps1 KO embryos is impaired directly or indirectly by decreased Noggin

  9. Trps1 deficiency inhibits the morphogenesis of secondary hair follicles via decreased Noggin expression

    International Nuclear Information System (INIS)

    Sun, Yujing; Nakanishi, Masako; Sato, Fuyuki; Oikawa, Kosuke; Muragaki, Yasuteru; Zhou, Gengyin

    2015-01-01

    Highlights: • The number of secondary hair follicles is reduced by half in Trps1 KO embryonic skin compared to wild-type skin. • Noggin expression is significantly decreased and BMP signaling is promoted in Trps1 KO embryonic skin. • Treatment with a Noggin or BMP inhibitor rescued the decreased number of hair follicles in Trps1 KO skin graft cultures. • Cell proliferation and apoptosis of the epidermis were normalized by Noggin treatment. - Abstract: A representative phenotype of patients with tricho-rhino-phalangeal syndrome (TRPS) is sparse hair. To understand the developmental defects of these patient’s hair follicles, we analyzed the development of hair follicles histologically and biochemically using Trps1 deficient (KO) mice. First, we compared the numbers of primary hair follicles in wild-type (WT) and KO embryos at different developmental stages. No differences were observed in the E14.5 skins of WT and KO mice. However, at later time points, KO fetal skin failed to properly develop secondary hair follicles, and the number of secondary hair follicles present in E18.5 KO skin was approximately half compared to that of WT skin. Sonic hedgehog expression was significantly decreased in E17.5 KO skin, whereas no changes were observed in Eda/Edar expression in E14.5 or E17.5 skins. In addition, Noggin expression was significantly decreased in E14.5 and E17.5 KO skin compared to WT skin. In parallel with the suppression of Noggin expression, BMP signaling was promoted in the epidermal cells of KO skins compared to WT skins as determined by immunohistochemistry for phosphorylated Smad1/5/8. The reduced number of secondary hair follicles was restored in skin graft cultures treated with a Noggin and BMP inhibitor. Furthermore, decreased cell proliferation, and increased apoptosis in KO skin was rescued by Noggin treatment. Taken together, we conclude that hair follicle development in Trps1 KO embryos is impaired directly or indirectly by decreased Noggin

  10. Hair cycle in dogs with different hair types in a tropical region of Brazil.

    Science.gov (United States)

    Favarato, Evandro S; Conceição, Lissandro Gonçalves

    2008-02-01

    Hair cycle activity has been extensively studied in humans, sheep and laboratory animals, but there is a lack of information in dogs. Besides varying according to species, breed, sex and general health, hair growth is mainly affected by climatic variations. The aim of the study was to evaluate the follicle activity in three breeds of dogs with different hair types, in the city of Viçosa, Minas Gerais (latitude 20 degrees 45'S), Brazil. Twenty-one male dogs of boxer, labrador and schnauzer breeds were trichographically analysed monthly over 12 consecutive months. Hair percentage of telogen and anagen hairs at the different stages of the hair cycle in boxers and labradors was not significantly different, but both differed from the schnauzers. A significant correlation between hair follicle cycle and environmental temperature and photoperiod was noted in the boxers and labradors. In these breeds, a larger number of telogen hairs were observed during the hottest months of the year, and an increase in anagen hairs during the coldest months. The mean percentage of telogen hairs was 93, 90 and 55.3% for boxer, labrador and schnauzer, respectively.

  11. Drug-induced hair loss.

    Science.gov (United States)

    2016-05-01

    Hair loss can have major psychological consequences. It can be due to a wide variety of causes, including hormonal disorders, dietary factors, infections, inflammation, trauma, emotional factors, and cancer. Drugs can also induce hair loss, by interacting with the hair growth cycle. Drug-induced hair loss may be immediate or delayed, sudden or gradual, and diffuse or localised. It is usually reversible after drug discontinuation. The drugs most often implicated in hair loss are anticancer agents, interferon, azole antifungals, lithium, immunosuppressants, and many other drugs belonging to a variety of pharmacological classes.

  12. Loose anagen hair syndrome with diffuse woolly hair phenotype: A rare association

    Directory of Open Access Journals (Sweden)

    Arshdeep

    2016-01-01

    Full Text Available Loose anagen hair syndrome (LAHS is an underestimated cause of noncicatricial alopecia among children, manifesting as thin, sparse or fine hair. We report a case of LAHS clinically presenting as diffuse woolly hair, an association rarely described in the literature. In addition, we review the clinical as well as genetic link between these two enigmatic hair disorders and hypothesize that both may be associated in a yet unknown manner.

  13. Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells.

    Science.gov (United States)

    Wang, Jie; Wang, Yaofeng; Shen, Lili; Qian, Yumei; Yang, Jinguang; Wang, Fenglong

    2017-04-01

    Sulphated lentinan (sLTN) is known to act as a resistance inducer by causing programmed cell death (PCD) in tobacco suspension cells. However, the underlying mechanism of this effect is largely unknown. Using tobacco BY-2 cell model, morphological and biochemical studies revealed that mitochondrial reactive oxygen species (ROS) production and mitochondrial dysfunction contribute to sLNT induced PCD. Cell viability, and HO/PI fluorescence imaging and TUNEL assays confirmed a typical cell death process caused by sLNT. Acetylsalicylic acid (an ROS scavenger), diphenylene iodonium (an inhibitor of NADPH oxidases) and protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (a protonophore and an uncoupler of mitochondrial oxidative phosphorylation) inhibited sLNT-induced H 2 O 2 generation and cell death, suggesting that ROS generation linked, at least partly, to a mitochondrial dysfunction and caspase-like activation. This conclusion was further confirmed by double-stained cells with the mitochondria-specific marker MitoTracker RedCMXRos and the ROS probe H 2 DCFDA. Moreover, the sLNT-induced PCD of BY-2 cells required cellular metabolism as up-regulation of the AOX family gene transcripts and induction of the SA biosynthesis, the TCA cycle, and miETC related genes were observed. It is concluded that mitochondria play an essential role in the signaling pathway of sLNT-induced ROS generation, which possibly provided new insight into the sLNT-mediated antiviral response, including PCD. Copyright © 2016. Published by Elsevier Inc.

  14. Drugs and hair loss.

    Science.gov (United States)

    Patel, Mansi; Harrison, Shannon; Sinclair, Rodney

    2013-01-01

    Hair loss is a common complaint, both in men and women, and use of prescription medications is widespread. When there is a temporal association between the onset of hair loss and commencement of a medication, the medication is commonly thought to have caused the hair loss. However, hair loss and in particular telogen effluvium may occur in response to a number of triggers including fever, hemorrhage, severe illness, stress, and childbirth, and a thorough exclusion of these potential confounders is necessary before the hair loss can be blamed on the medication. Certain medications are known to cause hair loss by a variety of mechanisms including anagen arrest, telogen effluvium, or accentuation of androgenetic alopecia by androgens. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  15. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.

    Directory of Open Access Journals (Sweden)

    Pamela Lopert

    Full Text Available Mitochondria are considered major generators of cellular reactive oxygen species (ROS which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD. We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂ in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2 in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.

  16. Preventing surgery-induced NK cell dysfunction and cancer metastases with influenza vaccination

    Science.gov (United States)

    Tai, Lee-Hwa; Zhang, Jiqing; Auer, Rebecca C

    2013-01-01

    Surgical resection is the mainstay of treatment for solid tumors, but the postoperative period is uniquely inclined to the formation of metastases, largely due to the suppression of natural killer (NK) cells. We found that preoperative influenza vaccination prevents postoperative NK-cell dysfunction, attenuating tumor dissemination in murine models and promoting the activation of NK cells in cancer patients. PMID:24404430

  17. Fabrication and characterization of artificial hair cell sensor based on MWCNT-PDMS composite

    Science.gov (United States)

    Kim, Chi Yeon; Lee, Hyun Sup; Cho, Yo Han; Joh, Cheeyoung; Choi, Pyung; Park, Seong Jin

    2011-06-01

    The aim of this work is to design and fabricate a flow sensor using an artificial hair cell (AHC) inspired by biological hair cells of fish. The sensor consists of a single cilium structure with high aspect ratio and a mechanoreceptor using force sensitive resistor (FSR). The cilium structure is designed for capturing a drag force with direction due to flow field around the sensor and the mechanoreceptor is designed for sensing the drag force with direction from the cilium structure and converting it into an electric signal. The mechanoreceptor has a symmetric four electrodes to sense the drag force and its direction. To fabricate the single cilium structure with high aspect ratio, we have proposed a new design concept using a separated micro mold system (SMS) fabricated by the LIGA process. For a successful replication of the cilium structure, we used the hot embossing process with the help of a double-sided mold system. We used a composite of multiwall carbon nanotube and polydimethylsiloxane (MWCNT-PDMS). The performance of the mechanoreceptors was measured by a computer-controlled nanoindenter. We carried out several experiments with the sensor in the different flow rate and direction using the experimental test apparatus. To calibrate the sensor and calculate the velocity with direction based the signal from the sensor, we analyzed the coupled phenomena between flow field and the cilium structure to calculate the deflection of the cilium structure and the drag force applying to the cilium structure due to the flow field around sensor.

  18. Optical hair removal.

    Science.gov (United States)

    Ort, R J; Anderson, R R

    1999-06-01

    Traditional methods of hair removal have proven unsatisfactory for many individuals with excessive or unwanted hair. In the last few years, several lasers and xenon flashlamps have been developed that promise to fulfill the need for a practical, safe, and long-lasting method of hair removal. Aggressive marketing of these has contributed to their popularity among patients and physicians. However, significant controversy and confusion surrounds this field. This article provides a detailed explanation of the scientific underpinnings for optical hair removal and explores the advantages and disadvantages of the various devices currently available (Nd:YAG, ruby, alexandrite, diode lasers, and xenon flashlamp). Treatment and safety guidelines are provided to assist the practitioner in the use of these devices. Although the field of optical hair removal is still in its infancy, initial reports of long-term efficacy are encouraging.

  19. Endothelial Progenitor Cell Dysfunction in Polycystic Ovary Syndrome: Implications for The Genesis of Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Hsun Kao

    2013-01-01

    Full Text Available Polycystic ovary syndrome (PCOS, the most common endocrine disorder affecting women ofreproductive age, is characterized by hyperandrogenism and insulin resistance. Women withPCOS have a higher risk for cardiovascular diseases (CVDs and endothelial dysfunction. Themechanisms underlying these risks are unclear. Human peripheral blood contains circulatingendothelial progenitor cells (EPCs derived from bone marrow that have the ability to proliferate anddifferentiate into mature endothelial cells, which may contribute to vessel homeostasis and repair.PCOS is associated with insulin resistance, hyperinsulinemia, and dyslipidemia, which may resultin EPC dysfunction. In this review, we summarize the potential mechanisms of EPC dysfunction inPCOS, which possibly result in a higher genesis of CVDs in PCOS-affected subjects.

  20. Hair camouflage: A comprehensive review.

    Science.gov (United States)

    Saed, Stephanie; Ibrahim, Omer; Bergfeld, Wilma F

    2017-03-01

    Hair is venerated, cherished, and desired in societies throughout the world. Both women and men express their individual identities through their hairstyles. Healthy hair contributes to successful social assimilation, employment, and overall quality of life. Therefore, hair loss can have detrimental effects on almost every aspect of a person's life. In this review, we discuss the myriad of options that aid in concealing and camouflaging hair loss to facilitate a healthier-appearing scalp. Camouflage options for patients who suffer from hair loss include full or partial wigs, hair extensions, concealing powders and sprays, surgical tattoos, and hair transplants. We describe these modalities in detail and discuss their respective advantages and disadvantages.

  1. Artificial Hair: By the Dawn to Automatic Biofibre® Hair Implant

    Directory of Open Access Journals (Sweden)

    Maria Roccia

    2017-12-01

    In 1995 the European Union (UE recognised the artificial hair implant as a legitimate medical treatment and outlined the rules related to that procedure. In 1996, biocompatible fibres (Biofibre® produced by Medicap® Italy were approved by the UE Authorities and by the Australian Therapeutic Goods Administration (TGA as medical devices for hair implant. An effective medical protocol was developed during the following years to provide correct guidelines for appropriate treatment, and to reduce possible related complications. Automatic Biofibre® hair implant represents the last achievement in this hair restoration technique with significant advantages for the patients.

  2. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  3. Promotion of hair follicle development and trichogenesis by Wnt-10b in cultured embryonic skin and in reconstituted skin

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    We previously showed that Wnt-10b promoted the differentiation of primary skin epithelial cells (MPSEC) toward hair shaft and inner root sheath of the hair follicle (IRS) cells in vitro. In the present study, we found that Wnt-10b promotes the development of hair follicles using a culture of mouse embryonic skin tissue and trichogenesis using a reconstitution experiment with nude mice. Hair follicle development was observed in skin taken from mouse embryos on embryonic day 10.5 following a 2-day culture with recombinant Wnt-10b (rWnt-10b), however, not without rWnt-10b. Brown hair growth was observed at the site of reconstituted skin in Balb/c nude mice where dermal fibroblasts and keratinocytes, derived from C3H/HeN new born mice, were transplanted with Wnt-10b-producing COS cells (Wnt-COS). Without the co-transplantation of Wnt-COS, no hair growth was observed. Our results suggest an important role of Wnt-10b in the initiation of hair follicle development and following trichogenesis

  4. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    Science.gov (United States)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  5. Low-level laser (light) therapy (LLLT) for treatment of hair loss.

    Science.gov (United States)

    Avci, Pinar; Gupta, Gaurav K; Clark, Jason; Wikonkal, Norbert; Hamblin, Michael R

    2014-02-01

    Alopecia is a common disorder affecting more than half of the population worldwide. Androgenetic alopecia, the most common type, affects 50% of males over the age of 40 and 75% of females over 65. Only two drugs have been approved so far (minoxidil and finasteride) and hair transplant is the other treatment alternative. This review surveys the evidence for low-level laser therapy (LLLT) applied to the scalp as a treatment for hair loss and discusses possible mechanisms of actions. Searches of PubMed and Google Scholar were carried out using keywords alopecia, hair loss, LLLT, photobiomodulation. Studies have shown that LLLT stimulated hair growth in mice subjected to chemotherapy-induced alopecia and also in alopecia areata. Controlled clinical trials demonstrated that LLLT stimulated hair growth in both men and women. Among various mechanisms, the main mechanism is hypothesized to be stimulation of epidermal stem cells in the hair follicle bulge and shifting the follicles into anagen phase. LLLT for hair growth in both men and women appears to be both safe and effective. The optimum wavelength, coherence and dosimetric parameters remain to be determined. © 2013 Wiley Periodicals, Inc.

  6. Cornu cervi pantotrichum Pharmacopuncture Solution Facilitate Hair Growth in C57BL/6 Mice

    Directory of Open Access Journals (Sweden)

    Seon-Yong Lee

    2016-06-01

    Full Text Available Objectives: Cornu cervi pantotrichum (CCP has been widely used in Korean and China, as an anti-fatigue, anti-aging, and tonic agent to enhance the functions of the reproductive and the immune systems. Because CCP has various growth factors that play important roles in the development of hair follicles, we examined whether CCP pharmacopuncture solution (CCPPS was capable of promoting hair growth in an animal model. Methods: One day after hair depilation, CCPPS were topically applied to the dorsal skin of C57BL/6 mice once a day for 15 days. Hair growth activity was evaluated by using macro- and microscopic observations. Dorsal skin tissues were stained with hematoxylin and eosin. Expressions of bromodeoxyuridine (BrdU, proliferating cell nuclear antigen (PCNA, and fibroblast growth factor (FGF-7 were examined by using immunohistochemical staining. A reverse transcription polymerase chain reaction (RT-PCR analysis was also conducted to measure the messenger RNA (mRNA expression of FGF-7. Results: CCPPS induced more active hair growth than normal saline. Histologic analysis showed enlargement of the dermal papilla, elongation of the hair shaft, and expansion of hair thickness in CCPPS treated mice, indicating that CCPPS effectively induced the development of anagen. CCPPS treatment markedly increased the expressions of BrdU and PCNA in the hair follicles of C57BL/6 mice. In addition, CCPPS up regulated the expression of FGF-7, which plays an important role in the development of hair follicles. Conclusion: These results reveal that CCPPS facilitates hair re-growth by proliferation of hair follicular cells and up-regulation of FGF-7 and suggest that CCPPS can potentially be applied as an alternative treatment for patients with alopecia.

  7. Ultraviolet-B radiation absorbing capacity of leaf hairs

    International Nuclear Information System (INIS)

    Karabourniotis, G.; Papadopoulos, K.; Papamarkou, M.; Manetas, Y.

    1992-01-01

    Pubescence layers with their native structure and orientation were isolated from the leaves of Olea europaea L. and Olea chrysophylla L. They were almost transparent in the visible, but considerable absorptance was evident in the ultraviolet-B region (UV-B), with maximum at 310 nm. Methanolic extracts of hairs from Olea and a variety of other pubescent species consistently showed the existence of UV-screening pigments. Absorptance of trichomes varied, but a trend towards more effective UV-B radiation attenuation in the sub-alpine Verbascum species may be claimed. In all cases, pigments were located within hair cells and in Olea they were characterized as phenolics with considerable flavonoid contribution. It is suggested that leaf hairs, besides other functions, may constitute a shield against UV-B radiation. (author)

  8. Microscopy of the hair and trichogram

    Directory of Open Access Journals (Sweden)

    Özlem Dicle

    2014-06-01

    Full Text Available Hair microscopy is a fast and simple method for the diagnosis of various disorders affecting the hair in daily practice. For the microscopy of the hair, samples are collected by either clipping or plucking. The trichogram technique which the hair sample is collected by a standardized plucking method is used for the diagnosis of hair shedding and of alopecia via hair root pattern. In this review, the examination techniques and details are discussed and the most common indications for the hair microscopy including hair abnormalities as a part of genodermatosis and, infections and infestations affecting the hair are highlighted.

  9. Telogen Effluvium Hair Loss

    Science.gov (United States)

    ... Category: Share: Yes No, Keep Private Telogen Effluvium Hair Loss Share | It is normal to lose up to ... months after the "shock". This sudden increase in hair loss, usually described as the hair coming out in ...

  10. Taking Care of Your Hair

    Science.gov (United States)

    ... Educators Search English Español Taking Care of Your Hair KidsHealth / For Teens / Taking Care of Your Hair ... role in how healthy it looks. Caring for Hair How you take care of your hair depends ...

  11. Promotive Effect of Minoxidil Combined with All-trans Retinoic Acid (tretinoin) on Human Hair Growth in Vitro

    Science.gov (United States)

    Kwon, Oh Sang; Pyo, Hyun Keol; Oh, Youn Jin; Han, Ji Hyun; Lee, Se Rah; Chung, Jin Ho; Eun, Hee Chul

    2007-01-01

    Minoxidil induces hair growth in male pattern baldness and prolongs the anagen phase. All-trans retinoic acid (ATRA) has been reported to act synergistically with minoxidil in vivo: they can enhance more dense hair regrowth than either compound alone. We evaluated the effect of minoxidil combined with ATRA on hair growth in vitro. The effect of co-treatment of minoxidil and ATRA on hair growth was studied in hair follicle organ culture. In cultured human dermal papilla cells (DPCs) and normal human epidermal keratinocytes, the expressions of Erk, Akt, Bcl-2, Bax, P53 and P21 were evaluated by immunoblot analysis. Minoxidil plus ATRA additively promoted hair growth in vitro, compared with minoxidil alone. In addition, minoxidil plus ATRA elevated phosphorylated Erk, phosphorylated Akt and the ratio of Bcl-2/Bax, but decreased the expressions of P53 and P21 more effectively than by minoxidil alone. Our results suggest that minoxidil plus ATRA would additively enhance hair growth by mediating dual functions: 1) the prolongation of cell survival by activating the Erk and Akt signaling pathways, and 2) the prevention of apoptosis of DPCs and epithelial cells by increasing the ratio of Bcl-2/Bax and downregulating the expressions of P53 and P21. PMID:17449938

  12. In Vitro Methodologies to Evaluate the Effects of Hair Care Products on Hair Fiber

    Directory of Open Access Journals (Sweden)

    Robson Miranda da Gama

    2017-01-01

    Full Text Available Consumers use different hair care products to change the physical appearance of their hair, such as shampoos, conditioners, hair dye and hair straighteners. They expect cosmetics products to be available in the market to meet their needs in a broad and effective manner. Evaluating efficacy of hair care products in vitro involves the use of highly accurate equipment. This review aims to discuss in vitro methodologies used to evaluate the effects of hair care products on hair fiber, which can be assessed by various methods, such as Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Optical Coherence Tomography, Infrared Spectroscopy, Raman Spectroscopy, Protein Loss, Electrophoresis, color and brightness, thermal analysis and measuring mechanical resistance to combing and elasticity. The methodology used to test hair fibers must be selected according to the property being evaluated, such as sensory characteristics, determination of brightness, resistance to rupture, elasticity and integrity of hair strain and cortex, among others. If equipment is appropriate and accurate, reproducibility and ease of employment of the analytical methodology will be possible. Normally, the data set must be discussed in order to obtain conclusive answers to the test.

  13. Position-dependent patterning of spontaneous action potentials in immature cochlear inner hair cells.

    Science.gov (United States)

    Johnson, Stuart L; Eckrich, Tobias; Kuhn, Stephanie; Zampini, Valeria; Franz, Christoph; Ranatunga, Kishani M; Roberts, Terri P; Masetto, Sergio; Knipper, Marlies; Kros, Corné J; Marcotti, Walter

    2011-06-01

    Spontaneous action potential activity is crucial for mammalian sensory system development. In the auditory system, patterned firing activity has been observed in immature spiral ganglion and brain-stem neurons and is likely to depend on cochlear inner hair cell (IHC) action potentials. It remains uncertain whether spiking activity is intrinsic to developing IHCs and whether it shows patterning. We found that action potentials were intrinsically generated by immature IHCs of altricial rodents and that apical IHCs showed bursting activity as opposed to more sustained firing in basal cells. We show that the efferent neurotransmitter acetylcholine fine-tunes the IHC's resting membrane potential (V(m)), and as such is crucial for the bursting pattern in apical cells. Endogenous extracellular ATP also contributes to the V(m) of apical and basal IHCs by triggering small-conductance Ca(2+)-activated K(+) (SK2) channels. We propose that the difference in firing pattern along the cochlea instructs the tonotopic differentiation of IHCs and auditory pathway.

  14. Gender differences in scalp hair growth rates are maintained but reduced in pattern hair loss compared to controls.

    Science.gov (United States)

    Van Neste, D J J; Rushton, D H

    2016-08-01

    Hair loss is related to follicular density, programmed regrowth and hair productivity. The dissatisfaction with hair growth in patients experiencing hair loss might be due to slower linear hair growth rate (LHGR). LHGR and hair diameter was evaluated in Caucasian controls and patients with patterned hair loss employing the validated non-invasive, contrast-enhanced-phototrichogram with exogen collection. We evaluated 59,765 anagen hairs (controls 24,609, patients 35,156) and found thinner hairs grew slower than thicker hairs. LHGR in normal women was generally higher than in normal men. LHGR correlates with hair diameter (P hair of equal thickness in controls, subjects affected with patterned hair loss showed reduced hair growth rates, an observation found in both male and female patients. Males with pattern hair loss showed further reduction in growth rates as clinical severity worsened. However, sample size limitations prevented statistical evaluation of LHGR in severely affected females. Caucasian ethnicity. In pattern hair loss, LHGR significantly contributes to the apparent decrease in hair volume in affected areas. In early onset, LHRG might have a prognostic value in females but not in males. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Help! It's Hair Loss!

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Hair Loss KidsHealth / For Kids / Hair Loss What's in this ... head are in the resting phase. What Causes Hair Loss? Men, especially older men, are the ones who ...

  16. Skin, Hair, and Nails

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Skin, Hair, and Nails KidsHealth / For Parents / Skin, Hair, and ... piel, el cabello y las uñas About Skin, Hair and Nails Skin is our largest organ. If ...

  17. The effect of the inner-hair-cell mediated transduction on the shape of neural tuning curves

    Science.gov (United States)

    Altoè, Alessandro; Pulkki, Ville; Verhulst, Sarah

    2018-05-01

    The inner hair cells of the mammalian cochlea transform the vibrations of their stereocilia into releases of neurotransmitter at the ribbon synapses, thereby controlling the activity of the afferent auditory fibers. The mechanical-to-neural transduction is a highly nonlinear process and it introduces differences between the frequency-tuning of the stereocilia and that of the afferent fibers. Using a computational model of the inner hair cell that is based on in vitro data, we estimated that smaller vibrations of the stereocilia are necessary to drive the afferent fibers above threshold at low (≤0.5 kHz) than at high (≥4 kHz) driving frequencies. In the base of the cochlea, the transduction process affects the low-frequency tails of neural tuning curves. In particular, it introduces differences between the frequency-tuning of the stereocilia and that of the auditory fibers resembling those between basilar membrane velocity and auditory fibers tuning curves in the chinchilla base. For units with a characteristic frequency between 1 and 4 kHz, the transduction process yields shallower neural than stereocilia tuning curves as the characteristic frequency decreases. This study proposes that transduction contributes to the progressive broadening of neural tuning curves from the base to the apex.

  18. The amazing miniorgan: Hair follicle

    Directory of Open Access Journals (Sweden)

    Çiler Çelik Özenci

    2014-06-01

    Full Text Available Hair is a primary characteristic of mammals, and exerts a wide range of functions including thermoregulation, physical protection, sensory activity, and social interactions. The hair shaft consists of terminally differentiated keratinocytes that are produced by the hair follicle. Hair follicle development takes place during fetal skin development and relies on tightly regulated ectodermal–mesodermal interactions. Hair follicles form during embryonic development and, after birth, undergo recurrent cycling of growth (anagen, apoptosis-driven regression (catagen, and relative quiescence (telogen. As a functional mini-organ, the hair follicle develops in an environment with dynamic and alternating changes of diverse molecular signals. Our molecular understanding of hair follicle biology relies heavily on genetically engineered mouse models with abnormalities in hair structure, growth, and/or pigmentation and significant advances have been made toward the identification of key signaling pathways and the regulatory genes involved. In this review, the basic concepts of hair follicle, a mini-complex organ, biology will be presented and its importance in clinical applications will be summarized.

  19. Deletion of PDZD7 disrupts the Usher syndrome type 2 protein complex in cochlear hair cells and causes hearing loss in mice.

    Science.gov (United States)

    Zou, Junhuang; Zheng, Tihua; Ren, Chongyu; Askew, Charles; Liu, Xiao-Ping; Pan, Bifeng; Holt, Jeffrey R; Wang, Yong; Yang, Jun

    2014-05-01

    Usher syndrome type 2 (USH2) is the predominant form of USH, a leading genetic cause of combined deafness and blindness. PDZD7, a paralog of two USH causative genes, USH1C and USH2D (WHRN), was recently reported to be implicated in USH2 and non-syndromic deafness. It encodes a protein with multiple PDZ domains. To understand the biological function of PDZD7 and the pathogenic mechanism caused by PDZD7 mutations, we generated and thoroughly characterized a Pdzd7 knockout mouse model. The Pdzd7 knockout mice exhibit congenital profound deafness, as assessed by auditory brainstem response, distortion product otoacoustic emission and cochlear microphonics tests, and normal vestibular function, as assessed by their behaviors. Lack of PDZD7 leads to the disorganization of stereocilia bundles and a reduction in mechanotransduction currents and sensitivity in cochlear outer hair cells. At the molecular level, PDZD7 determines the localization of the USH2 protein complex, composed of USH2A, GPR98 and WHRN, to ankle links in developing cochlear hair cells, likely through its direct interactions with these three proteins. The localization of PDZD7 to the ankle links of cochlear hair bundles also relies on USH2 proteins. In photoreceptors of Pdzd7 knockout mice, the three USH2 proteins largely remain unchanged at the periciliary membrane complex. The electroretinogram responses of both rod and cone photoreceptors are normal in knockout mice at 1 month of age. Therefore, although the organization of the USH2 complex appears different in photoreceptors, it is clear that PDZD7 plays an essential role in organizing the USH2 complex at ankle links in developing cochlear hair cells. GenBank accession numbers: KF041446, KF041447, KF041448, KF041449, KF041450, KF041451.

  20. Merkel cells transduce and encode tactile stimuli to drive Aβ-afferent impulses

    Science.gov (United States)

    Ikeda, Ryo; Cha, Myeounghoon; Ling, Jennifer; Jia, Zhanfeng; Coyle, Dennis; Gu, Jianguo G.

    2014-01-01

    SUMMARY Sensory systems for detecting tactile stimuli have evolved from touch-sensing nerves in invertebrates to complicated tactile end-organs in mammals. Merkel discs are tactile end-organs consisting of Merkel cells and Aβ-afferent nerve endings, and are localized in fingertips, whisker hair follicles and other touch-sensitive spots. Merkel discs transduce touch into slowly adapting impulses to enable tactile discrimination, but their transduction and encoding mechanisms remain unknown. Using rat whisker hair follicles, we show that Merkel cells rather than Aβ-afferent nerve endings are primary sites of tactile transduction, and identify the Piezo2 ion channel as the Merkel cell mechanical transducer. Piezo2 transduces tactile stimuli into Ca2+-action potentials in Merkel cells, which drive Aβ-afferent nerve endings to fire slowly adapting impulses. We further demonstrate that Piezo2 and Ca2+-action potentials in Merkel cells are required for behavioral tactile responses. Our findings provide insights into how tactile end-organs function and have clinical implications for tactile dysfunctions. PMID:24746027

  1. Hair Growth-Promoting Effects of Lavender Oil in C57BL/6 Mice.

    Science.gov (United States)

    Lee, Boo Hyeong; Lee, Jae Soon; Kim, Young Chul

    2016-04-01

    The purpose of this study was to determine the hair growth effects of lavender oil (LO) in female C57BL/6 mice. The experimental animals were divided into a normal group (N: saline), a vehicle control group (VC: jojoba oil), a positive control group (PC: 3% minoxidil), experimental group 1 (E1: 3% LO), and experimental group 2 (E2: 5% LO). Test compound solutions were topically applied to the backs of the mice (100 μL per application), once per day, 5 times a week, for 4 weeks. The changes in hair follicle number, dermal thickness, and hair follicle depth were observed in skin tissues stained with hematoxylin and eosin, and the number of mast cells was measured in the dermal and hypodermal layers stained with toluidine blue. PC, E1, and E2 groups showed a significantly increased number of hair follicles, deepened hair follicle depth, and thickened dermal layer, along with a significantly decreased number of mast cells compared to the N group. These results indicated that LO has a marked hair growth-promoting effect, as observed morphologically and histologically. There was no significant difference in the weight of the thymus among the groups. However, both absolute and relative weights of the spleen were significantly higher in the PC group than in the N, VC, E1, or E2 group at week 4. Thus, LO could be practically applied as a hair growth-promoting agent.

  2. Hair dye poisoning

    Science.gov (United States)

    Hair tint poisoning ... Different types of hair dye contain different harmful ingredients. The harmful ingredients in permanent dyes are: Naphthylamine Other aromatic amino compounds Phenylenediamines Toluene ...

  3. Comparative Hair Restorer Efficacy of Medicinal Herb on Nude (Foxn1nu Mice

    Directory of Open Access Journals (Sweden)

    Shahnaz Begum

    2014-01-01

    Full Text Available Eclipta alba (L. Hassk, Asiasarum sieboldii (Miq. F. Maek (Asiasari radix, and Panax ginseng C. A. Mey (red ginseng are traditionally acclaimed for therapeutic properties of various human ailments. Synergistic effect of each standardized plant extract was investigated for hair growth potential on nude mice, as these mutant mice genetically lack hair due to abnormal keratinization. Dried plant samples were ground and extracted by methanol. Topical application was performed on the back of nude mice daily up to completion of two hair growth generations. The hair density and length of Eclipta alba treated mice were increased significantly P>0.001 than control mice. Hair growth area was also distinctly visible in Eclipta alba treated mice. On the other hand, Asiasari radix and Panax ginseng treated mice developing hair loss were recognized from the abortive boundaries of hair coverage. Histomorphometric observation of nude mice skin samples revealed an increase in number of hair follicles (HFs. The presence of follicular keratinocytes was confirmed by BrdU labeling, S-phase cells in HFs. Therefore, Eclipta alba extract and/or phytochemicals strongly displayed incomparability of hair growth promotion activity than others. Thus, the standardized Eclipta alba extract can be used as an effective, alternative, and complementary treatment against hair loss.

  4. Human platelet lysate versus minoxidil stimulates hair growth by activating anagen promoting signaling pathways.

    Science.gov (United States)

    Dastan, Maryam; Najafzadeh, Nowruz; Abedelahi, Ali; Sarvi, Mohammadreza; Niapour, Ali

    2016-12-01

    Minoxidil and human platelet lysate (HPL) are commonly used to treat patients with hair loss. However, the roles of HPL versus minoxidil in hair follicle biology largely remain unknown. Here, we hypothesized that bulge and dermal papilla (DP) cells may express specific genes, including Kras, Erk, Akt, Shh and β-catenin after exposure to minoxidil or HPL. The mouse hair follicles were isolated on day 10 after depilation and bulge or DP regions were dissected. The bulge and DP cells were cultured for 14days in DMEM/F12 medium. Then, the cells were treated with 100μM minoxidil and 10% HPL for 10 days. Nuclear morphology was identified using DAPi staining. Reverse transcriptase and real-time polymerase chain reaction (PCR) analysis were also performed to examine the expression of Kras, Erk, Akt, Shh and β-catenin mRNA levels in the treated bulge and DP regions after organ culture. Here, we found that minoxidil influences bulge and DP cell survival (Pminoxidil treatment in both bulge and DP cells. HPL mediated Erk upregulation in both bulge and DP cells (Pminoxidil-treated bulge cells. In contrast, the expression of β-cateinin and Shh in the DP cells was not meaningfully increased after treatment with HPL. Our results suggest that minoxidil and HPL can promote hair growth by activating the main anagen inducing signaling pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Effect of hair care and hair cosmetics on the concentrations of fatty acid ethyl esters in hair as markers of chronically elevated alcohol consumption.

    Science.gov (United States)

    Hartwig, Sven; Auwärter, Volker; Pragst, Fritz

    2003-01-28

    Fatty acid ethyl esters (FAEE) can be used as alcohol markers in hair. It was investigated in this study whether this diagnostic method is disturbed by hair care and hair cosmetics. Traces of ethyl myristate, ethyl palmitate, ethyl oleate and ethyl stearate were detected in all of 49 frequently applied hair care products by headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The highest concentration was 0.003% in a hair wax. From experiments with separated hair samples of alcoholics as well as from the evaluation of the FAEE concentrations and the data about hair care of 75 volunteers (alcoholics, social drinkers and teetotalers) follows that usual shampooing, permanent wave, dyeing, bleaching or shading are of minor importance as compared to the drinking amount and other individual features. However, false positive results were found after daily treatment with a hair lotion containing 62.5% ethanol, with a deodorant and with a hair spray. As an explanation, it is assumed that FAEE are formed in the sebum glands also after regular topical application of products with a higher ethanol content.

  6. The longest telomeres: a general signature of adult stem cell compartments

    Science.gov (United States)

    Flores, Ignacio; Canela, Andres; Vera, Elsa; Tejera, Agueda; Cotsarelis, George; Blasco, María A.

    2008-01-01

    Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age. PMID:18283121

  7. Evolution of vertebrate mechanosensory hair cells and inner ears: toward identifying stimuli that select mutation driven altered morphologies

    Science.gov (United States)

    Fritzsch, Bernd; Straka, Hans

    2014-01-01

    Among the major distance senses of vertebrates, the ear is unique in its complex morphological changes during evolution. Conceivably, these changes enable the ear to adapt toward sensing various physically well-characterized stimuli. This review develops a scenario that integrates sensory cell with organ evolution. We propose that molecular and cellular evolution of the vertebrate hair cells occurred prior to the formation of the vertebrate ear. We previously proposed that the genes driving hair cell differentiation, were aggregated in the otic region through developmental re-patterning that generated a unique vertebrate embryonic structure, the otic placode. In agreement with the presence of graviceptive receptors in many vertebrate outgroups, it is likely that the vertebrate ear originally functioned as a simple gravity-sensing organ. Based on the rare occurrence of angular acceleration receptors in vertebrate outgroups, we further propose that the canal system evolved with a more sophisticated ear morphogenesis. This evolving morphogenesis obviously turned the initial otocyst into a complex set of canals and recesses, harboring multiple sensory epithelia each adapted to the acquisition of a specific aspect of a given physical stimulus. As support for this evolutionary progression, we provide several details of the molecular basis of ear development. PMID:24281353

  8. Essential of Hair Care Cosmetics

    Directory of Open Access Journals (Sweden)

    Aurora Alessandrini

    2016-09-01

    Full Text Available Nowadays, hair care and style play a very important role in people’s physical aspect and self-perception. Hair cosmetics can be distinguished into two main categories: cosmetics with temporary effect on the hair, for example shampoos, conditioners, sprays, and temporary colors; and cosmetics with permanent effect on the hair, such as permanent waves, relaxers, bleaches and permanent colors. These cosmetic procedures may induce hair abnormalities. We provide an overview on the most important characteristics of these procedures, analyzing components and effects on the hair. Finally, we evaluated new camouflage techniques and tattoo scalp.

  9. Hair growth-promoting effect of Aconiti Ciliare Tuber extract mediated by the activation of Wnt/β-catenin signaling.

    Science.gov (United States)

    Park, Phil-June; Moon, Byoung-San; Lee, Soung-Hoon; Kim, Su-Na; Kim, Ah-Reum; Kim, Hyung-Jun; Park, Won-Seok; Choi, Kang-Yell; Cho, Eun-Gyung; Lee, Tae Ryong

    2012-11-02

    The activation of Wnt/β-catenin signaling pathway plays an important role in hair follicle morphogenesis by stimulating bulge stem cells. This study was to obtain the activator of Wnt/β-catenin signaling pathway from natural products and to determine whether this activator can induce anagen hair growth in mice. To identify materials that activate Wnt/β-catenin signaling pathway, 800 natural product extracts were screened using pTOPFlash assay and neural progenitor cell (NPC) differentiation assay. A selected extract was further tested for its effects on alkaline phosphatase (ALP) activity in human immortalized dermal papilla cell (iDPC) and the proliferation in iDPC and immortalized rat vibrissa DPC (RvDP). Finally, hair growth-promoting effects were evaluated in the dorsal skin of C57BL/6 mice. Aconiti Ciliare Tuber (ACT) extract was one of the most active materials in both pTOPFlash and NPC differentiation assays. It promoted the differentiation of NPC cells even under proliferation-stimulating conditions (basic fibroblast growth factor: bFGF). It also increased ALP activity and proliferation of iDPC in dose-dependent manners, and it stimulated the induction of the anagen hair growth in C57BL/6 mice. These results suggest that ACT extract activates the Wnt/β-catenin signaling pathway by enhancing β-catenin transcription and has the potential to promote the induction of hair growth via activation of the stem cell activity of the dermal papilla cells. This is the first report indicating benefits of ACT extract in hair loss prevention by triggering the activation of Wnt/β-catenin signaling pathway and induction of the anagen hair growth in mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Interactions between Hair Cells Shape Spontaneous Otoacoustic Emissions in a Model of the Tokay Gecko's Cochlea

    OpenAIRE

    Gelfand, Michael; Piro, Oreste; Magnasco, Marcelo O.; Hudspeth, A. J.

    2010-01-01

    Background The hearing of tetrapods including humans is enhanced by an active process that amplifies the mechanical inputs associated with sound, sharpens frequency selectivity, and compresses the range of responsiveness. The most striking manifestation of the active process is spontaneous otoacoustic emission, the unprovoked emergence of sound from an ear. Hair cells, the sensory receptors of the inner ear, are known to provide the energy for such emissions; it is unclear, though, how ens...

  11. A new Gsdma3 mutation affecting anagen phase of first hair cycle

    International Nuclear Information System (INIS)

    Tanaka, Shigekazu; Tamura, Masaru; Aoki, Aya; Fujii, Tomoaki; Komiyama, Hiromitsu; Sagai, Tomoko; Shiroishi, Toshihiko

    2007-01-01

    Recombination-induced mutation 3 (Rim3) is a spontaneous mouse mutation that exhibits dominant phenotype of hyperkeratosis and hair loss. Fine linkage analysis of Rim3 and sequencing revealed a novel single point mutation, G1124A leading to Ala348Thr, in Gsdma3 in chromosome 11. Transgenesis with BAC DNA harboring the Rim3-type Gsdma3 recaptured the Rim3 phenotype, providing direct evidence that Gsdma3 is the causative gene of Rim3. We examined the spatial expression of Gsdma3 and characterized the Rim3 phenotype in detail. Gsdma3 is expressed in differentiated epidermal cells in the skin, but not in the proliferating epidermal cells. Histological analysis of Rim3 mutant showed hyperplasia of the epidermal cells in the upper hair follicles and abnormal anagen phase at the first hair cycle. Furthermore, immunohistochemical analysis revealed hyperproliferation and misdifferentiation of the upper follicular epidermis in Rim3 mutant. These results suggest that Gsdma3 is involved in the proliferation and differentiation of epidermal stem cells

  12. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  13. The Effect of Autologous Activated Platelet Rich Plasma (AA-PRP Injection on Pattern Hair Loss: Clinical and Histomorphometric Evaluation

    Directory of Open Access Journals (Sweden)

    V. Cervelli

    2014-01-01

    Full Text Available To investigate the safety and clinical efficacy of AA-PRP injections for pattern hair loss. AA-PRP, prepared from a small volume of blood, was injected on half of the selected patients’ scalps with pattern hair loss. The other half was treated with placebo. Three treatments were given for each patient, with intervals of 1 month. The endpoints were hair re-growth, hair dystrophy as measured by dermoscopy, burning or itching sensation, and cell proliferation as measured by Ki-67 evaluation. At the end of the 3 cycles of treatment, the patients presented clinical improvement in the mean number of hairs, with a mean increase of 18.0 hairs in the target area, and a mean increase in total hair density of 27.7 ( number of hairs/cm2 compared with baseline values. Microscopic evaluation showed the increase of epidermis thickness and of the number of hair follicles two weeks after the last AA-PRP treatment compared to baseline value (P<0.05. We also observed an increase of Ki67+ keratinocytes of epidermis and of hair follicular bulge cells and a slight increase of small blood vessels around hair follicles in the treated skin compared to baseline (P<0.05.

  14. Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction.

    Science.gov (United States)

    Chen, Wei; Yang, Jie; Chen, Shuhua; Xiang, Hong; Liu, Hengdao; Lin, Dan; Zhao, Shaoli; Peng, Hui; Chen, Pan; Chen, Alex F; Lu, Hongwei

    2017-11-01

    Mitochondrial Ca 2+ overload is implicated in hyperglycaemia-induced endothelial cell dysfunction, but the key molecular events responsible remain unclear. We examined the involvement of mitochondrial calcium uniporter, which mediates mitochondrial Ca 2+ uptake, in endothelial cell dysfunction resulting from high-glucose treatment. Human umbilical vein endothelial cells were exposed to various glucose concentrations and to high glucose (30 mM) following mitochondrial calcium uniporter inhibition or activation with ruthenium red and spermine, respectively. Subsequently, mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA and protein expression was measured by real-time polymerase chain reaction and western blotting. Ca 2+ concentrations were analysed by laser confocal microscopy, and cytoplasmic and mitochondrial oxidative stress was detected using 2',7'-dichlorofluorescein diacetate and MitoSOX Red, respectively. Apoptosis was assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and a wound-healing assay was performed using an in vitro model. High glucose markedly upregulated mitochondrial calcium uniporter and mitochondrial calcium uniporter regulator 1 messenger RNA expression, as well as protein production, in a dose- and time-dependent manner with a maximum effect demonstrated at 72 h and 30 mM glucose concentration. Moreover, high-glucose treatment significantly raised both mitochondrial and cytoplasmic Ca 2+ and reactive oxygen species levels, increased apoptosis and compromised wound healing (all p calcium uniporter, respectively. Mitochondrial calcium uniporter plays an important role in hyperglycaemia-induced endothelial cell dysfunction and may constitute a therapeutic target to reduce vascular complications in diabetes.

  15. Dynamics of Lgr6+ Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis

    Directory of Open Access Journals (Sweden)

    Anja Füllgrabe

    2015-11-01

    Full Text Available The dynamics and interactions between stem cell pools in the hair follicle (HF, sebaceous gland (SG, and interfollicular epidermis (IFE of murine skin are still poorly understood. In this study, we used multicolor lineage tracing to mark Lgr6-expressing basal cells in the HF isthmus, SG, and IFE. We show that these Lgr6+ cells constitute long-term self-renewing populations within each compartment in adult skin. Quantitative analysis of clonal dynamics revealed that the Lgr6+ progenitor cells compete neutrally in the IFE, isthmus, and SG, indicating population asymmetry as the underlying mode of tissue renewal. Transcriptional profiling of Lgr6+ and Lgr6− cells did not reveal a distinct Lgr6-associated gene expression signature, raising the question of whether Lgr6 expression requires extrinsic niche signals. Our results elucidate the interrelation and behavior of Lgr6+ populations in the IFE, HF, and SG and suggest population asymmetry as a common mechanism for homeostasis in several epithelial skin compartments.

  16. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease

    NARCIS (Netherlands)

    Krenning, Guido; Dankers, Patricia Y. W.; Drouven, Johannes W.; Waanders, Femke; Franssen, Casper F. M.; van Luyn, Marja J. A.; Harmsen, Martin C.; Popa, Eliane R.

    Krenning G, Dankers PY, Drouven JW, Waanders F, Franssen CF, van Luyn MJ, Harmsen MC, Popa ER. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. Am J Physiol Renal Physiol 296: F1314-F1322, 2009. First published April 1, 2009; doi:

  17. Association Between Human Hair Loss and the Expression Levels of Nucleolin, Nucleophosmin, and UBTF Genes.

    Science.gov (United States)

    Tasdemir, Sener; Eroz, Recep; Dogan, Hasan; Erdem, Haktan Bagis; Sahin, Ibrahim; Kara, Murat; Engin, Ragip Ismail; Turkez, Hasan

    2016-04-01

    Nucleolar organizer regions, also known as argyrophilic nucleolar organizer regions, are associated with ribosomal genes. The main function of the nucleolus is the rapid production of ribosomal subunits, a process that must be highly regulated to provide the appropriate levels for cellular proliferation and cell growth. There are no studies in the literature addressing the expression and function of nucleolar component proteins, including nucleophosmin, nucleolin and the upstream binding transcription factor (UBTF), in human follicular hair cells. Nineteen healthy males who had normal and sufficient hair follicles on the back of the head, but exhibited hair loss on the frontal/vertex portions of the head and 14 healthy males without hair loss were included in the current study. Gene expression levels were measured by relative quantitative real time polymerase chain reaction. In the individuals suffering from alopecia, the total expression levels of nucleolin, nucleophosmin, and UBTF were lower in normal sites than in hair loss sites. Strong expression level correlations were detected between: nucleophosmin and nucleolin; nucleophosmin and UBTF, and nucleolin and UBTF for both groups. There was an association between human hair loss and the expression levels of nucleolin, nucleophosmin, and UBTF genes.

  18. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    Science.gov (United States)

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Hair straightener poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002706.htm Hair straightener poisoning To use the sharing features on this page, please enable JavaScript. Hair straightener poisoning occurs when someone swallows products that ...

  20. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  1. Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis.

    Science.gov (United States)

    Constantinescu, Andrei Alexandru; Gleizes, Céline; Alhosin, Mahmoud; Yala, Elhassan; Zobairi, Fatiha; Leclercq, Alexandre; Stoian, Gheorghe; Mitrea, Ioan Liviu; Prévost, Gilles; Toti, Florence; Kessler, Laurence

    2014-03-01

    Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF. MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172. Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion. During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  2. Diseases that turn African hair silky.

    Science.gov (United States)

    Ajose, Frances O A

    2012-11-01

    African hair in its natural state poses tenacious grooming challenges; consequently a large portion of the African cosmetic industry is focused on means to relax the tight curls of African hair to make the hair more manageable. In malnourished and hypoproteinemic states, African hair straightens in an uncomplimentary manner. Recently, we observed that in certain diseases African hair changes to a desirable silky wavy texture. To identify the diseases that turn African hair silky and their parameters we examined 5612 dermatology patients at a tertiary hospital in Nigeria. We then studied the clinical and basic laboratory parameters of those patients whose diseases were accompanied by the silky hair change. Silky hair change similar to the hair of the African neonatal child was observed in five diseases, namely AIDS, rheumatoid arthritis, systemic lupus erythematosus, pulmonary tuberculosis with cachexia, and Behçet's disease. Our study identified retrogression of African hair to the neonatal structure in five diseases. Anemia of chronic illness, high erythrocyte sedimentation rate, and mild hypocalcemia were significant laboratory parameters. This is an important observation, which should excite and advance research into the nature and structure of African hair. The causes of structural hair changes should include these five diseases. © 2012 The International Society of Dermatology.

  3. Systemic causes of hair loss.

    Science.gov (United States)

    Lin, Richard L; Garibyan, Lilit; Kimball, Alexandra B; Drake, Lynn A

    2016-09-01

    Hair loss is both a common chief complaint by patients and a clinical challenge for physicians, especially general practitioners, yet few dermatological problems yield as much patient satisfaction when resolved as hair loss. The diagnosis is often attributed to androgen-related hair loss, while other causes, some of which are life-threatening but treatable, are overlooked. We searched for relevant literature on hair loss and supported these findings with our clinical experience to identify seven major systemic etiologies of hair loss, ranging from infectious agents to consumption of unsafe supplements. Many causes are only described in the literature through case studies, though some original articles and meta-analyses are available. Careful history taking, proper examination techniques, and judicious use of laboratory tests are essential to reach at the correct diagnosis in a cost-effective manner when performing patient work-up. Such methodical evaluation of hair loss can result in the appropriate treatment plan and provide significant patient satisfaction. Key messages Hair loss is a common chief complaint and a difficult challenge for both general practitioners and dermatology consultants. We identified seven major categories of systemic hair loss etiology and present a framework for their clinical evaluation. A methodical approach to hair loss can result in the appropriate treatment plan and provide significant patient satisfaction.

  4. Calcium-Induced calcium release during action potential firing in developing inner hair cells.

    Science.gov (United States)

    Iosub, Radu; Avitabile, Daniele; Grant, Lisa; Tsaneva-Atanasova, Krasimira; Kennedy, Helen J

    2015-03-10

    In the mature auditory system, inner hair cells (IHCs) convert sound-induced vibrations into electrical signals that are relayed to the central nervous system via auditory afferents. Before the cochlea can respond to normal sound levels, developing IHCs fire calcium-based action potentials that disappear close to the onset of hearing. Action potential firing triggers transmitter release from the immature IHC that in turn generates experience-independent firing in auditory neurons. These early signaling events are thought to be essential for the organization and development of the auditory system and hair cells. A critical component of the action potential is the rise in intracellular calcium that activates both small conductance potassium channels essential during membrane repolarization, and triggers transmitter release from the cell. Whether this calcium signal is generated by calcium influx or requires calcium-induced calcium release (CICR) is not yet known. IHCs can generate CICR, but to date its physiological role has remained unclear. Here, we used high and low concentrations of ryanodine to block or enhance CICR to determine whether calcium release from intracellular stores affected action potential waveform, interspike interval, or changes in membrane capacitance during development of mouse IHCs. Blocking CICR resulted in mixed action potential waveforms with both brief and prolonged oscillations in membrane potential and intracellular calcium. This mixed behavior is captured well by our mathematical model of IHC electrical activity. We perform two-parameter bifurcation analysis of the model that predicts the dependence of IHCs firing patterns on the level of activation of two parameters, the SK2 channels activation and CICR rate. Our data show that CICR forms an important component of the calcium signal that shapes action potentials and regulates firing patterns, but is not involved directly in triggering exocytosis. These data provide important insights

  5. Managing hair loss in midlife women.

    Science.gov (United States)

    Mirmirani, Paradi

    2013-02-01

    Hair is considered one of the most defining aspects of human appearance. Hair loss, or alopecia in women is often met with significant emotional distress and anxiety. In midlife, women may encounter various hormonal and age-related physiologic changes that can lead to alterations in hair texture and growth. The most significant hormonal alteration is the onset of menopause in which there is a cessation of ovarian estrogen production. This decrease in estrogen is known to have deleterious effects on the skin and cutaneous appendages. As our understanding of the molecular and hormonal controls on the hair follicle has grown, there has been increased interest in the various modulators of hair growth, including the potential role of estrogen. Further study of hair changes in midlife women provides an important opportunity for identification of the complex regulation of hair growth as well as identification of treatment targets that may specifically benefit women. In this review, management of hair loss in midlife women is discussed with a focus on three most commonly encountered clinical conditions: female pattern hair loss, hair shaft alterations due to hair care, and telogen effluvium. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Hair-on-hair static friction coefficient can be determined by tying a knot.

    Science.gov (United States)

    Chevalier, Nicolas R

    2017-11-01

    Characterizing the tribological properties of the hair-hair interface is important to quantify the manageability of hair and to assess the performance of hair care products. Audoly et al. (Phys. Rev. Lett. 99, 164301, 2007) derived an equation relating the self-friction coefficient of an elastic fiber to the dimensions of a simple, relaxed overhand knot made from this fiber. I experimentally tested and validated their equation using nylon thread and an independent measurement of its self-friction coefficient. I show that this methodology can be applied to provide high-throughput data on the static self-friction coefficient of single hair fibers in various conditions and to quantitatively assess how hair care treatments (conditioner, relaxant) alter frictional properties. I find that treatment of hair with 1M sodium hydroxide leads to a quick, irreversible self-friction coefficient increase; the resulting fine frictional fibers can be used to form very small knots for microsurgical vessel and organ ligature in medicine or embryology. The relaxed overhand knot method can more generally be used to measure the self-friction coefficients of a wide range of elastic fibers from the nano- (e.g. proteins, nanotubes) to the macro-scale (e.g. textile fiber, fiberglass). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Black Hole's 1/N Hair

    CERN Document Server

    Dvali, Gia

    2013-01-01

    According to the standard view classically black holes carry no hair, whereas quantum hair is at best exponentially weak. We show that suppression of hair is an artifact of the semi-classical treatment and that in the quantum picture hair appears as an inverse mass-square effect. Such hair is predicted in the microscopic quantum description in which a black hole represents a self-sustained leaky Bose-condensate of N soft gravitons. In this picture the Hawking radiation is the quantum depletion of the condensate. Within this picture we show that quantum black hole physics is fully compatible with continuous global symmetries and that global hair appears with the strength B/N, where B is the global charge swallowed by the black hole. For large charge this hair has dramatic effect on black hole dynamics. Our findings can have interesting astrophysical consequences, such as existence of black holes with large detectable baryonic and leptonic numbers.

  8. Grey Hair Evlsion Technique For Evaluating the Effect of Drugs For the Treatment of Premature Grey Hairs

    Directory of Open Access Journals (Sweden)

    J S Pasricha

    1985-01-01

    Full Text Available An improved method for evaluating the effect of treatment for premature grey hairs is described. The method consists of pulling out all the grey hairs in a patient and counting the number removed. Simultaneously, the converted hairs are also snipped at the grey-black junction and counted. After a gap of 3 months, the survey is repeated to count the number of hairs which have regrowing as grey hairs, the hairs which have become grey and also the hairs which have got converted into black during this period. Such surveys are repeated at 3 months intervals over a period of several years to see the progress of greying of hair in an individual and to evaluate the effect of various therapeutic procedures.

  9. Macroenvironmental regulation of hair cycling and collective regenerative behavior.

    Science.gov (United States)

    Plikus, Maksim V; Chuong, Cheng-Ming

    2014-01-01

    The hair follicle (HF) regeneration paradigm provides a unique opportunity for studying the collective behavior of stem cells in living animals. Activation of HF stem cells depends on the core inhibitory BMP and activating WNT signals operating within the HF microenvironment. Additionally, HFs receive multilayered signaling inputs from the extrafollicular macroenvironment, which includes dermis, adipocytes, neighboring HFs, hormones, and external stimuli. These activators/inhibitors are integrated across multiple stem-cell niches to produce dynamic hair growth patterns. Because of their pigmentation, these patterns can be easily studied on live shaved animals. Comparing to autonomous regeneration of one HF, populations of HFs display coupled decision making, allowing for more robust and adaptable regenerative behavior to occur collectively. The generic cellular automata model used to simulate coordinated HF cycling here can be extended to study population-level behavior of other complex biological systems made of cycling elements.

  10. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    Science.gov (United States)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  11. Changes in the sebaceous gland in patients with male pattern hair loss (androgenic alopecia).

    Science.gov (United States)

    Kure, Katsuhiro; Isago, Tsukasa; Hirayama, Takeshi

    2015-09-01

    The sebaceous gland and the follicular bulge region have important role in biology of the hair. They initiate destruction of the hair follicle both in human and animal models in certain conditions. The morphometric feature of the sebaceous gland is not well understood so as the distribution of the bulge stem cells in pathological conditions of male pattern hair loss or androgenic alopecia (AGA). The authors perform morphometric analysis of the sebaceous gland in AGA patients and also study distribution of the follicular stem cells in the bulge region in these populations. Two hundred and fifty cases of glass slide specimen from Japanese patients with male pattern hair loss were reviewed. Among these, 23 cases of the longitudinal (vertical) sections of the scalp skin with diagnosis of AGA were found and analyzed for the morphometric characteristics. Each sebaceous gland area was measured using NIH imagej system and statistically analyzed. For the identification of the follicular bulge region, an immunohistochemistry using anticytokeratin 15 (C8/144B clone) was carried out in the cases of AGA. The sebaceous gland area of the AGA group was noticeably increased, while the size of each sebaceous gland remains unchanged. It has more lobules in the hair follicular unit in the AGA population. In the immunohistochemistry, the follicular stem cells are present in the bulge regions in cases of AGA. The overgrowth (multilobulation) of the sebaceous gland and relative preservation of the follicular stem cells suggest that the changes in the sebaceous gland could be an important factor in the pathology of AGA. © 2015 Wiley Periodicals, Inc.

  12. Photodynamic therapy for hair removal

    Directory of Open Access Journals (Sweden)

    Mohamed H. M. Ali

    2013-05-01

    Full Text Available Background: Unwanted hair is one of the most common medical problems affecting women of reproductive age inducing a lot of psychological stress and threatening their femininity and self-esteem. Old methods of removing unwanted hair include shaving, waxing, chemical depilation, and electrolysis, all of which have temporary results. However laser-assisted hair removal is the most efficient method of long-term hair removal currently available. It is desirable to develop a reduced cost photodynamic therapy (PDT system whose properties should include high efficiency and low side-effects. Method: Mice skin tissues were used in this study and divided into six groups such as controls, free methylene blue (MB incubation, liposome methylene blue (MB incubation, laser without methylene blue (MB, free methylene blue (MB for 3 and 4 hrs and laser, liposome methylene blue (MB for 3 hrs and laser. Methylene blue (MBwas applied to wax epilated areas. The areas were irradiated with CW He-Ne laser system that emits orange-red light with wavelength 632.8 nm and 10 mW at energy density of 5 J/ cm2 for 10 minutes. The UV-visible absorption spectrum was collected by Cary spectrophotometer. Results: Methylene blue (MB is selectively absorbed by actively growing hair follicles due to its cationic property. Methylene blue (MBuntreated sections showed that hair follicle and sebaceous gland are intact and there is no change due to the laser exposure. Free methylene blue (MB sections incubated for 3 hrs showed that He:Ne laser induced destruction in hair follicles, leaving an intact epidermis. Treated section with free methylene blue (MB for 4 hrs showed degeneration and necrosis in hair follicle, leaving an intact epidermis. Liposomal methylene blue (MB sections incubated for 3 hrs showed He:Ne laser induced destruction in hair follicles with intradermal leucocytic infiltration. Conclusions: Low power CW He:Ne laser and methylene blue (MB offered a successful PDT system

  13. The Changes of Gene Expression on Human Hair during Long-Spaceflight

    Science.gov (United States)

    Terada, Masahiro; Mukai, Chiaki; Ishioka, Noriaki; Majima, Hideyuki J.; Yamada, Shin; Seki, Masaya; Takahashi, Rika; Higashibata, Akira; Ohshima, Hiroshi; Sudoh, Masamichi; Minamisawa, Susumu

    Hair has many advantages as the experimental sample. In a hair follicle, hair matrix cells actively divide and these active changes sensitively reflect physical condition on human body. The hair shaft records the metabolic conditions of mineral elements in our body. From human hairs, we can detect physiological informations about the human health. Therefore, we focused on using hair root analysis to understand the effects of spaceflight on astronauts. In 2009, we started a research program focusing on the analysis of astronauts’ hairs to examine the effects of long-term spaceflight on the gene expression in the human body. We want to get basic information to invent the effectivly diagnostic methods to detect the health situations of astronauts during space flight by analyzing human hair. We extracted RNA form the collected samples. Then, these extracted RNA was amplified. Amplified RNA was processed and hybridized to the Whole Human Genome (4×44K) Oligo Microarray (Agilent Technologies) according to the manufacturer’s protocol. Slide scanning was performed using the Agilent DNA Microarray Scanner. Scanning data were normalized with Agilent’s Feature Extraction software. Data preprocessing and analysis were performed using GeneSpring software 11.0.1. Next, Synthesis of cDNA (1 mg) was carried out using the PrimeScript RT reagent Kit (TaKaRa Bio) following the manufacturer’s instructions. The qRT-PCR experiment was performed with SYBR Premix Ex Taq (TaKaRa Bio) using the 7500 Real-Time PCR system (Applied Biosystems). We detected the changes of some gene expressions during spaceflight from both microarray and qRT-PCR data. These genes seems to be related with the hair proliferation. We believe that these results will lead to the discovery of the important factor effected during space flight on the hair.

  14. Estrogenic and anti-estrogenic activity of off-the-shelf hair and skin care products.

    Science.gov (United States)

    Myers, Sharon L; Yang, Chun Z; Bittner, George D; Witt, Kristine L; Tice, Raymond R; Baird, Donna D

    2015-05-01

    Use of personal care products is widespread in the United States but tends to be greater among African Americans than whites. Of special concern is the possible hazard of absorption of chemicals with estrogenic activity (EA) or anti-EA (AEA) in these products. Such exposure may have adverse health effects, especially when it occurs during developmental windows (e.g., prepubertally) when estrogen levels are low. We assessed the ethanol extracts of eight commonly used hair and skin products popular among African Americans for EA and AEA using a cell proliferation assay with the estrogen sensitive MCF-7:WS8 cell line derived from a human breast cancer. Four of the eight personal care products tested (Oil Hair Lotion, Extra-dry Skin Lotion, Intensive Skin Lotion, Petroleum Jelly) demonstrated detectable EA, whereas three (Placenta Hair Conditioner, Tea-Tree Hair Conditioner, Cocoa Butter Skin Cream) exhibited AEA. Our data indicate that hair and skin care products can have EA or AEA, and suggest that laboratory studies are warranted to investigate the in vivo activity of such products under chronic exposure conditions as well as epidemiologic studies to investigate potential adverse health effects that might be associated with use of such products.

  15. Noise-induced nitrotyrosine increase and outer hair cell death in guinea pig cochlea.

    Science.gov (United States)

    Han, Wei-ju; Shi, Xiao-rui; Nuttall, Alfred

    2013-01-01

    Modern research has provided new insights into the biological mechanisms of noise-induced hearing loss, and a number of studies showed the appearance of increased reactive oxygen species (ROS) and reactive nitrogen species (RNS) during and after noise exposure. This study was designed to investigate the noise exposure induced nitrotyrosine change and the mechanism of outer hair cells death in guinea pig cochlea. Thirty guinea pigs were used in this study. The experimental animals were either exposed for 4 hours per day to broadband noise at 122 dB SPL (A-weighted) for 2 consecutive days or perfused cochleae with 5 mg/ml of the SIN1 solutions, an exogenous NO and superoxide donor, for 30 minutes. Then the cochleae of the animals were dissected. Propidium iodide (PI), a DNA intercalating fluorescent probe, was used to trace morphological changes in OHC nuclei. The distribution of nitrotyrosine (NT) in the organ of Corti and the cochlear lateral wall tissue from the guinea pigs were examined using fluorescence immunohistochemistry method. Whole mounts of organ of Corti were prepared. Morphological and fluorescent changes were examined under a confocal microscope. Either after noise exposure or after SIN1 perfusion, outer hair cells (OHCs) death with characteristics of both apoptotic and necrotic degradation appeared. Nitrotyrosine immunolabeling could be observed in the OHCs from the control animals. After noise exposure, NT immunostaining became much greater than the control animals in OHCs. The apoptotic OHC has significant increase of nitrotyrosine in and around the nucleus following noise exposure. In the normal later wall of cochleae, relatively weak nitrotyrosine immunolabeling could be observed. After noise exposure, nitrotyrosine immunoactivity became stronger in stria vascularis. Noise exposure induced increase of nitrotyrosine production is associated with OHCs death suggesting reactive nitrogen species participation in the cochlear pathophysiology of noise

  16. The Promoting Effect of Ishige sinicola on Hair Growth

    Directory of Open Access Journals (Sweden)

    Hee-Kyoung Kang

    2013-05-01

    Full Text Available This study was conducted to evaluate the promoting effect of Ishige sinicola, an alga native to Jeju Island, Korea, on hair growth. When vibrissa follicles were cultured in the presence of I. sinicola extract for 21 days, I. sinicola extract increased hair-fiber length. After topical application of I. sinicola extract onto the back of C57BL/6 mice, anagen progression of the hair shaft was induced. The I. sinicola extract significantly inhibited the activity of 5α-reductase. Treatment of immortalized vibrissa dermal papilla cells (DPCs with I. sinicola extract resulted in increase of cell proliferation, which was accompanied by the increase of phospho-GSK3β level, β-catenin, Cyclin E and CDK2, whereas p27kip1 was down-regulated. In particular, octaphlorethol A, an isolated component from the I. sinicola extract, inhibited the activity of 5α-reductase and increased the proliferation of DPCs. These results suggest that I. sinicola extract and octaphlorethol A, a principal of I. sinicola, have the potential to treat alopecia via the proliferation of DPCs followed by the activation of β-catenin pathway, and the 5α-reductase inhibition.

  17. New Treatments for Hair Loss.

    Science.gov (United States)

    Vañó-Galván, S; Camacho, F

    2017-04-01

    The treatment of hair loss is an important part of clinical dermatology given the prevalence of the problem and great impact on patients' quality of life. Many new treatments have been introduced in recent years. This review summarizes the main ones in 4 groups: a) For androgenetic alopecia, we discuss new excipients for oral minoxidil, dutasteride, and finasteride as well as new forms of topical application; prostaglandin agonists and antagonists; low-level laser therapy; and regenerative medicine with Wnt signaling activators and stem cell therapy. b) For alopecia areata, Janus kinase inhibitors are reviewed. c) For frontal fibrosing alopecia, we discuss the use of antiandrogens and, for some patients, pioglitazone. d) Finally, we mention new robotic devices for hair transplant procedures and techniques for optimal follicular unit extraction. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Insights into the function and dysfunction of α-synuclein in cells

    NARCIS (Netherlands)

    Raiss, C.C.

    2015-01-01

    This thesis sheds light on the function and dysfunction of the protein α-synuclein (α-S) in the test tube and in cells and ultimately its possible involvement in Parkinson’s disease (PD). Following the introduction in Chapter 1, Chapters 2 and 3 concentrate on the investigation of the interaction

  19. Automatic hair detection in the wild

    DEFF Research Database (Denmark)

    Julian, Pauline; Dehais, Christophe; Lauze, Francois Bernard

    2010-01-01

    This paper presents an algorithm for segmenting the hair region in uncontrolled, real life conditions images. Our method is based on a simple statistical hair shape model representing the upper hair part. We detect this region by minimizing an energy which uses active shape and active contour....... The upper hair region then allows us to learn the hair appearance parameters (color and texture) for the image considered. Finally, those parameters drive a pixel-wise segmentation technique that yields the desired (complete) hair region. We demonstrate the applicability of our method on several real images....

  20. Morphogenetic Mechanisms in the Cyclic Regeneration of Hair Follicles and Deer Antlers from Stem Cells

    Science.gov (United States)

    Li, Chunyi; McMahon, Chris

    2013-01-01

    We have made comparisons between hair follicles (HFs) and antler units (AUs)—two seemingly unrelated mammalian organs. HFs are tiny and concealed within skin, whereas AUs are gigantic and grown externally for visual display. However, these two organs share some striking similarities. Both consist of permanent and cyclic/temporary components and undergo stem-cell-based organogenesis and cyclic regeneration. Stem cells of both organs reside in the permanent part and the growth centres are located in the temporary part of each respective organ. Organogenesis and regeneration of both organs depend on epithelial-mesenchymal interactions. Establishment of these interactions requires stem cells and reactive/niche cells (dermal papilla cells for HFs and epidermal cells for AUs) to be juxtaposed, which is achieved through destruction of the cyclic part to bring the reactive cells into close proximity to the respective stem cell niche. Developments of HFs and AUs are regulated by similar endocrine (particularly testosterone) and paracrine (particularly IGF1) factors. Interestingly, these two organs come to interplay during antlerogenesis. In conclusion, we believe that investigators from the fields of both HF and AU biology could greatly benefit from a comprehensive comparison between these two organs. PMID:24383056

  1. Genetic Correction of Induced Pluripotent Stem Cells From a Deaf Patient With MYO7A Mutation Results in Morphologic and Functional Recovery of the Derived Hair Cell-Like Cells.

    Science.gov (United States)

    Tang, Zi-Hua; Chen, Jia-Rong; Zheng, Jing; Shi, Hao-Song; Ding, Jie; Qian, Xiao-Dan; Zhang, Cui; Chen, Jian-Ling; Wang, Cui-Cui; Li, Liang; Chen, Jun-Zhen; Yin, Shan-Kai; Huang, Tao-Sheng; Chen, Ping; Guan, Min-Xin; Wang, Jin-Fu

    2016-05-01

    The genetic correction of induced pluripotent stem cells (iPSCs) induced from somatic cells of patients with sensorineural hearing loss (caused by hereditary factors) is a promising method for its treatment. The correction of gene mutations in iPSCs could restore the normal function of cells and provide a rich source of cells for transplantation. In the present study, iPSCs were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T; P-iPSCs), the asymptomatic father of the patient (MYO7A c.1184G>A mutation; CF-iPSCs), and a normal donor (MYO7A(WT/WT); C-iPSCs). One of MYO7A mutation sites (c.4118C>T) in the P-iPSCs was corrected using CRISPR/Cas9. The corrected iPSCs (CP-iPSCs) retained cell pluripotency and normal karyotypes. Hair cell-like cells induced from CP-iPSCs showed restored organization of stereocilia-like protrusions; moreover, the electrophysiological function of these cells was similar to that of cells induced from C-iPSCs and CF-iPSCs. These results might facilitate the development of iPSC-based gene therapy for genetic disorders. Induced pluripotent stem cells (iPSCs) were generated from a deaf patient with compound heterozygous MYO7A mutations (c.1184G>A and c.4118C>T). One of the MYO7A mutation sites (c.4118C>T) in the iPSCs was corrected using CRISPR/Cas9. The genetic correction of MYO7A mutation resulted in morphologic and functional recovery of hair cell-like cells derived from iPSCs. These findings confirm the hypothesis that MYO7A plays an important role in the assembly of stereocilia into stereociliary bundles. Thus, the present study might provide further insight into the pathogenesis of sensorineural hearing loss and facilitate the development of therapeutic strategies against monogenic disease through the genetic repair of patient-specific iPSCs. ©AlphaMed Press.

  2. Side Effects: Hair Loss (Alopecia)

    Science.gov (United States)

    Hair loss, also called alopecia, is a side effect of cancer treatments, such as chemotherapy and radiation therapy. Learn how to cope with and manage hair loss. Listen to tips from others who have experienced hair loss.

  3. Peroxidase activity in root hairs of cress (lepidium sativum L.) Cytochemical localization and radioactive labelling of wall bound peroxidase

    International Nuclear Information System (INIS)

    Zaar, K.

    1979-01-01

    The ultrastructural localization of peroxidase activity in young, growing root hairs of cress (Lepidium sativum L.) after assay with 3,3'-diaminobenzidine is reported. Prominent peroxidase activity has been found in the dictyosomes and the associated vesicles, in ribosomes on ER-cisternae, as well as in the cell wall. On the basis of both ultrastructural and cytochemical evidence it is proposed that peroxidase in root hairs is synthesized on the ER- and within dictyosome cisternae packaged and transported in secretory vesicles and extruded into the cell wall particularily at the tip region of a root hair. The kinetic of Golgi apparatus mediated peroxidasesecretion was monitored by measuring the 55 Fe protoheme content of primary cell walls. Peroxidase secretion seems to be enhanced during stress incubation in destilled water. Secretory activity in root hairs is 20 times higher than in cells of the root body. (author)

  4. Ionizing radiation induces PI3K-dependent JNK activation for amplifying mitochondrial dysfunction in human cervical cancer cells

    International Nuclear Information System (INIS)

    Kim, Min Jung; Choi, Soon Young; Bae, Sang Woo; Kang, Chang Mo; Lee, Yun Sil; Lee, Su Jae

    2005-01-01

    Ionizing radiation is one of the most commonly used treatments for a wide variety of tumors. Exposure of cells to ionizing radiation results in the simultaneous activation or down regulation of multiple signaling pathways, which play critical role in controlling cell death and cell survival after irradiation in a cell type specific manner. The molecular mechanism by which apoptotic cell death occurs in response to ionizing radiation has been widely explored but not precisely deciphered. Therefore an improved understanding of the mechanisms involved in radiation-induced apoptosis may ultimately provide novel strategies of intervention in specific signal transduction pathways to favorably alter the therapeutic ratio in the treatment of human malignancies. The aim of our investigation was to elucidate molecular mechanisms of the mitochondrial dysfunction mediated apoptotic cell death triggered by ionizing radiation in human cervical cancer cells. We demonstrated that ionizing radiation utilizes PI3K-JNK signaling pathway for amplifying mitochondrial dysfunction and susequent apoptotic cell death: We showed that PI3K-dependent JNK activation leads to transcriptional upregulation of Fas and the phosphorylation/inactivation of Bcl-2, resulting in mitochondrial dysfunction-mediated apoptotic cell death in response to ionizing radiation

  5. Plasma membrane H(+)-ATPase is involved in methyl jasmonate-induced root hair formation in lettuce (Lactuca sativa L.) seedlings.

    Science.gov (United States)

    Zhu, Changhua; Yang, Na; Ma, Xiaoling; Li, Guijun; Qian, Meng; Ng, Denny; Xia, Kai; Gan, Lijun

    2015-06-01

    Our results show that methyl jasmonate induces plasma membrane H (+) -ATPase activity and subsequently influences the apoplastic pH of trichoblasts to maintain a cell wall pH environment appropriate for root hair development. Root hairs, which arise from root epidermal cells, are tubular structures that increase the efficiency of water absorption and nutrient uptake. Plant hormones are critical regulators of root hair development. In this study, we investigated the regulatory role of the plasma membrane (PM) H(+)-ATPase in methyl jasmonate (MeJA)-induced root hair formation. We found that MeJA had a pronounced effect on the promotion of root hair formation in lettuce seedlings, but that this effect was blocked by the PM H(+)-ATPase inhibitor vanadate. Furthermore, MeJA treatment increased PM H(+)-ATPase activity in parallel with H(+) efflux from the root tips of lettuce seedlings and rhizosphere acidification. Our results also showed that MeJA-induced root hair formation was accompanied by hydrogen peroxide accumulation. The apoplastic acidification acted in concert with reactive oxygen species to modulate root hair formation. Our results suggest that the effect of MeJA on root hair formation is mediated by modulation of PM H(+)-ATPase activity.

  6. Topical Valproate Solution for Hair Growth

    Directory of Open Access Journals (Sweden)

    Anil Kakunje

    2018-05-01

    Full Text Available Valproate is used regularly in the treatment of various seizure disorders, bipolar disorder, migraine prophylaxis and off label in many other conditions. Alopecia or hair loss is cosmetic side effect of oral valproate administration. Hair loss with valproate is diffused, non-scarring and dose related. A large number of drugs may interfere with the hair cycle and produce hair loss. We have only a few drugs like Minoxidil, Finasteride used for hair regeneration and both have its own side effects and limitations. In contrast to oral ingestions of valproate causing hair loss, early experiments with topical Valproic acid cream showed hair regeneration. Valproic acid cream is currently unavailable in the market, alternatively, we do have valproate and divalproex solutions available in various strengths which have a potential to be used topically for hair regeneration. The side effects and cost of topical valproate solution could be much less than the available options in the market. Valproate solution topically has the potential to be used for hair growth.

  7. Tissue-specific B-cell dysfunction and generalized memory B-cell loss during acute SIV infection.

    Directory of Open Access Journals (Sweden)

    Sandrine Peruchon

    Full Text Available BACKGROUND: Primary HIV-infected patients display severe and irreversible damage to different blood B-cell subsets which is not restored by highly efficient anti-retroviral therapy (HAART. Because longitudinal investigations of primary HIV-infection is limited by the availability of lymphoid organs, we studied the tissue-specific B-cell dysfunctions in acutely simian immunodeficiency virus (SIV mac251-infected Cynomolgus macaques. METHODS AND FINDINGS: Experiments were performed on three groups of macaques infected for 14, 21 or 28 days and on three groups of animals treated with HAART for two-weeks either initiated at 4 h, 7 or 14 days post-infection (p.i.. We have simultaneously compared changes in B-cell phenotypes and functions and tissue organization of B-cell areas in various lymphoid organs. We showed that SIV induced a steady decline in SIgG-expressing memory (SIgD(-CD27(+ B-cells in spleen and lymph nodes during the first 4 weeks of infection, concomitant to selective homing/sequestration of B-cells to the small intestine and spleen. SIV non-specific Ig production was transiently increased before D14p.i., whereas SIV-specific Ig production was only detectable after D14p.i., coinciding with the presence of CD8(+ T-cells and IgG-expressing plasma cells within germinal centres. Transient B-cell apoptosis on D14p.i. and commitment to terminal differentiation contributed to memory B-cell loss. HAART abrogated B-cell apoptosis, homing to the small intestine and SIV-specific Ig production but had minimal effect on early Ig production, increased B-cell proportions in spleen and loss of memory B-cells. Therefore, virus-B-cell interactions and SIV-induced inflammatory cytokines may differently contribute to early B-cell dysfunction and impaired SIV/HIV-specific antibody response. CONCLUSIONS: These data establish tissue-specific impairments in B-cell trafficking and functions and a generalized and steady memory B-cell loss in secondary lymphoid

  8. Diglycolic acid inhibits succinate dehydrogenase activity in human proximal tubule cells leading to mitochondrial dysfunction and cell death.

    Science.gov (United States)

    Landry, Greg M; Dunning, Cody L; Conrad, Taylor; Hitt, Mallory J; McMartin, Kenneth E

    2013-08-29

    Diethylene glycol (DEG) is a solvent used in consumer products allowing the increased risk for consumer exposure. DEG metabolism produces two primary metabolites, 2-hydroxyethoxyacetic acid (2-HEAA) and diglycolic acid (DGA). DGA has been shown to be the toxic metabolite responsible for the proximal tubule cell necrosis seen in DEG poisoning. The mechanism of DGA toxicity in the proximal tubule cell is not yet known. The chemical structure of DGA is very similar to citric acid cycle intermediates. Studies were designed to assess whether its mechanism of toxicity involves disruption of cellular metabolic pathways resulting in mitochondrial dysfunction. First, DGA preferentially inhibited succinate dehydrogenase, including human kidney cell enzyme, but had no effect on other citric acid cycle enzyme activities. DGA produces a cellular ATP depletion that precedes cell death. Human proximal tubule (HPT) cells, pre-treated with increasing DGA concentrations, showed significantly decreased oxygen consumption. DGA did not increase lactate levels, indicating no effect on glycolytic activity. DGA increased reactive oxygen species (ROS) production in HPT cells in a concentration and time dependent manner. These results indicate that DGA produced proximal tubule cell dysfunction by specific inhibition of succinate dehydrogenase and oxygen consumption. Disruption of these processes results in decreased energy production and proximal tubule cell death. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  9. A toddler with hair fascination.

    Science.gov (United States)

    Kao, Patricia; Needlman, Robert D; Stein, Martin T

    2010-04-01

    Joseph is a 24-months old boy referred by his pediatrician because of an "obsession" with pulling and eating hair. When Joseph was 14 months old, he enjoyed touching and twirling his mother's long hair. She observed that it seemed to provide comfort to him. At 18 months, he initiated pulling out and eating his own hair, twirling his mother's hair around his thumb and then sucking on it. Currently, he searches the carpet or a hard floor and looks for hair to eat. The identical behavior is observed at daycare. Joseph's teacher commented, "He pulled hair from a girl who has the longest hair of all the children. We try to distract him from this habit, but he is not distracted for long." Less frequently, Joseph has also eaten sand, chalk, and crayons at daycare. Joseph's mother describes him as a "happy and outgoing" child who interacts with his peers and has a best friend at the daycare. There have not been recent changes or stressful events in his life. Joseph separates from his mother with ease and he sleeps comfortably through the night in his own bed. There have been no episodes of nausea, vomiting, abdominal pain, or constipation. Strands of hair are occasionally seen in the stool. Prenatal and perinatal history was unremarkable. Joseph was breast-fed for 11 months, described as an "easy" baby, achieved motor, social, and language developmental milestones at the usual time, and has been in excellent health. He lives with his mother and maternal grandparents; the biological father has never been involved in his care. At 20 months, Joseph's pediatrician suggested cutting his hair. After several haircuts, Joseph stopped pulling his own hair. However, he continued to search the floor for hair. Hemoglobin and a blood lead level were normal. Joseph appeared pleasant and friendly with normal growth parameters and facial features. He was sitting comfortably on his mother's lap, sucking on his thumb. Social interactions with his mother were appropriate and reciprocal. He

  10. Missing Strands? Dealing with Hair Loss

    Science.gov (United States)

    ... 2017 Print this issue Missing Strands? Dealing with Hair Loss En español Send us your comments Hair loss is often associated with men and aging, but ... or their treatments, and many other things cause hair loss. The most common type of hair loss is ...

  11. Hair transplantation: Standard guidelines of care

    Directory of Open Access Journals (Sweden)

    Patwardhan Narendra

    2008-03-01

    Full Text Available Hair transplantation is a surgical method of hair restoration. Physician qualification : The physician performing hair transplantation should have completed post graduation training in dermatology; he should have adequate background training in dermatosurgery at a centre that provides education training in cutaneous surgery. In addition, he should obtain specific hair transplantation training or experience at the surgical table(hands on under the supervision of an appropriately trained and experienced hair transplant surgeon. In addition to the surgical technique, training should include instruction in local anesthesia and emergency resuscitation and care. Facility : Hair transplantation can be performed safely in an outpatient day case dermatosurgical facility. The day case theatre should be equipped with facilities for monitoring and handling emergencies. A plan for handling emergencies should be in place and all nursing staff should be familiar with the emergency plan. It is preferable, but not mandatory to have a standby anesthetist. Indication for hair transplantation is pattern hair loss in males and also in females. In female pattern hair loss, investigations to rule out any underlying cause for hair loss such as anemia and thyroid deficiency should be carried out. Hair transplantation can also be performed in selected cases of scarring alopecia, eyebrows and eye lashes, by experienced surgeons. Preoperative counseling and informed consent :Detailed consent form listing details about the procedure and possible complications should be signed by the patient. The consent form should specifically state the limitations of the procedure and if more procedures are needed for proper results, it should be clearly mentioned. Patient should be provided with adequate opportunity to seek information through brochures, computer presentations, and personal discussions. Need for concomitant medical therapy should be emphasized. Patients should understand

  12. Hair Shaft Abnormality in Children: a Narrative Review

    Directory of Open Access Journals (Sweden)

    Ghasem Rahmatpour Rokni

    2017-08-01

    Full Text Available Background Hair is an ectodermal structure, and its formation is regulated by master genes important in embryology. Hair shaft consists of three major regions: the medulla, cortex and cuticle. Hair shaft abnormality will divide structural hair abnormalities into two broad categories - those associated with increased hair fragility and those not associated with increased hair fragility. We conducted a review study to assess hair shaft abnormality in children. Materials and Methods We conducted a review of all papers published on hair shaft abnormalities. A literature search was performed using PubMed, Scopus and Google Scholar on papers publish from 1990 to 2016. The search terms were: hair shaft abnormality, Hair loss, Hair fragility. All abstracts and full text English-language articles were studied. Results While common developmental and structural features are shared in hair follicles and hair shafts. Anomalies of the hair shaft are separated into those with and those without increased hair fragility. Conclusion Although hair has no vital function, it may serve as an indicator for human health. Clinical and morphological hair abnormalities can be clues to specific complex disorders. Hair shaft abnormalities can be inherited or acquired, can reflect a local problem or a systemic disease.

  13. Diagnosis of Hair Loss: Clinical features of common causes of hair loss

    OpenAIRE

    Coupe, Robert L.M.

    1992-01-01

    Common causes of hair loss include androgenic hair loss, alopecia areata, trichotillomania, tinea capitis, telogen effluvium, and traction alopecia. The author discusses their distinguishing clinical features and those of less common alopecias.

  14. Hair analysis using PIXE

    International Nuclear Information System (INIS)

    Li Hongkou.

    1983-10-01

    A simple new technique for examining single hair strands to obtain linear mass densities, longitudinal profiles and transverse distribution of each trace element is described. It is primarily based upon the PIXE technique, in combination with proton back- scattering. The three main components of this technique are: 1) An accurate way of using an interpolation method to evaluate the magnitude of the correction factor accounting for the proton energy loss and X-ray absorption in the bulk of the hair is formulated; 2) A simple method to qualitatively determine the transverse distribution of each trace element in a hair is in- troduced and proved to be effective; 3) Proton back-scattering is proved to be capable of providing an ideal linear measure of the geometric hair diameter, one of the most important parameters in quantifying the results of PIXE measurements in mass concentrations. Using the technique, a PIXE system designed and constructed for routine longitudinal scanning of single hair strands is also described. (Author)

  15. Visible-to-near IR quantum dot-based hypermulticolor high-content screening of herbal medicines for the efficacy monitoring of hair growth promotion and hair loss inhibition.

    Science.gov (United States)

    Kim, Min Jung; Lim, Chaeyun; Lee, Jun Young; Im, Kyung Ran; Yoon, Kyung-Sup; Song, Joon Myong

    2013-04-01

    There is a growing interest in alopecia prevention strategies, as the number of alopecia patients is increasing. We examine the efficacy of herbal medicine for hair growth promotion/hair loss inhibition in two cell lines via Western blot and high-content screening (HCS). Nine herbal extracts were obtained from three different herbal medicine mixtures using 3 different extraction methods. Five target proteins-IGF-1 (insulin-like growth factor-1), TGF-β2 (transforming growth factor-β2), VEGF (vascular endothelial growth factor), DKK-1 (Dickkopf-1), and Wnt5α-were observed for the assessment of hair growth promotion/hair loss inhibition efficacy. The efficacies of nine extracts were compared with minoxidil as control. Efficacy was defined as a rise in the expression levels of IGF-1, VEGF, and Wnt5α but a decrease in DKK-1 and TGF-β2. Intracellular concurrent imaging of these proteins was successfully achieved using HCS, employing visible-to-near infrared probing based on quantum-antibody conjugates and hypermulticolor imaging.

  16. Hair follicle growth by stromal vascular fraction-enhanced adipose transplantation in baldness

    Directory of Open Access Journals (Sweden)

    Perez-Meza D

    2017-07-01

    Full Text Available David Perez-Meza,1 Craig Ziering,2 Marcos Sforza,3 Ganesh Krishnan,4 Edward Ball,5 Eric Daniels6 1Ziering Medical, Marbella, Spain; 2Ziering Medical, Los Angeles, CA, USA; 3The Hospital Group, Bromsgrove, Worcestershire, 4Ziering Medical, Birmingham, 5Ziering Medical, London, UK; 6Kerastem Technologies, San Diego, CA, USA Abstract: Great interest remains in finding new and emerging therapies for the treatment of male and female pattern hair loss. The autologous fat grafting technique is >100 years old, with a recent and dramatic increase in clinical experience over the past 10–15 years. Recently, in 2001, Zuk et al published the presence of adipose-derived stem cells, and abundant research has shown that adipose is a complex, biological active, and important tissue. Festa et al, in 2011, reported that adipocyte lineage cells support the stem cell niche and help drive the complex hair growth cycle. Adipose-derived regenerative cells (also known as stromal vascular fraction [SVF] is a heterogeneous group of noncultured cells that can be reliably extracted from adipose by using automated systems, and these cells work largely by paracrine mechanisms to support adipocyte viability. While, today, autologous fat is transplanted primarily for esthetic and reconstructive volume, surgeons have previously reported positive skin and hair changes posttransplantation. This follicular regenerative approach is intriguing and raises the possibility that one can drive or restore the hair cycle in male and female pattern baldness by stimulating the niche with autologous fat enriched with SVF. In this first of a kind patient series, the authors report on the safety, tolerability, and quantitative, as well as photographic changes, in a group of patients with early genetic alopecia treated with subcutaneous scalp injection of enriched adipose tissue. The findings suggest that scalp stem cell-enriched fat grafting may represent a promising alternative approach to

  17. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes.

    Directory of Open Access Journals (Sweden)

    Heshan Peiris

    2016-05-01

    Full Text Available Type 2 diabetes (T2D is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21. To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial

  18. Radiobiology of the skin: review of some effects on epidermis and hair

    International Nuclear Information System (INIS)

    Malkinson, F.D.; Keane, J.T.

    1981-01-01

    Significant doses of ionizing radiation produce an acute skin reaction characterized by erythema, epilation, and dry or moist desquamation with or without erosions. These early acute changes are dose-dependent and reflect damage to the germinative cells of the epidermis and to the cutaneous vasculature. Studies in the pig, for example, have shown that the degenerative phase of cell loss (2-3 weeks) results from reproductive failure in germinative cells and a sharp reduction in the proliferation rate of basal cell ''survivors.'' D0 values for epidermal cells in different species generally range from 100-140 rads. Cell maturation and ascension rates in the suprabasilar layers are largely unaffected. A regenerative phase of cell replacement, characterized by sharply increased cell replication rates, occurs from the 3rd to 5th postradiation weeks. The postregenerative phase of hyperplasia reflects a temporary overshoot of cell density above control levels; a subsequent decrease in hyperplasia indicates feedback control of cellular proliferation. Postradiation changes in the highly proliferative anagen hair matrix cell populations result in hair dysplasia, slowed growth rates, impaired metabolic processes, and alopecia. Dosages of 700-800 rads or more induce some degree of permanent hair loss. G0 telogen matrix cells are 2-3 times more radioresistant than proliferating anagen matrix cells, but may ''store'' radiation damage for prolonged periods. Altered matrix cell uptake of amino acids, the incidence of dysplasia, and the degree of alopecia occurring after irradiation have all been used as quantitative biological end-points for the general study of cellular radiation effects, as well as studies on the enhancement of or protection against radiation damage provided by certain pharmacologic or physical agents

  19. Hair: what is new in diagnosis and management? Female pattern hair loss update: diagnosis and treatment.

    Science.gov (United States)

    Atanaskova Mesinkovska, Natasha; Bergfeld, Wilma F

    2013-01-01

    Female pattern hair loss (FPHL) is the most common cause of alopecia in women. FPHL is characterized histologically with increased numbers of miniaturized, velluslike hair follicles. The goal of treatment of FPHL is to arrest hair loss progression and stimulate hair regrowth. The treatments for FPHL can be divided into androgen-dependent and androgen-independent. There is an important adjuvant role for nutritional supplements, light therapy, and hair transplants. All treatments work best when initiated early. Combinations of treatments tend to be more efficacious. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Leydig cell dysfunction, systemic inflammation and metabolic syndrome in long-term testicular cancer survivors

    DEFF Research Database (Denmark)

    Bandak, M; Jørgensen, N; Juul, A

    2017-01-01

    of TC survivors has an increased long-term risk of systemic inflammation and metabolic syndrome (MetS) when compared with TC survivors with normal Leydig cell function during follow-up. PATIENTS AND METHODS: TC survivors with Leydig cell dysfunction and a control group of TC survivors with normal Leydig...