WorldWideScience

Sample records for hafnium nitride target

  1. Formation and control of stoichiometric hafnium nitride thin films by direct sputtering of hafnium nitride target

    CERN Document Server

    Gotoh, Y; Ishikawa, J; Liao, M Y

    2003-01-01

    Hafnium nitride thin films were prepared by radio-frequency sputter deposition with a hafnium nitride target. Deposition was performed with various rf powers, argon pressures, and substrate temperatures, in order to investigate the influences of these parameters on the film properties, particularly the nitrogen composition. It was found that stoichiometric hafnium nitride films were formed at an argon gas pressure of less than 2 Pa, irrespective of the other deposition parameters within the range investigated. Maintaining the nitrogen composition almost stoichiometric, orientation, stress, and electrical resistivity of the films could be controlled with deposition parameters. (author)

  2. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    Science.gov (United States)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  3. Hafnium nitride buffer layers for growth of GaN on silicon

    Science.gov (United States)

    Armitage, Robert D.; Weber, Eicke R.

    2005-08-16

    Gallium nitride is grown by plasma-assisted molecular-beam epitaxy on (111) and (001) silicon substrates using hafnium nitride buffer layers. Wurtzite GaN epitaxial layers are obtained on both the (111) and (001) HfN/Si surfaces, with crack-free thickness up to 1.2 {character pullout}m. However, growth on the (001) surface results in nearly stress-free films, suggesting that much thicker crack-free layers could be obtained.

  4. Optical reflectivity and hardness improvement of hafnium nitride films via tantalum alloying

    Science.gov (United States)

    Gu, Zhiqing; Huang, Haihua; Zhang, Sam; Wang, Xiaoyi; Gao, Jing; Zhao, Lei; Zheng, Weitao; Hu, Chaoquan

    2016-12-01

    It is found that incorporation of tantalum in a hafnium nitride film induces a tunable optical reflectivity and improves the hardness. The underlying mechanism can be illustrated by a combination of experiments and first-principles calculations. It is shown that the evolution of optical reflectivity and the increase in hardness arise from the formation of Hf1-xTaxN solid solutions and the resulting changes in the electronic structure. The increase in infrared reflectance originates from the increase in concentration of free electrons (n) because Ta (d3s2) has one more valence electron than Hf (d2s2). The sharp blue-shift in cutoff wavelength is attributed to the increase in n and the appearance of t2g → eg interband absorption. These results suggest that alloying of a second transition metal renders an effective avenue to improve simultaneously the optical and mechanical properties of transition metal nitride films. This opens up a door in preparing high-reflectance yet hard films.

  5. Determination of Superlatice Effect on Hafnium nitride/Vanadium nitride Nano-structures

    Science.gov (United States)

    Prieto, P.; Caicedo, J. C.; Escobar, C.; Gomez, M. E.; Material Department Univalle Team; Cenm Univalle Team

    2015-03-01

    Binary nitrides multilayers systems were grown on silicon (100) substrates with the aim to study the coherent assembly in HfN/VN material. The multilayers films were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (~ 2.4 μm). The multilayers were characterized by High angle X-ray diffraction (HA-XRD), low angle X-ray diffraction (LA-XRD), HfN and VN layers were analyzed by X-ray Photoelectron Spectroscopy (XPS) and electron and transmission microscopy (TEM). HA-XRD results showed preferential growth in the face-centered cubic (111) crystal structure for HfN/VN multilayers system with the epitaxial relation (111)[100]HfN//(200)[100]VN. The maximum coherent assembly was observed with presence of satellite peaks. With this idea, ternary and binary nitrides films have been designed and deposited on Si (100) substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the structural evolution, coherent assembly progress and optical properties like The critical angle, dispersion coefficient, index of refraction for HfN/VN multilayers with decreasing bilayer thickness.

  6. Synthesis of a base-free hafnium nitride from N2 cleavage: a versatile platform for dinitrogen functionalization.

    Science.gov (United States)

    Semproni, Scott P; Chirik, Paul J

    2013-07-31

    The synthesis and characterization of a metastable, base-free isocyanato dihafnocene μ-nitrido complex from CO-induced dinitrogen cleavage is described. The open coordination site at hafnium suggested the possibility of functionalization of the nitrogen atom by cycloaddition and insertion chemistry. Addition of the strained, activated alkyne, cyclooctyne, resulted in N-C bond formation by cycloaddition. The alkyne product is kinetically unstable engaging the terminal hafnocene isocyanate and promoting deoxygenation and additional N-C bond formation resulting in a substituted cyanamide ligand. Group transfer between hafnium centers was observed upon treatment with Me3SiCl resulting in bridging carbodiimidyl ligands. Amidinato-type ligands, [NC(R)N](3-) were prepared by addition of either cyclohexyl or isobutyronitrile to the base free dihafnocene μ-nitrido complex, which also engages in additional N-C bond formation with the terminal isocyanate to form bridging ureate-type ligands. Heterocummulenes also proved reactive as exposure of the nitride complex to CO2 resulted in deoxygenation and N-C bond formation to form isocyanate ligands. With substituted isocyanates, cycloaddition to the dihafnocene μ-nitrido was observed forming ureate ligands, which upon thermolysis isomerize to bridging carbodiimides. Taken together, these results establish the base free dihafnocene μ-nitrido as a versatile platform to synthesize organic molecules from N2 and carbon monoxide.

  7. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    Science.gov (United States)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  8. Activation of dinitrogen-derived hafnium nitrides for nucleophilic N-C bond formation with a terminal isocyanate.

    Science.gov (United States)

    Semproni, Scott P; Chirik, Paul J

    2013-12-02

    Better by Hf: Anion coordination to a bridging hafnocene nitride complex, prepared from CO-induced N2 cleavage, increases the nucleophilicity of the nitrogen atom, thus promoting additional NC bond formation with a typically inert terminal isocyanate ligand. This cascade sequence allows synthesis of otherwise challenging mono-substituted ureas using N2 , CO, and an appropriate electrophile. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Silver-hafnium braze alloy

    Science.gov (United States)

    Stephens, Jr., John J.; Hosking, F. Michael; Yost, Frederick G.

    2003-12-16

    A binary allow braze composition has been prepared and used in a bonded article of ceramic-ceramic and ceramic-metal materials. The braze composition comprises greater than approximately 95 wt % silver, greater than approximately 2 wt % hafnium and less than approximately 4.1 wt % hafnium, and less than approximately 0.2 wt % trace elements. The binary braze alloy is used to join a ceramic material to another ceramic material or a ceramic material, such as alumina, quartz, aluminum nitride, silicon nitride, silicon carbide, and mullite, to a metal material, such as iron-based metals, cobalt-based metals, nickel-based metals, molybdenum-based metals, tungsten-based metals, niobium-based metals, and tantalum-based metals. A hermetic bonded article is obtained with a strength greater than 10,000 psi.

  10. SEPARATING HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  11. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    Science.gov (United States)

    Ishiyama, S.; Baba, Y.; Fujii, R.; Nakamura, M.; Imahori, Y.

    2012-12-01

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li3N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li3N. This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  12. Synthesis of lithium nitride for neutron production target of BNCT by in situ lithium deposition and ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, S. [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Baba, Y., E-mail: baba.yuji@jaea.go.jp [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Fujii, R.; Nakamura, M.; Imahori, Y. [Cancer Intelligence Care Systems, Inc., Ariake 3-5-7, Koutou-ku, Tokyo 135-0063 (Japan)

    2012-12-15

    To achieve high performance of BNCT (Boron Neutron Capture Therapy) device, Li{sub 3}N/Li/Pd/Cu four layered Li target was designed and the structures of the synthesized four layered target were characterized by X-ray photoelectron spectroscopy. For the purpose of avoiding the radiation blistering and lithium evaporation, in situ vacuum deposition and nitridation techniques were established for in situ production and repairing maintenance of the lithium target. Following conclusions were derived: (1)Uniform lithium layer of a few hundreds nanometer was formed on Pd/Cu multilayer surface by in situ vacuum deposition technique using metallic lithium as a source material. (2)Lithium nitrides were formed by in situ nitridation reaction by the implantation of low-energy nitrogen ions on the deposited lithium layer surface. The chemical states of the nitridated zone were close to the stoichiometric lithium nitride, Li{sub 3}N. (3)This nitridated zone formed on surface of four layered lithium target is stable for a long time in air condition. The in situ nitridation is effective to protect lithium target from degradation by unfavorable reactions.

  13. Zirconium and hafnium

    Science.gov (United States)

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  14. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  15. Slow DNA transport through nanopores in hafnium oxide membranes.

    Science.gov (United States)

    Larkin, Joseph; Henley, Robert; Bell, David C; Cohen-Karni, Tzahi; Rosenstein, Jacob K; Wanunu, Meni

    2013-11-26

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2-7 nm thick) freestanding hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with 50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore.

  16. Hafnium germanium telluride

    Science.gov (United States)

    Jang, Gyung-Joo; Yun, Hoseop

    2008-01-01

    The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. PMID:21202163

  17. Hafnium germanium telluride

    Directory of Open Access Journals (Sweden)

    Hoseop Yun

    2008-05-01

    Full Text Available The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetrahedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps.

  18. Ablation Resistant Zirconium and Hafnium Ceramics

    Science.gov (United States)

    Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)

    1998-01-01

    High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.

  19. Amphoteric Aqueous Hafnium Cluster Chemistry.

    Science.gov (United States)

    Goberna-Ferrón, Sara; Park, Deok-Hie; Amador, Jenn M; Keszler, Douglas A; Nyman, May

    2016-05-17

    Selective dissolution of hafnium-peroxo-sulfate films in aqueous tetramethylammonium hydroxide enables extreme UV lithographic patterning of sub-10 nm HfO2 structures. Hafnium speciation under these basic conditions (pH>10), however, is unknown, as studies of hafnium aqueous chemistry have been limited to acid. Here, we report synthesis, crystal growth, and structural characterization of the first polynuclear hydroxo hafnium cluster isolated from base, [TMA]6 [Hf6 (μ-O2 )6 (μ-OH)6 (OH)12 ]⋅38 H2 O. The solution behavior of the cluster, including supramolecular assembly via hydrogen bonding is detailed via small-angle X-ray scattering (SAXS) and electrospray ionization mass spectrometry (ESI-MS). The study opens a new chapter in the aqueous chemistry of hafnium, exemplifying the concept of amphoteric clusters and informing a critical process in single-digit-nm lithography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Zirconium and hafnium in meteorites

    Science.gov (United States)

    Ehmann, W. D.; Chyi, L. L.

    1974-01-01

    The abundances of zirconium and hafnium have been determined in nine stony meteorites by a new, precise neutron-activation technique. The Zr/Hf abundance ratios for the chondrites vary in a rather narrow range, consistent with previously published observations from our group. Replicate analyses of new, carefully selected clean interior samples of the Cl chondrite Orgueil yield mean zirconium and hafnium abundances of 5.2 and 0.10 ppm, respectively. These abundances are lower than we reported earlier for two Cl chondrite samples which we now suspect may have suffered contamination. The new Cl zirconium and hafnium abundances are in closer agreement with predictions based on theories of nucleosynthesis than the earlier data.

  1. Effect of hafnium and titanium coated implants on several blood biochemical markers after osteosynthesis in rabbits.

    Science.gov (United States)

    Yousef, Ashraf; Akhtyamov, Ildar; Shakirova, Faina; Zubairova, Lyaili; Gatina, Elmira; Aliev, Capital Ie Cyrilliclchin

    2014-01-01

    An experimental study comparing the dynamics of several biochemical markers before and after osteosynthesis, utilizing implants coated with titanium and hafnium nitrides and non-coated implants on rabbits' bones. The Study has been conducted on 30 rabbits of both sexes, at the age of 6-7 months, weighing 2526.5±74.4 gm. Animals underwent open osteotomy of the tibia in the middle third of the diaphysis followed by the intramedullary nailing. The level of alkaline phosphatase, calcium, phosphorus, total protein, glucose, ALT and AST were monitored for 60 days. the use of implants coated with titanium and hafnium nitrides, which have high strength, thermal and chemical stability, was not accompanied by the development of additional negative reactive changes compared to non-coated implants. Nanotechnology used in manufacturing bioinert coatings for implants for osteosynthesis, has made the post-operative period less complicated as reflected by less expressed changing in the markers of bone metabolism and hepatotoxicity.

  2. Hafnium implanted in iron .2.Isolated Hafnium Nitrogen Complexes

    NARCIS (Netherlands)

    de Bakker, J.M.G.J.; Pleiter, F; Smulders, P.J M

    1993-01-01

    We have used the perturbed angular correlation technique to study the interaction of interstitially diffusing nitrogen atoms with substitutional hafnium atoms implanted in iron. It was found that after post-implantation of 250 eV nitrogen ions at 450 K, isolated HfVN(x) complexes with x = 1, 2 are

  3. Hafnium radioisotope recovery from irradiated tantalum

    Science.gov (United States)

    Taylor, Wayne A.; Jamriska, David J.

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  4. Hafnium isotope stratigraphy of ferromanganese crusts

    Science.gov (United States)

    Lee, D.-C.; Halliday, A.N.; Hein, J.R.; Burton, K.W.; Christensen, J.N.; Gunther, D.

    1999-01-01

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in 87Sr/86Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  5. Hafnium isotope stratigraphy of ferromanganese crusts

    Science.gov (United States)

    Lee; Halliday; Hein; Burton; Christensen; Gunther

    1999-08-13

    A Cenozoic record of hafnium isotopic compositions of central Pacific deep water has been obtained from two ferromanganese crusts. The crusts are separated by more than 3000 kilometers but display similar secular variations. Significant fluctuations in hafnium isotopic composition occurred in the Eocene and Oligocene, possibly related to direct advection from the Indian and Atlantic oceans. Hafnium isotopic compositions have remained approximately uniform for the past 20 million years, probably reflecting increased isolation of the central Pacific. The mechanisms responsible for the increase in (87)Sr/(86)Sr in seawater through the Cenozoic apparently had no effect on central Pacific deep-water hafnium.

  6. Formulation and method for preparing gels comprising hydrous hafnium oxide

    Science.gov (United States)

    Collins, Jack L; Hunt, Rodney D; Montgomery, Frederick C

    2013-08-06

    Formulations useful for preparing hydrous hafnium oxide gels contain a metal salt including hafnium, an acid, an organic base, and a complexing agent. Methods for preparing gels containing hydrous hafnium oxide include heating a formulation to a temperature sufficient to induce gel formation, where the formulation contains a metal salt including hafnium, an acid, an organic base, and a complexing agent.

  7. Process for separating hafnium and zirconium

    NARCIS (Netherlands)

    Xiao, Y.; Van Sandwijk, A.

    2010-01-01

    The invention is directed to a process for separating a mixture comprising hafnium and zirconium. The process of the present invention comprises a step in which a molten metal phase comprising zirconium and hafnium dissolved in a first metal M1 and a second metal M2 is contacted with a molten salt

  8. Thermal Expansion of Hafnium Carbide

    Science.gov (United States)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  9. Investigation of Melting Dynamics of Hafnium Clusters.

    Science.gov (United States)

    Ng, Wei Chun; Lim, Thong Leng; Yoon, Tiem Leong

    2017-03-27

    Melting dynamics of hafnium clusters are investigated using a novel approach based on the idea of the chemical similarity index. Ground state configurations of small hafnium clusters are first derived using Basin-Hopping and Genetic Algorithm in the parallel tempering mode, employing the COMB potential in the energy calculator. These assumed ground state structures are verified by using the Low Lying Structures (LLS) method. The melting process is carried out either by using the direct heating method or prolonged simulated annealing. The melting point is identified by a caloric curve. However, it is found that the global similarity index is much more superior in locating premelting and total melting points of hafnium clusters.

  10. Hafnium transistor process design for neural interfacing.

    Science.gov (United States)

    Parent, David W; Basham, Eric J

    2009-01-01

    A design methodology is presented that uses 1-D process simulations of Metal Insulator Semiconductor (MIS) structures to design the threshold voltage of hafnium oxide based transistors used for neural recording. The methodology is comprised of 1-D analytical equations for threshold voltage specification, and doping profiles, and 1-D MIS Technical Computer Aided Design (TCAD) to design a process to implement a specific threshold voltage, which minimized simulation time. The process was then verified with a 2-D process/electrical TCAD simulation. Hafnium oxide films (HfO) were grown and characterized for dielectric constant and fixed oxide charge for various annealing temperatures, two important design variables in threshold voltage design.

  11. Synthesis and Characterization of Boron Nitride and Molybdenum Nitride Multi-Walled Nanotubes Using Liquid Plasma Arc Discharge

    Science.gov (United States)

    Holliday, Roger; Falvo, Mike; Washburn, Sean; Superfine, Rich

    2001-11-01

    We will present results on synthesis of Boron Nitride and Molybdenum Nitride nanotubes using the liquid nitrogen plasma-arc discharge method previously reported for carbon nanotubes synthesis[1]. We created a 60-100A/20-40V arc across electrodes of Hafnium Boride and Molybdenum Sulfide in a liquid nitrogen atmosphere. Nanotube geometry, nano-structure and composition characterization using TEM and EDAX will be presented. Progress in electronic and mechanical characterization as well as our incorporation of these nanotubes in to novel NEMS devices will be discussed. [1] M. Ishigami, J. Cummings, A. Zettl, S. Chen. Chemical Physical Letters 319 (2000) 457-459.

  12. Work Function Calculation For Hafnium- Barium System

    Directory of Open Access Journals (Sweden)

    K.A. Tursunmetov

    2015-08-01

    Full Text Available The adsorption process of barium atoms on hafnium is considered. A structural model of the system is presented and on the basis of calculation of interaction between ions dipole system the dependence of the work function on the coating.

  13. Calibration of the Lutetium-Hafnium Clock

    National Research Council Canada - National Science Library

    Erik Scherer; Carsten Münker; Klaus Mezger

    2001-01-01

    ... −1 , in agreement with the two most recent decay-counting experiments. Lutetium-hafnium ages that are based on the previously used λ 176 Lu of 1.93 × 10 −11 to 1.94 × 10 −11 year −1 are thus ∼4...

  14. Effect of nitrogen on tensile properties and structures of T-111 (tantalum, 8 percent tungsten, 2 percent hafnium) tubing

    Science.gov (United States)

    Buzzard, R. J.; Metroka, R. R.

    1973-01-01

    The effect of controlled nitrogen additions was evaluated on the mechanical properties of T-111 (Ta-8W-2Hf) fuel pin cladding material proposed for use in a lithium-cooled nuclear reactor concept. Additions of 80 to 1125 ppm nitrogen resulted in increased strengthening of T-111 tubular section test specimens at temperatures of 25 to 1200 C. Homogeneous distributions of up to 500 ppm nitrogen did not seriously decrease tensile ductility. Both single and two-phase microstructures, with hafnium nitride as the second phase, were evaluated in this study.

  15. Long period gratings coated with hafnium oxide by plasma-enhanced atomic layer deposition for refractive index measurements.

    Science.gov (United States)

    Melo, Luis; Burton, Geoff; Kubik, Philip; Wild, Peter

    2016-04-04

    Long period gratings (LPGs) are coated with hafnium oxide using plasma-enhanced atomic layer deposition (PEALD) to increase the sensitivity of these devices to the refractive index of the surrounding medium. PEALD allows deposition at low temperatures which reduces thermal degradation of UV-written LPGs. Depositions targeting three different coating thicknesses are investigated: 30 nm, 50 nm and 70 nm. Coating thickness measurements taken by scanning electron microscopy of the optical fibers confirm deposition of uniform coatings. The performance of the coated LPGs shows that deposition of hafnium oxide on LPGs induces two-step transition behavior of the cladding modes.

  16. Percolation conductivity in hafnium sub-oxides

    Energy Technology Data Exchange (ETDEWEB)

    Islamov, D. R., E-mail: damir@isp.nsc.ru; Gritsenko, V. A., E-mail: grits@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Cheng, C. H. [Department of Mechatronic Technology, National Taiwan Normal University, Taipei 106, Taiwan (China); Chin, A., E-mail: albert-achin@hotmail.com [National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2014-12-29

    In this study, we demonstrated experimentally that formation of chains and islands of oxygen vacancies in hafnium sub-oxides (HfO{sub x}, x < 2) leads to percolation charge transport in such dielectrics. Basing on the model of Éfros-Shklovskii percolation theory, good quantitative agreement between the experimental and theoretical data of current-voltage characteristics was achieved. Based on the percolation theory suggested model shows that hafnium sub-oxides consist of mixtures of metallic Hf nanoscale clusters of 1–2 nm distributed onto non-stoichiometric HfO{sub x}. It was shown that reported approach might describe low resistance state current-voltage characteristics of resistive memory elements based on HfO{sub x}.

  17. Activation cross sections of proton induced nuclear reactions on natural hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, S., E-mail: s.takacs@atomki.hu [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen (Hungary); Tarkanyi, F. [Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI), 4026 Debrecen (Hungary); Hermanne, A.; Adam Rebeles, R. [Cyclotron Laboratory, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels (Belgium)

    2011-12-01

    Highlights: {yields} Cross sections of proton induced reactions on natural hafnium. {yields} Production of Ta, Hf and Lu isotopes. {yields} Comparison of experimental cross sections with results of TENDL-2010 calculations. {yields} Thick target yields. {yields} Production of {sup 177g}Lu for medical use is not feasible. - Abstract: In a systematic study of light charged particle induced nuclear reactions we investigated the excitation functions of proton induced reactions on natural hafnium targets. Experimental excitation functions of proton induced reactions up to 36 MeV on high purity natural hafnium were determined using the stacked foil activation technique. High resolution off-line gamma-ray spectrometry was applied to assess the activity of each foil. From the measured activity independent and/or cumulative elemental or isotopic cross section data for production of Ta, Hf and Lu radioisotopes were determined. The experimental data were compared to the data published earlier by other authors and to results of TALYS theoretical code taken from TENDL-2010 database. Thick target yields of the investigated radionuclides were calculated from the excitation function that was deduced as an analytical fit to our experimental cross section data points.

  18. Hafnium implanted in iron 1. Lattice location and annealing behavior

    NARCIS (Netherlands)

    de Bakker, J.M.G.J.; Pleiter, F; Smulders, P.J M

    1993-01-01

    Perturbed angular correlation, Rutherford backscattering and channelling experiments were conducted to study the lattice location and annealing behaviour of 110 keV hafnium ions implanted into iron single crystals. It was found that a fraction of 11-25% of the implanted hafnium atoms are located at

  19. Adsorbsi Hafnium (Hf) Dalam Resin Penukar Anion Dowex-1x8 Adsorbtion of Hafnium (Hf) in Dowex - 1x8 Anion Exchange Resin

    OpenAIRE

    Susiantini, Endang; Setyadji, Moch

    2014-01-01

    Hafnium memiliki titik lebur yang tinggi dan kemampuan menyerap neutron per luas penampang 600 kali lebih besar dari Zr sehingga berpotensi untuk dimanfaatkan sebagai salah satu bahan batang pengendali reaksi fisi nuklir. Berbagai metode pemurnian Hf dari Zr telah dikembangkan salah satunya adalah dengan menggunakan resin penukar ion. Pada penelitian ini digunakan umpan berbentuk sulfat dari hafnium murni dan hafnium-zirkonium campuran hasil proses pengolahan pasir zirkon. Umpan hafnium sulfa...

  20. Dispersion engineered high-Q silicon Nitride Ring-Resonators via Atomic Layer Deposition

    CERN Document Server

    Riemensberger, Johann; Herr, Tobias; Brasch, Victor; Holzwarth, Ronald; Kippenberg, Tobias J

    2012-01-01

    We demonstrate dispersion engineering of integrated silicon nitride based ring resonators through conformal coating with hafnium dioxide deposited on top of the structures via atomic layer deposition (ALD). Both, magnitude and bandwidth of anomalous dispersion can be significantly increased. All results are confirmed by high resolution frequency-comb-assisted-diode-laser spectroscopy and are in very good agreement with the simulated modification of the mode spectrum.

  1. Hafnium transistor design for neural interfacing.

    Science.gov (United States)

    Parent, David W; Basham, Eric J

    2008-01-01

    A design methodology is presented that uses the EKV model and the g(m)/I(D) biasing technique to design hafnium oxide field effect transistors that are suitable for neural recording circuitry. The DC gain of a common source amplifier is correlated to the structural properties of a Field Effect Transistor (FET) and a Metal Insulator Semiconductor (MIS) capacitor. This approach allows a transistor designer to use a design flow that starts with simple and intuitive 1-D equations for gain that can be verified in 1-D MIS capacitor TCAD simulations, before final TCAD process verification of transistor properties. The DC gain of a common source amplifier is optimized by using fast 1-D simulations and using slower, complex 2-D simulations only for verification. The 1-D equations are used to show that the increased dielectric constant of hafnium oxide allows a higher DC gain for a given oxide thickness. An additional benefit is that the MIS capacitor can be employed to test additional performance parameters important to an open gate transistor such as dielectric stability and ionic penetration.

  2. Boron Nitride nanotube synthesis using liquid arc discharge

    Science.gov (United States)

    Holliday, Roger; Falvo, Mike; Washburn, Sean; Superfine, Richard

    2002-03-01

    We will present results on synthesis of Boron Nitride nanotubes using the liquid nitrogen plasma-arc discharge method previously reported for carbon nanotubes synthesis[1]. We created a 60-100A/20-40V arc across electrodes of Hafnium Boride and Molybdenum Sulfide in a liquid nitrogen atmosphere. Nanotube geometry, nano-structure and composition characterization using TEM and EDAX will be presented. Progress in electronic and mechanical characterization as well as our incorporation of these nanotubes in to novel NEMS devices will be discussed. [1] M. Ishigami, J. C., A. Zettl, S. Chen . Chemical Physical Letters 319 (2000),pp.457-459.

  3. Hafnium binary alloys from experiments and first principles

    OpenAIRE

    Levy, Ohad; Hart, Gus L. W.; Curtarolo, Stefano

    2009-01-01

    Despite the increasing importance of hafnium in numerous technological applications, experimental and computational data on its binary alloys is sparse. In particular, data is scant on those binary systems believed to be phase separating. We performed a comprehensive study of 44 hafnium binary systems with alkali metals, alkaline earths, transition metals and metals, using high-throughput first principles calculations. These computations predict novel unsuspected compounds in six binary syste...

  4. Nanoscale radiotherapy with hafnium oxide nanoparticles.

    Science.gov (United States)

    Maggiorella, Laurence; Barouch, Gilles; Devaux, Corinne; Pottier, Agnès; Deutsch, Eric; Bourhis, Jean; Borghi, Elsa; Levy, Laurent

    2012-09-01

    There is considerable interest in approaches that could improve the therapeutic window of radiotherapy. In this study, hafnium oxide nanoparticles were designed that concentrate in tumor cells to achieve intracellular high-energy dose deposit. Conventional methods were used, implemented in different ways, to explore interactions of these high-atomic-number nanoparticles and ionizing radiation with biological systems. Using the Monte Carlo simulation, these nanoparticles, when exposed to high-energy photons, were shown to demonstrate an approximately ninefold radiation dose enhancement compared with water. Importantly, the nanoparticles show satisfactory dispersion and persistence within the tumor and they form clusters in the cytoplasm of cancer cells. Marked antitumor activity is demonstrated in human cancer models. Safety is similar in treated and control animals as demonstrated by a broad program of toxicology evaluation. These findings, supported by good tolerance, provide the basis for developing this new type of nanoparticle as a promising anticancer approach in human patients.

  5. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  6. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Science.gov (United States)

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  7. Crystalline boron nitride aerogels

    Science.gov (United States)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  8. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  9. Boron nitride composites

    Science.gov (United States)

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  10. Hafnium isotope variations in oceanic basalts

    Science.gov (United States)

    Patchett, P. J.; Tatsumoto, M.

    1980-01-01

    Hafnium isotope ratios generated by the beta(-) decay of Lu-176 are investigated in volcanic rocks derived from the suboceanic mantle. Hf-176/Hf-177 and Lu/Hf ratios were determined to precisions of 0.01-0.04% and 0.5%, respectively, by routine, low-blank chemistry. The Hf-176/Hf-177 ratio is found to be positively correlated with the Nd-143/Nd-144 ratio and negatively correlated with the Sr-87/Sr-86 and Pb-206/Pb-204 ratios, and to increase southwards along the Iceland-Reykjanes ridge traverse. An approximate bulk earth Hf-176/Hf-177 ratio of 0.28295 is inferred from the bulk earth Nd-143/Nd-144 ratio, which requires a bulk earth Lu/Hf ratio of 0.25, similar to the Juvinas eucrite. Midocean ridge basalts are shown to account for 60% of the range of Hf isotope ratios, and it is suggested that Lu-Hf fractionation is decoupled from Sm-Nd and Rb-Sr fractionation in very trace-element-depleted source regions as a result of partial melting.

  11. Discovery of Gallium, Germanium, Lutetium, and Hafnium Isotopes

    CERN Document Server

    Gross, J L

    2011-01-01

    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  12. Standard specification for nuclear-grade hafnium oxide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification defines the physical and chemical requirements for hafnium oxide powder intended for fabrication into shapes for use in a nuclear reactor core. 1.2 The material described herein shall be particulate in nature. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  13. Mineral resource of the month: zirconium and hafnium

    Science.gov (United States)

    Gambogi, Joseph

    2007-01-01

    Zirconium and hafnium are corrosion-resistant metals that are grouped in the same family as titanium on the periodic table. The two elements commonly occur in oxide and silicate minerals and have significant economic importance in everything from ink, ceramics and golf shoes to nuclear fuel rods.

  14. X-Ray Photoemission Study of the Oxidation of Hafnium

    Directory of Open Access Journals (Sweden)

    A. R. Chourasia

    2009-01-01

    Full Text Available About 20 Å of hafnium were deposited on silicon substrates using the electron beam evaporation technique. Two types of samples were investigated. In one type, the substrate was kept at the ambient temperature. After the deposition, the substrate temperature was increased to 100, 200, and 300∘C. In the other type, the substrate temperature was held fixed at some value during the deposition. For this type, the substrate temperatures used were 100, 200, 300, 400, 500, 550, and 600∘C. The samples were characterized in situ by the technique of X-ray photoelectron spectroscopy. No trace of elemental hafnium is observed in the deposited overlayer. Also, there is no evidence of any chemical reactivity between the overlayer and the silicon substrate over the temperature range used. The hafnium overlayer shows a mixture of the dioxide and the suboxide. The ratio of the suboxide to dioxide is observed to be more in the first type of samples. The spectral data indicate that hafnium has a strong affinity for oxygen. The overlayer gets completely oxidized to form HfO2 at substrate temperature around 300∘C for the first type of samples and at substrate temperature greater than 550∘C for the second type.

  15. Corrosion and tribocorrosion of hafnium in simulated body fluids.

    Science.gov (United States)

    Rituerto Sin, J; Neville, A; Emami, N

    2014-08-01

    Hafnium is a passive metal with good biocompatibility and osteogenesis, however, little is known about its resistance to wear and corrosion in biological environments. The corrosion and tribocorrosion behavior of hafnium and commercially pure (CP) titanium in simulated body fluids were investigated using electrochemical techniques. Cyclic polarization scans and open circuit potential measurements were performed in 0.9% NaCl solution and 25% bovine calf serum solution to assess the effect of organic species on the corrosion behavior of the metal. A pin-on-plate configuration tribometer and a three electrode electrochemical cell were integrated to investigate the tribocorrosion performance of the studied materials. The results showed that hafnium has good corrosion resistance. The corrosion density currents measured in its passive state were lower than those measured in the case of CP titanium; however, it showed a higher tendency to suffer from localized corrosion, which was more acute when imperfections were present on the surface. The electrochemical breakdown of the oxide layer was retarded in the presence of proteins. Tribocorrosion tests showed that hafnium has the ability to quickly repassivate after the oxide layer was damaged; however, it showed higher volumetric loss than CP titanium in equivalent wear-corrosion conditions. © 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1157-1164, 2014. © 2013 Wiley Periodicals, Inc.

  16. Hafnium - an optical hydrogen sensor spanning six orders in pressure

    NARCIS (Netherlands)

    Boelsma, C.; Bannenberg, L.J.; Van Setten, M. J.; Steinke, N.J.; van Well, A.A.; Dam, B.

    2017-01-01

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen

  17. Elastic and thermodynamic properties of zirconium-and hafnium ...

    Indian Academy of Sciences (India)

    ... Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 41; Issue 1. Elastic and thermodynamic properties of zirconium- and hafnium-doped Rh 3 V intermetallic compounds: potential aerospace material. M MANJULA M SUNDARESWARI E VISWANATHAN. Volume 41 Issue 1 February 2018 Article ID 19 ...

  18. Elastic and thermodynamic properties of zirconium- and hafnium ...

    Indian Academy of Sciences (India)

    2018-02-02

    Feb 2, 2018 ... https://doi.org/10.1007/s12034-017-1537-3. Elastic and thermodynamic properties of zirconium- and hafnium-doped Rh3V intermetallic compounds: potential aerospace material. M MANJULA, M SUNDARESWARI. ∗ and E VISWANATHAN. Department of Physics, Sathyabama University, Chennai 600119, ...

  19. Effect of hafnium-incorporation on the microstructure and dielectric properties of cobalt ferrite ceramics

    Science.gov (United States)

    Wells, Stephen Josiah

    The effect of hafnium ion (Hf4+) incorporation in cobalt ferrite (CFO) was studied. Samples of Hf substituted CFO ceramic (CoFe 2-xHfxO4), were synthesized in the laboratory with hafnium concentrations ranging from x=0.000 to x=0.200. X-ray diffraction scans show that the Hafnium CFO crystalizes in the inverse spinel phase. Inclusion of hafnium causes lattice expansion, increasing the lattice parameter from 8.374 A for pure CoFe2O4 to 8.391 A for the highest concentration of hafnium tested (x=0.020). The dielectric properties of CFO are greatly enhanced by inclusion of hafnium. The enhancement is due to the distortion on the lattice from the larger Hf-ions substituting the smaller Fe-ions. Frequency variation of the dielectric properties is well modeled by the modified Debye function, which takes into account multiple ions contributing to relaxation.

  20. Synthesis of Hafnium-Based Ceramic Materials for Ultra-High Temperature Aerospace Applications

    Science.gov (United States)

    Johnson, Sylvia; Feldman, Jay

    2004-01-01

    This project involved the synthesis of hafnium (Hf)-based ceramic powders and Hf-based precursor solutions that were suitable for preparation of Hf-based ceramics. The Hf-based ceramic materials of interest in this project were hafnium carbide (with nominal composition HE) and hafnium dioxide (HfO2). The materials were prepared at Georgia Institute of Technology and then supplied to research collaborators Dr. Sylvia Johnson and Dr. Jay Feldman) at NASA Ames Research Center.

  1. Crystalline boron nitride aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-12-12

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxide and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.

  2. Design and fabrication of hafnium tube to control the power of the irradiation test fuel in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D. H.; Lee, C. B.; Kim, Y. M.; Yang, Y. S.; Jung, Y. H

    2003-05-01

    For the irradiation test at HANARO, non-instrumentation capsule was manufactured and hafnium tube was used to control LHGR of HANARO. Hafnium tube can control the irradiation condition of HANARO similar to that of commercial reactor. Hafnium tube thickness was determined by the LHGR calculated at OR-4 irradiation hole to be installed the non-instrumented capsule. To fabricate the hafnium tube with hafnium plate, the fabrication method was determined by using the hafnium mechanical properties. And the tensile strength of hafnium was confirmed by tensile test. This report is confirmed the LHGR control at the OR-4 and the Hafnium fabrication for in used which the AFPCAP non-instrumented irradiation capsule.

  3. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  4. Hydrothermal chemistry, structures, and luminescence studies of alkali hafnium fluorides.

    Science.gov (United States)

    Underwood, Christopher C; McMillen, Colin D; Chen, Hongyu; Anker, Jeffery N; Kolis, Joseph W

    2013-01-07

    This paper describes the hydrothermal chemistry of alkali hafnium fluorides, including the synthesis and structural characterization of five new alkali hafnium fluorides. Two ternary alkali hafnium fluorides are described: Li(2)HfF(6) in space group P31m with a = 4.9748(7) Å and c = 4.6449(9) Å and Na(5)Hf(2)F(13) in space group C2/m with a = 11.627(2) Å, b = 5.5159(11) Å, and c = 8.4317(17) Å. Three new alkali hafnium oxyfluorides are also described: two fluoroelpasolites, K(3)HfOF(5) and (NH(4))(3)HfOF(5), in space group Fm3m with a = 8.9766(10) and 9.4144(11) Å, respectively, and K(2)Hf(3)OF(12) in space group R3m with a = 7.6486(11) Å and c = 28.802(6) Å. Infrared (IR) spectra were obtained for the title solids to confirm the structure solutions. Comparison of these materials was made based on their structures and synthesis conditions. The formation of these species in hydrothermal fluids appears to be dependent upon both the concentration of the alkali fluoride mineralizer solution and the reaction temperature. Both X-ray and visible fluorescence studies were conducted on compounds synthesized in this study and showed that fluorescence was affected by a variety of factors, such as alkali metal size, the presence/absence of oxygen in the compound, and the coordination environment of Hf(4+).

  5. Pentamethylcyclopentadienyl Zirconium and Hafnium Polyhydride Complexes : Synthesis, Structure, and Reactivity

    NARCIS (Netherlands)

    Visser, Cindy; Hende, Johannes R. van den; Meetsma, Auke; Hessen, Bart; Teuben, Jan H.

    2001-01-01

    The half-sandwich zirconium and hafnium N,N-dimethylaminopropyl complexes Cp*M[(CH2)3NMe2]Cl2 (Cp* = η5-C5Me5, M = Zr, 1; Hf, 2) and Cp*M[(CH2)3NMe2]2Cl (M = Zr, 3; Hf, 4) were synthesized by mono- or dialkylation of Cp*MCl3 with the corresponding alkyllithium and Grignard reagents. Hydrogenolysis

  6. Reactions of zirconium and hafnium fluoride hydrates with hydrogen peroxide

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimova, S.O.; Polishchuk, S.A.; Avkhutskii, L.M.; Kalennik, V.M. (AN SSSR, Vladivostok. Inst. Khimii)

    1981-01-01

    Zirconium peroxofluoride of ZrO/sub 2/F/sub 2/x2H/sub 2/O composition is prepared by interaction of zirconium tetrafluoride trihydrate with hydrogen peroxide at pH 2-3. Hafnium peroxofluoride compound is not formed under similar conditions. It can be caused by their structural peculiarities for the compounds are not isostructural IR, PMR and NMR spectra for Zr peroxofluoride are presented.

  7. Structure and properties of ternary manganese nitride Mn{sub 3}CuN{sub y} thin films fabricated by facing target magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Na, Yuanyuan [Center for Condensed Matter and Materials Physics, Key Laboratory of Micro-Naro Measurement, Manipulation and Physics, Beihang University, Beijing 100191 (China); Wang, Cong, E-mail: congwang@buaa.edu.cn [Center for Condensed Matter and Materials Physics, Key Laboratory of Micro-Naro Measurement, Manipulation and Physics, Beihang University, Beijing 100191 (China); Sun, Ying; Chu, Lihua; Nie, Man [Center for Condensed Matter and Materials Physics, Key Laboratory of Micro-Naro Measurement, Manipulation and Physics, Beihang University, Beijing 100191 (China); Ji, Nian; Wang, Jian-ping [The Center of Micromagnetic and Information Technology, Electrical and Computer Engineering Department, University of Minnesota, Minneapolis 55455 (United States)

    2011-07-15

    Graphical abstract: This figure reveals the dependence of the texture coefficient TC{sub (111)} and TC{sub (200)} of the Mn{sub 3}CuN{sub y} thin films on T{sub sub}. These results indicate that the preferred orientation of the Mn{sub 3}CuN{sub y} thin films dramatically changed from (1 1 1) to (2 0 0) with the increase of T{sub sub}. In one word, the orientation of Mn{sub 3}CuN{sub y} thin film can be tailored by adjusting the magnetron sputtering processing parameters and substrate. It is the first time to report the deposition of Mn{sub 3}CuN{sub y} thin films on single crystal Si (1 0 0) at various substrate temperatures (T{sub sub}) by facing target magnetron sputtering. The influences of substrate temperature on crystal structure and morphology are discussed. The temperature dependences of magnetization, lattice parameters and resistivity for the resulting film are systematically investigated, which shows several different physical properties from those of previous work. Highlights: {yields} Variation of the substrate temperatures adjusted the preferred orientation from (1 1 1) to (2 0 0) of the Mn{sub 3}CuN{sub y} thin films. {yields} There exists a magnetic ordering transition at 225 K from paramagnetic (PM) to ferrimagnetic (FI), which is different than previous results. {yields} It shows a positive thermal expansion behavior with average linear thermal expansion coefficient 2.49 x 10{sup -5} K{sup -1}. However there was no crystal phase transition occurred around the magnetic transition in the film. {yields} The temperature dependence of resistivity displayed a semiconductor-like behavior, which is quite different from the bulk sample. {yields} We believe that our findings may provide an important role to further utilize the potential of antiperovskite manganese nitride film. -- Abstract: Deposition of Mn{sub 3}CuN{sub y} thin films on single crystal Si (1 0 0) at various substrate temperatures (T{sub sub}) by facing target magnetron sputtering is

  8. Hafnium nitride films for thermoreflectance transducers at high temperatures: Potential based on heating from laser absorption

    Science.gov (United States)

    Rost, Christina M.; Braun, Jeffrey; Ferri, Kevin; Backman, Lavina; Giri, Ashutosh; Opila, Elizabeth J.; Maria, Jon-Paul; Hopkins, Patrick E.

    2017-10-01

    Time domain thermoreflectance (TDTR) and frequency domain thermoreflectance (FDTR) are common pump-probe techniques that are used to measure the thermal properties of materials. At elevated temperatures, transducers used in these techniques can become limited by melting or other phase transitions. In this work, time domain thermoreflectance is used to determine the viability of HfN thin film transducers grown on SiO2 through measurements of the SiO2 thermal conductivity up to approximately 1000 K. Further, the reliability of HfN as a transducer is determined by measuring the thermal conductivities of MgO, Al2O3, and diamond at room temperature. The thermoreflectance coefficient of HfN was found to be 1.4 × 10-4 K-1 at 800 nm, one of the highest thermoreflectance coefficients measured at this standard TDTR probe wavelength. Additionally, the high absorption of HfN at 400 nm is shown to enable reliable laser heating to elevate the sample temperature during a measurement, relative to other transducers.

  9. Hafnium trifluoromethanesulfonate (hafnium triflate) as a highly efficient catalyst for chemoselective thioacetalization and transthioacetalization of carbonyl compounds.

    Science.gov (United States)

    Wu, Yan-Chao; Zhu, Jieping

    2008-12-05

    A range of carbonyl compounds including aliphatic and aromatic aldehydes and ketones were converted to the corresponding thioacetals in high yields in the presence of a catalytic amount of hafnium trifluoromethanesulfonate (0.1 mol %, room temperature). The mild conditions tolerated various sensitive functional and protecting groups and were racemization-free when applied to alpha-aminoaldehydes. Transacetalization and chemoselective thioacetalization of aromatic aldehydes in the presence of aliphatic aldehydes and ketones were also documented.

  10. Zirconium and hafnium in the southeastern Atlantic States

    Science.gov (United States)

    Mertie, J.B.

    1958-01-01

    The principal source of zirconium and hafnium is zircon, though a minor source is baddeleyite, mined only in Brazil. Zircon is an accessory mineral in igneous, metamorphic, and sedimentary rocks, but rarely occurs in hardrock in minable quantities. The principal sources of zircon are therefore alluvial deposits, which are mined in many countries of five continents. The principal commercial deposits in the United States are in Florida, though others exist elsewhere in the southeastern Coastal Plain. The evidence indicates that conditions for the accumulation of workable deposits of heavy minerals were more favorable during the interglacial stages of the Pleistocene epoch than during Recent time. Therefore detrital ores of large volume and high tenor are more likely to be found in the terrace deposits than along the present beaches. Other concentrations of heavy minerals, however, are possible at favored sites close to the Fall Line where the Tuscaloosa formation rests upon the crystalline rocks of the Piedmont province. A score of heavy and semiheavy minerals occur in the detrital deposits of Florida, but the principal salable minerals are ilmenite, leucoxene, rutile, and zircon, though monazite and staurolite are saved at some mining plants. Commercial deposits of heavy minerals are generally required to have a tenor of 4 percent, though ores with a lower tenor can be mined at a profit if the content of monazite is notably high. The percentages of zircon in the concentrates ranges from 10 to 16 percent, and in eastern Florida from 13 to 15 percent. Thus the tenor in zircon of the ore-bearing sands ranges from 0.4 to 0.6 percent. The content of hafnium in zircon is immaterial for many uses, but for some purposes very high or very low tenors in hafnium are required. Alluvial zircon cannot be separated into such varieties, which, if needed, must be obtained from sources in bedrock. It thus becomes necessary to determine the Hf : Zr ratios in zircon from many kinds of

  11. Methods of forming boron nitride

    Science.gov (United States)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J; Crandall, David L

    2015-03-03

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boron nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.

  12. Hafnium carbamates and ureates: new class of precursors for low-temperature growth of HfO2 thin films.

    Science.gov (United States)

    Pothiraja, Ramasamy; Milanov, Andrian P; Barreca, Davide; Gasparotto, Alberto; Becker, Hans-Werner; Winter, Manuela; Fischer, Roland A; Devi, Anjana

    2009-04-21

    Novel volatile compounds of hafnium, namely tetrakis-N,O-dialkylcarbamato hafnium(iv) [Hf((i)PrNC(O)O(i)Pr)(4)] () and tetrakis-N,N,N'-trialkylureato hafnium(iv) [Hf((i)PrNC(O)N-(Me)Et)(4)] (), have been synthesized through the simple insertion reaction of isopropyl isocyanate into hafnium isopropoxide and hafnium ethylmethylamide, respectively; based on the promising thermal properties, compound has been evaluated as a precursor for metalorganic chemical vapor deposition (MOCVD) of HfO(2) thin films, which resulted in the growth of stoichiometric and crystalline layers with a uniform morphology at temperature as low as 250 degrees C.

  13. Characterization of a Novel Hafnium-Based X-ray Contrast Agent.

    Science.gov (United States)

    Frenzel, Thomas; Bauser, Marcus; Berger, Markus; Hilger, Christoph Stephan; Hegele-Hartung, Christa; Jost, Gregor; Neis, Christian; Hegetschweiler, Kaspar; Riefke, Björn; Suelzle, Detlev; Pietsch, Hubertus

    2016-12-01

    Characterization of BAY-576, a new x-ray contrast agent which is not based on iodine, but rather on the heavy metal hafnium. Compared with iodine, hafnium provides better x-ray absorption in the energy range of computed tomography (CT) and allows images of comparable quality to be acquired at a significantly reduced radiation dose. A range of standard methods were used to explore the physicochemistry of BAY-576 as well as its tolerability in in vitro assays, its pharmacokinetics and toxicology in rats, and its performance in CT imaging in rabbits. BAY-576 is an extraordinarily stable chelate with a metal content of 42% (wt/wt) and with excellent water solubility. Formulations of 300 mg Hf/mL exhibited viscosity (3.3-3.6 mPa) and osmolality (860-985 mOsm/kg) in the range of nonionic x-ray agents. No relevant effects on erythrocytes, the coagulation, or complement system or on a panel of 87 potential biological targets were observed. The compound did not bind to plasma proteins of a number of species investigated. After intravenous injection in rats, it was excreted fast and mainly via the kidneys. Its pharmacokinetics was comparable to known extracellular contrast agents. A dose of 6000 mg Hf/kg, approximately 10 to 20 times the expected diagnostic dose, was well tolerated by rats with only moderate adverse effects. Computed tomography imaging in rabbits bearing a tumor in the liver demonstrated excellent image quality when compared with iopromide at the same contrast agent dose in angiography during the arterial phase. At 70% of the radiation dose, BAY-576 provided a contrast-to-noise ratio of the tumor, which was equivalent to iopromide at 100% radiation dose. The profile of BAY-576 indicates its potential as the first compound in a new class of noniodine x-ray contrast agents, which can contribute to the reduction of the radiation burden in contrast-enhanced CT imaging.

  14. Excitation functions for proton-induced reactions on natural hafnium: Production of 177Lu for medical use

    Science.gov (United States)

    Siiskonen, T.; Huikari, J.; Haavisto, T.; Bergman, J.; Heselius, S.-J.; Lill, J.-O.; Lönnroth, T.; Peräjärvi, K.; Vartti, V.-P.

    2009-11-01

    There is an increasing interest in using radioisotopes of rare earth elements for internal radiotherapy and for imaging in nuclear medicine. 177Lu is one of the promising radionuclides. This article reports on the first measurements of the excitation function for the production of 177Lu with proton-beam energies up to 17 MeV on natural hafnium targets. The experimental cross sections for the reaction natHf(p,x) 177Lu were obtained by the activation of a stacked-foil target and subsequent gamma spectrometry. Theoretical cross sections were calculated up to 35 MeV with the EMPIRE nuclear reaction model code. The measured and calculated cross sections were used for deriving the thick-target yields and for estimating the production of other nuclides than 177Lu. Measured production cross sections of 175,176,177,178Ta on the same target are also presented.

  15. Properties of neutron-rich hafnium high-spin isomers

    CERN Multimedia

    Tungate, G; Walker, P M; Neyens, G; Billowes, J; Flanagan, K; Koester, U H; Litvinov, Y

    It is proposed to study highly-excited multi-quasiparticle isomers in neutron-rich hafnium (Z=72) isotopes. Long half-lives have already been measured for such isomers in the storage ring at GSI, ensuring their accessibility with ISOL production. The present proposal focuses on:\\\\ (i) an on-line experiment to measure isomer properties in $^{183}$Hf and $^{184}$Hf, and\\\\ (ii) an off-line molecular breakup test using REXTRAP, to provide Hf$^{+}$ beams for future laser spectroscopy and greater sensitivity for the future study of more neutron-rich isotopes.

  16. Hafnium-Based Contrast Agents for X-ray Computed Tomography.

    Science.gov (United States)

    Berger, Markus; Bauser, Marcus; Frenzel, Thomas; Hilger, Christoph Stephan; Jost, Gregor; Lauria, Silvia; Morgenstern, Bernd; Neis, Christian; Pietsch, Hubertus; Sülzle, Detlev; Hegetschweiler, Kaspar

    2017-05-15

    Heavy-metal-based contrast agents (CAs) offer enhanced X-ray absorption for X-ray computed tomography (CT) compared to the currently used iodinated CAs. We report the discovery of new lanthanide and hafnium azainositol complexes and their optimization with respect to high water solubility and stability. Our efforts culminated in the synthesis of BAY-576, an uncharged hafnium complex with 3:2 stoichiometry and broken complex symmetry. The superior properties of this asymmetrically substituted hafnium CA were demonstrated by a CT angiography study in rabbits that revealed excellent signal contrast enhancement.

  17. Graphite Furnace Atomic Absorption Spectrometric Determination of Bismuth(III) after Coprecipitation with Hafnium Hydroxide

    OpenAIRE

    Ueda, Joichi; Takagi, Midori

    1990-01-01

    A method for the coprecipitation of bismuth(III) with hafnium hydroxide followed by a graphite-furnace atomic absorption spectrometric determination is described. Hafnium hydroxide coprecipitates quantitatively 0.05–3 μg of bismuth(III) from 50–400 cm3 of sample solution at pH 5.8–11.2. The presence of 2.5–50 mg of hafnium in 25 cm3 does not affect the atomic absorbance of bismuth(III). The calibration curve is linear for 0.05–3 μg of bismuth(III) in 25 cm3 and passes through the origin. Inte...

  18. Zirconium and hafnium Salalen complexes in isospecific polymerisation of propylene.

    Science.gov (United States)

    Press, Konstantin; Venditto, Vincenzo; Goldberg, Israel; Kol, Moshe

    2013-07-07

    The activity of dibenzylzirconium and dibenzylhafnium Salalen complexes in polymerisation of propylene with MAO as a cocatalyst is described. Three Salalen ligand precursors combining a bulky alkyl group (1-adamantyl) on the imine-side phenol and electron withdrawing halo groups of different sizes on the amine-side phenol were explored. All metal complexes were obtained as single diastereomers. An X-ray crystallographic structure of a hafnium complex of an additional ligand carrying the combination of tert-butyl and chloro substituted phenolates, 4-Hf, revealed a fac-mer wrapping of the Salalen ligand around the metal centre. All complexes led to active catalysts in propylene polymerisation and to isotactic polypropylene of high regioregularity. The zirconium complexes led to polypropylene having molecular weights of Mw = 132,000-200,000 and isotacticities of [mmmm] = 65.7-75.0%. The hafnium complexes led to polypropylene of higher molecular weights of Mw = 375,000-520,000 and higher stereoregularities of [mmmm] = 80.6-89.3%, the highest isotacticity obtained with 3-Hf.

  19. Gallium nitride optoelectronic devices

    Science.gov (United States)

    Chu, T. L.; Chu, S. S.

    1972-01-01

    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  20. Boron Nitride Nanotubes

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  1. Enrichment/isolation of phosphorylated peptides on hafnium oxide prior to mass spectrometric analysis.

    Science.gov (United States)

    Rivera, José G; Choi, Yong Seok; Vujcic, Stefan; Wood, Troy D; Colón, Luis A

    2009-01-01

    Hafnium oxide (hafnia) exhibits unique enrichment properties towards phosphorylated peptides that are complementary to those of titanium oxide (titania) and zirconium oxide (zirconia) for use with mass spectrometric analysis in the field of proteomics.

  2. Precipitation behaviour and recrystallisation resistance in aluminum alloys with additions of hafnium, scandium and zirconium

    OpenAIRE

    Hallem, Håkon

    2005-01-01

    The overall objective of this work has been to develop aluminium alloys, which after hot and cold deformation are able to withstand high temperatures without recrystallising. This has been done by investigating aluminium alloys with various additions of hafnium, scandium and zirconium, with a main focus on Hf and to which extent it may partly substitute or replace Zr and/or Sc as a dispersoid forming elements in these alloys. What is the effect of hafnium, alone and in combination with Zr...

  3. Thin Films of Reduced Hafnium Oxide with Excess Carbon for High-Temperature Oxidation Protection

    Science.gov (United States)

    2010-02-01

    contamination; thus the higher oxygen content found by XPS is partly due to organic impurities (and, possibly, water ) that are mostly concentrated in the...International Service Award, 2007. 25 REFERENCES ’C. B. Bargeron, R. C. Benson, and A. N. Jette , "High-Temperature Diffusion of Oxygen in Oxidizing Hafnium...A. N. Jette , and T. E. Phillips, "Oxidation of Hafnium Carbide in the Temperature Range 1400 ° to 2060 °C," Journal of the American Ceramic Society

  4. On the stabilization of niobium(V) solutions by zirconium(IV) and hafnium(IV)

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    Niobium cannot be separated from zirconium or hafnium when these elements occur together in solution with common anions such as chloride and sulphate. This is ascribed to the co-polymerization of niobium(V) and the hydrolysed ionic species of zirconium(IV) and hafnium(IV) to form colloidal partic...... particles. In hydrochloric acid the particles are positively charged, whereas in sulphate solution the Zr- and Hf-sulphate complexes confer a negative charge. The two cases are considered separately....

  5. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  6. Cryogenic mechanical loss measurements of heat-treated hafnium dioxide

    Science.gov (United States)

    Abernathy, M. R.; Reid, S.; Chalkley, E.; Bassiri, R.; Martin, I. W.; Evans, K.; Fejer, M. M.; Gretarsson, A.; Harry, G. M.; Hough, J.; MacLaren, I.; Markosyan, A.; Murray, P.; Nawrodt, R.; Penn, S.; Route, R.; Rowan, S.; Seidel, P.

    2011-10-01

    Low mechanical loss, high index-of-refraction thin-film coating materials are of particular interest to the gravitational wave detection community, where reduced mirror coating thermal noise in gravitational wave detectors is desirable. Current studies are focused on understanding the loss of amorphous metal oxides such as SiO2, Ta2O5 and HfO2. Here, we report recent measurements of the temperature dependence of the mechanical loss of ion-beam sputtered hafnium dioxide (HfO2) coatings that have undergone heat treatment. The results indicate that, even when partially crystallized, these coatings have lower loss than amorphous Ta2O5 films below ~100 K and that their loss exhibits some features which are heat-treatment dependent in the temperature range of ~100-200 K, with higher heat treatment yielding lower mechanical loss. The potential for using silica doping of hafnia coatings to prevent crystallization is discussed.

  7. Amorphous Hafnium-Indium-Zinc Oxide Semiconductor Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Sheng-Po Chang

    2012-01-01

    Full Text Available We reported on the performance and electrical properties of co-sputtering-processed amorphous hafnium-indium-zinc oxide (α-HfIZO thin film transistors (TFTs. Co-sputtering-processed α-HfIZO thin films have shown an amorphous phase in nature. We could modulate the In, Hf, and Zn components by changing the co-sputtering power. Additionally, the chemical composition of α-HfIZO had a significant effect on reliability, hysteresis, field-effect mobility (μFE, carrier concentration, and subthreshold swing (S of the device. Our results indicated that we could successfully and easily fabricate α-HfIZO TFTs with excellent performance by the co-sputtering process. Co-sputtering-processed α-HfIZO TFTs were fabricated with an on/off current ratio of ~106, higher mobility, and a subthreshold slope as steep as 0.55 V/dec.

  8. Cyclopentadienyl complexes of hafnium and zirconium containing nitrate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Minacheva, M.Kh.; Brajnina, Eh.M.; Klemenkova, Z.S.; Lokshin, B.V.; Nikolaeva, T.D.; Zhdanov, S.I.; Petrovskij, P.V. (AN SSSR, Moscow. Inst. Ehlementoorganicheskikh Soedinenij)

    1983-06-01

    New types of monocyclopentadienyl nitrate complexes of zirconium and hafnium CpHf(DBM)(NO/sub 3/)/sub 2/ and CpHfCl/sub 2/(NO/sub 3/)x4H/sub 2/O (DBM = dibenzoylmethane residue) are synthesized. CpMCl/sub 2/(NO/sub 3/) dichlorides are formed during the reaction of CpM(chel)/sub 2/Cl and HNO/sub 3/ as a result of the interaction of the extracted HCl with the CpM(chel)/sub 2/(NO/sub 3/) exchange product. A supposition is made about the non-ionic character of the metal-nitrate bonds and the bidentate character of the nitrate ligands in Cp/sub 2/M(NO/sub 3/)Cl on the base of studying the electric conductivity, IR- and Raman spectra.

  9. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  10. Apparatus for the production of boron nitride nanotubes

    Science.gov (United States)

    Smith, Michael W; Jordan, Kevin

    2014-06-17

    An apparatus for the large scale production of boron nitride nanotubes comprising; a pressure chamber containing; a continuously fed boron containing target; a source of thermal energy preferably a focused laser beam; a cooled condenser; a source of pressurized nitrogen gas; and a mechanism for extracting boron nitride nanotubes that are condensed on or in the area of the cooled condenser from the pressure chamber.

  11. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    Science.gov (United States)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  12. State of hydroxogroups in zirconium- and hafnium hydroxysulfate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bochkarev, Eh.P.; Kolpachkova, N.M.; Muravlev, Yu.B.; Nekhamkin, L.G.; Ovsyannikova, N.V.; Sokolova, E.L. (Gosudarstvennyj Nauchno-Issledovatel' skij i Proektnyj Inst. Redkometallicheskoj Promyshlennosti, Moscow (USSR))

    1984-01-01

    Hydroxogroup state in zirconium sesquisulfate and hafnium monosulfate is studied. On the basis of analyzing the data of PMR and IR-spectroscopy of hydrolized sulfate Zr and Hf compounds are found. Compounds studied have Zr=(OH)/sub 2/=Zr dimers or (Hf(OH)sub(2))sub(n) chains as elements of the structure in which atoms of binary oxygen bridge form hydroxyl groups with hydrogen atoms. Complexes include molecules of crystallization water toughly coordinated by Zr or Hf atoms. The splitting of absorption bands observed in IR-spectrum is connected with the fact that during dissociation of hydroxogroups of the Me-OH-Me grouping, new bridge groupings with Me-O-Me oxogroups and bidentate water molecules Me-OH/sub 2/-Me appear. It is established that in compounds which are considered not oxo but hydroxocompounds the phenomenon of protonolytic dissociation of a part of hydroxogroups takes place. Exchange reactions occurring at a high rate and dissociation of hydroxogroups are typical for most hydrolized Zr and Hf compounds. The presence of hydrolized Zr- and Hf sulfates and the composition relatively to movable protons and OH-groups presupposes the ability of compounds of this class to participation in cation- and anion-exchange reactions and proves amorphous properties of Zr and Hf hydroxocompounds.

  13. Reinvestigation of high pressure polymorphism in hafnium metal

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, K. K., E-mail: kkpandey@barc.gov.in; Sharma, Surinder M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India); Gyanchandani, Jyoti; Dey, G. K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai-400 085 (India); Somayazulu, M. [Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015 (United States); Sikka, S. K. [Indian National Science Academy, New Delhi-110 002 (India)

    2014-06-21

    There has been a recent controversy about the high pressure polymorphism of Hafnium (Hf). Unlike, the earlier known α→ω structural transition at 38 ± 8 GPa, at ambient temperature, Hrubiak et al. [J. Appl. Phys. 111, 112612 (2012)] did not observe it till 51 GPa. They observed this transition only at elevated temperatures. We have reinvestigated the room temperature phase diagram of Hf, employing x-ray diffraction (XRD) and DFT based first principles calculations. Experimental investigations have been carried out on several pure and impure Hf samples and also with different pressure transmitting media. Besides demonstrating the significant role of impurity levels on the high pressure phase diagram of Hf, our studies re-establish room temperature α→ω transition at high pressures, even in quasi-hydrostatic environment. We observed this transition in pure Hf with equilibrium transition pressure P{sub o} = 44.5 GPa; however, with large hysteresis. The structural sequence, transition pressures, the lattice parameters, the c/a ratio and its variation with compression for the α and ω phases as predicted by our ab-initio scalar relativistic (SR) calculations are found to be in good agreement with our experimental results of pure Hf.

  14. Oxidation Effect in Octahedral Hafnium Disulfide Thin Film.

    Science.gov (United States)

    Chae, Sang Hoon; Jin, Youngjo; Kim, Tae Soo; Chung, Dong Seob; Na, Hyunyeong; Nam, Honggi; Kim, Hyun; Perello, David J; Jeong, Hye Yun; Ly, Thuc Hue; Lee, Young Hee

    2016-01-26

    Atomically smooth van der Waals materials are structurally stable in a monolayer and a few layers but are susceptible to oxygen-rich environments. In particular, recently emerging materials such as black phosphorus and perovskite have revealed stronger environmental sensitivity than other two-dimensional layered materials, often obscuring the interesting intrinsic electronic and optical properties. Unleashing the true potential of these materials requires oxidation-free sample preparation that protects thin flakes from air exposure. Here, we fabricated few-layer hafnium disulfide (HfS2) field effect transistors (FETs) using an integrated vacuum cluster system and study their electronic properties and stability under ambient conditions. By performing all the device fabrication and characterization procedure under an oxygen- and moisture-free environment, we found that few-layer AA-stacking HfS2-FETs display excellent field effect responses (Ion/Ioff ≈ 10(7)) with reduced hysteresis compared to the FETs prepared under ambient conditions. Oxidation of HfS2 occurs uniformly over the entire area, increasing the film thickness by 250% at a prolonged oxidation time of >120 h, while defects on the surface are the preferential initial oxidation sites. We further demonstrated that the stability of the device in air is significantly improved by passivating FETs with BN in a vacuum cluster.

  15. Hafnium oxide nanoparticles: toward an in vitro predictive biological effect?

    Science.gov (United States)

    Marill, Julie; Anesary, Naeemunnisa Mohamed; Zhang, Ping; Vivet, Sonia; Borghi, Elsa; Levy, Laurent; Pottier, Agnes

    2014-06-30

    Hafnium oxide, NBTXR3 nanoparticles were designed for high dose energy deposition within cancer cells when exposed to ionizing radiation. The purpose of this study was to assess the possibility of predicting in vitro the biological effect of NBTXR3 nanoparticles when exposed to ionizing radiation. Cellular uptake of NBTXR3 nanoparticles was assessed in a panel of human cancer cell lines (radioresistant and radiosensitive) by transmission electron microscopy. The radioenhancement of NBTXR3 nanoparticles was measured by the clonogenic survival assay. NBTXR3 nanoparticles were taken up by cells in a concentration dependent manner, forming clusters in the cytoplasm. Differential nanoparticle uptake was observed between epithelial and mesenchymal or glioblastoma cell lines. The dose enhancement factor increased with increase NBTXR3 nanoparticle concentration and radiation dose. Beyond a minimum number of clusters per cell, the radioenhancement of NBTXR3 nanoparticles could be estimated from the radiation dose delivered and the radiosensitivity of the cancer cell lines. Our preliminary results suggest a predictable in vitro biological effect of NBTXR3 nanoparticles exposed to ionizing radiation.

  16. Hard superconducting nitrides

    Science.gov (United States)

    Chen, Xiao-Jia; Struzhkin, Viktor V.; Wu, Zhigang; Somayazulu, Maddury; Qian, Jiang; Kung, Simon; Christensen, Axel Nørlund; Zhao, Yusheng; Cohen, Ronald E.; Mao, Ho-kwang; Hemley, Russell J.

    2005-01-01

    Detailed study of the equation of state, elasticity, and hardness of selected superconducting transition-metal nitrides reveals interesting correlations among their physical properties. Both the bulk modulus and Vickers hardness are found to decrease with increasing zero-pressure volume in NbN, HfN, and ZrN. The computed elastic constants from first principles satisfy c11 > c12 > c44 for NbN, but c11 > c44 > c12 for HfN and ZrN, which are in good agreement with the neutron scattering data. The cubic δ-NbN superconducting phase possesses a bulk modulus of 348 GPa, comparable to that of cubic boron nitride, and a Vickers hardness of 20 GPa, which is close to sapphire. Theoretical calculations for NbN show that all elastic moduli increase monotonically with increasing pressure. These results suggest technological applications of such materials in extreme environments. PMID:15728352

  17. Hafnium(IV) chloride complexes with chelating β-ketiminate ligands: Synthesis, spectroscopic characterization and volatility study.

    Science.gov (United States)

    Patil, Siddappa A; Medina, Phillip A; Antic, Aleks; Ziller, Joseph W; Vohs, Jason K; Fahlman, Bradley D

    2015-09-05

    The synthesis and characterization of four new β-ketiminate hafnium(IV) chloride complexes dichloro-bis[4-(phenylamido)pent-3-en-2-one]-hafnium (4a), dichloro-bis[4-(4-methylphenylamido)pent-3-en-2-one]-hafnium (4b), dichloro-bis[4-(4-methoxyphenylamido)pent-3-en-2-one]-hafnium (4c), and dichloro-bis[4-(4-chlorophenylamido)pent-3-en-2-one]-hafnium (4d) are reported. All the complexes (4a-d) were characterized by spectroscopic methods ((1)H NMR, (13)C NMR, IR), and elemental analysis while the compound 4c was further examined by single-crystal X-ray diffraction, revealing that the complex is monomer with the hafnium center in octahedral coordination environment and oxygens of the chelating N-O ligands are trans to each other and the chloride ligands are in a cis arrangement. Volatile trends are established for four new β-ketiminate hafnium(IV) chloride complexes (4a-d). Sublimation enthalpies (ΔHsub) were calculated from thermogravimetric analysis (TGA) data, which show that, the dependence of ΔHsub on the molecular weight (4a-c) and inductive effects from chlorine (4d). Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Cytotoxicity and physicochemical properties of hafnium oxide nanoparticles.

    Science.gov (United States)

    Field, James A; Luna-Velasco, Antonia; Boitano, Scott A; Shadman, Farhang; Ratner, Buddy D; Barnes, Chris; Sierra-Alvarez, Reyes

    2011-09-01

    Nano-sized hafnium oxide (HfO(2)) particles are being considered for applications within the semiconductor industry. However, little is known about their cytotoxicity. The objective of this work was to assess several HfO(2) nanoparticles (NPs) samples for their acute cytotoxicity. Dynamic light scattering analysis of the samples indicated that the average particle size of the HfO(2) in aqueous dispersions was in the submicron range with a fraction of particles having nano-dimensions. The media used in the toxicity assays decreased or increased the average particle size of HfO(2) NPs due to dispersion or agglomeration. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS) revealed numerous surface contaminants on the NPs. Only one HfO(2) sample caused moderate cytotoxicity to human cell lines. The inhibitory sample caused a 50% response in the Live/Dead assay with HaCaT skin cells at 2200 mg L(-1); and a 50% response in the mitochondrial toxicity test at 300 mg L(-1). A microbial inhibition assay based on methanogenic activity also revealed that another HFO(2) sample caused moderate inhibition. The difference in toxicity between samples could not be attributed to size. Instead the difference in toxicity was likely due to differences in the contaminants of the HfO(2). The ToF-SIMS analysis indicated unique signatures of Br and P in the sample toxic to human cell lines suggesting a distinct synthesis was used for that sample which may have been accompanied by inhibitory impurities. The results taken as a whole indicate that HfO(2) itself is relatively non-toxic. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  20. Electrochemical nitridation of metal surfaces

    Science.gov (United States)

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  1. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  2. Measurement of L(III) Subshell Absorption Jump Parameters of Hafnium.

    Science.gov (United States)

    Cengiz, E; Saritas, N; Dogan, M; Koksal, O K; Karabulut, K; Apaydin, G; Tirasoglu, E

    2015-12-01

    The L(III) subshell absorption jump ratio and jump factor of hafnium have been measured using two different ways which are X-ray attenuation method and Energy Dispersive X-ray Fluorescence technique. The results obtained both ways have been compared with theoretical values. They are in good agreement with each other.

  3. Self-diffusion in the hexagonal structure of Zirconium and Hafnium: computer simulation studies

    Directory of Open Access Journals (Sweden)

    Diego Hernán Ruiz

    2005-12-01

    Full Text Available Self-diffusion by vacancy mechanism is studied in two metals of hexagonal close packed structure, namely Hafnium and Zirconium. Computer simulation techniques are used together with many-body potentials of the embedded atom type. Defect properties are calculated at 0 K by molecular static while molecular dynamic is used to explore a wide temperature range.

  4. Synthesis, properties, and structure of potassium titanyl phosphate single crystals doped with hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Orlova, E. I.; Kharitonova, E. P. [Moscow State University, Faculty of Physics (Russian Federation); Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Verin, I. A.; Alekseeva, O. A.; Sorokina, N. I. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Voronkova, V. I. [Moscow State University, Faculty of Physics (Russian Federation)

    2010-05-15

    Single crystals of potassium titanyl phosphate doped with hafnium are grown by spontaneous flux crystallization. Their physical properties are studied, and the structure of three KTi{sub 1-x}Hf{sub x}OPO{sub 4} crystals (x = 0.01, 0.03, and 0.12) is determined. In the crystals studied, hafnium mostly occupies the second titanium position. The doping of KTP crystals with hafnium results in an elongation of K-O bonds in the potassium polyhedra and, as a consequence, in a considerable (by approximately 180 deg. C) decrease in the temperature of ferroelectric phase transition. The magnitude of anomalous permittivity substantially decreases. The electrical conduction in the specimens studied decreases by approximately half an order of magnitude in the low-temperature region but remains almost unchanged in the high-temperature region. Even at minor concentrations, the presence of a hafnium additive in the specimens considerably (by 35%) enhances the intensity of the second harmonic generation of laser radiation.

  5. Modification of zirconium and hafnium alkoxides : the effect of molecular structure on derived materials

    NARCIS (Netherlands)

    Spijksma, G.I.

    2006-01-01

    This thesis deals with the influence of modifying ligands on the structure and stability of zirconium and hafnium precursors. The applicability of the obtained modified alkoxides has been evaluated for MOCVD and sol-gel. Furthermore, the influence of the introduction of heteroligands on the sol-gel

  6. Benzylene-linked [PNP] scaffolds and their cyclometalated zirconium and hafnium complexes.

    Science.gov (United States)

    Sietzen, Malte; Batke, Sonja; Antoni, Patrick W; Wadepohl, Hubert; Ballmann, Joachim

    2017-05-09

    The benzylene-linked [PNP] scaffolds HN(CH2-o-C6H4PPh2)2 ([A]H) and HN(C6H4-o-CH2PPh2)2 ([B]H) have been used for the synthesis of zirconium and hafnium complexes. For both ligands, the dimethylamides [A]M(NMe2)3 ([A]1-M) and [B]M(NMe2)3 ([B]1-M) were prepared and converted to the iodides [A]MI3 ([A]2-M) and [B]MI3 ([B]2-M) (M = Zr, Hf). Starting from these iodides, the corresponding benzyl derivatives [A]MBn3 ([A]3-M) and [B]MBn3 ([B]3-M) (M = Zr, Hf) were obtained via reaction with Bn2Mg(OEt2)2. For zirconium, the benzylic ligand positions in [A]3-Zr and [B]3-Zr were found to cyclometalate readily, which led to the corresponding κ(4)-[PCNP]ZrBn2 complexes [A]4-Zr and [B]4-Zr. As these complexes failed to hydrogenate cleanly, cyclometalated derivatives with only one alkyl substituent were targeted and the mixed benzyl chlorides κ(4)-[PCNP]MBnCl ([B]5-M, M = Zr, Hf) were obtained in the case of ligand [B]. Upon hydrogenation of [B]5-Zr, the η(6)-tolyl complex [B]Zr(η(6)-C7H8)Cl ([B]6-Zr) was generated cleanly, but the corresponding hafnium complex [B]5-Hf was found to decompose unselectively in the presence of H2. Using a closely related carbazole-based [PNP] ligand, Gade and co-workers have shown recently that zirconium η(6)-arene complexes similar to [B]6-Zr may serve as zirconium(ii) synthons, namely when reacted with 2,6-Dipp-NC (L) or pyridine (py). Both these substrates were shown to react cleanly with [B]6-Zr, which led to the formation of the bis-isocyanide complex [B]ZrCl(L)2 ([B]7-Zr) and the 2,2'-bipyridine derivative [B]ZrCl(bipy) ([B]8-Zr), respectively. Upon reaction of [B]Zr(η(6)-C7H8)Cl ([B]6-Zr) with NaBEt3H, the cyclometalated derivative κ(4)-[PCNP]Zr(η(6)-C7H8) ([B]9-Zr) was isolated. In an attempt to synthesise terminal hydrides, complexes [A]MI3 ([A]2-M) were treated with KBEt3H, which led to the isolation of the cyclometalated hydrido complexes κ(4)-[PCNP]M(H)(κ(3)-Et3BH) ([A]10-M; M = Zr, Hf) featuring a κ(3)-bound triethyl

  7. Functionalized boron nitride nanotubes

    Science.gov (United States)

    Sainsbury, Toby; Ikuno, Takashi; Zettl, Alexander K

    2014-04-22

    A plasma treatment has been used to modify the surface of BNNTs. In one example, the surface of the BNNT has been modified using ammonia plasma to include amine functional groups. Amine functionalization allows BNNTs to be soluble in chloroform, which had not been possible previously. Further functionalization of amine-functionalized BNNTs with thiol-terminated organic molecules has also been demonstrated. Gold nanoparticles have been self-assembled at the surface of both amine- and thiol-functionalized boron nitride Nanotubes (BNNTs) in solution. This approach constitutes a basis for the preparation of highly functionalized BNNTs and for their utilization as nanoscale templates for assembly and integration with other nanoscale materials.

  8. Immobilization mechanisms of deoxyribonucleic acid (DNA) to hafnium dioxide (HfO2) surfaces for biosensing applications.

    Science.gov (United States)

    Fahrenkopf, Nicholas M; Rice, P Zachary; Bergkvist, Magnus; Deskins, N Aaron; Cady, Nathaniel C

    2012-10-24

    Immobilization of biomolecular probes to the sensing substrate is a critical step for biosensor fabrication. In this work we investigated the phosphate-dependent, oriented immobilization of DNA to hafnium dioxide surfaces for biosensing applications. Phosphate-dependent immobilization was confirmed on a wide range of hafnium oxide surfaces; however, a second interaction mode was observed on monoclinic hafnium dioxide. On the basis of previous materials studies on these films, DNA immobilization studies, and density functional theory (DFT) modeling, we propose that this secondary interaction is between the exposed nucleobases of single stranded DNA and the surface. The lattice spacing of monoclinic hafnium dioxide matches the base-to-base pitch of DNA. Monoclinic hafnium dioxide is advantageous for nanoelectronic applications, yet because of this secondary DNA immobilization mechanism, it could impede DNA hybridization or cause nonspecific surface intereactions. Nonetheless, DNA immobilization on polycrystalline and amorphous hafnium dioxide is predominately mediated by the terminal phosphate in an oriented manner which is desirable for biosensing applications.

  9. Chemical bonding in hard boron-nitride multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jankowski, A.F.; Hayes, J.P.

    1997-06-01

    The oxides and nitrides of boron show great potential for use as hard, wear resistant materials. However, large intrinsic stresses and poor adhesion often accompany the hard coatings as found for the cubic boron-nitride phase. These effects may be moderated for use of a layered structure. Alternate stiff layers of boron and compliant layers of nitride are formed by modulating the sputter gas composition during deposition of boron target. The B/BN thin films are characterized with transmission electronic microscope to evaluate the microstructure, nanoindentation to measure hardness and ex-ray absorption spectroscopy to determine chemical bonding. The effects of layer pair spacing on chemical bonding and hardness are evaluated for the B/BN films.

  10. Boron nitride converted carbon fiber

    Science.gov (United States)

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  11. Nano boron nitride flatland.

    Science.gov (United States)

    Pakdel, Amir; Bando, Yoshio; Golberg, Dmitri

    2014-02-07

    Recent years have witnessed many breakthroughs in research on two-dimensional (2D) nanomaterials, among which is hexagonal boron nitride (h-BN), a layered material with a regular network of BN hexagons. This review provides an insight into the marvellous nano BN flatland, beginning with a concise introduction to BN and its low-dimensional nanostructures, followed by an overview of the past and current state of research on 2D BN nanostructures. A comprehensive review of the structural characteristics and synthetic routes of BN monolayers, multilayers, nanomeshes, nanowaves, nanoflakes, nanosheets and nanoribbons is presented. In addition, electronic, optical, thermal, mechanical, magnetic, piezoelectric, catalytic, ecological, biological and wetting properties, applications and research perspectives for these novel 2D nanomaterials are discussed.

  12. Nitride stabilized core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  13. Switching Kinetics in Nanoscale Hafnium Oxide Based Ferroelectric Field-Effect Transistors.

    Science.gov (United States)

    Mulaosmanovic, Halid; Ocker, Johannes; Müller, Stefan; Schroeder, Uwe; Müller, Johannes; Polakowski, Patrick; Flachowsky, Stefan; van Bentum, Ralf; Mikolajick, Thomas; Slesazeck, Stefan

    2017-02-01

    The recent discovery of ferroelectricity in thin hafnium oxide films has led to a resurgence of interest in ferroelectric memory devices. Although both experimental and theoretical studies on this new ferroelectric system have been undertaken, much remains to be unveiled regarding its domain landscape and switching kinetics. Here we demonstrate that the switching of single domains can be directly observed in ultrascaled ferroelectric field effect transistors. Using models of ferroelectric domain nucleation we explain the time, field and temperature dependence of polarization reversal. A simple stochastic model is proposed as well, relating nucleation processes to the observed statistical switching behavior. Our results suggest novel opportunities for hafnium oxide based ferroelectrics in nonvolatile memory devices.

  14. Synthesis and characterization of hafnium oxide films for thermo and photoluminescence applications.

    Science.gov (United States)

    Mendoza, J Guzmán; Frutis, M A Aguilar; Flores, G Alarcón; Hipólito, M García; Maciel Cerda, A; Azorín Nieto, J; Montalvo, T Rivera; Falcony, C

    2010-01-01

    Hafnium oxide (HfO(2)) films were deposited by the ultrasonic spray pyrolysis process. The films were synthesized from hafnium chloride as raw material in deionized water as solvent and were deposited on corning glass substrates at temperatures from 300 to 600 degrees C. For substrate temperatures lower than 400 degrees C the deposited films were amorphous, while for substrate temperatures higher than 450 degrees C, the monoclinic phase of HfO(2) appeared. Scanning electron microscopy showed that the film's surface resulted rough with semi-spherical promontories. The films showed a chemical composition close to HfO(2), with an Hf/O ratio of about 0.5. UV radiation was used in order to achieve the thermoluminescent characterization of the films; the 240 nm wavelength induced the best response. In addition, preliminary photoluminescence spectra, as a function of the deposition temperatures, are shown. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Hafnium-an optical hydrogen sensor spanning six orders in pressure.

    Science.gov (United States)

    Boelsma, C; Bannenberg, L J; van Setten, M J; Steinke, N-J; van Well, A A; Dam, B

    2017-06-05

    Hydrogen detection is essential for its implementation as an energy vector. So far, palladium is considered to be the most effective hydrogen sensing material. Here we show that palladium-capped hafnium thin films show a highly reproducible change in optical transmission in response to a hydrogen exposure ranging over six orders of magnitude in pressure. The optical signal is hysteresis-free within this range, which includes a transition between two structural phases. A temperature change results in a uniform shift of the optical signal. This, to our knowledge unique, feature facilitates the sensor calibration and suggests a constant hydrogenation enthalpy. In addition, it suggests an anomalously steep increase of the entropy with the hydrogen/metal ratio that cannot be explained on the basis of a classical solid solution model. The optical behaviour as a function of its hydrogen content makes hafnium well-suited for use as a hydrogen detection material.

  16. Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films.

    Science.gov (United States)

    Shang, Jie; Xue, Wuhong; Ji, Zhenghui; Liu, Gang; Niu, Xuhong; Yi, Xiaohui; Pan, Liang; Zhan, Qingfeng; Xu, Xiao-Hong; Li, Run-Wei

    2017-06-01

    Flexible and transparent resistive switching memories are highly desired for the construction of portable and even wearable electronics. Upon optimization of the microstructure wherein an amorphous-nanocrystalline hafnium oxide thin film is fabricated, an all-oxide based transparent RRAM device with stable resistive switching behavior that can withstand a mechanical tensile stress of up to 2.12% is obtained. It is demonstrated that the superior electrical, thermal and mechanical performance of the ITO/HfOx/ITO device can be ascribed to the formation of pseudo-straight metallic hafnium conductive filaments in the switching layer, and is only limited by the choice of electrode materials. When the ITO bottom electrode is replaced with platinum metal, the mechanical failure threshold of the device can be further extended.

  17. On-line separation of refractory hafnium and tantalum isotopes at the ISOCELE separator

    CERN Document Server

    Liang, C F; Obert, J; Paris, P; Putaux, J C

    1981-01-01

    By chemical evaporation technique, neutron deficient hafnium nuclei have been on-line separated at the ISOCELE facility, from the isobar rare-earth elements, in the metal-fluoride HfF/sub 3//sup +/ ion form. Half-lives of /sup 162-165/Hf have been measured. Similarly, tantalum has been selectively separated on the TaF/sub 4//sup +/ form. (4 refs) .

  18. The control of weathering processes on riverine and seawater hafnium isotope ratios

    OpenAIRE

    Bayon, Germain; Vigier, Nathalie; Burton, Kevin W.; Brenot, Agnès; Carignan, Jean; Etoubleau, Joel; Chu, Nan-chin

    2006-01-01

    Hafnium Hf-176/Hf-177 isotope ratio variations in marine records are thought to reflect changes in continental weathering through time, but the behavior of Hf in rivers, and during weathering, is not well understood. Here, we present Hf-176/Hf-177 data for rivers, bedrock, soils, and leaching experiments for the Moselle basin, Vosges, France. These data strongly suggest that the Hf-176/Hf-177 composition of river waters is controlled by preferential dissolution of accessory phases (i.e., apat...

  19. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    The nucleation of iron nitrides during gaseous nitriding has been investigated using light microscopy and X-ray diffraction. Initially, the nucleation of gamma'-Fe4N1-x on a pure iron surface starts at grain boundaries meeting the surface, from where the nitride grains grow laterally into the iron......, and the development of a metastable precursor for nitride formation....

  20. Precipitation of zirconium and hafnium basic sulphates from chloride and nitrate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nekhamkin, L.G.; Tsylov, Yu.A.; Reznik, A.M.; Kondrashova, I.A.; Bogushevskaya, S.V. (Gosudarstvennyj Nauchno-Issledovatel' skij i Proektnyj Inst. Redkometallicheskoj Promyshlennosti, Moscow (USSR); Moskovskij Inst. Tonkoj Khimicheskoj Tekhnologii (USSR))

    1984-01-01

    Solubility of main zirconium sulfates (MZS) and that of hafnium (MHS) in systems with nitric and hydrochloric acids is studied. It was interesting to compare the strength of zirconium and hafnium hydrocomplexes in the process of precipitation of main sulfates, as well as the ability of some ligands to form complexes with these metals. Experiments are performed in the range of comparatively low concentrations of acids that are most valuable from the practical point of view. Chemical analysis of equilibrium phases is performed by gravimetric and volumetric methods. To determine substantial composition of sediments thermographic and X-ray graphic analysis are used. It is shown that formation of hydroxosulfate complexes from hydroxochloride of hydroxobromide complexes is difficult as compared with their formation from hydroxonitrate or hydroxoperchlorate. As regards the strength of bond with zirconium and hafnium in hydrolized complexes, acidoligands must be placed in the Clo/sub 4//sup -/

  1. Hafnium metallocene compounds used as cathode interfacial layers for enhanced electron transfer in organic solar cells.

    Science.gov (United States)

    Park, Keunhee; Oh, Seungsik; Jung, Donggeun; Chae, Heeyeop; Kim, Hyoungsub; Boo, Jin-Hyo

    2012-01-09

    We have used hafnium metallocene compounds as cathode interfacial layers for organic solar cells [OSCs]. A metallocene compound consists of a transition metal and two cyclopentadienyl ligands coordinated in a sandwich structure. For the fabrication of the OSCs, poly[3,4-ethylenedioxythiophene]:poly(styrene sulfonate), poly(3-hexylthiophene-2,5-diyl) + 66-phenyl C61 butyric acid methyl ester, bis-(ethylcyclopentadienyl)hafnium(IV) dichloride, and aluminum were deposited as a hole transport layer, an active layer, a cathode interfacial layer, and a cathode, respectively. The hafnium metallocene compound cathode interfacial layer improved the performance of OSCs compared to that of OSCs without the interfacial layer. The current density-voltage characteristics of OSCs with an interfacial layer thickness of 0.7 nm and of those without an interfacial layer showed power conversion efficiency [PCE] values of 2.96% and 2.34%, respectively, under an illumination condition of 100 mW/cm2 (AM 1.5). It is thought that a cathode interfacial layer of an appropriate thickness enhances the electron transfer between the active layer and the cathode, and thus increases the PCE of the OSCs.

  2. CO assisted N2 functionalization activated by a dinuclear hafnium complex: a DFT mechanistic exploration.

    Science.gov (United States)

    Ma, Xuelu; Zhang, Xin; Zhang, Wenchao; Lei, Ming

    2013-01-21

    In this paper, the reaction mechanisms of CO assisted N(2) cleavage and functionalization activated by a dinuclear hafnium complex are studied using a density function theory (DFT) method. Several key intermediates (Ia, Ib, Ic and Id) with axial/equatorial N=C=O coordination structures are found to be of importance along reaction pathways of CO assisted N(2) functionalization, which could provide a profound theoretical insight into the C-N bond formation and N-N bond cleavage. There are two different attack directions to insert the first CO molecule into the Hf-N bonds of the dinuclear hafnium complex, which lead to C-N bond formation. The calculated results imply that CO insertion into the Hf(1)-N(3) bond (Path A1) reacts more easily than that into the Hf(2)-N(3) bond (Path A3). But for the insertion of the second CO insertion to give 2A, there are two possibilities (Path A1 and Path A2) according to this insertion being after/before N-N bond cleavage. Two pathways (Path A1 and Path A2) are proved to be possible to form final dinitrogen functionalized products (oxamidide 2A, 2B and 2C) in this study, which explain the formation of different oxamidide isomers in CO assisted N(2) functionalization activated by a dinuclear hafnium complex.

  3. X-Ray diffraction study of KTiOPO{sub 4} single crystals doped with hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Novikova, N. E., E-mail: natnov@ns.crys.ras.ru; Verin, I. A.; Sorokina, N. I.; Alekseeva, O. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Orlova, E. I.; Voronkova, V. I. [Moscow State University, Faculty of Physics (Russian Federation)

    2011-05-15

    Single crystals of KTi{sub 1-x}Hf{sub x}OPO{sub 4} (x = 0.015(2), 0.035(1), and 0.128(1) are reinvestigated by precision X-ray diffraction at room temperature. It is found that the implantation of hafnium atoms in the crystal structure of KTiOPO{sub 4} does not lead to significant changes in the framework and affects only the positions of the potassium atoms in the channel. Our studies reveal the displacements of the potassium atoms from their main and additional positions in the structure of pure KTP in all three structures studied. The largest displacements from the K1 Prime and K1 Double-Prime additional positions are observed in the structure with x = 0.035. At this hafnium concentration, the occupancy of the main positions of potassium atoms decreases and the occupancy of the additional positions increases in relation to those in KTP. This redistribution of potassium atoms enhances the nonuniformity of distribution of the electron density in the vicinity of their positions, which is probably responsible for the increase in the nonlinear susceptibility of KTP crystals that contain 3.5% hafnium in relation to crystals of pure KTP.

  4. Leachability of nitrided ilmenite in hydrochloric acid

    CSIR Research Space (South Africa)

    Swanepoel, JJ

    2010-10-01

    Full Text Available Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200 °C) chlorination reaction...

  5. Plasmonic titanium nitride nanostructures for perfect absorbers

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Kinsey, Nathaniel

    2013-01-01

    We propose a metamaterial based perfect absorber in the visible region, and investigate the performance of titanium nitride as an alternative plasmonic material. Numerical and experimental results reveal that titanium nitride performs better than gold as a plasmonic absorbing material...

  6. Silicon Nitride Bearings for Total Joint Arthroplasty

    National Research Council Canada - National Science Library

    McEntire, Bryan; Lakshminarayanan, Ramaswamy; Ray, Darin; Clarke, Ian; Puppulin, Leonardo; Pezzotti, Giuseppe

    2016-01-01

      The articulation performance of silicon nitride against conventional and highly cross-linked polyethylene, as well as for self-mated silicon nitride bearings, was examined in a series of standard hip simulation studies...

  7. Correlations between nuclear data and integral slab experiments: the case of hafnium; Correlations entre donnees nucleaires et experiences integrales a plaques: le cas du hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Palau, J.M

    1999-07-01

    The aim of this work was to evaluate how much integral slab experiments can both reduce discrepancies between experimental results and calculations, and improve the knowledge of hafnium isotopes neutronic parameters by an adapted sensitivity and uncertainty method. A statistical approach, based on the generalized least squares method and perturbation theory, has been incorporated into our calculation system in order to deduce microscopic cross-section adjustments from observed integral measurements on this particular 'mock-up' reactor.In this study it has been established that the correlations between integral parameters and hafnium capture cross-sections enable specific variations in the region of resolved resonances at the level of multigroup and punctual cross-sections recommended data (JEF-2.2 evaluation) to be highlighted. The use of determinist methods together with Monte Carlo- type simulations enabled a depth analysis of the modelling approximations to be carried out. Furthermore, the sensitivity coefficient validation technique employed leads to a reliable assessment of the quality of the new basic nuclear data. In this instance, the adjustments proposed for certain isotope {sup 177}Hf resonance parameters reduce, after error propagation, by 3 to 5 per cent the difference between experimental results and calculations related to this absorbent's efficiency. Beyond this particular application, the qualification methodology integrated in our calculation system should enable other basic sizing parameters to be treated (chemical / geometric data or other unexplored nuclear data) to make technological requirements less stringent. (author)

  8. Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers.

    Science.gov (United States)

    Dorvel, Brian R; Reddy, Bobby; Go, Jonghyun; Duarte Guevara, Carlos; Salm, Eric; Alam, Muhammad Ashraful; Bashir, Rashid

    2012-07-24

    Nanobiosensors based on silicon nanowire field effect transistors offer advantages of low cost, label-free detection, and potential for massive parallelization. As a result, these sensors have often been suggested as an attractive option for applications in point-of-care (POC) medical diagnostics. Unfortunately, a number of performance issues, such as gate leakage and current instability due to fluid contact, have prevented widespread adoption of the technology for routine use. High-k dielectrics, such as hafnium oxide (HfO(2)), have the known ability to address these challenges by passivating the exposed surfaces against destabilizing concerns of ion transport. With these fundamental stability issues addressed, a promising target for POC diagnostics and SiNWFETs has been small oligonucleotides, more specifically, microRNA (miRNA). MicroRNAs are small RNA oligonucleotides which bind to mRNAs, causing translational repression of proteins, gene silencing, and expressions are typically altered in several forms of cancer. In this paper, we describe a process for fabricating stable HfO(2) dielectric-based silicon nanowires for biosensing applications. Here we demonstrate sensing of single-stranded DNA analogues to their microRNA cousins using miR-10b and miR-21 as templates, both known to be upregulated in breast cancer. We characterize the effect of surface functionalization on device performance using the miR-10b DNA analogue as the target sequence and different molecular weight poly-l-lysine as the functionalization layer. By optimizing the surface functionalization and fabrication protocol, we were able to achieve <100 fM detection levels of the miR-10b DNA analogue, with a theoretical limit of detection of 1 fM. Moreover, the noncomplementary DNA target strand, based on miR-21, showed very little response, indicating a highly sensitive and highly selective biosensing platform.

  9. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy-filtered...... TEM images and XPS results showed that oxygen was replaced by nitrogen. In contrast to nanoscale processing challenges of refractory TiN, well-understood material synthesis of TiO2 provides an attractive route to large-scale fabrication of refractory plasmonic materials with complex designs...

  10. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    Science.gov (United States)

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  11. III-Nitride nanowire optoelectronics

    Science.gov (United States)

    Zhao, Songrui; Nguyen, Hieu P. T.; Kibria, Md. G.; Mi, Zetian

    2015-11-01

    Group-III nitride nanowire structures, including GaN, InN, AlN and their alloys, have been intensively studied in the past decade. Unique to this material system is that its energy bandgap can be tuned from the deep ultraviolet (~6.2 eV for AlN) to the near infrared (~0.65 eV for InN). In this article, we provide an overview on the recent progress made in III-nitride nanowire optoelectronic devices, including light emitting diodes, lasers, photodetectors, single photon sources, intraband devices, solar cells, and artificial photosynthesis. The present challenges and future prospects of III-nitride nanowire optoelectronic devices are also discussed.

  12. Boron Nitride Nanoribbons from Exfoliation of Boron Nitride Nanotubes

    Science.gov (United States)

    Hung, Ching-Cheh; Hurst, Janet; Santiago, Diana

    2017-01-01

    Two types of boron nitride nanotubes (BNNTs) were exfoliated into boron nitride nanoribbons (BNNR), which were identified using transmission electron microscopy: (1) commercial BNNTs with thin tube walls and small diameters. Tube unzipping was indicated by a large decrease of the sample's surface area and volume for pores less than 2 nm in diameter. (2) BNNTs with large diameters and thick walls synthesized at NASA Glenn Research Center. Here, tube unraveling was indicated by a large increase in external surface area and pore volume. For both, the exfoliation process was similar to the previous reported method to exfoliate commercial hexagonal boron nitride (hBN): Mixtures of BNNT, FeCl3, and NaF (or KF) were sequentially treated in 250 to 350 C nitrogen for intercalation, 500 to 750 C air for exfoliation, and finally HCl for purification. Property changes of the nanosized boron nitride throughout this process were also similar to the previously observed changes of commercial hBN during the exfoliation process: Both crystal structure (x-ray diffraction data) and chemical properties (Fourier-transform infrared spectroscopy data) of the original reactant changed after intercalation and exfoliation, but most (not all) of these changes revert back to those of the reactant once the final, purified products are obtained.

  13. Use of hafnium in control bars of nuclear reactors; Uso de hafnio en barras de control de reactores nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin-mx

    2003-07-01

    Recently the use of hafnium as neutron absorber material in nuclear reactors has been reason of investigation by virtue of that this material has nuclear properties as to the neutrons absorption and structural that can prolong the useful life of the control mechanisms of the nuclear reactors. In this work some of those more significant hafnium properties are presented like nuclear material. Also there are presented calculations carried out with the HELIOS code for fuel cells of uranium oxide and of uranium and plutonium mixed oxides under controlled conditions with conventional bars of boron carbide and also with similar bars to which are substituted the absorbent material by metallic hafnium, the results are presented in this work. (Author)

  14. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    Science.gov (United States)

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi

    2010-07-01

    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea.

  15. Strong influence of polymer architecture on the microstructural evolution of hafnium-alkoxide-modified silazanes upon ceramization.

    Science.gov (United States)

    Papendorf, Benjamin; Nonnenmacher, Katharina; Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf

    2011-04-04

    The present study focuses on the synthesis and ceramization of novel hafnium-alkoxide-modified silazanes as well as on their microstructure evolution at high temperatures. The synthesis of hafnia-modified polymer-derived SiCN ceramic nanocomposites is performed via chemical modification of a polysilazane and of a cyclotrisilazane, followed by cross-linking and pyrolysis in argon atmosphere. Spectroscopic investigation (i.e., NMR, FTIR, and Raman) shows that the hafnium alkoxide reacts with the N-H groups of the cyclotrisilazane; in the case of polysilazane, reactions of N-H as well as Si-H groups with the alkoxide are observed. Consequently, scanning and transmission electron microscopy studies reveal that the ceramic nanocomposites obtained from cyclotrisilazane and polysilazane exhibited markedly different microstructures, which is a result of the different reaction pathways of the hafnium alkoxide with cyclotrisilazane and with polysilazane. Furthermore, the two prepared ceramic nanocomposites are unexpectedly found to exhibit extremely different high-temperature behavior with respect to decomposition and crystallization; this essential difference is found to be related to the different distribution of hafnium throughout the ceramic network in the two samples. Thus, the homogeneous distribution of hafnium observed in the polysilazane-derived ceramic leads to an enhanced thermal stability with respect to decomposition, whereas the local enrichment of hafnium within the matrix of the cyclotrisilazane-based sample induces a pronounced decomposition upon annealing at high temperatures. The results indicate that the chemistry and architecture of the precursor has a crucial effect on the microstructure of the resulting ceramic material and consequently on its high-temperature behavior. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Study on the formation of self-assembled monolayers on sol-gel processed hafnium oxide as dielectric layers.

    Science.gov (United States)

    Ting, Guy G; Acton, Orb; Ma, Hong; Ka, Jae Won; Jen, Alex K-Y

    2009-02-17

    High dielectric constant (k) metal oxides such as hafnium oxide (HfO2) have gained significant interest due to their applications in microelectronics. In order to study and control the surface properties of hafnium oxide, self-assembled monolayers (SAMs) of four different long aliphatic molecules with binding groups of phosphonic acid, carboxylic acid, and catechol were formed and characterized. Surface modification was performed to improve the interface between metal oxide and top deposited materials as well as to create suitable dielectric properties, that is, leakage current and capacitance densities, which are important in organic thin film transistors. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle goniometry, atomic force microscopy (AFM), and simple metal-HfO2-SAM-metal devices were used to characterize the surfaces before and after SAM modification on sol-gel processed hafnium oxide. The alkylphosphonic acid provided the best monolayer formation on sol-gel processed hafnium oxide to generate a well-packed, ultrathin dielectric exhibiting a low leakage current density of 2x10(-8) A/cm2 at an applied voltage of -2.0 V and high capacitance density of 0.55 microF/cm2 at 10 kHz. Dialkylcatechol showed similar characteristics and the potential for using the catechol SAMs to modify HfO2 surfaces. In addition, the integration of this alkylphosphonic acid SAM/hafnium oxide hybrid dielectric into pentacene-based thin film transistors yields low-voltage operation within 1.5 V and improved performance over bare hafnium oxide.

  17. Metal oxide targets produced by the polymer-assisted deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Mitch A., E-mail: mitch@berkeley.ed [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ali, Mazhar N.; Chang, Noel N.; Parsons-Moss, T. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Ashby, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gates, Jacklyn M. [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stavsetra, Liv [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Gregorich, Kenneth E.; Nitsche, Heino [Department of Chemistry, Room 446 Latimer Hall, University of California Berkeley, Berkeley, CA 94720-1460 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-02-11

    The polymer-assisted deposition (PAD) method was used to create crack-free homogenous metal oxide films for use as targets in nuclear science applications. Metal oxide films of europium, thulium, and hafnium were prepared as models for actinide oxides. Films produced by a single application of PAD were homogenous and uniform and ranged in thickness from 30 to 320 nm. Reapplication of the PAD method (six times) with a 10% by weight hafnium(IV) solution resulted in an equally homogeneous and uniform film with a total thickness of 600 nm.

  18. Silicon nitride microwave photonic circuits

    NARCIS (Netherlands)

    Roeloffzen, C.G.H.; Zhuang, L.; Taddei, Caterina; Taddei, Caterina; Leinse, Arne; Heideman, Rene; van Dijk, Paulus W.L.; Oldenbeuving, Ruud; Marpaung, D.A.I.; Burla, M.; Buria, Maurizio; Boller, Klaus J.

    2013-01-01

    We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleXTM) waveguide technology. All functionalities are built using the same basic building blocks, namely

  19. P-type gallium nitride

    Science.gov (United States)

    Rubin, M.; Newman, N.; Fu, T.; Ross, J.; Chan, J.

    1997-08-12

    Several methods have been found to make p-type gallium nitride. P-type gallium nitride has long been sought for electronic devices. N-type gallium nitride is readily available. Discovery of p-type gallium nitride and the methods for making it will enable its use in ultraviolet and blue light-emitting diodes and lasers. pGaN will further enable blue photocathode elements to be made. Molecular beam epitaxy on substrates held at the proper temperatures, assisted by a nitrogen beam of the proper energy produced several types of p-type GaN with hole concentrations of about 5{times}10{sup 11} /cm{sup 3} and hole mobilities of about 500 cm{sup 2} /V-sec, measured at 250 K. P-type GaN can be formed of unintentionally-doped material or can be doped with magnesium by diffusion, ion implantation, or co-evaporation. When applicable, the nitrogen can be substituted with other group III elements such as Al. 9 figs.

  20. Hafnium at subduction zones: isotopic budget of input and output fluxes; L'hafnium dans les zones de subduction: bilan isotopique des flux entrant et sortant

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J.Ch

    2004-05-15

    Subduction zones are the primary regions of mass exchanges between continental crust and mantle of Earth through sediment subduction toward the earth's mantle and by supply of mantellic magmas to volcanic arcs. We analyze these mass exchanges using Hafnium and Neodymium isotopes. At the Izu-Mariana subduction zone, subducting sediments have Hf and Nd isotopes equivalent to Pacific seawater. Altered oceanic crust has Hf and Nd isotopic compositions equivalent to the isotopic budget of unaltered Pacific oceanic crust. At Luzon and Java subduction zones, arc lavas present Hf isotopic ratios highly radiogenic in comparison to their Nd isotopic ratios. Such compositions of the Luzon and Java arc lavas are controlled by a contamination of their sources by the subducted oceanic sediments. (author)

  1. Inter-Diffusion of Copper and Hafnium as Studied by X-Ray Photoelectron Spectroscopy

    Science.gov (United States)

    Pearson, Justin Seth

    The purpose of this study is to investigate the interdiffusion of copper and hafnium. Thin films (thicknesses ranging from 100 nm to 150 nm) of hafnium were deposited on a silicon substrate. About 80 nm of copper was then deposited on such samples. High purity samples have been used in this investigation. The deposition of the elements was done by the e-beam technique. The interfaces thus formed were annealed for a fixed time (30 minutes) at temperatures of 100, 200, and 300°C. The samples were characterized in situ by the x-ray photoelectron spectroscopy technique. To carry out the depth profiling of these samples a controlled amount of the over layer was removed and the spectral data were acquired. The argon ion sputtering technique was used to sputter the layers away. Spectral data in the copper 2p and hafnium 4f regions were investigated. The atomic concentration of the constituents as a function of depth across the interface was determined by analyzing the areas under the curves. The depth profiling data thus obtained was analyzed by the Matano-Boltzmann's procedure. For this analysis the Matano plane was determined based on the criteria of equal area on each side of the interface. The Fick's Law second law was used to calculate the interdiffuison coefficient for each of these interfaces. The interdiffusion coefficient as a function of temperature was determined from these analyses. From these coefficients the activation energy and the pre-exponential factor was determined by using the Arrhenius plot. The activation energy was found to be 0.128 eV/atom and the pre-exponential factor was 3.33E-14 cm2/s. The results from this investigation will be useful in the application of Cu/Hf interface in design and fabrication of semiconductor devices.

  2. Laser ablation of molecular carbon nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D., E-mail: d.fischer@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Schwinghammer, K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany); Sondermann, C. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Lau, V.W.; Mannhart, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Lotsch, B.V. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany)

    2015-09-15

    We present a method for the preparation of thin films on sapphire substrates of the carbon nitride precursors dicyandiamide (C{sub 2}N{sub 4}H{sub 4}), melamine (C{sub 3}N{sub 6}H{sub 6}), and melem (C{sub 6}N{sub 10}H{sub 6}), using the femtosecond-pulsed laser deposition technique (femto-PLD) at different temperatures. The depositions were carried out under high vacuum with a femtosecond-pulsed laser. The focused laser beam is scanned on the surface of a rotating target consisting of the pelletized compounds. The resulting polycrystalline, opaque films were characterized by X-ray powder diffraction, infrared, Raman, and X-ray photoelectron spectroscopy, photoluminescence, SEM, and MALDI-TOF mass spectrometry measurements. The crystal structures and optical/spectroscopic results of the obtained rough films largely match those of the bulk materials.

  3. Zirconium(IV) and Hafnium(IV)-Catalyzed Highly Enantioselective Epoxidation of Homoallylic and Bishomoallylic Alcohols

    Science.gov (United States)

    Li, Zhi; Yamamoto, Hisashi

    2010-01-01

    In this report, zirconium(IV) and hafnium(IV)-bishydroxamic acid complexes were utilized in the highly enantioselective epoxidation of homoallylic alcohols and bishomoallylic alcohols, which used to be quite difficult substrates for other types of asymmetric epoxidation reactions. The performance of the catalyst was improved by adding polar additive and molecular sieves. For homoallylic alcohols, the reaction could provide epoxy alcohols in up to 81% yield and up to 98% ee, while for bishomoallylic alcohols, up to 75% yield and 99% ee of epoxy alcohols rather than cyclize compounds could be obtained in most cases. PMID:20481541

  4. Zirconium(IV)- and hafnium(IV)-catalyzed highly enantioselective epoxidation of homoallylic and bishomoallylic alcohols.

    Science.gov (United States)

    Li, Zhi; Yamamoto, Hisashi

    2010-06-16

    In this report, zirconium(IV)- and hafnium(IV)-bishydroxamic acid complexes were utilized in the highly enantioselective epoxidation of homoallylic alcohols and bishomoallylic alcohols, which used to be quite difficult substrates for other types of asymmetric epoxidation reactions. The performance of the catalyst was improved by adding polar additive and molecular sieves. For homoallylic alcohols, the reaction could provide epoxy alcohols in up to 83% yield and up to 98% ee, while, for bishomoallylic alcohols, up to 79% yield and 99% ee of epoxy alcohols rather than cyclized tetrahydrofuran compounds could be obtained in most cases.

  5. Effect of Hafnium Impurities on the Magnetoresistance of {YBa}2{Cu}3{O}_{7-δ }

    Science.gov (United States)

    Savich, S. V.; Samoylov, A. V.; Kamchatnaya, S. N.; Goulatis, I. L.; Vovk, R. V.; Chroneos, A.; Solovjov, A. L.; Omelchenko, L. V.

    2017-02-01

    In the present study, we investigate the influence of the hafnium (Hf) impurities on the magnetoresistance of {YBa}2{Cu}3{O}_{7-δ } ceramic samples in the temperature interval of the transition to the superconducting state in constant magnetic field up to 12 T. The cause of the appearance of low- temperature "tails" (paracoherent transitions) on the resistive transitions, corresponding to different phase regimes of the vortex matter state is discussed. At temperatures higher than the critical temperature ( T > T_c), the temperature dependence of the excess paraconductivity can be described within the Aslamazov-Larkin theoretical model of the fluctuation conductivity for layered superconductors.

  6. Application of the Zr/Hf ratio in the determination of hafnium in geochemical samples by high-resolution inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Liu, Ya Xuan; Li, Qing Xia; Ma, Na; Sun, Xiao Ling; Bai, Jin Feng; Zhang, Qin

    2014-12-02

    Hafnium content and its change are of significance in geochemistry and cosmochemistry; however, the determination of hafnium has always been problematic in analytical chemistry. In this paper, a new idea is proposed for the determination of hafnium in geochemical samples, including rocks, soils, and stream sediments. Through the comparison of two conventional open-type acid digestion methods (HF-HNO3-HClO4 and HF-HNO3-H2SO4), it was found that although neither of these methods could fully digest the zirconium and hafnium in a sample, the zirconium and hafnium digestion behaviors in one sample were consistent in the 60 experimental geochemical reference materials with different properties, so the experimentally determined Zr/Hf ratio in solution could be used to calculate the hafnium content in a sample. In addition, possible mass spectral interferences during the determination of zirconium and hafnium by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS) were studied, and it was found that the mass spectral interferences of the selected isotopes (90)Zr and (178)Hf could be neglected. The mass spectral behaviors of (90)Zr and (178)Hf were also very consistent during the determination by HR-ICPMS. Since the hafnium content was calculated using the ratio value, all of the errors (including the errors in weighing process, the accidental errors during operation and the instrument fluctuation in the determination) of the Zr/Hf ratio could be effectively reduced or even eliminated. The relative standard deviation of the actual samples was lower than 3.2%, and the detection limit of the method (considering the dilution effect and matrix effect during measurement of the Zr/Hf ratio and zirconium content) was 0.04 μg/g. The proposed method could satisfy the requirement for the determination of hafnium in geochemical samples.

  7. Indium gallium nitride multijunction solar cell simulation using silvaco atlas

    OpenAIRE

    Garcia, Baldomero

    2007-01-01

    This thesis investigates the potential use of wurtzite Indium Gallium Nitride as photovoltaic material. Silvaco Atlas was used to simulate a quad-junction solar cell. Each of the junctions was made up of Indium Gallium Nitride. The band gap of each junction was dependent on the composition percentage of Indium Nitride and Gallium Nitride within Indium Gallium Nitride. The findings of this research show that Indium Gallium Nitride is a promising semiconductor for solar cell use. United...

  8. Microstructure and optical properties of Pr3+-doped hafnium silicate films

    Science.gov (United States)

    2013-01-01

    In this study, we report on the evolution of the microstructure and photoluminescence properties of Pr3+-doped hafnium silicate thin films as a function of annealing temperature (TA). The composition and microstructure of the films were characterized by means of Rutherford backscattering spectrometry, spectroscopic ellipsometry, Fourier transform infrared absorption, and X-ray diffraction, while the emission properties have been studied by means of photoluminescence (PL) and PL excitation (PLE) spectroscopies. It was observed that a post-annealing treatment favors the phase separation in hafnium silicate matrix being more evident at 950°C. The HfO2 phase demonstrates a pronounced crystallization in tetragonal phase upon 950°C annealing. Pr3+ emission appeared at TA = 950°C, and the highest efficiency of Pr3+ ion emission was detected upon a thermal treatment at 1,000°C. Analysis of the PLE spectra reveals an efficient energy transfer from matrix defects towards Pr3+ ions. It is considered that oxygen vacancies act as effective Pr3+ sensitizer. Finally, a PL study of undoped HfO2 and HfSiOx matrices is performed to evidence the energy transfer. PMID:23336520

  9. Linear Trimeric Hafnium Clusters in Hf0.86(1I3

    Directory of Open Access Journals (Sweden)

    Jan Beekhuizen

    2011-05-01

    Full Text Available The reduction of hafnium tetraiodide, HfI4, with aluminum at 600 °C or 850 °C in the presence of a NaI flux resulted in black single crystals of Hf0.86(1I3. This composition corresponds well to the upper end of the non-stoichiometry range 0.89 ≤ x ≤ 1.00 previously reported for HfxI3. The crystal structure (a = 1250.3(2, c = 1999.6(3 pm, R-3m, Z = 18 is made up of hexagonal closest packed layers of iodide ions. One third of the octahedral holes would be filled as in TiI3 or ZrI3 if it were Hf1.00I3. In Hf0.86(1I3, one out of six octahedral holes along [001] are, however, only occupied by 16%. In contrast to TiI3-I and ZrI3, one striking structural feature is in the formation of linear hafnium trimers with identical Hf―Hf distances of 318.3(2 pm rather than the formation of dimers. These may be associated with Hf―Hf bonding although only 2.64 electrons are available for one Hf5.16I18 column.

  10. Effect of hafnium addition on solidifi cation structure of cast Ti-46Al alloys

    Directory of Open Access Journals (Sweden)

    Su Yanqing

    2008-11-01

    Full Text Available To investigate the effect of hafnium addition on the solidifi cation structure, Ti-46Al alloys with nominal compositions of Ti-46Al-xHf (x = 0, 3, 5, 7 (at.% were arc-melted into small ingots in an argon atmosphere. The characteristics of the macrostructures and microstructures were studied using a linear intercept method, OM, SEM (BSE, XRD and TEM. The results showed that the ingots with Hf have near lamellar microstructure in columnar and dendrite morphology. The hafnium concentration has a strong effect on the columnar spacing refi nement. Increasing Hf from 0 to 7 (at.%, the columnar spacing can be reduced from ~ 1000 to ~ 400 μm. Constitute phases of the ingots are α2, a small amount of B2 and c. Most of the B2 phases, richer in Hf and leaner in Al and Ti, exist on the node of the dendrite core in block shape and a little across the lamellar colonies in stick shape. The c phases exist on the boundaries of lamellar colonies in small cellular shape. There also exists a segregation of Hf on the columnar and dendrite core. Particularly, both the α- and β-phase form from the melt as prior phases. The possible phase sequencing during solidifi cation and solid-state transformations with Hf is given in this paper.

  11. Thermal behaviour of hafnium diethylenetriaminepentaacetate studied using the perturbed angular correlation technique

    Energy Technology Data Exchange (ETDEWEB)

    Chain, Cecilia Y. [Universidad Nacional de La Plata (Argentina). Dept. de Fisica; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), La Plata (Argentina). IFLP-CCT; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Rivas, Patricia [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), La Plata (Argentina). IFLP-CCT; Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires (Argentina); Universidad Nacional de La Plata (Argentina). Facultad de Ciencias Agrarias y Forestales; Pasquevich, Alberto F. [Universidad Nacional de La Plata (Argentina). Dept. de Fisica; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), La Plata (Argentina). IFLP-CCT; Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC-PBA) (Argentina)

    2014-07-01

    Polyaminecarboxilic ligands like diethylenetriaminepentaacetic acid form stable complexes with many heavy metal ions, excelling as cation chelants especially in the field of radiopharmacy. The aim of this work is to characterize, by using the Time Differential Perturbed Angular Correlations (TDPAC) technique, the hyperfine interactions at hafnium sites in hafnium diethylenetriaminepentaacetate and to investigate their evolution as temperature increases. TDPAC results for KHfDTPA.3H{sub 2}O obtained by chemical synthesis yield a well defined and highly asymmetric interaction of quadrupole frequency ω{sub Q} = 141 Mrad/s, which is consistent with the existence of a unique site for the metal in the crystal lattice. The thermal behaviour of the chelate is investigated by means of differential scanning calorimetry and thermogravimetrical analyses revealing that an endothermic dehydration of KHfDTPA.3H{sub 2}O takes place in one step between 80 C and 180 C. The anhydrous KHfDTPA thus arising is characterized by a fully asymmetric and well defined interaction of quadrupole frequency ω{sub Q} = 168 Mrad/s. (orig.)

  12. Molecular structure, vibrational, HOMO-LUMO, MEP and NBO analysis of hafnium selenite

    Science.gov (United States)

    Yankova, Rumyana; Genieva, Svetlana; Dimitrova, Ginka

    2017-08-01

    In hydrothermal condition hafnium selenite with estimated chemical composition Hf(SeO3)2·n(H2O) was obtained and characterized by powder X-Ray diffraction, IR spectroscopy and thermogravimetrical analysis. The composition of the obtained crystalline phase was established as dihydrate of tetraaqua complex of the hafnium selenite [Hf(SeO3)2(H2O)4]·2H2O. The results of the thermogravimetrical analysis are shown that the two hydrated water molecules are released in the temperature interval 80-110°C, while the four coordinated water molecules - at 210-300°C. By DFT method, with Becke's three parameter exchange-functional combined with gradient-corrected correlation functional of Lee, Yang and Parr and 6-31G(d), 6-311 + G(d,p) basis sets and LANL2DZ for Hf atom were calculated the molecular structure, vibrational frequencies and thermodynamic properties of the structure. The UV-Vis spectra and electronic properties are presented. The energy and oscillator strength calculated by time-dependent density functional theory corresponds well with the experimental ones. Molecular electrostatic potential (MEP) was performed. Mulliken population analysis on atomic charges was also calculated. The stability and intramolecular interactions are interpreted by NBO analysis.

  13. Compositional analysis of polycrystalline hafnium oxide thin films by heavy-ion elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, F.L. [Departamento de Electronica y Tecnologia de Computadoras, Universidad Politecnica de Cartagena, Campus Universitario Muralla del Mar, E-30202 Cartagena (Spain)]. E-mail: Felix.Martinez@upct.es; Toledano, M. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); San Andres, E. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Martil, I. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Gonzalez-Diaz, G. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Bohne, W. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Roehrich, J. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Strub, E. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany)

    2006-10-25

    The composition of polycrystalline hafnium oxide thin films has been measured by heavy-ion elastic recoil detection analysis (HI-ERDA). The films were deposited by high-pressure reactive sputtering (HPRS) on silicon wafers using an oxygen plasma at pressures between 0.8 and 1.6 mbar and during deposition times between 0.5 and 3.0 h. Hydrogen was found to be the main impurity and its concentration increased with deposition pressure. The composition was always slightly oxygen-rich, which is attributed to the oxygen plasma. Additionally, an interfacial silicon oxide thin layer was detected and taken into account. The thickness of the hafnium oxide film was found to increase linearly with deposition time and to decrease exponentially with deposition pressure, whereas the thickness of the silicon oxide interfacial layer has a minimum as a function of pressure at around 1.2 mbar and increases slightly as a function of time. The measurements confirmed that this interfacial layer is formed mainly during the early stages of the deposition process.

  14. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    Science.gov (United States)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  15. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    Science.gov (United States)

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  16. Silicon nitride equation of state

    Science.gov (United States)

    Brown, Robert C.; Swaminathan, Pazhayannur K.

    2017-01-01

    This report presents the development of a global, multi-phase equation of state (EOS) for the ceramic silicon nitride (Si3N4).1 Structural forms include amorphous silicon nitride normally used as a thin film and three crystalline polymorphs. Crystalline phases include hexagonal α-Si3N4, hexagonal β-Si3N4, and the cubic spinel c-Si3N4. Decomposition at about 1900 °C results in a liquid silicon phase and gas phase products such as molecular nitrogen, atomic nitrogen, and atomic silicon. The silicon nitride EOS was developed using EOSPro which is a new and extended version of the PANDA II code. Both codes are valuable tools and have been used successfully for a variety of material classes. Both PANDA II and EOSPro can generate a tabular EOS that can be used in conjunction with hydrocodes. The paper describes the development efforts for the component solid phases and presents results obtained using the EOSPro phase transition model to investigate the solid-solid phase transitions in relation to the available shock data that have indicated a complex and slow time dependent phase change to the c-Si3N4 phase. Furthermore, the EOSPro mixture model is used to develop a model for the decomposition products; however, the need for a kinetic approach is suggested to combine with the single component solid models to simulate and further investigate the global phase coexistences.

  17. Nitride alloy layer formation of duplex stainless steel using nitriding process

    Science.gov (United States)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  18. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bulk...

  19. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one...

  20. PECVD silicon nitride diaphragms for condenser microphones

    NARCIS (Netherlands)

    Scheeper, P.R.; Scheeper, P.R.; Voorthuyzen, J.A.; Voorthuyzen, J.A.; Bergveld, Piet

    1991-01-01

    The application of plasma-enhanced chemical vapour deposited (PECVD) silicon nitride as a diaphragm material for condenser microphones has been investigated. By means of adjusting the SiH4/NH3 gas-flow composition, silicon-rich silicon nitride films have been obtained with a relatively low tensile

  1. Cathodic Cage Plasma Nitriding: An Innovative Technique

    Directory of Open Access Journals (Sweden)

    R. R. M. de Sousa

    2012-01-01

    Full Text Available Cylindrical samples of AISI 1020, AISI 316, and AISI 420 steels, with different heights, were simultaneously treated by a new technique of ionic nitriding, entitled cathodic cage plasma nitriding (CCPN, in order to evaluate the efficiency of this technique to produce nitrided layers with better properties compared with those obtained using conventional ionic nitriding technique. This method is able to eliminate the edge effect in the samples, promoting a better uniformity of temperature, and consequently, a smaller variation of the thickness/height relation can be obtained. The compound layers were characterized by X-ray diffraction, optical microscopy, and microhardness test profile. The results were compared with the properties of samples obtained with the conventional nitriding, for the three steel types. It was verified that samples treated by CCPN process presented, at the same temperature, a better uniformity in the thickness and absence of the edge effect.

  2. Zinc nitride thin films: basic properties and applications

    Science.gov (United States)

    Redondo-Cubero, A.; Gómez-Castaño, M.; García Núñez, C.; Domínguez, M.; Vázquez, L.; Pau, J. L.

    2017-02-01

    Zinc nitride films can be deposited by radio frequency magnetron sputtering using a Zn target at substrate temperatures lower than 250°C. This low deposition temperature makes the material compatible with flexible substrates. The asgrown layers present a black color, polycrystalline structures, large conductivities, and large visible light absorption. Different studies have reported about the severe oxidation of the layers in ambient conditions. Different compositional, structural and optical characterization techniques have shown that the films turn into ZnO polycrystalline layers, showing visible transparency and semi-insulating properties after total transformation. The oxidation rate is fairly constant as a function of time and depends on environmental parameters such as relative humidity or temperature. Taking advantage of those properties, potential applications of zinc nitride films in environmental sensing have been studied in the recent years. This work reviews the state-of-the-art of the zinc nitride technology and the development of several devices such as humidity indicators, thin film (photo)transistors and sweat monitoring sensors.

  3. Solvothermal synthesis: a new route for preparing nitrides

    CERN Document Server

    Demazeau, G; Denis, A; Largeteau, A

    2002-01-01

    Solvothermal synthesis appears to be an interesting route for preparing nitrides such as gallium nitride and aluminium nitride, using ammonia as solvent. A nitriding additive is used to perform the reaction and, in the case of gallium nitride, is encapsulated by melt gallium. The syntheses are performed in the temperature range 400-800 deg. C and in the pressure range 100-200 MPa. The synthesized powders are characterized by x-ray diffraction and scanning electron microscopy. Finely divided gallium nitride GaN and aluminium nitride AlN, both with wurtzite-type structure, can be obtained by this route.

  4. Multiphonon ionization of traps formed in hafnium oxide by electrical stress

    Energy Technology Data Exchange (ETDEWEB)

    Danilyuk, A.L.; Migas, D.B.; Danilyuk, M.A.; Borisenko, V.E. [Belorussian State University of Informatics and Radioelectronics, P. Browka 6, 220013 Minsk (Belarus); Wu, X.; Pey, K.L. [Microelectronics Center, School of EEE, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore); Concurrently with Engineering Product Development Pillar, Singapore University of Technology and Design, 20 Dover Drive, Singapore 138682 (Singapore); Raghavan, N. [Microelectronics Center, School of EEE, Nanyang Technological University, Nanyang Avenue, Singapore 639798 (Singapore)

    2013-02-15

    We have investigated behavior of traps formed in hafnium oxide (HfO{sub 2}) by electrical stress and their influence on the charge carrier transport through Si/SiO{sub 2}/HfO{sub 2}/poly-Si nanostructures. The traps govern the transport process assuming a capture of charge carriers followed by their ionization via the multiphonon transition mechanism. The multiphonon transitions via the Poole-Frenkel effect or electron tunneling as well as the multiphonon tunneling ionization of neutral traps have been carefully considered for charged traps. We also provide a set of parameters including the trap concentration, ionization energy, the frequency factor, the effective mass of charge carriers, optical energy, and phonon energy in order to reproduce and reasonably fit available experimental data. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Specific features of the charge and mass transfer in a silver-intercalated hafnium diselenide

    Science.gov (United States)

    Pleshchev, V. G.; Selezneva, N. V.; Baranov, N. V.

    2013-07-01

    The specific features of the charge transfer in intercalated samples of Ag x HfSe2 have been studied for the first time by alternating current (ac) impedance spectroscopy. It has been found that relaxation processes in an ac field are accelerated with increasing silver content in the samples. The complex conductivity ( Y) shows a frequency dispersion described by power law Y ˜ ω s , which is characteristic of the hopping conductivity mechanism. The Ag x HfSe2 compounds demonstrate shorter relaxation times as compared to those observed in hafnium diselenide intercalated with copper atoms, and this fact indicates that the charge carrier mobility in the silver-intercalated compounds is higher. The possibility of silver ion transfer in Ag x HfSe2 is confirmed by the measurements performed by the method of electrochemical cell emf.

  6. Surface State Capture Cross-Section at the Interface between Silicon and Hafnium Oxide

    Directory of Open Access Journals (Sweden)

    Fu-Chien Chiu

    2013-01-01

    Full Text Available The interfacial properties between silicon and hafnium oxide (HfO2 are explored by the gated-diode method and the subthreshold measurement. The density of interface-trapped charges, the current induced by surface defect centers, the surface recombination velocity, and the surface state capture cross-section are obtained in this work. Among the interfacial properties, the surface state capture cross-section is approximately constant even if the postdeposition annealing condition is changed. This effective capture cross-section of surface states is about 2.4 × 10−15 cm2, which may be an inherent nature in the HfO2/Si interface.

  7. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex.

    Science.gov (United States)

    Knobloch, Donald J; Lobkovsky, Emil; Chirik, Paul J

    2010-01-01

    Molecular nitrogen (N(2)) and carbon monoxide (CO) have the two strongest bonds in chemistry and present significant challenges in developing new transformations that exploit these two abundant feedstocks. At the core of this objective is the discovery of transition-metal compounds that promote the six-electron reductive cleavage of N(2) at ambient temperature and pressure and also promote new nitrogen-element bond formation. Here we show that an organometallic hafnium compound induces N(2) cleavage on the addition of CO, with a simultaneous assembly of new nitrogen-carbon and carbon-carbon bonds. Subsequent addition of a weak acid liberates oxamide, which demonstrates that an important agrochemical can be synthesized directly from N(2) and CO. These studies introduce an alternative paradigm for N(2) cleavage and functionalization in which the six-electron reductive cleavage is promoted by both the transition metal and the incoming ligand, CO, used for the new bond formations.

  8. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  9. Zirconium and hafnium fractionation in differentiation of alkali carbonatite magmatic systems

    Science.gov (United States)

    Kogarko, L. N.

    2016-05-01

    Zirconium and hafnium are valuable strategic metals which are in high demand in industry. The Zr and Hf contents are elevated in the final products of magmatic differentiation of alkali carbonatite rocks in the Polar Siberia region (Guli Complex) and Ukraine (Chernigov Massif). Early pyroxene fractionation led to an increase in the Zr/Hf ratio in the evolution of the ultramafic-alkali magmatic system due to a higher distribution coefficient of Hf in pyroxene with respect to Zr. The Rayleigh equation was used to calculate a quantitative model of variation in the Zr/Hf ratio in the development of the Guli magmatic system. Alkali carbonatite rocks originated from rare element-rich mantle reservoirs, in particular, the metasomatized mantle. Carbonated mantle xenoliths are characterized by a high Zr/Hf ratio due to clinopyroxene development during metasomatic replacement of orthopyroxene by carbonate fluid melt.

  10. Pyroelectric response in crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films

    Science.gov (United States)

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; Henry, M. D.; Brumbach, M. T.; Ihlefeld, J. F.

    2017-02-01

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf1-xZrxO2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm-2 K-1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarization (x = 0, 0.91, and 1).

  11. A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide

    Directory of Open Access Journals (Sweden)

    S. Riedel

    2016-09-01

    Full Text Available Ferroelectric properties in hafnium oxide based thin films have recovered the scaling potential for ferroelectric memories due to their ultra-thin-film- and CMOS-compatibility. However, the variety of physical phenomena connected to ferroelectricity allows a wider range of applications for these materials than ferroelectric memory. Especially mixed HfxZr1-xO2 thin films exhibit a broad compositional range of ferroelectric phase stability and provide the possibility to tailor material properties for multiple applications. Here it is shown that the limited thermal stability and thick-film capability of HfxZr1-xO2 can be overcome by a laminated approach using alumina interlayers.

  12. Cesium hafnium chloride: A high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Burger, Arnold, E-mail: aburger@fisk.edu [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States); Rowe, Emmanuel; Groza, Michael; Morales Figueroa, Kristle [Department of Life and Physical Sciences, Fisk University, Nashville, Tennessee 37208 (United States); Cherepy, Nerine J.; Beck, Patrick R.; Hunter, Steven; Payne, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-10-05

    We report on the scintillation properties of Cs{sub 2}HfCl{sub 6} (cesium hafnium chloride or CHC) as an example of a little-known class of non-hygroscopic compounds having the generic cubic crystal structure of K{sub 2}PtCl{sub 6}. The crystals are easily growable from the melt using the Bridgman method with minimal precursor treatments or purification. CHC scintillation is centered at 400 nm, with a principal decay time of 4.37 μs and a light yield of up to 54 000 photons/MeV when measured using a silicon CCD photodetector. The light yield is the highest ever reported for an undoped crystal, and CHC also exhibits excellent light yield nonproportionality. These desirable properties allowed us to build and test CHC gamma-ray spectrometers providing energy resolution of 3.3% at 662 keV.

  13. Separation of hafnium from zirconium in their tetrachloride solution in molten alkali metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, A.B.; Kudyakov, V.Ya.; Smirnov, M.V.; Moskalenko, N.I. (AN SSSR, Sverdlovsk. Inst. Ehlektrokhimii)

    1984-08-01

    The coefficient of HfCl/sub 4/ and ZrCl/sub 4/ separation in the process of vapour sublimation from their solutions in molten NaCl, KCl, CsCl, NaCl-KCl and NaCl-CsCl equimolar mixtures is found to vary in the series from approximately 1.10 to approximately 1.22 and practically not to depend on the temperature (in the 600-910 deg) range and concentration (2-25 mol.% ZrCl/sub 4/+HfCl/sub 4/). HfCl/sub 4/ and ZrCl/sub 4/ are shown to form almost perfect solutions with each other, which in their turn form imperfect solutions with molten alkali metal chlorides, with the strength of hafnium complex chloride anions increasing higher than that of zirconium in the series from NaCl to CsCl.

  14. Positron annihilation in boron nitride

    Directory of Open Access Journals (Sweden)

    N.Amrane

    2006-01-01

    Full Text Available Electron and positron charge densities are calculated as a function of position in the unit cell for boron nitride. Wave functions are derived from pseudopotential band structure calculations and the independent particle approximation (IPM, respectively, for electrons and positrons. It is observed that the positron density is maximum in the open interstices and is excluded not only from ion cores but also to a considerable degree from valence bonds. Electron-positron momentum densities are calculated for (001,110 planes. The results are used in order to analyse the positron effects in BN.

  15. III-Nitride Based Optoelectronics

    Science.gov (United States)

    2010-01-01

    the screening effect induced by the current flow and a self - consistent Poisson - Schrodinger calculation with time dependency would be needed to account...Section 4 "InGaN Quantum Dots for Green Emission", the growth and optical properties of self -assembled InGaN quantum dots (QDs) on GaN templates are...are compared in Figure 25. QW and QD structures consist of 3 MQW (3 nm InGaN / 7 nm 23 Ill-Nitride Based Optoelectronics Northwestern University

  16. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  17. Characterisation of Tungsten Nitride Layers and their Erosion under Plasma Exposure in NANO-PSI

    NARCIS (Netherlands)

    Alegre, D.; Acsente, T.; Martin-Rojo, A. B.; Oyarzabal, E.; Tabares, F. L.; Dinescu, G.; De Temmerman, G.; Birjega, R.; Logofatu, C.; Kovac, J.; Mozetic, M.

    2015-01-01

    The properties of tungsten nitride thin films deposited by both reactive RF-magnetron sputtering from tungsten targets in Argon/N-2, and RF generated nitrogen ions bombardment of previously sequentially deposited tungsten layers have been investigated. Films exhibited smaller erosion than pure

  18. Pulsed laser deposition of thin refractory metal nitride films

    Science.gov (United States)

    Fernandez, Manuel; Bereznai, M.; Caricato, A. P.; D'Anna, Emilia; Juhasz, A.; Leggieri, Gilberto; Luches, Armando; Majni, Guiseppe; Martino, Maurizio; Mengucci, Paolo; Nagy, P. M.; Nanai, Laszlo; Toth, Zsolt

    2003-11-01

    We report on the deposition of thin transition metal nitride (TMN) films by ablating Mo, Ta, V and W targets in low-pressure (1, 10 and 100 Pa) nitrogen atmosphere by KrF excimer laser pulses, and on their characterization. The targets were foils of high purity (99.8%). 3" Si(111) wafers wre used as substrates. Film characteristics (composition, crystalline structure, hardness) were studied as a function of N2 pressure, KrF laser fluence (4.5-19 J/cm2), substrate temperature (20-750°C) and target to substrate distance (30-70 mm). Rutherford backscattering spectrometery (RBS) was used to calculate thickness of the films and identification of the composition. TMN films ar formed already at low N2 ambient pressures (1 Pa) and laser fluences (6 J/cm2) on substrates at room temperature. XRD investigations show that films deposited at elevated temperatures are mostly polycrystalline. While Mo, W and Ta nitrides show respectively a γ-Mo2N, β-W2N and δ-TaN phase in almost any deposition condition, vanadium nitride shows a prevalent phase of δ-VN at N2 pressures of 1-10 Pa, while at higher pressures (100 Pa) and at relatively high laser fluences (16-19 J/cm2) the dominant phase is β-V2N. Generally the crystallinity of the films improves by increasing the substrate temperature. Well-crystallinzed films are obtained on substrates heated at 500°C. Surface morphology, microhardness and electrical resistivity of the films are discussed as a function of both the nitrogen pressure and substrate temperature.

  19. Hafnium isotope evidence for a transition in the dynamics of continental growth 3.2 Gyr ago.

    Science.gov (United States)

    Næraa, T; Scherstén, A; Rosing, M T; Kemp, A I S; Hoffmann, J E; Kokfelt, T F; Whitehouse, M J

    2012-05-30

    Earth's lithosphere probably experienced an evolution towards the modern plate tectonic regime, owing to secular changes in mantle temperature. Radiogenic isotope variations are interpreted as evidence for the declining rates of continental crustal growth over time, with some estimates suggesting that over 70% of the present continental crustal reservoir was extracted by the end of the Archaean eon. Patterns of crustal growth and reworking in rocks younger than three billion years (Gyr) are thought to reflect the assembly and break-up of supercontinents by Wilson cycle processes and mark an important change in lithosphere dynamics. In southern West Greenland numerous studies have, however, argued for subduction settings and crust growth by arc accretion back to 3.8 Gyr ago, suggesting that modern-day tectonic regimes operated during the formation of the earliest crustal rock record. Here we report in situ uranium-lead, hafnium and oxygen isotope data from zircons of basement rocks in southern West Greenland across the critical time period during which modern-like tectonic regimes could have initiated. Our data show pronounced differences in the hafnium isotope-time patterns across this interval, requiring changes in the characteristics of the magmatic protolith. The observations suggest that 3.9-3.5-Gyr-old rocks differentiated from a >3.9-Gyr-old source reservoir with a chondritic to slightly depleted hafnium isotope composition. In contrast, rocks formed after 3.2 Gyr ago register the first additions of juvenile depleted material (that is, new mantle-derived crust) since 3.9 Gyr ago, and are characterized by striking shifts in hafnium isotope ratios similar to those shown by Phanerozoic subduction-related orogens. These data suggest a transitional period 3.5-3.2 Gyr ago from an ancient (3.9-3.5 Gyr old) crustal evolutionary regime unlike that of modern plate tectonics to a geodynamic setting after 3.2 Gyr ago that involved juvenile crust generation by plate

  20. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer, develo......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  1. L21 and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf2VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb

    Directory of Open Access Journals (Sweden)

    Xiaotian Wang

    2017-10-01

    Full Text Available For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR. Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X2YZ, i.e., Hf2VAl, Hf2CoZ (Z = Ga, In and Hf2CrZ (Z = Al, Ga, In. In this work, a series of Hf2-based Heusler alloys, Hf2VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb, were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L21-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf2VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb alloys have dropped dramatically when they form the L21-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L21-type or XA-type structures.

  2. L2₁ and XA Ordering Competition in Hafnium-Based Full-Heusler Alloys Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb).

    Science.gov (United States)

    Wang, Xiaotian; Cheng, Zhenxiang; Wang, Wenhong

    2017-10-20

    For theoretical designing of full-Heusler based spintroinc materials, people have long believed in the so-called Site Preference Rule (SPR). Very recently, according to the SPR, there are several studies on XA-type Hafnium-based Heusler alloys X₂YZ, i.e., Hf₂VAl, Hf₂CoZ (Z = Ga, In) and Hf₂CrZ (Z = Al, Ga, In). In this work, a series of Hf₂-based Heusler alloys, Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb), were selected as targets to study the site preferences of their atoms by first-principle calculations. It has been found that all of them are likely to exhibit the L2₁-type structure instead of the XA one. Furthermore, we reveal that the high values of spin-polarization of XA-type Hf₂VZ (Z = Al, Ga, In, Tl, Si, Ge, Sn, Pb) alloys have dropped dramatically when they form the L2₁-type structure. Also, we prove that the electronic, magnetic, and physics nature of these alloys are quite different, depending on the L2₁-type or XA-type structures.

  3. Recent progress in the synthesis and characterization of amorphous and crystalline carbon nitride coatings

    CERN Document Server

    Widlow, I

    2000-01-01

    This review summarizes our most recent findings in the structure and properties of amorphous and crystalline carbon nitride coatings, synthesized by reactive magnetron sputtering. By careful control of the plasma conditions via proper choice of process parameters such as substrate bias, target power and gas pressure, one can precisely control film structure and properties. With this approach, we were able to produce amorphous carbon nitride films with controlled hardness and surface roughness. In particular, we can synthesize ultrathin (1 nm thick) amorphous carbon nitride films to be sufficiently dense and uniform that they provide adequate corrosion protection for hard disk applications. We demonstrated the strong correlation between ZrN (111) texture and hardness in CN sub x /ZrN superlattice coatings. Raman spectroscopy and near-edge X-ray absorption show the predominance of sp sup 3 -bonded carbon in these superlattice coatings.

  4. Aminopyridinate-FI hybrids, their hafnium and titanium complexes, and their application in the living polymerization of 1-hexene.

    Science.gov (United States)

    Haas, Isabelle; Dietel, Thomas; Press, Konstantin; Kol, Moshe; Kempe, Rhett

    2013-10-11

    Based on two well-established ligand systems, the aminopyridinato (Ap) and the phenoxyimine (FI) ligand systems, new Ap-FI hybrid ligands were developed. Four different Ap-FI hybrid ligands were synthesized through a simple condensation reaction and fully characterized. The reaction of hafnium tetrabenzyl with all four Ap-FI hybrid ligands exclusively led to mono(Ap-FI) complexes of the type [(Ap-FI)HfBn2 ]. The ligands acted as tetradentate dianionic chelates. Upon activation with tris(pentafluorophenyl)borane, the hafnium-dibenzyl complexes led to highly active catalysts for the polymerization of 1-hexene. Ultrahigh molecular weights and extremely narrow polydispersities support the living nature of this polymerization process. A possible deactivation product of the hafnium catalysts was characterized by single-crystal X-ray analysis and is discussed. The coordination modes of these new ligands were studied with the help of model titanium complexes. The reaction of titanium(IV) isopropoxide with ligand 1 led to a mono(Ap-FI) complex, which showed the desired fac-mer coordination mode. Titanium (IV) isopropoxide reacted with ligand 4 to give a complex of the type [(ApH-FI)2 Ti(OiPr)2 ], which featured the ligand in its monoanionic form. The two titanium complexes were characterized by X-ray crystal-structure analysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fabrication of translucent boron nitride dispersed polycrystalline silicon nitride ceramics

    Science.gov (United States)

    Joshi, B.; Fu, Z.; Niihara, K.; Lee, S. W.

    2011-03-01

    Optical transparency was achieved at infrared region and overall translucent silicon nitride was fabricated using hot press sintering (HPS). The increase in h-BN content decreased the optical transparency. Microstructral observations shows that the optical, mechanical and tribological properties of BN dispersed polycrystalline Si3N4 ceramics were affected by the density, α:β-phase ratio and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of α-Si3N4, AlN, MgO and h-BN at 1850°C. The composite contained from 0.25 to 2 mass % BN powder with sintering aids (9% AlN + 3% MgO). Maximum transmittance of 57% was achieved for 0.25 mass % BN doped Si3N4 ceramics. Fracture toughness was increased and wear volume and friction coefficient were decreased with increase in BN content.

  6. Excimer laser reactive deposition of vanadium nitride thin films

    Science.gov (United States)

    D'Anna, E.; Di Cristoforo, A.; Fernández, M.; Leggieri, G.; Luches, A.; Majni, G.; Mengucci, P.; Nanai, L.

    2002-01-01

    We report on the deposition of thin vanadium nitride films by ablating vanadium targets in low-pressure N 2 atmosphere, and on their characterization. The targets were vanadium foils (purity 99.8%). 3 in. Si(1 1 1) wafers were used as substrates. Film characteristics (composition and crystalline structure) were studied as a function of N 2 pressure (0.5-200 Pa), KrF laser fluence (4.5-19 J/cm 2), substrate temperature (20-750 °C) and target-to-substrate distance (30-70 mm). Vanadium nitride is already formed at low N 2 ambient pressures (1 Pa) and laser fluences (6 J/cm 2) on substrates at room temperature. At the N 2 pressures of 1-10 Pa, the prevalent phase is VN. At higher pressures (100 Pa) and at relatively high laser fluences (16-19 J/cm 2), the dominant phase is V 2N. The crystallinity of the films improves by increasing the substrate temperature. Well-crystallized films are obtained on substrates heated at 500 °C.

  7. Mesoporous Vanadium Nitride Synthesized by Chemical Routes

    National Research Council Canada - National Science Library

    Mishra, Pragnya P; Theerthagiri, J; Panda, Rabi N

    2014-01-01

    Nanocrystalline vanadium nitride (VN) materials are synthesized by two different routes, namely, the urea route and the ammonia route, using various V2O5 precursors obtained by citric acid–based sol–gel method...

  8. Low temperature route to uranium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Burrell, Anthony K. (Los Alamos, NM); Sattelberger, Alfred P. (Darien, IL); Yeamans, Charles (Berkeley, CA); Hartmann, Thomas (Idaho Falls, ID); Silva, G. W. Chinthaka (Las Vegas, NV); Cerefice, Gary (Henderson, NV); Czerwinski, Kenneth R. (Henderson, NV)

    2009-09-01

    A method of preparing an actinide nitride fuel for nuclear reactors is provided. The method comprises the steps of a) providing at least one actinide oxide and optionally zirconium oxide; b) mixing the oxide with a source of hydrogen fluoride for a period of time and at a temperature sufficient to convert the oxide to a fluoride salt; c) heating the fluoride salt to remove water; d) heating the fluoride salt in a nitrogen atmosphere for a period of time and at a temperature sufficient to convert the fluorides to nitrides; and e) heating the nitrides under vacuum and/or inert atmosphere for a period of time sufficient to convert the nitrides to mononitrides.

  9. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium...... of pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  10. Titanium nitride nanoparticles for therapeutic applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Kildishev, Alexander V.; Boltasseva, Alexandra

    2014-01-01

    Titanium nitride nanoparticles exhibit plasmonic resonances in the biological transparency window where high absorption efficiencies can be obtained with small dimensions. Both lithographic and colloidal samples are examined from the perspective of nanoparticle thermal therapy. © 2014 OSA....

  11. The Nitrogen-Nitride Anode.

    Energy Technology Data Exchange (ETDEWEB)

    Delnick, Frank M.

    2014-10-01

    Nitrogen gas N 2 can be reduced to nitride N -3 in molten LiCl-KCl eutectic salt electrolyte. However, the direct oxidation of N -3 back to N 2 is kinetically slow and only occurs at high overvoltage. The overvoltage for N -3 oxidation can be eliminated by coordinating the N -3 with BN to form the dinitridoborate (BN 2 -3 ) anion which forms a 1-D conjugated linear inorganic polymer with -Li-N-B-N- repeating units. This polymer precipitates out of solution as Li 3 BN 2 which becomes a metallic conductor upon delithiation. Li 3 BN 2 is oxidized to Li + + N 2 + BN at about the N 2 /N -3 redox potential with very little overvoltage. In this report we evaluate the N 2 /N -3 redox couple as a battery anode for energy storage.

  12. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  13. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...... nitride and the transition metal) to the ternary nitride was followed by Mossbauer spectroscopy (for Fe3Mo3N) and by X-ray powder diffraction ( for both Fe3Mo3N and Co3Mo3N). Usually, the preparation of a given ternary nitride by ammonolysis of a ternary oxide is dependent on the availability of an oxide...

  14. Internal correction of hafnium oxide spectral interferences and mass bias in the determination of platinum in environmental samples using isotope dilution analysis.

    Science.gov (United States)

    Rodríguez-Castrillón, José Angel; Moldovan, Mariella; García Alonso, J Ignacio

    2009-05-01

    A method has been developed for the accurate determination of platinum by isotope dilution analysis, using enriched (194)Pt, in environmental samples containing comparatively high levels of hafnium without any chemical separation. The method is based on the computation of the contribution of hafnium oxide as an independent factor in the observed isotope pattern of platinum in the spiked sample. Under these conditions, the ratio of molar fractions between natural abundance and isotopically enriched platinum was independent of the amount of hafnium present in the sample. Additionally, mass bias was corrected by an internal procedure in which the regression variance was minimised. This was possible as the mass bias factor for hafnium oxide was very close to that of platinum. The final procedure required the measurement of three platinum isotope ratios (192/194, 195/194 and 196/194) to calculate the concentration of platinum in the sample. The methodology has been validated using the reference material "BCR-723 road dust" and has been applied to different environmental matrices (road dust, air particles, bulk wet deposition and epiphytic lichens) collected in the Aspe Valley (Pyrenees Mountains). A full uncertainty budget, using Kragten's spreadsheet method, showed that the total uncertainty was limited only by the uncertainty in the measured isotope ratios and not by the uncertainties of the isotopic composition of platinum and hafnium.

  15. Hafnium-doped hydroxyapatite nanoparticles with ionizing radiation for lung cancer treatment.

    Science.gov (United States)

    Chen, Min-Hua; Hanagata, Nobutaka; Ikoma, Toshiyuki; Huang, Jian-Yuan; Li, Keng-Yuan; Lin, Chun-Pin; Lin, Feng-Huei

    2016-06-01

    Recently, photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. However, the optical approach of PDT is limited by tissue penetration depth of visible light. In this study, we propose that a ROS-enhanced nanoparticle, hafnium-doped hydroxyapatite (Hf:HAp), which is a material to yield large quantities of ROS inside the cells when the nanoparticles are bombarded with high penetrating power of ionizing radiation. Hf:HAp nanoparticles are generated by wet chemical precipitation with total doping concentration of 15mol% Hf(4+) relative to Ca(2+) in HAp host material. The results show that the HAp particles could be successfully doped with Hf ions, resulted in the formation of nano-sized rod-like shape and with pH-dependent solubility. The impact of ionizing radiation on Hf:HAp nanoparticles is assessed by using in-vitro and in-vivo model using A549 cell line. The 2',7'-dichlorofluorescein diacetate (DCFH-DA) results reveal that after being exposed to gamma rays, Hf:HAp could significantly lead to the formation of ROS in cells. Both cell viability (WST-1) and cytotoxicity (LDH) assay show the consistent results that A549 lung cancer cell lines are damaged with changes in the cells' ROS level. The in-vivo studies further demonstrate that the tumor growth is inhibited owing to the cells apoptosis when Hf:HAp nanoparticles are bombarded with ionizing radiation. This finding offer a new therapeutic method of interacting with ionizing radiation and demonstrate the potential of Hf:HAp nanoparticles in tumor treatment, such as being used in a palliative treatment after lung surgical procedure. Photodynamic therapy (PDT) is one of the new clinical options by generating cytotoxic reactive oxygen species (ROS) to kill cancer cells. Unfortunately, the approach of PDT is usually limited to the treatment of systemic disease and deeper tumor, due to the limited tissue penetration depth of visible

  16. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si[sub 3]N[sub 4] during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, [approximately] 10 Si[sub 3]N[sub 4] nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si[sub 3]N[sub 4] growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  17. Identification of nitriding mechanisms in high purity reaction bonded silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, J.S.

    1993-03-01

    The rapid, low-temperature nitriding results from surface effects on the Si particles beginning with loss of chemisorbed H and sequential formation of thin amorphous Si nitride layers. Rapid complete conversion to Si{sub 3}N{sub 4} during the fast reaction can be inhibited when either too few or too many nuclei form on Si particels. Optimally, {approximately} 10 Si{sub 3}N{sub 4} nuclei form per Si particles under rapid, complete nitridation conditions. Nitridation during the slow reaction period appears to progress by both continued reaction of nonpreferred Si{sub 3}N{sub 4} growth interfaces and direct nitridation of the remaining Si/vapor interfaces.

  18. Study of the behaviour under neutron irradiation of hafnium diboride; Etude du comportement sous irradiation neutronique du diborure d`hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Cheminant-Coatanlem, P

    1998-12-31

    Owing to its good neutron cross section and to its high melting point, hafnium diboride is a potential candidate for a use as neutron absorbing material in control rod of pressurized water reactor of the next generation. The main causes of damage under neutron irradiation in this ceramic are due to the {sup 10}B(n,{alpha}){sup 7}Li reaction that introduces in the crystal structure new atoms and point defects. The materials under consideration are the stoichiometric HfB{sub 2} compound and the HfB{sub 2} + 10 vol. % Hf compound. They are been irradiated with neutrons at several fluences and temperatures. Electron irradiations, helium and lithium implantations have been carried out in order to simulate the creation of point defects and/or fission products. Transmission and scanning electron microscopy have been used to determine damage mechanisms in HfB{sub 2}. At a low temperature (<500 deg C), irradiation defects precipitate in dislocation loops of both nature, interstitial and vacancy. Those loops have a particular organisation in the HfB{sub 2} lattice: vacancy loops are lying in the basal plane and interstitial loops in planes perpendicular to basal planes. This induces anisotropic deformation of grains that originates internal stress development. These stresses are associated with the dislocation staking and consequently with the cavity formation at grain boundaries. At a higher temperature (>700 deg C), the same dislocation loops are observed. But, in addition, the irradiation defects diffuse to grain boundaries where helium bubbles are formed. The damage caused by this latter mechanism becomes predominant. The HfB{sub 2} + 10 vol. % Hf materials is more resistant under neutron irradiation than the HfB{sub 2} pellets that display a very damaged surface. This result is explained by the fact that, on the one band, the HfB{sub 2} + 10 vol. % Hf pellets have a higher toughness than the HfB{sub 2} pellets and, on the other hand, the HfB{sub 2} + 10 vol. % Hf

  19. Aqueous compatible boron nitride nanosheets for high-performance hydrogels

    Science.gov (United States)

    Hu, Xiaozhen; Liu, Jiahui; He, Qiuju; Meng, Yuan; Cao, Liu; Sun, Ya-Ping; Chen, Jijie; Lu, Fushen

    2016-02-01

    Hexagonal boron nitride nanosheets (BNNSs) possess ultimate thermal and chemical stabilities and mechanical strengths. However, the unmodified BNNSs are hydrophobic and insoluble in water, which hinders their use in many technological areas requiring aqueous compatibility. In this work, h-BN was treated with molten citric acid to produce aqueous dispersible boron nitride sheets (ca-BNNSs). The resultant ca-BNNSs were used to fabricate ca-BNNS/polyacrylamide (i.e., BNNS2.5/PAAm) nanocomposite hydrogels, targeting high water retentivity and flexibility. The BNNS2.5/PAAm hydrogel (initially swollen in water) largely remained swollen (water content ~94 wt%) even after one-year storage under ambient conditions. Importantly, the swollen BNNS2.5/PAAm hydrogel (water content ~95 wt%) was highly flexible. Its elongation and compressive strength exceeded 10 000% and 8 MPa at 97% strain, respectively. Moreover, the aforementioned hydrogel recovered upon the removal of compression force, without obvious damage. The substantially improved water retentivity and flexibility revealed that BNNSs can serve as a promising new platform in the development of high-performance hydrogels.Hexagonal boron nitride nanosheets (BNNSs) possess ultimate thermal and chemical stabilities and mechanical strengths. However, the unmodified BNNSs are hydrophobic and insoluble in water, which hinders their use in many technological areas requiring aqueous compatibility. In this work, h-BN was treated with molten citric acid to produce aqueous dispersible boron nitride sheets (ca-BNNSs). The resultant ca-BNNSs were used to fabricate ca-BNNS/polyacrylamide (i.e., BNNS2.5/PAAm) nanocomposite hydrogels, targeting high water retentivity and flexibility. The BNNS2.5/PAAm hydrogel (initially swollen in water) largely remained swollen (water content ~94 wt%) even after one-year storage under ambient conditions. Importantly, the swollen BNNS2.5/PAAm hydrogel (water content ~95 wt%) was highly flexible. Its

  20. Characteristics of laser produced plasmas of hafnium and tantalum in the 1-7 nm region

    Science.gov (United States)

    Li, Bowen; Otsuka, Takamitsu; Sokell, Emma; Dunne, Padraig; O'Sullivan, Gerry; Hara, Hiroyuki; Arai, Goki; Tamura, Toshiki; Ono, Yuichi; Dinh, Thanh-Hung; Higashiguchi, Takeshi

    2017-11-01

    Soft X-ray (SXR) spectra from hafnium and tantalum laser produced plasmas were recorded in the 1-7 nm region using two Nd:YAG lasers with pulse lengths of 170 ps and 10 ns, respectively, operating at a range of power densities. The maximum focused peak power density was 2. 3 × 1014 W cm-2 for 170 ps pulses and 1. 8 × 1012 W cm-2 for 10 ns pulses, respectively. Two intense quasicontinuous intensity bands resulting from n = 4 - n = 4 and n = 4 - n = 5 unresolved transition arrays (UTAs) dominate both sets of experimental spectra. Comparison with calculations performed with the Cowan suite of atomic structure codes as well as consideration of previous experimental and theoretical results aided identification of the most prominent features in the spectra. For the 10 ns spectrum, the highest ion stage that could be identified from the n = 4 - n = 5 arrays were lower than silver-like Hf25+ and Ta26+ (which has a 4 d 104 f ground configuration) indicating that the plasma temperature attained was too low to produce ions with an outermost 4 d subshell, while for the 170 ps plasmas the presence of significantly higher stages was deduced and lines due to 4 d-5 p transitions were clearly evident. Furthermore, we show an enhancement of emission from tantalum using dual laser irradiation, and the effect of pre-pulse durations and delay times between two pulses are demonstrated.

  1. Extraction chromatographic separations of tantalum and tungsten from hafnium and complex matrix constituents.

    Science.gov (United States)

    Snow, Mathew S; Finck, Martha R; Carney, Kevin P; Morrison, Samuel S

    2017-02-10

    Tantalum (Ta), hafnium (Hf), and tungsten (W) analyses from complex matrices require high purification of these analytes from each other and major/trace matrix constituents, however, current state-of-the-art Ta/Hf/W separations rely on traditional anion exchange approaches that show relatively similar distribution coefficient (Kd) values for each element. This work reports an assessment of three commercially available extraction chromatographic resins (TEVA, TRU, and UTEVA) for Ta/Hf/W separations. Batch contact studies show differences in Ta/Hf and Ta/W Kd values of up to 106 and 104 (respectively), representing an improvement of a factor of 100 and 300 in Ta/Hf and Ta/W Kd values (respectively) over AG1×4 resin. Variations in the Kd values as a function of HCl concentration for TRU resin show that this resin is well suited for Ta/Hf/W separations, with Ta/Hf, Ta/W, and W/Hf Kd value improvements of 10, 200, and 30 (respectively) over AG1×4 resin. Analyses of digested soil samples (NIST 2710a) using TRU resin and tandem TEVA-TRU columns demonstrate the ability to achieve extremely high purification (>99%) of Ta and W from each other and Hf, as well as enabling very high purification of Ta and W from the major and trace elemental constituents present in soils using a single chromatographic step. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage

    Science.gov (United States)

    Ali, Faizan; Liu, Xiaohua; Zhou, Dayu; Yang, Xirui; Xu, Jin; Schenk, Tony; Müller, Johannes; Schroeder, Uwe; Cao, Fei; Dong, Xianlin

    2017-10-01

    Motivated by the development of ultracompact electronic devices as miniaturized energy autonomous systems, great research efforts have been expended in recent years to develop various types of nano-structural energy storage components. The electrostatic capacitors characterized by high power density are competitive; however, their implementation in practical devices is limited by the low intrinsic energy storage density (ESD) of linear dielectrics like Al2O3. In this work, a detailed experimental investigation of energy storage properties is presented for 10 nm thick silicon-doped hafnium oxide anti-ferroelectric thin films. Owing to high field induced polarization and slim double hysteresis, an extremely large ESD value of 61.2 J/cm3 is achieved at 4.5 MV/cm with a high efficiency of ˜65%. In addition, the ESD and the efficiency exhibit robust thermal stability in 210-400 K temperature range and an excellent endurance up to 109 times of charge/discharge cycling at a very high electric field of 4.0 MV/cm. The superior energy storage performance together with mature technology of integration into 3-D arrays suggests great promise for this recently discovered anti-ferroelectric material to replace the currently adopted Al2O3 in fabrication of nano-structural supercapacitors.

  3. Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors.

    Science.gov (United States)

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; Kumari, Niru; Davila, Noraica; Strachan, John Paul; Vine, David; Kilcoyne, A L David; Nishi, Yoshio; Williams, R Stanley

    2016-12-27

    Transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory because of their favorable operating power, endurance, speed, and density. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physicochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.

  4. Carrier Transport at Metal/Amorphous Hafnium-Indium-Zinc Oxide Interfaces.

    Science.gov (United States)

    Kim, Seoungjun; Gil, Youngun; Choi, Youngran; Kim, Kyoung-Kook; Yun, Hyung Joong; Son, Byoungchul; Choi, Chel-Jong; Kim, Hyunsoo

    2015-10-14

    In this paper, the carrier transport mechanism at the metal/amorphous hafnium-indium-zinc oxide (a-HIZO) interface was investigated. The contact properties were found to be predominantly affected by the degree of interfacial reaction between the metals and a-HIZO; that is, a higher tendency to form metal oxide phases leads to excellent Ohmic contact via tunneling, which is associated with the generated donor-like oxygen vacancies. In this case, the Schottky-Mott theory is not applicable. Meanwhile, metals that do not form interfacial metal oxide, such as Pd, follow the Schottky-Mott theory, which results in rectifying Schottky behavior. The Schottky characteristics of the Pd contact to a-HIZO can be explained in terms of the barrier inhomogeneity model, which yields a mean barrier height of 1.40 eV and a standard deviation of 0.14 eV. The work function of a-HIZO could therefore be estimated as 3.7 eV, which is in good agreement with the ultraviolet photoelectron spectroscopy (3.68 eV). Our findings will be useful for establishing a strategy to form Ohmic or Schottky contacts to a-HIZO films, which will be essential for fabricating reliable high-performance electronic devices.

  5. Dinitrogen functionalization with bis(cyclopentadienyl) complexes of zirconium and hafnium.

    Science.gov (United States)

    Chirik, Paul J

    2007-01-07

    The rich chemistry of substituted bis(cyclopentadienyl)zirconium and hafnium complexes bearing side-on coordinated dinitrogen ligands is highlighted in this Perspective. Our studies in this area were initially motivated by the desire to understand side-on vs. end-on dinitrogen coordination in bimetallic zirconocene and hafnocene N2 compounds. In the cases where eta2,eta2-dinitrogen compounds were isolated, both structural and computational data have established significant imido character in the metal-nitrogen bonds. This additional bonding interaction, which is diminished in end-on complexes bearing both terminal and bridging N2 ligands, facilitates dinitrogen functionalization by non-polar reagents including dihydrogen, carbon-hydrogen bonds and weak Brønsted acids such as water and ethanol. In hafnocene chemistry, where unwanted side-on, end-on isomerization is suppressed, cycloaddition of phenylisocyanate to coordinated N2 has also been accomplished. For N-H bond forming reactions involving H2, kinetic measurements, in addition to isotopic labelling and computational studies, are consistent with dinitrogen functionalization by 1,2-addition involving a highly ordered, four-centred transition structure.

  6. Fatigue mechanism of yttrium-doped hafnium oxide ferroelectric thin films fabricated by pulsed laser deposition.

    Science.gov (United States)

    Huang, Fei; Chen, Xing; Liang, Xiao; Qin, Jun; Zhang, Yan; Huang, Taixing; Wang, Zhuo; Peng, Bo; Zhou, Peiheng; Lu, Haipeng; Zhang, Li; Deng, Longjiang; Liu, Ming; Liu, Qi; Tian, He; Bi, Lei

    2017-02-01

    Owing to their prominent stability and CMOS compatibility, HfO2-based ferroelectric films have attracted great attention as promising candidates for ferroelectric random-access memory applications. A major reliability issue for HfO2 based ferroelectric devices is fatigue. So far, there have been a few studies on the fatigue mechanism of this material. Here, we report a systematic study of the fatigue mechanism of yttrium-doped hafnium oxide (HYO) ferroelectric thin films deposited by pulsed laser deposition. The influence of pulse width, pulse amplitude and temperature on the fatigue behavior of HYO during field cycling is studied. The temperature dependent conduction mechanism is characterized after different fatigue cycles. Domain wall pinning caused by carrier injection at shallow defect centers is found to be the major fatigue mechanism of this material. The fatigued device can fully recover to the fatigue-free state after being heated at 90 °C for 30 min, confirming the shallow trap characteristic of the domain wall pinning defects.

  7. Arc Jet Testing of Hafnium Diboride Based Ultra High Temperature Ceramics

    Science.gov (United States)

    Ellerby, Don; Beckman, Sarah; Irby, Edward; Squire, Tom; Olejniczak, Joe; Johnson, Sylvia M.; Gusman, Michael; Gasch, Matthew

    2003-01-01

    Hafnium Diboride (HFB,) based materials have shown promise for use in a number of high temperature aerospace applications, including rocket nozzles and as leading edges on hypersonic reentry vehicles. The stability of the materials in relevant environments is key to determining their suitability for a particular application. In this program we have been developing HfB2/SiC materials for use as sharp leading edges. The program as a whole included processing and characterization of the HfBJSiC materials. The specific work discussed here will focus on studies of the materials oxidation behavior in simulated reentry environments through arc jet testing. Four flat face models were tested to examine the influence of heat flux and stagnation pressure on the materials oxidation behavior. The results from arc jet testing of two HfB2/SiC cone models will also be discussed. Each cone model was run multiple times with gradually increasing heat fluxes. Total run times on a single cone model exceeded 80 minutes. For both the flat face and cone models surface temperatures well in excess of 2200 C were measured. Post test microstructural examination of the models and correlations with measured temperatures will be discussed.

  8. Conduction Channel Formation and Dissolution Due to Oxygen Thermophoresis/Diffusion in Hafnium Oxide Memristors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Suhas; Wang, Ziwen; Huang, Xiaopeng; Kumari, Niru; Davila, Noraica; Strachan, John Paul; Vine, David; Kilcoyne, A. L. David; Nishi, Yoshio; Williams, R. Stanley

    2016-12-27

    Due to the favorable operating power, endurance, speed, and density., transition-metal-oxide memristors, or resistive random-access memory (RRAM) switches, are under intense development for storage-class memory. Their commercial deployment critically depends on predictive compact models based on understanding nanoscale physiocochemical forces, which remains elusive and controversial owing to the difficulties in directly observing atomic motions during resistive switching, Here, using scanning transmission synchrotron X-ray spectromicroscopy to study in situ switching of hafnium oxide memristors, we directly observed the formation of a localized oxygen-deficiency-derived conductive channel surrounded by a low-conductivity ring of excess oxygen. Subsequent thermal annealing homogenized the segregated oxygen, resetting the cells toward their as-grown resistance state. We show that the formation and dissolution of the conduction channel are successfully modeled by radial thermophoresis and Fick diffusion of oxygen atoms driven by Joule heating. This confirmation and quantification of two opposing nanoscale radial forces that affect bipolar memristor switching are important components for any future physics-based compact model for the electronic switching of these devices.

  9. Catalytic Transfer Hydrogenation of Biomass-Derived Carbonyls over Hafnium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Corma, Avelino; García-García, Pilar; Rojas-Buzo, Sergio

    2017-11-15

    A series of highly crystalline, porous, hafnium-based metal-organic frameworks (MOFs) have shown to catalyze the transfer hydrogenation reaction of levulinic ester to produce γ-valerolactone using isopropanol as hydrogen donor and the results are compared with the zirconium-based counterparts. The role of the metal center in Hf-MOFs has been identified and reaction parameters optimized. NMR studies with isotopically labeled isopropanol evidences that the transfer hydrogenation occurs via a direct intermolecular hydrogen transfer route. The catalyst, Hf-MOF-808, can be recycled several times with only a minor decrease in catalytic activity. Generality of the procedure was shown by accomplishing the transformation with aldehydes, ketones and α,β-unsaturated carbonyl compounds. The combination of Hf-MOF-808 with the Brønsted acidic Al-Beta zeolite gives the four-step one-pot transformation of furfural to γ-valerolactone in good yield of 72%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ferroelectric transistors with monolayer molybdenum disulfide and ultra-thin aluminum-doped hafnium oxide

    Science.gov (United States)

    Yap, Wui Chung; Jiang, Hao; Liu, Jialun; Xia, Qiangfei; Zhu, Wenjuan

    2017-07-01

    In this letter, we demonstrate ferroelectric memory devices with monolayer molybdenum disulfide (MoS2) as the channel material and aluminum (Al)-doped hafnium oxide (HfO2) as the ferroelectric gate dielectric. Metal-ferroelectric-metal capacitors with 16 nm thick Al-doped HfO2 are fabricated, and a remnant polarization of 3 μC/cm2 under a program/erase voltage of 5 V is observed. The capability of potential 10 years data retention was estimated using extrapolation of the experimental data. Ferroelectric transistors based on embedded ferroelectric HfO2 and MoS2 grown by chemical vapor deposition are fabricated. Clockwise hysteresis is observed at low program/erase voltages due to slow bulk traps located near the 2D/dielectric interface, while counterclockwise hysteresis is observed at high program/erase voltages due to ferroelectric polarization. In addition, the endurances of the devices are tested, and the effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, are observed. Reliable writing/reading in MoS2/Al-doped HfO2 ferroelectric transistors over 2 × 104 cycles is achieved. This research can potentially lead to advances of two-dimensional (2D) materials in low-power logic and memory applications.

  11. Early history of Earth's crust-mantle system inferred from hafnium isotopes in chondrites

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Haack, Henning; Rosing, M.

    2003-01-01

    The Lu to Hf decay series has been widely used to understand the nature of Earth's early crust-mantle system. The interpretation, however, of Lu-Hf isotope data requires accurate knowledge of the radioactive decay constant of Lu (¿176), as well as bulk-Earth reference parameters. A recent...... calibration of the ¿176 value calls for the presence of highly unradiogenic hafnium in terrestrial zircons with ages greater than 3.9 Gyr, implying widespread continental crust extraction from an isotopically enriched mantle source more than 4.3 Gyr ago, but does not provide evidence for a complementary...... depleted mantle reservoir. Here we report Lu-Hf isotope measurements of different Solar System objects including chondrites and basaltic eucrites. The chondrites define a Lu-Hf isochron with an initial Hf/Hf ratio of 0.279628 ± 0.000047, corresponding to ¿176 = 1.983 ± 0.033 x 10yr using an age of 4.56 Gyr...

  12. Method of manufacture of atomically thin boron nitride

    Science.gov (United States)

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  13. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  14. Fabrication of translucent boron nitride dispersed polycrystalline silicon nitride ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, B [Department of Metallurgy and Material Engineering, Sunmoon University (Korea, Republic of); Fu, Z [State Key Lab of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology (China); Niihara, K [Nagaoka University of Technology, Nagaoka (Japan); Lee, S W, E-mail: joshibhupen@gmail.com [Department of Environment Engineering, Sunmoon University, Asan (Korea, Republic of)

    2011-03-15

    Optical transparency was achieved at infrared region and overall translucent silicon nitride was fabricated using hot press sintering (HPS). The increase in h-BN content decreased the optical transparency. Microstructral observations shows that the optical, mechanical and tribological properties of BN dispersed polycrystalline Si{sub 3}N{sub 4} ceramics were affected by the density, {alpha}:{beta}-phase ratio and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of {alpha}-Si{sub 3}N{sub 4}, AlN, MgO and h-BN at 1850 deg. C. The composite contained from 0.25 to 2 mass % BN powder with sintering aids (9% AlN + 3% MgO). Maximum transmittance of 57% was achieved for 0.25 mass % BN doped Si{sub 3}N{sub 4} ceramics. Fracture toughness was increased and wear volume and friction coefficient were decreased with increase in BN content.

  15. Tantalum nitride for photocatalytic water splitting: concept and applications

    KAUST Repository

    Nurlaela, Ela

    2016-10-12

    Along with many other solar energy conversion processes, research on photocatalytic water splitting to generate hydrogen and oxygen has experienced rapid major development over the past years. Developing an efficient visible-light-responsive photocatalyst has been one of the targets of such research efforts. In this regard, nitride materials, particularly Ta3N5, have been the subject of investigation due to their promising properties. This review focuses on the fundamental parameters involved in the photocatalytic processes targeting overall water splitting using Ta3N5 as a model photocatalyst. The discussion primarily focuses on relevant parameters that are involved in photon absorption, exciton separation, carrier diffusion, carrier transport, catalytic efficiency, and mass transfer of the reactants. An overview of collaborative experimental and theoretical approaches to achieve efficient photocatalytic water splitting using Ta3N5 is discussed.

  16. Tantalum nitride for photocatalytic water splitting: concept and applications

    Directory of Open Access Journals (Sweden)

    Ela Nurlaela

    2016-10-01

    Full Text Available Abstract Along with many other solar energy conversion processes, research on photocatalytic water splitting to generate hydrogen and oxygen has experienced rapid major development over the past years. Developing an efficient visible-light-responsive photocatalyst has been one of the targets of such research efforts. In this regard, nitride materials, particularly Ta3N5, have been the subject of investigation due to their promising properties. This review focuses on the fundamental parameters involved in the photocatalytic processes targeting overall water splitting using Ta3N5 as a model photocatalyst. The discussion primarily focuses on relevant parameters that are involved in photon absorption, exciton separation, carrier diffusion, carrier transport, catalytic efficiency, and mass transfer of the reactants. An overview of collaborative experimental and theoretical approaches to achieve efficient photocatalytic water splitting using Ta3N5 is discussed.

  17. 77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia

    Science.gov (United States)

    2012-08-27

    ... COMMISSION Ferrovanadium and Nitrided Vanadium From Russia Determination On the basis of the record \\1... antidumping duty order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to... contained in USITC Publication 4345 (August 2012), entitled Ferrovanadium and Nitrided Vanadium from Russia...

  18. Anticorrosion nitrided layers on unalloyed and alloyed steels

    Science.gov (United States)

    Wach, P.; Michalski, J.; Burdyński, K.; Ciski, A.

    2017-02-01

    In the paper, nitrided layers on unalloyed and alloyed steels and their corrosion properties are presented. Nitrided layers in the controlled gas nitriding process on C10 and 42CrMo4 steels were formed. Two types of nitrided layers are presented: with nitride iron layers above and below 15 µm. Nitrided layer with nitride layer above 15 µm has good corrosion resistance, but after nitriding of machine parts were subsequently oxidised and impregnated. In the second type of nitrided layer, the surface layers of iron nitrides had a thickness of 3.0 to 11.0 µm. Nitrided layers with a surface layer of iron nitrides with the γ’ (Fe4N) structure were formed on unalloyed steel and investigated. The so-formed layers were subject to basic metallographic, X-ray diffraction and corrosion resistance studies carried out by electrochemical methods and in a neutral salt spray chamber. It was found that the layers consisting only of γ’ phase had a good corrosion resistance. Necessary requirements for achieving an enhanced resistance comprise their complete tightness and thickness not lower than 9.0 µm. Thinner layers had good electrochemical properties but did not exhibit corrosion resistance in the salt spray chamber.

  19. Dynamic response of multiwall boron nitride nanotubes subjected to ...

    Indian Academy of Sciences (India)

    Dynamic behaviours of multiwall boron nitride nanotubes (MWBNNTs) with finite length were studied by employing continuum ... Multiwall boron nitride nanotube; dynamic response; impact; wave propagation. 1. Introduction. Boron nitride .... eV nm6 26 and R0 = 0.344 nm27 in equation (11) yields η = 0.262 GPa nm−1.

  20. Plasma nitridation optimazation for sub-15 A gate dielectrics

    NARCIS (Netherlands)

    Cubaynes, F.N; Cubaynes, F.N.; Schmitz, Jurriaan; van der Marel, C.; Snijders, J.H.M.; Veloso, A.; Rothschild, A.; Olsen, C.; Date, L.

    2003-01-01

    The work investigates the impact of plasma nitridation process parameters upon the physical properties and upon the electrical performance of sub-15 A plasma nitrided gate dielectrics. The nitrogen distribution and chemical bonding of ultra-thin plasma nitrided films have been investigated using

  1. Microstructure characterization of fluidized bed nitrided Fe–Si and ...

    Indian Academy of Sciences (India)

    Unknown

    gations on the nitrided samples were carried out by optical and SEM microscopic observations, X-ray diffraction and Mössbauer spectroscopy. Both the compound and diffusion layers were investigated. Keywords. Fe–Si; Fe–Si–Al foils; thermochemical nitriding treatment; fluidized-bed; structure; nitriding mechanism. 1.

  2. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  3. Composite boron nitride neutron detectors

    Science.gov (United States)

    Roth, M.; Mojaev, E.; Khakhan, O.; Fleider, A.; Dul`kin, E.; Schieber, M.

    2014-09-01

    Single phase polycrystalline hexagonal boron nitride (BN) or mixed with boron carbide (BxC) embedded in an insulating polymeric matrix acting as a binder and forming a composite material as well as pure submicron size polycrystalline BN has been tested as a thermal neutron converter in a multilayer thermal neutron detector design. Metal sheet electrodes were covered with 20-50 μm thick layers of composite materials and assembled in a multi-layer sandwich configuration. High voltage was applied to the metal electrodes to create an interspacing electric field. The spacing volume could be filled with air, nitrogen or argon. Thermal neutrons were captured in converter layers due to the presence of the 10B isotope. The resulting nuclear reaction produced α-particles and 7Li ions which ionized the gas in the spacing volume. Electron-ion pairs were collected by the field to create an electrical signal proportional to the intensity of the neutron source. The detection efficiency of the multilayer neutron detectors is found to increase with the number of active converter layers. Pixel structures of such neutron detectors necessary for imaging applications and incorporation of internal moderator materials for field measurements of fast neutron flux intensities are discussed as well.

  4. Routes to new hafnium(IV) tetraaryl porphyrins and crystal structures of unusual phosphate-, sulfate-, and peroxide-bridged dimers.

    Science.gov (United States)

    Falber, Alexander; Todaro, Louis; Goldberg, Israel; Favilla, Michael V; Drain, Charles Michael

    2008-01-21

    New routes for the synthesis of mono tetraaryl porphyrinato hafnium(IV) complexes, Hf(IV)Por(L)(2), are reported, where the secondary ligands, L, are determined by the method of purification. These synthetic routes cater to the solubility of the macrocycles and provide access to Hf(IV) complexes of meso tetraaryl porphyrins bearing diverse functional groups such as phenyl, tolyl, pyridyl, pentafluorophenyl, and carboxyphenyl. The latter three derivatives significantly expand the repertoire of hafnium porphyrinates. One route refluxes the porphyrin with HfCl(4) in 1-chloronaphthalene or in a mixed solvent of 1-chloronaphthalene and o-cresol. A second, solventless method is also reported wherein the porphyrin is mixed with Hf(cp)(2)Cl(2) and heated to give the metalated porphyrin in good yields. Simultaneous purification and formation of stable porphyrinato hafnium(IV) diacetate complexes, Hf(Por)OAc(2), is accomplished by elution over silica gel using 3-5% acetic acid in the eluent. Exchange of the acetate ligands for other oxo-bearing ligands can be nearly quantitative, such as p-aminobenzoate (PABA), pentanoate (pent), or octanoate (oct). Notably, we find that two to three of a variety of small multitopic dianions such as peroxo (O(2)(-2)), SO(4)(-2), and HPO(4)(-2) serve to bridge between two Hf(Por) moieties to form stable dimers. The crystal structures of this library of Hf(Por) complexes are reported, and we note that careful analysis of crystallography data reveals (Por)Hf(micro-eta(2)-O(2))(2)Hf(Por) rather than four bridging oxo or hydroxy ions.

  5. Group IV Mixed Sandwich Compounds: Synthesis of Pentamethylcyclopentadienyl-Titanium, -Zirconium and -Hafnium Cycloheptatrienyl and Cyclooctatetraene Complexes

    OpenAIRE

    BLENKERS, J; Bruin, P. de; Teuben, J.H.

    1985-01-01

    The first complete series of Group IV sandwich complexes Cp*MCHT (M = Ti, Zr, Hf) (Cp* = η5-C5Me5, CHT = η7-C7H7) has been made and characterized. Cp*HfCHT is the first reported sandwich compound of hafnium. The d1, η8-C8H8(COT) complex Cp*MCOT were also synthesised similarly for M = Ti, Zr, but the complexes with M = Hf was not obtained; the failure to obtain Cp*HfCOT is ascribed to kinetic factors. Cp*ZrCOT is the first thermally-stable paramagnetic organozirconium(III) compound isolated in...

  6. Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes

    Science.gov (United States)

    Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi

    2014-01-01

    Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.

  7. Nitride Fuel Development at the INL

    Energy Technology Data Exchange (ETDEWEB)

    W.E. Windes

    2007-06-01

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon – hydrogen - nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 µm) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90 -95 % nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form.

  8. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    , the nitriding result is determined largely by kinetics. Nitriding kinetics are shown to be characterised by local near equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data are presented. The necessary background......, The Netherlands; Professor Mittemeijer is now also at the Max Planck Institute for Metals Research, Seestrasse 92, D-70174 Stuttgart, Germany and Professor Somers is now in the Division of Metallurgy, Technical University of Denmark, Bldg 204, DK 2800, Lyngby, Denmark. Contribution to the 10th Congress...

  9. Conducting metal oxide and metal nitride nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  10. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  11. Preparation of octahydro- and tetrahydro-[1,10]phenanthroline zirconium and hafnium complexes for olefin polymerization.

    Science.gov (United States)

    Hwang, Eun Yeong; Park, Geun Ho; Lee, Chun Sun; Kang, Yi Young; Lee, Junseong; Lee, Bun Yeoul

    2015-02-28

    Post-metallocenes were constructed for olefin polymerization using 1,2,3,4,7,8,9,10-octahydro[1,10]phenanthroline and 1,2,3,4-tetrahydro[1,10]phenanthroline derivatives. A series of zirconium complexes - LZrCl2(NHMe2)2 [L = 2,9-H2-C12H12N2 (4), 2,9-Me2-C12H12N2 (5), 2,9-nBu2-C12H12N2 (6), and 2,9-iPr2-C12H12N2 (7)] - and hafnium complexes - LHfCl2(NHMe2)2 [L = 2,9-H2-C12H12N2 (8), 2,9-Me2-C12H12N2 (9), 2,9-nBu2-C12H12N2 (10), and 2,9-iPr2-C12H12N2 (11)] - were synthesized via the reaction of octahydro[1,10]phenanthrolines (2,9-R2-C12H12(NH)2) with (Me2N)2MCl2 (DME). The reaction of 2,9-R2-C12H12(NH)2 with (PhCH2)2ZrCl2 in the presence of a small amount of THF afforded a series of THF adduct analogs, i.e., LZrCl2(THF)2 [L = 2,9-H2-C12H12N2 (12), 2,9-Me2-C12H12N2 (13), 2,9-nBu2-C12H12N2 (14), and 2,9-iPr2-C12H12N2 (15)]. The treatment of 12 and 13 with excess Me3Al resulted in the formation of unexpected complexes, i.e., (η(4)-LAlMe2)ZrCl2(Me) [L = 2,9-H2-C12H12N2 (16) and 2,9-Me2-C12H12N2 (17)], in which the Me2Al unit forms a five-membered ring through binding with the two nitrogen donors and the MeCl2Zr unit slips to an η(4)-binding mode containing the N-C-C-N fragment. The treatment of tetrahydro[1,10]phenanthrolines [2,9-R2-C12NH9(NH)] with M(CH2Ph)4 afforded tribenzyl zirconium complexes LZr(CH2Ph)3 - [L = 2,9-Me2-C12NH9N (18) and 2,9-nBu2-C12NH9N (19)] - and hafnium complexes - LHf(CH2Ph)3 [L = 2,9-Me2-C12NH9N (20), 2,9-nBu2-C12NH9N (21), and 2,9-iPr2-C12NH9N (22)]. The structures of 4, 5, 12, 17, and 22 were elucidated by X-ray crystallography. The newly prepared complexes were screened for ethylene/1-octene copolymerization activity: 12 and 16 were potent catalysts (activities of 74 × 10(6) g mol-Zr h(-1) at ∼120 °C under 30 bar ethylene) for the production of wax-like low-molecular weight polyethylene (Mn: ∼5000), which is widely used in industry.

  12. Four Terminal Gallium Nitride MOSFETs

    Science.gov (United States)

    Veety, Matthew Thomas

    All reported gallium nitride (GaN) transistors to date have been three-terminal devices with source, drain, and gate electrodes. In the case of GaN MOSFETs, this leaves the bulk of the device at a floating potential which can impact device threshold voltage. In more traditional silicon-based MOSFET fabrication a bulk contact can be made on the back side of the silicon wafer. For GaN grown on sapphire substrates, however, this is not possible and an alternate, front-side bulk contact must be investigated. GaN is a III-V, wide band gap semiconductor that as promising material parameters for use in high frequency and high power applications. Possible applications are in the 1 to 10 GHz frequency band and power inverters for next generation grid solid state transformers and inverters. GaN has seen significant academic and commercial research for use in Heterojunction Field Effect Transistors (HFETs). These devices however are depletion-mode, meaning the device is considered "on" at zero gate bias. A MOSFET structure allows for enhancement mode operation, which is normally off. This mode is preferrable in high power applications as the device has lower off-state power consumption and is easier to implement in circuits. Proper surface passivation of seminconductor surface interface states is an important processing step for any device. Preliminary research on surface treatments using GaN wet etches and depletion-mode GaN devices utilizing this process are discussed. Devices pretreated with potassium pursulfate prior to gate dielectric deposition show significant device improvements. This process can be applied to any current GaN FET. Enhancement-mode GaN MOSFETs were fabricated on magnesium doped p-type Wurtzite gallium nitride grown by Metal Organic Chemical Vapor Deposition (MOCVD) on c-plane sapphire substrates. Devices utilized ion implant source and drain which was activated under NH3 overpressure in MOCVD. Also, devices were fabricated with a SiO2 gate dielectric

  13. Protective coatings of hafnium dioxide by atomic layer deposition for microelectromechanical systems applications

    Energy Technology Data Exchange (ETDEWEB)

    Berdova, Maria, E-mail: maria.berdova@aalto.fi [Aalto University, Department of Materials Science and Engineering, 02150, Espoo (Finland); Wiemer, Claudia; Lamperti, Alessio; Tallarida, Grazia; Cianci, Elena [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Lamagna, Luca; Losa, Stefano; Rossini, Silvia; Somaschini, Roberto; Gioveni, Salvatore [STMicroelectronics, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Fanciulli, Marco [Laboratorio MDM, IMM CNR, Via C. Olivetti 2, 20864, Agrate Brianza, MB (Italy); Università degli studi di Milano Bicocca, Dipartimento di Scienza dei Materiali, 20126, Milano (Italy); Franssila, Sami, E-mail: sami.franssila@aalto.fi [Aalto University, Department of Materials Science and Engineering, 02150, Espoo (Finland)

    2016-04-15

    Graphical abstract: - Highlights: • Atomic layer deposition of HfO{sub 2} from (CpMe){sub 2}Hf(OMe)Me or Hf(NMeEt){sub 4} and ozone for potential applications in microelectromechanical systems. • ALD HfO{sub 2} protects aluminum substrates from degradation in moist environment and at the same time retains good reflectance properties of the underlying material. • The resistance of hafnium dioxide to moist environment is independent of chosen precursors. - Abstract: This work presents the investigation of HfO{sub 2} deposited by atomic layer deposition (ALD) from either HfD-CO4 or TEMAHf and ozone for microelectromechanical systems (MEMS) applications, in particular, for environmental protection of aluminum micromirrors. This work shows that HfO{sub 2} films successfully protect aluminum in moist environment and at the same time retain good reflectance properties of underlying material. In our experimental work, the chemical composition, crystal structure, electronic density and roughness of HfO{sub 2} films remained the same after one week of humidity treatment (relative humidity of 85%, 85 °C). The reflectance properties underwent only minor changes. The observed shift in reflectance was only from 80–90% to 76–85% in 400–800 nm spectral range when coated with ALD HfO{sub 2} films grown with Hf(NMeEt){sub 4} and no shift (remained in the range of 68–83%) for films grown from (CpMe){sub 2}Hf(OMe)Me.

  14. Effects of trimethylaluminium and tetrakis(ethylmethylamino) hafnium in the early stages of the atomic-layer-deposition of aluminum oxide and hafnium oxide on hydroxylated GaN nanoclusters.

    Science.gov (United States)

    León-Plata, Paola A; Coan, Mary R; Seminario, Jorge M

    2013-10-01

    We calculate the interactions of two atomic layer deposition (ALD) reactants, trimethylaluminium (TMA) and tetrakis(ethylmethylamino) hafnium (TEMAH) with the hydroxylated Ga-face of GaN clusters when aluminum oxide and hafnium oxide, respectively, are being deposited. The GaN clusters are suitable as testbeds for the actual Ga-face on practical GaN nanocrystals of importance not only in electronics but for several other applications in nanotechnology. We find that TMA spontaneously interacts with hydroxylated GaN; however it does not follow the atomic layer deposition reaction path unless there is an excess in potential energy introduced in the clusters at the beginning of the optimization, for instance, using larger bond lengths of various bonds in the initial structures. TEMAH also does not interact with hydroxylated GaN, unless there is an excess in potential energy. The formation of a Ga-N(CH3)(CH2CH3) bond during the ALD of HfO2 using TEMAH as the reactant without breaking the Hf-N bond could be the key part of the mechanism behind the formation of an interface layer at the HfO2/GaN interface.

  15. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  16. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    Science.gov (United States)

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  17. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates.

    Science.gov (United States)

    Yang, Yi; Ling, Yichuan; Wang, Gongming; Lu, Xihong; Tong, Yexiang; Li, Yat

    2013-03-07

    We report a general strategy for synthesis of gallium nitride (GaN) and indium nitride (InN) nanowires on conductive and flexible carbon cloth substrates. GaN and InN nanowires were prepared via a nanocluster-mediated growth method using a home built chemical vapor deposition (CVD) system with Ga and In metals as group III precursors and ammonia as a group V precursor. Electron microscopy studies reveal that the group III-nitride nanowires are single crystalline wurtzite structures. The morphology, density and growth mechanism of these nanowires are determined by the growth temperature. Importantly, a photoelectrode fabricated by contacting the GaN nanowires through a carbon cloth substrate shows pronounced photoactivity for photoelectrochemical water oxidation. The ability to synthesize group III-nitride nanowires on conductive and flexible substrates should open up new opportunities for nanoscale photonic, electronic and electrochemical devices.

  18. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    National Research Council Canada - National Science Library

    Holmes, Kenneth

    2002-01-01

    Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...

  19. Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide.

    Science.gov (United States)

    Chmura, Amanda J; Davidson, Matthew G; Frankis, Catherine J; Jones, Matthew D; Lunn, Matthew D

    2008-03-21

    Under solvent-free conditions (at 130 degrees C), zirconium and hafnium amine tris(phenolate) alkoxides are extremely active, well-controlled, single-site initiators for the ring-opening polymerization of rac-lactide, yielding highly heterotactic polylactide.

  20. Metal–Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal–Organic Framework

    Science.gov (United States)

    2017-01-01

    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed “double cluster” (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal–organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal–organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials. PMID:28343394

  1. Metal-Organic Nanosheets Formed via Defect-Mediated Transformation of a Hafnium Metal-Organic Framework.

    Science.gov (United States)

    Cliffe, Matthew J; Castillo-Martínez, Elizabeth; Wu, Yue; Lee, Jeongjae; Forse, Alexander C; Firth, Francesca C N; Moghadam, Peyman Z; Fairen-Jimenez, David; Gaultois, Michael W; Hill, Joshua A; Magdysyuk, Oxana V; Slater, Ben; Goodwin, Andrew L; Grey, Clare P

    2017-04-19

    We report a hafnium-containing MOF, hcp UiO-67(Hf), which is a ligand-deficient layered analogue of the face-centered cubic fcu UiO-67(Hf). hcp UiO-67 accommodates its lower ligand:metal ratio compared to fcu UiO-67 through a new structural mechanism: the formation of a condensed "double cluster" (Hf12O8(OH)14), analogous to the condensation of coordination polyhedra in oxide frameworks. In oxide frameworks, variable stoichiometry can lead to more complex defect structures, e.g., crystallographic shear planes or modules with differing compositions, which can be the source of further chemical reactivity; likewise, the layered hcp UiO-67 can react further to reversibly form a two-dimensional metal-organic framework, hxl UiO-67. Both three-dimensional hcp UiO-67 and two-dimensional hxl UiO-67 can be delaminated to form metal-organic nanosheets. Delamination of hcp UiO-67 occurs through the cleavage of strong hafnium-carboxylate bonds and is effected under mild conditions, suggesting that defect-ordered MOFs could be a productive route to porous two-dimensional materials.

  2. Study of hafnium (IV) oxide nanoparticles synthesized by polymerized complex and polymer precursor derived sol-gel methods

    KAUST Repository

    Ramos-González, R.

    2010-03-01

    This work reports the preparation and characterization of hafnium (IV) oxide (HfO2) nanoparticles grown by derived sol-gel routes that involves the formation of an organic polymeric network. A comparison between polymerized complex (PC) and polymer precursor (PP) methods is presented. For the PC method, citric acid (CA) and ethylene glycol (EG) are used as the chelating and polymerizable reagents, respectively. In the case of PP method, poly(acrylic acid) (PAA) is used as the chelating reagent. In both cases, different precursor gels were prepared and the hafnium (IV) chloride (HfCl4) molar ratio was varied from 0.1 to 1.0 for the PC method and from 0.05 to 0.5 for the PP method. In order to obtain the nanoparticles, the precursors were heat treated at 500 and 800 °C. The thermal characterization of the precursor gels was carried out by thermogravimetric analysis (TGA) and the structural and morphological characterization by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The XRD patterns of the samples obtained by both methods shows the formation of HfO2 at 500 °C with monoclinic crystalline phase. The PC method exhibited also the cubic phase. Finally, the HfO2 nanoparticles size (4 to 11 nm) was determined by TEM and XRD patterns. © (2010) Trans Tech Publications.

  3. Transformation Temperatures, Shape Memory and Magnetic Properties of Hafnium Modified Ti-Ta Based High Temperature Shape Memory Alloys

    Science.gov (United States)

    Khan, W. Q.; Wang, Q.; Jin, X.

    2017-02-01

    In this study the modification effect of Hf content on the shape memory properties and magnetic permeability of a 75.5-77Ti-20Ta-3-4.5Hf alloy system has been systematically studied by DSC, three-point bend test, vector network analyzer and XRD. The martensitic transformation temperature, heat of reaction and recovery strain increases with the increase of hafnium and tantalum content. A stable high temperature shape memory effect was observed (Ms = 385-390 °C) during the two thermal cycles between 20 °C and 725 °C. Transformation temperatures and heats of reaction were determined by DSC measurements. Recovery strain was determined by three-point bend testing. Also an alloy, 70Ti-26Ta-4Hf, with higher tantalum content was produced to observe the effect of Ta on the shape memory properties. Permeability increases gradually from 1.671 to 1.919 with increasing content of hafnium modification and remains stable in the frequency range of 450 MHz to 1 GHz.

  4. Silicon nitride layers obtained by ECR PECVD

    NARCIS (Netherlands)

    Isai, I.G.; Holleman, J.; Woerlee, P.H.; Wallinga, Hans

    2002-01-01

    It has been found that good quality silicon nitride films can be deposited at room temperature, with an alternate electron cyclotron resonance (ECR) plasma source, called multipolar ECR. The effects of several deposition conditions on physical and electrical properties were studied in order to

  5. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  6. Local residual stress measurements on nitride layers

    NARCIS (Netherlands)

    Mansilla, C.; Ocelik, V.; De Hosson, J. Th. M.

    2015-01-01

    In this work, local stresses in different nitrided maraging steel samples of high practical interest for industrial applications were studied through the so-called micro-slit milling method using a focused ion beam. The nitrogen concentration profiles were acquired by glow discharge optical emission

  7. Producing Silicon Carbide/Silicon Nitride Fibers

    Science.gov (United States)

    1986-01-01

    Manufacturing process makes CxSiyNz fibers. Precursor fibers spun from extruding machine charged with polycarbosilazane resin. When pyrolyzed, resin converted to cross-linked mixture of silicon carbide and silicon nitride, still in fiber form. CxSiyNz fibers promising substitutes for carbon fibers in high-strength, low-weight composites where high electrical conductivity unwanted.

  8. Gallium nitride junction field-effect transistor

    Science.gov (United States)

    Zolper, John C.; Shul, Randy J.

    1999-01-01

    An all-ion implanted gallium-nitride (GaN) junction field-effect transistor (JFET) and method of making the same. Also disclosed are various ion implants, both n- and p-type, together with or without phosphorous co-implantation, in selected III-V semiconductor materials.

  9. Alkaline fuel cell with nitride membrane

    Science.gov (United States)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  10. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets.

    Science.gov (United States)

    Si, M S; Gao, Daqiang; Yang, Dezheng; Peng, Yong; Zhang, Z Y; Xue, Desheng; Liu, Yushen; Deng, Xiaohui; Zhang, G P

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  11. Dynamic Characterization of Silicon Nitride Cantilevers

    NARCIS (Netherlands)

    Babaei Gavan, K.

    2009-01-01

    This thesis describes a series of experiments on dynamical characterization of silicon nitride cantilevers. These devices play an important role in micro-and nanoelectromechanical systems (MEMS and NEMS). They consist of a mechanical part, a sensor or actuator, and an electronic part for readout and

  12. Defects in III-nitride microdisk cavities

    Science.gov (United States)

    Ren, C. X.; Puchtler, T. J.; Zhu, T.; Griffiths, J. T.; Oliver, R. A.

    2017-03-01

    Nitride microcavities offer an exceptional platform for the investigation of light-matter interactions as well as the development of devices such as high efficiency light emitting diodes (LEDs) and low-threshold nanolasers. Microdisk geometries in particular are attractive for low-threshold lasing applications due to their ability to support high finesse whispering gallery modes (WGMs) and small modal volumes. In this article we review the effect of defects on the properties of nitride microdisk cavities fabricated using photoelectrochemical etching of an InGaN sacrificial superlattice (SSL). Threading dislocations originating from either the original GaN pseudosubstrate are shown to hinder the undercutting of microdisk cavities during the photoelectric chemical etching process resulting in whiskers of unetched material on the underside of microdisks. The unetched whiskers provide a pathway for light to escape, reducing microdisk Q-factor if located in the region occupied by the WGMs. Additionally, dislocations can affect the spectral stability of quantum dot emitters, thus hindering their effective integration in microdisk cavities. Though dislocations are clearly undesirable, the limiting factor on nitride microdisk Q-factor is expected to be internal absorption, indicating that the further optimisation of nitride microdisk cavities must incorporate both the elimination of dislocations and careful tailoring of the active region emission wavelength and background doping levels.

  13. Slip casting and nitridation of silicon powder

    Science.gov (United States)

    Seiko, Y.

    1985-01-01

    Powdered Silicon was slip-cast with a CaSO4 x 0.5H2O mold and nitrided in a N atm. containing 0 or 5 vol. % H at 1000 to 1420 deg. To remove the castings, the modeling faces were coated successively with an aq. salt soap and powdered cellulose containing Na alginate, and thus prevented the sticking problem.

  14. Nitriding of Co–Cr–Mo alloy in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Ning, E-mail: ningtang@imr.tohoku.ac.jp; Li, Yunping, E-mail: lyping@imr.tohoku.ac.jp; Koizumi, Yuichiro; Chiba, Akihiko, E-mail: a.chiba@imr.tohoku.ac.jp

    2014-06-01

    Using the results of a thermodynamic analysis, a Co–Cr–Mo alloy was successfully nitrided in nitrogen at temperatures of 1073–1473 K. The near-surface microstructure of the treated Co–Cr–Mo alloy was characterized using X-ray diffraction, field-emission scanning electron microscopy, electron probe micro-analyzer, and transmission electron microscopy equipped with energy-dispersive X-ray spectroscopy. The results indicated that the highest nitriding efficiency was achieved at the treatment temperature of 1273 K, with the size and coverage of the nitride particles on sample's surface increasing with an increase in the treatment duration. After nitriding at 1273 K for 2 h, numerous nitride particles, consisting of an outer Cr{sub 2}N layer and an inner π phase layer, were formed on top of the nitrogen-containing γ phase, and some π phase also precipitated in the alloy matrix at the sub-surface level. - Highlights: • A Co–Cr–Mo alloy was successfully nitrided in nitrogen at 1073–1473 K. • The highest nitriding efficiency of the Co–Cr–Mo alloy was achieved at 1273 K. • Numerous nitride particles formed on sample's surface during nitriding at 1273 K. • The nitride particles consist of an outer Cr{sub 2}N layer and an inner π phase layer.

  15. Investigation on the structural and mechanical properties of anti-sticking sputtered tungsten chromium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tai-Nan [Chemical Engineering Division, Institute of Nuclear Energy Research, Taiwan, ROC (China); Han, Sheng [Department of Leisure and Recreation Management, National Taichung University of Science and Technology, Taiwan, ROC (China); Weng, Ko-Wei, E-mail: kowei@nqu.edu.tw [Department of Electronic Engineering, National Quemoy University, Taiwan, ROC (China); Lee, Chin-Tan [Department of Electronic Engineering, National Quemoy University, Taiwan, ROC (China)

    2013-02-01

    Tungsten chromium nitride (WCrN) thin films are prepared by dual-gun co-sputter process. As the surface coatings on the molding die for glass forming, WCrN films show less deterioration at high temperature than the conventional CrN coating. WCrN thin films are deposited via the reactive co-sputtering of Cr/W targets. The working pressure is kept at 2.66 Pa and the argon/nitrogen ratio is 10. Applied power of chromium is fixed and the applied power of tungsten is varied. Experimental results indicate that the atomic ratio of tungsten in the films increases with the applied power of tungsten. The dominant crystalline phase is chromium nitride when the tungsten target power is below 100 W, while tungsten nitride dominates in the film structure when the tungsten target power is beyond 200 W. A dense structure with much finer particles is developed as the tungsten power is 200 W. As the power is increased to 300 W, the particles become coarser in size. The film roughness exhibits a decreasing trend at low tungsten power and then increases as the tungsten power increased up to 300 and 400 W, presumably due to the phase change from chromium nitrides to tungsten nitrides. Further annealing of the WCrN thin films is simulated as the glass molding condition to check the anti-sticking property which is a critical requirement in molding die surface coating application. The WCrN thin film coating shows good anti-sticking property at 400 °C annealing when the tungsten target power is 200 W. - Highlights: ► WCrN films are deposited by dual sputtering of pure Cr and W targets. ► The covalent bonding character of WCrN films explains the difference in hardness. ► WCrN (200 W W-target-power/400 °C-annealing) exhibits the best anti-sticking performance.

  16. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  17. Low-loss binder for hot pressing boron nitride

    Science.gov (United States)

    Maya, Leon

    1991-01-01

    Borazine derivatives used as low-loss binders and precursors for making ceramic boron nitride structures. The derivative forms the same composition as the boron nitride starting material, thereby filling the voids with the same boron nitride material upon forming and hot pressing. The derivatives have a further advantage of being low in carbon thus resulting in less volatile byproduct that can result in bubble formation during pressing.

  18. Nitriding using cathodic cage technique of martensitic stainless steel AISI 420 with addition of CH4

    National Research Council Canada - National Science Library

    De Sousa, R.R.M; De Araújo, F.O; Da Costa, J.A.P; De Sousa, R.S; Alves JR, C

    2008-01-01

    AISI 420 martensitic stainless steel samples were nitrided by cathodic cage technique with addition of methane in the atmosphere aiming to reduce chromium nitride precipitation, to increase hardness...

  19. EXAFS investigation of low temperature nitrided stainless steel

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2008-01-01

    Low temperature nitrided stainless steel AISI 316 flakes were investigated with EXAFS and X-ray diffraction analysis. The stainless steel flakes were transformed into a mixture of nitrogen expanded austenite and nitride phases. Two treatments were carried out yielding different overall nitrogen...... contents: (1) nitriding in pure NH3 and (2)nitriding in pure NH3 followed by reduction in H2. The majority of the Cr atoms in the stainless steel after treatment 1 and 2 was associated with a nitrogen–chromium bond distance comparable to that of the chemical compound CrN. The possibility of the occurrence...

  20. Nano Indentation Inspection of the Mechanical Properties of Gold Nitride Thin Films

    Directory of Open Access Journals (Sweden)

    Armen Verdyan

    2007-10-01

    Full Text Available The morphology and the local mechanical properties of gold nitride thin films were studied by atomic force microscope (AFM. Gold nitride films were deposited for the first time on silicon substrate without any buffer layer at room temperature by reactive pulsed laser ablation deposition (RPLD. The films were fabricated on (100 Si wafers by RPLD technique in which KrF excimer laser was used to ablate a gold target in N2 atmosphere (0.1 GPa-100 Pa and ambient temperature. Scanning electron microscopy (SEM and atomic force microscopy inspections showed that the films were flat plane with rms roughness in the range of 35.1 nm-3.6 nm, depending on the deposition pressure. Rutherford backscattering spectrometry (RBS and energy dispersion spectroscopy (EDS used to detect the nitrogen concentration in the films, have revealed a composition close to Au3N. The film

  1. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  2. Local residual stress measurements on nitride layers

    Energy Technology Data Exchange (ETDEWEB)

    Mansilla, C.; Ocelík, V.; De Hosson, J.Th.M., E-mail: j.t.m.de.hosson@rug.nl

    2015-06-11

    In this work, local stresses in different nitrided maraging steel samples of high practical interest for industrial applications were studied through the so-called micro-slit milling method using a focused ion beam. The nitrogen concentration profiles were acquired by glow discharge optical emission spectroscopy. The residual stress state was measured on the surface and also in cross-section, i.e. examining effects of the nitrogen concentration gradient. It is shown that an enhanced lateral resolution can be achieved when a novel multiple fitting approach is employed. The results presented show an overall agreement with stress profiles obtained by X-ray diffraction. Finite Element Modeling is used to explain the apparent discrepancies. A clear correlation between the residual stress and nitriding profiles has been found and the applicability of this method is shown in particular when stress gradients are present.

  3. Boron nitride encapsulated graphene infrared emitters

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R., E-mail: g.r.nash@exeter.ac.uk [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-03-28

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  4. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    Science.gov (United States)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  5. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Silicon Nitride Antireflection Coatings for Photovoltaic Cells

    Science.gov (United States)

    Johnson, C.; Wydeven, T.; Donohoe, K.

    1984-01-01

    Chemical-vapor deposition adapted to yield graded index of refraction. Silicon nitride deposited in layers, refractive index of which decreases with distance away from cell/coating interface. Changing index of refraction allows adjustment of spectral transmittance for wavelengths which cell is most effective at converting light to electric current. Average conversion efficiency of solar cells increased from 8.84 percent to 12.63 percent.

  7. Tetra­kis(8-quinolinolato-κ2 N,O)hafnium(IV) dimethyl­formamide solvate monohydrate

    Science.gov (United States)

    Viljoen, Johannes A.; Visser, Hendrik G.; Roodt, Andreas

    2010-01-01

    In the title compound, [Hf(C9H6NO)]·C3H7NO·H2O, the hafnium(IV) atom is coordinated by four 8-quinolinolate (Ox) ligands, forming a slightly distorted square-anti­prismatic coordination polyhedron. The crystal packing is controlled by O—H⋯O and C—H⋯O hydrogen-bonding inter­actions and π–π inter­actions between quinoline ligands of neighbouring mol­ecules. The inter­planar distances vary between 3.150 (1) and 3.251 (2) Å, while centroid–centroid distances vary from 3.589 (1) to 4.1531 (1) Å. PMID:21579072

  8. Coexistence of bipolar and threshold resistive switching in TiO2 based structure with embedded hafnium nanoparticles

    Science.gov (United States)

    Michelakaki, Irini; Bousoulas, Panagiotis; Stathopoulos, Spyros; Boukos, Nikos; Tsoukalas, Dimitris

    2017-02-01

    The coexistence of nonvolatile memory switching and volatile threshold switching in a single device is of importance for suppressing the sneak-path currents in crossbar resistive memory architectures. This study demonstrates that the combination of a thin film of TiO2 with hafnium nanoparticles in Au/Ti/TiO2/Hf nanoparticles/Au device configuration enables conversion between memory switching and volatile threshold switching by adjusting the current compliance through the materials stack. The presence of hexagonal closed packed Hf nanoparticles, a synthesis of which has not been reported before, is critical for the device operation that exhibits beneficial features as it is forming free and operates at low voltage and power consumption. Analysis of measured current-voltage (I-V) characteristics reveal a filamentary nature of switching phenomena and present operating similarities with electrochemical metallization cells suggesting that Hf metal atoms and not only oxygen vacancies are responsible for conductive filament formation.

  9. The elevated temperature mechanical properties of silicon nitride/boron nitride fibrous monoliths

    Science.gov (United States)

    Trice, Rodney Wayne

    A unique, all-ceramic material capable of non-brittle fracture via crack deflection has been characterized from 25sp°C through 1400sp°C. This material, called fibrous monoliths (FMs), was comprised of unidirectionally aligned 250 mum diameter cells of silicon nitride surrounded by 10 mum thick cell boundaries of boron nitride. Six weight percent yttria and two weight percent alumina were added to the silicon nitride to aid in densification. TEM experiments revealed that the sintering aids used to densify the silicon nitride cells were migrating into the boron nitride cell boundary during hot-pressing and that a fine network of micro-cracks existed between basal planes of boron nitride. Elevated temperature four point bending tests were performed on fibrous monolith ceramics from room temperature through 1400sp°C. Peak strengths of FMs averaged 510 MPa for specimens tested at room temperature through 176 MPa at 1400sp°C. Work of fractures ranged from 7300 J/msp2 to 3200 J/msp2 under the same temperature conditions. The interfacial fracture energy of boron nitride, GammasbBN, as a function of temperature has been determined using the Charalambides method. The fracture energy of boron nitride is approximately 40 J/msp2 and remained constant from 25sp°C through 950sp°C. A sharp increase in GammasbBN, to about 60 J/msp2, was observed at 1000sp°C-1050sp°C. This increase in GammasbBN was attributed to interactions of the crack tip with the cell boundary glassy phase. Subsequent measurements at 1075sp°C indicated a marked decrease in GammasbBN to near 40 J/msp2 before plateauing at 17-20 J/msp2 in the 1200sp°C-1300sp°C regime. The Mode I fracture toughness of silicon nitride was also determined using the single edge precracked beam method as a function of temperature. The He and Hutchinson model relating crack deflection at an interface to the Dundurs' parameter was applied to the current data set using the temperature dependent fracture energies of the boron

  10. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    results on bonding of thin and thick Si3N4 layers. The new results include high temperature bonding without any pretreatment, along with improved bonding ability achieved by thermal oxidation and chemical pretreatment. The bonded wafers include both unprocessed and processed wafers with a total silicon......While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...... specific. Often fusion bonding of silicon nitride surfaces to silicon or silicon dioxide to silicon surfaces is preferred, though Si3N4–Si3N4 bonding is indeed possible and practical for many devices as will be shown in this paper. We present an overview of existing knowledge on Si3N4–Si3N4 bonding and new...

  11. Shock Syntheses of Novel Nitrides and Biomolecules

    Science.gov (United States)

    Sekine, Toshimori

    2013-06-01

    High-pressure spinel nitride of Si3N4 was discovered more than 10 years ago. Since then there have been many studies on the spinel nitrides and related materials including oxynitrides. We have developed shock synthesis method to investigate their structural, mechanical, chemical, physical, and optical properties. At the same time we tried to synthesize carbon nitrides from the organic substances. And later we extended to shock synthesis of ammonia through the Haber-Bosch reaction under shock in order to apply geochemical subjects related to the origin of life. The simplest amino acid of glycine, as well as animes (up to propylamine) and carboxylic acids (up to pentanoic acid), has been synthesized successfully in aqueous solutions through meteoritic impact reactions. Recently we are trying to make more complex biomolecules for implications of biomolecule formation for the origin of life through meteorite impacts on early Earth's ocean. These results of shock syntheses may imply significant contributions to materials science and Earth and planetary sciences. This research is collaborated with National Institute for Materials Science and Tohoku University.

  12. Gallium nitride based logpile photonic crystals.

    Science.gov (United States)

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J

    2011-11-09

    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  13. Stress reduction of cubic boron nitride films by oxygen addition

    Energy Technology Data Exchange (ETDEWEB)

    Ye, J. [Forschungszentrum Karlsruhe, IMF I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)], E-mail: Jian.Ye@imf.fzk.de; Ulrich, S.; Ziebert, C.; Stueber, M. [Forschungszentrum Karlsruhe, IMF I, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2008-12-01

    Cubic boron nitride (c-BN) films with significantly reduced residual stresses were successfully grown onto silicon substrates by means of controlled oxygen addition into the films. The deposition was based on radio-frequency magnetron sputtering of a hexagonal boron nitride (h-BN) target, and was accomplished in a reactive mode using gas mixtures of argon, nitrogen, and oxygen at 0.3 Pa pressure, 400 deg. C growth temperature, and - 250 V substrate bias. Results of systematic investigations are shown in this article with respect to the critical influences of oxygen concentration during deposition upon the stress, cubic phase fraction, as well as nanohardness of the deposited films. Under the specified growth conditions, the formation of c-BN was generally completely hindered for oxygen concentrations above 1.5 vol.% in the gas mixture. At concentrations below approximately 1 vol.%, the added oxygen exhibits however marginal influences on the c-BN fraction, but on the other side a strong impact on the stress of the deposited films. Cubic-phase dominated films (containing 70-80 vol.% c-BN) with their compressive stress three times reduced were thus produced through careful control of oxygen fraction in the gas mixture, showing an excellent nanohardness of almost 60 GPa. For such films, a post-deposition thermal treatment at 900 deg. C led to an additional drastic stress reduction resulting in a final residual stress that is almost 10 times lower than that of as-deposited c-BN films without intentional oxygen addition.

  14. Computational and experimental study of copper–gold nitride formation

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Cázares, I., E-mail: iponce@cnyn.unam.mx [Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Tijuana-Ensenada No. 3918, A. Postal 360, 22860 Ensenada, B.C. (Mexico); Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, C.P. 22860 Ensenada, B.C. (Mexico); Moreno-Armenta, Ma. Guadalupe, E-mail: moreno@cnyn.unam.mx [Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, C.P. 22860 Ensenada, B.C. (Mexico); De la Cruz, W., E-mail: wencel@cnyn.unam.mx [Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana-Ensenada, C.P. 22860 Ensenada, B.C. (Mexico)

    2015-08-25

    Highlights: • The new Cu{sub 3}Au-nitride compound was successfully grown by the sputtering method. • This material is Cu{sub 3}Au{sub 0.5}N with cubic system (Pm3m space group), where the gold randomly occupies half of the 1a Wyckoff sites. • The material was a pseudo-gap conductor with conductance as good as a heavily-doped semiconductor at room temperature. - Abstract: This work investigates the formation of a Cu{sub 3}Au-nitride alloy using experimental and computational methods. For this purpose, we prepared a custom-made Cu–Au target and then hit it with argon ions in the presence of molecular nitrogen that produced a film on Corning glass. This film was analyzed using spectroscopic and diffraction techniques. The four-point-probe method and Tauc plots were applied to determine the electrical and optical properties of this thin film. Using first principle calculations a structural model was constructed that validated our observations. The crystalline system that we used was cubic (Pm3m space group) with half the sites filled with Au randomly. The composition was close to Cu{sub 3}Au{sub 0.5}N. In agreement with the electrical measurements and calculations, the Cu{sub 3}Au{sub 0.5}N band structure was highly affected by the Au incorporation since the electrical resistance and carrier density were in the 10{sup −3} Ω cm and 10{sup 22} cm{sup −3} ranges, respectively, and the optical gap decreased 0.61 eV with respect to the Cu{sub 3}N. The material was a pseudo-gap conductor with conductance as good as a heavily-doped semiconductor at room temperature; this should give it great potential for use in the optoelectronics industry.

  15. As-cast microstructures and behavior at high temperature of chromium-rich cobalt-based alloys containing hafnium carbides

    Energy Technology Data Exchange (ETDEWEB)

    Berthod, Patrice, E-mail: Patrice.Berthod@univ-lorraine.fr; Conrath, Elodie

    2014-02-14

    Hafnium is often used to improve the high temperature oxidation resistance of superalloys but not to form carbides for strengthen them against creep. In this work hafnium was added in cobalt-based alloys for verifying that HfC can be obtained in cobalt-based alloys and for characterizing their behavior at a very temperature. Three Co–25Cr–0.25 and 0.50C alloys containing 3.7 and 7.4 Hf to promote HfC carbides, and four Co–25Cr– 0 to 1C alloys for comparison (all contents in wt.%), were cast and exposed at 1200 °C for 50 h in synthetic air. The HfC carbides formed instead chromium carbides during solidification, in eutectic with matrix and as dispersed compact particles. During the stage at 1200 °C the HfC carbides did not significantly evolve, even near the oxidation front despite oxidation early become very fast and generalized. At the same time the chromium carbides present in the Co–Cr–C alloys totally disappeared in the same conditions. Such HfC-alloys potentially bring efficient and sustainable mechanical strengthening at high temperature, but their hot oxidation resistance must be significantly improved. - Highlights: • Co-based alloys containing HfC carbides were successfully obtained by foundry. • HfC are pro-eutectic or form an interdendritic eutectic compound with matrix. • The HfC carbides appear very stable on long time at 1200 °C. • The hot oxidation of the alloys is fast and they require higher Cr contents. • The high stability of HfC may allow Cr-enrichment by pack-cementation.

  16. Application-oriented nitride substrates: The key to long-wavelength nitride lasers beyond 500 nm

    Science.gov (United States)

    Sharma, T. K.; Towe, E.

    2010-01-01

    We present results based on quantum mechanical estimates of the longest emission wavelength for nitride laser diodes grown on c-plane GaN/sapphire substrates. The results indicate that the absence of polarization-induced electric fields in nonpolar/semipolar GaN substrates does not necessarily guarantee that nitride lasers will operate at the longest possible wavelength for a given set of parameters. Our calculations suggest that the limit on the longest possible wavelength of nitride lasers is constrained by the lattice mismatch rather than by the strength of the polarization-induced electric field. Although it may be possible to develop lasers that approach the green portion of the electromagnetic spectrum (˜520 nm) by growing the structures on nonpolar/semipolar GaN substrates, the development of red and near-infrared nitride lasers appears extremely difficult by merely growing the structures on any crystallographic orientation of the GaN substrate. We suggest that efficient lasers emitting at the green, red, and near-infrared wavelengths can be developed by growing the laser structures on a proposed application-oriented nitride substrate (AONS) that is lattice-matched to the epilayers grown on it. The AONSs are bulk InxGa1-xN ternary substrates with Indium compositions chosen to lattice-match the epilayers to be grown on them. The concept of the AONS can be extended deep into the infrared region by increasing the Indium mole fraction of the quantum well layers in the active region of the laser and by choosing the AONS that best matches the specific wavelength desired. We believe it would be possible, by using this concept, to make nitride lasers at the fiber-optic communication windows at 1.3 and 1.55 μm, thus eliminating the need to use the hazardous arsenides/phosphides materials currently used to make the communications lasers.

  17. Improvement of wear resistance for C45 steel using plasma nitriding, nitrocarburizing and nitriding/ manganese phosphating duplex treatment

    Science.gov (United States)

    Doan, T. V.; Kusmič, D.; Pospíchal, M.; Dobrocký, D.

    2017-02-01

    This article focuses on effect of plasma nitriding, nitrocarburizing and nitriding/manganese phosphating duplex treatments to wear resistance of C45 steel substrate. The wear test “ball on disc” was conducted to evaluate the coefficient of friction and wear rate using the BRUKER UMT-3 tribometer. The analysis results indicated that nitrocarburizing obtained the best wear resistance; the worst wear resistance was plasma nitriding. Manganese phosphating coating enabled to reduce the coefficient of friction enhanced wear resistance nitrided layer. The used surface treatments also improve non-equal wear of tempered surface over the sliding track.

  18. Chemical Bonding, Interfaces and Defects in Hafnium Oxide/Germanium Oxynitride Gate Stacks on Ge (100)

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Yasuhiro; /Stanford U., Materials Sci. Dept.; Sun, Yun; /SLAC, SSRL; Kuzum, Duygu; /Stanford U.; Sugawara, Takuya; Saraswat, Krishna C.; Pianetta, Piero; /SLAC, SSRL; McIntyre, Paul C.; /Stanford U., Materials Sci. Dept.

    2008-10-31

    Correlations among interface properties and chemical bonding characteristics in HfO{sub 2}/GeO{sub x}N{sub y}/Ge MIS stacks were investigated using in-situ remote nitridation of the Ge (100) surface prior to HfO{sub 2} atomic layer deposition (ALD). Ultra thin ({approx}1.1 nm), thermally stable and aqueous etch-resistant GeO{sub x}N{sub y} interfaces layers that exhibited Ge core level photoelectron spectra (PES) similar to stoichiometric Ge{sub 3}N{sub 4} were synthesized. To evaluate GeO{sub x}N{sub y}/Ge interface defects, the density of interface states (D{sub it}) was extracted by the conductance method across the band gap. Forming gas annealed (FGA) samples exhibited substantially lower D{sub it} ({approx} 1 x 10{sup 12} cm{sup -2} eV{sup -1}) than did high vacuum annealed (HVA) and inert gas anneal (IGA) samples ({approx} 1x 10{sup 13} cm{sup -2} eV{sup -1}). Germanium core level photoelectron spectra from similar FGA-treated samples detected out-diffusion of germanium oxide to the HfO{sub 2} film surface and apparent modification of chemical bonding at the GeO{sub x}N{sub y}/Ge interface, which is related to the reduced D{sub it}.

  19. Salen complexes of zirconium and hafnium: synthesis, structural characterization, controlled hydrolysis, and solvent-free ring-opening polymerization of cyclic esters and lactides.

    Science.gov (United States)

    Saha, Tanmoy Kumar; Ramkumar, Venkatachalam; Chakraborty, Debashis

    2011-04-04

    Dinuclear salen compounds of zirconium and hafnium are efficient initiators for the solvent-free ring-opening polymerization of cyclic ester monomers and lactides. There is a correlation between the theoretical and experimental number-average molecular weights (M(n)'s) in these polymerizations. Polymerization of β-butyrolactone gives poly(3-hydroxybutyrate) with a good M(n) and molecular weight distribution.

  20. PHYSIC AND CHEMICAL BASIS FOR THE INVOLVEMENT OF D-ELEMENTS OF THE FOURTH GROUP (TITANIUM, ZIRCONIUM, HAFNIUM IN THE SYNTHESIS OF BUILDING AND SILICATE MATERIALS

    Directory of Open Access Journals (Sweden)

    V. I. Bolshakov

    2007-11-01

    Full Text Available In the paper the studies of physico-chemical grounds of involving the fourth group elements (titanium, zirconium, hafnium for syntheses of construction silicate materials are presented. The physico-chemical approach proposed allows involving the great group of technogenic titanium-containing semi-products, concentrates, slags and slimes for production of construction silicate materials and manufacture the products and building structures.

  1. Design of an Extractive Distillation Column for the Environmentally Benign Separation of Zirconium and Hafnium Tetrachloride for Nuclear Power Reactor Applications

    OpenAIRE

    Duong, Pham

    2015-01-01

    Nuclear power with strengthened safety regulations continues to be used as an important resource in the world for managing atmospheric greenhouse gases and associated climate change. This study examined the environmentally benign separation of zirconium tetrachloride (ZrCl4) and hafnium tetrachloride (HfCl4) for nuclear power reactor applications through extractive distillation using a NaCl-KCl molten salt mixture. The vapor–liquid equilibrium behavior of ZrCl4 and HfCl4 over t...

  2. Vertical III-nitride thin-film power diode

    Science.gov (United States)

    Wierer, Jr., Jonathan; Fischer, Arthur J.; Allerman, Andrew A.

    2017-03-14

    A vertical III-nitride thin-film power diode can hold off high voltages (kV's) when operated under reverse bias. The III-nitride device layers can be grown on a wider bandgap template layer and growth substrate, which can be removed by laser lift-off of the epitaxial device layers grown thereon.

  3. Progress in preparation, properties and application of boron nitride nanomaterials

    Science.gov (United States)

    Wang, Youjun; Han, Jiaqi; Li, Yanjiao; Chen, Hao

    2017-08-01

    Boron nitride nanomaterials have attracted much and more interest in scientific research workers because of their excellent physical and chemical properties. They have become an important research hotspot in today's materials field. In this paper, boron nitride nanoparticles, "fullerenes", nanotubes, nanoribbons and Nano sheets were reviewed in terms of preparation methods, properties and potential applications.

  4. Growth and properties of subnanometer thin titanium nitride films

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Van Hao, B.; Schmitz, Jurriaan; Wolters, Robertus A.M.

    2014-01-01

    This research brings new insights into the relation between properties of ultra-thin conductive metal nitrides made by atomic layer deposition (ALD) and their possible industrial applications. The advantage of conductive nitrides over pure metals is (i) better established ALD processes allowing

  5. Phase composition of perlite steel modified by electrolyte plasma nitriding

    Science.gov (United States)

    Popova, Natalya; Erygina, Lyudmila; Nikonenko, Elena; Skakov, Mazhin

    2017-11-01

    The paper presents the transmission electron microscopy (TEM) investigations of phase composition of the type 0.34C-1Cr-1Ni-1Mo-Fe steel after the modification by electrolyte plasma nitriding performed in a nitrogen aqueous solution for 5 min and under voltage of 600 V. Two states of the steel specimens are investigated: 1) before nitriding (original state) and 2) after nitriding the specimen surface layer. TEM investigations show that electrolyte plasma nitriding results in substantial structural modifications such as phase composition and the number of phases involved. In the original state, the specimen structure represents lamellar perlite, ferritic-carbide mix, and fragmented ferrite. After electrolyte plasma nitriding, the structure is lamellar non-fragmented perlite and fragmented ferrite. The former is present in three states, namely: ideal lamellar perlite, lamellar perlite with fractured cementite laminae, and defect lamellar perlite. The particles of alloyed cementite M3C and nitride Fe3Mo3N are observed in each state. The structure of fragmented ferrite contains the particles of nitride Fe3Mo3N, carbonitride Cr2C0.61N0.39 and alloyed cementite M3C. The investigation also determines that electrolyte plasma nitriding leads to the increase in scalar density of dislocations in α-matrix and long-range (internal) plastic stresses.

  6. Modeling the kinetics of the nitriding and nitrocarburizing of iron

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.; Mittemeijer, Eric J.

    1998-01-01

    The growth kinetics of the iron-nitride compound layer during nitriding and nitrocarburizing of pure iron has been investigated for various temperatures and various combinations of imposed nitrogen and carbon activities. The results indicate that no local equilibrium occurs at the gas/solid inter...

  7. Optimization of time–temperature schedule for nitridation of silicon ...

    Indian Academy of Sciences (India)

    compact on the basis of silicon and nitrogen reaction kinetics. J RAKSHIT and P K DAS*. Central Glass and Ceramic Research Institute, Jadavpur, Calcutta 700 032, India. MS received 27 March 2000; revised 1 June 2000. Abstract. A time–temperature schedule for formation of silicon–nitride by direct nitridation of silicon ...

  8. Limitations to band gap tuning in nitride semiconductor alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2010-01-01

    Relations between the band gaps of nitride alloys and their lattice parameters are presented and limits to tuning of the fundamental gap in nitride semiconductors are set by combining a large number of experimental data with ab initio theoretical calculations. Large band gap bowings obtained...

  9. Low temperature gaseous nitriding and carburising of stainless steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Somers, Marcel A.J.

    2005-01-01

    The response of various austenitic and duplex stainless steel grades to low temperature gaseous nitriding and carburising was investigated. Gaseous nitriding was performed in ammonia/hydrogen mixtures at temperatures ,723 K; gaseous carburising was carried out in carbon monoxide/hydrogen mixtures...

  10. Effect of microstructure on the high temperature strength of nitride ...

    Indian Academy of Sciences (India)

    Unknown

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J RAKSHIT and P K DAS*. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. MS received 15 March 2002; revised 3 August 2002. Abstract. Four compositions of nitride bonded SiC were fabricated with ...

  11. Pack nitriding of aluminium using cassava waste | Shitta | Journal of ...

    African Journals Online (AJOL)

    Pack Nitriding is a process analogous to pack carbonizing. In this work, cassava leaves were employed as a source of nitrogen. Upon heating, slow decomposition of the compound provides Nitrogen, the Nitrogen was allowed to interact with aluminium metal surfaces, which were packed nitrided at temperature of 350°c.

  12. Nitriding of super alloys for enhancing physical properties

    Science.gov (United States)

    Purohit, A.

    1984-06-25

    The invention teaches the improvement of certain super alloys by exposing the alloy to an atmosphere of elemental nitrogen at elevated temperatures in excess of 750/sup 0/C but less than 1150/sup 0/C for an extended duration, viz., by nitriding the surface of the alloy, to establish barrier nitrides of the order of 25 to 100 micrometers thickness. These barrier

  13. Nitrogen ion irradiation of Au(110) : formation of gold nitride

    NARCIS (Netherlands)

    Šiller, L.; Hunt, M.R.C.; Brown, J.W.; Coquel, J-M.; Rudolf, P.

    Often metal nitrides posses unique properties for applications, such as great hardness, high melting points, chemical stability, novel electrical and magnetic properties. One route to the formation of metal nitride films is through ion irradiation of metal surfaces. In this report, the results of

  14. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  15. Structural and Electrical Characterization of Oxidated, Nitridated and Oxi-nitridated (100) GaAs Surfaces

    Science.gov (United States)

    Paul, Narayan Chandra; Nakamura, Kazuki; Takebe, Masahide; Takemoto, Akira; Inokuma, Takao; Iiyama, Koichi; Takamiya, Saburo; Higashimine, Koichi; Ohtsuka, Nobuo; Yonezawa, Yasuto

    2003-07-01

    Oxidation by the UV & ozone process, nitridation by the nitrogen helicon-wave-excited plasma process, and the combination of these processes are applied to (100) GaAs wafers. An atomic force microscope, X-ray photoelectron spectroscopy, a transmission electron microscope, photoluminescence and electrical characteristics (current-voltage and capacitance-voltage) were used to analyze the influences of these processes on the structure and composition of the surfaces and the interfaces. Metal-insulator-semiconductor (MIS) diodes and Schottky diodes were fabricated in order to investigate the electrical influences of these processes. The oxidation slightly disorders GaAs surfaces. Nitridation of a bare surface creates about a 2-nm-thick strongly disordered layer, which strongly deteriorates the electrical and photoluminescence characteristics. Nitridation of oxidated wafers (oxi-nitridation) forms firm amorphous GaON layers, which contain GaN, with very flat and sharp GaON/GaAs interfaces, where crystal disorder is hardly observed. It improves the current-voltage (I-V) and capacitance-voltage (C-V) characteristics and the photoluminescence intensity. Results of the structural and the electrical characterizations qualitatively coincide well with each other.

  16. Low Temperature Gaseous Nitriding of a Stainless Steel Containing Strong Nitride Formers

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low temperature thermochemical surface hardening of the precipitation hardening austenitic stainless steel A286 in solution treated state was investigated. A286 contains, besides high amounts of Cr, also substantial amounts of strong nitride formers as Ti, Al and V. It is shown that simultaneous...

  17. Safety Assessment of Boron Nitride as Used in Cosmetics.

    Science.gov (United States)

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations. © The Author(s) 2015.

  18. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  19. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  20. Cathodic cage nitriding of samples with different dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, R.R.M. de [Centro Federal de Educacao Tecnologica do Piaui, Department of Mechanical, Teresina, PI (Brazil); Araujo, F.O. de [Universidade Federal Rural do Semi-Arido, Mossoro, RN (Brazil); Ribeiro, K.J.B.; Mendes, M.W.D. [Labplasma, Departamento de Fisica-UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil); Costa, J.A.P. da [Departamento de Fisica-UFC, Fortaleza, CE (Brazil); Alves, C. [Labplasma, Departamento de Fisica-UFRN, Campus Universitario, 59072-970 Natal, RN (Brazil)], E-mail: alvesjr@pesquisador.cnpq.br

    2007-09-15

    A series of AISI 1020 steel cylindrical samples with different heights were simultaneously nitrided in cathodic cage plasma nitriding. In this technique, the samples are placed under a floating potential inside a cage in which the cathodic potential is applied. A systematic study of the nitriding temperature variation effects was carried out in order to evaluate the efficiency of such a technique over the uniformity of the formed layers. The samples were characterized by optical microscopy, X-ray diffraction and microhardness measurement. The results were compared with those ones obtained in the ionic nitriding, and was verified that the samples nitrided by this conventional technique presents less uniformity than the ones treated through this new technique.

  1. Optimized transparent and heat reflecting oxide and nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Howson, R.P.; Ridge, M.I.; Suzuki, K.

    1984-11-01

    Films of indium oxide and indium oxide doped with tin have been produced by reactive planar magnetron sputtering of the pure metal and the alloy and from two metal sources simultaneously. In each case the oxygen partial pressure was controlled to give the higher sheet resistance in the oxide film which was deposited onto a plastic sheet transferred over a drum at ambient temperature. Films prepared under these conditions with the best properties for heat reflecting and visible transparent filters were found to be the oxide of the pure metal. A radio frequency discharge used in conjunction with the magnetron allowed the operating pressure to be considerably reduced, which allowed the preparation of titanium nitride films from a titanium metal target and the construction of simple metal and dielectric-metal-dielectric filters, which match theoretical predictions. A sandwich filter could be made from one titanium target by varying the active gas between oxygen and nitrogen to give a structure of: TiO/sub 2/-TiN-TiO/sub 2/. (A.V.)

  2. Titanium nitride thin films for minimizing multipactoring

    Science.gov (United States)

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  3. Method for exfoliation of hexagonal boron nitride

    Science.gov (United States)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  4. Stability analysis of zigzag boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Hari Mohan, E-mail: rai.2208@gmail.com; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R. [Indian Institute of Technology, Indore –452017 (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM- Indian Institute of Information Technology, Design and Manufacturing, Jabalpur – 482005 (India); Srivastava, Pankaj [Computational Nanoscience and Technology Lab. (CNTL), ABV- Indian Institute of Information Technology and Management, Gwalior – 474015 (India)

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  5. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  6. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo-Vega, C. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Km. 107 Carretera Tijuana-Ensenada, A. Postal 2732, 22860, Ensenada B.C. (Mexico)]. E-mail: gallardo@ccmc.unam.mx; Cruz, W. de la [Centro de Ciencias de la Materia Condensada, UNAM, Km. 107 Carretera Tijuana-Ensenada, A. Postal 2681, 22860, Ensenada B.C. (Mexico)

    2006-09-15

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10{sup -2} to 1.3 x 10{sup -1} Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu{sub 3}N) and x = 0.25 (Cu{sub 4}N) when the nitrogen pressure is 1.3 x 10{sup -1} and 5 x 10{sup -2} Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33.

  7. Nanowire-templated lateral epitaxial growth of non-polar group III nitrides

    Science.gov (United States)

    Wang, George T [Albuquerque, NM; Li, Qiming [Albuquerque, NM; Creighton, J Randall [Albuquerque, NM

    2010-03-02

    A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.

  8. Characterization of plasma nitrided layers produced on sintered iron

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fontes

    2014-07-01

    Full Text Available Plasma nitriding is a thermo-physical-chemical treatment process, which promotes surface hardening, caused by interstitial diffusion of atomic nitrogen into metallic alloys. In this work, this process was employed in the surface modification of a sintered ferrous alloy. Scanning electron microscopy (SEM, X-ray diffraction (XRD analyses, and wear and microhardness tests were performed on the samples submitted to ferrox treatment and plasma nitriding carried out under different conditions of time and temperature. The results showed that the nitride layer thickness is higher for all nitrided samples than for ferrox treated samples, and this layer thickness increases with nitriding time and temperature, and temperature is a more significant variable. The XRD analysis showed that the nitrided layer, for all samples, near the surface consists in a mixture of γ′-Fe4N and ɛ-Fe3N phases. Both wear resistance and microhardness increase with nitriding time and temperature, and temperature influences both the characteristics the most.

  9. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...

  10. Crystal Orientation Dependence of Gallium Nitride Wear.

    Science.gov (United States)

    Zeng, Guosong; Sun, Wei; Song, Renbo; Tansu, Nelson; Krick, Brandon A

    2017-10-26

    We explore how crystallographic order and orientation affect the tribological (friction and wear) performance of gallium nitride (GaN), through experiments and theory. Friction and wear were measured in every direction on the c-plane of GaN through rotary wear experiment. This revealed a strong crystallographic orientation dependence of the sliding properties of GaN; a 60° periodicity of wear rate and friction coefficient was observed. The origin of this periodicity is rooted in the symmetry presented in wurtzite hexagonal lattice structure of III-nitrides. The lowest wear rate was found as 0.6 × 10 -7 mm 3 /Nm with , while the wear rate associated with had the highest wear rate of 1.4 × 10 -7 mm 3 /Nm. On the contrary, higher friction coefficient can be observed along while lower friction coefficient always appeared along . We developed a simple molecular statics approach to understand energy barriers associated with sliding and material removal; this calculated change of free energy associated with sliding revealed that there were smaller energy barriers sliding along as compared to the direction.

  11. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...... and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real...

  12. Hexagonal boron nitride nanowalls: physical vapour deposition, 2D/3D morphology and spectroscopic analysis

    Science.gov (United States)

    BenMoussa, B.; D'Haen, J.; Borschel, C.; Barjon, J.; Soltani, A.; Mortet, V.; Ronning, C.; D'Olieslaeger, M.; Boyen, H.-G.; Haenen, K.

    2012-04-01

    Hexagonal boron nitride nanowalls were synthesized using reactive radio-frequency magnetron sputtering in combination with a hexagonal BN target. The nanowall formation is purely governed by addition of hydrogen to the nitrogen/argon gas mixture, and leads to a decreased incorporation of carbon and oxygen impurities. The surface morphology is assessed with scanning electron microscopy, while stoichiometry and reduced impurity content of the material was evidenced using Rutherford backscattering spectroscopy. Transmission electron microscopy confirms the hexagonal nature of the nanowalls, whose luminescent properties are studied with cathodoluminescence spectroscopy, shedding more light on the location and nature of the excitonic emission and crystalline quality of the h-BN nanowalls.

  13. Electrical properties of titanium nitride films synthesized by reactive magnetron sputtering

    Science.gov (United States)

    Mohammed, W. M.; Gumarov, A. I.; Vakhitov, I. R.; Yanilkin, I. V.; Kiiamov, A. G.; Kharintsev, S. S.; Nikitin, S. I.; Tagirov, L. R.; Yusupov, R. V.

    2017-11-01

    Reactive dc magnetron sputtering was employed to produce thin films of titanium nitride using titanium metallic target, argon as the plasma gas and nitrogen as the reactive gas. A set of the films was studied deposited on the Si, fused silica and crystalline (001) MgO substrates with various deposition conditions. The films deposited on the Si and SiO2 substrates are polycrystalline while deposited at slow rate to the heated to 600°C MgO substrate are highly epitaxial according both to XRD and LEED data. Electrical resistivity of the films was measured by means of the four-probe van der Pauw method.

  14. High efficiency III-nitride light-emitting diodes

    Science.gov (United States)

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  15. Monolithic gyroidal mesoporous mixed titanium-niobium nitrides.

    Science.gov (United States)

    Robbins, Spencer W; Sai, Hiroaki; DiSalvo, Francis J; Gruner, Sol M; Wiesner, Ulrich

    2014-08-26

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium-niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials.

  16. Monolithic Gyroidal Mesoporous Mixed Titanium–Niobium Nitrides

    Science.gov (United States)

    2015-01-01

    Mesoporous transition metal nitrides are interesting materials for energy conversion and storage applications due to their conductivity and durability. We present ordered mixed titanium–niobium (8:2, 1:1) nitrides with gyroidal network structures synthesized from triblock terpolymer structure-directed mixed oxides. The materials retain both macroscopic integrity and mesoscale ordering despite heat treatment up to 600 °C, without a rigid carbon framework as a support. Furthermore, the gyroidal lattice parameters were varied by changing polymer molar mass. This synthesis strategy may prove useful in generating a variety of monolithic ordered mesoporous mixed oxides and nitrides for electrode and catalyst materials. PMID:25122534

  17. Local Heating with Lithographically Fabricated Plasmonic Titanium Nitride Nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.

    2013-01-01

    Titanium nitride is considered a promising alternative plasmonic material and is known to exhibit localized surface plasmon resonances within the near-infrared biological transparency window. Here, local heating efficiencies of disk-shaped nanoparticles made of titanium nitride and gold...... are compared in the visible and near-infrared regions numerically and experimentally with samples fabricated using e-beam lithography. Results show that plasmonic titanium nitride nanodisks are efficient local heat sources and outperform gold nanodisks in the biological transparency window, dispensing the need...

  18. Modelling of the modulation properties of arsenide and nitride VCSELs

    Science.gov (United States)

    Wasiak, Michał; Śpiewak, Patrycja; Moser, Philip; Gebski, Marcin; Schmeckebier, Holger; Sarzała, Robert P.; Lott, James A.

    2017-02-01

    In this paper, using our model of capacitance in vertical-cavity surface-emitting lasers (VCSELs), we analyze certain differences between an oxide-confined arsenide VCSEL emitting in the NIR region, and a nitride VCSEL emitting violet radiation. In the nitride laser its high differential resistance, caused partially by the low conductivity of p-type GaN material and the bottom contact configuration, is one of the main reasons why the nitride VCSEL has much worse modulation properties than the arsenide VCSEL. Using the complicated arsenide structure, we also analyze different possible ways of constructing the laser's equivalent circuit.

  19. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  20. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    Science.gov (United States)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  1. Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, C.; Villarreal, M. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Caicedo, J.C., E-mail: jcaicedoangulo1@gmail.com [Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingeniería Mecatrónica, Universidad Militar Nueva Granada, Bogotá (Colombia); Caicedo, H.H. [Department of Bioengineering, University of Illinois at Chicago, IL 60612 (United States); Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612 (United States); Prieto, P. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Center of Excellence for Novel Materials, CENM, Cali (Colombia)

    2013-10-31

    HfN/VN multilayered systems were grown on 4140 steel substrates with the aim to improve their electrochemical behavior. The multilayered coatings were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (∼ 1.2 μm). The coatings were characterized by X-ray diffraction (XRD), and electron microscopy. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN]{sub n} multilayered coatings. The maximum corrosion resistance was obtained for coatings with (Λ) equal to 15 nm, corresponding to bilayer n = 80. Polarization resistance and corrosion rate was around 112.19 kΩ cm{sup 2} and 0.094*10{sup −3} mmy respectively; moreover, these multilayered system showed a decrease of 80% on mass loss due to the corrosive–erosive process, in relation to multilayered systems with n = 1 and Λ = 1200. HfN/VN multilayers have been designed and deposited on Si (100) and AISI 4140 steel substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the microstructural evolution and electrochemical progress with decreasing bilayer thickness. - Highlights: • Enhancements on surface electrochemical properties and response to surface corrosion attack. • Superficial phenomenon that occurs in corrosion surface of [Hf-Nitrides/V-Nitrides]n • Corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures.

  2. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, J.C., E-mail: Jcesarca@calima.univalle.edu.co [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Zambrano, G. [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingenieria Mecatronica, Universidad Militar Nueva Granada, Bogota (Colombia); Escobar-Alarcon, L.; Camps, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, Mexico, DF 11801 (Mexico)

    2011-10-15

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N{sub 2} gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 deg. C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  3. Reusable titanium nitride plasmonic microstructures for intracellular delivery (Conference Presentation)

    Science.gov (United States)

    Raun, Alexander J.; Saklayen, Nabiha; Zgrabik, Christine M.; Vulis, Daryl I.; Madrid, Marinna; Shen, Weilu; Hu, Evelyn L.; Mazur, Eric

    2017-03-01

    Efficient drug and biomolecular delivery into cells is an important area of biomedical research. Intracellular delivery relies on porating cell membranes to allow exterior molecules to enter the cell efficiently and viably. Various methods, including optoporation, electroporation, and viral techniques, can deliver molecules to cells, but come with significant drawbacks such as low efficiency, low throughput, and low viability. We present a new laser-based delivery method that uses laser pulses to excite plasmonic, Titanium Nitride (TiN) microstructures for cell poration and offers high efficiency, throughput, and viability. TiN is a promising plasmonic material for laser-based delivery methods due to its high levels of hardness and thermal stability. We fabricate these microstructures by sputtering thin films of TiN on patterned sapphire substrates. We then optimize plasmonic enhancement and stability by investigating different fabrication conditions. We deliver dye molecules, siRNA, and microspheres to cells to quantify poration efficiency and viability by using flow cytometry and by imaging the target cells at defined time intervals post laser irradiation. Additionally, we study temperature effects via simulations and experiments, as well as oxidation of the TiN films over time. We also use scanning electron microscopy (SEM) techniques to study microstructure damage and cell adhesion. Overall, TiN presents a promising opportunity for use as a reusable material in future biomedical devices for intracellular biomolecular delivery and regenerative medicine.

  4. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-04-30

    In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  5. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  6. Study of indium nitride and indium oxynitride band gaps

    Directory of Open Access Journals (Sweden)

    M. Sparvoli

    2013-01-01

    Full Text Available This work shows the study of the optical band gap of indium oxynitride (InNO and indium nitride (InN deposited by magnetron reactive sputtering. InNO shows multi-functionality in electrical and photonic applications, transparency in visible range, wide band gap, high resistivity and low leakage current. The deposition processes were performed in a magnetron sputtering system using a four-inches pure In (99.999% target and nitrogen and oxygen as plasma gases. The pressure was kept constant at 1.33 Pa and the RF power (13.56 MHz constant at 250 W. Three-inches diameter silicon wafer with 370 micrometer thickness and resistivity in the range of 10 ohm-centimeter was used as substrate. The thin films were analyzed by UV-Vis-NIR reflectance, photoluminescence (PL and Hall Effect. The band gap was obtained from Tauc analysis of the reflectance spectra and photoluminescence. The band gap was evaluated for both films: for InNO the value was 2.48 eV and for InN, 1.52 eV. The relative quantities obtained from RBS spectra analysis in InNO sample are 48% O, 12% N, 40% In and in InN sample are 8% O, 65% N, 27% In.

  7. Mechanical and electrochemical characterization of vanadium nitride (VN) thin films

    Science.gov (United States)

    Caicedo, J. C.; Zambrano, G.; Aperador, W.; Escobar-Alarcon, L.; Camps, E.

    2011-10-01

    Vanadium nitride (V-N) thin films were grown using a reactive d.c. magnetron sputtering process, from a vanadium target (99.999%) in an Ar/N 2 gas mixture at different deposition bias voltage. Films were deposited onto silicon (1 0 0) and RUS-3 steel substrates at 400 °C. Structural, compositional, mechanical and electrochemical characterizations were performed by X-ray diffraction (XRD), elastic forward analysis (EFA), nanoindentation, electrochemical impedance spectroscopy (EIS), and Tafel polarization curves, respectively. X-ray diffraction patterns show the presence of (1 1 1) and (2 0 0) crystallographic orientations associated to the V-N cubic phase. Nanoindentation measurements revealed that when the bias voltage increases from 0 V to -150 V the hardness and elastic modulus are increased from 11 GPa to 20 GPa and from 187 GPa to 221 GPa, respectively. EIS and Tafel curves showed that the corrosion rate of steel, coated with V-N single layer films deposited without bias voltage, diminishes 90% compared to the steel without this coating. On the other hand, when the V-N coating was deposited at the highest d.c. bias voltage (-150 V), the corrosion rate was greater than in the steel coated with zero-voltage (0 V) V-N films. This last result could be attributed to the formation of porosities produced by the ion bombardment during the deposition process.

  8. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hsi-Wen; Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Chang, Ting-Chang, E-mail: tcchang3708@gmail.com [Department of Physics, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Advanced Optoelectronics Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Ching-En; Tseng, Tseung-Yuen [Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (China); Lin, Chien-Yu [Department of Photonics, National Sun Yat-Sen University, 70 Lien-hai Road, Kaohsiung 80424, Taiwan (China); Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han [Device Department, United Microelectronics Corporation, Tainan Science Park, Tainan 701, Taiwan (China)

    2016-04-25

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  9. Ni ion release, osteoblast-material interactions, and hemocompatibility of hafnium-implanted NiTi alloy.

    Science.gov (United States)

    Zhao, Tingting; Li, Yan; Zhao, Xinqing; Chen, Hong; Zhang, Tao

    2012-04-01

    Hafnium ion implantation was applied to NiTi alloy to suppress Ni ion release and enhance osteoblast-material interactions and hemocompatibility. The auger electron spectroscopy, x-ray photoelectron spectroscopy, and atomic force microscope results showed that a composite TiO(2)/HfO(2) nanofilm with increased surface roughness was formed on the surface of NiTi, and Ni concentration was reduced in the superficial surface layer. Potentiodynamic polarization tests displayed that 4 mA NiTi sample possessed the highest E(br) - E(corr), 470 mV higher than that of untreated NiTi, suggesting a significant improvement on pitting corrosion resistance. Inductively coupled plasma mass spectrometry tests during 60 days immersion demonstrated that Ni ion release rate was remarkably decreased, for example, a reduction of 67% in the first day. The water contact angle increased and surface energy decreased after Hf implantation. Cell culture and methyl-thiazol-tetrazolium indicated that Hf-implanted NiTi expressed enhanced osteoblasts adhesion and proliferation, especially after 7 days culture. Hf implantation decreased fibrinogen adsorption, but had almost no effect on albumin adsorption. Platelets adhesion and activation were suppressed significantly (97% for 4 mA NiTi) and hemolysis rate was decreased by at least 57% after Hf implantation. Modified surface composition and morphology and decreased surface energy should be responsible for the improvement of cytocompatibility and hemocompatibility. Copyright © 2011 Wiley Periodicals, Inc.

  10. Tetra­kis(quinolin-8-olato-κ2 N,O)hafnium(IV) toluene disolvate

    Science.gov (United States)

    Viljoen, J. Augustinus; Visser, Hendrik G.; Roodt, Andreas; Steyn, Maryke

    2009-01-01

    In the title compound, [Hf(C9H6NO)4]·2C7H8, the hafnium metal centre is coordinated by four N,O-donating bidentate quinolin-8-olate ligands arranged to give a square-anti­prismatic coordination polyhedron with a slightly distorted dodeca­hedral geometry. The average Hf—O and Hf—N distances are 2.096 (3) and 2.398 (3) Å, respectively, and the average O—Hf—N bite angle is 70.99 (11)°. The crystal packing is controlled by π–π inter­actions between quinoline ligands of neighbouring mol­ecules and hydrogen-bonding inter­actions. The inter­planar distances vary between 3.138 (1) and 3.208 (2) Å, while the centroid–centroid distances range from 3.576 (1) to 4.074 (1) Å. PMID:21578562

  11. Mechanistic Studies of Hafnium-Pyridyl Amido-Catalyzed 1-Octene Polymerization and Chain Transfer Using Quench-Labeling Methods.

    Science.gov (United States)

    Cueny, Eric S; Johnson, Heather C; Anding, Bernie J; Landis, Clark R

    2017-08-30

    Chromophore quench-labeling applied to 1-octene polymerization as catalyzed by hafnium-pyridyl amido precursors enables quantification of the amount of active catalyst and observation of the molecular weight distribution (MWD) of Hf-bound polymers via UV-GPC analysis. Comparison of the UV-detected MWD with the MWD of the "bulk" (all polymers, from RI-GPC analysis) provides important mechanistic information. The time evolution of the dual-detection GPC data, concentration of active catalyst, and monomer consumption suggests optimal activation conditions for the Hf pre-catalyst in the presence of the activator [Ph3C][B(C6F5)4]. The chromophore quench-labeling agents do not react with the chain-transfer agent ZnEt2 under the reaction conditions. Thus, Hf-bound polymeryls are selectively labeled in the presence of zinc-polymeryls. Quench-labeling studies in the presence of ZnEt2 reveal that ZnEt2 does not influence the rate of propagation at the Hf center, and chain transfer of Hf-bound polymers to ZnEt2 is fast and quasi-irreversible. The quench-label techniques represent a means to study commercial polymerization catalysts that operate with high efficiency at low catalyst concentrations without the need for specialized equipment.

  12. IER-297 CED-2: Final Design for Thermal/Epithermal eXperiments with Jemima Plates with Polyethylene and Hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Percher, C. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zywiec, W. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heinrichs, D. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-11

    This report presents the final design (CED-2) for IER-297, and focuses on 15 critical configurations using highly enriched uranium (HEU) Jemima plates moderated by polyethylene with and without hafnium diluent. The goal of the U.S. Nuclear Criticality Safety Program’s Thermal/Epithermal eXperiments (TEX) is to design and conduct new critical experiments to address high priority nuclear data needs from the nuclear criticality safety and nuclear data communities, with special emphasis on intermediate energy (0.625 eV – 100 keV) assemblies that can be easily modified to include various high priority diluent materials. The TEX (IER 184) CED-1 Report [1], completed in 2012, demonstrated the feasibility of meeting the TEX goals with two existing NCSP fissile assets, plutonium Zero Power Physics Reactor (ZPPR) plates and highly enriched uranium (HEU) Jemima plates. The first set of TEX experiments will focus on using the plutonium ZPPR plates with polyethylene moderator and tantalum diluents.

  13. A Simulation Study on the Feasibility of Radio Enhancement Therapy with Calcium Tungstate and Hafnium Oxide Nanoparticles

    CERN Document Server

    Sherck, Nicholas J

    2016-01-01

    Herein is a simulation study on the radio enhancement potential of calcium tungstate (CaWO4) and hafnium oxide (HfO2) nanoparticles (NPs) relative to gold (Au) NPs. The work utilizes the extensively studied Au NP as the "gold standard" to which the novel materials can be compared. All three materials were investigated in-silico with the software Penetration and Energy Loss of Positrons and Electrons (PENELOPE) developed by Francesc Salvat and distributed in the United States by the Radiation Safety Information Computational Center (RSICC) at Oak Ridge National Laboratory. The aims are: (1) Do CaWO4 and HfO2 NPs function like Au?, and (2) if not, how else might they function to enhance radio therapy? Our investigations have found that HfO2 likely functions as Au, but not as effectively. CaWO4 likely does not function as Au, and we propose that CaWO4 may exhibit cancer killing traits through its intrinsic UV luminescence property.

  14. Thermomechanical and Thermochemical Behavior of a Hafnium-20 Percent Tantalum Alloy. Ph.D. Thesis - North Carolina State Univ., Raleigh

    Science.gov (United States)

    Howell, J. P.

    1971-01-01

    An investigation was conducted to determine the thermomechanical and thermochemical behavior of a high temperature, oxidation resistant, hafnium-20 percent tantalum alloy. The elastic and shear moduli of this alloy were determined in air up to 1000 C and in vacuum up to 2000 C using a mechanical resonance technique. The internal friction of the alloy was measured up to temperatures greater than 1400 C. Room temperature stress-strain behavior of the oxidized and unoxidized alloy was established. The effect of annealing on the elastic and shear moduli of the extruded rod material was investigated. The martensitic-type phase transformation occurring in the alloy was studied using hot stage metallography and electron microscopy. Static oxidation tests were conducted on the alloy at temperatures from 1000 C to 1700 C with weight gain measurements made as a function of time and temperatures. Surface morphology studies were conducted on the oxide coatings formed at the different temperatures using scanning electron microscopy and X-ray diffraction techniques.

  15. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  16. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  17. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  18. Facilities for Development of Modified Nitride-Based Fuel Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Meier, T; Ebbinghaus, B; Choi, J

    2003-10-22

    Facilities to support development of modified nitride-based reactor fuel pellets have been activated and are now in operation at Lawrence Livermore National Laboratory. These facilities provide the controls and monitored laboratory conditions required to produce, evaluate, and verify quality of the nitride-based product required for this fuel application. By preserving the high melting point, high thermal conductivity, and high actinide density properties of nitride fuel while enhancing stoichiometry, density, and grain structure, and by applying inert matrix (ZrN) and neutron absorbing (HfN) additives for improved stability and burn-up characteristics, the requirements for a long-life fuel to support sealed core reactor applications may be met. This paper discusses requirements for producing the modified nitride powders for sintering of fuel pellets, translation of these requirements into facility specifications, and implementation of these specifications as facility capabilities.

  19. Room temperature synthesis of biodiesel using sulfonated graphitic carbon nitride

    Science.gov (United States)

    Sulfonation of graphitic carbon nitride (g-CN) affords a polar and strongly acidic catalyst, Sg-CN, which displays unprecedented reactivity and selectivity in biodiesel synthesis and esterification reactions at room temperature.

  20. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  1. Experimental core electron density of cubic boron nitride

    DEFF Research Database (Denmark)

    Wahlberg, Nanna; Bindzus, Niels; Bjerg, Lasse

    candidate because of its many similarities with diamond: bonding pattern in the extended network structure, hardness, and the quality of the crystallites.3 However, some degree ionic interaction is a part of the bonding in boron nitride, which is not present in diamond. By investigating the core density...... beyond multipolar modeling of the valence density. As was recently shown in a benchmark study of diamond by Bindzus et al.1 The next step is to investigate more complicated chemical bonding motives, to determine the effect of bonding on the core density. Cubic boron nitride2 lends itself as a perfect...... in boron nitride we may obtain a deeper understanding of the effect of bonding on the total density. We report here a thorough investigation of the charge density of cubic boron nitride with a detailed modelling of the inner atom charge density. By combining high resolution powder X-ray diffraction data...

  2. Physics of wurtzite nitrides and oxides passport to devices

    CERN Document Server

    Gil, Bernard

    2014-01-01

    This book gives a survey of the current state of the art of a special class of nitrides semiconductors, Wurtzite Nitride and Oxide Semiconductors. It includes properties, growth and applications. Research in the area of nitrides semiconductors is still booming although some basic materials sciences issues were solved already about 20 years ago. With the advent of modern technologies and the successful growth of nitride substrates, these materials currently experience a second birth. Advanced new applications like light-emitters, including UV operating LEDs, normally on and normally off high frequency operating transistors are expected. With progress in clean room technology, advanced photonic and quantum optic applications are envisioned in a close future. This area of research is fascinating for researchers and students in materials science, electrical engineering, chemistry, electronics, physics and biophysics. This book aims to be the ad-hoc instrument to this active field of research.

  3. Preparation of boron nitride fiber by organic precursor method

    Directory of Open Access Journals (Sweden)

    Yingying Zhou

    Full Text Available In this paper, boron nitride polymer precursor was made by boric acid, melamine, twelve sodium alkyl sulfate as raw materials and pure water as medium which is heated to 70 °C. Boron nitride precursor polymer was soluble in formic acid solution. The boron nitride precursor can be electrostatically spun at the voltage in 23 kV and the distance between the positive and negative poles is 15 cm. The formed fiber is very uniform. The properties of the precursors were analyzed through electron microscope, infrared spectrum, X-ray and ultraviolet spectrum. The aim of the job is to got the precursor of BN and spun it. Keywords: Melamine, Boric acid, Boron nitride precursor, Electrostatic spinning

  4. Ellipsometric study of silicon nitride on gallium arsenide

    Science.gov (United States)

    Alterovitz, S. A.; Bu-Abbud, G. H.; Woollam, J. A.; Liu, D.; Chung, Y.; Langer, D.

    1982-01-01

    A method for optimizing the sensitivity of ellipsometric measurements for thin dielectric films on semiconductors is described in simple physical terms. The technique is demonstrated for the case of sputtered silicon nitride films on gallium arsenide.

  5. Hydroxyapatite coating on silicon nitride surfaces using the biomimetic method

    Directory of Open Access Journals (Sweden)

    Cecilia Chaves Guedes e Silva

    2008-03-01

    Full Text Available Silicon nitride based ceramics are promising candidates for biomedical applications due to their chemical and dimensional stability associated to suitable mechanical strength and relatively high fracture toughness. However, the bioinert characteristics of these ceramics limit their application to situations where the formation of chemical bonds between the material and the tissue are not essential. A way to broaden the application field of these ceramics in medicine is promoting their bioactivity by means of a hydroxyapatite coating. Therefore, in this paper, samples of silicon nitride were coated with apatite using the biomimetic method. The treated silicon nitride surface was characterized by diffuse reflectance infrared Fourier transformed, X ray diffraction and scanning electron microscopy. The results showed that a layer of hydroxyapatite could be deposited by this method on silicon nitride samples surface.

  6. Interface Structure and Atomic Bonding Characteristics in Silicon Nitride Ceramics

    National Research Council Canada - National Science Library

    A. Ziegler; J. C. Idrobo; M. K. Cinibulk; C. Kisielowski; N. D. Browning; R. O. Ritchie

    2004-01-01

    Direct atomic resolution images have been obtained that illustrate how a range of rare-earth atoms bond to the interface between the intergranular phase and the matrix grains in an advanced silicon nitride ceramic...

  7. Origin of band gaps in graphene on hexagonal boron nitride

    National Research Council Canada - National Science Library

    Jung, Jeil; DaSilva, Ashley M; MacDonald, Allan H; Adam, Shaffique

    2015-01-01

    .... Here we address the intriguing energy gaps that are sometimes observed when a graphene sheet is placed on a hexagonal boron nitride substrate, demonstrating that they are produced by an interesting...

  8. Thermal Effect of Ceramic Nanofiller Aluminium Nitride on Polyethylene Properties

    Directory of Open Access Journals (Sweden)

    Omer Bin Sohail

    2012-01-01

    Full Text Available Ethylene polymerization was done to form polyethylene nano-composite with nanoaluminum nitride using zirconocene catalysts. Results show that the catalytic activity is maximum at a filler loading of 15 mg nanoaluminum nitride. Differential scanning calorimeter (DSC and X-ray diffraction (XRD results show that percentage crystallinity was also marginally higher at this amount of filler. Thermal behavior of polyethylene nanocomposites (0, 15, 30, and 45 mg was studied by DSC and thermal gravimetric analyzer (TGA. Morphology of the component with 15 mg aluminium nitride is more fibrous as compared to 0 mg aluminium nitride and higher filler loading as shown by SEM images. In order to understand combustibility behavior, tests were performed on microcalorimeter. Its results showed decrease in combustibility in polyethylene nanocomposites as the filler loading increases.

  9. Defect reduction in seeded aluminum nitride crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  10. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  11. Infrared Dielectric Properties of Low-stress Silicon Nitride

    Science.gov (United States)

    Cataldo, Giuseppe; Beall, James A.; Cho, Hsiao-Mei; McAndrew, Brendan; Niemack, Michael D.; Wollack, Edward J.

    2012-01-01

    Silicon nitride thin films play an important role in the realization of sensors, filters, and high-performance circuits. Estimates of the dielectric function in the far- and mid-IR regime are derived from the observed transmittance spectra for a commonly employed low-stress silicon nitride formulation. The experimental, modeling, and numerical methods used to extract the dielectric parameters with an accuracy of approximately 4% are presented.

  12. Active metal brazing of various metals on nitride ceramics

    OpenAIRE

    Pönicke, A.; Rost, A.; Schilm, J.; Michaelis, A.

    2013-01-01

    The development of new materials for thermoelectric generators (TEG) with higher operating temperatures requires improved metallised substrates. Commonly used alumina substrates with copper metallisation show low thermal conductivity and low stability against thermal cycles. Aluminum nitride (AlN) and silicon nitride (Si3N4) are very attractive alternative substrate materials due to their high thermal conductivity, electrical resistivity and mechanical strength. However, it is important to re...

  13. Rebar graphene from functionalized boron nitride nanotubes.

    Science.gov (United States)

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties.

  14. Apparatus for silicon nitride precursor solids recovery

    Science.gov (United States)

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1995-04-04

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  15. Method for silicon nitride precursor solids recovery

    Science.gov (United States)

    Crosbie, Gary M.; Predmesky, Ronald L.; Nicholson, John M.

    1992-12-15

    Method and apparatus are provided for collecting reaction product solids entrained in a gaseous outflow from a reaction situs, wherein the gaseous outflow includes a condensable vapor. A condensate is formed of the condensable vapor on static mixer surfaces within a static mixer heat exchanger. The entrained reaction product solids are captured in the condensate which can be collected for further processing, such as return to the reaction situs. In production of silicon imide, optionally integrated into a production process for making silicon nitride caramic, wherein reactant feed gas comprising silicon halide and substantially inert carrier gas is reacted with liquid ammonia in a reaction vessel, silicon imide reaction product solids entrained in a gaseous outflow comprising residual carrier gas and vaporized ammonia can be captured by forming a condensate of the ammonia vapor on static mixer surfaces of a static mixer heat exchanger.

  16. Aluminum nitride for heatspreading in RF IC's

    Science.gov (United States)

    La Spina, L.; Iborra, E.; Schellevis, H.; Clement, M.; Olivares, J.; Nanver, L. K.

    2008-09-01

    To reduce the electrothermal instabilities in silicon-on-glass high-frequency bipolar devices, the integration of thin-film aluminum nitride as a heatspreader is studied. The AlN is deposited by reactive sputtering and this material is shown to fulfill all the requirements for actively draining heat from RF IC's, i.e., it has good process compatibility, sufficiently high thermal conductivity and good electrical isolation also at high frequencies. The residual stress and the piezoelectric character of the material, both of which can be detrimental for the present application, are minimized by a suitable choice of deposition conditions including variable biasing of the substrate in a multistep deposition cycle. Films of AlN as thick as 4 μm are successfully integrated in RF silicon-on-glass bipolar junction transistors that display a reduction of more than 70% in the value of the thermal resistance.

  17. Improved silicon nitride for advanced heat engines

    Science.gov (United States)

    Yeh, Harry C.; Fang, Ho T.

    1991-01-01

    The results of a four year program to improve the strength and reliability of injection-molded silicon nitride are summarized. Statistically designed processing experiments were performed to identify and optimize critical processing parameters and compositions. Process improvements were monitored by strength testing at room and elevated temperatures, and microstructural characterization by optical, scanning electron microscopes, and scanning transmission electron microscope. Processing modifications resulted in a 20 percent strength and 72 percent Weibull slope improvement of the baseline material. Additional sintering aids screening and optimization experiments succeeded in developing a new composition (GN-10) capable of 581.2 MPa at 1399 C. A SiC whisker toughened composite using this material as a matrix achieved a room temperature toughness of 6.9 MPa m(exp .5) by the Chevron notched bar technique. Exploratory experiments were conducted on injection molding of turbocharger rotors.

  18. Optical processes in dilute nitrides Semiconductors; Alloys

    CERN Document Server

    Potter, R J

    2003-01-01

    This thesis is concerned with the narrow bandgap semiconductor alloys known as dilute nitrides. The initial part of this project was concerned with characterisation of chemical beam epitaxy (CBE) grown samples so that growth techniques could be refined. Early samples show evidence of structural/compositional disorder resulting from the large miscibility gap induced by nitrogen. Non-equilibrium growth was employed to overcome this, eventually resulting in improved material. In the second part of this project, steady-state and time-resolved photoluminescence, along with photomodulated reflectance were employed to investigate the optical properties of molecular beam epitaxy (MBE) grown GalnNAs, GaNAs and InGaAs quantum wells (QWs). Low temperature results show evidence of carrier localization, which was interpreted in terms of structural/compositional fluctuations induced by the nitrogen incorporation. Poor photoluminescence efficiency and rapid decay of emission kinetics indicate the presence of strong non-radi...

  19. Boron nitride: A new photonic material

    Energy Technology Data Exchange (ETDEWEB)

    Chubarov, M., E-mail: mihcu@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Pedersen, H., E-mail: henke@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Högberg, H., E-mail: hanho@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Filippov, S., E-mail: stafi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); O' Connel, J., E-mail: jacques.oconnell@gmail.com [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A., E-mail: anne.henry@liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-04-15

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp{sup 2}-BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  20. A boron nitride nanotube peapod thermal rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  1. Field emission behavior of boron nitride nanotubes

    Science.gov (United States)

    Yun, Ki Nam; Lee, Sang Heon; Han, Jun Soo; Song, Yoon-Ho; Lee, Cheol Jin

    2018-02-01

    The field emission properties of boron nitride nanotube (BNNT) field emitters according to vacuum pressure were demonstrated. During the short-term emission operation, the field emission behaviors were almost similar, regardless of the vacuum pressure, even though the turn-on electric field of the BNNT field emitter was slightly increased as the vacuum pressure increased. On the other hand, during the long-term emission operation, both the degradation and fluctuations of the emission current of the BNNT field emitters were dramatically increased as the vacuum pressure increased. The degradation of field emission properties of the BNNT emitters according to vacuum pressure is mainly attributed to the ion bombardment effect, rather than the oxidation effect. The field emission behavior under Ar ambient also strongly demonstrates that the degradation and the fluctuation of the emission current are largely dependent on the ion bombardment effect.

  2. Cathodoluminescence spectra of gallium nitride nanorods.

    Science.gov (United States)

    Tsai, Chia-Chang; Li, Guan-Hua; Lin, Yuan-Ting; Chang, Ching-Wen; Wadekar, Paritosh; Chen, Quark Yung-Sung; Rigutti, Lorenzo; Tchernycheva, Maria; Julien, François Henri; Tu, Li-Wei

    2011-12-14

    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.

  3. Multifractal characteristics of titanium nitride thin films

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2015-09-01

    Full Text Available The study presents a multi-scale microstructural characterization of three-dimensional (3-D micro-textured surface of titanium nitride (TiN thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α. Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.

  4. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  5. Gap discrete breathers in strained boron nitride

    Science.gov (United States)

    Barani, Elham; Korznikova, Elena A.; Chetverikov, Alexander P.; Zhou, Kun; Dmitriev, Sergey V.

    2017-11-01

    Linear and nonlinear dynamics of hexagonal boron nitride (h-BN) lattice is studied by means of molecular dynamics simulations with the use of the Tersoff interatomic potentials. It is found that sufficiently large homogeneous elastic strain along zigzag direction opens a wide gap in the phonon spectrum. Extended vibrational mode with boron and nitrogen sublattices vibrating in-plane as a whole in strained h-BN has frequency within the phonon gap. This fact suggests that a nonlinear spatially localized vibrational mode with frequencies in the phonon gap, called discrete breather (also often termed as intrinsic localized mode), can be excited. Properties of the gap discrete breathers in strained h-BN are contrasted with that for analogous vibrational mode found earlier in strained graphene. It is found that h-BN modeled with the Tersoff potentials does not support transverse discrete breathers.

  6. Plasmonic properties of refractory titanium nitride

    Science.gov (United States)

    Catellani, Alessandra; Calzolari, Arrigo

    2017-03-01

    The development of plasmonic and metamaterial devices requires the research of high-performance materials alternative to standard noble metals. Renewed as a refractory stable compound for durable coatings, titanium nitride has recently been proposed as an efficient plasmonic material. Here, by using a first-principles approach, we investigate the plasmon dispersion relations of TiN bulk and we predict the effect of pressure on its optoelectronic properties. Our results explain the main features of TiN in the visible range and prove a universal scaling law which relates its mechanical and plasmonic properties as a function of pressure. Finally, we address the formation and stability of surface-plasmon polaritons at different TiN-dielectric interfaces proposed by recent experiments. The unusual combination of plasmonics and refractory features paves the way for the realization of plasmonic devices able to work at conditions not sustainable by the usual noble metals.

  7. Thin Film Formation of Gallium Nitride Using Plasma-Sputter Deposition Technique

    Directory of Open Access Journals (Sweden)

    R. Flauta

    2003-06-01

    Full Text Available The formation of gallium nitride (GaN thin film using plasma-sputter deposition technique has beenconfirmed. The GaN film deposited on a glass substrate at an optimum plasma condition has shown x-raydiffraction (XRD peaks at angles corresponding to that of (002 and (101 reflections of GaN. The remainingmaterial on the sputtering target exhibited XRD reflections corresponding to that of bulk GaN powder. Toimprove the system’s base pressure, a new UHV compatible system is being developed to minimize theimpurities in residual gases during deposition. The sputtering target configuration was altered to allow themonitoring of target temperature using a molybdenum (Mo holder, which is more stable against Gaamalgam formation than stainless steel.

  8. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  9. Nanotribological response of a plasma nitrided bio-steel.

    Science.gov (United States)

    Samanta, Aniruddha; Chakraborty, Himel; Bhattacharya, Manjima; Ghosh, Jiten; Sreemany, Monjoy; Bysakh, Sandip; Rane, Ramkrishna; Joseph, Alphonsa; Jhala, Ghanshyam; Mukherjee, Subroto; Das, Mitun; Mukhopadhyay, Anoop K

    2017-01-01

    AISI 316L is a well known biocompatible, austenitic stainless steel (SS). It is thus a bio-steel. Considering its importance as a bio-prosthesis material here we report the plasma nitriding of AISI 316L (SS) followed by its microstructural and nanotribological characterization. Plasma nitriding of the SS samples was carried out in a plasma reactor with a hot wall vacuum chamber. For ease of comparison these plasma nitrided samples were termed as SSPN. The experimental results confirmed the formations of an embedded nitrided metal layer zone (ENMLZ) and an interface zone (IZ) between the ENMLZ and the unnitrided bulk metallic layer zone (BMLZ) in the SSPN sample. These ENMLZ and IZ in the SSPN sample were richer in iron nitride (FeN) chromium nitride (CrN) along with the austenite phase. The results from nanoindentation, microscratch, nanoscratch and sliding wear studies confirmed that the static contact deformation resistance, the microwear, nanowear and sliding wear resistance of the SSPN samples were much better than those of the SS samples. These results were explained in terms of structure-property correlations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  11. Fabrication of Microalloy Nitrided Layer on Low Carbon Steel by Nitriding Combined with Surface Nano-Alloying Pretreatment

    OpenAIRE

    Jian Sun; Quantong Yao

    2016-01-01

    Surface mechanical attrition treatment (SMAT) is an effective method to accelerate the nitriding process of metallic materials. In this work, a novel technique named surface nano-alloying (SNA) was developed on the basis of surface mechanical attrition treatment, which was employed as a pretreatment for the nitriding of low carbon steel materials. The microstructure and surface properties of treated samples were investigated by SEM, XRD, TEM and the Vickers hardness test. Experimental results...

  12. Fabrication and Physical Properties of Titanium Nitride/Hydroxyapatite Composites on Polyether Ether Ketone by RF Magnetron Sputtering Technique

    Science.gov (United States)

    Nupangtha, W.; Boonyawan, D.

    2017-09-01

    Titanium nitride (TiN) coatings have been used very successfully in a variety of applications because of their excellent properties, such as the high hardness meaning good wear resistance and also used for covering medical implants. Hydroxyapatite is a bioactive ceramic that contributes to the restoration of bone tissue, which together with titanium nitride may contribute to obtaining a superior composite in terms of mechanical and bone tissue interaction matters. This paper aims to explain how to optimize deposition conditions for films synthesis on PEEK by varying sputtering parameters such as nitrogen flow rate and direction, deposition time, d-s (target-to-substrate distance) and 13.56 MHz RF power. The plasma conditions used to deposit films were monitored by the optical emission spectroscopy (OES). Titanium nitride/Hydroxyapatite composite films were performed by gas mixture with nitrogen and argon ratio of 1:3 and target-to-substrate distance at 8 cm. The gold colour, as-deposited film was found on PEEK with high hardness and higher surface energy than uncoated PEEK. X-ray diffraction characterization study was carried to study the crystal structural properties of these composites.

  13. Generation and Characteristics of IV-VI transition Metal Nitride and Carbide Nanoparticles using a Reactive Mesoporous Carbon Nitride

    KAUST Repository

    Alhajri, Nawal Saad

    2016-02-22

    Interstitial nitrides and carbides of early transition metals in groups IV–VI exhibit platinum-like electronic structures, which make them promising candidates to replace noble metals in various catalytic reactions. Herein, we present the preparation and characterization of nano-sized transition metal nitries and carbides of groups IV–VI (Ti, V, Nb, Ta, Cr, Mo, and W) using mesoporous graphitic carbon nitride (mpg-C3N4), which not only provides confined spaces for restricting primary particle size but also acts as a chemical source of nitrogen and carbon. We studied the reactivity of the metals with the template under N2 flow at 1023 K while keeping the weight ratio of metal to template constant at unity. The produced nanoparticles were characterized by powder X-ray diffraction, CHN elemental analysis, nitrogen sorption, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results show that Ti, V, Nb, Ta, and Cr form nitride phases with face centered cubic structure, whereas Mo and W forme carbides with hexagonal structures. The tendency to form nitride or carbide obeys the free formation energy of the transition metal nitrides and carbides. This method offers the potential to prepare the desired size, shape and phase of transition metal nitrides and carbides that are suitable for a specific reaction, which is the chief objective of materials chemistry.

  14. Molecular structures of tris(1-tert-butyl-2-mercaptoimidazolyl)hydroborate complexes of titanium, zirconium and hafnium.

    Science.gov (United States)

    Rong, Yi; Sambade, David; Parkin, Gerard

    2016-11-01

    Cyclopentadienyl and tris(pyrazolyl)hydroborate have found much use as supporting ligands in the chemistry of titanium, zirconium and hafnium, especially with respect to applications involving olefin polymerization catalysis. In contrast, closely related tris(1-alkyl-2-mercaptoimidazolyl)hydroborate, [Tm(R)], ligands have so far found little application to the chemistry of these elements, despite the fact that such ligands are currently used extensively in coordination chemistry. In view of the fact that a substituent in the 2-position exerts a direct influence on the steric environment of the metal center, we report here the application of the sterically demanding tris(1-tert-butyl-2-mercaptoimidazolyl)hydroborate [Tm(t-Bu)] ligand to these metals. Dichlorido(η(5)-cyclopentadienyl)[tris(1-tert-butyl-2-sulfanylidene-2,3-dihydro-1H-imidazol-3-yl)borato-κ(3)S,S',H]zirconium(IV) benzene hemisolvate, [Zr(C21H34BN6S3)(C5H5)Cl2]·0.5C6H6, (I), dichlorido(η(5)-cyclopentadienyl)[tris(1-tert-butyl-2-sulfanylidene-2,3-dihydro-1H-imidazol-3-yl)borato-κ(3)S,S',H]titanium(IV) benzene hemisolvate, [Ti(C21H34BN6S3)(C5H5)Cl2]·0.5C6H6, (II), [bis(1-tert-butyl-2-sulfanylidene-2,3-dihydro-1H-imidazol-3-yl)borato-κ(3)S,S',H]dichlorido(η(5)-cyclopentadienyl)zirconium(IV), [Zr(C14H24BN4S2)(C5H5)Cl2], (III), (1-tert-butyl-2,3-dihydro-1H-imidazole-2-thione-κS)(1-tert-butyl-2-sulfanylidene-1H-imidazol-3-ido-κ(2)N(3),S)dichlorido(η(5)-cyclopentadienyl)zirconium(IV) benzene monosolvate, [Zr(C7H11N2S)(C7H12N2S)(C5H5)Cl2]·C6H6, (IV), and tribenzyl[tris(1-tert-butyl-2-sulfanylidene-2,3-dihydro-1H-imidazol-3-yl)borato-κ(3)S,S',S'']hafnium(IV) benzene tetrasolvate, [Hf(C7H7)3(C21H34BN6S3)]·4C6H6, (V), have been structurally characterized by X-ray diffraction. The [Tm(t-Bu)] ligand coordinates to Ti and Zr in Cp[κ(3)S2,H-Tm(t-Bu)]MCl2 [M = Zr, (I), and Ti, (II)] in a κ(3)S2,H mode, while the benzyl compounds [Tm(t-Bu)]M(CH2Ph)3 [M = Zr and Hf, (V)] exhibit κ(3)S3 coordination.

  15. Oxidation Characterization of Hafnium-Based Ceramics Fabricated by Hot Pressing and Electric Field-Assisted Sintering

    Science.gov (United States)

    Gasch, Matt; Johnson, Sylvia; Marschall, Jochen

    2010-01-01

    Ceramic borides, such as hafnium diboride (HfB2) and zirconium diboride (ZrB2), are members of a family of materials with extremely high melting temperatures referred to as Ultra High Temperature Ceramics (UHTCs). UHTCs constitute a class of promising materials for use in high temperature applications, such as sharp leading edges on future-generation hypersonic flight vehicles, because of their high melting points. The controlled development of microstructure has become important to the processing of UHTCs, with the prospect of improving their mechanical and thermal properties. The improved oxidation resistance of HfB2 has also become important if this material is to be successfully used at temperatures above 2000 C. Furthermore, the use of UHTCs on the leading edges of vehicles traveling at hypersonic speeds will mean exposure to a mixed oxidation environment comprised of both molecular and atomic oxygen. The current study has investigated the high-temperature oxidation behavior of HfB2-based materials in a pure O2 environment, as well as in environments containing different levels of dissociated oxygen (O/O2). Materials were processed by two techniques: conventional hot pressing (HP) and electric field-assisted sintering (FAS). Their oxidation behavior was evaluated in both a tube furnace at 1250 C for 3 hours and in a simulated re-entry environment in the Advanced Heating Facility (AHF) arcjet at NASA Ames Research Center, during a 10-minute exposure to a cold wall heat flux of 250W/sq cm and stagnation pressure of 0.1-0.2 atm. The microstructure of the different materials was characterized before and after oxidation using scanning electron microscopy (SEM).

  16. Sources and input mechanisms of hafnium and neodymium in surface waters of the Atlantic sector of the Southern Ocean

    Science.gov (United States)

    Stichel, Torben; Frank, Martin; Rickli, Jörg; Hathorne, Ed C.; Haley, Brian A.; Jeandel, Catherine; Pradoux, Catherine

    2012-10-01

    Radiogenic isotopes of hafnium (Hf) and neodymium (Nd) are powerful tracers for water mass transport and trace metal cycling in the present and past oceans. However, due to the scarcity of available data the processes governing their distribution are not well understood. Here we present the first combined dissolved Hf and Nd isotope and concentration data from surface waters of the Atlantic sector of the Southern Ocean. The samples were collected along the Zero Meridian, in the Weddell Sea and in the Drake Passage during RV Polarstern expeditions ANTXXIV/3 and ANTXXIII/3 in the frame of the International Polar Year (IPY) and the GEOTRACES program. The general distribution of Hf and Nd concentrations in the region is similar. However, at the northernmost station located 200 km southwest of Cape Town a pronounced increase of the Nd concentration is observed, whereas the Hf concentration is minimal, suggesting much less Hf than Nd is released by the weathering of the South African Archean cratonic rocks. From the southern part of the Subtropical Front (STF) to the Polar Front (PF) Hf and Nd show the lowest concentrations (relatively homogeneous (ɛNd ˜ -8 to -8.5) towards the STF, within the Antarctic Circumpolar Current, in the Weddell Gyre, and the Drake Passage. The Hf isotope compositions in the entire study area only show a small range between ɛHf = + 6.1 and +2.8 support Hf to be more readily released from young mafic rocks compared to old continental ones. The Nd isotope composition ranges from ɛNd = -18.9 to -4.0 showing Nd isotopes to be a sensitive tracer for the provenance of weathering inputs into surface waters of the Southern Ocean.

  17. Titanium nitride as a refractory plasmonic material for high temperature applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Li, Wen-Wei; Boltasseva, Alexandra

    2014-01-01

    The use of titanium nitride as a plasmonic material for high temperature applications such as solar/thermophotovoltaics is studied numerically and experimentally. Performance of titanium nitride is compared with widely used materials in each field. © 2014 OSA....

  18. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Marx, Philippe [AMF Company, Route de Quincy, 18120 Lury-sur-Arnon (France); Gordin, Doina-Margareta; Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR, 20 Avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. - Highlights: • Gas nitriding process of NiTi is competent to promote cell spreading. • Surface nitriding of NiTi is able to stimulate focal adhesion formation and cell proliferation. • Similar expression pattern of vWf and eNOS was exhibited by bare and nitrided NiTi. • Gas nitriding treatment of NiTi shows promise for better in vivo endothelialization.

  19. Imitators of plutonium and americium in a mixed uranium- plutonium nitride fuel

    Science.gov (United States)

    Nikitin, S. N.; Shornikov, D. P.; Tarasov, B. A.; Baranov, V. G.; Burlakova, M. A.

    2016-04-01

    Uranium nitride and mix uranium nitride (U-Pu)N is most popular nuclear fuel for Russian Fast Breeder Reactor. The works in hot cells associated with the radiation exposure of personnel and methodological difficulties. To know the main physical-chemical properties of uranium-plutonium nitride it necessary research to hot cells. In this paper, based on an assessment of physicochemical and thermodynamic properties of selected simulators Pu and Am. Analogues of Pu is are Ce and Y, and analogues Am - Dy. The technique of obtaining a model nitride fuel based on lanthanides nitrides and UN. Hydrogenation-dehydrogenation- nitration method of derived powders nitrides uranium, cerium, yttrium and dysprosium, held their mixing, pressing and sintering, the samples obtained model nitride fuel with plutonium and americium imitation. According to the results of structural studies have shown that all the samples are solid solution nitrides rare earth (REE) elements in UN.

  20. High field electron transport in indium gallium nitride and indium aluminium nitride

    Science.gov (United States)

    Masyukov, N. A.; Dmitriev, A. V.

    2017-08-01

    In this paper, we study theoretically the hot electron transport in two nitride semiconductor solid solutions, InxGa1-xN and InxAl1-xN, in the electric fields up to 30 kV/cm. We calculate the electron drift velocity field dependence at 77 and 300 K for the bulk samples with the electron concentration of 1 × 1018 and 1 × 1019 cm-3 and alloy composition x = 0, 0.25, 0.5, 0.75, and 1.

  1. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    Science.gov (United States)

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  2. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration.......An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  3. Technical assistance for development of thermally conductive nitride filler for epoxy molding compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Song, Kee Chan; Jung, In Ha

    2005-07-15

    Technical assistance was carried out to develop nitride filler for thermally conductive epoxy molding compounds. Carbothermal reduction method was used to fabricate silicon nitride powder from mixtures of silica and graphite powders. Microstructure and crystal structure were observed by using scanning electron microscopy and x-ray diffraction technique. Thermal properties of epoxy molding compounds containing silicon nitride were measured by using laser flash method. Fabrication process of silicon nitride nanowire was developed and was applied to a patent.

  4. Nitride precipitation during high temperature corrosion of ductile cast irons in synthetic exhaust gases

    Science.gov (United States)

    Tholence, F.; Norell, M.

    2005-02-01

    Internal nitrides form in two ductile cast irons (SiMo and Ni-Resist) intended for exhaust systems in vehicles. Samples oxidised at 650 1050 °C for 50 h in modified synthetic exhaust gases were analysed by using AES and FEG-SEM. No nitrides formed in absence of NOx. In dry petrol gas coarse nitrides (Ni-Resist in both dry and normal petrol whereas no nitrides were observed in Ni-Resist exposed to diesel gases.

  5. A fast response hafnium selective polymeric membrane electrode based on N,N'-bis(alpha-methyl-salicylidene)-dipropylenetriamine as a neutral carrier.

    Science.gov (United States)

    Rezaei, B; Meghdadi, S; Zarandi, R Fazel

    2008-08-30

    In this study a new hafnium selective sensor was fabricated from polyvinylchloride (PVC) matrix membrane containing neutral carrier N,N'-bis(alpha-methyl-salicylidene)-dipropylenetriamine (Mesaldpt) as a new ionophore, sodium tetraphenyl borate (NaTPB) as anionic discriminator and dioctyl phthalate (DOP) as plasticizing solvent mediator in tetrahydrofuran solvent. The electrode exhibits Nernstian response for Hf(4+) (Hafnium(IV)) over a wide concentration range (2.0 x 10(-7) to 1.0 x 10(-1)M) with the determination coefficient of 0.9966 and slope of 15.1+/-0.1 mVdecades(-1). The limit of detection is 1.9 x 10(-7)M. The electrode has a fast response time of 18s and a working pH range of 4-8. The proposed membrane shows excellent discriminating ability towards Hf(4+) ion with regard to several alkali, alkaline earth transition and heavy metal ions. It can be used over a period of 1.5 months with good reproducibility. It is successfully applied for direct determination of Hf(4+) in solutions by standard addition method for real sample analysis.

  6. III-Nitride Vertical-Cavity Surface-Emitting Lasers

    Science.gov (United States)

    Leonard, John T.

    Vertical-cavity surface-emitting lasers (VCSELs) have a long history of development in GaAs-based and InP-based systems, however III-nitride VCSELs research is still in its infancy. Yet, over the past several years we have made dramatic improvements in the lasing characteristics of these highly complex devices. Specifically, we have reduced the threshold current density from ˜100 kA/cm2 to ˜3 kA/cm2, while simultaneously increasing the output power from ˜10 muW to ˜550 muW. These developments have primarily come about by focusing on the aperture design and intracavity contact design for flip-chip dual dielectric DBR III-nitride VCSELs. We have carried out a number of studies developing an Al ion implanted aperture (IIA) and photoelectrochemically etched aperture (PECA), while simultaneously improving the quality of tin-doped indium oxide (ITO) intracavity contacts, and demonstrating the first III-nitride VCSEL with an n-GaN tunnel junction intracavity contact. Beyond these most notable research fronts, we have analyzed numerous other parameters, including epitaxial growth, flip-chip bonding, substrate removal, and more, bringing further improvement to III-nitride VCSEL performance and yield. This thesis aims to give a comprehensive discussion of the relevant underlying concepts for nonpolar VCSELs, while detailing our specific experimental advances. In Section 1, we give an overview of the applications of VCSELs generally, before describing some of the potential applications for III-nitride VCSELs. This is followed by a summary of the different material systems used to fabricate VCSELs, before going into detail on the basic design principles for developing III-nitride VCSELs. In Section 2, we outline the basic process and geometry for fabricating flip-chip nonpolar VCSELs with different aperture and intracavity contact designs. Finally, in Section 3 and 4, we delve into the experimental results achieved in the last several years, beginning with a discussion on

  7. Surface modification of AISI 304 austenitic stainless steel by plasma nitriding

    Science.gov (United States)

    Liang, Wang

    2003-04-01

    Plasma nitriding of austenitic stainless steel samples has been carried out using pulse dc glow discharge plasma of NH 3 gas at substrate temperature ranging from 350 to 520 °C. A nitriding time of only 4 h has been found to produce a compact surface nitride layer composed of γN' phase with a thickness of around 7-12 μm as processing temperature remained between 420 and 450 °C. The thickness of γN phase was found to be very thin only about 2 μm after plasma nitriding at temperature below 400 °C. Microhardness measurements showed significant increase in the hardness from 240 HV (for untreated samples) up to 1700 HV (for nitrided samples at temperature of 460 °C). For nitriding at higher temperature, i.e. above 460 °C, the chromium nitrides precipitated in the nitrided layer and caused austenite phase transform into ferrite phase or iron nitrides ( γ' or ɛ). The consequent result of chromium nitride precipitation is the reduction of corrosion resistance of nitrided layer. Compressive residual stresses existed in the nitrided layer due to nitrogen diffusion into austenitic stainless steel.

  8. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  9. Effective Duration of Gas Nitriding Process on AISI 316L for the Formation of a Desired Thickness of Surface Nitrided Layer

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassan R. S.

    2014-07-01

    Full Text Available High temperature gas nitriding performed on AISI 316L at the temperature of 1200°C. The microstructure of treated AISI 316L samples were observed to identify the formation of the microstructure of nitrided surface layer. The grain size of austenite tends to be enlarged when the nitriding time increases, but the austenite single phase structure is maintained even after the long-time solution nitriding. Using microhardness testing, the hardness values drop to the center of the samples. The increase in surface hardness is due to the high nitrogen concentration at or near the surface. At 245HV, the graph of the effective duration of nitriding process was plotted to achieve the maximum depth of nitrogen diffuse under the surface. Using Sigma Plot software best fit lines of the experimental result found and plotted to find out effective duration of nitriding equation as Y=1.9491(1-0.7947x, where Y is the thickness of nitrided layer below the surface and X is duration of nitriding process. Based on this equation, the duration of gas nitriding process can be estimated to produce desired thickness of nitrided layer.

  10. Functional carbon nitride materials — design strategies for electrochemical devices

    Science.gov (United States)

    Kessler, Fabian K.; Zheng, Yun; Schwarz, Dana; Merschjann, Christoph; Schnick, Wolfgang; Wang, Xinchen; Bojdys, Michael J.

    2017-06-01

    In the past decade, research in the field of artificial photosynthesis has shifted from simple, inorganic semiconductors to more abundant, polymeric materials. For example, polymeric carbon nitrides have emerged as promising materials for metal-free semiconductors and metal-free photocatalysts. Polymeric carbon nitride (melon) and related carbon nitride materials are desirable alternatives to industrially used catalysts because they are easily synthesized from abundant and inexpensive starting materials. Furthermore, these materials are chemically benign because they do not contain heavy metal ions, thereby facilitating handling and disposal. In this Review, we discuss the building blocks of carbon nitride materials and examine how strategies in synthesis, templating and post-processing translate from the molecular level to macroscopic properties, such as optical and electronic bandgap. Applications of carbon nitride materials in bulk heterojunctions, laser-patterned memory devices and energy storage devices indicate that photocatalytic overall water splitting on an industrial scale may be realized in the near future and reveal a new avenue of 'post-silicon electronics'.

  11. Scratch-resistant transparent boron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Dekempeneer, E.H.A.; Kuypers, S.; Vercammen, K.; Meneve, J.; Smeets, J. [Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol (Belgium); Gibson, P.N.; Gissler, W. [Joint Research Centre of the Commission of the European Communities, Institute for Advanced Materials, Ispra (Vatican City State, Holy See) (Italy)

    1998-03-01

    Transparent boron nitride (BN) coatings were deposited on glass and Si substrates in a conventional capacitively coupled RF PACVD system starting from diborane (diluted in helium) and nitrogen. By varying the plasma conditions (bias voltage, ion current density), coatings were prepared with hardness values ranging from 2 to 12 GPa (measured with a nano-indenter). Infrared absorption measurements indicated that the BN was of the hexagonal type. A combination of glancing-angle X-ray diffraction measurements and simulations shows that the coatings consist of hexagonal-type BN crystallites with different degrees of disorder (nanocrystalline or turbostratic material). High-resolution transmission electron microscopy analysis revealed the presence of an amorphous interface layer and on top of this interface layer a well-developed fringe pattern characteristic for the basal planes in h-BN. Depending on the plasma process conditions, these fringe patterns showed different degrees of disorder as well as different orientational relationships with respect to the substrate surface. These observations were correlated with the mechanical properties of the films. (orig.) 14 refs.

  12. Ferromagnetic Josephson junctions with niobium nitride

    Science.gov (United States)

    Yamashita, Taro; Makise, Kazumasa; Kawakami, Akira; Terai, Hirotaka

    Recently, novel physics and device applications in hybrid structures of superconductor (SC) and ferromagnet (FM), e.g., spin injection into SC, long-range Josephson effect, cryogenic memory, have been studied actively. Among various interesting phenomena in SC/FM structures, a π state (π junction) emerged in ferromagnetic Josephson junctions (SC/FM/SC) is attractive as a superconducting phase shifter for superconducting devices. In the present work, we developed the ferromagnetic Josephson junction in order to realize a quiet superconducting flux qubit with a π junction. Contrary to conventional flux qubits, the qubit with a π junction can be operated without an external magnetic field which is a noise source, and thus good coherence characteristics is expected. As a superconducting material, we adopted niobium nitride (NbN) with high superconducting critical temperature of 16 K, which can be grown epitaxially on a magnesium oxide substrate. Regarding the ferromagnetic material we used copper nickel (CuNi), and fabricated the NbN/CuNi/NbN junctions and then evaluated the dependences of the Josephson critical current on the temperature, thickness and so on. This research was supported by JST, PRESTO.

  13. Fluorescent lighting with aluminum nitride phosphors

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  14. Simple method for cleaning gallium nitride (0001)

    Science.gov (United States)

    Machuca, Francisco; Liu, Zhi; Sun, Yun; Pianetta, P.; Spicer, W. E.; Pease, R. F. W.

    2002-09-01

    Achieving clean surfaces is a major and challenging requirement for the study of surfaces and surface reactions. We describe the use of synchrotron radiation (SR) to probe the electronic structure of the gallium nitride (GaN) (0001) surface that has undergone wet chemical cleaning sequences followed by heating. By using SR in the range of 200-1000 eV the core levels of Ga, N, O, and C are monitored. Immersion in a 4:1 solution of sulfuric acid (51%) to hydrogen peroxide (30%) followed by a 700 degC (200 degC below decomposition temperature) vacuum anneal (less-than-or-equal10-10 Torr) results in a reduction of carbon and oxygen coverage to a few percent of a monolayer. This suggests a weakly bound oxide of carbon being chemisorbed to the GaN surface after the sulfuric acid/hydrogen peroxide treatment and it is removed by the heating. copyright 2002 American Vacuum Society.

  15. Growth of gallium nitride on silicon by molecular beam epitaxy incorporating a chromium nitride interlayer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kuang-Wei [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Young, Sheng-Joue, E-mail: shengjoueyoung@gmail.com [Department of Electronic Engineering, National Formosa University, Huwei, Yunlin 632, Taiwan (China); Chang, Shoou-Jinn, E-mail: changsj@mail.ncku.edu.tw [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Hsueh, Tao-Hung [Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Hung, Hung; Chen, Shi-Xiang [Institute of Microelectronics and Department of Electrical Engineering, Center for Micro/Nano Science and Technology, Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Chen, Yue-Zhang [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan 701, Taiwan (China)

    2012-01-15

    Highlights: > This study grew GaN epilayers on Si(1 1 1) substrate by molecular beam epitaxy with CrN interlayer fabricated through nitridation process. > The results of auger electron spectroscopy showed that the concentration of electrons was relatively low in the samples grown with a CrN interlayer, due to CrN prevented Si atoms diffusing into the GaN epilayer, thereby reducing the concentration of electrons. > Photoluminescence spectra indicated that DAP emission was not generated in the GaN with a CrN interlayer, due to improved crystalline quality, and a reduction in the concentration of electrons. - Abstract: This study grew GaN epilayers on Si(1 1 1) substrate via molecular beam epitaxy, with a CrN interlayer fabricated through a nitridation process. The X-ray diffraction results showed two peaks corresponding to CrN(1 1 1) and GaN(0 0 0 2). The results of auger electron spectroscopy showed that the concentration of electrons was relatively low in the samples grown with a CrN interlayer, due to CrN preventing Si atoms from diffusing into the GaN epilayer, thereby reducing electron concentration. Photoluminescence spectra indicated that donor-accepter pair recombination (DAP) emission was not generated in the GaN with a CrN interlayer because of improved crystalline quality and a reduction in electron concentration.

  16. Formation of graphitic carbon nitride and boron carbon nitride film on sapphire substrate

    Science.gov (United States)

    Kosaka, Maito; Urakami, Noriyuki; Hashimoto, Yoshio

    2018-02-01

    As a novel production method of boron carbon nitride (BCN) films, in this paper, we present the incorporation of B into graphitic carbon nitride (g-C3N4). First, we investigated the formation of g-C3N4 films via chemical vapor deposition (CVD) using melamine powder as the precursor. The formation of g-C3N4 films on a c-plane sapphire substrate was confirmed by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy measurements. The deposition temperature of g-C3N4 films was found to be suitable between 550 and 600 °C since the degradation and desorption of hexagonal C–N bonds should be suppressed. As for BCN films, we prepared BCN films via two-zone extended CVD using ammonia borane as the B precursor. Several XPS signals from B, C, and N core levels were detected from B-incorporated g-C3N4 films. While the N composition was almost constant, the marked tendencies for increasing B composition and decreasing C composition were achieved with the increase in the B incorporation, indicating the incorporation of B atoms by the substitution for C atoms. Optical absorptions were shifted to the high-energy side by B incorporation, which indicates the successful formation of BCN films using melamine and ammonia borane powders as precursors.

  17. Nanoscale optical properties of indium gallium nitride/gallium nitride nanodisk-in-rod heterostructures.

    Science.gov (United States)

    Zhou, Xiang; Lu, Ming-Yen; Lu, Yu-Jung; Jones, Eric J; Gwo, Shangjr; Gradečak, Silvija

    2015-03-24

    III-nitride based nanorods and nanowires offer great potential for optoelectronic applications such as light emitting diodes or nanolasers. We report nanoscale optical studies of InGaN/GaN nanodisk-in-rod heterostructures to quantify uniformity of light emission on the ensemble level, as well as the emission characteristics from individual InGaN nanodisks. Despite the high overall luminescence efficiency, spectral and intensity inhomogeneities were observed and directly correlated to the compositional variations among nanodisks and to the presence of structural defect, respectively. Observed light quenching is correlated to type I1 stacking faults in InGaN nanodisks, and the mechanisms for stacking fault induced nonradiative recombinations are discussed in the context of band structure around stacking faults and Fermi level pinning at nanorod surfaces. Our results highlight the importance of controlling III-nitride nanostructure growths to further reduce defect formation and ensure compositional homogeneity for optoelectronic devices with high efficiencies and desirable spectrum response.

  18. Elastic properties of indium nitrides grown on sapphire substrates determined by nano-indentation: In comparison with other nitrides

    Directory of Open Access Journals (Sweden)

    Ichiro Yonenaga

    2015-07-01

    Full Text Available The hardness of wurtzite indium nitride (α-InN films of 0.5 to 4 μm in thickness was measured by the nano-indentation method at room temperature. After investigation of crystalline quality by x-ray diffraction, the hardness and Young’s modulus were determined to be 8.8 ± 0.4 and 184 ± 5 GPa, respectively, for the In (0001- and N ( 000 1 ̄ -growth faces of InN films. The bulk and shear moduli were then derived to be 99 ± 3 and 77 ± 2 GPa, respectively. The Poisson’s ratio was evaluated to be 0.17 ± 0.03. The results were examined comprehensively in comparison with previously reported data of InN as well as those of other nitrides of aluminum nitride and gallium nitride. The underlying physical process determining the moduli and hardness was examined in terms of atomic bonding and dislocation energy of the nitrides and wurtzite zinc oxide.

  19. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  20. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  1. Porous boron nitride nanosheets for effective water cleaning.

    Science.gov (United States)

    Lei, Weiwei; Portehault, David; Liu, Dan; Qin, Si; Chen, Ying

    2013-01-01

    Effective removal of oils, organic solvents and dyes from water is of significant, global importance for environmental and water source protection. Advanced sorbent materials with excellent sorption capacity need to be developed. Here we report porous boron nitride nanosheets with very high specific surface area that exhibit excellent sorption performances for a wide range of oils, solvents and dyes. The nanostructured material absorbs up to 33 times its own weight in oils and organic solvents while repelling water. The saturated boron nitride nanosheets can be readily cleaned for reuse by burning or heating in air because of their strong resistance to oxidation. This easy recyclability further demonstrates the potential of porous boron nitride nanosheets for water purification and treatment.

  2. Electronic Biosensors Based on III-Nitride Semiconductors

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-07-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  3. Thermally grown thin nitride films as a gate dielectric

    CERN Document Server

    Shin, H C; Hwang, T K; Lee, K R

    1998-01-01

    High-quality very thin films ( <=6 nm) of silicon nitride were thermally grown in ammonia atmosphere with an IR (Infrared) gold image furnace. As-grown nitride film was analyzed using AES(Auger Emission Spectroscopy). Using MIS (Metal-Insulator-Semiconductor) devices, the growth rate was calculated using CV (Capacitance-Voltage) measurements and various electrical characteristics were obtained using CV, IV (Current-Voltage), trapping, time-dependent breakdown, high-field stress, constant current injection stress and dielectric breakdown techniques. These characteristics showed that very thin thermal silicon nitride films can be used as gate dielectrics for future highly scaled-down ULSI (Ultra Large Scale Integrated) devices, especially for EEPROM (Electrically Erasable and Programmable ROM)'s.

  4. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang (Malaysia)

    2016-07-19

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extent of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.

  5. Pretreatment Influence on Titanium Surface Properties After Gas Nitriding

    Science.gov (United States)

    Pohrelyuk, I. M.; Lavrys, S. M.; Sakharuk, O. M.; Stasyshyn, I. V.; Penkovyi, O. V.

    2017-10-01

    Influence of an initial mechanical treatment (grinding, polishing) on geometry and physical-mechanical parameters of a commercially pure titanium (Grade 2) surface after thermodiffusive saturation by nitrogen was studied. Microstructure analysis has shown that mechanism of formation and growth of a nitride film depends on the initial mechanical treatment. Nitriding under temperature of 750 °C does not influence practically the quality of ground surfaces and decreases it on one class for polished one. For higher saturation temperatures, surface quality has little dependence from the initial treatment. The best set of geometry and physical-mechanical characteristics belongs to the surface, which was initially polished and nitrided subsequently under 750 °C temperature, which provides its high wear resistance.

  6. Grafting titanium nitride surfaces with sodium styrene sulfonate thin films

    Science.gov (United States)

    Zorn, Gilad; Migonney, Véronique; Castner, David G.

    2014-01-01

    The importance of titanium nitride lies in its high hardness and its remarkable resistance to wear and corrosion, which has led to its use as a coating for the heads of hip prostheses, dental implants and dental surgery tools. However, the usefulness of titanium nitride coatings for biomedical applications could be significantly enhanced by modifying their surface with a bioactive polymer film. The main focus of the present work was to graft a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film from titanium nitride surfaces via a two-step procedure: first modifying the surface with 3-methacryloxypropyltrimethoxysilane (MPS) and then grafting the pNaSS film from the MPS modified titanium through free radical polymerization. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were used after each step to characterize success and completeness of each reaction. The surface region of the titanium nitride prior to MPS functionalization and NaSS grafting contained a mixture of titanium nitride, oxy-nitride, oxide species as well as adventitious surface contaminants. After MPS functionalization, Si was detected by XPS, and characteristic MPS fragments were detected by ToF-SIMS. After NaSS grafting, Na and S were detected by XPS and characteristic NaSS fragments were detected by ToF-SIMS. The XPS determined thicknesses of the MPS and NaSS overlayers were ∼1.5 and ∼1.7 nm, respectively. The pNaSS film density was estimated by the toluidine blue colorimetric assay to be 260 ± 70 ng/cm2. PMID:25280842

  7. Fabrication of sinterable silicon nitride by injection molding

    Science.gov (United States)

    Quackenbush, C. L.; French, K.; Neil, J. T.

    1982-01-01

    Transformation of structural ceramics from the laboratory to production requires development of near net shape fabrication techniques which minimize finish grinding. One potential technique for producing large quantities of complex-shaped parts at a low cost, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material. Binder selection methodology, compounding of ceramic and binder components, injection molding techniques, and problems in binder removal are discussed. Strength, oxidation resistance, and microstructure of sintered silicon nitride fabricated by injection molding is discussed and compared to data generated from isostatically dry-pressed material.

  8. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  9. Hardness and thermal stability of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.

    2001-01-01

    The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...... temperature has an average hardness of 35.31 GPa, slightly larger than SiO2 stishovite, which is often referred to as the third hardest material after diamond and cubic boron nitride. The cubic phase is stable up to 1673 K in air. At 1873 K, alpha -and beta -Si3N4 phases are observed, indicating a phase...

  10. Inter-layer potential for hexagonal boron nitride

    Science.gov (United States)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  11. Nitriding and Nitrocarburizing; Current Status and Future Challenges

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    , aspects of low temperature surface hardening of stainless steels in a gaseous environment will be addressed. Here, the developed case consists of expanded austenite and/or expanded martensite, which essentially is a super saturated solid solution of nitrogen/carbon in austenite/martensite. The current......This contribution addresses the current understanding of gaseous nitriding and nitrocarburizing. Aspects of thermodynamics, kinetics and microstructure development in iron and heat treatable steel will be explained. In these materials the nitrided/ nitrocarburized case can be subdivided...

  12. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  13. Origins and mitigation of spurious modes in aluminum nitride microresonators.

    Energy Technology Data Exchange (ETDEWEB)

    Branch, Darren W.; Olsson, Roy H., III; Wojciechowski, Kenneth E.

    2010-10-01

    Recently reported narrow bandwidth, <;2%, aluminum nitride microresonator filters in the 100-500 MHz range offer lower insertion loss, 100x smaller size, and elimination of large external matching networks, when compared to similar surface acoustic wave filters. While the initial results are promising, many microresonators exhibit spurious responses both close and far from the pass band which degrade the out of band rejection and prevent the synthesis of useful filters. This paper identifies the origins of several unwanted modes in overtone width extensional aluminum nitride microresonators and presents techniques for mitigating the spurious responses.

  14. Aluminium Nitride Solidly Mounted BAW Resonators with Iridium Electrodes

    OpenAIRE

    Clement Lorenzo, Marta; Olivares Roza, Jimena; Iborra Grau, Enrique; González Castilla, Sheila; Sangrador García, Jesús; Rimmer, Nick; Rastogi, A; Ivira, B.; Reinhardt, Alexandre

    2008-01-01

    In this work we investigated the performance of aluminium nitride (AlN)-based solidly mounted resonators (SMR) made with iridium (Ir) bottom electrodes. Ir/AlN/metal stacks were grown on top of insulating Bragg mirrors composed of alternate λ/4 layers of silicon oxi-carbide (SiOC) and silicon nitride (Si3N4).Ir electrodes of various thicknesses were electron-beam evaporated on different adhesion layers, which also acted as seed layers. AlN was deposited by sputtering after conditioning the Ir...

  15. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  16. Designing of TJ VCSEL based on nitride materials

    Science.gov (United States)

    Sarzała, R. P.; Pijanowski, K.; Gebski, M.; Marciniak, M.; Nakwaski, W.

    2016-12-01

    Different structures of nitride Vertical-Cavity Surface-Emitting Lasers (VCSELs) have been developed in recent years. However there is still many problems with such constructions, especially with electrical and optical confinement, current injection and construction and fabrication of mirrors. In this paper we present novel approach to nitride VCSEL designing. We investigated structure with tunnel junction (TJ) and top and bottom dielectric distributed Bragg reflectors (DBRs). Using our three-dimensional self-consistent model we investigated thermal and electrical properties of such laser. We also proposed replacing bottom DBR by monolithic high contrast grating mirror (MHCG) and presented optical properties of VCSEL with such mirrors.

  17. Elastic Properties of Hybrid Graphene/Boron Nitride Monolayer

    OpenAIRE

    Peng, Qing; Zamiri, Amir R.; Ji, Wei; De, Suvranu

    2011-01-01

    Recently hybridized monolayers consisting of hexagonal boron nitride (h-BN) phases inside graphene layer have been synthesized and shown to be an effective way of opening band gap in graphene monolayers [1]. In this letter, we report an ab initio density functional theory (DFT)- based study of h-BN domain size effect on the elastic properties of graphene/boron nitride hybrid monolayers (h-BNC). We found both inplane stiffness and longitudinal sound velocity of h-BNC linearly decrease with h-B...

  18. Lateral electrochemical etching of III-nitride materials for microfabrication

    Science.gov (United States)

    Han, Jung

    2017-02-28

    Conductivity-selective lateral etching of III-nitride materials is described. Methods and structures for making vertical cavity surface emitting lasers with distributed Bragg reflectors via electrochemical etching are described. Layer-selective, lateral electrochemical etching of multi-layer stacks is employed to form semiconductor/air DBR structures adjacent active multiple quantum well regions of the lasers. The electrochemical etching techniques are suitable for high-volume production of lasers and other III-nitride devices, such as lasers, HEMT transistors, power transistors, MEMs structures, and LEDs.

  19. Vibrational characteristics of single-layered boron nitride nanosheet/single-walled boron nitride nanotube junctions using finite element modeling

    Science.gov (United States)

    Rouhi, S.; Ansari, R.; Shahnazari, A.

    2016-12-01

    This paper aims to investigate the vibrational properties of single-layered boron nitride nanosheet/single-walled boron nitride nanotube junctions. To this end, the finite element (FE) (approach is employed.Considering the similarity of molecular mechanics and structural mechanics, the mechanical properties of the utilized FE approach can be derived. The junctions with nanotubes at one side and both sides of the nanosheet are considered. It is shown that the frequencies of both sides located nanotubes are always larger than those of one side located nanotube. Moreover, the influences of geometrical parameters of nanosheet and nanotube on the frequencies of boron nitride nanosheet/nanotube junctions are studied. It is observed that the vibrational behavior of the considered junctions has an inverse relation to the nanotube and nanosheet dimensions.

  20. Filling boron nitride nanotubes with metals

    Science.gov (United States)

    Golberg, D.; Xu, F.-F.; Bando, Y.

    The authors' endeavors over the last few years with respect to boron nitride (BN) nanotube metal filling are reviewed. Mo clusters of 1-2 nm in size and FeNi Invar alloy (Fe 60 at.% Ni 40 at.%) or Co nanorods of 20-70 nm in diameter were embedded into BN nanotube channels via a newly developed two-stage process, in which multi-walled C nanotubes served as templates for the BN multi-walled nanotube synthesis. During cluster filling, low-surface-tension and melting-point Mo oxide first filled a C nanotube through the open tube ends, followed by fragmentation of this filling into discrete clusters via O2 outflow and C-->BN conversion within tubular shells at high temperature. During nanorod filling, C nanotubes containing FeNi or Co nanoparticles at the tube tips were first synthesized by plasma-assisted chemical vapor deposition on FeNi Invar alloy or Co substrates, respectively, and, then, the nanomaterial was heated to the melting points of the corresponding metals in a flow of B2O3 and N2 gases. During this second stage, simultaneous filling of nanotubes with a FeNi or Co melt through capillarity and chemical modification of C tubular shells to form BN nanotubes occurred. The synthesized nanocomposites were analyzed by scanning and high-resolution transmission electron microscopy, electron diffraction, electron-energy-loss spectroscopy and energy-dispersive X-ray spectroscopy. The nanostructures are presumed to function as `nanocables' having conducting metallic cores (FeNi, Co, Mo) and insulating nanotubular shields (BN) with the additional benefit of excellent environmental stability.

  1. Mesoporous carbon nitrides: synthesis, functionalization, and applications.

    Science.gov (United States)

    Lakhi, Kripal S; Park, Dae-Hwan; Al-Bahily, Khalid; Cha, Wangsoo; Viswanathan, Balasubramanian; Choy, Jin-Ho; Vinu, Ajayan

    2017-01-03

    Mesoporous carbon nitrides (MCNs) with large surface areas and uniform pore diameters are unique semiconducting materials and exhibit highly versatile structural and excellent physicochemical properties, which promote their application in diverse fields such as metal free catalysis, photocatalytic water splitting, energy storage and conversion, gas adsorption, separation, and even sensing. These fascinating MCN materials can be obtained through the polymerization of different aromatic and/or aliphatic carbons and high nitrogen containing molecular precursors via hard and/or soft templating approaches. One of the unique characteristics of these materials is that they exhibit both semiconducting and basic properties, which make them excellent platforms for the photoelectrochemical conversion and sensing of molecules such as CO2, and the selective sensing of toxic organic acids. The semiconducting features of these materials are finely controlled by varying the nitrogen content or local electronic structure of the MCNs. The incorporation of different functionalities including metal nanoparticles or organic molecules is further achieved in various ways to develop new electronic, semiconducting, catalytic, and energy harvesting materials. Dual functionalities including acidic and basic groups are also introduced in the wall structure of MCNs through simple UV-light irradiation, which offers enzyme-like properties in a single MCN system. In this review article, we summarize and highlight the existing literature covering every aspect of MCNs including their templating synthesis, modification and functionalization, and potential applications of these MCN materials with an overview of the key and relevant results. A special emphasis is given on the catalytic applications of MCNs including hydrogenation, oxidation, photocatalysis, and CO2 activation.

  2. Discontinuous Inter-Granular Separations (DIGS) in the Gas Nitride Layer of ISS Race Rings

    Science.gov (United States)

    Figert, John; Dasgupta, Rajib; Martinez, James

    2010-01-01

    The starboard solar alpha rotary joint (SARJ) race ring on the International space station (ISS) failed due to severe spalling of the outer diameter, 45 degree (outer canted) nitrided surface. Subsequent analysis at NASA-KSC revealed that almost all of the debris generated due to the failure was nitrided 15-5 stainless steel. Subsequent analysis of the nitride control coupons (NCC) at NASA-JSC revealed the presence of discontinuous inter-granular separations (DIGS) in the gas nitride layer. These DIGS were present in the inter-granular networking located in the top 2 mils of the nitride layer. The manufacturer's specification requires the maximum white structure to be 0.0003 inches and intergranular networking below the allowable white structure depth to be cause for rejection; a requirement that the NCCs did not meet. Subsequent testing and analysis revealed that lower DIGS content significantly lowered the probability of nitride spalling in simulated, dry condition runs. One batch of nitride samples with DIGS content similar to the port SARJ (did not fail on orbit) which exhibited almost no nitride spalling after being run on one test rig. Another batch of nitride samples with DIGS content levels similar to the starboard SARJ exhibited significant nitride spalling on the same test rig with the same load under dry conditions. Although DIGS were not the root cause of starboard race ring failure, testing indicates that increased DIGS reduced the robustness of the gas nitride layer under dry operating conditions.

  3. Investigation of Hafnium oxide/Copper resistive memory for advanced encryption applications

    Science.gov (United States)

    Briggs, Benjamin D.

    The Advanced Encryption Standard (AES) is a widely used encryption algorithm to protect data and communications in today's digital age. Modern AES CMOS implementations require large amounts of dedicated logic and must be tuned for either performance or power consumption. A high throughput, low power, and low die area AES implementation is required in the growing mobile sector. An emerging non-volatile memory device known as resistive memory (ReRAM) is a simple metal-insulator-metal capacitor device structure with the ability to switch between two stable resistance states. Currently, ReRAM is targeted as a non-volatile memory replacement technology to eventually replace flash. Its advantages over flash include ease of fabrication, speed, and lower power consumption. In addition to memory, ReRAM can also be used in advanced logic implementations given its purely resistive behavior. The combination of a new non-volatile memory element ReRAM along with high performance, low power CMOS opens new avenues for logic implementations. This dissertation will cover the design and process implementation of a ReRAM-CMOS hybrid circuit, built using IBM's 10LPe process, for the improvement of hardware AES implementations. Further the device characteristics of ReRAM, specifically the HfO2/Cu memory system, and mechanisms for operation are not fully correlated. Of particular interest to this work is the role of material properties such as the stoichiometry, crystallinity, and doping of the HfO2 layer and their effect on the switching characteristics of resistive memory. Material properties were varied by a combination of atomic layer deposition and reactive sputtering of the HfO2 layer. Several studies will be discussed on how the above mentioned material properties influence switching parameters, and change the underlying physics of device operation.

  4. Chlorination Kinetics of Titanium Nitride for Production of Titanium Tetrachloride from Nitrided Ilmenite

    Science.gov (United States)

    Ahmadi, Eltefat; Rezan, Sheikh Abdul; Baharun, Norlia; Ramakrishnan, Sivakumar; Fauzi, Ahmad; Zhang, Guangqing

    2017-10-01

    The kinetics of chlorination of titanium nitride (TiN) was investigated in the temperature range of 523 K to 673 K (250 °C to 400 °C). The results showed that the extent of chlorination slightly increased with increasing temperature and decreasing particle size of titanium nitride at constant flow rate of N2-Cl2 gas mixture. At 523 K (250 °C), the extent of chlorination was 85.6 pct in 60 minutes whereas at 673 K (400 °C), it was 97.7 pct investigated by weight loss measurement and confirmed by ICP analyses. The experimental results indicated that a shrinking unreacted core model with mixed-control mechanism governed the chlorination rate. It was observed that the surface chemical reaction of chlorine gas on the surface of TiN particles was rate controlling in the initial stage and, during later stage, internal (pore) diffusion through the intermediate product layer was rate controlling step. Overall the process follows the mixed-control model incorporating both chemical reaction and internal diffusion control. The activation energy for the chlorination of TiN was found to be about 10.97 kJ mol-1. In processing TiCl4 from TiN and TiO0.02C0.13N0.85, the solids involved in the chlorination process were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectrometer (EDX). The SEM/EDX results demonstrated the consumption of TiN particles with extent of chlorination that showed shrinking core behavior.

  5. Properties of Erbium and Ytterbium Doped Gallium Nitride Layers Fabricated by Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    V. Prajzler

    2006-01-01

    Full Text Available We report about some properties of erbium and erbium/ytterbium doped gallium nitride (GaN layers fabricated by magnetron sputtering onsilicon, quartz and Corning glass substrates. For fabricating GaN layers two types of targets were used - gallium in a stainless steel cup anda Ga2O3 target. Deposition was carried out in the Ar+N2 gas mixture. For erbium and ytterbium doping into GaN layers, erbium metallicpowder and ytterbium powder or Er2O3 and Yb2O3 pellets were laid on the top of the target. The samples were characterized by X-raydiffraction (XRD, photoluminescence spectra and nuclear analytical methods. While the use of a metallic gallium target ensured thedeposition of well-developed polycrystalline layers, the use of gallium oxide target provided GaN films with poorly developed crystals. Bothapproaches enabled doping with erbium and ytterbium ions during deposition, and typical emission at 1 530 nm due to the Er3+ intra-4f 4I13/2 → 4I15/2 transition was observed.

  6. Gallium-Nitride-Based Light-Emitting Diodes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 7. Gallium-Nitride-Based Light-Emitting Diodes: 2014 Nobel Prize in Physics. Kota V R M Murali Vinayak Bharat Naik Deepanjan Datta. General Article Volume 20 Issue 7 July 2015 pp 605-616 ...

  7. Proportional control valves integrated in silicon nitride surface channel technology

    NARCIS (Netherlands)

    Groen, Maarten; Groenesteijn, Jarno; Meutstege, Esken; Brookhuis, Robert Anton; Brouwer, Dannis Michel; Lötters, Joost Conrad; Wiegerink, Remco J.

    2015-01-01

    We have designed and realized two types of proportional microcontrol valves in a silicon nitride surface channel technology process. This enables on-die integration of flow controllers with other surface channel devices, such as pressure sensors or thermal or Coriolis-based (mass) flow sensors, to

  8. BORON NITRIDE CAPACITORS FOR ADVANCED POWER ELECTRONIC DEVICES

    Energy Technology Data Exchange (ETDEWEB)

    N. Badi; D. Starikov; C. Boney; A. Bensaoula; D. Johnstone

    2010-11-01

    This project fabricates long-life boron nitride/boron oxynitride thin film -based capacitors for advanced SiC power electronics with a broad operating temperature range using a physical vapor deposition (PVD) technique. The use of vapor deposition provides for precise control and quality material formation.

  9. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert F. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  10. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    Energy Technology Data Exchange (ETDEWEB)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  11. Novel compound semiconductor devices based on III-V nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Pearton, S.J.; Abernathy, C.R. [Florida Univ., Gainesville, FL (United States); Ren, F. [AT & T Bell Laboratories, Murray Hill, NJ (United States)] [and others

    1995-10-01

    New developments in dry and wet etching, ohmic contacts and epitaxial growth of Ill-V nitrides are reported. These make possible devices such as microdisk laser structures and GaAs/AlGaAs heterojunction bipolar transistors with improved InN ohmic contacts.

  12. Hexagonal Boron Nitride Self-Launches Hyperbolic Phonon Polaritons

    NARCIS (Netherlands)

    Gilburd, Leonid; Kim, Kris S.; Ho, Kevin; Trajanoski, Daniel; Maiti, Aniket; Halverson, Duncan; de Beer, Sissi; Walker, Gilbert C.

    2017-01-01

    Hexagonal boron nitride (hBN) is a 2D material that supports traveling waves composed of material vibrations and light, and is attractive for nanoscale optical devices that function in the infrared. However, the only current method of launching these traveling waves requires the use of a metal

  13. Electrical and optical properties of silicon-doped gallium nitride ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 31; Issue 1. Electrical and optical properties of silicon-doped gallium nitride polycrystalline films. S R Bhattacharyya A K Pal. Thin Films Volume ... Electrical, optical and microstructural properties were studied for these films. It was observed that films deposited at room ...

  14. Vacancy complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-10-01

    Full Text Available -1 Journal of Nanoscience and Nanotechnology, Vol. 12, 7796-7806, 2012 Vacancy Complexes in Carbon and Boron Nitride Nanotubes M. G. Mashapa1,2, ? N. Chetty1 and S. Sinha Ray2,3 1 Physics Department, University of Pretoria, Pretoria, 0001, South Africa...

  15. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  16. Dynamic response of multiwall boron nitride nanotubes subjected to ...

    Indian Academy of Sciences (India)

    Dynamic behaviours of multiwall boron nitride nanotubes (MWBNNTs) with finite length were studied by employing continuum structure. Multiple elastic shells with nonlinear model of van der Waals interactions were used for developing an inclusive and inexpensive dynamical model of MWBNNTs. The systems of coupled ...

  17. Band gaps in incommensurable graphene on hexagonal boron nitride

    NARCIS (Netherlands)

    Bokdam, Menno; Amlaki, T.; Brocks, G.; Kelly, Paul J.

    2014-01-01

    Devising ways of opening a band gap in graphene to make charge-carrier masses finite is essential for many applications. Recent experiments with graphene on hexagonal boron nitride (h -BN) offer tantalizing hints that the weak interaction with the substrate is sufficient to open a gap, in

  18. Bone tissue response to plasma-nitrided titanium implant surfaces

    Science.gov (United States)

    FERRAZ, Emanuela Prado; SVERZUT, Alexander Tadeu; FREITAS, Gileade Pereira; SÁ, Juliana Carvalho; ALVES, Clodomiro; BELOTI, Marcio Mateus; ROSA, Adalberto Luiz

    2015-01-01

    A current goal of dental implant research is the development of titanium (Ti) surfaces to improve osseointegration. Plasma nitriding treatments generate surfaces that favor osteoblast differentiation, a key event to the process of osteogenesis. Based on this, it is possible to hypothesize that plasma-nitrided Ti implants may positively impact osseointegration. Objective The aim of this study was to evaluate the in vivo bone response to Ti surfaces modified by plasma-nitriding treatments. Material and Methods Surface treatments consisted of 20% N2 and 80% H2, 450°C and 1.5 mbar during 1 h for planar and 3 h for hollow cathode. Untreated surface was used as control. Ten implants of each surface were placed into rabbit tibiae and 6 weeks post-implantation they were harvested for histological and histomorphometric analyses. Results Bone formation was observed in contact with all implants without statistically significant differences among the evaluated surfaces in terms of bone-to-implant contact, bone area between threads, and bone area within the mirror area. Conclusion Our results indicate that plasma nitriding treatments generate Ti implants that induce similar bone response to the untreated ones. Thus, as these treatments improve the physico-chemical properties of Ti without affecting its biocompatibility, they could be combined with modifications that favor bone formation in order to develop new implant surfaces. PMID:25760262

  19. High aspect ratio titanium nitride trench structures as plasmonic biosensor

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Repän, Taavi; Takayama, Osamu

    2017-01-01

    High aspect ratio titanium nitride (TiN) grating structures are fabricated by the combination of deep reactive ion etching (DRIE) and atomic layer deposition (ALD) techniques. TiN is deposited at 500 ◦C on a silicon trench template. Silicon between vertical TiN layers is selectively etched...

  20. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sectio...

  1. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  2. Synthesis of boron nitride from boron containing poly (vinyl alcohol ...

    Indian Academy of Sciences (India)

    A ceramic precursor, prepared by condensation reaction from poly(vinyl alcohol) (PVA) and boric acid (H3BO3) in 1:1, 2:1 and 4:1 molar ratios, was synthesized as low temperature synthesis route for boron nitride ceramic. Samples were pyrolyzed at 850°C in nitrogen atmosphere followed by characterization using Fourier ...

  3. Enhanced thermoelectric properties in boron nitride quantum-dot

    Directory of Open Access Journals (Sweden)

    Changning Pan

    Full Text Available We have investigated the ballistic thermoelectric properties in boron nitride quantum dots by using the nonequilibrium Green’s function approach and the Landauer transport theory. The result shows that the phonon transport is substantially suppressed by the interface in the quantum dots. The resonant tunneling effect of electron leads to the fluctuations of the electronic conductance. It enhances significantly the Seebeck coefficient. Combined with the low thermal conductance of phonon, the high thermoelectric figure of merit ZT ∼0.78 can be obtained at room temperature T = 300 K and ZT ∼0.95 at low temperature T = 100 K. It is much higher than that of graphene quantum dots with the same geometry parameters, which is ZT ∼0.29 at room temperature T = 300 K and ZT ∼0.48 at low temperature T = 100 K. The underlying mechanism is that the boron nitride quantum dots possess higher thermopower and lower phonon thermal conductance than the graphene quantum dots. Thus the results indicate that the thermoelectric properties of boron nitride can be significantly enhanced by the quantum dot and are better than those of graphene. Keywords: Thermoelectric properties, Boron nitride quantum dot, Electron transport, Phonon transport

  4. Gallium Nitride MMICs for mm-Wave Power Operation

    NARCIS (Netherlands)

    Quay, R.; Maroldt, S.; Haupt, C.; Heijningen, M. van; Tessmann, A.

    2009-01-01

    In this paper a Gallium Nitride MMIC technology for high-power amplifiers between 27 GHz and 101 GHz based on 150 nm- and 100 nm-gate technologies is presented. The GaN HEMT MMICs are designed using coplanar waveguide transmission-line-technology on 3-inch semi-insulating SiC substrates. The

  5. Bandgap engineered graphene and hexagonal boron nitride for ...

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  6. Development of high-thermal-conductivity silicon nitride ceramics

    Directory of Open Access Journals (Sweden)

    You Zhou

    2015-09-01

    Full Text Available Silicon nitride (Si3N4 with high thermal conductivity has emerged as one of the most promising substrate materials for the next-generation power devices. This paper gives an overview on recent developments in preparing high-thermal-conductivity Si3N4 by a sintering of reaction-bonded silicon nitride (SRBSN method. Due to the reduction of lattice oxygen content, the SRBSN ceramics could attain substantially higher thermal conductivities than the Si3N4 ceramics prepared by the conventional gas-pressure sintering of silicon nitride (SSN method. Thermal conductivity could further be improved through increasing the β/α phase ratio during nitridation and enhancing grain growth during post-sintering. Studies on fracture resistance behaviors of the SRBSN ceramics revealed that they possessed high fracture toughness and exhibited obvious R-curve behaviors. Using the SRBSN method, a Si3N4 with a record-high thermal conductivity of 177 Wm−1K−1 and a fracture toughness of 11.2 MPa m1/2 was developed. Studies on the influences of two typical metallic impurity elements, Fe and Al, on thermal conductivities of the SRBSN ceramics revealed that the tolerable content limits for the two impurities were different. While 1 wt% of impurity Fe hardly degraded thermal conductivity, only 0.01 wt% of Al caused large decrease in thermal conductivity.

  7. Synthesis of Boron Nitride Nanotubes for Engineering Applications

    Science.gov (United States)

    Hurst, Janet; Hull, David; Gorican, Dan

    2005-01-01

    Boron Nitride nanotubes (BNNT) are of interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted large amounts of attention. Both materials have potentially unique and significant properties which may have important structural and electronic applications in the future. However of even more interest than their similarities may be the differences between carbon and boron nanotubes. Whilt boron nitride nanotubes possess a very high modulus similaar to CNT, they are also more chemically and thermally inert. Additionally BNNT possess more uniform electronic properties, having a uniform band gap of approximately 5.5 eV while CNT vary from semi-conductin to conductor behavior. Boron Nitride nanotubes have been synthesized by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistently producing a reliable product has proven difficult. Progress in synthesis of 1-2 gram sized batches of Boron Nitride nanotubes will be discussed as well as potential uses for this unique material.

  8. Spin transport in fully hexagonal boron nitride encapsulated graphene

    NARCIS (Netherlands)

    Gurram, M.; Omar, S.; Zihlmann, S.; Makk, P.; Schoenenberger, C.; van Wees, B. J.

    2016-01-01

    We study fully hexagonal boron nitride (hBN) encapsulated graphene spin valve devices at room temperature. The device consists of a graphene channel encapsulated between two crystalline hBN flakes: thick-hBN flake as a bottom gate dielectric substrate which masks the charge impurities from SiO2/Si

  9. Methods for improved growth of group III nitride buffer layers

    Science.gov (United States)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  10. Internally Contracted Multireference Coupled Cluster Calculations with a Spin-Free Dirac-Coulomb Hamiltonian: Application to the Monoxides of Titanium, Zirconium, and Hafnium.

    Science.gov (United States)

    Lipparini, Filippo; Kirsch, Till; Köhn, Andreas; Gauss, Jürgen

    2017-07-11

    We combine internally contracted multireference coupled cluster theory with a four-component treatment of scalar-relativistic effects based on the spin-free Dirac-Coulomb Hamiltonian. This strategy allows for a rigorous treatment of static and dynamic correlation as well as scalar-relativistic effects, which makes it viable to describe molecules containing heavy transition elements. The use of a spin-free formalism limits the impact of the four-component treatment on the computational cost to the non-rate-determining steps of the calculations. We apply the newly developed method to the lowest singlet and triplet states of the monoxides of titanium, zirconium, and hafnium and show how the interplay between electronic correlation and relativistic effects explains the electronic structure of such molecules.

  11. Crystal structure of (1,3-di-tert-butyl-η(5)-cyclo-penta-dien-yl)tri-methyl-hafnium(IV).

    Science.gov (United States)

    Pérez-Redondo, Adrián; Varela-Izquierdo, Víctor; Yélamos, Carlos

    2015-05-01

    The mol-ecule of the title organometallic hafnium(IV) com-pound, [Hf(CH3)3(C13H21)] or [HfMe3(η(5)-C5H3-1,3- (t) Bu2)], adopts the classical three-legged piano-stool geometry for mono-cyclo-penta-dienylhafnium(IV) derivatives with the three methyl groups bonded to the Hf(IV) atom at the legs. The C atoms of the two tert-butyl group bonded to the cyclo-penta-dienyl (Cp) ring are 0.132 (5) and 0.154 (6) Å above the Cp least-squares plane. There are no significant inter-molecular inter-actions present between the mol-ecules in the crystal structure.

  12. Enhanced effects of nonisotopic hafnium chloride in methanol as a substitute for uranyl acetate in TEM contrast of ultrastructure of fungal and plant cells.

    Science.gov (United States)

    Ikeda, Ken-Ichi; Inoue, Kanako; Kanematsu, Satoko; Horiuchi, Yoshitaka; Park, Pyoyun

    2011-09-01

    This ultrastructural study showed that nonisotopic methanolic hafnium chloride and aqueous lead solution was an excellent new electron stain for enhancing TEM contrasts of fungal and plant cell structures. The ultrastructural definition provided by the new stain was often superior to that provided by conventional staining with uranyl acetate and lead. Definition of fine ultrastructure was also supported by quantitative data on TEM contrast ratios of organelles and components in fungal and plant cells. In particular, polysaccharides, which were localized in cell walls, glycogen particles, starch grains, and plant Golgi vesicle components, were much more reactive to the new stain than to the conventional one. The new nonisotopic stain is useful for enhancing the contrast of ultrastructure in biological tissues and is a safer alternative to uranyl acetate. Copyright © 2010 Wiley-Liss, Inc.

  13. Alternating Sequence Controlled Copolymer Synthesis of α-Hydroxy Acids via Syndioselective Ring-Opening Polymerization of O-Carboxyanhydrides Using Zirconium/Hafnium Alkoxide Initiators.

    Science.gov (United States)

    Sun, Yangyang; Jia, Zhaowei; Chen, Changjuan; Cong, Yong; Mao, Xiaoyang; Wu, Jincai

    2017-08-09

    The ring-opening polymerization (ROP) of O-carboxyanhydrides (OCAs) can give diverse poly(α-hydroxy acid)s (PAHAs) with different functional groups because of easy modification of the side group of OCAs, which can extend applications of PAHAs widely. The stereoselective polymerization of O-carboxyanhydrides and further sequence controlled alternating copolymerization of OCAs were still big challenges until now for lack of suitable catalysts/initiators. In this work, a highly syndioselective ROP of OCAs system as the first stereoselective example in this area is reported using zirconium/hafnium alkoxides as initiators with the highest Pr value up to 0.95. Furthermore, these initiators were successfully applied in the precisely alternating sequence controlled copolymerization of PheOCA and Tyr(Bn)OCA, and alternating copolymerization of LacOCA and PheOCA was also achieved.

  14. Crystal structure of (1,3-di-tert-butyl-η5-cyclo­penta­dien­yl)tri­methyl­hafnium(IV)

    Science.gov (United States)

    Pérez-Redondo, Adrián; Varela-Izquierdo, Víctor; Yélamos, Carlos

    2015-01-01

    The mol­ecule of the title organometallic hafnium(IV) com­pound, [Hf(CH3)3(C13H21)] or [HfMe3(η5-C5H3-1,3-tBu2)], adopts the classical three-legged piano-stool geometry for mono­cyclo­penta­dienylhafnium(IV) derivatives with the three methyl groups bonded to the Hf(IV) atom at the legs. The C atoms of the two tert-butyl group bonded to the cyclo­penta­dienyl (Cp) ring are 0.132 (5) and 0.154 (6) Å above the Cp least-squares plane. There are no significant inter­molecular inter­actions present between the mol­ecules in the crystal structure. PMID:25995884

  15. Optical emission spectroscopy of Aluminum Nitride thin films deposited by Pulsed Laser Deposition

    Science.gov (United States)

    Pérez, J. A.; Vera, L. P.; Riascos, H.; Caicedo, J. C.

    2014-05-01

    In this work we study the Aluminium Nitride plasma produced by Nd:YAG pulsed laser, (λ = 1064 nm, 500 mJ, τ = 9 ns) with repletion rate of 10 Hz. The laser interaction on Al target (99.99%) under nitrogen gas atmosphere generate a plasma which is produced at room temperature; with variation in the pressure work from 0.53 Pa to 0.66 Pa matching with a applied laser fluence of 7 J/cm2.The films thickness measured by profilometer was 150 nm. The plasma generated was at different pressures was characterized by Optical Emission Spectroscopy (EOS). From emission spectra obtained ionic and atomic species were observed. The plume electronic temperature has been determined by assuming a local thermodynamic equilibrium of the emitting species. Finally the electronic temperature was calculated with Boltzmann plot from relative intensities of spectral lines.

  16. Boron nitride nano-structures produced by pulsed laser ablation in acetone

    Energy Technology Data Exchange (ETDEWEB)

    Nistor, L C; Epurescu, G; Dinescu, M; Dinescu, G, E-mail: leonis@infim.ro

    2010-11-15

    Different phases of boron nitride (BN) nano-structures are synthesized from an hBN ceramic target immersed in acetone, by ablation with a high power pulsed Nd: YAG laser. Transmission electron microscopy (TEM) and electron diffraction (ED) are used to identify the morphology and structure of the prepared colloidal suspensions. It is revealed that by varying solely a single experimental parameter, i.e. the laser pulse fluency, a large variety of BN nano-structures can be produced: nanotubes, very thin graphene-like foils, nano-curls and nano-particles, all with the hexagonal graphite-like hBN structure, as well as high pressure BN phases: orthorhombic explosion E-BN nano-rods, or cubic diamond-like cBN nano-particles.

  17. Mass spectroscopic analysis of a plume induced by laser ablation of pyrolytic boron nitride

    CERN Document Server

    Chae, H B; Lee, I H; Park, S M

    1998-01-01

    The laser ablation of a pyrolytic boron nitride (pBN) target was investigated by time-of- flight quadrupole mass spectroscopy. According to the laser-correlated ion mass spectra, B sup + and B sub 2 sup + ions were produced, but neither N sup + , N sub 2 sup + , or BN sup + ions were observed at laser fluences below 1 J/cm sup 2. Instead, neutral N sub 2 molecules were found to be formed. The mean velocities and kinetic energies of the B sup + ions were obtained by time-of-flight analysis. Also, reactive laser ablation under a N sub 2 atmosphere was attempted by using a pulsed valve synchronized with the laser pulse.

  18. Nitridation of Nb surface by nanosecond and femtosecond laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Farha, Ashraf Hassan [Department of Electrical and Computer Engineering and the Applied Research Center, Old Dominion University, Norfolk, VA 23529 (United States); Department of Physics, Faculty of Science, Ain Shams University, Cairo 11566 (Egypt); Ozkendir, Osman Murat [Tarsus Technology Faculty, Mersin University, Tarsus 33480 (Turkey); Koroglu, Ulas; Ufuktepe, Yüksel [Department of Physics, Cukurova University, Adana 01330 (Turkey); Elsayed-Ali, Hani E., E-mail: helsayed@odu.edu [Department of Electrical and Computer Engineering and the Applied Research Center, Old Dominion University, Norfolk, VA 23529 (United States)

    2015-01-05

    Highlights: • Laser nitridation of niobium is performed with nanosecond and femtosecond pulses. • Formation of NbN{sub x} with mixed α, β and δ phases was observed. • For femtosecond laser processed samples, laser induced ripple patterns oriented parallel to the beam polarization were formed. • X-ray absorption near edge structure show formation of Nb{sub 2}O{sub 5} on the surface of the samples. - Abstract: Niobium nitride samples were prepared by laser nitridation in a reactive nitrogen gas environment at room temperature using a Q-switched Nd:YAG nanosecond laser and a Ti:sapphire femtosecond laser. The effects of laser fluence on the formed phase, surface morphology, and electronic properties of the NbN{sub x} were investigated. The samples were prepared at different nanosecond laser fluences up to 5.0 ± 0.8 J/cm{sup 2} at fixed nitrogen pressure of ∼2.7 × 10{sup 4} Pa formed NbN{sub x} with mainly the cubic δ-NbN phase. Femtosecond laser nitrided samples were prepared using laser fluences up to 1.3 ± 0.3 mJ/cm{sup 2} at ∼4.0 × 10{sup 4} Pa nitrogen pressure. Laser induced ripple patterns oriented parallel to the beam polarization were formed with spacing that increases with the laser fluence. To achieve a laser-nitrided surface with desired crystal orientation the laser fulence is an important parameter that needs to be properly adjusted.

  19. Silicon Nitride for Direct Water-Splitting and Corrosion Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Head, J.; Turner, J.A.

    2006-01-01

    Todays fossil fuels are becoming harder to obtain, creating pollution problems, and posing hazards to people’s health. One alternative to fossil fuels is hydrogen, capable of serving as a clean and efficient energy carrier. Certain semiconductors are able to harness the energy of photons and direct it into water electrolysis in a process known as photoelectrochemical water splitting. Triple junction devices integrate three semiconductors of different band gaps resulting in a monolithic material that absorbs over a broader spectrum. Amorphous silicon (a-Si) is one such material that, when stacked in tandem, possesses water-splitting capabilities. Even though a-Si is capable of splitting water, it is an unstable material in solution and therefore requires a coating to protect the surface from corrosion. A stable, transparent material that has the potential for corrosion protection is silicon nitride. In this study, silicon nitride thin films were grown using DC magnetron sputtering with varying amounts of argon and nitrogen added to the system. X-ray diffraction indicated amorphous silicon nitride films. Current as a function of potential was determined from cyclic voltammetry measurements. Mott-Schottky analysis showed n-type behavior with absorption and transmission measurements indicated variation in flatband potentials. Variation in band gap values ranging from 1.90 to 4.0 eV. Corrosion measurements reveal that the silicon nitride samples exhibit both p-type and n-type behavior. Photocurrent over a range of potentials was greater in samples that were submerged in acidic electrolyte. Silicon nitride shows good stability in acidic, neutral, and basic solutions, indicative of a good material for corrosion mitigation.

  20. Evolution of target condition in reactive HiPIMS as a function of duty cycle: An opportunity for refractive index grading

    Science.gov (United States)

    Ganesan, Rajesh; Akhavan, Behnam; Partridge, James G.; McCulloch, Dougal G.; McKenzie, David R.; Bilek, Marcela M. M.

    2017-05-01

    Competition between target erosion and compound layer formation during pulse cycles in reactive HiPIMS opens up the possibility of tuning discharge conditions and the properties of deposited films by varying the duty cycle in situ without altering the reactive gas mixture. Three different reactive systems, hafnium in oxygen, tungsten in oxygen, and tungsten in oxygen/nitrogen, are studied in which amorphous films of hafnium oxide (HfO2), tungsten oxide (WO3), and tungsten oxynitride (WOxNy) are deposited. We show that the cyclic evolution of the target surface composition depends on the properties of the target including its affinity for the reactive gas mix and the compound layer melting point and volatility. We find that pulse length variations modulate the target compound layer and hence the discharge chemistry and properties of the films deposited. The refractive indices of HfO2 and WO3 were progressively reduced with the duty cycle, whereas that of WOxNy increased. These variations were found to be due to changes in the chemical composition and/or densification. We present and validate a phenomenological model that explains these findings in terms of a compound layer on the target surface that undergoes evolution during each pulse resulting in a cyclic equilibrium. The end points of the composition of the target surface depend on the duty cycle. Tuning the pulse characteristics holds great promise for the fabrication of multilayer films with through thickness graded properties.

  1. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide—selective functionalization of Si3N4 and SiO2

    Science.gov (United States)

    Liu, Li-Hong; Michalak, David J.; Chopra, Tatiana P.; Pujari, Sidharam P.; Cabrera, Wilfredo; Dick, Don; Veyan, Jean-François; Hourani, Rami; Halls, Mathew D.; Zuilhof, Han; Chabal, Yves J.

    2016-03-01

    The ability to selectively chemically functionalize silicon nitride (Si3N4) or silicon dioxide (SiO2) surfaces after cleaning would open interesting technological applications. In order to achieve this goal, the chemical composition of surfaces needs to be carefully characterized so that target chemical reactions can proceed on only one surface at a time. While wet-chemically cleaned silicon dioxide surfaces have been shown to be terminated with surficial Si-OH sites, chemical composition of the HF-etched silicon nitride surfaces is more controversial. In this work, we removed the native oxide under various aqueous HF-etching conditions and studied the chemical nature of the resulting Si3N4 surfaces using infrared absorption spectroscopy (IRAS), x-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS), and contact angle measurements. We find that HF-etched silicon nitride surfaces are terminated by surficial Si-F and Si-OH bonds, with slightly subsurface Si-OH, Si-O-Si, and Si-NH2 groups. The concentration of surficial Si-F sites is not dependent on HF concentration, but the distribution of oxygen and Si-NH2 displays a weak dependence. The Si-OH groups of the etched nitride surface are shown to react in a similar manner to the Si-OH sites on SiO2, and therefore no selectivity was found. Chemical selectivity was, however, demonstrated by first reacting the -NH2 groups on the etched nitride surface with aldehyde molecules, which do not react with the Si-OH sites on a SiO2 surface, and then using trichloro-organosilanes for selective reaction only on the SiO2 surface (no reactivity on the aldehyde-terminated Si3N4 surface).

  2. Surface etching, chemical modification and characterization of silicon nitride and silicon oxide--selective functionalization of Si3N4 and SiO2.

    Science.gov (United States)

    Liu, Li-Hong; Michalak, David J; Chopra, Tatiana P; Pujari, Sidharam P; Cabrera, Wilfredo; Dick, Don; Veyan, Jean-François; Hourani, Rami; Halls, Mathew D; Zuilhof, Han; Chabal, Yves J

    2016-03-09

    The ability to selectively chemically functionalize silicon nitride (Si3N4) or silicon dioxide (SiO2) surfaces after cleaning would open interesting technological applications. In order to achieve this goal, the chemical composition of surfaces needs to be carefully characterized so that target chemical reactions can proceed on only one surface at a time. While wet-chemically cleaned silicon dioxide surfaces have been shown to be terminated with surficial Si-OH sites, chemical composition of the HF-etched silicon nitride surfaces is more controversial. In this work, we removed the native oxide under various aqueous HF-etching conditions and studied the chemical nature of the resulting Si3N4 surfaces using infrared absorption spectroscopy (IRAS), x-ray photoelectron spectroscopy (XPS), low energy ion scattering (LEIS), and contact angle measurements. We find that HF-etched silicon nitride surfaces are terminated by surficial Si-F and Si-OH bonds, with slightly subsurface Si-OH, Si-O-Si, and Si-NH2 groups. The concentration of surficial Si-F sites is not dependent on HF concentration, but the distribution of oxygen and Si-NH2 displays a weak dependence. The Si-OH groups of the etched nitride surface are shown to react in a similar manner to the Si-OH sites on SiO2, and therefore no selectivity was found. Chemical selectivity was, however, demonstrated by first reacting the -NH2 groups on the etched nitride surface with aldehyde molecules, which do not react with the Si-OH sites on a SiO2 surface, and then using trichloro-organosilanes for selective reaction only on the SiO2 surface (no reactivity on the aldehyde-terminated Si3N4 surface).

  3. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Dante, Roberto C., E-mail: rcdante@yahoo.com [Laboratorio de Tecnologias del Medio Ambiente, Departamento de Ingenieria Agricola y Forestal, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Martin-Ramos, Pablo, E-mail: pablomartinramos@gmail.com [Laboratorio de Tecnologias del Medio Ambiente, Departamento de Ingenieria Agricola y Forestal, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Correa-Guimaraes, Adriana, E-mail: acg@iaf.uva.es [Laboratorio de Tecnologias del Medio Ambiente, Departamento de Ingenieria Agricola y Forestal, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Martin-Gil, Jesus, E-mail: jesusmartingil@gmail.com [Laboratorio de Tecnologias del Medio Ambiente, Departamento de Ingenieria Agricola y Forestal, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain)

    2011-11-01

    Highlights: {yields} Graphitic carbon nitrides by CVD of melamine and uric acid on alumina. {yields} The building blocks of carbon nitrides are heptazine nuclei. {yields} Composite particles with alumina core and carbon nitride coating. - Abstract: Graphitic carbon nitrides were synthesized starting from melamine and uric acid. Uric acid was chosen because it thermally decomposes, and reacts with melamine by condensation at temperatures in the range of 400-600 deg. C. The reagents were mixed with alumina and subsequently the samples were treated in an oven under nitrogen flux. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). Infrared (IR) spectra, as well as X-ray diffraction (XRD) patterns, are in accordance with the formation of a graphitic carbon nitride with a structure based on heptazine blocks. These carbon nitrides exhibit poor crystallinity and a nanometric texture, as shown by transmission electron microscopy (TEM) analysis. The thermal degradation of the graphitic carbon nitride occurs through cyano group formation, and involves the bridging tertiary nitrogen and the bonded carbon, which belongs to the heptazine ring, causing the ring opening and the consequent network destruction as inferred by connecting the IR and X-ray photoelectron spectroscopy (XPS) results. This seems to be an easy and promising route to synthesize graphitic carbon nitrides. Our final material is a composite made of an alumina core covered by carbon nitride layers.

  4. Modeling the Growth of Aluminum Gallium Nitride ((Al)GaN) Films Grown on Aluminum Nitride (AlN) Substrates

    Science.gov (United States)

    2011-03-01

    cadmium zinc telluride ( CdZnTe or CZT) on Si using a superlattice (SL) in which the SL layers had different compositions (10). We found that the...Abbreviations, and Acronyms (Al)GaN aluminum gallium arsenide AlN aluminum nitride ARL U.S. Army Research Laboratory CdZnTe or CZT cadmium zinc

  5. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided; Caracterizacion microestructural de un acero AISI-SAE 4140 sin nitrurar y nitrurado

    Energy Technology Data Exchange (ETDEWEB)

    Medina F, A.; Naquid G, C. [Gerencia de Ciencia de Materiales, Depto. de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  6. Experimental studies on the diffusion of hydrogen in Nb{sub 0.8}Mo{sub 0.2} and hafnium; Experimentelle Untersuchungen zur Diffusion von Wasserstoff und Deuterium in Nb{sub 0.8}Mo{sub 0.2} und Hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Leu, B.

    2006-11-13

    In this PhD-thesis the diffusion of hydrogen and deuterium in Nb{sub 0.8}Mo{sub 0.2} and hafnium is studied by mechanical spectroscopy. The thesis is divided in two parts: (1) H and D in Nb{sub 0.8}Mo{sub 0.2}: The diffusion of hydrogen in body-centered cubic (bcc) metals up to room-temperature is dominated by tunneling. Tunneling processes are usually more dominant at lower temperatures. Hydrogen in pure niobium is a prototype for the tunneling dominated diffusion. At temperatures below T<120 K the diffusion of hydrogen in pure niobium cannot be measured because of precipitation of hydrogen-rich phases, in which diffusion cannot take place. It was shown by neutron spectroscopy that the precipitation of hydrogen-rich phases at low temperatures is supressed in Nb{sub 0.8}Mo{sub 0.2} for hydrogen concentrations up to x=0.05. Experiments studying the diffusion of hydrogen and deuterium in Nb{sub 0.8}Mo{sub 0.2} were taken with mechanical spectroscopy (vibrating-reed-technique, temperature range 4.2 Khafnium: Hafnium is in the same group as titanium and zirconium. so a very similar behaviour of all the hydrides is expected. The diffusion of hydrogen at high concentrations in titanium and zirconium is well examined by various experimental techniques. For hydrogen in hafnium there exists only very few data, all taken by NMR. The goal of this work is to extend these data to an other temperature and frequency range by the use of a different experimental technique. Depending on the concentration hafnium hydride forms one of two phases: a face-centered cubic (fcc) phase for 1.53

  7. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  8. Salt Bath Nitriding of CP Titanium Grade-2 and TI-6AL-4V Grade-5

    Science.gov (United States)

    Deepak, J. R.; Bupesh Raja, V. K.; Kumar, K. Arun; Varun Radhakrishnan, H.; Skariah Thomas, Sonu

    2017-05-01

    Titanium is known for its strong affinity towards nitrogen. The metal forms a nitride form case of high hardness when the salt bath nitriding is carried out. The selection of Grade 2 Titanium and Grade 5 Ti6Al4V Titanium alloy, stands with the fact that CP Grade 2 Titanium is the most formable and corrosion resistant amongst the pure grades of Titanium and grade 5 alloy is biocompatible and also has excellent tribological properties. This research work attempts to solve the problem of galling by comparing the morphology of the nitride case produced in Commercially Pure Grade 2 Titanium and the nitride formations produced in the Titanium Ti6Al4V alloy through Salt bath nitriding for a time span of 24 hours. Salt Bath Nitriding imparts unique improvements in Roughness, Hardness and Wear resistance of the samples thereby widening the applications of the material.

  9. On the effect of pre-oxidation on the nitriding kinetics

    DEFF Research Database (Denmark)

    Friehling, Peter Bernhard; Somers, Marcel A. J.

    2000-01-01

    The oxidation of ferritic surfaces prior to gaseous nitriding has been reported to lead to improved uniformity of the compound layer thickness and enhanced nitriding kinetics. The present work considers the nucleation and growth of a model compound layer on pure iron and, using previous experimen......The oxidation of ferritic surfaces prior to gaseous nitriding has been reported to lead to improved uniformity of the compound layer thickness and enhanced nitriding kinetics. The present work considers the nucleation and growth of a model compound layer on pure iron and, using previous...... experimental and theoretical work reported in the literature, puts forward two hypotheses to explain the effects of pre-oxidation on compound layer formation. It is proposed that the nucleation of iron nitrides is enhanced by the presence of an iron-oxide layer and that the growth of an iron-nitride layer...

  10. PRODUCTION OF HAFNIUM METAL

    Science.gov (United States)

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  11. Carbon growth from gas phase on various modifications of boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseev, D.V.; Kochergina, A.A.; Bukhovets, V.L.; Vnukov, S.P. (AN SSSR, Moscow. Inst. Fizicheskoj Khimii)

    1983-05-01

    It is shown that at 450 deg C and 10 Torr the rate of carbon deposition on dense modifications of boron nitride-sphalerite- and wurtzite-like ones (analogues of diamond and lonsdaleite) by far surpasses the rate of growth on graphite-like boron nitride. Using the X-ray diffraction method and selective plasma etching of graphite a possibility of building-up thin diamond layers on the surface of dense modifications of boron nitride is shown.

  12. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    OpenAIRE

    Ion, Raluca; Luculescu, Catalin; Cimpean, Anisoara; Marx, Philippe; Gordin, Doina-Margareta; Gloriant, Thierry

    2016-01-01

    International audience; Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investiga...

  13. Fabrication and Optical Recombination in III-Nitride Microstructures and Devices

    Science.gov (United States)

    2003-10-01

    Fabrication and optical investigations of III-nitride microstructures Our group has pioneered the fabrication of micro - and nano -size photonic... pumped individual III-nitride micro -size LEDs and micro -LED arrays and observed enhanced quantum efficiencies. The micro -size LEDs were fabricated...quality III-nitride QWs, heterostructures, microstructures, and micro -devices and to study their optical and optoeletronic properties. By optimizing

  14. Effects of oxygen partial pressure and annealing temperature on the residual stress of hafnium oxide thin-films on silicon using synchrotron-based grazing incidence X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Debaleen [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Sinha, Anil Kumar [ISU, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Homi Bhabha National Institute, BARC, Mumbai 400 094 (India); Chakraborty, Supratic, E-mail: supratic.chakraborty@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India)

    2016-10-30

    Highlights: • Residual stress estimation thin hafnium oxide film with thickness of <10 nm. • A mathematical expression is proposed for stress estimation of thin-film using GIXRD. • Residual stress varies with argon content in Ar/O{sub 2} plasma and annealing temperature. • Variation of stress is explained by IL swelling and enhanced structural relaxation. - Abstract: Synchrotron radiation-based grazing incidence X-ray diffraction (GI-XRD) technique is employed here to estimate the residual stress of < 10 nm thin hafnium oxide film deposited on Si (100) substrate at different argon/oxygen ratios using reactive rf sputtering. A decrease in residual stress, tensile in nature, is observed at higher annealing temperature for the samples deposited with increasing argon ratio in the Ar/O{sub 2} plasma. The residual stress of the films deposited at higher p{sub Ar} (Ar:O{sub 2} = 4:1) is also found to be decreased with increasing annealing temperature. But the stress is more or less constant with annealing temperature for the films deposited at lower Ar/O{sub 2} (1:4) ratio. All the above phenomena can be explained on the basis of swelling of the interfacial layer and enhanced structural relaxation in the presence of excess Hf in hafnium oxide film during deposition.

  15. Photocurrent generation in carbon nitride and carbon nitride/conjugated polymer composites.

    Science.gov (United States)

    Byers, Joshua C; Billon, Florence; Debiemme-Chouvy, Catherine; Deslouis, Claude; Pailleret, Alain; Semenikhin, Oleg A

    2012-09-26

    The semiconductor and photovoltaic properties of carbon nitride (CNx) thin films prepared using a reactive magnetron cathodic sputtering technique were investigated both individually and as composites with an organic conjugated polymer, poly(2,2'-bithiophene) (PBT). The CNx films showed an increasing thickness as the deposition power and/or nitrogen content in the gas mixture increase. At low nitrogen content and low deposition power (25-50 W), the film structure was dominated by the abundance of the graphitic sp(2) regions, whereas at higher nitrogen contents and magnetron power CNx films started to demonstrate semiconductor properties, as evidenced by the occurrence of photoconductivity and the development of a space charge region. However, CNx films alone did not show any reproducible photovoltaic properties. The situation changed, however, when CNx was deposited onto conjugated PBT substrates. In this configuration, CNx was found to function as an acceptor material improving the photocurrent generation both in solution and in solid state photovoltaic devices, with the external quantum efficiencies reaching 1% at high nitrogen contents. The occurrence of the donor-acceptor charge transfer was further evidenced by suppression of the n-doping of the PBT polymer by CNx. Nanoscale atomic force microscopy (AFM) and current-sensing AFM data suggested that CNx may form a bulk heterojunction with PBT.

  16. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  17. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.

  18. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy.

    Science.gov (United States)

    Ion, Raluca; Luculescu, Catalin; Cimpean, Anisoara; Marx, Philippe; Gordin, Doina-Margareta; Gloriant, Thierry

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The influence of nitride thickness variations on the switching speed of MNOS memory transistors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1978-01-01

    The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well with measu......The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well...

  20. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    Science.gov (United States)

    Hui, Rongqing [Lenexa, KS; Jiang, Hong-Xing [Manhattan, KS; Lin, Jing-Yu [Manhattan, KS

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  1. Discontinuous precipitation in a nickel-free high nitrogen austenitic stainless steel on solution nitriding

    DEFF Research Database (Denmark)

    Mohammadzadeh, Roghayeh; Akbari, Alireza; Grumsen, Flemming Bjerg

    2017-01-01

    elements between austenite and nitrides, with chromium contents of about 80 wt.% in the precipitates. XRD analysis indicated that the Chromium-rich nitride precipitates are hexagonal (Cr, Mo)2N. Based on the TEM studies, (Cr, Mo)2N precipitates presented a (1 1 1)γ//(0 0 2)(Cr, Mo)2N, (Formula presented......, morphology and crystallographic orientation between the resulted austenite and precipitates were investigated using optical microscopy, X-ray Diffraction (XRD), Scanning and Transmission Electron Microscopy (TEM) and Electron Back Scatter Diffraction (EBSD). On prolonged nitriding, Chromium-rich nitride...

  2. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  3. Silicon nitride passivated bifacial Cz-silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, L. [Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen (Germany); Solland Solar Cells GmbH, Bohr 12, 52072 Aachen (Germany); Windgassen, H.; Baetzner, D.L. [Institute of Semiconductor Electronics, RWTH Aachen University, Sommerfeldstr. 24, 52074 Aachen (Germany); Bitnar, B.; Neuhaus, H. [Deutsche Cell GmbH, Berthelsdorfer Str. 111a, 09599 Freiberg (Germany)

    2009-08-15

    A new process for all silicon nitride passivated silicon solar cells with screen printed contacts is analysed in detail. Since the contacts are fired through the silicon nitride layers on both sides, the process is easy to adapt to industrial production. The potential and limits of the presented bifacial design are simulated and discussed. The effectiveness of the presented process depends strongly on the base doping of the substrate, but only the open circuit voltage is affected. The current is mainly determined by the rear surface passivation properties. Thus, using a low resistivity (<1.5{omega}cm) base material higher efficiencies compared to an aluminium back surface field can be achieved. (author)

  4. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2017-01-01

    The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performanc...

  5. Point defects in thorium nitride: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2016-11-15

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  6. Neutron detection using boron gallium nitride semiconductor material

    Directory of Open Access Journals (Sweden)

    Katsuhiro Atsumi

    2014-03-01

    Full Text Available In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  7. Alternative catalytic materials: carbides, nitrides, phosphides and amorphous boron alloys.

    Science.gov (United States)

    Alexander, Anne-Marie; Hargreaves, Justin S J

    2010-11-01

    Catalysts generated by the addition of carbon, nitrogen or phosphorus to transition metals have interesting properties and potential applications. The addition of carbon, nitrogen or phosphorus can lead to substantial modification of the catalytic efficacy of the parent metal and some carbides and nitrides are claimed to be comparable to noble metals in their behaviour. Amorphous boron transition metal alloys are also a class of interesting catalyst, although their structures and phase composition are more difficult to define. In this critical review, the preparation of these catalysts is described and brief details of their application given. To date, attention has largely centred upon the application of these materials as alternatives for existing catalysts. However, novel approaches towards their utilisation can be envisaged. For example, the extent to which it is possible to utilise the "activated" carbon and nitrogen species within the host lattices of carbides and nitrides, respectively, as a reactant remains largely unexplored (195 references).

  8. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  9. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Zhu, Tongtong; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States)

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  10. An Annotated Bibliography on Silicon Nitride for Structural Applications

    Science.gov (United States)

    1977-03-01

    microscopy. The major oxidation product is cristobalite which forms around internal pores (Stage I) and eventually as a dense surface layer (Stage II...specimen is not cooled through the cristobalite inversion temperature at ~250 C. 21. Engel, W., Gugel, E., and Thuemmler, F., "Fluage du niture de...the reaction. 35. Grieveson, P., Jack, K. H., and Wild, S., "The Crystal Structures of Alpha and Beta Silicon and Germanium Nitrides", Special

  11. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  12. Gallium Nitride Direct Energy Conversion Betavoltaic Modeling and Optimization

    Science.gov (United States)

    2017-03-01

    Gallium Nitride Direct Energy Conversion Betavoltaic Modeling and Optimization William B. Ray II1, Marc S. Litz2, Johnny A. Russo Jr.2, Stephen B...betavoltaic; wide- bandgap betavoltaic; beta-photovoltaic; betaphotovoltaic; tritium; low power high energy battery; betavoltaic battery; Silvaco ATLAS...semiconductor device simulation; MCNPX Introduction A growing problem in power electronics is high energy density, long lasting power sources where the

  13. Counter-rotating cavity solitons in a silicon nitride microresonator

    Science.gov (United States)

    Joshi, Chaitanya; Klenner, Alexander; Okawachi, Yoshitomo; Yu, Mengjie; Luke, Kevin; Ji, Xingchen; Lipson, Michal; Gaeta, Alexander L.

    2018-02-01

    We demonstrate the generation of counter-rotating cavity solitons in a silicon nitride microresonator using a fixed, single-frequency laser. We demonstrate a dual 3-soliton state with a difference in the repetition rates of the soliton trains that can be tuned by varying the ratio of pump powers in the two directions. Such a system enables a highly compact, tunable dual comb source that can be used for applications such as spectroscopy and distance ranging.

  14. Development of compound layer during nitriding and nitrocarburising

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    2010-01-01

    The development of the compound layer during gaseous nitriding and nitrocarburising of Fe-based material is described. The first nucleation of the compound layer at the surface depends on the competition between dissociation of ammonia and the removal nitrogen from the surface by solid state...... diffusion and desorption or the competition with a carburising reaction. During layer growth surface reactions as well as solid state diffusion and phase transformations determine the layer growth kinetics....

  15. Dry Lubrication of High Temperature Silicon Nitride Rolling Contacts.

    Science.gov (United States)

    1980-11-01

    contamination from alumina fiber insulation surrounding the metal housing a small, metal, chimney-like arrangement was used to separate the insulation from...nitride five ball assembly revealed considerable zirconia dust on the ball surfaces and fibers from the alumina insulation surrounding the metal...Santa Ana, California 92705 "- ---- -izm_: No. of Copies Coors Porcelain Company 1 600 Ninth Street Golden, Colorado 80401 Attention: Research

  16. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.

    Science.gov (United States)

    Li, Wei; Guler, Urcan; Kinsey, Nathaniel; Naik, Gururaj V; Boltasseva, Alexandra; Guan, Jianguo; Shalaev, Vladimir M; Kildishev, Alexander V

    2014-12-17

    A high-temperature stable broadband plasmonic absorber is designed, fabricated, and optically characterized. A broadband absorber with an average high absorption of 95% and a total thickness of 240 nm is fabricated, using a refractory plasmonic material, titanium nitride. This absorber integrates both the plasmonic resonances and the dielectric-like loss. It opens a path for the interesting applications such as solar thermophotovoltaics and optical circuits. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride

    Science.gov (United States)

    DaSilva, Ashley M.; Jung, Jeil; MacDonald, Allan H.

    2016-07-01

    In fractionally filled Landau levels there is only a small energy difference between broken translational symmetry electron-crystal states and exotic correlated quantum fluid states. We show that the spatially periodic substrate interaction associated with the long period moiré patterns present in graphene on nearly aligned hexagonal boron nitride tilts this close competition in favor of the former, explaining surprising recent experimental findings.

  18. Prospects of III-nitride optoelectronics grown on Si.

    Science.gov (United States)

    Zhu, D; Wallis, D J; Humphreys, C J

    2013-10-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al2O3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures.

  19. Metal nitride cluster fullerenes: their current state and future prospects.

    Science.gov (United States)

    Dunsch, Lothar; Yang, Shangfeng

    2007-08-01

    The world of endohedral fullerenes was significantly enlarged over the past seven years by the cluster fullerenes, which contain structures such as the M(2)C(2) carbides and the M(3)N nitrides. While the carbide clusters are generated under the standard arc-burning conditions according to stabilization conditions, the nitride cluster fullerenes (NCFs) are formed by varying the composition of the cooling gas atmosphere in the arc-burning process. The special conditions for NCF synthesis is described in detail and the optimum conditions for the production of NCFs as the main product in fullerene syntheses are given. A general review of all NCFs reported to date consists of the structures, properties, and stability of the NCFs as well as the abundance of the NCFs in the fullerene soot. It is shown that all cages with even carbon atoms from C(68) to C(98) are available as endohedral nitride cluster structures (with the exception of C(72), C(74), and C(76)). Specifically, the NCFs form the largest number of structures that violate the isolated pentagon rule (IPR). Finally some practical applications of these cluster fullerenes are illustrated and an outlook is given, taking the superior stability of these endohedral fullerenes into account.

  20. Magnetovolume effects in manganese nitrides with antiperovskite structure

    Science.gov (United States)

    Takenaka, Koshi; Ichigo, Masayoshi; Hamada, Taisuke; Ozawa, Atsushi; Shibayama, Takashi; Inagaki, Tetsuya; Asano, Kazuko

    2014-02-01

    Magnetostructural correlations in antiperovskite manganese nitrides were investigated systematically for stoichiometric and solid solution Mn3Cu1-xAxN (A = Co, Ni, Zn, Ga, Ge, Rh, Pd, Ag, In, Sn or Sb). This class of nitrides is attracting great attention because of their giant negative thermal expansion, which is achieved by doping Ge or Sn into the A site as a relaxant of the sharp volume contraction on heating (spontaneous volume magnetostriction ωs) because of the magnetovolume effects. The physical background of large ωs and mechanism of how the volume contraction becomes gradual with temperature are central concerns for the physics and applications of these nitrides. An entire dataset of thermal expansion, crystal structure and magnetization demonstrates that the cubic triangular antiferromagnetic state is crucial for large ωs. The intimate relationship between ωs and the magnetic structure is discussed in terms of geometrical frustration related to the Mn6N octahedron and magnetic stress concept. The results presented herein also show that ωs depends on the number of d electrons in the A atom, suggesting the important role of the d orbitals of the A atom. Not all the dopants in the A site, but the elements that disturb the cubic triangular antiferromagnetic state, are effective in broadening the volume change. This fact suggests that instability neighboring the phase boundary is related to the broadening. The relation between the gradual volume change and the local structure anomaly is suggested by recent microprobe studies.