WorldWideScience

Sample records for haematopoietic progenitor cells

  1. Commitment of decidual haematopoietic progenitor cells in first trimester pregnancy.

    Science.gov (United States)

    Szereday, Laszlo; Miko, Eva; Meggyes, Matyas; Barakonyi, Aliz; Farkas, Balint; Varnagy, Akos; Bodis, Jozsef; Lynch, Lydia; O'Farrelly, Cliona; Szekeres-Bartho, Julia

    2012-01-01

    PROBLEM  The aim of this study was to investigate the phenotype and commitment of decidual haematopoietic progenitor cells (HPCs) in healthy pregnant women and in women with early miscarriage. METHOD OF STUDY  Peripheral blood and decidual tissue from healthy and pathological pregnant women were examined for HPCs and lymphoid progenitors using flow cytometric analysis. RESULTS  Compared with peripheral blood, we found a significant increase in decidual HPCs in both healthy pregnant women and women with spontaneous abortion. T/NK, natural killer (NK), gamma-delta and NKT cell progenitors were identified in all peripheral blood and decidual samples. In pathologic pregnant women, the ratios of decidual T/NK and NK cell progenitors were significantly increased compared with healthy pregnant controls. CONCLUSION  We demonstrated decidual cells with haematopoietic progenitor cell phenotype in human decidua. Increased levels of NK progenitors in the decidua of women with early spontaneous abortion suggest a dysregulation of this pathway that may contribute to pregnancy failure. © 2011 John Wiley & Sons A/S.

  2. Emerging concepts for the in vitro derivation of murine haematopoietic stem and progenitor cells.

    Science.gov (United States)

    Garcia-Alegria, Eva; Menegatti, Sara; Batta, Kiran; Cuvertino, Sara; Florkowska, Magdalena; Kouskoff, Valerie

    2016-11-01

    Well into the second decade of the 21st century, the field of regenerative medicine is bursting with hopes and promises to heal young and old. The bespoken generation of cells is thought to offer unprecedented cures for a vast range of diseases. Haematological disorders have already benefited tremendously from stem cell therapy in the form of bone marrow transplantation. However, lack of compatible donors often means that patients remain on transplantation waiting lists for too long. The in vitro derivation of haematopoietic stem cells offers the possibility to generate tailor-made cells for the treatment of these patients. Promising approaches to generate in vitro-derived blood progenitors include the directed differentiation of pluripotent stem cells and the reprogramming of somatic cells. © 2016 Federation of European Biochemical Societies.

  3. Expression of Fbxo7 in haematopoietic progenitor cells cooperates with p53 loss to promote lymphomagenesis.

    Directory of Open Access Journals (Sweden)

    Mikhail Lomonosov

    Full Text Available Fbxo7 is an unusual F box protein that augments D-type cyclin complex formation with Cdk6, but not Cdk4 or Cdk2, and its over-expression has been demonstrated to transform immortalised fibroblasts in a Cdk6-dependent manner. Here we present new evidence in vitro and in vivo on the oncogenic potential of this regulatory protein in primary haematopoietic stem and progenitor cells (HSPCs. Increasing Fbxo7 expression in HSPCs suppressed their colony forming ability in vitro, specifically decreasing CD11b (Mac1 expression, and these effects were dependent on an intact p53 pathway. Furthermore, increased Fbxo7 levels enhanced the proliferative capacity of p53 null HSPCs when they were grown in reduced concentrations of stem cell factor. Finally, irradiated mice reconstituted with p53 null, but not wild-type, HSPCs expressing Fbxo7 showed a statistically significant increase in the incidence of T cell lymphoma in vivo. These data argue that Fbxo7 negatively regulates the proliferation and differentiation of HSPCs in a p53-dependent manner, and that in the absence of p53, Fbxo7 expression can promote T cell lymphomagenesis.

  4. Persistent response of Fanconi anemia haematopoietic stem and progenitor cells to oxidative stress.

    Science.gov (United States)

    Li, Yibo; Amarachintha, Surya; Wilson, Andrew F; Li, Xue; Du, Wei

    2017-06-18

    Oxidative stress is considered as an important pathogenic factor in many human diseases including Fanconi anemia (FA), an inherited bone marrow failure syndrome with extremely high risk of leukemic transformation. Members of the FA protein family are involved in DNA damage and other cellular stress responses. Loss of FA proteins renders cells hypersensitive to oxidative stress and cancer transformation. However, how FA cells respond to oxidative DNA damage remains unclear. By using an in vivo stress-response mouse strain expressing the Gadd45β-luciferase transgene, we show here that haematopoietic stem and progenitor cells (HSPCs) from mice deficient for the FA gene Fanca or Fancc persistently responded to oxidative stress. Mechanistically, we demonstrated that accumulation of unrepaired DNA damage, particularly in oxidative damage-sensitive genes, was responsible for the long-lasting response in FA HSPCs. Furthermore, genetic correction of Fanca deficiency almost completely abolished the persistent oxidative stress-induced G 2 /M arrest and DNA damage response in vivo. Our study suggests that FA pathway is an integral part of a versatile cellular mechanism by which HSPCs respond to oxidative stress.

  5. In vitro toxicity of trichothecenes on rat haematopoietic progenitors.

    Science.gov (United States)

    Parent-Massin, D; Thouvenot, D

    1995-01-01

    The fusarial toxicosis induced by trichothecenes is characterized by common syndromes such as vomiting, inflammation, haemorrhages, diarrhoea and haematological changes. Subchronic ingestion of trichothecenes causes a decrease in circulating white cells. This leukopenic change of animals is reported as a characteristic feature in the best known human disorder: Alimentary Toxic Aleukia (ATA). The aim of the present study was to evaluate whether the haematologic disorders imputed to trichothecenes were a result of myelotoxicity by investigating in an in vitro model. Rat haematopoietic progenitors, Colony Forming Units-Granulocytes and Macrophages (CFU-GM), were cultured in the presence of several concentrations of four trichothecenes; T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and deoxynivalenol (DON). All these trichothecenes were cytotoxic to rat haematopoietic progenitor cells. It is concluded that haematological disorders observed during trichothecene intoxication of animals are caused by the destruction of haematopoietic progenitors such as CFU-GM cells.

  6. File list: Pol.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor mm9 RNA polymerase Pluripot...ent stem cell mESC derived haematopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  7. File list: NoD.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor mm9 No description Pluripot...ent stem cell mESC derived haematopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  8. File list: Pol.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor mm9 RNA polymerase Pluripot...ent stem cell mESC derived haematopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  9. File list: His.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor mm9 Histone Pluripotent stem cell mESC derived hae...matopoietic progenitor SRX282672,SRX528335 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  10. File list: Oth.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor mm9 TFs and others Pluripot...ent stem cell mESC derived haematopoietic progenitor SRX310196,SRX825828,SRX825829,SRX021436,SRX310197,SRX82...iencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  11. File list: DNS.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor mm9 DNase-seq Pluripotent stem cell mESC derived hae...matopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  12. File list: Oth.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor mm9 TFs and others Pluripot...ent stem cell mESC derived haematopoietic progenitor SRX825828,SRX310197,SRX825829,SRX310196,SRX378972,SRX02...iencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  13. File list: NoD.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor mm9 No description Pluripot...ent stem cell mESC derived haematopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  14. File list: Oth.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor mm9 TFs and others Pluripot...ent stem cell mESC derived haematopoietic progenitor SRX825828,SRX310197,SRX310196,SRX825829,SRX021436,SRX37...iencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  15. File list: Pol.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor mm9 RNA polymerase Pluripot...ent stem cell mESC derived haematopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  16. File list: DNS.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor mm9 DNase-seq Pluripotent stem cell mESC derived hae...matopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  17. File list: DNS.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor mm9 DNase-seq Pluripotent stem cell mESC derived hae...matopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  18. File list: Pol.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor mm9 RNA polymerase Pluripot...ent stem cell mESC derived haematopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  19. File list: NoD.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor mm9 No description Pluripot...ent stem cell mESC derived haematopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  20. File list: Oth.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor mm9 TFs and others Pluripot...ent stem cell mESC derived haematopoietic progenitor SRX310196,SRX825828,SRX825829,SRX021436,SRX310197,SRX37...iencedbc.jp/kyushu-u/mm9/assembled/Oth.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  1. File list: His.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor mm9 Histone Pluripotent stem cell mESC derived hae...matopoietic progenitor SRX282672,SRX528335 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  2. File list: NoD.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor mm9 No description Pluripot...ent stem cell mESC derived haematopoietic progenitor http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  3. Towards a global system of vigilance and surveillance in unrelated donors of haematopoietic progenitor cells for transplantation.

    Science.gov (United States)

    Shaw, B E; Chapman, J; Fechter, M; Foeken, L; Greinix, H; Hwang, W; Phillips-Johnson, L; Korhonen, M; Lindberg, B; Navarro, W H; Szer, J

    2013-11-01

    Safety of living donors is critical to the success of blood, tissue and organ transplantation. Structured and robust vigilance and surveillance systems exist as part of some national entities, but historically no global systems are in place to ensure conformity, harmonisation and the recognition of rare adverse events (AEs). The World Health Assembly has recently resolved to require AE/reaction (AE/R) reporting both nationally and globally. The World Marrow Donor Association (WMDA) is an international organisation promoting the safety of unrelated donors and progenitor cell products for use in haematopoietic progenitor cell (HPC) transplantation. To address this issue, we established a system for collecting, collating, analysing, distributing and reacting to serious adverse events and reactions (SAE/R) in unrelated HPC donors. The WMDA successfully instituted this reporting system with 203 SAE/R reported in 2011. The committee generated two rapid reports, reacting to specific SAE/R, resulting in practice changing policies. The system has a robust governance structure, formal feedback to the WMDA membership and transparent information flows to other agencies, specialist physicians and transplant programs and the general public.

  4. File list: ALL.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor mm9 All antigens Pluripoten...t stem cell mESC derived haematopoietic progenitor SRX310196,SRX825828,SRX825829,SRX021436,SRX021809,SRX0218...118005,SRX118002,SRX1091083,SRX118006,SRX180154,SRX006800 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  5. File list: InP.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor mm9 Input control Pluripote...nt stem cell mESC derived haematopoietic progenitor SRX021434,SRX282673,SRX021433,SRX180154,SRX118006 http:/.../dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  6. File list: ALL.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor mm9 All antigens Pluripoten...t stem cell mESC derived haematopoietic progenitor SRX310196,SRX825828,SRX825829,SRX021436,SRX021816,SRX3101...X021434,SRX021433,SRX118002,SRX118006,SRX180154,SRX006800 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  7. File list: InP.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor mm9 Input control Pluripote...nt stem cell mESC derived haematopoietic progenitor SRX282673,SRX021434,SRX021433,SRX118006,SRX180154 http:/.../dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  8. File list: ALL.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor mm9 All antigens Pluripoten...t stem cell mESC derived haematopoietic progenitor SRX825828,SRX282672,SRX310197,SRX021810,SRX825829,SRX5283...X006799,SRX118005,SRX021433,SRX180154,SRX006800,SRX118006 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  9. File list: InP.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor mm9 Input control Pluripote...nt stem cell mESC derived haematopoietic progenitor SRX282673,SRX021434,SRX021433,SRX180154,SRX118006 http:/.../dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  10. File list: InP.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor mm9 Input control Pluripote...nt stem cell mESC derived haematopoietic progenitor SRX282673,SRX021433,SRX021434,SRX118006,SRX180154 http:/.../dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  11. File list: Unc.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor mm9 Unclassified Pluripoten...t stem cell mESC derived haematopoietic progenitor SRX021809,SRX021816,SRX472603,SRX021810,SRX021813,SRX0218...15,SRX021808,SRX021811,SRX021818,SRX021814,SRX021817,SRX021812 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.10.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  12. File list: ALL.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor mm9 All antigens Pluripoten...t stem cell mESC derived haematopoietic progenitor SRX825828,SRX021816,SRX282672,SRX310197,SRX021809,SRX0218...X021437,SRX006799,SRX021433,SRX180154,SRX006800,SRX118006 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  13. File list: Unc.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor mm9 Unclassified Pluripoten...t stem cell mESC derived haematopoietic progenitor SRX021810,SRX021811,SRX472603,SRX021809,SRX021808,SRX0218...16,SRX021814,SRX021818,SRX021813,SRX021815,SRX021812,SRX021817 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.50.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  14. File list: Unc.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor mm9 Unclassified Pluripoten...t stem cell mESC derived haematopoietic progenitor SRX021816,SRX021809,SRX021810,SRX472603,SRX021813,SRX0218...17,SRX021815,SRX021818,SRX021811,SRX021808,SRX021814,SRX021812 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.05.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  15. File list: Unc.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor mm9 Unclassified Pluripoten...t stem cell mESC derived haematopoietic progenitor SRX021816,SRX021809,SRX021810,SRX021813,SRX472603,SRX0218...11,SRX021808,SRX021814,SRX021818,SRX021817,SRX021815,SRX021812 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.PSC.20.AllAg.mESC_derived_haematopoietic_progenitor.bed ...

  16. Short and long-term safety of lenograstim administration in healthy peripheral haematopoietic progenitor cell donors: a single centre experience.

    Science.gov (United States)

    Martino, M; Console, G; Dattola, A; Callea, I; Messina, G; Moscato, T; Massara, E; Irrera, G; Fedele, R; Gervasi, A; Bresolin, G; Iacopino, P

    2009-08-01

    Healthy donors (HDs) who were mobilized using lenograstim (LENO) and who were undergoing peripheral haematopoietic progenitor cell collection with apheresis (HPC-A) were enrolled in a surveillance protocol. In all, 184 HDs have been assessed with a median follow-up of 62 months (range 2-155). HDs received LENO at a median dose of 10 microg/kg (range 5-15). Bone pain was reported as the most frequent short-term adverse event (71.2%). Other commonly observed short-term symptoms included fatigue (19.0%), fever (5.4%), headache (27.7%), nausea (12.0%) and insomnia (22.3%). Spleen size increased in 4.3% of the donors. No vascular disorders or cardiac disease occurred. Long-term follow-up included monitoring of adverse events, neoplastic disease or other pathologies. Transit ischaemic attack occurred in one donor (39 months post-donation). One autoimmune event was reported at 28 months post-recombinant human granulocyte (rhG)-CSF (ankylosing spondylitis); one donor with a history of chronic obstructive pulmonary disease developed secondary polyglobulia (50 months post-rhG-CSF). One donor was diagnosed with lung cancer at 19 months post-donation. No haematological disease was observed. In conclusion, the short-term safety appears to be verified, whereas, although the study identified no increased risks of malignancy among HDs who received rhG-CSF, long-term safety requires more complete data sets, especially a longer follow-up and a larger number of HDs.

  17. Comparison of single and dual-platform assay formats for CD34+ haematopoietic progenitor cell enumeration

    NARCIS (Netherlands)

    Gratama, J. W.; Braakman, E.; Kraan, J.; Lankheet, P.; Levering, W. H.; van den Beemd, M. W.; van der Schoot, C. E.; Wijermans, P.; Preijers, F.

    1999-01-01

    Most techniques for CD34+ cell enumeration are dual platform assays. That is, they derive absolute numbers of CD34+ cells from either the flow cytometrically assessed per cent (%) CD34+ cells within the nucleated cells and/or the white blood cell count from a haematology cell analyser. Recently,

  18. Adverse reactions during transfusion of thawed haematopoietic progenitor cells from apheresis are closely related to the number of granulocyte cells in the leukapheresis product.

    Science.gov (United States)

    Martín-Henao, G A; Resano, P M; Villegas, J M S; Manero, P P; Sánchez, J M; Bosch, M P; Codins, A E; Bruguera, M S; Infante, L R; Oyarzabal, A P; Soldevila, R N; Caiz, D C; Bosch, L M; Barbeta, E C; Ronda, J R G

    2010-10-01

    The infusion of thawed haematopoietic progenitor cells from apheresis (HPC-A) is associated with minor but frequent adverse reactions (ARs), which has been mainly attributed to dimethyl sulphoxide (DMSO). Nevertheless, other factors may play a role in the pathogenesis of such toxicity. The ARs on a cohort of 423 cryopreserved HPC-A infusions for 398 patients in HPC transplantation program were analysed. ARs were reported in 105 graft infusions (24·8%) and most of them were graded as mild to moderate. The most frequently reported ARs were gastrointestinal and respiratory, and three patients presented epileptic seizure. The volume of DMSO/kg (P < 0·001), volume of red-blood-cells/kg (P = 0·02), number of nuclear cells (NCs)/kg (P <0·001) and number of granulocytes/kg (P<0·001) in the infused graft were significant in the univariate analysis for the occurrence of ARs. The amount of granulocytes/kg remained significant in the multivariate analysis (P<0·001). The grade of ARs also correlated with the amount of cryopreserved granulocytes. The incidence and grade of ARs during infusion of cryopreserved HPC-A are related to the amount of granulocytes in the graft. © 2010 The Author(s). Vox Sanguinis © 2010 International Society of Blood Transfusion.

  19. Targeting the delivery of systemically administered haematopoietic stem/progenitor cells to the inflamed colon using hydrogen peroxide and platelet microparticle pre-treatment strategies

    Directory of Open Access Journals (Sweden)

    Adrian Yemm

    2015-11-01

    Full Text Available Haematopoietic stem and progenitor cell (HSC therapy may be promising for the treatment of inflammatory bowel disorders (IBDs. However, clinical success remains poor, partly explained by limited HSC recruitment following systemic delivery. The mechanisms governing HSC adhesion within inflamed colon, and whether this event can be enhanced, are not known. An immortalised HSC-like line (HPC7 was pre-treated with hydrogen peroxide (H2O2, activated platelet releasate enriched supernatant (PES or platelet microparticles (PMPs. Subsequent adhesion was monitored using adhesion assays or in vivo ischaemia–reperfusion (IR and colitis injured mouse colon intravitally. Integrin clustering was determined confocally and cell morphology using scanning electron microscopy. Both injuries resulted in increased HPC7 adhesion within colonic mucosal microcirculation. H2O2 and PES significantly enhanced adhesion in vitro and in the colitis, but not IR injured, colon. PMPs had no effect on adhesion. PES and PMPs induced clustering of integrins on the HPC7 surface, but did not alter their expression. Adhesion to the colon is modulated by injury but only in colitis injury can this recruitment be enhanced. The enhanced adhesion induced by PES is likely through integrin distribution changes on the HPC7 surface. Improving local HSC presence in injured colon may result in better therapeutic efficacy for treatment of IBD.

  20. Targeting the delivery of systemically administered haematopoietic stem/progenitor cells to the inflamed colon using hydrogen peroxide and platelet microparticle pre-treatment strategies.

    Science.gov (United States)

    Yemm, Adrian; Adams, David; Kalia, Neena

    2015-11-01

    Haematopoietic stem and progenitor cell (HSC) therapy may be promising for the treatment of inflammatory bowel disorders (IBDs). However, clinical success remains poor, partly explained by limited HSC recruitment following systemic delivery. The mechanisms governing HSC adhesion within inflamed colon, and whether this event can be enhanced, are not known. An immortalised HSC-like line (HPC7) was pre-treated with hydrogen peroxide (H2O2), activated platelet releasate enriched supernatant (PES) or platelet microparticles (PMPs). Subsequent adhesion was monitored using adhesion assays or in vivo ischaemia-reperfusion (IR) and colitis injured mouse colon intravitally. Integrin clustering was determined confocally and cell morphology using scanning electron microscopy. Both injuries resulted in increased HPC7 adhesion within colonic mucosal microcirculation. H2O2 and PES significantly enhanced adhesion in vitro and in the colitis, but not IR injured, colon. PMPs had no effect on adhesion. PES and PMPs induced clustering of integrins on the HPC7 surface, but did not alter their expression. Adhesion to the colon is modulated by injury but only in colitis injury can this recruitment be enhanced. The enhanced adhesion induced by PES is likely through integrin distribution changes on the HPC7 surface. Improving local HSC presence in injured colon may result in better therapeutic efficacy for treatment of IBD. Copyright © 2015. Published by Elsevier B.V.

  1. The ageing haematopoietic stem cell compartment

    NARCIS (Netherlands)

    Geiger, Hartmut; de Haan, Gerald; Florian, M. Carolina

    Stem cell ageing underlies the ageing of tissues, especially those with a high cellular turnover. There is growing evidence that the ageing of the immune system is initiated at the very top of the haematopoietic hierarchy and that the ageing of haematopoietic stem cells (HSCs) directly contributes

  2. Effect of recombinant and purified human haematopoietic growth factors on in vitro colony formation by enriched populations of human megakaryocyte progenitor cells.

    Science.gov (United States)

    Lu, L; Briddell, R A; Graham, C D; Brandt, J E; Bruno, E; Hoffman, R

    1988-10-01

    Nonadherent low density T-lymphocyte depleted (NALT-) marrow cells from normal donors were sorted on a Coulter Epics 753 Dye Laser System using Texas Red labelled My10 and phycoerythrin conjugated anti HLA-DR monoclonal antibodies in order to obtain enriched populations of colony forming unit-megakaryocyte (CFU-MK). The CFU-MK cloning efficiency (CE) was 1.1 +/- 0.5% for cells expressing both high densities of My10 and low densities of HLA-DR (My10 DR+). This procedure resulted in an 18-fold increase in CE over NALT- cells. The effect of purified or recombinant human haematopoietic growth factors including erythropoietin (Epo), thrombocytopoiesis stimulating factor (TSF), interleukin 1 alpha (IL-1 alpha), granulocyte colony stimulating factor (G-CSF), granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF or CSF-1) and interleukin MK colony formation by My10 DR+ cells was determined utilizing a serum depleted assay system. Neither Epo, TSF, CSF-1, IL-1 alpha nor G-CSF alone augmented MK colony formation above baseline (2.5 +/- 0.8/5 x 10(3) My10 DR+ cells plated). In contrast, the addition of GM-CSF and IL-3 each increased both CFU-MK colony formation and the size of colonies with maximal stimulation occurring following the addition of 200 units/ml of IL-3 and 25 units/ml of GM-CSF. At maximal concentration, IL-3 had a greater ability to promote megakaryocyte colony formation than GM-CSF. The stimulatory effects of GM-CSF and IL-3 were also additive in that the effects of a combination of the two factors approximated the sum of colony formation in the presence of each factor alone. The CFU-MK appears, therefore, to express HPCA-1 and HLA-DR antigens. These studies also indicate that GM-CSF and IL-3 are important in vitro regulators of megakaryocytopoiesis, and that these growth factors are not dependent on the presence of large numbers of macrophages or T cells for their activity since the My10 DR+ cells are largely

  3. Correction of β‐thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients

    National Research Council Canada - National Science Library

    Roselli, Emanuela Anna; Mezzadra, Riccardo; Frittoli, Marta Claudia; Maruggi, Giulietta; Biral, Erika; Mavilio, Fulvio; Mastropietro, Fabrizio; Amato, Antonio; Tonon, Giovanni; Refaldi, Chiara; Cappellini, Maria Domenica; Andreani, Marco; Lucarelli, Guido; Roncarolo, Maria Grazia; Marktel, Sarah; Ferrari, Giuliana

    2010-01-01

    β‐Thalassemia is a common monogenic disorder due to mutations in the β‐globin gene and gene therapy, based on autologous transplantation of genetically corrected haematopoietic stem cells (HSCs...

  4. Polylox barcoding reveals haematopoietic stem cell fates realized in vivo.

    Science.gov (United States)

    Pei, Weike; Feyerabend, Thorsten B; Rössler, Jens; Wang, Xi; Postrach, Daniel; Busch, Katrin; Rode, Immanuel; Klapproth, Kay; Dietlein, Nikolaus; Quedenau, Claudia; Chen, Wei; Sauer, Sascha; Wolf, Stephan; Höfer, Thomas; Rodewald, Hans-Reimer

    2017-08-24

    Developmental deconvolution of complex organs and tissues at the level of individual cells remains challenging. Non-invasive genetic fate mapping has been widely used, but the low number of distinct fluorescent marker proteins limits its resolution. Much higher numbers of cell markers have been generated using viral integration sites, viral barcodes, and strategies based on transposons and CRISPR-Cas9 genome editing; however, temporal and tissue-specific induction of barcodes in situ has not been achieved. Here we report the development of an artificial DNA recombination locus (termed Polylox) that enables broadly applicable endogenous barcoding based on the Cre-loxP recombination system. Polylox recombination in situ reaches a practical diversity of several hundred thousand barcodes, allowing tagging of single cells. We have used this experimental system, combined with fate mapping, to assess haematopoietic stem cell (HSC) fates in vivo. Classical models of haematopoietic lineage specification assume a tree with few major branches. More recently, driven in part by the development of more efficient single-cell assays and improved transplantation efficiencies, different models have been proposed, in which unilineage priming may occur in mice and humans at the level of HSCs. We have introduced barcodes into HSC progenitors in embryonic mice, and found that the adult HSC compartment is a mosaic of embryo-derived HSC clones, some of which are unexpectedly large. Most HSC clones gave rise to multilineage or oligolineage fates, arguing against unilineage priming, and suggesting coherent usage of the potential of cells in a clone. The spreading of barcodes, both after induction in embryos and in adult mice, revealed a basic split between common myeloid-erythroid development and common lymphocyte development, supporting the long-held but contested view of a tree-like haematopoietic structure.

  5. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy

    NARCIS (Netherlands)

    J.P. Halter (Joerg P.); W. Michael; M. Schüpbach; H. Mandel (Hanna); C. Casali (carlo); K. Orchard (Kim); M. Collin (Matthew); D. Valcarcel (David); A. Rovelli (Attilio); M. Filosto (Massimiliano); M.T. Dotti (Maria Teresa); G. Marotta (Giuseppe); G. Pintos (Guillem); P. Barba (Pere); A. Accarino (Anna); C. Ferra (Christelle); I. Illa (Isabel); Y. Beguin (Yves); J.A. Bakker (Jaap A.); J.J. Boelens (Jaap Jan); I.F.M. de Coo (René); K. Fay (Keith); C.M. Sue (Carolyn M.); D. Nachbaur (David); H. Zoller (Heinz); C. Sobreira (Claudia); B. Pinto Simoes (Belinda); S.R. Hammans (Simon R.); D. Savage (David); R. Martí (Ramon); P.F. Chinnery (Patrick); R. Elhasid (Ronit); A. Gratwohl (Alois); M. Hirano (Michio); G. Barros Navarro; J.F. Benoist; J. Bierau (Jörgen); A. Bucalossi; M.A. Carluccio; J. Coll-Canti; M.S. Cotelli; T. Diesch; R. Di Fabio (Roberto); M.A. Donati (Maria); J.H. Garvin; K. Hill; L. Kappeler; T. Ku Hne; M.C. Lara; M. Lenoci; G. Lucchini (Giovanna); W. Marques; H. Mattle; A. Meyer; R. Parini; J. Passweg (Jakob Robert); F. Pieroni; A. Rodriguez-Palmero; F. Santus; M. Scarpelli; P. Schlesser; F. Sicurelli; M. Stern; A.B. Stracieri; P. Tonin; J. Torres-Torronteras; J.C. Voltarelli; I. Zaidman

    2015-01-01

    textabstractHaematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of

  6. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy

    NARCIS (Netherlands)

    Halter, Joerg P.; Schuepbach, W. Michael M.; Mandel, Hanna; Casali, Carlo; Orchard, Kim; Collin, Matthew; Valcarcel, David; Rovelli, Attilio; Filosto, Massimiliano; Dotti, Maria T.; Marotta, Giuseppe; Pintos, Guillem; Barba, Pere; Accarino, Anna; Ferra, Christelle; Illa, Isabel; Beguin, Yves; Bakker, Jaap A.; Boelens, Jaap J.; de Coo, Irenaeus F. M.; Fay, Keith; Sue, Carolyn M.; Nachbaur, David; Zoller, Heinz; Sobreira, Claudia; Simoes, Belinda Pinto; Hammans, Simon R.; Savage, David; Marti, Ramon; Chinnery, Patrick F.; Elhasid, Ronit; Gratwohl, Alois; Hirano, Michio

    2015-01-01

    Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known

  7. Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry.

    Science.gov (United States)

    Demange, Elise; Kassim, Yusra; Petit, Cyrille; Buquet, Catherine; Dulong, Virginie; Cerf, Didier Le; Buchonnet, Gérard; Vannier, Jean-Pierre

    2013-11-01

    Haematopoietic stem cells (HSCs) and haematopoietic progenitor cells (HPCs) grow in a specified niche in close association with the microenvironment, the so-called 'haematopoietic niche'. Scaffolds have been introduced to overcome the liquid culture limitations, mimicking the presence of the extracellular matrix (ECM). In the present study the hyaluronic acid scaffold, already developed in the laboratory, has been used for the first time to maintain long-term cultures of CD34⁺ haematopoietic cells obtained from human cord blood. One parameter investigated was the impact on ex vivo survival of CD34⁺ cord blood cells (CBCs) on the hyaluronic acid surface, immobilized with peptides containing the RGD motif. This peptide was conjugated by coating the hyaluronan hydrogel and cultured in serum-free liquid phase complemented with stem cell factor (SCF), a commonly indispensable cytokine for haematopoiesis. Our work demonstrated that these hyaluronan hydrogels were superior to traditional liquid cultures by maintaining and expanding the HPCs without the need for additional cytokines, and a colonization of 280-fold increment in the hydrogel compared with liquid culture after 28 days of ex vivo expansion. Copyright © 2012 John Wiley & Sons, Ltd.

  8. IN UTERO HAEMATOPOIETIC STEM CELL TRANSPLANTATION (IUHSCT

    Directory of Open Access Journals (Sweden)

    Maria Concetta Renda

    2009-12-01

    Among 46 cases of  IUHSCT reported in humans, successful engraftment  was obtained only in cases of  X-SCID. Useful levels of chimerism has not been achieved in non-immunodeficiency diseases, and  a detectable engrafment , was  reported only in one case  of  ß-thalassemia transplanted at 12 weeks of gestation  by fetal liver cells  In one a-thalassemia case, where a-globin-dependent hemoglobin production and anemia are present during fetal period, microchimerism  and tolerance were suggested . To overcome the IUHSCT engraftment barriers , it is necessary to develop strategies to improve the competitive capacity of donor cells and  to define the gestational age of the possible immunological “window of opportunity” in the human fetus. In utero haematopoietic stem cell transplantation (IUHSCT is a non-myeloablative promising approach for the prenatal treatment of a variety of genetic disorders and  could be an alternative  option to therapeutical abortion in some congenital diseases like haematological hereditary  syndromes.

  9. The embryonic origins and genetic programming of emerging haematopoietic stem cells.

    Science.gov (United States)

    Ciau-Uitz, Aldo; Patient, Roger

    2016-11-01

    Haematopoietic stem cells (HSCs) emerge from the haemogenic endothelium (HE) localised in the ventral wall of the embryonic dorsal aorta (DA). The HE generates HSCs through a process known as the endothelial to haematopoietic transition (EHT), which has been visualised in live embryos and is currently under intense study. However, EHT is the culmination of multiple programming events, which are as yet poorly understood, that take place before the specification of HE. A number of haematopoietic precursor cells have been described before the emergence of definitive HSCs, but only one haematovascular progenitor, the definitive haemangioblast (DH), gives rise to the DA, HE and HSCs. DHs emerge in the lateral plate mesoderm (LPM) and have a distinct origin and genetic programme compared to other, previously described haematovascular progenitors. Although DHs have so far only been established in Xenopus embryos, evidence for their existence in the LPM of mouse and chicken embryos is discussed here. We also review the current knowledge of the origins, lineage relationships, genetic programming and differentiation of the DHs that leads to the generation of HSCs. Importantly, we discuss the significance of the gene regulatory network (GRN) that controls the programming of DHs, a better understanding of which may aid in the establishment of protocols for the de novo generation of HSCs in vitro. © 2016 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  10. BMP signalling differentially regulates distinct haematopoietic stem cell types.

    Science.gov (United States)

    Crisan, Mihaela; Kartalaei, Parham Solaimani; Vink, Chris S; Vink, Chris; Yamada-Inagawa, Tomoko; Bollerot, Karine; van IJcken, Wilfred; van der Linden, Reinier; de Sousa Lopes, Susana M Chuva; Monteiro, Rui; Mummery, Christine; Dzierzak, Elaine

    2015-08-18

    Adult haematopoiesis is the outcome of distinct haematopoietic stem cell (HSC) subtypes with self-renewable repopulating ability, but with different haematopoietic cell lineage outputs. The molecular basis for this heterogeneity is largely unknown. BMP signalling regulates HSCs as they are first generated in the aorta-gonad-mesonephros region, but at later developmental stages, its role in HSCs is controversial. Here we show that HSCs in murine fetal liver and the bone marrow are of two types that can be prospectively isolated--BMP activated and non-BMP activated. Clonal transplantation demonstrates that they have distinct haematopoietic lineage outputs. Moreover, the two HSC types differ in intrinsic genetic programs, thus supporting a role for the BMP signalling axis in the regulation of HSC heterogeneity and lineage output. Our findings provide insight into the molecular control mechanisms that define HSC types and have important implications for reprogramming cells to HSC fate and treatments targeting distinct HSC types.

  11. Toxicity of inorganic arsenic and its metabolites on haematopoietic progenitors "in vitro": comparison between species and sexes.

    Science.gov (United States)

    Ferrario, Daniele; Croera, Cristina; Brustio, Roberta; Collotta, Angelo; Bowe, Gerard; Vahter, Marie; Gribaldo, Laura

    2008-07-30

    Inorganic arsenic (iAs) and its metabolites are transferred to the foetus through the placental barrier and this exposure can compromise the normal development of the unborn. For this reason, we assessed the toxicity of sodium arsenite (iAs(III)) and its metabolites dimethylarsinic acid (DMA(V)), monomethylarsonic acid (MMA(V)) and monomethylarsonous acid (MMA(III)) on human haematopoietic cord blood cells and murine bone marrow progenitors in vitro, looking at the effects induced at different concentrations in the two genders. The expression of two enzymes responsible for arsenic biotransformation arsenic methyltranferase (AS3MT) and glutathione S-transferase omega 1 (GSTO1) was evaluated in human cord blood cells. Cord blood and bone marrow cells were exposed in vitro to iAs(III) at a wide range of concentrations: from 0.0001 microM to 10 microM. The methylated arsenic metabolites were tested only on human cord blood cells at concentrations ranging from 0.00064 microM to 50 microM. The results showed that iAs(III) was toxic on male and female colony forming units to about the same extent both in human and in mouse. Surprisingly, very low concentrations of iAs(III) increased the proliferation rate of both human and murine female cells, while male cells showed no significant modulation. MMA(V) and DMA(V) did not exert detectable toxicity on the cord blood cells, while MMA(III) had a marked toxic effect both in male and female human progenitors. AS3MT mRNA expression was not induced in human cord blood cells after iAs(III) exposure. GSTO1 expression decreased after MMA(III) treatment. This study provides evidence that exposure to iAs(III) and MMA(III) at muM concentrations is associated with immunosuppression in vitro.

  12. Targeted genome editing in human repopulating haematopoietic stem cells

    NARCIS (Netherlands)

    P. Genovese (Pietro); G. Schiroli (Giulia); G. Escobar (Giulia); T. Di Tomaso (Tiziano); C. Firrito (Claudia); A. Calabria (Andrea); D. Moi (Davide); R. Mazzieri (Roberta); C. Bonini (Chiara); M.V. Holmes (Michael); P.D. Gregory (Philip); M. van der Burg (Mirjam); B. Gentner (Bernhard); E. Montini (Eugenio); A. Lombardo (Angelo); L. Naldini (Luigi)

    2014-01-01

    textabstractTargeted genome editing by artificial nucleases has brought the goal of site-specific transgene integration and gene correction within the reach of gene therapy. However, its application to long-term repopulating haematopoietic stem cells (HSCs) has remained elusive. Here we show that

  13. IN UTERO HAEMATOPOIETIC STEM CELL TRANSPLANTATION (IUHSCT

    Directory of Open Access Journals (Sweden)

    Aurelio Maggio

    2009-06-01

    Full Text Available

    In utero haematopoietic stem cell transplantation (IUHSCT is a non-myeloablative approach for the prenatal treatment of genetic disorders. However, in target disorders, where there is not a selective advantage for donor cells, a useful donor-cell  chimerism  has not been achieved 

    There are three  possible  barriers  to engraftment following IUHSCT :  limited space in the fetus due to host-cell competition; the large number of donor cells needed, and the immunological asset of recipient .

    Animal models have shown different levels of resistance to IUHSCT engraftment.  In primate, goat, rat and mouse  the levels of engraftment that has been achieved were low and not  therapeutic.

  14. Ethical ways to increase donation of haematopoietic stem cells

    OpenAIRE

    Elger Bernice; Cabrera Laura

    2012-01-01

    Ethical issues in the context of human biological material donation have been discussed for a long time from organ donation to tissue and cell donation. One main ethical concern related to donation has to do with ways to increase donation in safe and ethical ways. In this paper we focus on ethical ways to increase donation in the context of unrelated haematopoietic stem cell donation such as tailored information about risks and benefits and nonmonetary benefits. We also discuss whether curren...

  15. The Ews-ERG fusion protein can initiate neoplasia from lineage-committed haematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Rosalind Codrington

    2005-08-01

    Full Text Available The EWS-ERG fusion protein is found in human sarcomas with the chromosomal translocation t(21;22(q22;q12, where the translocation is considered to be an initiating event in sarcoma formation within uncommitted mesenchymal cells, probably long-lived progenitors capable of self renewal. The fusion protein may not therefore have an oncogenic capability beyond these progenitors. To assess whether EWS-ERG can be a tumour initiator in cells other than mesenchymal cells, we have analysed Ews-ERG fusion protein function in a cellular environment not typical of that found in human cancers, namely, committed lymphoid cells. We have used Ews-ERG invertor mice having an inverted ERG cDNA cassette flanked by loxP sites knocked in the Ews intron 8, crossed with mice expressing Cre recombinase under the control of the Rag1 gene to give conditional, lymphoid-specific expression of the fusion protein. Clonal T cell neoplasias arose in these mice. This conditional Ews gene fusion model of tumourigenesis shows that Ews-ERG can cause haematopoietic tumours and the precursor cells are committed cells. Thus, Ews-ERG can function in cells that do not have to be pluripotent progenitors or mesenchymal cells.

  16. T cell reconstitution in allogeneic haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kielsen, K; Jordan, K K; Uhlving, H H

    2015-01-01

    Infections and acute graft-versus-host disease (aGVHD) are major causes of treatment-related mortality and morbidity following allogeneic haematopoietic stem cell transplantation (HSCT). Both complications depend on reconstitution of the T-lymphocyte population based on donor T cells. Although...... it is well established that Interleukin-7 (IL-7) is a cytokine essential for de novo T cell development in the thymus and homoeostatic peripheral expansion of T cells, associations between circulating levels of IL-7 and T cell reconstitution following HSCT have not been investigated previously. We...... in patients treated with anti-thymocyte globulin (ATG) compared with those not treated with ATG (P = 0.0079). IL-7 levels at day +7 were negatively associated with T cell counts at day +30 to +60 (at day +60: CD3(+) : β = -10.6 × 10(6) cells/l, P = 0.0030; CD8(+) : β = -8.4 × 10(6) cells/l, P = 0.061; CD4...

  17. Ethical ways to increase donation of haematopoietic stem cells

    OpenAIRE

    Elger, Bernice; Cabrera, Laura

    2012-01-01

    Ethical issues in the context of human biological material donation have been discussed for a long time, from organ donation to tissue and cell donation. One main ethical concern related to donation has to do with ways to increase donation in safe and ethical ways. In this paper we focus on ethical ways to increase donation in the context of unrelated haematopoietic stem cell donation, such as tailored information about risks and benefits, and non­monetary benefits. We also discuss whether cu...

  18. Lymph node tuberculosis after allogeneic haematopoietic stem cell transplantation: an atypical presentation of an uncommon complication.

    Science.gov (United States)

    Martín-Sánchez, Guillermo; Drake-Pérez, Marta; Rodriguez, José Luis; Yañez, Lucrecia; Insunza, Andrés; Richard, Carlos

    2015-01-01

    Mycobacterium tuberculosis infections are uncommon complications in the haematopoietic stem cell post-transplant period. Most cases are reactivations of latent infections affecting the lung. We present an atypical case of isolated lymph node tuberculosis after an allogeneic haematopoietic stem cell transplantation, which highlights the importance of having a high suspicion index, even in non-endemic countries.

  19. Haematopoietic stem cell transplantation: Prospects and Challenges ...

    African Journals Online (AJOL)

    relapse and organ toxicity. Sadly, because of these limitations, sickle cell anaemia, which is ... In this, the Federal. Government should provide adequate funding. Keywords: Stem cell, Transplantation, Nigeria. ... 11 Stem Cell Sources. 1. Bone marrow stem cells: Marrow is usually obtained from the donor's posterior iliac.

  20. Action of granulopoiesis-stimulating cytokines rhG-CSF, rhGM-CSF, and rmGM-CSF on murine haematopoietic progenitor cells for granulocytes and macrophages (GM-CFC).

    Science.gov (United States)

    Hofer, M; Vacek, A; Weiterová, L

    2005-01-01

    The aim of this study was to provide new data to the knowledge of mechanisms by which recombinant human granulocyte colony-stimulating factor (rhG-CSF), recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) and recombinant murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) enhance the numbers of colonies growing from hematopoietic progenitor cells for granulocytes and macrophages (GM-CFC) in the murine bone marrow. The in vitro technique for cultivating GM-CFC from normal bone marrow cells was used. For evaluation of stimulatory actions of the drugs studied, the factors themselves or sera of mice given these factors were added to the cultures. The factors or the sera were present in the cultures either as the only potentially stimulatory agents or acted jointly with a suboptimum concentration of recombinant murine interleukin-3 (rmIL-3). It was found that both rhG-CSF and rmGM-CSF stimulate the proliferation of GM-CFC by a combination of direct mechanisms (direct actions on the target cells) and indirect effects (effects mediated through the induction of other cytokines and/or growth factors in the murine organism). The rhGM-CSF exhibited somewhat weaker in vitro effects in comparison with the other two factors and only indirect effects were noted. Additional in vivo experiments documented that, in spite of differences in mechanisms of action of the individual drugs studied on murine bone marrow cells in vitro, equal in vivo doses of the factors induce quantitatively similar effects on the production of GM-CFC in vivo.

  1. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis.

    Science.gov (United States)

    Muraro, Paolo A; Martin, Roland; Mancardi, Giovanni Luigi; Nicholas, Richard; Sormani, Maria Pia; Saccardi, Riccardo

    2017-07-01

    Autologous haematopoietic stem cell transplantation (AHSCT) is a multistep procedure that enables destruction of the immune system and its reconstitution from haematopoietic stem cells. Originally developed for the treatment of haematological malignancies, the procedure has been adapted for the treatment of severe immune-mediated disorders. Results from ∼20 years of research make a compelling case for selective use of AHSCT in patients with highly active multiple sclerosis (MS), and for controlled trials. Immunological studies support the notion that AHSCT causes qualitative immune resetting, and have provided insight into the mechanisms that might underlie the powerful treatment effects that last well beyond recovery of immune cell numbers. Indeed, studies have demonstrated that AHSCT can entirely suppress MS disease activity for 4-5 years in 70-80% of patients, a rate that is higher than those achieved with any other therapies for MS. Treatment-related mortality, which was 3.6% in studies before 2005, has decreased to 0.3% in studies since 2005. Current evidence indicates that the patients who are most likely to benefit from and tolerate AHSCT are young, ambulatory and have inflammatory MS activity. Clinical trials are required to rigorously test the efficacy, safety and cost-effectiveness of AHSCT against highly active MS drugs.

  2. Immuno-therapeutic potential of haematopoietic and mesenchymal stem cell transplantation in MS.

    Science.gov (United States)

    Muraro, Paolo A; Uccelli, Antonio

    2010-01-01

    In the last few years there has been extraordinary progress in the field of stem cell research. Two types of stem cells populate the bone marrow: haematopoietic stem/progenitor cells (HSC) and mesenchymal stem cells (MSC). The capacity of HSC to repopulate the blood has been known and exploited therapeutically for at least four decades. Today, haematopoietic stem cell transplantation (HSCT) holds a firm place in the therapy of some haematological malignancies, and a potential role of HSCT for treatment of severe autoimmune diseases has been explored in small-scale clinical studies. Multiple sclerosis (MS) is the noncancerous immune mediated disease for which the greatest number of transplants has been performed to date. The results of clinical studies are double-faced: on the one hand, HSCT has demonstrated powerful effects on acute inflammation, arresting the development of focal CNS lesions and clinical relapses; on the other hand, the treatment did not arrest chronic worsening of disability in most patients with secondary progressive MS, suggesting limited or no beneficial effects on the chronic processes causing progressive disability. MSC are a more recent addition to the range of experimental therapies being developed to treat MS. While interest in MSC usage was originally raised by their potential capacity to differentiate into different cell lineages, recent work showing their interesting immunological properties has led to a revised concept, envisioning their utilization for immuno-modulatory purposes. In this review we will summarize the current clinical and experimental evidence on HSC and MSC and outline some key questions warranting further investigation in this exciting research area.

  3. Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion

    DEFF Research Database (Denmark)

    Nygren, J.M.; Liuba, K.; Breitbach, M.

    2008-01-01

    Recent studies have suggested that regeneration of non-haematopoietic cell lineages can occur through heterotypic cell fusion with haematopoietic cells of the myeloid lineage. Here we show that lymphocytes also form heterotypic-fusion hybrids with cardiomyocytes, skeletal muscle, hepatocytes...... and Purkinje neurons. However, through lineage fate-mapping we demonstrate that such in vivo fusion of lymphoid and myeloid blood cells does not occur to an appreciable extent in steady-state adult tissues or during normal development. Rather, fusion of blood cells with different non-haematopoietic cell types...... is induced by organ-specific injuries or whole-body irradiation, which has been used in previous studies to condition recipients of bone marrow transplants. Our findings demonstrate that blood cells of the lymphoid and myeloid lineages contribute to various non-haematopoietic tissues by forming rare fusion...

  4. [Tooth development disturbances following haematopoietic stem cell transplantation].

    Science.gov (United States)

    van der Pas-van Voskuilen, I G M; Veerkamp, J S J; Bresters, D; van Wijk, A J; Gortzak, R A T; Raber-Durlacher, J E

    2010-06-01

    Forty children treated with allogenic haematopoietic stem cell transplantation for haematological malignancies, were examined at least 2 years after transplantation. The researchers collected information concerning subjective oral symptoms, the results of a panoramic radiograph and the findings of an oral examination. Nearly all children had tooth development disturbances, including missing teeth, shortened roots, and arrested root development. The study group showed a significantly higher prevalence of missing teeth than the standard values for first and second premolars in both maxilla and mandible, as well as for second molars in the mandible. Children younger than 3 years of age at the start of the treatment missed significantly more teeth than older children. The mean root-crown length ratios of several tooth types were lower when compared with a control group of healthy Finnish children. The mean dental age was higher than the mean chronological age due to early final apical root formation.

  5. Xerostomia and chronic oral complications among patients treated with haematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Brand, H.S.; Bots, C.P.; Raber-Durlacher, J.E.

    2009-01-01

    Objective: To assess the severity of xerostomia (subjective dry mouth) in haematopoietic stem cell transplantation (HSCT) patients and to investigate the association of xerostomia with other chronic oral complications. Design: Cross-sectional study. Study participants and methods: Participants were

  6. Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal ontogeny

    NARCIS (Netherlands)

    Heinig, Kristina; Sage, Fanny; Robin, Catherine; Sperandio, Markus

    2015-01-01

    Fetal haematopoiesis is a highly regulated process in terms of time and location. It is characterized by the emergence of specific cell populations at different extra-and intraembryonic anatomical sites. Trafficking of haematopoietic stem cells (HSCs) between these supportive niches is regulated by

  7. Endometrial aspiration biopsy: a non-invasive method of obtaining functional lymphoid progenitor cells and mature natural killer cells.

    LENUS (Irish Health Repository)

    McMenamin, Moya

    2012-09-01

    The aim of this study was to compare the efficacy of endometrial aspiration biopsy (EAB) with the more traditional dilatation and curettage (D&C) for the procurement of lymphoid progenitor cells and uterine natural killer (NK) populations in endometrial tissue. This prospective observational study conducted in a tertiary referral university hospital examined endometrium obtained from 32 women admitted for laparoscopic gynaecological procedures. Each participant had endometrium sampled using both EAB and D&C. Both methods were assessed as a source of uterine NK and lymphoid progenitor cells. Similar proportions of mature CD45+CD56+ NK cells (range 25.4-36.2%) and CD45+CD34+ lymphoid progenitors (range 1.2-2.0%) were found in tissue obtained using both EAB and D&C. These cells were adequate for flow cytometric analysis, magnetic bead separation and culture. Colony formation by the CD34+ population demonstrated maturational potential. Tissues obtained via endometrial biopsy and D&C are equivalent, by analysis of uterine NK and lymphoid progenitor cells. The aim of this study was to compare two methods of endometrial sampling - endometrial aspiration biopsy and traditional dilatation and curettage - for the procurement of haematopoietic stem cells and uterine natural killer (NK) populations in endometrial tissue. Thirty-two women who had gynaecological procedures in a tertiary referral hospital participated in this study and had endometrial tissue collected via both methods. Similar populations of mature NK cells and haematopoietic stem cells were found in tissue obtained using both endometrial aspiration biopsy and dilatation and curettage. Tissue obtained via endometrial aspiration biopsy was adequate for the culture and growth of haematopoietic stem cells. We conclude that tissue obtained via endometrial biopsy and dilatation and curettage is equivalent, by analysis of uterine NK and haematopoietic stem cells using flow cytometry. This has implications for further

  8. Secondary Malignant Neoplasms Following Haematopoietic Stem Cell Transplantation in Childhood

    Directory of Open Access Journals (Sweden)

    Simon Bomken

    2015-04-01

    Full Text Available Improving survival rates in children with malignancy have been achieved at the cost of a high frequency of late adverse effects of treatment, especially in intensively treated patients such as those undergoing haematopoietic stem cell transplantation (HSCT, many of whom suffer the high burden of chronic toxicity. Secondary malignant neoplasms (SMNs are one of the most devastating late effects, cause much morbidity and are the most frequent cause of late (yet still premature treatment-related mortality. They occur in up to 7% of HSCT recipients by 20 years post-HSCT, and with no evidence yet of a plateau in incidence with longer follow-up. This review describes the epidemiology, pathogenesis, clinical features and risk factors of the three main categories of post-HSCT SMNs. A wide range of solid SMNs has been described, usually occurring 10 years or more post-HSCT, related most often to previous or conditioning radiotherapy. Therapy-related acute myeloid leukaemia/myelodysplasia occurs earlier, typically three to seven years post-HSCT, mainly in recipients of autologous transplant and is related to previous alkylating agent or topoisomerase II inhibitor chemotherapy. Post-transplant lymphoproliferative disorders occur early (usually within two years post-HSCT, usually presenting as Epstein-Barr virus-related B cell non-Hodgkin lymphoma.

  9. Downregulation of the IFNAR1 chain of type 1 interferon receptor contributes to the maintenance of the haematopoietic stem cells.

    Science.gov (United States)

    Gui, Jun; Zhao, Bin; Lyu, Kaosheng; Tong, Wei; Fuchs, Serge Y

    2017-07-03

    Recent studies demonstrated that prolonged exposure of haematopoietic stem cells (HSCs) to type I interferons (IFN) stimulates HSCs entrance into cell cycle, continuous proliferation and eventual exhaustion, which could be prevented by ablation of the Ifnar1 chain of IFN receptor. Given that levels IFNAR1 expression can be robustly affected by IFN-independent ubiquitination and downregulation of IFNAR1 in response to activation of protein kinases such as protein kinase R-like endoplasmic reticulum kinase (PERK) and casein kinase 1α (CK1α), we aimed to determine the role of IFNAR1 downregulation in the maintenance of HSCs. Mice harboring the ubiquitination-deficient Ifnar1S526A allele displayed greater levels of haematopoietic cell progenitors but reduced numbers of the long-term HSCs compared with wild type mice and animals lacking Ifnar1. Studies using competitive bone marrow repopulation assays showed that CK1α (but not PERK) is essential for the long-term HSCs function. Concurrent ablation of Ifnar1 led to a modest attenuation of the CK1α-null phenotype indicating that, although other CK1α targets are likely to be important, IFNAR1 downregulation can contribute to the maintenance of the HSCs function.

  10. The small GTPase RhoH is an atypical regulator of haematopoietic cells

    Directory of Open Access Journals (Sweden)

    Kubatzky Katharina F

    2008-09-01

    Full Text Available Abstract Rho GTPases are a distinct subfamily of the superfamily of Ras GTPases. The best-characterised members are RhoA, Rac and Cdc42 that regulate many diverse actions such as actin cytoskeleton reorganisation, adhesion, motility as well as cell proliferation, differentiation and gene transcription. Among the 20 members of that family, only Rac2 and RhoH show an expression restricted to the haematopoietic lineage. RhoH was first discovered in 1995 as a fusion transcript with the transcriptional repressor LAZ3/BCL6. It was therefore initially named translation three four (TTF but later on renamed RhoH due to its close relationship to the Ras/Rho family of GTPases. Since then, RhoH has been implicated in human cancer as the gene is subject to somatic hypermutation and by the detection of RHOH as a translocation partner for LAZ3/BCL6 or other genes in human lymphomas. Underexpression of RhoH is found in hairy cell leukaemia and acute myeloid leukaemia. Some of the amino acids that are crucial for GTPase activity are mutated in RhoH so that the protein is a GTPase-deficient, so-called atypical Rho GTPase. Therefore other mechanisms of regulating RhoH activity have been described. These include regulation at the mRNA level and tyrosine phosphorylation of the protein's unique ITAM-like motif. The C-terminal CaaX box of RhoH is mainly a target for farnesyl-transferase but can also be modified by geranylgeranyl-transferase. Isoprenylation of RhoH and changes in subcellular localisation may be an additional factor to fine-tune signalling. Little is currently known about its signalling, regulation or interaction partners. Recent studies have shown that RhoH negatively influences the proliferation and homing of murine haematopoietic progenitor cells, presumably by acting as an antagonist for Rac1. In leukocytes, RhoH is needed to keep the cells in a resting, non-adhesive state, but the exact mechanism has yet to be elucidated. RhoH has also been

  11. Development of a culture system to induce microglia-like cells from haematopoietic cells.

    Science.gov (United States)

    Noto, Daisuke; Sakuma, Hiroshi; Takahashi, Kazuya; Saika, Reiko; Saga, Ryoko; Yamada, Masahito; Yamamura, Takashi; Miyake, Sachiko

    2014-10-01

    Microglia are the resident immune cells in the central nervous system, originating from haematopoietic-derived myeloid cells. A microglial cell is a double-edged sword, which has both pro-inflammatory and anti-inflammatory functions. Although understanding the role of microglia in pathological conditions has become increasingly important, histopathology has been the only way to investigate microglia in human diseases. To enable the study of microglial cells in vitro, we here establish a culture system to induce microglia-like cells from haematopoietic cells by coculture with astrocytes. The characteristics of microglia-like cells were analysed by flow cytometry and functional assay. We show that triggering receptor expressing on myeloid cells-2-expressing microglia-like cells could be induced from lineage negative cells or monocytes by coculture with astrocytes. Microglia-like cells exhibited lower expression of CD45 and MHC class II than macrophages, a characteristic similar to brain microglia. When introduced into brain slice cultures, these microglia-like cells changed their morphology to a ramified shape on the first day of the culture. Moreover, we demonstrated that microglia-like cells could be induced from human monocytes by coculture with astrocytes. Finally, we showed that interleukin 34 was an important factor in the induction of microglia-like cells from haematopoietic cells in addition to cell-cell contact with astrocytes. Purified microglia-like cells were suitable for further culture and functional analyses. Development of in vitro induction system for microglia will further promote the study of human microglial cells under pathological conditions as well as aid in the screening of drugs to target microglial cells. © 2013 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of the British Neuropathological Society.

  12. Differential diagnosis of skin lesions after allogeneic haematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Canninga-van Dijk, MR; Sanders, CJ; Verdonck, LF; Fijnheer, R; van den Tweel, JG

    Allogeneic haematopoietic stem cell transplantation (i.e. bone marrow or peripheral blood stem cell transplantation) is a common procedure in the treatment of various haematological disorders such as aplastic anaemia, (pre)leukaemias, some malignant lymphomas, multiple myeloma and immunodeficiency

  13. Monocyte and haematopoietic progenitor reprogramming as common mechanism underlying chronic inflammatory and cardiovascular diseases.

    Science.gov (United States)

    Hoogeveen, Renate M; Nahrendorf, Matthias; Riksen, Niels P; Netea, Mihai G; de Winther, Menno P J; Lutgens, Esther; Nordestgaard, Boerge; Neidhart, Michel; Stroes, Erik S G; Catapano, Alberico L; Bekkering, Siroon

    2017-10-24

    A large number of cardiovascular events are not prevented by current therapeutic regimens. In search for additional, innovative strategies, immune cells have been recognized as key players contributing to atherosclerotic plaque progression and destabilization. Particularly the role of innate immune cells is of major interest, following the recent paradigm shift that innate immunity, long considered to be incapable of learning, does exhibit immunological memory mediated via epigenetic reprogramming. Compelling evidence shows that atherosclerotic risk factors promote immune cell migration by pre-activation of circulating innate immune cells. Innate immune cell activation via metabolic and epigenetic reprogramming perpetuates a systemic low-grade inflammatory state in cardiovascular disease (CVD) that is also common in other chronic inflammatory disorders. This opens a new therapeutic area in which metabolic or epigenetic modulation of innate immune cells may result in decreased systemic chronic inflammation, alleviating CVD, and its co-morbidities. © The Author 2017. Published on behalf of the European Society of Cardiology.

  14. Growth, endocrine function and quality of life after haematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Bakker, Boudewijn

    2006-01-01

    This thesis contains the results of several studies on the long-term consequences of the myeloablative conditioning for haematopoietic stem cell transplantation (SCT) during infancy and childhood, with the emphasis on late effects on endocrine functions. After a general introduction, effects of

  15. State-of-the-art fertility preservation in children and adolescents undergoing haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Dalle, J-H; Lucchini, G; Balduzzi, A

    2017-01-01

    Nowadays, allogeneic haematopoietic stem cell transplantation (allo-HSCT) is a well-established treatment procedure and often the only cure for many patients with malignant and non-malignant diseases. Decrease in short-term complications has substantially contributed to increased survival. Theref...

  16. Xerostomia and chronic oral complications among patients treated with haematopoietic stem cell transplantation

    NARCIS (Netherlands)

    Brand, H. S.; Bots, C. P.; Raber-Durlacher, J. E.

    2009-01-01

    To assess the severity of xerostomia (subjective dry mouth) in haematopoietic stem cell transplantation (HSCT) patients and to investigate the association of xerostomia with other chronic oral complications. Cross-sectional study.Study participants and methods Participants were 48 patients with a

  17. Circulating Progenitor Cells in Diabetic Vascular Disease

    NARCIS (Netherlands)

    van Oostrom, O.

    2009-01-01

    Patients with diabetes have altered levels and function of (bone marrow-derived) vascular progenitor cells (endothelial progenitor cells-EPC, smooth muscle progenitor cells-SPC) which may contribute to their accelerated atherosclerosis. The results from clinical and experimental studies in this

  18. Identification of quantitative trait loci regulating haematopoietic parameters in B6AKRF2 mice.

    Science.gov (United States)

    van Os, Ronald; Ausema, Albertina; Noach, Estelle J K; van Pelt, Kyrjon; Dontje, Bert J H; Vellenga, Edo; de Haan, Gerald

    2006-01-01

    The haematopoietic system is a complex organised tissue with a hierarchical structure. Identification of organisational pathways within the haematopoietic system is relevant for a better understanding of haematopoiesis in health and disease. We have analysed numerous haematopoietic parameters in two panels of a total of 157 genetically distinct B6AKRF2 mice, derived from an intercross between AKR and C57Bl/6 mice, strains known to differ in various stem cell traits. The major objective of our study was to assess the extent to which various haematopoietic parameters, such as stem cell numbers, progenitor cell cycling, progenitor cell mobilisation and neutrophil numbers in blood and bone marrow are coregulated. The genotypes of these mice were used to search for genetic loci that regulate these parameters. We found significant quantitative trait loci (QTL) associated with the number of stem cells (CAFC-35) in the bone marrow and the number of neutrophils in the blood. However, most haematopoietic parameters appeared to be controlled by non-heritable (epigenetic) factors, or by multiple QTLs. Our study reveals striking differences in structure of the haematopoietic hierarchy between individual mice. Surprisingly, stem and progenitor cell pool size and proliferation rate, as well as peripheral blood cell counts are all independently regulated.

  19. Mesenchymal progenitor cells for the osteogenic lineage.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  20. [Reduced-intensity conditioning haematopoietic stem cell transplantation in genetic diseases: Experience of the Spanish Working Group for Bone Marrow Transplantation in Children].

    Science.gov (United States)

    López-Granados, Lucía; Torrent, Montserrat; Sastre, Ana; Gonzalez-Vicent, Marta; Díaz de Heredia, Cristina; Argilés, Bienvenida; Pascual, Antonia; Pérez-Hurtado, José M; Sisinni, Luisa; Diaz, Miguel Ángel; Elorza, Izaskun; Dasí, M Angeles; Badell, Isabel

    2017-07-07

    Haematopoietic stem cell transplantation (HSCT) involves implanting cellular elements capable of generating a new and healthy haematopoietic system. Reduced intensity conditioning (RIC) consists of an immunosuppressive treatment to facilitate a progressive implant with lower morbidity. This type of conditioning can also lead to myelosuppression, which is potentially reversible over time. Reduced intensity conditioning enables HSCT to be performed on patients with genetic diseases for whom added comorbidity is undesirable due to the high doses of chemotherapy that accompanies conventional myeloablative regimens. An analysis was performed on the outcomes of 68 paediatric patients with genetic diseases who underwent HSCT with RIC between 2005 and 2013 in the of Paediatric Haematopoietic Stem Cell Transplantation Units that are part of the Spanish Working Group for Bone Marrow Transplantation in Children. A multicentre study was conducted including 68 patients, of whom 43 had Primary Immunodeficiency, 21 with congenital haematological diseases, and 4 with metabolic diseases. Fifty (73.5%) of the 68 patients were still alive. The Overall Survival (OS) at nine years was 0.74. Twenty-three (33.8%) had some event during the course of the HSCT, with an event-free survival rate of 0.66. The OS in patients with haematological diseases was 0.81, being 0.7 in primary immunodeficiencies, and 0.4 in metabolic diseases. No significant difference was observed between the 3 groups of diseases. As regards the source of haematopoietic progenitors, there was an OS rate of 0.74 in patients transplanted with peripheral blood, 0.70 with bone marrow, and 0.70 and with cord blood, with no statistically significant differences. Favourable results have been obtained in HSCT with reduced intensity conditioning in genetic diseases. It should be noted that the risks and benefits of the RIC in patients with metabolic diseases need to be assessed on an individual basis. Copyright © 2017

  1. Associations between levels of insulin-like growth factor 1 and sinusoidal obstruction syndrome after allogeneic haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Weischendorff, Sarah; Kielsen, Katrine; Sengeløv, H

    2017-01-01

    Allogeneic myeloablative haematopoietic stem cell transplantation (HSCT) is challenged by severe adverse events, as cytotoxic effects of the conditioning may result in systemic inflammation, leaky epithelial barriers and organ toxicities, contributing to treatment-related morbidity and mortality...

  2. The role of gamma delta T cells in haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Minculescu, L; Sengeløv, H

    2015-01-01

    Although haematopoietic stem cell transplantation (HSCT) is a potential curative treatment for haematological malignancies, it is still a procedure associated with substantial morbidity and mortality due to toxicity, graft-versus-host disease (GVHD) and relapse. Recent attempts of developing safer...... transplantation modalities increasingly focuses on selective cell depletion and graft engineering with the aim of retaining beneficial immune donor cells for the graft-versus-leukaemia (GVL) effect. In this context, the adoptive and especially innate effector functions of γδ T cells together with clinical studies...... investigating the effect of γδ T cells in relation to HSCT are reviewed. In addition to phospho-antigen recognition by the γδ T cell receptor (TCR), γδ T cells express receptors of the natural killer (NK) and natural cytotoxicity (NCR) families enabling them to recognize and kill leukaemia cells. Antigen...

  3. Reconstitution of Th17, Tc17 and Treg cells after paediatric haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kielsen, Katrine; Ryder, Lars P; Lennox-Hvenekilde, David

    2018-01-01

    Successful reconstitution of T lymphocytes after allogeneic haematopoietic stem cell transplantation (HSCT) is needed to establish the graft-versus-leukaemia effect and an effective anti-microbial defense, but the ratio between functionally different T-cell subsets needs to be balanced to avoid...... behind these associations have not been investigated previously. We hypothesized that increased levels of IL-7 post-transplant alters the balance between immune-regulatory T cell subsets during the post-transplant lymphocyte recovery towards a more pro-inflammatory profile. We quantified Th17 cells, Tc17...... graft-versus-host disease (GVHD). IL-7 is essential for T-cell generation in the thymus and peripheral T-cell homeostasis. High IL-7 levels have been associated with impaired T-cell reconstitution, increased risk of acute GVHD and treatment-related mortality, but the underlying cellular mechanisms...

  4. NK cells and other innate lymphoid cells in haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Paola eVacca

    2016-05-01

    Full Text Available Natural Killer (NK cells play a major role in the T-cell depleted haploidentical haematopoietic stem cell transplantation (haplo-HSCT to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILC. At variance with NK cells, the other ILC populations (ILC1/2/3 are non-cytolytic, while they secrete different patterns of cytokines. ILC provide host defences against viruses, bacteria and parasites, drive lymphoid organogenesis, and contribute to tissue remodelling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defences that are reconstituted more rapidly than the adaptive ones. In this context, ILC may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodelling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILC. Of note, CD34+ cells isolated from different sources of HSC, may differentiate in vitro towards various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g. IL-1β may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  5. Long-term survival after allogeneic haematopoietic cell transplantation for AML in remission

    DEFF Research Database (Denmark)

    Sengeløv, H; Gerds, T A; Brændstrup, P

    2013-01-01

    We report the results of non-myeloablative (NM) and myeloablative (MA) conditioning for haematopoietic cell transplantation in 207 consecutive AML patients at a single institution. A total of 122 patients were transplanted in first CR (CR1) and 67 in second CR (CR2). MA conditioning was given to 60...... 64%) and CR2 patients (51.2 versus 64.7%). Durable remission can be obtained in older patients with AML in remission after NM conditioning, which may also be applicable to younger patients....

  6. Aging, progenitor cell exhaustion, and atherosclerosis.

    Science.gov (United States)

    Rauscher, Frederick M; Goldschmidt-Clermont, Pascal J; Davis, Bryce H; Wang, Tao; Gregg, David; Ramaswami, Priya; Pippen, Anne M; Annex, Brian H; Dong, Chunming; Taylor, Doris A

    2003-07-29

    Atherosclerosis is largely attributed to chronic vascular injury, as occurs with excess cholesterol; however, the effect of concomitant vascular aging remains unexplained. We hypothesize that the effect of time in atherosclerosis progression is related to obsolescence of endogenous progenitor cells that normally repair and rejuvenate the arteries. Here we show that chronic treatment with bone marrow-derived progenitor cells from young nonatherosclerotic ApoE-/- mice prevents atherosclerosis progression in ApoE-/- recipients despite persistent hypercholesterolemia. In contrast, treatment with bone marrow cells from older ApoE-/- mice with atherosclerosis is much less effective. Cells with vascular progenitor potential are decreased in the bone marrow of aging ApoE-/- mice, but cells injected from donor mice engraft on recipient arteries in areas at risk for atherosclerotic injury. Our data indicate that progressive progenitor cell deficits may contribute to the development of atherosclerosis.

  7. Haematopoietic stem cell transplantation: activities (2014 report) in a ...

    African Journals Online (AJOL)

    Introduction: Hematopoietic Stem Cell transplantation (HSCT) is the only curative therapy for some malignant and non-malignant diseases including Sickle cell disease(SCD).The world celebrated the one millionth HSCT in December 2012 with only 2% of these HSCTperformed in East Mediterranean /Africa. Nigeria ...

  8. Manganese effects on haematopoietic cells and circulating coelomocytes of Asterias rubens (Linnaeus)

    Energy Technology Data Exchange (ETDEWEB)

    Oweson, Carolina; Skoeld, Helen [Department of Marine Ecology, Goeteborg University, Kristineberg 566, 45034 Fiskebaeckskil (Sweden); Pinsino, Annalisa; Matranga, Valeria [Istituto di Biomedicina e Immunologia Molecolare ' A. Monroy' , Via Ugo La Malfa 153, 90146 Palermo (Italy); Hernroth, Bodil [The Royal Swedish Academy of Sciences, Kristineberg 566, 45034 Fiskebaeckskil (Sweden)], E-mail: bodil.hernroth@marecol.gu.se

    2008-08-29

    Manganese (Mn) is a naturally abundant metal in marine sediments where it mainly occurs as MnO{sub 2}. During hypoxic conditions it is converted into a bioavailable state, Mn{sup 2+}, and can reach levels that previously have shown effects on immune competent cells of the crustacean, Nephrops norvegicus. Here we investigated if Mn also affects circulating coelomocytes and their renewal in the common sea star, Asterias rubens, when exposed to concentrations of Mn that can be found in nature. When the sea stars were exposed to Mn it accumulated in the coelomic fluid and the number of circulating coelomocytes, in contrast to what was recorded in Nephrops, increased significantly. By using the substitute nucleotide, 5-bromo-2'-deoxyuridine, BrdU, for tracing cell division and by recording mitotic index by nuclei staining, we found that Mn induced proliferation of cells from a putative haematopoietic tissue, the coelomic epithelium. In addition, the haematopoietic tissue and coelomocytes showed stress response in terms of changes in HSP70 levels and protein carbonyls, as judged by immunohistochemistry and Western blotting. Measurement of dehydrogenase activity, using MTS/PMS, revealed that Mn showed cytotoxic properties. We also found that the phagocytotic capacity of coelomocytes was significantly inhibited by Mn. It was concluded that the exposure of A. rubens to Mn induced renewal of coelomocytes and impaired their immune response.

  9. PRMT4 Is a Novel Coactivator of c-Myb-Dependent Transcription in Haematopoietic Cell Lines

    Science.gov (United States)

    Berberich, Hannah; Zeller, Marc S.; Teichmann, Sophia; Adamkiewicz, Jürgen; Müller, Rolf; Klempnauer, Karl-Heinz; Bauer, Uta-Maria

    2013-01-01

    Protein arginine methyltransferase 4 (PRMT4)–dependent methylation of arginine residues in histones and other chromatin-associated proteins plays an important role in the regulation of gene expression. However, the exact mechanism of how PRMT4 activates transcription remains elusive. Here, we identify the chromatin remodeller Mi2α as a novel interaction partner of PRMT4. PRMT4 binds Mi2α and its close relative Mi2β, but not the other components of the repressive Mi2-containing NuRD complex. In the search for the biological role of this interaction, we find that PRMT4 and Mi2α/β interact with the transcription factor c-Myb and cooperatively coactivate c-Myb target gene expression in haematopoietic cell lines. This coactivation requires the methyltransferase and ATPase activity of PRMT4 and Mi2, respectively. Chromatin immunoprecipitation analysis shows that c-Myb target genes are direct transcriptional targets of PRMT4 and Mi2. Knockdown of PRMT4 or Mi2α/β in haematopoietic cells of the erythroid lineage results in diminished transcriptional induction of c-Myb target genes, attenuated cell growth and survival, and deregulated differentiation resembling the effects caused by c-Myb depletion. These findings reveal an important and so far unknown connection between PRMT4 and the chromatin remodeller Mi2 in c-Myb signalling. PMID:23505388

  10. Human pancreatic islet progenitor cells demonstrate phenotypic ...

    Indian Academy of Sciences (India)

    Prakash

    exploring alternative sources of insulin-producing cells for cell based therapy in diabetes. Since in vitro culture of islet β-cells demonstrates loss in insulin (Beattie et al. 1999), several attempts have been made to identify stem / progenitor cells capable of differentiation into insulin-producing cells. Embryonic stem cells, which ...

  11. Multipotent progenitor cells in gingival connective tissue.

    Science.gov (United States)

    Fournier, Benjamin P J; Ferre, François C; Couty, Ludovic; Lataillade, Jean-Jacques; Gourven, Murielle; Naveau, Adrien; Coulomb, Bernard; Lafont, Antoine; Gogly, Bruno

    2010-09-01

    The gum has an exceptional capacity for healing. To examine the basis for this property and explore the potential of conferring it to organs with inferior healing capacity, we sought the presence of progenitor cells in gingival connective tissue. Colony-forming units of fibroblast-enriched cells from gingival fibroblast cultures were assessed for expression of membrane markers of mesenchymal stem cells; capacity to differentiate into osteoblasts, chondroblasts, and adipocytes; and engraftment efficiency after in vivo transfer. On the basis of their ability to differentiate into several lineages, proliferate from single cells, induce calcium deposits, and secrete collagen in vivo after transfer on hydroxyapatite carriers, we suggest that this population represents gingival multipotent progenitor cells. The discovery of progenitor cells in gingival connective tissue may help improve our understanding of how the wounded gum is capable of almost perfect healing and opens the prospect of cellular therapy for wound healing using readily available cells at limited risk to the patient.

  12. Temporal Definition of Haematopoietic Stem Cell Niches in a Large Animal Model of In Utero Stem Cell Transplantation

    Science.gov (United States)

    Jeanblanc, Christine; Goodrich, A. Daisy; Colletti, Evan; Mokhtari, Saloomeh; Porada, Christopher D.; Zanjani, Esmail D.; Almeida-Porada, Graça

    2014-01-01

    The fetal sheep model has served as a biologically relevant and translational model to study in utero haematopoietic stem cell transplantation (IUHSCT), yet little is known about the ontogeny of the bone marrow (BM) niches in this model. Because the BMmicroenvironment plays a critical role in the outcome of haematopoietic engraftment, we have established the correlation between the fetal-sheep and fetal-human BM niche ontogeny, so that studies addressing the role of niche development at the time of IUHSCT could be accurately performed. Immunofluorescence confocal microscopic analysis of sheep fetal bone from gestational days (gd) 25-68 showed that the BM microenvironment commences development with formation of the vascular niche between 25-36 gd in sheep; correlating with the events at 10-11 gestational weeks (gw) in humans. Subsequently, between 45-51 gd in sheep (~14 gw in humans), the osteoblastic/endosteal niche started developing, the presence of CD34+CD45+ cells were promptly detected, and their number increased with gestational age. IUHSCT, performed in sheep at 45 and 65 gd, showed significant haematopoietic engraftment only at the later time point, indicating that a fully functional BM microenvironment improved engraftment. These studies show that sheep niche ontogeny closely parallels human, validating this model for investigating niche influence/manipulation in IUHSCT engraftment. PMID:24673111

  13. Mast cell progenitor trafficking and maturation.

    Science.gov (United States)

    Hallgren, Jenny; Gurish, Michael F

    2011-01-01

    Mast cells are derived from the hematopoietic progenitors found in bone marrow and spleen. Committed mast cell progenitors are rare in bone marrow suggesting they are rapidly released into the blood where they circulate and move out into the peripheral tissues. This migration is controlled in a tissue specific manner. Basal trafficking to the intestine requires expression of α4β7 integrin and the chemokine receptor CXCR2 by the mast cell progenitors and expression of MAdCAM-1 and VCAM-1 in the intestinal endothelium; and is also controlled by dendritic cells expressing the transcriptional regulatory protein T-bet. None of these play a role in basal trafficking to the lung. With the induction of allergic inflammation in the lung, there is marked recruitment of committed mast cell progenitors to lung and these cells must express α4β7 and α4β1 integrins. Within the lung there is a requirement for expression of VCAM-1 on the endothelium that is regulated by CXCR2, also expressed on the endothelium. There is a further requirement for expression of the CCR2/CCL2 pathways for full recruitment of the mast cell progenitors to the antigen-inflamed lung.

  14. Patients' experience of sexuality 1-year after allogeneic Haematopoietic Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Nørskov, Kristina H; Schmidt, Mette; Jarden, Mary

    2015-01-01

    PURPOSE: This study explores how patients' experience of sexuality is influenced by physical, psychological and social changes one year after undergoing haematopoietic stem cell transplantation (HSCT). METHODS: A qualitative study using semi-structured in-depth interviews. The respondents (n = 9...... body image, which directly or indirectly resulted in sexual dysfunction or problems with intimacy. Symptoms related to chronic GVHD, could explain experiences of sexual dysfunction. Sexual needs were deprioritized as survival became paramount. The experience of changed social roles, both in family life...... and social network, affected self-image and identity. Finally, communication about sexuality and sexual needs was of significant importance to the current state of their relationship. CONCLUSION: Physical body alterations, challenges in mastering their new life situation and identity changes affected...

  15. Prognosis of Allogeneic Haematopoietic Stem Cell Recipients Admitted to the Intensive Care Unit

    DEFF Research Database (Denmark)

    Lindgaard, Sidsel Christy; Nielsen, Jonas; Lindmark, Anders

    2016-01-01

    ventilation had a statistically significant effect on in-ICU (p = 0.02), 6-month (p = 0.049) and 1-year (p = 0.014) mortality. Renal replacement therapy also had a statistically significant effect on in-hospital (p = 0.038) and 6-month (p = 0.026) mortality. Short ICU admissions, i.e. ... to the ICU was confirmed in our study. Mechanical ventilation, renal replacement therapy and an ICU admission of ≥10 days were each risk factors for mortality in the first year after ICU admission.......BACKGROUND: Allogeneic haematopoietic stem cell transplantation (HSCT) is a procedure with inherent complications and intensive care may be necessary. We evaluated the short- and long-term outcomes of the HSCT recipients requiring admission to the intensive care unit (ICU). METHODS: We...

  16. Socially disadvantaged parents of children treated with allogeneic haematopoietic stem cell transplantation (HSCT)

    DEFF Research Database (Denmark)

    Larsen, Hanne Bækgaard; Heilmann, Carsten; Johansen, Christoffer

    2013-01-01

    PURPOSE: This study was undertaken to test a daily Family Navigator Nurse (FNN) conducted intervention program, to support parents during the distressful experience of their child's Allogeneic Haematopoietic Stem Cell Transplantation (HSCT). METHODS: A qualitative analysis of the supportive...... intervention program for parents whose child is under HSCT treatment while hospitalized. Parents to 25 children were included in the intervention group. Twenty-five parents were included in a participant observational study and 21 of these completed a semi-structured interview 100 days following HSCT. RESULTS......: Three main problems faced by all parents included 1) the emotional strain of the child's HSCT; 2) re-organizing of the family's daily life to include hospitalization with the child; and 3) the financial strain of manoeuvring within the Danish welfare system. The FNN performed daily intervention rounds...

  17. Noninvasive Imaging of Administered Progenitor Cells

    Energy Technology Data Exchange (ETDEWEB)

    Steven R Bergmann, M.D., Ph.D.

    2012-12-03

    The objective of this research grant was to develop an approach for labeling progenitor cells, specifically those that we had identified as being able to replace ischemic heart cells, so that the distribution could be followed non-invasively. In addition, the research was aimed at determining whether administration of progenitor cells resulted in improved myocardial perfusion and function. The efficiency and toxicity of radiolabeling of progenitor cells was to be evaluated. For the proposed clinical protocol, subjects with end-stage ischemic coronary artery disease were to undergo a screening cardiac positron emission tomography (PET) scan using N-13 ammonia to delineate myocardial perfusion and function. If they qualified based on their PET scan, they would undergo an in-hospital protocol whereby CD34+ cells were stimulated by the administration of granulocytes-colony stimulating factor (G-CSF). CD34+ cells would then be isolated by apharesis, and labeled with indium-111 oxine. Cells were to be re-infused and subjects were to undergo single photon emission computed tomography (SPECT) scanning to evaluate uptake and distribution of labeled progenitor cells. Three months after administration of progenitor cells, a cardiac PET scan was to be repeated to evaluate changes in myocardial perfusion and/or function. Indium oxine is a radiopharmaceutical for labeling of autologous lymphocytes. Indium-111 (In-111) decays by electron capture with a t{sub ½} of 67.2 hours (2.8 days). Indium forms a saturated complex that is neutral, lipid soluble, and permeates the cell membrane. Within the cell, the indium-oxyquinolone complex labels via indium intracellular chelation. Following leukocyte labeling, ~77% of the In-111 is incorporated in the cell pellet. The presence of red cells and /or plasma reduces the labeling efficacy. Therefore, the product needed to be washed to eliminate plasma proteins. This repeated washing can damage cells. The CD34 selected product was a 90

  18. Non-myeloablative autologous haematopoietic stem cell transplantation expands regulatory cells and depletes IL-17 producing mucosal-associated invariant T cells in multiple sclerosis.

    Science.gov (United States)

    Abrahamsson, Sofia V; Angelini, Daniela F; Dubinsky, Amy N; Morel, Esther; Oh, Unsong; Jones, Joanne L; Carassiti, Daniele; Reynolds, Richard; Salvetti, Marco; Calabresi, Peter A; Coles, Alasdair J; Battistini, Luca; Martin, Roland; Burt, Richard K; Muraro, Paolo A

    2013-09-01

    Autologous haematopoietic stem cell transplantation has been tried as one experimental strategy for the treatment of patients with aggressive multiple sclerosis refractory to other immunotherapies. The procedure is aimed at ablating and repopulating the immune repertoire by sequentially mobilizing and harvesting haematopoietic stem cells, administering an immunosuppressive conditioning regimen, and re-infusing the autologous haematopoietic cell product. 'Non-myeloablative' conditioning regimens to achieve lymphocytic ablation without marrow suppression have been proposed to improve safety and tolerability. One trial with non-myeloablative autologous haematopoietic stem cell transplantation reported clinical improvement and inflammatory stabilization in treated patients with highly active multiple sclerosis. The aim of the present study was to understand the changes in the reconstituted immune repertoire bearing potential relevance to its mode of action. Peripheral blood was obtained from 12 patients with multiple sclerosis participating in the aforementioned trial and longitudinally followed for 2 years. We examined the phenotype and function of peripheral blood lymphocytes by cell surface or intracellular staining and multi-colour fluorescence activated cell sorting alone or in combination with proliferation assays. During immune reconstitution post-transplantation we observed significant though transient increases in the proportion of CD4+ FoxP3+ T cells and CD56(high) natural killer cell subsets, which are cell subsets associated with immunoregulatory function. CD8+ CD57+ cytotoxic T cells were persistently increased after therapy and were able to suppress CD4+ T cell proliferation with variable potency. In contrast, a CD161(high) proinflammatory CD8+ T cell subset was depleted at all time-points post-transplantation. Phenotypic characterization revealed that the CD161(high)CD8+ T cells were mucosal-associated invariant T cells, a novel cell population

  19. X Inactivation and Progenitor Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ruben Agrelo

    2011-04-01

    Full Text Available In mammals, silencing of one of the two X chromosomes is necessary to achieve dosage compensation. The 17 kb non-coding RNA called Xist triggers X inactivation. Gene silencing by Xist can only be achieved in certain contexts such as in cells of the early embryo and in certain hematopoietic progenitors where silencing factors are present. Moreover, these epigenetic contexts are maintained in cancer progenitors in which SATB1 has been identified as a factor related to Xist-mediated chromosome silencing.

  20. Endothelial progenitor cell dysfunction in diabetes mellitus

    NARCIS (Netherlands)

    Loomans, Cindy Johanna Maria

    2007-01-01

    Postnatally, Endothelial Progenitor Cells are needed to maintain the integrity of the endothelium (re-endothelialization) and to augment wound healing or vascularize hypoxic areas (neovascularization). Complex networks of different signals and regulators have been identified to be involved in these

  1. Human pancreatic islet progenitor cells demonstrate phenotypic ...

    Indian Academy of Sciences (India)

    2009-04-24

    Apr 24, 2009 ... Phenotypic plasticity is a phenomenon that describes the occurrence of 2 or more distinct phenotypes under diverse conditions. This article discusses the work carried out over the past few years in understanding the potential of human pancreatic islet-derived progenitors for cell replacement therapy in ...

  2. Polyoma BK virus and haemorrhagic cystitis in haematopoietic stem cell transplantation: a changing paradigm.

    Science.gov (United States)

    Leung, A Y H; Yuen, K-Y; Kwong, Y-L

    2005-12-01

    Haemorrhagic cystitis (HC) is a distinct clinical disorder of multiple aetiologies. It is characterized by painful haematuria due to haemorrhagic inflammation of the urinary bladder mucosa. In allogeneic haematopoietic stem cell transplantation (HSCT), HC occurring before engraftment is mostly transient and self-limiting, whereas that after engraftment is severe and sometimes life-threatening. Pre- and post-engraftment HC represent distinct disorders with different aetiologies and treatment implications. Recent data suggest that reactivation of the polyoma BK virus (BKV) plays a pivotal role in post-engraftment HC. Urotoxicity of the conditioning regimen and alloimmune reaction accompanying graft-versus-host disease (GVHD) upon engraftment are also important pathogenetic factors. Based on data from BKV studies, we propose that HC may be divided into three phases. In the first phase, the conditioning regimen damages uroepithelial cells, providing a milieu for BKV replication. In the second phase, unchecked uroepithelial BKV replication leads to BK viruria. In the last phase after engraftment, alloimmunity against BKV-infected uroepithelial cells leads to HC. The quinolone antibiotics suppress BKV replication in vivo and in vitro, suggesting that their prophylactic use may prevent the occurrence of HC.

  3. Autologous haematopoietic stem cell transplantation reduces abnormalities in the expression of immune genes in multiple sclerosis.

    Science.gov (United States)

    de Paula A Sousa, Alessandra; Malmegrim, Kelen C R; Panepucci, Rodrigo A; Brum, Doralina S; Barreira, Amilton A; Carlos Dos Santos, Antonio; Araújo, Amélia G; Covas, Dimas Tadeu; Oliveira, Maria C; Moraes, Daniela A; Pieroni, Fabiano; Barros, George M; Simões, Belinda P; Nicholas, Richard; Burt, Richard K; Voltarelli, Júlio C; Muraro, Paolo A

    2015-01-01

    Autologous haematopoietic stem-cell transplantation (AHSCT) has been experimented as a treatment in patients affected by severe forms of multiple sclerosis (MS) who failed to respond to standard immunotherapy. The rationale of AHSCT is to 'reboot' the immune system and reconstitute a new adaptive immunity. The aim of our study was to identify, through a robust and unbiased transcriptomic analysis, any changes of gene expression in T-cells potentially underlying the treatment effect in patients who underwent non-myeloablative AHSCT for treatment of MS. We evaluated by microarray DNA-chip technology the gene expression of peripheral CD4+ and CD8+ T-cell subsets sorted from patients with MS patients before AHSCT, at 6 months, 1 year and 2 years after AHSCT and from healthy control subjects. Hierarchical clustering analysis revealed that reconstituted CD8+ T-cells of MS patients at 2 years post-transplantation, aggregated together with healthy controls, suggesting a normalization of gene expression in CD8+ cells post-therapy. When we compared the gene expression in MS patients before and after therapy, we detected a large number of differentially expressed genes (DEG) in both CD8+ and CD4+ T-cell subsets at all time points after transplantation. We catalogued the biological function of DEG and we selected 27 genes known to be involved in immune function for accurate quantification of gene expression by real-time PCR. The analysis confirmed and extended with quantitative data, a number of significant changes in both the CD4+ and CD8+ T-cells subsets from MS post-transplant. Notably, CD8+ T-cells revealed more extensive changes in the expression of genes involved in effector immune responses.

  4. Forty years of haematopoietic stem cell transplantation: a review of the Basel experience.

    Science.gov (United States)

    O'Meara, Alix; Holbro, Andreas; Meyer, Sara; Martinez, Maria; Medinger, Michael; Buser, Andreas; Halter, Jörg; Heim, Dominik; Gerull, Sabine; Bucher, Christoph; Rovo, Alicia; Kühne, Thomas; Tichelli, André; Gratwohl, Alois; Stern, Martin; Passweg, Jakob R

    2014-02-24

    The purpose of this study was to examine changes in haematopoietic stem cell transplant (HSCT) characteristics and outcome in our combined paediatric and adult programme over the past four decades, since its implementation in 1973. The total number of transplant procedures rose from 109 in the first decade (1973-82) to 939 in the last decade (2003-12). Transplant characteristics changed significantly over time: patient age increased, peripheral blood largely replaced bone marrow as stem cell source, unrelated donors became an alternative to matched siblings, and patients are increasingly transplanted in more advanced disease stages. Advances such as improved supportive care and histocompatibility typing resulted in a steady decrease of transplant-related mortality after allogeneic HSCT (43% in the first decade, 22% in the last decade). Despite this, unadjusted survival rates were stable in the last three decades for allogeneic HSCT (approximately 50% 5-year survival) and in the last two decades for autologous HSCT (approximately 60% 5-year survival). After adjustment for covariates such as donor type, age and stage, the relative risk of treatment failure continuously dropped (for allogeneic HSCT: first decade 1.0, second decade 0.58, third decade 0.51, last decade 0.41). Collectively, these data suggest that improvements in peri- and post-transplant care have allowed considerable extension of transplant indications without having a negative impact on outcome.

  5. The ATM-BID pathway regulates quiescence and survival of haematopoietic stem cells.

    Science.gov (United States)

    Maryanovich, Maria; Oberkovitz, Galia; Niv, Hagit; Vorobiyov, Lidiya; Zaltsman, Yehudit; Brenner, Ori; Lapidot, Tsvee; Jung, Steffen; Gross, Atan

    2012-03-25

    BID, a BH3-only BCL2 family member, functions in apoptosis as well as the DNA-damage response. Our previous data demonstrated that BID is an ATM effector acting to induce cell-cycle arrest and inhibition of apoptosis following DNA damage. Here we show that ATM-mediated BID phosphorylation plays an unexpected role in maintaining the quiescence of haematopoietic stem cells (HSCs). Loss of BID phosphorylation leads to escape from quiescence of HSCs, resulting in exhaustion of the HSC pool and a marked reduction of HSC repopulating potential in vivo. We also demonstrate that BID phosphorylation plays a role in protecting HSCs from irradiation, and that regulating both quiescence and survival of HSCs depends on BID's ability to regulate oxidative stress. Moreover, loss of BID phosphorylation, ATM knockout or exposing mice to irradiation leads to an increase in mitochondrial BID, which correlates with an increase in mitochondrial oxidative stress. These results show that the ATM-BID pathway serves as a critical checkpoint for coupling HSC homeostasis and the DNA-damage stress response to enable long-term regenerative capacity.

  6. Killer cell Immunoglobulin-like Receptor (KIR) polymorphism in Haematopoietic Stem Cell Transplantation (HSCT) : The effect of KIR gene and genotype polymorphism on clinical outcome after HSCT

    NARCIS (Netherlands)

    Schellekens, A.J.

    2008-01-01

    Haematopoietic stem cell transplantation (HSCT) often is a final treatment option for patients suffering from haematological malignancies and metabolic disorders. When HSCT is applied to treat leukaemia, relapse of the disease is a recurrent complication. Donor lymphocyte infusion (DLI) with T cells

  7. A review of the haematopoietic stem cell donation experience: is there room for improvement?

    Science.gov (United States)

    Billen, A; Madrigal, J A; Shaw, B E

    2014-06-01

    Donation of haematopoietic stem cells, either through BM or PBSC collection, is a generally safe procedure for healthy donors although adverse reactions are a definite risk. The invaluable source of donation and its central role in transplantation implies that every effort should be made to alleviate possible difficulties the donor encounters. The physical and psychological reactions to donation have been established for some time, but less is known about the factors that are associated with a poorer donation experience. In this article, we provide an overview of the physical and psychological donation experience and focus attention on demographic, physical and psychological factors that may influence this donation experience. Understanding that toxicity profiles vary with certain donor characteristics is crucial as this knowledge could influence practice in numerous ways including the modification of joining and recruitment policies and the improvement of supportive measures and donor follow-up procedures. Although this review deals with both unrelated and related donors (RDs), there is a relative paucity of regulation of RD care and we call for more attention to this area. Owing to the relative rarity of donation in each country, a global effort to collect donor outcome data is needed.

  8. Stem/Progenitor cells in vascular regeneration.

    Science.gov (United States)

    Zhang, Li; Xu, Qingbo

    2014-06-01

    A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.

  9. Endothelial progenitor cell biology in ankylosing spondylitis.

    Science.gov (United States)

    Verma, Inderjeet; Syngle, Ashit; Krishan, Pawan

    2015-03-01

    Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). EPCs were depleted in AS patients as compared to healthy controls (CD34(+) /CD133(+) : 0.027 ± 0.010% vs. 0.044 ± 0.011%, P < 0.001). EPC depletions were significantly associated with disease duration (r = -0.52, P = 0.01), BASDAI (r = -0.45, P = 0.04) and C-reactive protein (r = -0.5, P = 0.01). This is the first study to demonstrate endothelial progenitor cell depletion in AS patients. EPC depletions inversely correlate with disease duration, disease activity and inflammation, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. Pneumonia Caused by Moraxella Catarrhalis in Haematopoietic ...

    African Journals Online (AJOL)

    Two patients with haematopoietic stem cell transplant who developed pneumonia caused by M. catarrhalis at King Faisal Specialist Hospital and Research Centre in Riyadh are reported and the literature is reviewed. To our knowledge, these are the first case reports of M. catarrhalis pneumonia in haematopoietic stem cell ...

  11. Enforced ROR(gamma)t expression in haematopoietic stem cells increases regulatory T cell number, which reduces immunoreactivity and attenuates hypersensitivity in vivo.

    Science.gov (United States)

    Fujisawa, Yasuhiro; Nabekura, Tsukasa; Kawachi, Yasuhiro; Otsuka, Fujio; Onodera, Masafumi

    2011-03-01

    The retinoic acid receptor-related orphan receptor gammat (ROR(gamma)t) is a key transcription factor involved in the generation of T-helper 17 (Th17) cells, which mediate tissue inflammation and autoimmunity. However, recent studies indicated that less than half of all ROR(gamma)t(+) Talphabeta cells express IL-17, while the others are Foxp3(+) Talphabeta cells expressing IL-10. These observations raise questions regarding the role of ROR(gamma)t in the early differentiation process of T cells from haematopoietic stem cells. To examine the role of RORyt in T cell differentiation, mice were reconstituted with ROR(gamma)t cDNA-transduced haematopoietic stem cells and the role of ROR(gamma)t in T cell differentiation was studied in a mouse bone marrow transplantation model in vivo. While the number of Th17 cells increased with the reduction in Thl cell number in transplanted mice, peripheral blood Foxp3(+) Talphabeta cell number also increased, which attenuated the severity of contact hypersensitivity on skin exposed to 2,4-dinitrofluorobenzene. The number of non-transduced Foxp3(+) regulatory T cells (Treg cells) also increased in these mice. These observations suggest that the enforced expression of ROR(gamma)t in haematopoietic stem cells induces differentiation of Thl7 cells and results in an increase in Foxp3(+) Treg cell number to limit self-tissue damage.

  12. Isoform-specific potentiation of stem and progenitor cell engraftment by AML1/RUNX1.

    Directory of Open Access Journals (Sweden)

    Shinobu Tsuzuki

    2007-05-01

    Full Text Available AML1/RUNX1 is the most frequently mutated gene in leukaemia and is central to the normal biology of hematopoietic stem and progenitor cells. However, the role of different AML1 isoforms within these primitive compartments is unclear. Here we investigate whether altering relative expression of AML1 isoforms impacts the balance between cell self-renewal and differentiation in vitro and in vivo.The human AML1a isoform encodes a truncated molecule with DNA-binding but no transactivation capacity. We used a retrovirus-based approach to transduce AML1a into primitive haematopoietic cells isolated from the mouse. We observed that enforced AML1a expression increased the competitive engraftment potential of murine long-term reconstituting stem cells with the proportion of AML1a-expressing cells increasing over time in both primary and secondary recipients. Furthermore, AML1a expression dramatically increased primitive and committed progenitor activity in engrafted animals as assessed by long-term culture, cobblestone formation, and colony assays. In contrast, expression of the full-length isoform AML1b abrogated engraftment potential. In vitro, AML1b promoted differentiation while AML1a promoted proliferation of progenitors capable of short-term lymphomyeloid engraftment. Consistent with these findings, the relative abundance of AML1a was highest in the primitive stem/progenitor compartment of human cord blood, and forced expression of AML1a in these cells enhanced maintenance of primitive potential both in vitro and in vivo.These data demonstrate that the "a" isoform of AML1 has the capacity to potentiate stem and progenitor cell engraftment, both of which are required for successful clinical transplantation. This activity is consistent with its expression pattern in both normal and leukaemic cells. Manipulating the balance of AML1 isoform expression may offer novel therapeutic strategies, exploitable in the contexts of leukaemia and also in cord blood

  13. Cardiac Progenitor Cell Extraction from Human Auricles

    KAUST Repository

    Di Nardo, Paolo

    2017-02-22

    For many years, myocardial tissue has been considered terminally differentiated and, thus, incapable of regenerating. Recent studies have shown, instead, that cardiomyocytes, at least in part, are slowly substituted by new cells originating by precursor cells mostly embedded into the heart apex and in the atria. We have shown that an elective region of progenitor cell embedding is represented by the auricles, non-contractile atria appendages that can be easily sampled without harming the patient. The protocol here reported describes how from auricles a population of multipotent, cardiogenic cells can be isolated, cultured, and differentiated. Further studies are needed to fully exploit this cell population, but, sampling auricles, it could be possible to treat cardiac patients using their own cells circumventing rejection or organ shortage limitations.

  14. [Nosocomial infection in patients receiving a solid organ transplant or haematopoietic stem cell transplant].

    Science.gov (United States)

    Moreno Camacho, Asunción; Ruiz Camps, Isabel

    2014-01-01

    Bacterial infections are the most common infections in solid organ transplant recipients. These infections occur mainly in the first month after transplantation and are hospital-acquired. Nosocomial infections cause significant morbidity and are the most common cause of mortality in this early period of transplantation. These infections are caused by multi-drug resistant (MDR) microorganisms, mainly Gram-negative enterobacteria, non-fermentative Gram-negative bacilli, enterococci, and staphylococci. The patients at risk of developing nosocomial bacterial infections are those previously colonized with MDR bacteria while on the transplant waiting list. Intravascular catheters, the urinary tract, the lungs, and surgical wounds are the most frequent sources of infection. Preventive measures are the same as those applied in non-immunocompromised, hospitalized patients except in patients at high risk for developing fungal infection. These patients need antifungal therapy during their hospitalization, and for preventing some bacterial infections in the early transplant period, patients need vaccinations on the waiting list according to the current recommendations. Although morbidity and mortality related to infectious diseases have decreased during the last few years in haematopoietic stem cell transplant recipients, they are still one of the most important complications in this population. Furthermore, as occurs in the general population, the incidence of nosocomial infections has increased during the different phases of transplantation. It is difficult to establish general preventive measures in these patients, as there are many risk factors conditioning these infections. Firstly, they undergo multiple antibiotic treatments and interventions; secondly, there is a wide variability in the degree of neutropenia and immunosuppression among patients, and finally they combine hospital and home stay during the transplant process. However, some simple measures could be

  15. Second neoplasms in adult patients submitted to haematopoietic stem cell transplantation.

    Science.gov (United States)

    Torrent, Anna; Ferrá, Christelle; Morgades, Mireia; Jiménez, María-José; Sancho, Juan-Manuel; Vives, Susana; Batlle, Montserrat; Moreno, Miriam; Xicoy, Blanca; Oriol, Albert; Ibarra, Gladys; Ribera, Josep-Maria

    2017-09-02

    Patients submitted to haematopoietic stem cell transplantation (HSCT) are at increased risk of late complications, such as second neoplasm (SN). The incidence and risk factors of SN in patients receiving HSCT at a single centre were analysed. The follow-up of adult patients who received a first HSCT (autologous [auto-HSCT] or allogeneic [allo-HSCT]) between January 2000 and December 2015 was reviewed. We collected their demographic characteristics, the primary disease and type of HSCT, and analysed the cumulative incidence of SN and their risk factors. Of 699 transplanted patients (auto-HSCT, n=451; allo-HSCT, n=248), 42 (6%) developed SN (17 haematological and 25 solid), 31 post-auto-HSCT and 11 post-allo-HSCT. Haematologic SN were more frequent after auto-HSCT than after allo-HSCT. The median time between HSCT and SN was 4.09 years [range 0.07-13.15], with no differences between auto-HSCT and allo-HSCT. The cumulative incidence of SN was 5% (95% CI 3-6) at 5 years, 7% (95% CI 5-10) at 10 years and 11% (95% CI 8-15) at 15 years, without differences according to the type of HSCT. Only the age over 40 years correlated with an increased risk of SN. In this series, the incidence of post-HSCT SN was similar to that previously described. Patients submitted to an auto-HSCT showed a higher frequency of haematologic SN. A higher incidence of SN was detected in patients older than 40 at the time of HSCT. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  16. Mast cell progenitors: origin, development and migration to tissues.

    Science.gov (United States)

    Dahlin, Joakim S; Hallgren, Jenny

    2015-01-01

    Mast cells in tissues are developed from mast cell progenitors emerging from the bone marrow in a process highly regulated by transcription factors. Through the advancement of the multicolor flow cytometry technique, the mast cell progenitor population in the mouse has been characterized in terms of surface markers. However, only cell populations with enriched mast cell capability have been described in human. In naïve mice, the peripheral tissues have a constitutive pool of mast cell progenitors. Upon infections in the gut and in allergic inflammation in the lung, the local mast cell progenitor numbers increase tremendously. This review focuses on the origin and development of mast cell progenitors. Furthermore, the evidences for cells and molecules that govern the migration of these cells in mice in vivo are described. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Endothelial Progenitor Cells Enter the Aging Arena.

    Directory of Open Access Journals (Sweden)

    Kate eWilliamson

    2012-02-01

    Full Text Available Age is a significant risk factor for the development of vascular diseases, such as atherosclerosis. Although pharmacological treatments, including statins and anti-hypertensive drugs, have improved the prognosis for patients with cardiovascular disease, it remains a leading cause of mortality in those aged 65 years and over. Furthermore, given the increased life expectancy of the population in developed countries, there is a clear need for alternative treatment strategies. Consequently, the relationship between aging and progenitor cell-mediated repair is of great interest. Endothelial progenitor cells (EPCs play an integral role in the cellular repair mechanisms for endothelial regeneration and maintenance. However, EPCs are subject to age-associated changes that diminish their number in circulation and function, thereby enhancing vascular disease risk. A great deal of research is aimed at developing strategies to harness the regenerative capacity of these cells.In this review, we discuss the current understanding of the cells termed ‘EPCs’, examine the impact of age on EPC-mediated repair and identify therapeutic targets with potential for attenuating the age-related decline in vascular health via beneficial actions on EPCs.

  18. PET imaging of adoptive progenitor cell therapies.

    Energy Technology Data Exchange (ETDEWEB)

    Gelovani, Juri G.

    2008-05-13

    Objectives. The overall objective of this application is to develop novel technologies for non-invasive imaging of adoptive stem cell-based therapies with positron emission tomography (PET) that would be applicable to human patients. To achieve this objective, stem cells will be genetically labeled with a PET-reporter gene and repetitively imaged to assess their distribution, migration, differentiation, and persistence using a radiolabeled reporter probe. This new imaging technology will be tested in adoptive progenitor cell-based therapy models in animals, including: delivery pro-apoptotic genes to tumors, and T-cell reconstitution for immunostimulatory therapy during allogeneic bone marrow progenitor cell transplantation. Technical and Scientific Merits. Non-invasive whole body imaging would significantly aid in the development and clinical implementation of various adoptive progenitor cell-based therapies by providing the means for non-invasive monitoring of the fate of injected progenitor cells over a long period of observation. The proposed imaging approaches could help to address several questions related to stem cell migration and homing, their long-term viability, and their subsequent differentiation. The ability to image these processes non-invasively in 3D and repetitively over a long period of time is very important and will help the development and clinical application of various strategies to control and direct stem cell migration and differentiation. Approach to accomplish the work. Stem cells will be genetically with a reporter gene which will allow for repetitive non-invasive “tracking” of the migration and localization of genetically labeled stem cells and their progeny. This is a radically new approach that is being developed for future human applications and should allow for a long term (many years) repetitive imaging of the fate of tissues that develop from the transplanted stem cells. Why the approach is appropriate. The novel approach to

  19. Dysfunctional Endothelial Progenitor Cells in Metabolic Syndrome

    Science.gov (United States)

    Devaraj, Sridevi; Jialal, Ishwarlal

    2012-01-01

    The metabolic syndrome (MetS) is highly prevalent and confers an increased risk of diabetes and cardiovascular disease. A key early event in atherosclerosis is endothelial dysfunction. Numerous groups have reported endothelial dysfunction in MetS. However, the measurement of endothelial function is far from optimum. There has been much interest recently in a subtype of progenitor cells, termed endothelial progenitor cells (EPCs), that can circulate, proliferate, and dfferentiate into mature endothelial cells. EPCs can be characterized by the assessment of surface markers, CD34 and vascular endothelial growth factor receptor-2, VEGFR-2 (KDR). The CD34+KDR+ phenotype has been demonstrated to be an independent predictor of cardiovascular outcomes. MetS patients without diabetes or cardiovascular diseases have decreased EPC number and functionality as evidenced by decreased numbers of colony forming units, decreased adhesion and migration, and decreased tubule formation. Strategies that have been shown to upregulate and enhance EPC number and functionality include statins, angiotensin converting enzyme inhibitors, angiotensin receptor blockers, and peroxisome-proliferator-activating-receptor gamma agonists. Mechanisms by which they affect EPC number and functionality need to be studied. Thus, EPC number and/or functionality could emerge as novel cellular biomarkers of endothelial dysfunction and cardiovascular disease risk in MetS. PMID:21941528

  20. Cyclosporine decreases vascular progenitor cell numbers after cardiac transplantation and attenuates progenitor cell growth in vitro.

    Science.gov (United States)

    Davies, William R; Wang, Shaohua; Oi, Keiji; Bailey, Kent R; Tazelaar, Henry D; Caplice, Noel M; McGregor, Christopher G A

    2005-11-01

    Recent experimental evidence suggests that the neointimal proliferation seen in cardiac allograft vasculopathy may in part derive from recipient progenitor cells. The effect of cyclosporine on these circulating progenitors in the setting of cardiac transplantation is currently unknown. Three surgical series were performed: sham operation alone, sham operation with immunosuppression, and heterotopic porcine cardiac transplantation with immunosuppression. The sham operation involved laparotomy and consecutive clamping of the abdominal aorta and inferior vena cava. Post-operative immunosuppression consisted of cyclosporine at therapeutic levels (100-300 ng/ml) and 0.5 mg/kg methylprednisolone. Endothelial outgrowth colony numbers (EOC(CFU)) and smooth muscle outgrowth colony numbers (SOC(CFU)) were quantified weekly for 4 weeks post-operatively. A series of in vitro experiments were performed to determine the effect of cyclosporine on the differentiation, migration, and proliferation of EOCs and SOCs. In the sham alone series there were no changes to either EOC(CFU) or SOC(CFU). In the sham with immunosuppression and the transplant series, both EOC(CFU) and SOC(CFU) fell in the first 2 weeks (p Cyclosporine, even at a low dose, prevented differentiation, inhibited proliferation, and attenuated migration of both EOCs and SOCs. Immunosuppression in the setting of cardiac transplantation causes a profound reduction in circulating progenitor cells capable of differentiating into endothelial and smooth muscle cells. This effect can in part be explained by the inhibitory effects of cyclosporine on progenitor growth and differentiation seen in this study.

  1. Identification, Characterization, and Utilization of Adult Meniscal Progenitor Cells

    Science.gov (United States)

    2015-09-01

    cells, stem cells, progenitor cells, meniscus healing , meniscus repair, osteoarthritis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT...2. Keywords meniscus, meniscal cells, stem cells, progenitor cells, meniscus healing , meniscus repair, osteoarthritis 3. Overall Project Summary...Colonies will be compared for frequency and size. For colony forming assays, meniscus cells (P1) from 8wk old mice were seeded a density of 1000/25cm2

  2. Pharmacokinetics, Pharmacodynamics and Pharmacogenomics of Immunosuppressants in Allogeneic Haematopoietic Cell Transplantation: Part I.

    Science.gov (United States)

    McCune, Jeannine S; Bemer, Meagan J

    2016-05-01

    Although immunosuppressive treatments and target concentration intervention (TCI) have significantly contributed to the success of allogeneic haematopoietic cell transplantation (alloHCT), there is currently no consensus on the best immunosuppressive strategies. Compared with solid organ transplantation, alloHCT is unique because of the potential for bidirectional reactions (i.e. host-versus-graft and graft-versus-host). Postgraft immunosuppression typically includes a calcineurin inhibitor (cyclosporine or tacrolimus) and a short course of methotrexate after high-dose myeloablative conditioning, or a calcineurin inhibitor and mycophenolate mofetil after reduced-intensity conditioning. There are evolving roles for the antithymyocyte globulins (ATGs) and sirolimus as postgraft immunosuppression. A review of the pharmacokinetics and TCI of the main postgraft immunosuppressants is presented in this two-part review. All immunosuppressants are characterized by large intra- and interindividual pharmacokinetic variability and by narrow therapeutic indices. It is essential to understand immunosuppressants' pharmacokinetic properties and how to use them for individualized treatment incorporating TCI to improve outcomes. TCI, which is mandatory for the calcineurin inhibitors and sirolimus, has become an integral part of postgraft immunosuppression. TCI is usually based on trough concentration monitoring, but other approaches include measurement of the area under the concentration-time curve (AUC) over the dosing interval or limited sampling schedules with maximum a posteriori Bayesian personalization approaches. Interpretation of pharmacodynamic results is hindered by the prevalence of studies enrolling only a small number of patients, variability in the allogeneic graft source and variability in postgraft immunosuppression. Given the curative potential of alloHCT, the pharmacodynamics of these immunosuppressants deserves to be explored in depth. Development of

  3. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Lavik, Erin B

    2005-01-01

    To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs.......To investigate the survival, integration, and differentiation of mouse retinal progenitor cells after transplantation to the subretinal space of adult pigs....

  4. Pigment Cell Progenitors in Zebrafish Remain Multipotent through Metamorphosis.

    Science.gov (United States)

    Singh, Ajeet Pratap; Dinwiddie, April; Mahalwar, Prateek; Schach, Ursula; Linker, Claudia; Irion, Uwe; Nüsslein-Volhard, Christiane

    2016-08-08

    The neural crest is a transient, multipotent embryonic cell population in vertebrates giving rise to diverse cell types in adults via intermediate progenitors. The in vivo cell-fate potential and lineage segregation of these postembryonic progenitors is poorly understood, and it is unknown if and when the progenitors become fate restricted. We investigate the fate restriction in the neural crest-derived stem cells and intermediate progenitors in zebrafish, which give rise to three distinct adult pigment cell types: melanophores, iridophores, and xanthophores. By inducing clones in sox10-expressing cells, we trace and quantitatively compare the pigment cell progenitors at four stages, from embryogenesis to metamorphosis. At all stages, a large fraction of the progenitors are multipotent. These multipotent progenitors have a high proliferation ability, which diminishes with fate restriction. We suggest that multipotency of the nerve-associated progenitors lasting into metamorphosis may have facilitated the evolution of adult-specific traits in vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Economic evaluation of targeted treatments of invasive aspergillosis in adult haematopoietic stem cell transplant recipients in the Netherlands: a modelling approach.

    NARCIS (Netherlands)

    Ament, A.J.; Hubben, M.W.; Verweij, P.E.; Groot, R. de; Warris, A.; Donnelly, J.P.; Wout, J. van 't; Severens, J.L.

    2007-01-01

    OBJECTIVES: The aim of this study was to assess the cost-effectiveness of a targeted treatment model of antifungal treatment strategies for adult haematopoietic stem cell transplant (HSCT) recipients in the Netherlands from a hospital perspective, using a decision analytic modelling approach.

  6. Fibroblast progenitor cells are recruited into the myocardium prior to the development of myocardial fibrosis.

    Science.gov (United States)

    Sopel, Mryanda; Falkenham, Alec; Oxner, Adam; Ma, Irene; Lee, Timothy D G; Légaré, Jean-Francois

    2012-04-01

    Using an established model of myocardial hypertrophy and fibrosis after angiotensin II (AngII) infusion, our aim was to characterize the early cellular element involved in the development of myocardial fibrosis in detail. Male Lewis rats were infused with saline or AngII (0.7 mg/kg per day) for up to seven days. Collagen deposition and cellular infiltration were identified by histology stains. Infiltrating cells were grown in vitro and examined by flow cytometry and immunostaining. Chemokine expression was measured using qRT-PCR. AngII infusion resulted in multifocal myocardial cellular infiltration (peak at three days) that preceded collagen deposition. Monocyte chemotactic protein (MCP)-1 transcripts peaked after one day of AngII exposure. Using a triple-labelling technique, the infiltrating cells were found to express markers of leucocyte (ED1(+)), mesenchymal [α-smooth muscle actin (SMA)(+)] and haematopeotic progenitor cells (CD133(+)) suggesting a fibroblast progenitor phenotype. In vitro, ED1(+)/SMA(+)/CD133(+) cells were isolated and grown from AngII-exposed animals. Comparatively few cells were cultured from untreated control hearts, and they were found to be ED1(-)/SMA(+)/CD133(-). We provide evidence that myocardial ECM deposition is preceded by infiltration into the myocardium by cells that express a combination of haematopoietic (ED1, CD133) and mesenchymal (SMA) cell markers, which is a characteristic of the phenotype of fibroblast precursor cells, termed fibrocytes. This suggests that fibrocytes rather than (as is often presumed) leucocytes may have effector functions in the initiation of myocardial fibrosis. © 2012 The Authors. International Journal of Experimental Pathology © 2012 International Journal of Experimental Pathology.

  7. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema

    Science.gov (United States)

    Tracy, Russell P.; Parikh, Megha A.; Hoffman, Eric A.; Shimbo, Daichi; Austin, John H. M.; Smith, Benjamin M.; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R. Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50–79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema. PMID:28291826

  8. Endothelial progenitor cells in chronic obstructive pulmonary disease and emphysema.

    Science.gov (United States)

    Doyle, Margaret F; Tracy, Russell P; Parikh, Megha A; Hoffman, Eric A; Shimbo, Daichi; Austin, John H M; Smith, Benjamin M; Hueper, Katja; Vogel-Claussen, Jens; Lima, Joao; Gomes, Antoinette; Watson, Karol; Kawut, Steven; Barr, R Graham

    2017-01-01

    Endothelial injury is implicated in the pathogenesis of COPD and emphysema; however the role of endothelial progenitor cells (EPCs), a marker of endothelial cell repair, and circulating endothelial cells (CECs), a marker of endothelial cell injury, in COPD and its subphenotypes is unresolved. We hypothesized that endothelial progenitor cell populations would be decreased in COPD and emphysema and that circulating endothelial cells would be increased. Associations with other subphenotypes were examined. The Multi-Ethnic Study of Atherosclerosis COPD Study recruited smokers with COPD and controls age 50-79 years without clinical cardiovascular disease. Endothelial progenitor cell populations (CD34+KDR+ and CD34+KDR+CD133+ cells) and circulating endothelial cells (CD45dimCD31+CD146+CD133-) were measured by flow cytometry. COPD was defined by standard spirometric criteria. Emphysema was assessed qualitatively and quantitatively on CT. Full pulmonary function testing and expiratory CTs were measured in a subset. Among 257 participants, both endothelial progenitor cell populations, and particularly CD34+KDR+ endothelial progenitor cells, were reduced in COPD. The CD34+KDR+CD133+ endothelial progenitor cells were associated inversely with emphysema extent. Both endothelial progenitor cell populations were associated inversely with extent of panlobular emphysema and positively with diffusing capacity. Circulating endothelial cells were not significantly altered in COPD but were inversely associated with pulmonary microvascular blood flow on MRI. There was no consistent association of endothelial progenitor cells or circulating endothelial cells with measures of gas trapping. These data provide evidence that endothelial repair is impaired in COPD and suggest that this pathological process is specific to emphysema.

  9. Cell-Surface Protein Profiling Identifies Distinctive Markers of Progenitor Cells in Human Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Akiyoshi Uezumi

    2016-08-01

    Full Text Available Skeletal muscle contains two distinct stem/progenitor populations. One is the satellite cell, which acts as a muscle stem cell, and the other is the mesenchymal progenitor, which contributes to muscle pathogeneses such as fat infiltration and fibrosis. Detailed and accurate characterization of these progenitors in humans remains elusive. Here, we performed comprehensive cell-surface protein profiling of the two progenitor populations residing in human skeletal muscle and identified three previously unrecognized markers: CD82 and CD318 for satellite cells and CD201 for mesenchymal progenitors. These markers distinguish myogenic and mesenchymal progenitors, and enable efficient isolation of the two types of progenitors. Functional study revealed that CD82 ensures expansion and preservation of myogenic progenitors by suppressing excessive differentiation, and CD201 signaling favors adipogenesis of mesenchymal progenitors. Thus, cell-surface proteins identified here are not only useful markers but also functionally important molecules, and provide valuable insight into human muscle biology and diseases.

  10. Long-term outcomes of allogeneic haematopoietic stem cell transplantation for adult cerebral X-linked adrenoleukodystrophy.

    Science.gov (United States)

    Kühl, Jörn-Sven; Suarez, Felipe; Gillett, Godfrey T; Hemmati, Philipp G; Snowden, John A; Stadler, Michael; Vuong, Giang L; Aubourg, Patrick; Köhler, Wolfgang; Arnold, Renate

    2017-04-01

    The adult cerebral inflammatory form of X-linked adrenoleukodystrophy is a rapidly progressive neurodegenerative disease, as devastating as childhood cerebral adrenoleukodystrophy. Allogeneic haematopoietic stem cell transplantation has been demonstrated to provide long-term neurological benefits for boys with the childhood cerebral form, but results in adults are sparse and inconclusive. We analysed data from 14 adult males with adult cerebral adrenoleukodystrophy treated with allogeneic haematopoietic stem cell transplantation on a compassionate basis in four European centres. All presented with cerebral demyelinating lesions and gadolinium enhancement. Median age at diagnosis of adult cerebral adrenoleukodystrophy was 33 years (range 21-48 years). In addition to cerebral inflammation, five patients had established severe motor disability from adrenomyeloneuropathy affecting only the spinal cord and peripheral nerves (Expanded Disability Status Scale score ≥ 6). Eight patients survived (estimated survival 57 ± 13%) with a median follow-up of 65 months (minimum 38 months). Death was directly transplant-/infection-related (n = 3), due to primary disease progression in advanced adult cerebral adrenoleukodystrophy (n = 1), or secondary disease progression (n = 2) after transient multi-organ failure or non-engraftment. Specific complications during stem cell transplantation included deterioration of motor and bladder functions (n = 12) as well as behavioural changes (n = 8). Arrest of progressive cerebral demyelination and prevention of severe loss of neurocognition was achieved in all eight survivors, but deterioration of motor function occurred in the majority (n = 5). Limited motor dysfunction (Expanded Disability Status Scale score adrenoleukodystrophy. Further studies are warranted to attempt to improve outcomes through patient selection and optimization of transplantation protocols. © The Author (2017). Published by Oxford University Press on behalf of the

  11. Ex vivo expansion of hematopoietic progenitor cells and mature cells.

    Science.gov (United States)

    McNiece, I; Briddell, R

    2001-01-01

    Hematopoietic cells have the potential for providing benefit in a variety of clinical settings. These include cells for support of patients undergoing high-dose chemotherapy, as a target for replacement gene therapy, and as a source of cells for immunotherapy. The limitation to many of these applications has been the total absolute number of defined target cells. Therefore many investigators have explored methods to culture hematopoietic cells in vitro to increase the numbers of these cells. Studies attempting to expand hematopoietic stem cells, progenitor cells, and mature cells in vitro have become possible over the past decade due to the availability of recombinant growth factors and cell selection technologies. To date, no studies have demonstrated convincing data on the expansion of true stem cells, and so the focus of this review is the expansion of committed progenitor cells and mature cells. A number of clinical studies have been preformed using a variety of culture conditions, and several studies are currently in progress that explore the use of ex vivo expanded cells. These studies will be discussed in this review. There are evolving data that suggest that there are real clinical benefits associated with the use of the expanded cells; however, we are still at the early stages of understanding how to optimally culture different cell populations. The next decade should determine what culture conditions and what cell populations are needed for a range of clinical applications.

  12. Intense immunosuppression followed by autologous haematopoietic stem cell transplantation as a therapeutic strategy in aggressive forms of multiple sclerosis.

    Science.gov (United States)

    Mancardi, Gianluigi; Sormani, Maria Pia; Muraro, Paolo A; Boffa, Giacomo; Saccardi, Riccardo

    2017-11-01

    In the majority of relapsing multiple sclerosis patients, the disease can be quite easily controlled by already available, approved therapies. There are, however, some aggressive cases who continue to have clinical and magnetic resonance imaging (MRI) activity in spite of the treatment. These are the cases who may now receive benefit from intense immunosuppression followed by autologous haematopoietic stem cell transplantation (aHSCT). In this review, we describe the method and the rationale of aHSCT, the more recently published studies that demonstrate its efficacy in selected multiple sclerosis cases, the problems related to safety and the transplant-related mortality risk of the procedure. A description of the ideal patient who can take advantage of aHSCT is outlined and, finally, the ongoing studies which are near to completion or are close to starting are briefly reported.

  13. Activation of the TGFβ pathway impairs endothelial to haematopoietic transition.

    Science.gov (United States)

    Vargel, Özge; Zhang, Yang; Kosim, Kinga; Ganter, Kerstin; Foehr, Sophia; Mardenborough, Yannicka; Shvartsman, Maya; Enright, Anton J; Krijgsveld, Jeroen; Lancrin, Christophe

    2016-02-19

    The endothelial to haematopoietic transition (EHT) is a key developmental process where a drastic change of endothelial cell morphology leads to the formation of blood stem and progenitor cells during embryogenesis. As TGFβ signalling triggers a similar event during embryonic development called epithelial to mesenchymal transition (EMT), we hypothesised that TGFβ activity could play a similar role in EHT as well. We used the mouse embryonic stem cell differentiation system for in vitro recapitulation of EHT and performed gain and loss of function analyses of the TGFβ pathway. Quantitative proteomics analysis showed that TGFβ treatment during EHT increased the secretion of several proteins linked to the vascular lineage. Live cell imaging showed that TGFβ blocked the formation of round blood cells. Using gene expression profiling we demonstrated that the TGFβ signalling activation decreased haematopoietic genes expression and increased the transcription of endothelial and extracellular matrix genes as well as EMT markers. Finally we found that the expression of the transcription factor Sox17 was up-regulated upon TGFβ signalling activation and showed that its overexpression was enough to block blood cell formation. In conclusion we showed that triggering the TGFβ pathway does not enhance EHT as we hypothesised but instead impairs it.

  14. Rod progenitor cells in the mature zebrafish retina.

    Science.gov (United States)

    Morris, Ann C; Scholz, Tamera; Fadool, James M

    2008-01-01

    The zebrafish is an excellent model organism in which to study the retina's response to photoreceptor degeneration and/or acute injury. While much has been learned about the retinal stem and progenitor cells that mediate the damage response, several questions remain that cannot be addressed by acute models of injury. The development of genetic models, such as the XOPS-mCFP transgenic line, should further efforts to understand the nature of the signals that promote rod progenitor proliferation and differentiation following photoreceptor loss. This in turn may help to refine future approaches in higher vertebrates aimed at enhancing retinal progenitor cell activity for therapeutic purposes.

  15. Human mammary progenitor cell fate decisions are productsof interactions with combinatorial microenvironments

    DEFF Research Database (Denmark)

    LaBarge, Mark A.; Nelson, Celeste M.; Villadsen, René

    2009-01-01

    combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells.Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well......, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages....

  16. Carica papaya induces in vitro thrombopoietic cytokines secretion by mesenchymal stem cells and haematopoietic cells.

    Science.gov (United States)

    Aziz, Jazli; Abu Kassim, Noor Lide; Abu Kasim, Noor Hayaty; Haque, Nazmul; Rahman, Mohammad Tariqur

    2015-07-08

    Use of Carica papaya leaf extracts, reported to improve thrombocyte counts in dengue patients, demands further analysis on the underlying mechanism of its thrombopoietic cytokines induction In vitro cultures of peripheral blood leukocytes (PBL) and stem cells from human exfoliated deciduous teeth (SHED) were treated with unripe papaya pulp juice (UPJ) to evaluate its potential to induce thrombopoietic cytokines (IL-6 and SCF) RESULTS: In vitro scratch gap closure was significantly faster (p papaya to induce thrombopoietic cytokines synthesis in cells of hematopoietic and mesenchymal origin.

  17. Simultaneous characterization of progenitor cell compartments in adult human liver.

    Science.gov (United States)

    Porretti, Laura; Cattaneo, Alessandra; Colombo, Federico; Lopa, Raffaella; Rossi, Giorgio; Mazzaferro, Vincenzo; Battiston, Carlo; Svegliati-Baroni, Gianluca; Bertolini, Francesco; Rebulla, Paolo; Prati, Daniele

    2010-01-01

    The human liver is a complex tissue consisting of epithelial, endothelial, hematopoietic, and mesenchymal elements that probably derive from multiple lineage-committed progenitors, but no comprehensive study aimed at identifying and characterizing intrahepatic precursors has yet been published. Cell suspensions for this study were obtained by enzymatic digestion of liver specimens taken from 20 patients with chronic liver disease and 13 multiorgan donors. Stem and progenitor cells were first isolated, amplified, and characterized ex vivo according to previously validated methods, and then optimized flow cytometry was used to assess their relative frequencies and characterize their immunophenotypes in the clinical specimens. Stem and progenitor cells committed to hematopoietic, endothelial, epithelial, and mesenchymal lineages were clearly identifiable in livers from both healthy and diseased subjects. Within the mononuclear liver cell compartment, epithelial progenitors [epithelial cell adhesion molecule (EpCAM)(+)/CD49f(+)/CD29(+)/CD45(-)] accounted for 2.7-3.5% whereas hematopoietic (CD34(+)/CD45(+)), endothelial [vascular endothelial growth factor-2 (KDR)(+)/CD146(+)/CD45(-)], and mesenchymal [CD73(+)/CD105(+)/CD90 (Thy-1)(+)/CD45 (-)] stem cells and progenitors accounted for smaller fractions (0.02-0.6%). The patients' livers had higher percentages of hematopoietic and endothelial precursors than those of the donors. In conclusion, we identified and characterized precursors committed to four different lineages in adult human liver. We also optimized a flow cytometry approach that will be useful in exploring the contribution of these cells to the pathogenesis of liver disease.

  18. Collection, processing and testing of bone, corneas, umbilical cord blood and haematopoietic stem cells by European Blood Alliance members.

    Science.gov (United States)

    Närhi, M; Natri, O; Desbois, I; Kinggaard Holm, D; Galea, G; Aranko, K; Korhonen, M; Nordstrom, K

    2013-11-01

    A questionnaire study was carried out in collaboration with the European Blood Alliance (EBA) Tissues and Cells (T&C) working group. The aim was to assess the level of involvement and commonality of processes on the procurement, testing and storage of bone, corneas, umbilical cord blood (UCB) and haematopoietic stem cells (HSC) in order to identify different practices and to explore whether recommendations can be made for harmonization. An online questionnaire was used for data collection in 2011, and 43 replies were received covering 71 product answers from 13 countries. Estimated percentages of tissue and cell banking covered by EBA member blood banks as a proportion of all collections of each individual country varied markedly. There were also major differences in the amounts of products collected and discarded and in proportions tissues provided for grafting. However, discarding of certain collections also reflects the practice of increasing the likelihood of the very best units being used for transplantation. Harmonization of possible practices should focus on matching supply with demand and on identifying the most efficient operators. This could allow for the development of practices for minimizing unnecessary collections. © 2013 International Society of Blood Transfusion.

  19. CXCR4 expression in prostate cancer progenitor cells.

    Directory of Open Access Journals (Sweden)

    Anna Dubrovska

    Full Text Available Tumor progenitor cells represent a population of drug-resistant cells that can survive conventional chemotherapy and lead to tumor relapse. However, little is known of the role of tumor progenitors in prostate cancer metastasis. The studies reported herein show that the CXCR4/CXCL12 axis, a key regulator of tumor dissemination, plays a role in the maintenance of prostate cancer stem-like cells. The CXCL4/CXCR12 pathway is activated in the CD44(+/CD133(+ prostate progenitor population and affects differentiation potential, cell adhesion, clonal growth and tumorigenicity. Furthermore, prostate tumor xenograft studies in mice showed that a combination of the CXCR4 receptor antagonist AMD3100, which targets prostate cancer stem-like cells, and the conventional chemotherapeutic drug Taxotere, which targets the bulk tumor, is significantly more effective in eradicating tumors as compared to monotherapy.

  20. Omega 3 fatty acids reduce myeloid progenitor cell frequency in the bone marrow of mice and promote progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Sollars Vincent E

    2009-03-01

    Full Text Available Abstract Background Omega 3 fatty acids have been found to inhibit proliferation, induce apoptosis, and promote differentiation in various cell types. The processes of cell survival, expansion, and differentiation are of key importance in the regulation of hematopoiesis. We investigated the role of omega 3 fatty acids in controlling the frequency of various myeloid progenitor cells in the bone marrow of mice. Increased progenitor cell frequency and blocked differentiation are characteristics of hematopoietic disorders of the myeloid lineage, such as myeloproliferative diseases and myeloid leukemias. Results We found that increasing the proportion of omega 3 fatty acids relative to the proportion of omega 6 fatty acids in the diet caused increased differentiation and reduced the frequency of myeloid progenitor cells in the bone marrow of mice. Furthermore, this had no adverse effect on peripheral white blood cell counts. Conclusion Our results indicate that omega 3 fatty acids impact hematopoietic differentiation by reducing myeloid progenitor cell frequency in the bone marrow and promoting progenitor cell differentiation. Further exploration of this discovery could lead to the use of omega 3 fatty acids as a therapeutic option for patients that have various disorders of hematopoiesis.

  1. Urological management (medical and surgical of BK-virus associated haemorrhagic cystitis in children following haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Nikhil Vasdev

    2013-10-01

    Full Text Available Aim: Haemorrhagic cystitis (HC is uncommon and in its severe form potentially life threatening complication of Haematopoietic stem cell transplantation (HSCT in children. We present our single centre experience in the urological management of this clinically challenging condition. Patients and Methods: Fourteen patients were diagnosed with BK-Virus HC in our centre. The mean age at diagnosis was 8.8 years (range, 3.2-18.4 years. The mean number of days post-BMT until onset of HC was 20.8 (range, 1 – 51. While all patients tested urine positive for BKV at the clinical onset of HC, only four patients had viral quantification, with viral loads ranging from 97,000 to >1 billion/ml. 8 patients had clinical HC. Ten patients experienced acute GVHD (grade I: 6 patients, grade II: 3 patients, grade 4: 1 patient.Results: Four patients received medical management for their HC. Treatments included hyperhydration, MESNA, blood and platelet transfusion, premarin and oxybutynin (Table 6.  Two patients received both medical and surgical management which included cystoscopy with clot evacuation, bladder irrigation and supra-pubic catheter insertion. One patient received exclusive surgical management. Seven patients were treated conservatively. Conclusion: There is limited available evidence for other potential therapeutic strategies highlighting the need for more research into the pathophysiology of HSCT-associated HC. Commonly used interventions with possible clinical benefit (e.g. cidofovir, ciprofloxacin still require to be evaluated in multi-centre, high-quality studies. Potential future preventative and therapeutic options, such as modulation of conditioning, immunosuppression and engraftment, new antiviral and anti-inflammatory and less nephrotoxic agents need to be assessed.---------------------------Cite this article as:Vasdev N, Davidson A, Harkensee C, Slatter M, Gennery A, Willetts I, Thorpe A.Urological management (medical and surgical of BK

  2. Awareness, Knowledge, and Acceptance of Haematopoietic Stem Cell Transplantation for Sickle Cell Anaemia in Nigeria

    Directory of Open Access Journals (Sweden)

    Adewumi Adediran

    2016-01-01

    Full Text Available Background. Sickle cell anaemia (SCA is an inherited condition whose clinical manifestations arise from the tendency of haemoglobin to polymerize and deform red blood cells into characteristic sickle shape. Allogeneic bone marrow transplantation offers a cure. The aim of this study was to determine the level of awareness, knowledge, and acceptance of this beneficial procedure in Nigeria. Materials and Methods. This multicentre cross-sectional study was conducted in 7 tertiary hospitals in Nigeria in 2015. Approval was obtained from each institution’s research and ethics committee. A pretested structured questionnaire was administered to respondents aged 18 years and above and to the parents or guardians of those below 18 years of age. Results. There were 265 respondents comprising 120 males and 145 females. One hundred and seventy-one (64.5% respondents were aware of BMT for the treatment of SCA. About 67.8% (116 of 171 of those who were aware believed SCA can be cured with BMT (p=0.001 and 49.7% (85 of 171 of the respondents accepted BMT (p=0.001. Conclusion. Awareness of BMT in Nigeria is low when compared with reports from developed countries. The knowledge is poor and acceptance is low. With adequate information, improved education, and psychological support, more Nigerians will embrace BMT.

  3. Haematopoietic Stem Cell Transplantation Arrests the Progression of Neurodegenerative Disease in Late-Onset Tay-Sachs Disease.

    Science.gov (United States)

    Stepien, Karolina M; Lum, Su Han; Edmond Wraith, J; Hendriksz, Christian J; Church, Heather J; Priestman, David; Platt, Frances M; Jones, Simon; Jovanovic, Ana; Wynn, Robert

    2017-12-07

    Tay-Sachs disease is a rare metabolic disease caused by a deficiency of hexosaminidase A that leads to accumulation of GM2 gangliosides predominantly in neural tissue. Late-onset Tay-Sachs disease variant is associated with a higher level of residual HexA activity. Treatment options are limited, and there are a few described cases who have undergone haematopoietic stem cell transplantation (HSCT) with variable outcome.We describe a case of a 23-year-old male patient who presented with a long-standing tremor since 7 years of age. He had gait ataxia, a speech stammer and swallowing problems. His condition had had a static course apart from his tremor that had been gradually deteriorating. Because of the deterioration in his neurological function, the patient had an uneventful, matched-sibling donor bone marrow transplant at the age of 15 years. Eight years post-HSCT, at the age of 23, he retains full donor engraftment, and his white cell beta-HexA of 191 nmol/mg/h is comparable to normal controls (in-assay control = 187). He continues to experience some intentional tremor that is tolerable for daily life and nonprogressive since HSCT. HSCT is a potential treatment option which might arrest neurodegeneration in patients with LOTS.

  4. Current practices for screening, consent and care of related donors in France: Haematopoietic stem cell transplantation coordinator nurses' perceptions.

    Science.gov (United States)

    Polomeni, A; Bompoint, C; Gomez, A; Brissot, E; Ruggeri, A; Belhocine, R; Mohty, M

    2017-11-01

    Haematopoietic stem cell transplantation-coordinating nurses (HSCT-CNs) play an important role in informing related donors (RDs) and in organising human leucocyte antigen (HLA) tests, pre-donation workup and stem cells collection. Our pilot study aimed to explore French HSCT-CNs' perceptions of RD care issues. Twenty-nine French HSCT adult units were sent a questionnaire on the subject of donation procedures, HSCT-CNs' data and their professional experience of related donation issues. Twenty-two HSCT-CNs returned a completed questionnaire, and 90% of HSCT units were involved to some degree in both patient and donor care. Responses indicated that the provision of information to potential donors prior to HLA tests was insufficient, while donors were given a medical consultation only during the pre-donation workup. Questions were raised about the consent and voluntary status of RDs. None of the HSCT teams organised a post-donation consultation, while 57% provided follow-up by phone or via a questionnaire. Our results draw attention to the conflict of interest experienced by HSCT-CNs when caring simultaneously for patients and donors. The specific psychosocial difficulties associated with becoming an RD are also highlighted. French HSCT-CNs' perceptions of related donation reveal many ethical and clinical problems that have yet to be fully explored. Data on this topic remain scarce, and our pilot study may contribute to the current debate on the organisation of RD care. © 2016 John Wiley & Sons Ltd.

  5. Endometrial stem/progenitor cells: the first 10 years

    Science.gov (United States)

    Gargett, Caroline E.; Schwab, Kjiana E.; Deane, James A.

    2016-01-01

    BACKGROUND The existence of stem/progenitor cells in the endometrium was postulated many years ago, but the first functional evidence was only published in 2004. The identification of rare epithelial and stromal populations of clonogenic cells in human endometrium has opened an active area of research on endometrial stem/progenitor cells in the subsequent 10 years. METHODS The published literature was searched using the PubMed database with the search terms ‘endometrial stem cells and menstrual blood stem cells' until December 2014. RESULTS Endometrial epithelial stem/progenitor cells have been identified as clonogenic cells in human and as label-retaining or CD44+ cells in mouse endometrium, but their characterization has been modest. In contrast, endometrial mesenchymal stem/stromal cells (MSCs) have been well characterized and show similar properties to bone marrow MSCs. Specific markers for their enrichment have been identified, CD146+PDGFRβ+ (platelet-derived growth factor receptor beta) and SUSD2+ (sushi domain containing-2), which detected their perivascular location and likely pericyte identity in endometrial basalis and functionalis vessels. Transcriptomics and secretomics of SUSD2+ cells confirm their perivascular phenotype. Stromal fibroblasts cultured from endometrial tissue or menstrual blood also have some MSC characteristics and demonstrate broad multilineage differentiation potential for mesodermal, endodermal and ectodermal lineages, indicating their plasticity. Side population (SP) cells are a mixed population, although predominantly vascular cells, which exhibit adult stem cell properties, including tissue reconstitution. There is some evidence that bone marrow cells contribute a small population of endometrial epithelial and stromal cells. The discovery of specific markers for endometrial stem/progenitor cells has enabled the examination of their role in endometrial proliferative disorders, including endometriosis, adenomyosis and Asherman

  6. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses

    Science.gov (United States)

    CD4+ T helper 2 (TH2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, TH2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal...

  7. Obstructive sleep apnea and endothelial progenitor cells

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-10-01

    Full Text Available Qing Wang,1,* Qi Wu,2,* Jing Feng,3,4 Xin Sun5 1The Second Respiratory Department of the First People's Hospital of Kunming, Yunnan, People's Republic of China; 2Tianjin Haihe Hospital, Tianjin, People's Republic of China; 3Respiratory Department of Tianjin Medical University General Hospital, Tianjin, People's Republic of China; 4Division of Pulmonary and Critical Care Medicine, Duke University Medical Center, Durham, NC, USA; 5Respiratory Department of Tianjin Haihe Hospital, Tianjin, People's Republic of China *These authors contributed equally to this work Background: Obstructive sleep apnea (OSA occurs in 4% of middle-aged men and 2% of middle-aged women in the general population, and the prevalence is even higher in specific patient groups. OSA is an independent risk factor for a variety of cardiovascular diseases. Endothelial injury could be the pivotal determinant in the development of cardiovascular pathology in OSA. Endothelial damage ultimately represents a dynamic balance between the magnitude of injury and the capacity for repair. Bone marrow–derived endothelial progenitor cells (EPCs within adult peripheral blood present a possible means of vascular maintenance that could home to sites of injury and restore endothelial integrity and normal function. Methods: We summarized pathogenetic mechanisms of OSA and searched for available studies on numbers and functions of EPCs in patients with OSA to explore the potential links between the numbers and functions of EPCs and OSA. In particular, we tried to elucidate the molecular mechanisms of the effects of OSA on EPCs. Conclusion: Intermittent hypoxia cycles and sleep fragmentation are major pathophysiologic characters of OSA. Intermittent hypoxia acts as a trigger of oxidative stress, systemic inflammation, and sympathetic activation. Sleep fragmentation is associated with a burst of sympathetic activation and systemic inflammation. In most studies, a reduction in circulating EPCs has

  8. Distinguishing Mast Cell Progenitors from Mature Mast Cells in Mice.

    Science.gov (United States)

    Dahlin, Joakim S; Ding, Zhoujie; Hallgren, Jenny

    2015-07-15

    Mast cells originate from the bone marrow and develop into c-kit(+) FcɛRI(+) cells. Both mast cell progenitors (MCp) and mature mast cells express these cell surface markers, and ways validated to distinguish between the two maturation forms with flow cytometry have been lacking. Here, we show that primary peritoneal MCp from naïve mice expressed high levels of integrin β7 and had a low side scatter (SSC) light profile; whereas mature mast cells expressed lower levels of integrin β7 and had a high SSC light profile. The maturation statuses of the cells were confirmed using three main strategies: (1) MCp, but not mature mast cells, were shown to be depleted by sublethal whole-body γ-irradiation. (2) The MCp were small and immature in terms of granule formation, whereas the mature mast cells were larger and had fully developed metachromatic granules. (3) The MCp had fewer transcripts of mast cell-specific proteases and the enzyme responsible for sulfation of heparin than mature mast cells. Moreover, isolated peritoneal MCp gave rise to mast cells when cultured in vitro. To summarize, we have defined MCp and mature mast cells in naïve mice by flow cytometry. Using this strategy, mast cell maturation can be studied in vivo.

  9. Can we find a good biochemical marker of early cardiotoxicity in children treated with haematopoietic stem cell transplantation?

    Directory of Open Access Journals (Sweden)

    Agnieszka Zaucha-Prażmo

    2016-08-01

    Full Text Available Cardiotoxicity is one of the complications following haematopoietic stem cell transplantation (HSCT, but its diagnosis may be hampered due to the presence of different post-transplant comorbidities. The aim of the study was to assess the incidence of cardiac complications and the significance of biochemical markers (NT-proBNP, ANP, ET-1, and TnI and ECHO systolic and diastolic parameters analysis in children treated with HSCT. Thirty consecutive children (median age 9.6 years were included in the study. The control group consisted of 14 healthy children (median age of 10.9 years. None of the transplanted children developed clinical cardiotoxicity. Median ET-1 and NT-proBNP plasma levels were elevated when compared to controls in at least 3 out of 4 analysed time points, median ANP levels differed only in one time point, and no difference was found between median TnI values in all analysed time points. Echocardiographic systolic parameters were within the normal range, while median E/A ratio assessed before HSCT, on day +30, and +100 post-transplant was statistically lower in HSCT patients (respectively, 1.34, 1.37, and 1.42 vs. 1.73. It confirms the need for careful follow up in patients who have received chemotherapy and have been treated with HSCT.

  10. A prospective, randomized, controlled trial of autologous haematopoietic stem cell transplantation for aggressive multiple sclerosis: a position paper.

    Science.gov (United States)

    Saccardi, R; Freedman, M S; Sormani, M P; Atkins, H; Farge, D; Griffith, L M; Kraft, G; Mancardi, G L; Nash, R; Pasquini, M; Martin, R; Muraro, P A

    2012-06-01

    Haematopoietic stem cell transplantation (HSCT) has been tried in the last 15 years as a therapeutic option in patients with poor-prognosis autoimmune disease who do not respond to conventional treatments. Worldwide, more than 600 patients with multiple sclerosis (MS) have been treated with HSCT, most of them having been recruited in small, single-centre, phase 1-2 uncontrolled trials. Clinical and magnetic resonance imaging outcomes from case series reports or Registry-based analyses suggest that a major response is achieved in most patients; quality and duration of response are better in patients transplanted during the relapsing-remitting phase than in those in the secondary progressive stage. An interdisciplinary group of neurologists and haematologists has been formed, following two international meetings supported by the European and American Blood and Marrow Transplantation Societies, for the purpose of discussing a controlled clinical trial, to be designed within the new scenarios of evolving MS treatments. Objectives of the trial, patient selection, transplant technology and outcome assessment were extensively discussed. The outcome of this process is summarized in the present paper, with the goal of establishing the background and advancing the development of a prospective, randomized, controlled multicentre trial to assess the clinical efficacy of HSCT for the treatment of highly active MS.

  11. The experiences of protective isolation in patients undergoing bone marrow or haematopoietic stem cell transplantation: systematic review and metasynthesis.

    Science.gov (United States)

    Biagioli, V; Piredda, M; Alvaro, R; de Marinis, M G

    2017-09-01

    Protective isolation is aimed at preventing infection in neutropenic patients, but it is implemented inconsistently across centres and is supported by recommendations with poor evidence. This review and metasynthesis explored the experiences and the psychological implications of protective isolation in patients with haematological malignancies undergoing bone marrow (BMT) or haematopoietic stem cell transplantation (HSCT). A systematic search of multiple databases for qualitative studies exploring BMT or HSCT patients' experiences of protective isolation was completed. The metasynthesis followed the meta-aggregative method from the Joanna Briggs Institute, with four procedural steps: (1) comprehensive search, (2) quality appraisal, (3) extraction of relevant findings and (4) synthesis of the identified findings. Twenty-six findings were extracted from 11 articles included in the review. The synthesising process yielded seven categories, aggregated into three synthesised findings: (1) isolation is a source of suffering, (2) isolation can lead to relating with oneself and (3) the person does not close the door to the outside world. This metasynthesis sheds light on patients' suffering from being isolated, and the possibility of overcoming this suffering thanks to relationships that patients have with themselves and with the external world. Healthcare providers should reconsider this practise in order to avoid unnecessary patient suffering. © 2016 John Wiley & Sons Ltd.

  12. Efficacy, safety and feasibility of antifungal prophylaxis with posaconazole tablet in paediatric patients after haematopoietic stem cell transplantation.

    Science.gov (United States)

    Döring, Michaela; Cabanillas Stanchi, Karin Melanie; Queudeville, Manon; Feucht, Judith; Blaeschke, Franziska; Schlegel, Patrick; Feuchtinger, Tobias; Lang, Peter; Müller, Ingo; Handgretinger, Rupert; Heinz, Werner J

    2017-07-01

    Paediatric recipients of haematopoietic stem cell transplantation (HSCT) have a high risk for invasive fungal infections. Posaconazole oral suspension has proven to be effective in antifungal prophylaxis in adult and paediatric patients. A new posaconazole tablet formulation with absorption independent of the gastric conditions was approved by the FDA in 2013. This is the first report on the use of posaconazole tablets in paediatric patients. This single-centre study included 63 paediatric patients with haemato-oncological malignancies who received posaconazole for antifungal prophylaxis after HSCT. They were analysed for efficacy, feasibility and the safety of posaconazole. Out of 63 patients, 31 received posaconazole oral suspension and 32 received posaconazole tablets up to 200 days after transplantation. Analyses of the posaconazole trough levels were determined. No possible, probable or proven invasive fungal infection was observed in either group. Posaconazole trough levels were significantly higher in the tablet group than in the suspension group at all analysed time points. Drug-related adverse events were similarly low in both groups. Posaconazole tablets are effective in preventing invasive fungal infections in paediatric patients. As early as day 3 after starting posaconazole tablets, over 50% of the posaconazole trough levels were >500 ng/mL, while this was observed on day 14 after start with posaconazole suspension. The administration of posaconazole tablets was safe, effective and feasible as antifungal prophylaxis in paediatric patients after HSCT.

  13. Long-term follow-up of fertility and pregnancy in autoimmune diseases after autologous haematopoietic stem cell transplantation.

    Science.gov (United States)

    Massenkeil, G; Alexander, T; Rosen, O; Dörken, B; Burmester, G; Radbruch, A; Hiepe, F; Arnold, R

    2016-11-01

    Issues of fertility and pregnancy require special attention in the long-term care of patients with autoimmune diseases (AD), who are candidates for haematopoietic stem cell transplantation (HSCT). In this single-centre observational study, we report fertility status and pregnancy outcomes in 15 patients (11 female and 4 male) after immunoablation with cyclophosphamide, antithymocyte globulin and autologous CD34(+)-selected HSCT for severe, refractory AD. The median follow-up after HSCT was 12 years (range 2-16 years). Impaired fertility was observed in six patients (five females and one male) before HSCT based on sexual hormone measurements. Higher age and cumulative cyclophosphamide dosage before HSCT correlated with fertility impairment. Median serum level of follicle-stimulating hormone (FSH) was significantly higher in female patients at 1 year after HSCT compared to baseline values, but premature ovarian failure developed in only one patient. Four women had five pregnancies and six healthy offsprings during follow-up, and no miscarriages were observed. The mothers were in treatment-free remissions during conception. No peripartal flare of their AD occurred. Although AD patients undergoing HSCT are at risk of developing infertility, pre-HSCT treatment and patients' age seem to have higher impact on long-term fertility status than HSCT itself. HSCT offers the opportunity to conceive during treatment-free remissions with favourable pregnancy outcomes.

  14. Travelling activity and travel-related risks after allogeneic haematopoietic stem cell transplantation - a single centre survey.

    Science.gov (United States)

    Hollenstein, Yvonne; Elzi, Luigia; Hatz, Christoph; Passweg, Jakob; Weisser, Maja; Stöckle, Marcel; Halter, Joerg P; Egli, Adrian

    2015-01-01

    Travel activity and travel-related risks of patients after allogeneic haematopoietic stem cell transplantation (allo-HSCT) remain largely unknown. The aim of our study was to examine travel activity after allo-HSCT including travel behaviour and travel patterns. We analysed travel characteristics of allo-HSCT recipients by using a retrospective cross-sectional survey. Allo-HSCT patients were asked to complete a questionnaire during their annual health visits from 2010 to 2012. Overall, 118/153 (77%) participating patients reported travel activity for a total of 201 travelling episodes. Travellers versus non-travellers were receiving immunosuppressive treatment in 35.6% versus 65.7% (p=0.002), and had graft-versus-host-disease (GvHD) in 52.5% versus 62.9% (p=0.17). In a multivariate analysis, the time between the transplantation and the survey was the only factor associated with travel activity (ptravel episodes pretravel advice was sought. Patients with pretravel advice reported travel-related symptoms more frequently. Minor respiratory (27/201) and gastrointestinal (23/201) symptoms were most frequently indicated. Four percent (8/201) of the patients were hospitalised while travelling. We conclude that travelling after allo-HSCT is frequent and linked to the time since transplantation. We could not define specific risks for any destination. Nevertheless, pretravel advice and preparation are highly recommended for immunosuppressed patients.

  15. Cellular therapy after spinal cord injury using neural progenitor cells

    NARCIS (Netherlands)

    Vroemen, Maurice

    2006-01-01

    In this thesis, the possibilities and limitations of cell-based therapies after spinal cord injury are explored. Particularly, the potential of adult derived neural progenitor cell (NPC) grafts to function as a permissive substrate for axonal regeneration was investigated. It was found that syngenic

  16. Glucose challenge increases circulating progenitor cells in Asian Indian male subjects with normal glucose tolerance which is compromised in subjects with pre-diabetes: A pilot study

    Directory of Open Access Journals (Sweden)

    Bairagi Soumi

    2011-01-01

    Full Text Available Abstract Background Haematopoietic stem cells undergo mobilization from bone marrow to blood in response to physiological stimuli such as ischemia and tissue injury. The aim of study was to determine the kinetics of circulating CD34+ and CD133+CD34+ progenitor cells in response to 75 g glucose load in subjects with normal and impaired glucose metabolism. Methods Asian Indian male subjects (n = 50 with no prior history of glucose imbalance were subjected to 2 hour oral glucose tolerance test (OGTT. 24 subjects had normal glucose tolerance (NGT, 17 subjects had impaired glucose tolerance (IGT and 9 had impaired fasting glucose (IFG. The IGT and IFG subjects were grouped together as pre-diabetes group (n = 26. Progenitor cell counts in peripheral circulation at fasting and 2 hour post glucose challenge were measured using direct two-color flow cytometry. Results The pre-diabetes group was more insulin resistant (p + cells (p = 0.003 and CD133+CD34+ (p = 0.019 cells was seen 2 hours post glucose challenge in the NGT group. This increase for both the cell types was attenuated in subjects with IGT. CD34+ cell counts in response to glucose challenge inversely correlated with neutrophil counts (ρ = -0.330, p = 0.019, while post load counts of CD133+CD34+ cells inversely correlated with serum creatinine (ρ = -0.312, p = 0.023. Conclusion There is a 2.5-fold increase in the circulating levels of haematopoietic stem cells in response to glucose challenge in healthy Asian Indian male subjects which is attenuated in subjects with pre-diabetes.

  17. Intersections of lung progenitor cells, lung disease and lung cancer

    Directory of Open Access Journals (Sweden)

    Carla F. Kim

    2017-06-01

    Full Text Available The use of stem cell biology approaches to study adult lung progenitor cells and lung cancer has brought a variety of new techniques to the field of lung biology and has elucidated new pathways that may be therapeutic targets in lung cancer. Recent results have begun to identify the ways in which different cell populations interact to regulate progenitor activity, and this has implications for the interventions that are possible in cancer and in a variety of lung diseases. Today's better understanding of the mechanisms that regulate lung progenitor cell self-renewal and differentiation, including understanding how multiple epigenetic factors affect lung injury repair, holds the promise for future better treatments for lung cancer and for optimising the response to therapy in lung cancer. Working between platforms in sophisticated organoid culture techniques, genetically engineered mouse models of injury and cancer, and human cell lines and specimens, lung progenitor cell studies can begin with basic biology, progress to translational research and finally lead to the beginnings of clinical trials.

  18. Human cardiomyocyte progenitor cells: a short history of nearly everything.

    Science.gov (United States)

    van Vliet, Patrick; Goumans, Marie-José; Doevendans, Pieter A; Sluijter, Joost P G

    2012-08-01

    The high occurrence of cardiac disease in the Western world has driven clinicians and cardiovascular biologists to look for alternative strategies to treat patients. A challenging approach is the use of stem cells to repair the heart, in itself an inspiring thought. In the past 10 years, stem cells from different sources have been under intense investigation and, as a result, a multitude of studies have been published on the identification, isolation, and characterization, of cardiovascular progenitor cells and repair in different animal models. However, relatively few cardiovascular progenitor populations have been identified in human hearts, including, but not limited to, cardiosphere-derived cells, cKit+ human cardiac stem cells , Isl1+ cardiovascular progenitors, and, in our lab, cardiomyocyte progenitor cells (CMPCs). Here, we aim to provide a comprehensive summary of the past findings and present challenges for future therapeutic potential of CMPCs. © 2012 The Authors Journal of Cellular and Molecular Medicine © 2012 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  19. Effect of Reishi polysaccharides on human stem/progenitor cells.

    Science.gov (United States)

    Chen, Wan-Yu; Yang, Wen-Bin; Wong, Chi-Huey; Shih, Daniel Tzu-Bi

    2010-12-15

    The polysaccharide fraction of Ganoderma lucidum (F3) was found to benefit our health in many ways by influencing the activity of tissue stem/progenitor cells. In this study, F3 was found to promote the adipose tissue MSCs' aggregation and chondrosphere formation, with the increase of CAM (N-CAM, I-CAM) expressions and autokine (BMP-2, IL-11, and aggrecan) secretions, in an in vitro chondrogenesis assay. In a stem cell expansion culture, it possesses the thrombopoietin (TPO) and GM-CSF like functions to enhance the survival/renewal abilities of primitive hematopoietic stem/progenitor cells (HSCs). F3 was found to promote the dendrite growth of blood mononuclear cells (MNCs) and the expression of cell adhesion molecules in the formation of immature dendritic cells (DC). On the other hand, F3 exhibited inhibitory effects on blood endothelial progenitor (EPC) colony formation, with concomitant reduction of cell surface endoglin (CD105) and vascular endothelial growth factor receptor-3 (VEGFR-3) marker expressions, in the presence of angiogenic factors. A further cytokine array analysis revealed that F3 indeed inhibited the angiogenin synthesis and enhanced IL-1, MCP-1, MIP-1, RANTES, and GRO productions in the blood EPC derivation culture. Collectively, we have demonstrated that the polysaccharide fraction of G. lucidum F3 exhibits cytokine and chemokine like functions which are beneficial to human tissue stem/progenitor cells by modulating their CAM expressions and biological activities. These findings provide us a better the observation that F3 glycopolysaccharides indeed possesses anti-angiogenic and immune-modulating functions and promotes hematopoietic stem/progenitor cell homing for better human tissue protection, reducing disease progression and health. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Mechanisms of temporal identity regulation in mouse retinal progenitor cells.

    Science.gov (United States)

    Mattar, Pierre; Cayouette, Michel

    2015-01-01

    While much progress has been made in recent years toward elucidating the transcription factor codes controlling how neural progenitor cells generate the various glial and neuronal cell types in a particular spatial domain, much less is known about how these progenitors alter their output over time. In the past years, work in the developing mouse retina has provided evidence that a transcriptional cascade similar to the one used in Drosophila neuroblasts might control progenitor temporal identity in vertebrates. The zinc finger transcription factor Ikzf1 (Ikaros), an ortholog of Drosophila hunchback, was reported to confer early temporal identity in retinal progenitors and, more recently, the ortholog of Drosophila castor, Casz1, was found to function as a mid/late temporal identity factor that is negatively regulated by Ikzf1. The molecular mechanisms by which these temporal identity factors function in retinal progenitors, however, remain unknown. Here we briefly review previous work on the vertebrate temporal identity factors in the retina, and propose a model by which they might operate.

  1. Several adaptor proteins promote intracellular localisation of the transporter MRP4/ABCC4 in platelets and haematopoietic cells.

    Science.gov (United States)

    Schaletzki, Yvonne; Kromrey, Marie-Luise; Bröderdorf, Susanne; Hammer, Elke; Grube, Markus; Hagen, Paul; Sucic, Sonja; Freissmuth, Michael; Völker, Uwe; Greinacher, Andreas; Rauch, Bernhard H; Kroemer, Heyo K; Jedlitschky, Gabriele

    2017-01-05

    The multidrug resistance protein 4 (MRP4/ABCC4) has been identified as an important transporter for signalling molecules including cyclic nucleotides and several lipid mediators in platelets and may thus represent a novel target to interfere with platelet function. Besides its localisation in the plasma membrane, MRP4 has been also detected in the membrane of dense granules in resting platelets. In polarised cells it is localised at the basolateral or apical plasma membrane. To date, the mechanism of MRP4 trafficking has not been elucidated; protein interactions may regulate both the localisation and function of this transporter. We approached this issue by searching for interacting proteins by in vitro binding assays, followed by immunoblotting and mass spectrometry, and by visualising their co-localisation in platelets and haematopoietic cells. We identified the PDZ domain containing scaffold proteins ezrin-binding protein 50 (EBP50/NHERF1), postsynaptic density protein 95 (PSD95), and sorting nexin 27 (SNX27), but also the adaptor protein complex 3 subunit β3A (AP3B1) and the heat shock protein HSP90 as putative interaction partners of MRP4. The knock-down of SNX27, PSD95, and AP3B1 by siRNA in megakaryoblastic leukaemia cells led to a redistribution of MRP4 from intracellular structures to the plasma membrane. Inhibition of HSP90 led to a diminished expression and retention of MRP4 in the endoplasmic reticulum. These results indicate that MRP4 localisation and function are regulated by multiple protein interactions. Changes in the adaptor proteins can hence lead to altered localisation and function of the transporter.

  2. Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection.

    Science.gov (United States)

    Liu, Hai-peng; Chen, Rong-yuan; Zhang, Qiu-xia; Peng, Hui; Wang, Ke-jian

    2011-07-01

    White spot syndrome virus (WSSV) is one of the most important viral pathogens in crustaceans. During WSSV infection, multiple cell signaling cascades are activated, leading to the generation of antiviral molecules and initiation of programmed cell death of the virus infected cells. To gain novel insight into cell signaling mechanisms employed in WSSV infection, we have used suppression subtractive hybridization (SSH) to elucidate the cellular response to WSSV challenge at the gene level in red claw crayfish haematopoietic tissue (Hpt) stem cell cultures. Red claw crayfish Hpt cells were infected with WSSV for 1h (L1 library) and 12h (L12 library), respectively, after which the cell RNA was prepared for SSH using uninfected cells as drivers. By screening the L1 and L12 forward libraries, we have isolated the differentially expressed genes of crayfish Hpt cells upon WSSV infection. Among these genes, the level of many key molecules showed clearly up-regulated expression, including the genes involved in immune responses, cytoskeletal system, signal transduction molecules, stress, metabolism and homestasis related genes, and unknown genes in both L1 and L12 libraries. Importantly, of the 2123 clones screened, 176 novel genes were found the first time to be up-regulated in WSSV infection in crustaceans. To further confirm the up-regulation of differentially expressed genes, the semi-quantitative RT-PCR were performed to test twenty randomly selected genes, in which eight of the selected genes exhibited clear up-regulation upon WSSV infection in red claw crayfish Hpt cells, including DNA helicase B-like, multiprotein bridging factor 1, apoptosis-linked gene 2 and an unknown gene-L1635 from L1 library; coatomer gamma subunit, gabarap protein gene, tripartite motif-containing 32 and an unknown gene-L12-254 from L2 library, respectively. Taken together, as well as in immune and stress responses are regulated during WSSV infection of crayfish Hpt cells, our results also

  3. Cell cycle regulation of hematopoietic stem or progenitor cells.

    Science.gov (United States)

    Hao, Sha; Chen, Chen; Cheng, Tao

    2016-05-01

    The highly regulated process of blood production is achieved through the hierarchical organization of hematopoietic stem cell (HSC) subsets and their progenies, which differ in self-renewal and differentiation potential. Genetic studies in mice have demonstrated that cell cycle is tightly controlled by the complex interplay between extrinsic cues and intrinsic regulatory pathways involved in HSC self-renewal and differentiation. Deregulation of these cellular programs may transform HSCs or hematopoietic progenitor cells (HPCs) into disease-initiating stem cells, and can result in hematopoietic malignancies such as leukemia. While previous studies have shown roles for some cell cycle regulators and related signaling pathways in HSCs and HPCs, a more complete picture regarding the molecular mechanisms underlying cell cycle regulation in HSCs or HPCs is lacking. Based on accumulated studies in this field, the present review introduces the basic components of the cell cycle machinery and discusses their major cellular networks that regulate the dormancy and cell cycle progression of HSCs. Knowledge on this topic would help researchers and clinicians to better understand the pathogenesis of relevant blood disorders and to develop new strategies for therapeutic manipulation of HSCs.

  4. Mobilization of hematopoietic stem and progenitor cells in mice

    NARCIS (Netherlands)

    Robinson, Simon N; van Os, Ronald P; Bunting, Kevin

    2008-01-01

    Animal models have added significantly to our understanding of the mechanism(s) of hematopoietic stem and progenitor cell (HSPC) mobilization. Such models suggest that changes in the interaction between the HSPC and the hematopoietic microenvironmental 'niche' (cellular and extracellular components)

  5. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Klassen, Henry

    2006-01-01

    We evaluated the host response to murine retinal progenitor cells (RPCs) following transplantation to the subretinal space (SRS) of the pig. RPCs from GFP mice were transplanted subretinally in 18 nonimmunosuppressed normal or laser-treated pigs. Evaluation of the SRS was performed on hematoxylin...

  6. File list: His.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.50.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127394,SRX127396,SRX127409,SRX127407,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: Pol.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.10.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: Oth.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.10.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: His.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.05.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315277,SRX667383,SRX668241,SRX315278,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  10. File list: Unc.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.10.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  11. File list: Oth.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.50.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  12. File list: DNS.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238868,SRX238870 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  13. File list: Pol.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  14. File list: His.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.10.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127394,SRX127396,SRX127407,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  15. File list: DNS.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.50.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  16. File list: Oth.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX802060,SRX109471 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  17. File list: Unc.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  18. File list: Oth.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  19. File list: DNS.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.05.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  20. File list: Unc.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.50.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  1. File list: Pol.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.50.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: Oth.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.20.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  3. File list: His.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX667383,SRX668241,SRX315277,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  4. File list: Oth.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Neural_progenitor_cells mm9 TFs and others Neural Neural progenito...r cells SRX109472,SRX315274,SRX109471,SRX802060 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  5. File list: Unc.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.20.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  6. File list: His.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.05.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127409,SRX127407,SRX127394,SRX127396,SRX127383,SRX127381 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: DNS.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.10.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: DNS.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  9. File list: Pol.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.05.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  10. File list: Unc.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  11. File list: DNS.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Neural_progenitor_cells mm9 DNase-seq Neural Neural progenitor cel...ls SRX238870,SRX238868 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  12. File list: Pol.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  13. File list: Pol.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Neural_progenitor_cells mm9 RNA polymerase Neural Neural progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  14. File list: Unc.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Neural_progenitor_cells mm9 Unclassified Neural Neural progenitor ...cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  15. File list: His.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Neural_progenitor_cells mm9 Histone Neural Neural progenitor cells... SRX315278,SRX315277,SRX667383,SRX668241,SRX315276 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  16. File list: DNS.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.20.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  17. File list: Oth.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Adp.05.AllAg.Adipose_progenitor_cells mm9 TFs and others Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  18. File list: His.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Adp.20.AllAg.Adipose_progenitor_cells mm9 Histone Adipocyte Adipose progenitor ...cells SRX127394,SRX127409,SRX127396,SRX127407,SRX127381,SRX127383 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  19. File list: Unc.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.20.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  20. File list: Unc.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Adp.05.AllAg.Adipose_progenitor_cells mm9 Unclassified Adipocyte Adipose progen...itor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  1. File list: Pol.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Adp.20.AllAg.Adipose_progenitor_cells mm9 RNA polymerase Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  2. File list: DNS.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Adp.05.AllAg.Adipose_progenitor_cells mm9 DNase-seq Adipocyte Adipose progenito...r cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  3. Advances in Classification and Research Methods of Lung Epithelial Stem 
and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Minhua DENG

    2017-02-01

    Full Text Available Isolation and characterization of lung epithelial stem and progenitor cells and understanding of their specific role in lung physiopathology are critical for preventing and controlling lung diseases including lung cancer. In this review, we summarized recent advances in classification and research methods of lung epithelial stem and progenitor cells. Lung epithelial stem and progenitor cells were region-specific, which primarily included basal cells and duct cells in proximal airway, Clara cells, variant Clara cells, bronchioalveolar stem cells and induced krt5+ cells in bronchioles, type II alveolar cells and type II alveolar progenitor cells in alveoli. The research methods of lung epithelial stem and progenitor cells were mainly focused on lung injury models, lineage-tracing experiments, three dimensional culture, transplantation, chronic labeled cells and single-cell transcriptome analysis. Lastly, the potential relationship between lung epithelial stem and progenitor cells and lung cancer as well as lung cancer stem cell-targeted drug development were briefly reviewed.

  4. [Advances in Classification and Research Methods of Lung Epithelial Stem 
and Progenitor Cells].

    Science.gov (United States)

    Deng, Minhua; Li, Jinhua; Gan, Ye; Chen, Ping

    2017-02-20

    Isolation and characterization of lung epithelial stem and progenitor cells and understanding of their specific role in lung physiopathology are critical for preventing and controlling lung diseases including lung cancer. In this review, we summarized recent advances in classification and research methods of lung epithelial stem and progenitor cells. Lung epithelial stem and progenitor cells were region-specific, which primarily included basal cells and duct cells in proximal airway, Clara cells, variant Clara cells, bronchioalveolar stem cells and induced krt5+ cells in bronchioles, type II alveolar cells and type II alveolar progenitor cells in alveoli. The research methods of lung epithelial stem and progenitor cells were mainly focused on lung injury models, lineage-tracing experiments, three dimensional culture, transplantation, chronic labeled cells and single-cell transcriptome analysis. Lastly, the potential relationship between lung epithelial stem and progenitor cells and lung cancer as well as lung cancer stem cell-targeted drug development were briefly reviewed.

  5. Basement membrane antibodies in sera of haematopoietic cell recipients are associated with graft-versus-host disease.

    Science.gov (United States)

    Hofmann, S C; Kopp, G; Gall, C; Bruckner-Tuderman, L; Bertz, H

    2010-05-01

    Graft-versus-host disease (GvHD) occurs frequently after haematopoietic cell transplantation (HCT). Mucocutaneous lesions of GvHD may mimic bullous autoimmune dermatoses, and 10 cases of concurrent GvHD and a bullous autoimmune disease have been reported in the literature. To determine the frequency of circulating antibodies to the cutaneous basement membrane zone (BMZ) in HCT patients with GvHD in comparison with HCT patients without GvHD, psoriasis patients and healthy controls. We examined 42 patients with chronic GvHD, 18 HCT patients without GvHD, 11 psoriasis patients and 40 healthy controls, prospectively. Sera were tested by indirect immunofluorescence (IIF) on salt-split skin, NC16a-ELISA and immunoblot using keratinocyte extracts. Univariate statistical analyses and logistic regression were performed to assess possible correlations of graft and patient characteristics with the presence of BMZ antibodies. Circulating basement membrane zone (BMZ) antibodies were detected in 10/42 (24%) GvHD sera by immunoblot, but not in any of the HCT sera from patients without GvHD (0/18; 0%). The antibodies targeted collagen VII, BP230, collagen XVII/BP180 or p200/laminin gamma1. Clinically manifest bullous autoimmune dermatoses (bullous pemphigoid or epidermolysis bullosa acquisita) were found in two GvHD patients. 1/11 (9%) psoriasis sera and 1/40 (2.4%) healthy control sera reacted with collagen XVII or BP230, respectively. Circulating BMZ antibodies are significantly associated with chronic GvHD in contrast to uncomplicated HCT. Recurrent mucocutaneous lesions in chronic inflammatory skin disorders may liberate antigens, which may lead to production of BMZ antibodies, particularly in the context of GvHD-mediated reduced self-tolerance.

  6. [Use of procalcitonin and C-reactive protein as infection markers in febrile neutropenic patients undergoing haematopoietic stem cell transplant].

    Science.gov (United States)

    Sánchez-Yepes, Marina; Aznar-Oroval, Eduardo; Lorente-Alegre, Pablo; García-Lozano, Tomás; Picón-Roig, Isabel; Pérez-Ballestero, Pilar; Ortiz-Muñoz, Blanca

    2014-01-01

    Neutropenia is a frequent sign in patients who are going to have a haematopoietic stem cell transplant (HSCT). Infection is an important complication in these patients, which is favoured by immunosuppression and the degree of neutropenia. This study aims to evaluate the diagnostic usefulness of procalcitonin (PCT) and C-reactive protein (CRP) in onco-haematological patients undergoing chemotherapy and HSCT to determine the origin of the fever. PCT and CRP values were measured in 30 episodes of febrile neutropenia: before starting chemotherapy, appearance of neutropenia, onset of fever, days 1, 2, 3 and 6 after the onset of fever, and when the febrile episode ended. The episodes were classified as 5 bacteraemia, 3 microbiologically documented infections, 10 clinical infections, and 12 fevers of unknown origin. The highest PCT mean values corresponded to the group of patients with bacteraemia. Statistically significant differences (P=.04) were found on the second day after the onset of fever. The cut-off point of 0.5ng/ml showed a sensitivity of 66% and a specificity of 75%. PCR results showed statistically significant differences on days 1, 2 and 3 after the onset of fever (P=.01, P=.003, and P=.002, respectively). The cut-off point of 7.5mg/L had a sensitivity of 88% and a specificity of 58%. The combination of PCT and CRP is an insufficient method to detect bacterial infections and may not replace the proper clinical and microbiological diagnosis. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  7. Prostate progenitor cells proliferate in response to castration

    Directory of Open Access Journals (Sweden)

    Xudong Shi

    2014-07-01

    Full Text Available Androgen-deprivation is a mainstay of therapy for advanced prostate cancer but tumor regression is usually incomplete and temporary because of androgen-independent cells in the tumor. It has been speculated that these tumor cells resemble the stem/progenitor cells of the normal prostate. The purpose of this study was to examine the response of slow-cycling progenitor cells in the adult mouse prostate to castration. Proliferating cells in the E16 urogenital sinus were pulse labeled by BrdU administration or by doxycycline-controlled labeling of the histone-H2B GFP mouse. A small population of labeled epithelial cells in the adult prostate localized at the junction of the prostatic ducts and urethra. Fluorescence-activated cell sorting (FACS showed that GFP label-retaining cells were enriched for cells co-expressing stem cell markers Sca-1, CD133, CD44 and CD117 (4- marker cells; 60-fold enrichment. FACS showed, additionally, that 4-marker cells were androgen receptor positive. Castration induced proliferation and dispersal of E16 labeled cells into more distal ductal segments. When naïve adult mice were administered BrdU daily for 2 weeks after castration, 16% of 4-marker cells exhibited BrdU label in contrast to only 6% of all epithelial cells (P < 0.01. In sham-castrated controls less than 4% of 4-marker cells were BrdU labeled (P < 0.01. The unexpected and admittedly counter-intuitive finding that castration induced progenitor cell proliferation suggests that androgen deprivation therapy in men with advanced prostate cancer could not only exert pleiotrophic effects on tumor sub-populations but may induce inadvertent expansion of tumor stem cells.

  8. Focus on biological identity of endothelial progenitors cells.

    Science.gov (United States)

    Zaccone, V; Flore, R; Santoro, L; De Matteis, G; Giupponi, B; Li Puma, D D; Santoliquido, A

    2015-11-01

    Circulating Endothelial Progenitor Cells (EPCs) were discovered by Asahara et al in 1997 and defined as bone marrow CD34+/KDR+ cells endowed with angiogenic potentialities in vitro and in vivo. The most likely assumption is that EPCs consist of several cell subpopulations with functions targeted at accomplishing the post-natal neovascularization process in a synergic and complementary fashion. Indeed, the subsequent identification of numerous and differentiated hematic populations, characterized by the capacity to develop an endothelial phenotype, has posed a number of questions as to the real identity of EPCs. This concept does not represent a sterile speculation but rather it suggests important implications for the future practice of stem cell therapy. The aim of this report was to explore through a critical analysis the two main experimental methodologies, in vitro culture and flow cytometry, applied to EPCs, followed by a brief revaluation of the endothelial progenitors employing a globally functional approach.

  9. Endothelial progenitor cells, cardiovascular risk factors and lifestyle modifications.

    Science.gov (United States)

    Di Stefano, Rossella; Felice, Francesca; Feriani, Roberto; Balbarini, Alberto

    2013-04-01

    Endothelial progenitor cells (EPCs) contribute substantially to preservation of a structurally and functionally intact endothelium. EPCs home in to the sites of endothelial injury and ischemia, where they proliferate, differentiate and integrate into the endothelial layer or exert a paracrine function by producing vascular growth factors. This review will focus on successful lifestyle interventions that aim to maintain vascular health through beneficial actions on cell populations with vasculogenic potential. The results of the studies proving the role of healthy lifestyle are particularly emphasized.

  10. Neural Progenitor Cells Derived from Human Embryonic Stem Cells as an Origin of Dopaminergic Neurons

    Directory of Open Access Journals (Sweden)

    Parinya Noisa

    2015-01-01

    Full Text Available Human embryonic stem cells (hESCs are able to proliferate in vitro indefinitely without losing their ability to differentiate into multiple cell types upon exposure to appropriate signals. Particularly, the ability of hESCs to differentiate into neuronal subtypes is fundamental to develop cell-based therapies for several neurodegenerative disorders, such as Alzheimer’s disease, Huntington’s disease, and Parkinson’s disease. In this study, we differentiated hESCs to dopaminergic neurons via an intermediate stage, neural progenitor cells (NPCs. hESCs were induced to neural progenitor cells by Dorsomorphin, a small molecule that inhibits BMP signalling. The resulting neural progenitor cells exhibited neural bipolarity with high expression of neural progenitor genes and possessed multipotential differentiation ability. CBF1 and bFGF responsiveness of these hES-NP cells suggested their similarity to embryonic neural progenitor cells. A substantial number of dopaminergic neurons were derived from hES-NP cells upon supplementation of FGF8 and SHH, key dopaminergic neuron inducers. Importantly, multiple markers of midbrain neurons were detected, including NURR1, PITX3, and EN1, suggesting that hESC-derived dopaminergic neurons attained the midbrain identity. Altogether, this work underscored the generation of neural progenitor cells that retain the properties of embryonic neural progenitor cells. These cells will serve as an unlimited source for the derivation of dopaminergic neurons, which might be applicable for treating patients with Parkinson’s disease.

  11. File list: ALL.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.20.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  12. File list: ALL.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  13. File list: ALL.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Neural_progenitor_cells mm9 All antigens Neural Neural progenitor ...ttp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  14. Ovarian monocyte progenitor cells: phenotypic and functional characterization.

    Science.gov (United States)

    Pascual, Cherry J; Sanberg, Paul R; Chamizo, Wilfredo; Haraguchi, Soichi; Lerner, Danika; Baldwin, Margi; El-Badri, Nagwa S

    2005-04-01

    Leukocytes of the macrophage lineage are abundant in the ovarian tissues and have an important function in both follicular development and regression of postovulatory follicles. In this study, we tested the hypothesis that continuous production of macrophages in the ovarian stroma is maintained by a resident population of progenitors. We established a long-term culture of ovarian follicular stromal cells from BALB/c and green fluorescent protein-transgenic (GFP-TG) C57BL/6 mice. Nonadherent cells were collected and tested for hematopoietic function in vitro and in vivo. Histological and ultrastructural analyses revealed a homogenous population of monocyte-like rounded cells. Nonadherent cells continued to proliferate in culture for several months without senescence. When plated at very low density in methylcellulose, these cells formed colonies consisting of monocyte-like cells. Ovarian monocyte-like cells reacted with CD45, CD11b, CD11c, and Ly6-Gr-1 cell surface markers. A distinct CD45low population within these cells reacted with CD117 (C-kit) surface marker, suggestive of a primitive hematopoietic progenitor. Fifty thousand nonadherent cells failed to provide radioprotection to lethally irradiated mice and thus were not considered to be equivalent to pluripotent hematopoietic stem cells. Ovarian nonadherent stromal cells were positive for alkaline phosphatase but lacked embryonic cell antigens stage-specific embryonic antigen (SSEA-1) and Oct-4. We conclude that in the ovaries, a higher requirement for macrophages is provided by a resident stromal population of progenitors whose progeny is restricted to the production of cells of the monocyte-macrophage lineage.

  15. Pericytes Stimulate Oligodendrocyte Progenitor Cell Differentiation during CNS Remyelination

    Directory of Open Access Journals (Sweden)

    Alerie Guzman De La Fuente

    2017-08-01

    Full Text Available The role of the neurovascular niche in CNS myelin regeneration is incompletely understood. Here, we show that, upon demyelination, CNS-resident pericytes (PCs proliferate, and parenchymal non-vessel-associated PC-like cells (PLCs rapidly develop. During remyelination, mature oligodendrocytes were found in close proximity to PCs. In Pdgfbret/ret mice, which have reduced PC numbers, oligodendrocyte progenitor cell (OPC differentiation was delayed, although remyelination proceeded to completion. PC-conditioned medium accelerated and enhanced OPC differentiation in vitro and increased the rate of remyelination in an ex vivo cerebellar slice model of demyelination. We identified Lama2 as a PC-derived factor that promotes OPC differentiation. Thus, the functional role of PCs is not restricted to vascular homeostasis but includes the modulation of adult CNS progenitor cells involved in regeneration.

  16. Derivation and characterization of hepatic progenitor cells from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Dongxin Zhao

    Full Text Available The derivation of hepatic progenitor cells from human embryonic stem (hES cells is of value both in the study of early human liver organogenesis and in the creation of an unlimited source of donor cells for hepatocyte transplantation therapy. Here, we report for the first time the generation of hepatic progenitor cells derived from hES cells. Hepatic endoderm cells were generated by activating FGF and BMP pathways and were then purified by fluorescence activated cell sorting using a newly identified surface marker, N-cadherin. After co-culture with STO feeder cells, these purified hepatic endoderm cells yielded hepatic progenitor colonies, which possessed the proliferation potential to be cultured for an extended period of more than 100 days. With extensive expansion, they co-expressed the hepatic marker AFP and the biliary lineage marker KRT7 and maintained bipotential differentiation capacity. They were able to differentiate into hepatocyte-like cells, which expressed ALB and AAT, and into cholangiocyte-like cells, which formed duct-like cyst structures, expressed KRT19 and KRT7, and acquired epithelial polarity. In conclusion, this is the first report of the generation of proliferative and bipotential hepatic progenitor cells from hES cells. These hES cell-derived hepatic progenitor cells could be effectively used as an in vitro model for studying the mechanisms of hepatic stem/progenitor cell origin, self-renewal and differentiation.

  17. Circulating Endothelial Cells and Endothelial Progenitor Cells in Pediatric Sepsis.

    Science.gov (United States)

    Zahran, Asmaa Mohamad; Elsayh, Khalid Ibrahim; Mohamad, Ismail Lotfy; Hassan, Gamal Mohamad; Abdou, Madleen Adel A

    2016-03-01

    The aim of the study was to measure the number of circulating endothelial cells (CECs) and circulating endothelial progenitor cells (CEPs) in pediatric patients with sepsis and correlating it with the severity of the disease and its outcome. The study included 19 children with sepsis, 26 with complicated sepsis, and 30 healthy controls. The patients were investigated within 48 hours of pediatric intensive care unit admission together with flow cytometric detection of CECs and CEPs. The levels of both CECs and CEPs were significantly higher in patient with sepsis and complicated sepsis than the controls. The levels of CECs were higher in patients with complicated sepsis, whereas the levels of CEPs were lower in patients with complicated sepsis. Comparing the survival and nonsurvival septic patients, the levels of CEPs were significantly higher in the survival than in nonsurvival patients, whereas the levels of CECs were significantly lower in the survival than in nonsurvival patients. Serum albumin was higher in survival than in nonsurvival patients. Estimation of CECs and CEPs and their correlation with other parameters such as serum albumen could add important information regarding prognosis in septic pediatric patients.

  18. Transplantation of Airway Epithelial Stem/Progenitor Cells: A Future for Cell-Based Therapy.

    Science.gov (United States)

    Ghosh, Moumita; Ahmad, Shama; White, Carl W; Reynolds, Susan D

    2017-01-01

    Cell therapy has the potential to cure disease through replacement of malfunctioning cells. Although the tissue stem cell (TSC) is thought to be the optimal therapeutic cell, transplantation of TSC/progenitor cell mixtures has saved lives. We previously purified the mouse tracheobronchial epithelial TSCs and reported that in vitro amplification generated numerous TSCs. However, these cultures also contained TSC-derived progenitor cells and TSC repurification by flow cytometry compromised TSC self-renewal. These limitations prompted us to determine if a TSC/progenitor cell mixture would repopulate the injured airway epithelium. We developed a cell transplantation protocol and demonstrate that transplanted mouse and human tracheobronchial epithelial TSC/progenitor cell mixtures are 20-25% of airway epithelial cells, actively contribute to epithelial repair, and persist for at least 43 days. At 2 weeks after transplantation, TSCs/progenitor cells differentiated into the three major epithelial cell types: basal, secretory, and ciliated. We conclude that cell therapy that uses adult tracheobronchial TSCs/progenitor cells is an effective therapeutic option.

  19. Studies on polyomaviruses in humans : In relation to haematopoietic stem cell transplantation and cancer

    OpenAIRE

    Giraud, Géraldine

    2010-01-01

    The simultaneous discovery of two polyomaviruses in humans in 1971, BK and JC viruses (BKV and JCV), initiated the research on polyomaviruses in relation to human diseases. This has now been intensified with the consecutive discoveries, the last three years, of three new family members, KI, WU and Merkel cell polyomaviruses (KIPyV, WUPyV and MCPyV). Notably, the frequent and reproductive presence of MCPyV in Merkel cell carcinoma, a rare skin cancer of the elderly, has opene...

  20. Pneumonia Caused by Moraxella Catarrhalis in Haematopoietic ...

    African Journals Online (AJOL)

    Moraxella catarrhalis is a gram negative diplococcus that causes a variety of upper and lower respiratory tract infections. Patients with malignant, hematological disorders treated with intensive cytotoxic chemotherapy, and recipients of various forms of haematopoietic stem cell transplant receiving immunosuppressive ...

  1. Monitoring of very long-chain fatty acids levels in X-linked adrenoleukodystrophy, treated with haematopoietic stem cell transplantation and Lorenzo's Oil.

    Science.gov (United States)

    Stradomska, Teresa J; Drabko, Katarzyna; Moszczyńska, Elżbieta; Tylki-Szymańska, Anna

    2014-01-01

    X-linked adrenoleukodystrophy is a rare, neurodegenerative peroxisomal disorder connected with mutation in the ABCD1 gene, causing impairment of the peroxisomal β-oxidation process and in consequence, accumulation of very long-chain fatty acids (VLCFA) in blood and tissues. In this study we present serum very long-chain fatty acids levels during clinical course in an X-linked adrenoleukodystrophy patient after haematopoietic stem cell transplantation (HSCT) and on Lorenzo's Oil in a 11 years' period. The patient was diagnosed at the age of 8 months by family screening. The administration of LO was started at 2 years of age. HSCT from a family donor was performed twice. VLCFA serum levels were detected by the GC method. Chimaerism subsequent to HSCT was also analyzed. Increasing very long-chain fatty acids levels correlate with a decreasing chimaerism level after haematopoietic stem cell transplantation. The sequential monitoring of very long-chain fatty acids serum levels is important and useful for assessment of engraftment, graft failure or rejection.

  2. Circulating endothelial progenitor cells in obese children and adolescents.

    Science.gov (United States)

    Pires, António; Martins, Paula; Paiva, Artur; Pereira, Ana Margarida; Marques, Margarida; Castela, Eduardo; Sena, Cristina; Seiça, Raquel

    2015-01-01

    This study aimed to investigate the relationship between circulating endothelial progenitor cell count and endothelial activation in a pediatric population with obesity. Observational and transversal study, including 120 children and adolescents with primary obesity of both sexes, aged 6-17 years, who were recruited at this Cardiovascular Risk Clinic. The control group was made up of 41 children and adolescents with normal body mass index. The variables analyzed were: age, gender, body mass index, systolic and diastolic blood pressure, high-sensitivity C-reactive protein, lipid profile, leptin, adiponectin, homeostasis model assessment-insulin resistance, monocyte chemoattractant protein-1, E-selectin, asymmetric dimethylarginine and circulating progenitor endothelial cell count. Insulin resistance was correlated to asymmetric dimethylarginine (ρ=0.340; p=0.003), which was directly, but weakly correlated to E-selectin (ρ=0.252; p=0.046). High sensitivity C-reactive protein was not found to be correlated to markers of endothelial activation. Systolic blood pressure was directly correlated to body mass index (ρ=0.471; p<0.001) and the homeostasis model assessment-insulin resistance (ρ=0.230; p=0.012), and inversely correlated to adiponectin (ρ=-0.331; p<0.001) and high-density lipoprotein cholesterol (ρ=-0.319; p<0.001). Circulating endothelial progenitor cell count was directly, but weakly correlated, to body mass index (r=0.211; p=0.016), leptin (ρ=0.245; p=0.006), triglyceride levels (r=0.241; p=0.031), and E-selectin (ρ=0.297; p=0.004). Circulating endothelial progenitor cell count is elevated in obese children and adolescents with evidence of endothelial activation, suggesting that, during infancy, endothelial repairing mechanisms are present in the context of endothelial activation. Copyright © 2015 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  3. Culture and Characterization of Circulating Endothelial Progenitor Cells in Patients with Renal Cell Carcinoma.

    Science.gov (United States)

    Gu, Wenyu; Sun, Wei; Guo, Changcheng; Yan, Yang; Liu, Min; Yao, Xudong; Yang, Bin; Zheng, Junhua

    2015-07-01

    Although emerging evidence demonstrates increased circulating endothelial progenitor cells in patients with solid tumors, to our knowledge it is still unknown whether such cells can be cultured from patients with highly angiogenic renal cell carcinoma. We cultured and characterized circulating endothelial progenitor cells from patients with renal cell carcinoma. The circulating endothelial progenitor cell level (percent of CD45(-)CD34(+) VEGF-R2(+) cells in total peripheral blood mononuclear cells) was quantified in 47 patients with renal cell carcinoma and 40 healthy controls. Peripheral blood mononuclear cells were then isolated from 33 patients with renal cell carcinoma and 30 healthy controls to culture and characterize circulating endothelial progenitor cells. The circulating endothelial progenitor cell level was significantly higher in patients with renal cell carcinoma than in healthy controls (0.276% vs 0.086%, p cells first emerged significantly earlier in patient than in control preparations (6.72 vs 14.67 days, p culture success rate (87.8% vs 40.0% of participants) and the number of colonies (10.06 vs 1.83) were significantly greater for patients than for controls (each p cell level correlated positively with the number of patient colonies (r = 0.762, p Cells cultured from patients and controls showed a similar growth pattern, immunophenotype, ability to uptake Ac-LDL and bind lectin, and form capillary tubes in vitro. However, significantly more VEGF-R2(+) circulating endothelial progenitor cells were found in preparations from patients with renal cell carcinoma than from healthy controls (21.1% vs 13.4%, p cell colonies, a higher cell culture success rate and more colonies were found for patients with renal cell carcinoma than for healthy controls. Results indicate the important significance of VEGF-R2(+) circulating endothelial progenitors in patients with renal cell carcinoma. Copyright © 2015 American Urological Association Education and Research

  4. Endothelial Progenitor Cells for Diagnosis and Prognosis in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Caterina Oriana Aragona

    2016-01-01

    Full Text Available Objective. To identify, evaluate, and synthesize evidence on the predictive power of circulating endothelial progenitor cells (EPCs in cardiovascular disease, through a systematic review of quantitative studies. Data Sources. MEDLINE was searched using keywords related to “endothelial progenitor cells” and “endothelium” and, for the different categories, respectively, “smoking”; “blood pressure”; “diabetes mellitus” or “insulin resistance”; “dyslipidemia”; “aging” or “elderly”; “angina pectoris” or “myocardial infarction”; “stroke” or “cerebrovascular disease”; “homocysteine”; “C-reactive protein”; “vitamin D”. Study Selection. Database hits were evaluated against explicit inclusion criteria. From 927 database hits, 43 quantitative studies were included. Data Syntheses. EPC count has been suggested for cardiovascular risk estimation in the clinical practice, since it is currently accepted that EPCs can work as proangiogenic support cells, maintaining their importance as regenerative/reparative potential, and also as prognostic markers. Conclusions. EPCs showed an important role in identifying cardiovascular risk conditions, and to suggest their evaluation as predictor of outcomes appears to be reasonable in different defined clinical settings. Due to their capability of proliferation, circulation, and the development of functional progeny, great interest has been directed to therapeutic use of progenitor cells in atherosclerotic diseases. This trial is registered with registration number: Prospero CRD42015023717.

  5. A matched case-control study of toxoplasmosis after allogeneic haematopoietic stem cell transplantation: still a devastating complication.

    Science.gov (United States)

    Conrad, A; Le Maréchal, M; Dupont, D; Ducastelle-Leprêtre, S; Balsat, M; Labussière-Wallet, H; Barraco, F; Nicolini, F-E; Thomas, X; Gilis, L; Chidiac, C; Ferry, T; Wallet, F; Rabodonirina, M; Salles, G; Michallet, M; Ader, F

    2016-07-01

    Toxoplasmosis (TXP) is a life-threatening complication of allogeneic haematopoietic stem cell transplantation (AHSCT). Little is known about the risk factors and there is no consensus on prophylactic measures. To investigate the risk factors, we conducted a single-centre, retrospective matched case-control study among adults who underwent AHSCT from January 2006 to March 2015 in our hospital. TXP cases were identified from the prospectively maintained hospital's database. The 1:2 control population consisted of the two patients who received an AHSCT immediately before and after each case with similar donor relationship (related, unrelated) but who did not develop TXP. Risk factors were identified by conditional logistic regression. Clinical features and outcome of TXP were examined. Twenty-three (3.9%) cases of TXP (20 diseases, three infections) were identified among 588 AHSCT recipients. Twenty (87%) cases had a positive pre-transplant Toxoplasma gondii serology. In comparison with 46 matched control patients, risk factors were the absence of effective anti-Toxoplasma prophylaxis (odds ratio (OR) 11.95; 95% CI 3.04-46.88; p <0.001), high-grade (III-IV) acute graft-versus-host-disease (OR 3.1; 95% CI 1.04-9.23; p 0.042) and receipt of the tumour necrosis factor-α blocker etanercept (OR 12.02; 95% CI 1.33-108.6; p 0.027). Mortality attributable to TXP was 43.5% (n = 10). Non-relapse mortality rates during the study period of cases and controls were 69.6% (n = 16) and 17.4% (n = 8), respectively. Lung involvement was the dominant clinical feature (n = 14). Two cases were associated with graft failure, one preceded by haemophagocytic syndrome. Given TXP-related morbidity and attributable mortality, anti-Toxoplasma prophylaxis is essential for optimized management of seropositive AHSCT recipients. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. Oral complaints and dental care of haematopoietic stem cell transplant patients: a qualitative survey of patients and their dentists.

    Science.gov (United States)

    Bos-den Braber, Jacolien; Potting, Carin M J; Bronkhorst, Ewald M; Huysmans, Marie-Charlotte D N J M; Blijlevens, Nicole M A

    2015-01-01

    Little is known about the understanding of the oral and dental needs of haematopoietic stem cell transplant (HSCT) patients or about dentists' views and experiences regarding this patient group. This information is essential if we want to improve the standard of peri-HSCT dental care. The primary objective of this qualitative survey was to explore the following: (1) The understanding of dental care pre- and post-HSCT (2) The subjective oral complaints of HSCT patients both short- and long-term (3) The relationship of these oral complaints to the severity of oral mucositis during hospitalization The secondary objective was to explore the opinions of dentists regarding dental care before and after HSCT. All adult patients who survived HSCT at the Radboud University Medical Centre between 2010 and 2011 (n = 101) received a questionnaire. During hospitalization, mucositis scores were recorded daily in the patient's chart. The patients' dentist (n = 88) was also sent a questionnaire after permission of the patient. Ninety-six out of 101 patients (95%) responded. The average period since HSCT was 19 months (range 8-31 months). The overall mean maximum mucositis score was 6.6 (sd = 3.3). Only eight patients reported not having visited a dentist pre-HSCT. The majority of the patients (59%) reported short-term oral complaints, and 28% reported long-term oral complaints. Fifty-two dentists responded (59%). Nine had not performed pre-HSCT screening and eight dentists reported screening their patients but could not complete the necessary treatments. Only 44 dentists succeeded in completing the required treatments. The most important advice of the dentist was to reinforce the importance of regular dental care. Most patients report short-term and/or long-term oral complaints after HSCT. Most dentists stress the importance of regular dental care before and after HSCT but report not being familiar with the particular dental care needs of this patient group. The high

  7. Advances in Classification and Research Methods of Lung Epithelial Stem 
and Progenitor Cells

    OpenAIRE

    Deng,Minhua; Li, Jinhua; Gan, Ye; Chen, Ping

    2017-01-01

    Isolation and characterization of lung epithelial stem and progenitor cells and understanding of their specific role in lung physiopathology are critical for preventing and controlling lung diseases including lung cancer. In this review, we summarized recent advances in classification and research methods of lung epithelial stem and progenitor cells. Lung epithelial stem and progenitor cells were region-specific, which primarily included basal cells and duct cells in proximal airway, Clara ce...

  8. Fetal hepatic progenitors support long-term expansion of hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Flygare, Johan; Lodish, Harvey F

    2013-05-01

    We have developed a coculture system that establishes DLK(+) fetal hepatic progenitors as the authentic supportive cells for expansion of hematopoietic stem (HSCs) and progenitor cells. In 1-week cultures supplemented with serum and supportive cytokines, both cocultured DLK(+) fetal hepatic progenitors and their conditioned medium supported rapid expansion of hematopoietic progenitors and a small increase in HSC numbers. In 2- and 3-week cultures DLK(+) cells, but not their conditioned medium, continuously and significantly (>20-fold) expanded both hematopoietic stem and progenitor cells. Physical contact between HSCs and DLK(+) cells was crucial to maintaining this long-term expansion. Similar HSC expansion (approximately sevenfold) was achieved in cocultures using a serum-free, low cytokine- containing medium. In contrast, DLK(-) cells are incapable of expanding hematopoietic cells, demonstrating that hepatic progenitors are the principle supportive cells for HSC expansion in the fetal liver. Copyright © 2013 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  9. Glial progenitor cell-based treatment of the childhood leukodystrophies

    DEFF Research Database (Denmark)

    Osório, M. Joana; Goldman, Steven A.

    2016-01-01

    stem cell-derived human neural or glial progenitor cells may comprise a promising strategy for both structural remyelination and metabolic rescue. A broad variety of pediatric white matter disorders, including the primary hypomyelinating disorders, the lysosomal storage disorders, and the broader group...... has ensued; understanding the natural history of the targeted disease; defining the optimal cell phenotype for each disorder; achieving safe and scalable cellular compositions; designing age-appropriate controlled clinical trials; and for autologous therapy of genetic disorders, achieving the safe...

  10. Identification of Novel Human NK Cell Progenitor Subsets

    Directory of Open Access Journals (Sweden)

    Priyanka Sathe

    2017-12-01

    Full Text Available Understanding the pathways and regulation of human haematopoiesis, in particular, lymphopoiesis, is vital to manipulation of these processes for therapeutic purposes. However, although haematopoiesis has been extensively characterised in mice, translation of these findings to human biology remains rudimentary. Here, we describe the isolation of three progenitor subsets from human foetal bone marrow that represent differential stages of commitment to the natural killer (NK cell lineage based on IL-15 responsiveness. We identify CD7 as a marker of IL-15 responsive progenitors in human bone marrow and find that this expression is maintained throughout commitment and maturation. Within the CD7+ fraction, we focussed on the lineage potential of three subsets based on CD127 and CD117 expression and observed restricted lymphoid and biased NK cell potential amongst subsets. We further demonstrate the presence of subsets similar in both phenotype and function in umbilical cord blood and the bone marrow of humanised mice, validating these as appropriate sources of progenitors for the investigation of human haematopoiesis. Overall, we describe several stages in the process of lymphopoiesis that will form the basis of investigating the regulators of this process in humans.

  11. Dendritic Cell Lineage Potential in Human Early Hematopoietic Progenitors

    Directory of Open Access Journals (Sweden)

    Julie Helft

    2017-07-01

    Full Text Available Conventional dendritic cells (cDCs are thought to descend from a DC precursor downstream of the common myeloid progenitor (CMP. However, a mouse lymphoid-primed multipotent progenitor has been shown to generate cDCs following a DC-specific developmental pathway independent of monocyte and granulocyte poiesis. Similarly, here we show that, in humans, a large fraction of multipotent lymphoid early progenitors (MLPs gives rise to cDCs, in particular the subset known as cDC1, identified by co-expression of DNGR-1 (CLEC9A and CD141 (BDCA-3. Single-cell analysis indicates that over one-third of MLPs have the potential to efficiently generate cDCs. cDC1s generated from CMPs or MLPs do not exhibit differences in transcriptome or phenotype. These results demonstrate an early imprinting of the cDC lineage in human hematopoiesis and highlight the plasticity of developmental pathways giving rise to human DCs.

  12. Enhanced generation of retinal progenitor cells from human retinal pigment epithelial cells induced by amniotic fluid

    Directory of Open Access Journals (Sweden)

    Sanie-Jahromi Fatemeh

    2012-04-01

    Full Text Available Abstract Background Retinal progenitor cells are a convenient source of cell replacement therapy in retinal degenerative disorders. The purpose of this study was to evaluate the expression patterns of the homeobox genes PAX6 and CHX10 (retinal progenitor markers during treatment of human retinal pigment epithelium (RPE cells with amniotic fluid (AF, RPE cells harvested from neonatal cadaver globes were cultured in a mixture of DMEM and Ham's F12 supplemented with 10% FBS. At different passages, cells were trypsinized and co-cultured with 30% AF obtained from normal fetuses of 1416 weeks gestational age. Results Compared to FBS-treated controls, AF-treated cultures exhibited special morphological changes in culture, including appearance of spheroid colonies, improved initial cell adhesion and ordered cell alignment. Cell proliferation assays indicated a remarkable increase in the proliferation rate of RPE cells cultivated in 30% AF-supplemented medium, compared with those grown in the absence of AF. Immunocytochemical analyses exhibited nuclear localization of retinal progenitor markers at a ratio of 33% and 27% for CHX10 and PAX6, respectively. This indicated a 3-fold increase in retinal progenitor markers in AF-treated cultures compared to FBS-treated controls. Real-time PCR data of retinal progenitor genes (PAX6, CHX10 and VSX-1 confirmed these results and demonstrated AF's capacity for promoting retinal progenitor cell generation. Conclusion Taken together, the results suggest that AF significantly promotes the rate of retinal progenitor cell generation, indicating that AF can be used as an enriched supplement for serum-free media used for the in vitro propagation of human progenitor cells.

  13. Presence of stem/progenitor cells in the rat penis.

    Science.gov (United States)

    Lin, Guiting; Alwaal, Amjad; Zhang, Xiaoyu; Wang, Jianwen; Wang, Lin; Li, Huixi; Wang, Guifang; Ning, Hongxiu; Lin, Ching-Shwun; Xin, Zhongcheng; Lue, Tom F

    2015-01-15

    Tissue resident stem cells are believed to exist in every organ, and their identification is commonly done using a combination of immunostaining for putative stem cell markers and label-retaining cell (LRC) strategy. In this study, we employed these approaches to identify potential stem cells in the penis. Newborn rats were intraperitoneally injected with thymidine analog, 5-ethynyl-2-deoxyuridine (EdU), and their penis was harvested at 7 h, 3 days, 1 week, and 4 weeks. It was processed for EdU stains and immunofluorescence staining for stem cell markers A2B5, PCNA, and c-kit. EdU-positive cells were counted for each time point and co-localized with each stem cell marker, then isolated and cultured in vitro followed by their characterization using flowcytometry and immunofluorescence. At 7 h post-EdU injection, 410 ± 105.3 penile corporal cells were labeled in each cross-section (∼28%). The number of EdU-positive cells at 3 days increased to 536 ± 115.6, while their percentage dropped to 25%. Progressively fewer EdU-positive cells were present in the sacrificed rat penis at longer time points (1 and 4 weeks). They were mainly distributed in the subtunic and perisinusoidal spaces, and defined as subtunic penile progenitor cells (STPCs) and perisinusoidal penile progenitor cells (PPCs). These cells expressed c-kit, A2B5, and PCNA. After culturing in vitro, only ∼0.324% corporal cells were EdU-labeled LRCs and expressed A2B5/PCNA. Therefore, labeling of penis cells by EdU occurred randomly, and label retaining was not associated with expression of c-kit, A2B5, or PCNA. The penile LRCs are mainly distributed within the subtunic and perisinusoidal space.

  14. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Klassen, Henry

    2006-01-01

    We evaluated the host response to murine retinal progenitor cells (RPCs) following transplantation to the subretinal space (SRS) of the pig. RPCs from GFP mice were transplanted subretinally in 18 nonimmunosuppressed normal or laser-treated pigs. Evaluation of the SRS was performed on hematoxylin...... mononuclear infiltration in the choroid with graft rejection occurring over 2-5 weeks. Serum analysis confirmed that mice and pigs are discordant species; however, a cell-mediated acute mechanism appears to be responsible, rather than an antibody-mediated rejection....

  15. Do trichothecenes reduce viability of circulating blood cells and modify haemostasis parameters?

    Science.gov (United States)

    Froquet, R; Arnold, F; Batina, P; Parent-Massin, D

    2003-01-01

    This manuscript describes the results of experiments conducted using human blood cells to determine the ability of T-2 toxin and DON to cause changes in clotting time, platelet aggregation, red blood cell haemolysis, RBC glucose content, lactate release, glutathione depletion, as well as white blood cell viability. In vitro results showed that haemostasis parameters and erythrocytes were not affected at concentrations able to induce inhibition of haematopoietic progenitor proliferation. In the presence of 10(-8) M and 10(-6) M T-2, the leucocyte number decreased at 24 h by 30% and 50% respectively. A 50% decrease in leucocyte number was observed for 10(-5) M DON. Results were compared with haematopoietic progenitor sensitivities. Due to the differences in sensitivities between mature blood cells and haematopoietic progenitors, haematological problems associated with trichothecene intoxication could be attributed to haematopoiesis inhibition.

  16. Notch3 marks clonogenic mammary luminal progenitor cells in vivo.

    Science.gov (United States)

    Lafkas, Daniel; Rodilla, Veronica; Huyghe, Mathilde; Mourao, Larissa; Kiaris, Hippokratis; Fre, Silvia

    2013-10-14

    The identity of mammary stem and progenitor cells remains poorly understood, mainly as a result of the lack of robust markers. The Notch signaling pathway has been implicated in mammary gland development as well as in tumorigenesis in this tissue. Elevated expression of the Notch3 receptor has been correlated to the highly aggressive "triple negative" human breast cancer. However, the specific cells expressing this Notch paralogue in the mammary gland remain unknown. Using a conditionally inducible Notch3-CreERT2(SAT) transgenic mouse, we genetically marked Notch3-expressing cells throughout mammary gland development and followed their lineage in vivo. We demonstrate that Notch3 is expressed in a highly clonogenic and transiently quiescent luminal progenitor population that gives rise to a ductal lineage. These cells are capable of surviving multiple successive pregnancies, suggesting a capacity to self-renew. Our results also uncover a role for the Notch3 receptor in restricting the proliferation and consequent clonal expansion of these cells.

  17. Biology of the Adult Hepatic Progenitor Cell: “Ghosts in the Machine”

    OpenAIRE

    Darwiche, Houda; Petersen, Bryon E.

    2010-01-01

    This chapter reviews some of the basic biological principles governing adult progenitor cells of the liver and the mechanisms by which they operate. If scientists were better able to understand the conditions that govern stem cell mechanics in the liver, it may be possible to apply that understanding in a clinical setting for use in the treatment or cure of human pathologies. This chapter gives a basic introduction to hepatic progenitor cell biology and explores what is known about progenitor...

  18. Transplantation of mouse fetal liver cells for analyzing the function of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Gudmundsson, Kristbjorn Orri; Stull, Steven W; Keller, Jonathan R

    2012-01-01

    Hematopoietic stem cells are defined by their ability to self-renew and differentiate through progenitor cell stages into all types of mature blood cells. Gene-targeting studies in mice have demonstrated that many genes are essential for the generation and function of hematopoietic stem and progenitor cells. For definitively analyzing the function of these cells, transplantation studies have to be performed. In this chapter, we describe methods to isolate and transplant fetal liver cells as well as how to analyze donor cell reconstitution. This protocol is tailored toward mouse models where embryonic lethality precludes analysis of adult hematopoiesis or where it is suspected that the function of fetal liver hematopoietic stem and progenitor cells is compromised.

  19. Microtubules CLASP to Adherens Junctions in epidermal progenitor cells

    DEFF Research Database (Denmark)

    Shahbazi, Marta N; Perez-Moreno, Mirna

    2014-01-01

    and cellular compartments are still not completely understood. Here, we comment on our recent findings showing that the MT plus-end binding protein CLASP2 interacts with the AJ component p120-catenin (p120) specifically in progenitor epidermal cells. Absence of either protein leads to alterations in MT...... of epithelial tissues. We hypothesize the existence of adaptation mechanisms that regulate the formation and stability of AJs in different cellular contexts to allow the dynamic behavior of these complexes during tissue homeostasis and remodeling....

  20. Characterization of vascular endothelial progenitor cells from chicken bone marrow

    Directory of Open Access Journals (Sweden)

    Bai Chunyu

    2012-05-01

    Full Text Available Abstract Background Endothelial progenitor cells (EPC are a type of stem cell used in the treatment of atherosclerosis, vascular injury and regeneration. At present, most of the EPCs studied are from human and mouse, whereas the study of poultry-derived EPCs has rarely been reported. In the present study, chicken bone marrow-derived EPCs were isolated and studied at the cellular level using immunofluorescence and RT-PCR. Results We found that the majority of chicken EPCs were spindle shaped. The growth-curves of chicken EPCs at passages (P 1, -5 and -9 were typically “S”-shaped. The viability of chicken EPCs, before and after cryopreservation was 92.2% and 81.1%, respectively. Thus, cryopreservation had no obvious effects on the viability of chicken EPCs. Dil-ac-LDL and FITC-UAE-1 uptake assays and immunofluorescent detection of the cell surface markers CD34, CD133, VEGFR-2 confirmed that the cells obtained in vitro were EPCs. Observation of endothelial-specific Weibel-Palade bodies using transmission electron microscopy further confirmed that the cells were of endothelial lineage. In addition, chicken EPCs differentiated into endothelial cells and smooth muscle cells upon induction with VEGF and PDGF-BB, respectively, suggesting that the chicken EPCs retained multipotency in vitro. Conclusions These results suggest that chicken EPCs not only have strong self-renewal capacity, but also the potential to differentiate into endothelial and smooth muscle cells. This research provides theoretical basis and experimental evidence for potential therapeutic application of endothelial progenitor cells in the treatment of atherosclerosis, vascular injury and diabetic complications.

  1. Functional endothelial progenitor cells from cryopreserved umbilical cord blood

    Science.gov (United States)

    Lin, Ruei-Zeng; Dreyzin, Alexandra; Aamodt, Kristie; Dudley, Andrew C.; Melero-Martin, Juan M.

    2010-01-01

    Umbilical cord blood (UCB) is recognized as an enriched source of endothelial progenitor cells (EPCs) with potential therapeutic value. Because cryopreservation is the only reliable method for long-term storage of UCB cells, the clinical application of EPCs depends on our ability to acquire them from cryopreserved samples; however, the feasibility of doing so remains unclear. In this study we demonstrate that EPCs can be isolated from cryopreserved UCB-derived mononuclear cells (MNCs). The number of outgrowth EPC colonies that emerged in culture from cryopreserved samples was similar to that obtained from fresh UCB. Furthermore, EPCs obtained from cryopreserved MNCs were phenotypically and functionally indistinguishable from freshly isolated ones, including the ability to form blood vessels in vivo. Our results eliminate the necessity of performing cell isolation procedures ahead of future clinical needs and suggest that EPCs derived from cryopreserved UCB may be suitable for EPC-related therapies. PMID:20887663

  2. Development and application of human adult stem or progenitor cell organoids

    NARCIS (Netherlands)

    Rookmaaker, Maarten B; Schutgens, Frans; Verhaar, Marianne C; Clevers, Hans

    Adult stem or progenitor cell organoids are 3D adult-organ-derived epithelial structures that contain self-renewing and organ-specific stem or progenitor cells as well as differentiated cells. This organoid culture system was first established in murine intestine and subsequently developed for

  3. Nutritional support in patients undergoing haematopoietic stem cell transplantation: a multicentre survey of the Gruppo Italiano Trapianto Midollo Osseo (GITMO) transplant programmes.

    Science.gov (United States)

    Botti, Stefano; Liptrott, Sarah Jayne; Gargiulo, Gianpaolo; Orlando, Laura

    2015-01-01

    A survey within Italian haematopoietic stem cell transplant (HSCT) programmes was performed, in order to obtain a snapshot of nutritional support (NS) in patients undergoing HSCT. The primary objective was to verify whether an evidence-based practice (EBP) approach to NS was implemented in HSCT centres. A multicentre survey was performed by questionnaire, covering the main areas of NS (screening, treatment planning, monitoring, nutritional counselling, and methods of nutritional support). The results indicated a significant variation between clinical practice and evidence-based guidelines in terms of clinical pathways, decision-making, and care provision regarding NS. Further research is required to identify reasons for the limited application of EBP and measures that may be undertaken to address such issues. Development of a multidisciplinary educational programme in order to raise awareness of the issue should be undertaken.

  4. From here to there, progenitor cells and stem cells are everywhere in lung vascular remodeling

    Directory of Open Access Journals (Sweden)

    Rebecca L. Heise

    2016-08-01

    Full Text Available The field of stem cell biology, cell therapy and regenerative medicine has expanded almost exponentially in the last decade. Clinical trials are evaluating the potential therapeutic use of stem cells in many adult and pediatric lung diseases with vascular component, such as bronchopulmonary dysplasia (BPD, chronic obstructive pulmonary disease (COPD, idiopathic pulmonary fibrosis (IPF or pulmonary arterial hypertension (PAH. Extensive research activity is exploring lung resident and circulating progenitor cells and their contribution to vascular complications of chronic lung diseases, and researchers hope to use resident or circulating stem/progenitor cells to treat chronic lung diseases and their vascular complications. It is becoming more and more clear that progress in mechanobiology will help to understand the various influences of physical forces and extracellular matrix composition on the phenotype and features of the progenitor cells and stem cells. The current review provides an overview of current concepts in the field.

  5. Fractalkine expression induces endothelial progenitor cell lysis by natural killer cells.

    Directory of Open Access Journals (Sweden)

    Dilyana Todorova

    Full Text Available BACKGROUND: Circulating CD34(+ cells, a population that includes endothelial progenitors, participate in the maintenance of endothelial integrity. Better understanding of the mechanisms that regulate their survival is crucial to improve their regenerative activity in cardiovascular and renal diseases. Chemokine-receptor cross talk is critical in regulating cell homeostasis. We hypothesized that cell surface expression of the chemokine fractalkine (FKN could target progenitor cell injury by Natural Killer (NK cells, thereby limiting their availability for vascular repair. METHODOLOGY/PRINCIPAL FINDINGS: We show that CD34(+-derived Endothelial Colony Forming Cells (ECFC can express FKN in response to TNF-α and IFN-γ inflammatory cytokines and that FKN expression by ECFC stimulates NK cell adhesion, NK cell-mediated ECFC lysis and microparticles release in vitro. The specific involvement of membrane FKN in these processes was demonstrated using FKN-transfected ECFC and anti-FKN blocking antibody. FKN expression was also evidenced on circulating CD34(+ progenitor cells and was detected at higher frequency in kidney transplant recipients, when compared to healthy controls. The proportion of CD34(+ cells expressing FKN was identified as an independent variable inversely correlated to CD34(+ progenitor cell count. We further showed that treatment of CD34(+ circulating cells isolated from adult blood donors with transplant serum or TNF-α/IFN-γ can induce FKN expression. CONCLUSIONS: Our data highlights a novel mechanism by which FKN expression on CD34(+ progenitor cells may target their NK cell mediated killing and participate to their immune depletion in transplant recipients. Considering the numerous diseased contexts shown to promote FKN expression, our data identify FKN as a hallmark of altered progenitor cell homeostasis with potential implications in better evaluation of vascular repair in patients.

  6. Umbilical cord blood CD34(+) progenitor-derived NK cells efficiently kill ovarian cancer spheroids and intraperitoneal tumors in NOD/SCID/IL2Rg(null) mice.

    Science.gov (United States)

    Hoogstad-van Evert, Janneke S; Cany, Jeannette; van den Brand, Dirk; Oudenampsen, Manon; Brock, Roland; Torensma, Ruurd; Bekkers, Ruud L; Jansen, Joop H; Massuger, Leon F; Dolstra, Harry

    2017-01-01

    Adoptive transfer of allogeneic natural killer (NK) cells is an attractive therapy approach against ovarian carcinoma. Here, we evaluated the potency of highly active NK cells derived from human CD34+ haematopoietic stem and progenitor cells (HSPC) to infiltrate and mediate killing of human ovarian cancer spheroids using an in vivo-like model system and mouse xenograft model. These CD56+Perforin+ HSPC-NK cells were generated under stroma-free conditions in the presence of StemRegenin-1, IL-15, and IL-12, and exerted efficient cytolytic activity and IFNγ production toward ovarian cancer monolayer cultures. Live-imaging confocal microscopy demonstrated that these HSPC-NK cells actively migrate, infiltrate, and mediate tumor cell killing in a three-dimensional multicellular ovarian cancer spheroid. Infiltration of up to 30% of total HSPC-NK cells within 8 h resulted in robust tumor spheroid destruction. Furthermore, intraperitoneal HSPC-NK cell infusions in NOD/SCID-IL2Rγ(null) (NSG) mice bearing ovarian carcinoma significantly reduced tumor progression. These findings demonstrate that highly functional HSPC-NK cells efficiently destruct ovarian carcinoma spheroids in vitro and kill intraperitoneal ovarian tumors in vivo, providing great promise for effective immunotherapy through intraperitoneal HSPC-NK cell adoptive transfer in ovarian carcinoma patients.

  7. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells.

    Science.gov (United States)

    Lange, Christian; Mix, Eilhard; Frahm, Jana; Glass, Anne; Müller, Jana; Schmitt, Oliver; Schmöle, Anne-Caroline; Klemm, Kristin; Ortinau, Stefanie; Hübner, Rayk; Frech, Moritz J; Wree, Andreas; Rolfs, Arndt

    2011-01-13

    Human neural progenitor cells provide a source for cell replacement therapy to treat neurodegenerative diseases. Therefore, there is great interest in mechanisms and tools to direct the fate of multipotent progenitor cells during their differentiation to increase the yield of a desired cell type. We tested small molecule inhibitors of glycogen synthase kinase-3 (GSK-3) for their functionality and their influence on neurogenesis using the human neural progenitor cell line ReNcell VM. Here we report the enhancement of neurogenesis of human neural progenitor cells by treatment with GSK-3 inhibitors. We tested different small molecule inhibitors of GSK-3 i.e. LiCl, sodium-valproate, kenpaullone, indirubin-3-monoxime and SB-216763 for their ability to inhibit GSK-3 in human neural progenitor cells. The highest in situ GSK-3 inhibitory effect of the drugs was found for kenpaullone and SB-216763. Accordingly, kenpaullone and SB-216763 were the only drugs tested in this study to stimulate the Wnt/β-catenin pathway that is antagonized by GSK-3. Analysis of human neural progenitor differentiation revealed an augmentation of neurogenesis by SB-216763 and kenpaullone, without changing cell cycle exit or cell survival. Small molecule inhibitors of GSK-3 enhance neurogenesis of human neural progenitor cells and may be used to direct the differentiation of neural stem and progenitor cells in therapeutic applications. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Multipotent adult progenitor cells on an allograft scaffold facilitate the bone repair process

    Directory of Open Access Journals (Sweden)

    Amanda LoGuidice

    2016-07-01

    Full Text Available Multipotent adult progenitor cells are a recently described population of stem cells derived from the bone marrow stroma. Research has demonstrated the potential of multipotent adult progenitor cells for treating ischemic injury and cardiovascular repair; however, understanding of multipotent adult progenitor cells in orthopedic applications remains limited. In this study, we evaluate the osteogenic and angiogenic capacity of multipotent adult progenitor cells, both in vitro and loaded onto demineralized bone matrix in vivo, with comparison to mesenchymal stem cells, as the current standard. When compared to mesenchymal stem cells, multipotent adult progenitor cells exhibited a more robust angiogenic protein release profile in vitro and developed more extensive vasculature within 2 weeks in vivo. The establishment of this vascular network is critical to the ossification process, as it allows nutrient exchange and provides an influx of osteoprogenitor cells to the wound site. In vitro assays confirmed the multipotency of multipotent adult progenitor cells along mesodermal lineages and demonstrated the enhanced expression of alkaline phosphatase and production of calcium-containing mineral deposits by multipotent adult progenitor cells, necessary precursors for osteogenesis. In combination with a demineralized bone matrix scaffold, multipotent adult progenitor cells demonstrated enhanced revascularization and new bone formation in vivo in an orthotopic defect model when compared to mesenchymal stem cells on demineralized bone matrix or demineralized bone matrix–only control groups. The potent combination of angiogenic and osteogenic properties provided by multipotent adult progenitor cells appears to create a synergistic amplification of the bone healing process. Our results indicate that multipotent adult progenitor cells have the potential to better promote tissue regeneration and healing and to be a functional cell source for use in

  9. Electrically Induced Calcium Handling in Cardiac Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Joshua T. Maxwell

    2016-01-01

    Full Text Available For nearly a century, the heart was viewed as a terminally differentiated organ until the discovery of a resident population of cardiac stem cells known as cardiac progenitor cells (CPCs. It has been shown that the regenerative capacity of CPCs can be enhanced by ex vivo modification. Preconditioning CPCs could provide drastic improvements in cardiac structure and function; however, a systematic approach to determining a mechanistic basis for these modifications founded on the physiology of CPCs is lacking. We have identified a novel property of CPCs to respond to electrical stimulation by initiating intracellular Ca2+ oscillations. We used confocal microscopy and intracellular calcium imaging to determine the spatiotemporal properties of the Ca2+ signal and the key proteins involved in this process using pharmacological inhibition and confocal Ca2+ imaging. Our results provide valuable insights into mechanisms to enhance the therapeutic potential in stem cells and further our understanding of human CPC physiology.

  10. Retinal progenitor cell xenografts to the pig retina

    DEFF Research Database (Denmark)

    Warfvinge, Karin; Kiilgaard, Jens Folke; Klassen, Henry

    2006-01-01

    We evaluated the host response to murine retinal progenitor cells (RPCs) following transplantation to the subretinal space (SRS) of the pig. RPCs from GFP mice were transplanted subretinally in 18 nonimmunosuppressed normal or laser-treated pigs. Evaluation of the SRS was performed on hematoxylin...... inflammatory cells in the choroid near the transplantation site. Large choroidal infiltrates were evident at 2-5 weeks. Serum from naive and RPC-xenografted pigs contained significant levels of preformed IgG and IgM antibodies against murine antigens. Xenogeneic RPCs transplanted to the porcine SRS induced...... mononuclear infiltration in the choroid with graft rejection occurring over 2-5 weeks. Serum analysis confirmed that mice and pigs are discordant species; however, a cell-mediated acute mechanism appears to be responsible, rather than an antibody-mediated rejection....

  11. Smooth muscle progenitor cells from peripheral blood promote the neovascularization of endothelial colony-forming cells

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Joon; Seo, Ha-Rim [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Jeong, Hyo Eun [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Choi, Seung-Cheol; Park, Jae Hyung; Yu, Cheol Woong; Hong, Soon Jun [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of); Chung, Seok [Department of Mechanical Engineering, Korea University, Seoul (Korea, Republic of); Lim, Do-Sun, E-mail: dslmd@kumc.or.kr [Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Two distinct vascular progenitor cells are induced from adult peripheral blood. • ECFCs induce vascular structures in vitro and in vivo. • SMPCs augment the in vitro and in vivo angiogenic potential of ECFCs. • Both cell types have synergistic therapeutic potential in ischemic hindlimb model. - Abstract: Proangiogenic cell therapy using autologous progenitors is a promising strategy for treating ischemic disease. Considering that neovascularization is a harmonized cellular process that involves both endothelial cells and vascular smooth muscle cells, peripheral blood-originating endothelial colony-forming cells (ECFCs) and smooth muscle progenitor cells (SMPCs), which are similar to mature endothelial cells and vascular smooth muscle cells, could be attractive cellular candidates to achieve therapeutic neovascularization. We successfully induced populations of two different vascular progenitor cells (ECFCs and SMPCs) from adult peripheral blood. Both progenitor cell types expressed endothelial-specific or smooth muscle-specific genes and markers, respectively. In a protein array focused on angiogenic cytokines, SMPCs demonstrated significantly higher expression of bFGF, EGF, TIMP2, ENA78, and TIMP1 compared to ECFCs. Conditioned medium from SMPCs and co-culture with SMPCs revealed that SMPCs promoted cell proliferation, migration, and the in vitro angiogenesis of ECFCs. Finally, co-transplantation of ECFCs and SMPCs induced robust in vivo neovascularization, as well as improved blood perfusion and tissue repair, in a mouse ischemic hindlimb model. Taken together, we have provided the first evidence of a cell therapy strategy for therapeutic neovascularization using two different types of autologous progenitors (ECFCs and SMPCs) derived from adult peripheral blood.

  12. Generation of Induced Progenitor-like Cells from Mature Epithelial Cells Using Interrupted Reprogramming

    Directory of Open Access Journals (Sweden)

    Li Guo

    2017-12-01

    Full Text Available Summary: A suitable source of progenitor cells is required to attenuate disease or affect cure. We present an “interrupted reprogramming” strategy to generate “induced progenitor-like (iPL cells” using carefully timed expression of induced pluripotent stem cell reprogramming factors (Oct4, Sox2, Klf4, and c-Myc; OSKM from non-proliferative Club cells. Interrupted reprogramming allowed controlled expansion yet preservation of lineage commitment. Under clonogenic conditions, iPL cells expanded and functioned as a bronchiolar progenitor-like population to generate mature Club cells, mucin-producing goblet cells, and cystic fibrosis transmembrane conductance regulator (CFTR-expressing ciliated epithelium. In vivo, iPL cells can repopulate CFTR-deficient epithelium. This interrupted reprogramming process could be metronomically applied to achieve controlled progenitor-like proliferation. By carefully controlling the duration of expression of OSKM, iPL cells do not become pluripotent, and they maintain their memory of origin and retain their ability to efficiently return to their original phenotype. A generic technique to produce highly specified populations may have significant implications for regenerative medicine. : In this article Waddell, Nagy, and colleagues present an “interrupted reprogramming” strategy to produce highly specified functional “induced progenitor-like cells” from mature quiescent cells. They propose that careful control of the duration of transient expression of iPSC reprogramming factors (OSKM allows controlled expansion yet preservation of parental lineage without traversing the pluripotent state. Keywords: generation of induced progenitor-like cells

  13. Phosphatidylinositol 3-kinases are involved in the all-trans retinoic acid-induced upregulation of CD38 antigen on human haematopoietic cells.

    Science.gov (United States)

    Lewandowski, Daniel; Linassier, Claude; Iochmann, Sophie; Degenne, Michel; Domenech, Jorge; Colombat, Philippe; Binet, Christian; Hérault, Olivier

    2002-08-01

    All-trans retinoic acid (ATRA) is a specific inducer of CD38 antigen on marrow CD34+ cells as well as on blast cells in acute promyelocytic and myeloblastic leukaemia. The CD38 antigen contributes to the control of blast cell proliferation, and the upregulation of CD38 might constitute an element in the pathogenesis of retinoic acid syndrome. The aim of this study was to determine whether phosphoinositide 3-kinase (PI3-K) is involved in the modification of CD38 antigen expression on myeloid cells, as PI3-K plays a major role in the ATRA-induced granulocytic differentiation of HL-60 cells. We evaluated the effects of PI3-K inhibitors (wortmannin and LY294002) on the levels of CD38 antigen and mRNA in HL-60 and normal marrow CD34+ cells exposed to ATRA (1 micromol/l). The inhibitors prevented increase in CD38 mRNA expression and the overexpression of membrane CD38 antigen, without modification of the cytoplasmic level of this antigen. Interestingly, PI3-K activity was also necessary for CD38 expression on normal marrow CD34+ cells and for the ATRA-induced upregulation of CD157, a CD38-related antigen. In conclusion, PI3-K activity plays an essential role in the regulation of CD38 expression on human haematopoietic cells, and might constitute an interesting therapeutic target in haematological disorders involving CD38 overexpression.

  14. Inflammation increases cells expressing ZSCAN4 and progenitor cell markers in the adult pancreas

    Science.gov (United States)

    Azuma, Sakiko; Yokoyama, Yukihiro; Yamamoto, Akiko; Kyokane, Kazuhiro; Niida, Shumpei; Ishiguro, Hiroshi; Ko, Minoru S. H.

    2013-01-01

    We have recently identified the zinc finger and SCAN domain containing 4 (Zscan4), which is transiently expressed and regulates telomere elongation and genome stability in mouse embryonic stem (ES) cells. The aim of this study was to examine the expression of ZSCAN4 in the adult pancreas and elucidate the role of ZSCAN4 in tissue inflammation and subsequent regeneration. The expression of ZSCAN4 and other progenitor or differentiated cell markers in the human pancreas was immunohistochemically examined. Pancreas sections of alcoholic or autoimmune pancreatitis patients before and under maintenance corticosteroid treatment were used in this study. In the adult human pancreas a small number of ZSCAN4-positive (ZSCAN4+) cells are present among cells located in the islets of Langerhans, acini, ducts, and oval-shaped cells. These cells not only express differentiated cell markers for each compartment of the pancreas but also express other tissue stem/progenitor cell markers. Furthermore, the number of ZSCAN4+ cells dramatically increased in patients with chronic pancreatitis, especially in the pancreatic tissues of autoimmune pancreatitis actively regenerating under corticosteroid treatment. Interestingly, a number of ZSCAN4+ cells in the pancreas of autoimmune pancreatitis returned to the basal level after 1 yr of maintenance corticosteroid treatment. In conclusion, coexpression of progenitor cell markers and differentiated cell markers with ZSCAN4 in each compartment of the pancreas may indicate the presence of facultative progenitors for both exocrine and endocrine cells in the adult pancreas. PMID:23599043

  15. Development of Advanced Dressings for the Delivery of Progenitor Cells.

    Science.gov (United States)

    Kirby, Giles T S; Mills, Stuart J; Vandenpoel, Liesbeth; Pinxteren, Jef; Ting, Anthony; Short, Robert D; Cowin, Allison J; Michelmore, Andrew; Smith, Louise E

    2017-02-01

    Culture surfaces that substantially reduce the degree of cell manipulation in the delivery of cell sheets to patients are described. These surfaces support the attachment, culture, and delivery of multipotent adult progenitor cells (MAPC). It was essential that the processes of attachment/detachment to the surface did not affect cell phenotype nor the function of the cultured cells. Both acid-based and amine-based surface coatings were generated from acrylic acid, propanoic acid, diaminopropane, and heptylamine precursors, respectively. While both functional groups supported cell attachment/detachment, amine coated surfaces gave optimal performance. X-ray photoelectron spectroscopy (XPS) showed that at a primary amine to carbon surface ratio of between 0.01 and 0.02, greater than 90% of attached cells were effectively transferred to a model wound bed. A dependence on primary amine concentration has not previously been reported. After 48 h of culture on the optimized amine surface, PCR, functional, and viability assays showed that MAPC retained their stem cell phenotype, full metabolic activity, and biological function. Consequently, in a proof of concept experiment, it was shown that this amine surface when coated onto a surgical dressing provides an effective and simple technology for the delivery of MAPC to murine dorsal excisional wounds, with MAPC delivery verified histologically. By optimizing for cell delivery using a combination of in vitro and in vivo techniques, we developed an effective surface for the delivery of MAPC in a clinically relevant format.

  16. Topological defects control collective dynamics in neural progenitor cell cultures

    Science.gov (United States)

    Kawaguchi, Kyogo; Kageyama, Ryoichiro; Sano, Masaki

    2017-04-01

    Cultured stem cells have become a standard platform not only for regenerative medicine and developmental biology but also for biophysical studies. Yet, the characterization of cultured stem cells at the level of morphology and of the macroscopic patterns resulting from cell-to-cell interactions remains largely qualitative. Here we report on the collective dynamics of cultured murine neural progenitor cells (NPCs), which are multipotent stem cells that give rise to cells in the central nervous system. At low densities, NPCs moved randomly in an amoeba-like fashion. However, NPCs at high density elongated and aligned their shapes with one another, gliding at relatively high velocities. Although the direction of motion of individual cells reversed stochastically along the axes of alignment, the cells were capable of forming an aligned pattern up to length scales similar to that of the migratory stream observed in the adult brain. The two-dimensional order of alignment within the culture showed a liquid-crystalline pattern containing interspersed topological defects with winding numbers of +1/2 and -1/2 (half-integer due to the nematic feature that arises from the head-tail symmetry of cell-to-cell interaction). We identified rapid cell accumulation at +1/2 defects and the formation of three-dimensional mounds. Imaging at the single-cell level around the defects allowed us to quantify the velocity field and the evolving cell density; cells not only concentrate at +1/2 defects, but also escape from -1/2 defects. We propose a generic mechanism for the instability in cell density around the defects that arises from the interplay between the anisotropic friction and the active force field.

  17. Yap controls stem/progenitor cell proliferation in the mouse postnatal epidermis.

    Science.gov (United States)

    Beverdam, Annemiek; Claxton, Christina; Zhang, Xiaomeng; James, Gregory; Harvey, Kieran F; Key, Brian

    2013-06-01

    Tissue renewal is an ongoing process in the epithelium of the skin. We have begun to examine the genetic mechanisms that control stem/progenitor cell activation in the postnatal epidermis. The conserved Hippo pathway regulates stem cell turnover in arthropods through to vertebrates. Here we show that its downstream effector, yes-associated protein (YAP), is active in the stem/progenitor cells of the postnatal epidermis. Overexpression of a C-terminally truncated YAP mutant in the basal epidermis of transgenic mice caused marked expansion of epidermal stem/progenitor cell populations. Our data suggest that the C-terminus of YAP controls the balance between stem/progenitor cell proliferation and differentiation in the postnatal interfollicular epidermis. We conclude that YAP functions as a molecular switch of stem/progenitor cell activation in the epidermis. Moreover, our results highlight YAP as a possible therapeutic target for diseases such as skin cancer, psoriasis, and epidermolysis bullosa.

  18. Establishment and characterization of a unique 1 microm diameter liver-derived progenitor cell line.

    Science.gov (United States)

    Aravalli, Rajagopal N; Behnan Sahin, M; Cressman, Erik N K; Steer, Clifford J

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 microm in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers. Copyright 2009 Elsevier Inc. All rights reserved.

  19. Differentiation of oligodendrocyte progenitor cells from dissociated monolayer and feeder-free cultured pluripotent stem cells.

    Science.gov (United States)

    Yamashita, Tomoko; Miyamoto, Yuki; Bando, Yoshio; Ono, Takashi; Kobayashi, Sakurako; Doi, Ayano; Araki, Toshihiro; Kato, Yosuke; Shirakawa, Takayuki; Suzuki, Yutaka; Yamauchi, Junji; Yoshida, Shigetaka; Sato, Naoya

    2017-01-01

    Oligodendrocytes myelinate axons and form myelin sheaths in the central nervous system. The development of therapies for demyelinating diseases, including multiple sclerosis and leukodystrophies, is a challenge because the pathogenic mechanisms of disease remain poorly understood. Primate pluripotent stem cell-derived oligodendrocytes are expected to help elucidate the molecular pathogenesis of these diseases. Oligodendrocytes have been successfully differentiated from human pluripotent stem cells. However, it is challenging to prepare large amounts of oligodendrocytes over a short amount of time because of manipulation difficulties under conventional primate pluripotent stem cell culture methods. We developed a proprietary dissociated monolayer and feeder-free culture system to handle pluripotent stem cell cultures. Because the dissociated monolayer and feeder-free culture system improves the quality and growth of primate pluripotent stem cells, these cells could potentially be differentiated into any desired functional cells and consistently cultured in large-scale conditions. In the current study, oligodendrocyte progenitor cells and mature oligodendrocytes were generated within three months from monkey embryonic stem cells. The embryonic stem cell-derived oligodendrocytes exhibited in vitro myelinogenic potency with rat dorsal root ganglion neurons. Additionally, the transplanted oligodendrocyte progenitor cells differentiated into myelin basic protein-positive mature oligodendrocytes in the mouse corpus callosum. This preparative method was used for human induced pluripotent stem cells, which were also successfully differentiated into oligodendrocyte progenitor cells and mature oligodendrocytes that were capable of myelinating rat dorsal root ganglion neurons. Moreover, it was possible to freeze, thaw, and successfully re-culture the differentiating cells. These results showed that embryonic stem cells and human induced pluripotent stem cells maintained in a

  20. Aging-associated inflammation promotes selection for adaptive oncogenic events in B cell progenitors

    NARCIS (Netherlands)

    Henry, C.J.; Casas-Selves, M.; Kim, J.; Zaberezhnyy, V.; Aghili, L.; Daniel, A.E.; Jimenez, L.; Azam, T.; McNamee, E.N.; Clambey, E.T.; Klawitter, J.; Serkova, N.J.; Tan, A.C.; Dinarello, C.A.; DeGregori, J.

    2015-01-01

    The incidence of cancer is higher in the elderly; however, many of the underlying mechanisms for this association remain unexplored. Here, we have shown that B cell progenitors in old mice exhibit marked signaling, gene expression, and metabolic defects. Moreover, B cell progenitors that developed

  1. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models.

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-01-01

    Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression.

  2. Interleukin-1 regulates Hematopoietic progenitor and stem cells in the midgestation mouse fetal liver

    NARCIS (Netherlands)

    C. Orelio (Claudia); M. Peeters (Marian); E. Haak (Esther); K. van der Horn (Karin); E.A. Dzierzak (Elaine)

    2009-01-01

    textabstractBackground Hematopoietic progenitors are generated in the yolk sac and aorta-gonad-mesonephros region during early mouse development. At embryonic day 10.5 the first hematopoietic stem cells emerge in the aorta-gonad-mesonephros. Subsequently, hematopoietic stem cells and progenitors are

  3. Effects of hematopoietic growth factors on purified bone marrow progenitor cells

    NARCIS (Netherlands)

    F.J. Bot (Freek)

    1992-01-01

    textabstractWe have used highly enriched hematopoietic progenitor cells and in-vitro culture to examine the following questions: 1. The effects of recombinant lL-3 and GM-CSF on proliferation and differentiation of enriched hematopoietic progenitor cells have not been clearly defined: - how do IL~3

  4. Gene therapy of T helper cells in HIV infection: mathematical model of the criteria for clinical effect

    DEFF Research Database (Denmark)

    Lund, O; Lund, O S; Gram, G

    1997-01-01

    transduced. If only a small fraction of the cells can be transduced, transduction of T helper cells and transduction of haematopoietic progenitor cells will result in the same steady-state level of transduced T helper cells. For gene therapy to be efficient against HIV infection, our analysis suggests...

  5. Osteopontin neutralisation abrogates the liver progenitor cell response and fibrogenesis in mice.

    Science.gov (United States)

    Coombes, J D; Swiderska-Syn, M; Dollé, L; Reid, D; Eksteen, B; Claridge, L; Briones-Orta, M A; Shetty, S; Oo, Y H; Riva, A; Chokshi, S; Papa, S; Mi, Z; Kuo, P C; Williams, R; Canbay, A; Adams, D H; Diehl, A M; van Grunsven, L A; Choi, S S; Syn, W K

    2015-07-01

    Chronic liver injury triggers a progenitor cell repair response, and liver fibrosis occurs when repair becomes deregulated. Previously, we reported that reactivation of the hedgehog pathway promotes fibrogenic liver repair. Osteopontin (OPN) is a hedgehog-target, and a cytokine that is highly upregulated in fibrotic tissues, and regulates stem-cell fate. Thus, we hypothesised that OPN may modulate liver progenitor cell response, and thereby, modulate fibrotic outcomes. We further evaluated the impact of OPN-neutralisation on murine liver fibrosis. Liver progenitors (603B and bipotential mouse oval liver) were treated with OPN-neutralising aptamers in the presence or absence of transforming growth factor (TGF)-β, to determine if (and how) OPN modulates liver progenitor function. Effects of OPN-neutralisation (using OPN-aptamers or OPN-neutralising antibodies) on liver progenitor cell response and fibrogenesis were assessed in three models of liver fibrosis (carbon tetrachloride, methionine-choline deficient diet, 3,5,-diethoxycarbonyl-1,4-dihydrocollidine diet) by quantitative real time (qRT) PCR, Sirius-Red staining, hydroxyproline assay, and semiquantitative double-immunohistochemistry. Finally, OPN expression and liver progenitor response were corroborated in liver tissues obtained from patients with chronic liver disease. OPN is overexpressed by liver progenitors in humans and mice. In cultured progenitors, OPN enhances viability and wound healing by modulating TGF-β signalling. In vivo, OPN-neutralisation attenuates the liver progenitor cell response, reverses epithelial-mesenchymal-transition in Sox9+ cells, and abrogates liver fibrogenesis. OPN upregulation during liver injury is a conserved repair response, and influences liver progenitor cell function. OPN-neutralisation abrogates the liver progenitor cell response and fibrogenesis in mouse models of liver fibrosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already

  6. Osteopontin Neutralization Abrogates the Liver Progenitor Cell Response and Fibrogenesis in Mice

    Science.gov (United States)

    Coombes, J; Swiderska-Syn, M; Dollé, L; Reid, D; Eksteen, B; Claridge, L; Briones-Orta, MA; Shetty, S; Oo, YH; Riva, A; Chokshi, S; Papa, S; Mi, Z; Kuo, PC; Williams, R; Canbay, A; Adams, DH; Diehl, AM; van Grunsven, LA; Choi, SS; Syn, WK

    2015-01-01

    Background Chronic liver injury triggers a progenitor-cell repair-response, and liver fibrosis occurs when repair becomes de-regulated. Previously, we reported that reactivation of the Hedgehog (Hh) pathway promotes fibrogenic liver-repair. Osteopontin (OPN) is a Hh-target, and a cytokine that is highly upregulated in fibrotic tissues, and regulates stem-cell fate. Thus, we hypothesized that OPN may modulate liver progenitor-cell response, and thereby, modulate fibrotic outcomes. We further evaluated the impact of OPN-neutralization on murine liver fibrosis. Methods Liver progenitors (603B and BMOL) were treated with OPN-neutralizing aptamers in the presence or absence of TGF–β, to determine if (and how) OPN modulates liver progenitor function. Effects of OPN-neutralization (using OPN-aptamers or OPN-neutralizing antibodies) on liver progenitor-cell response and fibrogenesis were assessed in three models of liver fibrosis (carbon tetrachloride, methionine-choline deficient diet, 3, 5,-diethoxycarbonyl-1,4-dihydrocollidine diet) by qRTPCR, Sirius-Red staining, hydroxyproline assay, and semi-quantitative double-immunohistochemistry. Finally, OPN expression and liver progenitor response were corroborated in liver tissues obtained from patients with chronic liver disease. Results OPN is over-expressed by liver progenitors in humans and mice. In cultured progenitors, OPN enhances viability and wound-healing by modulating TGF-β signaling. In vivo, OPN-neutralization attenuates the liver progenitor-cell response, reverses epithelial-mesenchymal-transition in Sox9+ cells, and abrogates liver fibrogenesis. Conclusions OPN upregulation during liver injury is a conserved repair-response, and influences liver progenitor-cell function. OPN-neutralization abrogates the liver progenitor-cell response and fibrogenesis in mouse models of liver fibrosis. PMID:24902765

  7. Quercetin inhibits adipogenesis of muscle progenitor cells in vitro

    Directory of Open Access Journals (Sweden)

    Tomoko Funakoshi

    2018-03-01

    Full Text Available Muscle satellite cells are committed myogenic progenitors capable of contributing to myogenesis to maintain adult muscle mass and function. Several experiments have demonstrated that muscle satellite cells can differentiate into adipocytes in vitro, supporting the mesenchymal differentiation potential of these cells. Moreover, muscle satellite cells may be a source of ectopic muscle adipocytes, explaining the lipid accumulation often observed in aged skeletal muscle (sarcopenia and in muscles of patients` with diabetes. Quercetin, a polyphenol, is one of the most abundant flavonoids distributed in edible plants, such as onions and apples, and possesses antioxidant, anticancer, and anti-inflammatory properties. In this study, we examined whether quercetin inhibited the adipogenesis of muscle satellite cells in vitro with primary cells from rat limbs by culture in the presence of quercetin under adipogenic conditions. Morphological observations, Oil Red-O staining results, triglyceride content analysis, and quantitative reverse transcription polymerase chain reaction revealed that quercetin was capable of inhibiting the adipogenic induction of muscle satellite cells into adipocytes in a dose-dependent manner by suppressing the transcript levels of adipogenic markers, such as peroxisome proliferator-activated receptor-γ and fatty acid binding protein 4. Our results suggested that quercetin inhibited the adipogenesis of muscle satellite cells in vitro by suppressing the transcription of adipogenic markers.

  8. High-dose chemotherapy and autologous haematopoietic stem cell rescue for children with high-risk neuroblastoma.

    Science.gov (United States)

    Yalçin, Bilgehan; Kremer, Leontien C M; van Dalen, Elvira C

    2015-10-05

    Despite the development of new treatment options, the prognosis of high-risk neuroblastoma patients is still poor; more than half of patients experience disease recurrence. High-dose chemotherapy and haematopoietic stem cell rescue (i.e. myeloablative therapy) might improve survival. This review is the second update of a previously published Cochrane review. Primary objectiveTo compare the efficacy, that is event-free and overall survival, of high-dose chemotherapy and autologous bone marrow or stem cell rescue with conventional therapy in children with high-risk neuroblastoma. Secondary objectivesTo determine adverse effects (e.g. veno-occlusive disease of the liver) and late effects (e.g. endocrine disorders or secondary malignancies) related to the procedure and possible effects of these procedures on quality of life. We searched the electronic databases The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2014, issue 11), MEDLINE/PubMed (1966 to December 2014) and EMBASE/Ovid (1980 to December 2014). In addition, we searched reference lists of relevant articles and the conference proceedings of the International Society for Paediatric Oncology (SIOP) (from 2002 to 2014), American Society for Pediatric Hematology and Oncology (ASPHO) (from 2002 to 2014), Advances in Neuroblastoma Research (ANR) (from 2002 to 2014) and American Society for Clinical Oncology (ASCO) (from 2008 to 2014). We searched for ongoing trials by scanning the ISRCTN register (www.isrct.com) and the National Institute of Health Register (www.clinicaltrials.gov). Both registers were screened in April 2015. Randomised controlled trials (RCTs) comparing the efficacy of myeloablative therapy with conventional therapy in high-risk neuroblastoma patients. Two authors independently performed study selection, data extraction and risk of bias assessment. If appropriate, we pooled studies. The risk ratio (RR) and 95% confidence interval (CI) was calculated for dichotomous

  9. Viral-mediated gene transfer to mouse primary neural progenitor cells.

    Science.gov (United States)

    Hughes, Stephanie M; Moussavi-Harami, Farid; Sauter, Sybille L; Davidson, Beverly L

    2002-01-01

    Neural progenitor cells may provide for cell replacement or gene delivery vehicles in neurodegen-erative disease therapies. The expression of therapeutic proteins by neural progenitors would be enhanced by viral-mediated gene transfer, but the effects of several common recombinant viruses on primary progenitor cell populations have not been tested. To address this issue, we cultured cells from embryonic day 16-18 mouse brain in serum-free medium containing epidermal growth factor or basic fibroblast growth factor, and investigated how transduction with recombinant viral vectors affected maintenance and differentiation properties of progenitor cells. Neurosphere cultures were incubated with feline immunodeficiency virus (FIV), adeno-associated virus (AAV) or ade-noviral (Ad) constructs expressing either beta-galactosidase or enhanced green fluorescent protein at low multiplicity of infection. Nestin-positive neurospheres were regenerated after incubation of single progenitor cells with FIV, indicating that FIV-mediated gene transfer did not inhibit progenitor cell self-renewal. In contrast, adenovirus induced differentiation into glial fibrillary acidic protein (GFAP)-positive astrocytes. The AAV serotypes tested did not effectively transduce progenitor cells. FIV-transduced progenitors retained the potential for differentiation into neurons and glia in vitro, and when transplanted into the striatum of normal adult C57BL/6 mice differentiated into glia, or remained undifferentiated. In the presence of tumor cells, FIV-transduced progenitors migrated significantly from the injection site. Our results suggest that FIV-based vectors can transduce progenitor cell populations in vitro, with maintenance of their ability to differentiate into multiple cell types or to respond to injury within the central nervous system. These results hold promise for the use of genetically manipulated stem cells for CNS therapies.

  10. Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells.

    Science.gov (United States)

    Colmone, Angela; Amorim, Maria; Pontier, Andrea L; Wang, Sheng; Jablonski, Elizabeth; Sipkins, Dorothy A

    2008-12-19

    The host tissue microenvironment influences malignant cell proliferation and metastasis, but little is known about how tumor-induced changes in the microenvironment affect benign cellular ecosystems. Applying dynamic in vivo imaging to a mouse model, we show that leukemic cell growth disrupts normal hematopoietic progenitor cell (HPC) bone marrow niches and creates abnormal microenvironments that sequester transplanted human CD34+ (HPC-enriched) cells. CD34+ cells in leukemic mice declined in number over time and failed to mobilize into the peripheral circulation in response to cytokine stimulation. Neutralization of stem cell factor (SCF) secreted by leukemic cells inhibited CD34+ cell migration into malignant niches, normalized CD34+ cell numbers, and restored CD34+ cell mobilization in leukemic mice. These data suggest that the tumor microenvironment causes HPC dysfunction by usurping normal HPC niches and that therapeutic inhibition of HPC interaction with tumor niches may help maintain normal progenitor cell function in the setting of malignancy.

  11. Collection of peripheral hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Dihenescikova, V Rimajova; Mistrik, M; Martinka, J; Zwiewka, M; Bizikova, I; Batorova, A

    2015-01-01

    Several variables possibly affecting collection of peripheral hematopoietic stem/progenitor cells (PBSC) were evaluated: type of apheresis machine (Amicus version 2.5, Baxter vs Cobe Spectra version 7.0, Terumo BCT), venous access (peripheral vein vs central venous catheter, i.g. CVC), and apheresis regimen (standard vs large volume leukapheresis, i.g. SVL vs LVL) with the objective to increase collection efficacy at the site. Peripheral blood represents the currently preferred source of hematopoietic stem/progenitor cells (HSCs) for transplantation. Data regarding 169 collection procedures performed in healthy donors and patients between January 2008 and December 2011 at the Clinics of Haematology and Transfusiology in St Cyril and Method Hospital in Bratislava (Slovakia) were analysed. With Cobe Spectra apheresis machine it was possible to process larger blood volumes per procedure with higher CD34+ cell collection efficiency (p = 0.0229) and lower RBC contamination of the harvest than with Amicus (p = 0.0116). On the other hand, Amicus helped to limit PLT contamination of the harvest (p < 0.0001), thus minimizing post-procedural decrease in patient´s PLT count. The highest detected advantage of CVC usage was higher flow rate of procedure, thus processing larger blood volumes per unit of time. Interesting finding was the tendency to lower harvest PLT contamination (p = 0.054). When LVL was performed, significantly higher HSCs yields were collected, even in "poor mobilizers" when the pre-run parameters were low. Management of PBSC collection requires a particular approach in each subject. Institutionally and individually optimized collection may help to improve the transplantation outcome and decrease the financial costs (Tab. 8, Ref. 15).

  12. Endothelial progenitor cells in sudden sensorineural hearing loss.

    Science.gov (United States)

    Quaranta, Nicola; Ramunni, Alfonso; De Luca, Concetta; Brescia, Paola; Dambra, Porzia; De Tullio, Giacomina; Vacca, Angelo; Quaranta, Antonio

    2011-04-01

    Endothelial progenitor cells (EPCs) are a unique subtype of circulating cells with properties similar to those of embryonal angioblasts. They have the potential to proliferate and to differentiate into mature endothelial cells. EPCs are reduced in patients with vascular risk factors due to a decreased mobilization, an increased consumption at the site of damage or a reduced half-life. The results of this study confirm the existence of an endothelial dysfunction in patients with sudden sensorineural hearing loss (SSHL) and support the vascular involvement in the pathogenesis of the disease. The aim of this study was to evaluate the concentration of EPCs in patients affected by SSHL. Twenty-one patients affected by SSHL were evaluated. The number of EPCs was analyzed by flow cytometry analysis of peripheral blood CD34+KDR+CD133+ cells. Circulating levels of EPCs were significantly lower in SSHL patients compared with controls. In particular, CD34+KDR+ cells and CD34+CD133+KDR+ cells were significantly reduced (p < 0.05).

  13. Endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling

    Directory of Open Access Journals (Sweden)

    Natalia Malinovskaya

    2016-12-01

    Full Text Available Currently, there is a considerable interest to the assessment of blood-brain barrier (BBB development as a part of cerebral angiogenesis developmental program. Embryonic and adult angiogenesis in the brain is governed by the coordinated activity of endothelial progenitor cells, brain microvascular endothelial cells, and non-endothelial cells contributing to the establishment of the BBB (pericytes, astrocytes, neurons. Metabolic and functional plasticity of endothelial progenitor cells controls their timely recruitment, precise homing to the brain microvessels, and efficient support of brain angiogenesis. Deciphering endothelial progenitor cells physiology would provide novel engineering approaches to establish adequate microfluidically-supported BBB models and brain microphysiological systems for translational studies.

  14. File list: Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  15. File list: DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural p...rogenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  16. File list: Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural... progenitor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  17. File list: ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural... progenitor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  18. File list: His.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Histone Neural Fetal neural pro...genitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  19. File list: Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 Unclassified Neural Fetal neural... progenitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  20. File list: InP.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX667382,SRX109475,SRX315272,SRX315273,SRX668239 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  1. File list: NoD.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 No description Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  2. File list: Pol.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  3. File list: InP.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural progeni...tor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  4. File list: InP.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.20.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose progeni...tor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  5. File list: His.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 Histone Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  6. File list: ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural progeni...tor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  7. File list: NoD.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.50.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 Unclassified Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  9. File list: Unc.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 Unclassified Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  10. File list: ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 All antigens Neural Fetal neural progeni...tor cells SRX109477,SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  11. File list: DNS.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  12. File list: NoD.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 No description Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  13. File list: Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  14. File list: NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 No description Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/NoD.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  15. File list: Pol.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 RNA polymerase Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Pol.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  16. File list: Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural progeni...tor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  17. File list: Oth.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 TFs and others Neural Fetal neural progeni...tor cells SRX109477 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  18. File list: InP.Neu.05.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.05.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural progeni...tor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.05.AllAg.Fetal_neural_progenitor_cells.bed ...

  19. File list: InP.Neu.10.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX315272,SRX315273,SRX109475,SRX667382,SRX668239 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.10.AllAg.Neural_progenitor_cells.bed ...

  20. File list: InP.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.05.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose progeni...tor cells SRX127367,SRX127370 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  1. File list: InP.Neu.20.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural progeni...tor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.20.AllAg.Fetal_neural_progenitor_cells.bed ...

  2. File list: DNS.Neu.50.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Neu.50.AllAg.Fetal_neural_progenitor_cells hg19 DNase-seq Neural Fetal neural progeni...tor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.Neu.50.AllAg.Fetal_neural_progenitor_cells.bed ...

  3. File list: InP.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.50.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX315272,SRX315273,SRX109475,SRX668239,SRX667382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  4. File list: InP.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.20.AllAg.Neural_progenitor_cells mm9 Input control Neural Neural progenitor... cells SRX109476,SRX315272,SRX315273,SRX109475,SRX668239,SRX667382 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  5. File list: NoD.Adp.05.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.05.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.05.AllAg.Adipose_progenitor_cells.bed ...

  6. File list: NoD.Adp.10.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.10.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.10.AllAg.Adipose_progenitor_cells.bed ...

  7. File list: NoD.Adp.20.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Adp.20.AllAg.Adipose_progenitor_cells mm9 No description Adipocyte Adipose prog...enitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Adp.20.AllAg.Adipose_progenitor_cells.bed ...

  8. File list: InP.Adp.50.AllAg.Adipose_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Adp.50.AllAg.Adipose_progenitor_cells mm9 Input control Adipocyte Adipose proge...nitor cells SRX127370,SRX127367 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Adp.50.AllAg.Adipose_progenitor_cells.bed ...

  9. File list: InP.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 Input control Neural Fetal neural... progenitor cells SRX109478 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  10. File list: His.Neu.10.AllAg.Fetal_neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Neu.10.AllAg.Fetal_neural_progenitor_cells hg19 Histone Neural Fetal neural pro...genitor cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/His.Neu.10.AllAg.Fetal_neural_progenitor_cells.bed ...

  11. Circulating Progenitor Cell Response to Exercise in Wheelchair Racing Athletes.

    Science.gov (United States)

    Niemiro, Grace M; Edwards, Thomas; Barfield, J P; Beals, Joseph W; Broad, Elizabeth M; Motl, Robert W; Burd, Nicholas A; Pilutti, Lara A; De Lisio, Michael

    2017-08-11

    Circulating progenitor cells (CPCs) are a heterogeneous population of stem/progenitor cells in peripheral blood that participate in tissue repair. CPC mobilization has been well characterized in able-bodied persons, but has not been previously investigated in wheelchair racing athletes. The purpose of this study was to characterize CPC and CPC sub-population mobilization in elite wheelchair racing athletes in response to acute, upper-extremity aerobic exercise to determine if CPC responses are similar to ambulatory populations. Eight participants (3 female; age=27.5±4.0 years; supine height=162.5±18.6cm; weight=53.5±10.9kg, VO2peak=2.4±0.62 L/min; years post injury=21.5±6.2 years) completed a 25 km time trial on a road course. Blood sampling occurred before (Pre) and immediately post (Post) exercise for quantification of CPCs (CD34), HSPCs (CD34/CD45), HSCs (CD34/CD45/CD38), CD34 adipose tissue-derived (AT)-MSCs (CD45/CD34/CD105/CD31), CD34 bone marrow-derived (BM)-MSCs (CD45/CD34/CD105/CD31), and EPCs (CD45/CD34/VEGFR2) via flow cytometry. Blood lactate was measured Pre- and Post-trial as an indicator of exercise intensity. CPC concentration increased 5.7 fold post-exercise (P=0.10). HSPCs, HSCs, EPCs, and both MSC populations were not increased post exercise. Baseline HSPCs were significantly positively correlated to absolute VO2peak (Rho = 0.71, Pracing athletes is related to cardiorespiratory fitness and responses to exercise are positively related to exercise intensity.

  12. Cardiac progenitor-cell derived exosomes as cell-free therapeutic for cardiac repair

    NARCIS (Netherlands)

    Mol, E. A.; Goumans, Marie-Jose; Sluijter, J. P.G.

    2017-01-01

    Cardiac progenitor cells (CPCs) have emerged as potential therapy to improve cardiac repair and prevent damage in cardiac diseases. CPCs are a promising cell source for cardiac therapy as they can generate all cardiovascular lineages in vitro and in vivo. Originating from the heart itself, CPCs may

  13. Transient expression of Olig1 initiates the differentiation of neural stem cells into oligodendrocyte progenitor cells

    NARCIS (Netherlands)

    Balasubramaniyan, [No Value; Timmer, N; Kust, B; Boddeke, E; Copray, S

    2004-01-01

    In order to develop an efficient strategy to induce the in vitro differentiation of neural stem cells (NSCs) into oligodendrocyte progenitor cells (OPCs), NSCs were isolated from E14 mice and grown in medium containing epidermal growth factor and fibroblast growth factor (FGF). Besides supplementing

  14. Low immunogenicity of mouse induced pluripotent stem cell-derived neural stem/progenitor cells.

    Science.gov (United States)

    Itakura, Go; Ozaki, Masahiro; Nagoshi, Narihito; Kawabata, Soya; Nishiyama, Yuichiro; Sugai, Keiko; Iida, Tsuyoshi; Kashiwagi, Rei; Ookubo, Toshiki; Yastake, Kaori; Matsubayashi, Kohei; Kohyama, Jun; Iwanami, Akio; Matsumoto, Morio; Nakamura, Masaya; Okano, Hideyuki

    2017-10-11

    Resolving the immunogenicity of cells derived from induced pluripotent stem cells (iPSCs) remains an important challenge for cell transplant strategies that use banked allogeneic cells. Thus, we evaluated the immunogenicity of mouse fetal neural stem/progenitor cells (fetus-NSPCs) and iPSC-derived neural stem/progenitor cells (iPSC-NSPCs) both in vitro and in vivo. Flow cytometry revealed the low expression of immunological surface antigens, and these cells survived in all mice when transplanted syngeneically into subcutaneous tissue and the spinal cord. In contrast, an allogeneic transplantation into subcutaneous tissue was rejected in all mice, and allogeneic cells transplanted into intact and injured spinal cords survived for 3 months in approximately 20% of mice. In addition, cell survival was increased after co-treatment with an immunosuppressive agent. Thus, the immunogenicity and post-transplantation immunological dynamics of iPSC-NSPCs resemble those of fetus-NSPCs.

  15. Concise review: chemical approaches for modulating lineage-specific stem cells and progenitors.

    Science.gov (United States)

    Xu, Tao; Zhang, Mingliang; Laurent, Timothy; Xie, Min; Ding, Sheng

    2013-05-01

    Generation and manipulation of lineage-restricted stem and progenitor cells in vitro and/or in vivo are critical for the development of stem cell-based clinical therapeutics. Lineage-restricted stem and progenitor cells have many advantageous qualities, including being able to efficiently engraft and differentiate into desirable cell types in vivo after transplantation, and they are much less tumorigenic than pluripotent cells. Generation of lineage-restricted stem and progenitor cells can be achieved by directed differentiation from pluripotent stem cells or lineage conversion from easily obtained somatic cells. Small molecules can be very helpful in these processes since they offer several important benefits. For example, the risk of tumorigenesis is greatly reduced when small molecules are used to replace integrated transcription factors, which are widely used in cell fate conversion. Furthermore, small molecules are relatively easy to apply, optimize, and manufacture, and they can more readily be developed into conventional pharmaceuticals. Alternatively, small molecules can be used to expand or selectively control the differentiation of lineage-restricted stem and progenitor cells for desirable therapeutics purposes in vitro or in vivo. Here we summarize recent progress in the use of small molecules for the expansion and generation of desirable lineage-restricted stem and progenitor cells in vitro and for selectively controlling cell fate of lineage-restricted stem and progenitor cells in vivo, thereby facilitating stem cell-based clinical applications.

  16. Isolation of primitive endoderm, mesoderm, vascular endothelial and trophoblast progenitors from human pluripotent stem cells.

    Science.gov (United States)

    Drukker, Micha; Tang, Chad; Ardehali, Reza; Rinkevich, Yuval; Seita, Jun; Lee, Andrew S; Mosley, Adriane R; Weissman, Irving L; Soen, Yoav

    2012-05-27

    To identify early populations of committed progenitors derived from human embryonic stem cells (hESCs), we screened self-renewing, BMP4-treated and retinoic acid-treated cultures with >400 antibodies recognizing cell-surface antigens. Sorting of >30 subpopulations followed by transcriptional analysis of developmental genes identified four distinct candidate progenitor groups. Subsets detected in self-renewing cultures, including CXCR4(+) cells, expressed primitive endoderm genes. Expression of Cxcr4 in primitive endoderm was confirmed in visceral endoderm of mouse embryos. BMP4-induced progenitors exhibited gene signatures of mesoderm, trophoblast and vascular endothelium, suggesting correspondence to gastrulation-stage primitive streak, chorion and allantois precursors, respectively. Functional studies in vitro and in vivo confirmed that ROR2(+) cells produce mesoderm progeny, APA(+) cells generate syncytiotrophoblasts and CD87(+) cells give rise to vasculature. The same progenitor classes emerged during the differentiation of human induced pluripotent stem cells (hiPSCs). These markers and progenitors provide tools for purifying human tissue-regenerating progenitors and for studying the commitment of pluripotent stem cells to lineage progenitors.

  17. Quality assurance and good manufacturing practices for processing hematopoietic progenitor cells.

    Science.gov (United States)

    McCullough, J

    1995-12-01

    Hematopoietic progenitor cell processing is now only a part of somatic cell and gene therapy. As these new therapies become used increasingly, it is essential that the new products used to treat patients be as safe and effective as possible. Although progenitor cell processing is still an evolving activity, it is appropriate to introduce standardization and product and process control into the routine laboratory activities. Initial suggestions for quality assurance and good manufacturing practices to accomplish this are presented here. These will need to be modified as experience is gained with progenitor, somatic cell, and gene therapy.

  18. Interleukin 17 inhibits progenitor cells in rheumatoid arthritis cartilage.

    Science.gov (United States)

    Schminke, Boris; Trautmann, Sandra; Mai, Burkhard; Miosge, Nicolai; Blaschke, Sabine

    2016-02-01

    Mesenchymal stem cells are known to exert immunomodulatory effects in inflammatory diseases. Immuneregulatory cells lead to progressive joint destruction in rheumatoid arthritis (RA). Proinflammatory cytokines, such as tumour necrosis factor α (TNF-α) and interleukins (ILs) are the main players. Here, we studied progenitor cells from RA cartilage (RA-CPCs) that are positive for IL-17 receptors to determinate the effects of inflammation on their chondrogenic potenial. IL-17A/F reduced the chondrogenic potential of these cells via the upregulation of RUNX2 protein and enhanced IL-6 protein and MMP3 mRNA levels. Blocking antibodies against IL-17 positively influenced their repair potential. Furthermore, treating the RA-CPCs with the anti-human IL-17 antibody secukinumab or the anti-TNF-α antibody adalimumab reduced the proinflammatory IL-6 protein level and positively influenced the secretion of anti-inflammatory IL-10 protein. Additionally, adalimumab and secukinumab in particular reduced RUNX2 protein to promote chondrogenesis. The amelioration of inflammation, particularly via IL-17 antagonism, might be a new therapeutic approach for enhancing intrinsic cartilage repair mechanisms in RA patients. © 2015 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Endothelial progenitor cell subsets and preeclampsia: Findings and controversies

    Directory of Open Access Journals (Sweden)

    Armin Attar

    2017-10-01

    Full Text Available Vascular remodeling is an essential component of gestation. Endothelial progenitor cells (EPCs play an important role in the regulation of vascular homeostasis. The results of studies measuring the number of EPCs in normal pregnancies and in preeclampsia have been highly controversial or even contradictory because of some variations in technical issues and different methodologies enumerating three distinct subsets of EPCs: circulating angiogenic cells (CAC, colony forming unit endothelial cells (CFU-ECs, and endothelial colony-forming cells (ECFCs. In general, most studies have shown an increase in the number of CACs in the maternal circulation with a progression in the gestational age in normal pregnancies, while functional capacities measured by CFU-ECs and ECFCs remain intact. In the case of preeclampsia, mobilization of CACs and ECFCs occurs in the peripheral blood of pregnant women, but the functional capacities shown by culture of the derived colony-forming assays (CFU-EC and ECFC assays are altered. Furthermore, the number of all EPC subsets will be reduced in umbilical cord blood in the case of preeclampsia. As EPCs play an important role in the homeostasis of vascular networks, the difference in their frequency and functionality in normal pregnancies and those with preeclampsia can be expected. In this review, there was an attempt to provide a justification for these controversies.

  20. A Transcriptomic Signature of Mouse Liver Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2016-01-01

    Full Text Available Liver progenitor cells (LPCs can proliferate extensively, are able to differentiate into hepatocytes and cholangiocytes, and contribute to liver regeneration. The presence of LPCs, however, often accompanies liver disease and hepatocellular carcinoma (HCC, indicating that they may be a cancer stem cell. Understanding LPC biology and establishing a sensitive, rapid, and reliable method to detect their presence in the liver will assist diagnosis and facilitate monitoring of treatment outcomes in patients with liver pathologies. A transcriptomic meta-analysis of over 400 microarrays was undertaken to compare LPC lines against datasets of muscle and embryonic stem cell lines, embryonic and developed liver (DL, and HCC. Three gene clusters distinguishing LPCs from other liver cell types were identified. Pathways overrepresented in these clusters denote the proliferative nature of LPCs and their association with HCC. Our analysis also revealed 26 novel markers, LPC markers, including Mcm2 and Ltbp3, and eight known LPC markers, including M2pk and Ncam. These markers specified the presence of LPCs in pathological liver tissue by qPCR and correlated with LPC abundance determined using immunohistochemistry. These results showcase the value of global transcript profiling to identify pathways and markers that may be used to detect LPCs in injured or diseased liver.

  1. Wnt5a regulates dental follicle stem/progenitor cells of the periodontium.

    Science.gov (United States)

    Xiang, Lusai; Chen, Mo; He, Ling; Cai, Bin; Du, Yu; Zhang, Xinchun; Zhou, Chen; Wang, Chenglin; Mao, Jeremy J; Ling, Junqi

    2014-12-15

    Dental follicle gives rise to one or several tissues of the periodontium including the periodontal ligament, cementum and/or alveolar bone. Whether Wnt5a is expressed in the postnatal periodontium or regulates dental follicle stem/progenitor cells is unknown. Dental follicle stem/progenitor cells were isolated from postnatal day 1 (p1) to p11 from rat mandibular first molars. Immunolocalization mapped Wnt5a expression in the alveolar bone, periodontal ligament, and the developing ameloblast and odontoblast layers. Mononucleated and adherent cells were isolated from p7 dental follicle. Wnt5a was overexpressed in dental follicle stem/progenitor cells to study their proliferation, osteogenic differentiation and migration behavior, with subpopulations of native dental follicle stem/progenitor cells as controls, using real-time PCR (Taqman), Lenti-viral transfection, Western blotting and immunofluorescence. Wnt5a was expressed consistently in p1 to p11 rat peridontium. Native, p7 dental follicle stem/progenitor cells had modest ability to mineralize in the tested 14 days. Even in chemically defined osteogenesis medium, dental follicle stem/progenitor cells only showed modest mineralization. Upon addition of 300 ng/mL Wnt5a protein in osteogenesis medium, dental follicle stem/progenitor cells displayed mineralization that was still unremarkable. Chemically induced or Wnt5a-induced mineralization of dental follicle cells only occurred sparsely. Combination of Wnt5a with 100 ng/mL BMP2 finally prompted dental follicle stem/progenitor cells to produce robust mineralization with elevated expression of Runx2, alkaline phosphatase, collagen 1α1 and osteocalcin. Thus, native dental follicle stem/progenitor cells or some of their fractions may be somewhat modest in mineralization. Strikingly, Wnt5a protein significantly augmented RANKL ligand, suggesting putative regulatory roles of dental follicle stem/progenitor cells for the monocyte/osteoclast lineage and potential

  2. Seeding neural progenitor cells on silicon-based neural probes.

    Science.gov (United States)

    Azemi, Erdrin; Gobbel, Glenn T; Cui, Xinyan Tracy

    2010-09-01

    Chronically implanted neural electrode arrays have the potential to be used as neural prostheses in patients with various neurological disorders. While these electrodes perform well in acute recordings, they often fail to function reliably in clinically relevant chronic settings because of glial encapsulation and the loss of neurons. Surface modification of these implants may provide a means of improving their biocompatibility and integration within host brain tissue. The authors proposed a method of improving the brain-implant interface by seeding the implant's surface with a layer of neural progenitor cells (NPCs) derived from adult murine subependyma. Neural progenitor cells may reduce the foreign body reaction by presenting a tissue-friendly surface and repair implant-induced injury and inflammation by releasing neurotrophic factors. In this study, the authors evaluated the growth and differentiation of NPCs on laminin-immobilized probe surfaces and explored the potential impact on transplant survival of these cells. Laminin protein was successfully immobilized on the silicon surface via covalent binding using silane chemistry. The growth, adhesion, and differentiation of NPCs expressing green fluorescent protein (GFP) on laminin-modified silicon surfaces were characterized in vitro by using immunocytochemical techniques. Shear forces were applied to NPC cultures in growth medium to evaluate their shearing properties. In addition, neural probes seeded with GFP-labeled NPCs cultured in growth medium for 14 days were implanted in murine cortex. The authors assessed the adhesion properties of these cells during implantation conditions. Moreover, the tissue response around NPC-seeded implants was observed after 1 and 7 days postimplantation. Significantly improved NPC attachment and growth was found on the laminin-immobilized surface compared with an unmodified control before and after shear force application. The NPCs grown on the laminin-immobilized surface

  3. Classification and Functional Characterization of Vasa Vasorum-Associated Perivascular Progenitor Cells in Human Aorta

    Directory of Open Access Journals (Sweden)

    Marie Billaud

    2017-07-01

    Full Text Available In the microcirculation, pericytes are believed to function as mesenchymal stromal cells (MSCs. We hypothesized that the vasa vasorum harbor progenitor cells within the adventitia of human aorta. Pericytes, endothelial progenitor cells, and other cell subpopulations were detected among freshly isolated adventitial cells using flow cytometry. Purified cultured pericytes were enriched for the MSC markers CD105 and CD73 and depleted of the endothelial markers von Willebrand factor and CD31. Cultured pericytes were capable of smooth muscle lineage progression including inducible expression of smooth muscle myosin heavy chain, calponin, and α-smooth muscle actin, and adopted a spindle shape. Pericytes formed spheroids when cultured on Matrigel substrates and peripherally localized with branching endothelial cells in vitro. Our results indicate that the vasa vasorum form a progenitor cell niche distinct from other previously described progenitor populations in human adventitia. These findings could have important implications for understanding the complex pathophysiology of human aortic disease.

  4. Progenitor cells in liver regeneration: molecular responses controlling their activation and expansion

    DEFF Research Database (Denmark)

    Santoni-Rugiu, Eric; Jelnes, Peter; Thorgeirsson, Snorri S

    2005-01-01

    on hepatic progenitor cells have focused on their origin and phenotypic characterization, recent attention has focused on the influence of the hepatic microenvironment on their activation and proliferation. This microenvironment comprises the extracellular matrix, epithelial and non-epithelial resident liver......, including hepatocytes, cholangiocytes and stromal cells. However, if the regenerative capacity of mature cells is impaired by liver-damaging agents, hepatic progenitor cells are activated and expand into the liver parenchyma. Upon transit amplification, the progenitor cells may generate new hepatocytes...... and biliary cells to restore liver homeostasis. In recent years, hepatic progenitor cells have been the subject of increasing interest due to their therapeutic potential in numerous liver diseases as alternative or supportive/complementary tools to liver transplantation. While the first investigations...

  5. Effective Mobilization of Very Small Embryonic-Like Stem Cells and Hematopoietic Stem/Progenitor Cells but Not Endothelial Progenitor Cells by Follicle-Stimulating Hormone Therapy

    Directory of Open Access Journals (Sweden)

    Monika Zbucka-Kretowska

    2016-01-01

    Full Text Available Recently, murine hematopoietic progenitor stem cells (HSCs and very small embryonic-like stem cells (VSELs were demonstrated to express receptors for sex hormones including follicle-stimulating hormone (FSH. This raised the question of whether FSH therapy at clinically applied doses can mobilize stem/progenitor cells in humans. Here we assessed frequencies of VSELs (referred to as Lin−CD235a−CD45−CD133+ cells, HSPCs (referred to as Lin−CD235a−CD45+CD133+ cells, and endothelial progenitor cells (EPCs, identified as CD34+CD144+, CD34+CD133+, and CD34+CD309+CD133+ cells in fifteen female patients subjected to the FSH therapy. We demonstrated that FSH therapy resulted in statistically significant enhancement in peripheral blood (PB number of both VSELs and HSPCs. In contrast, the pattern of responses of EPCs delineated by different cell phenotypes was not uniform and we did not observe any significant changes in EPC numbers following hormone therapy. Our data indicate that FSH therapy mobilizes VSELs and HSPCs into peripheral blood that on one hand supports their developmental origin from germ lineage, and on the other hand FSH can become a promising candidate tool for mobilizing HSCs and stem cells with VSEL phenotype in clinical settings.

  6. Oct4+ stem/progenitor swine lung epithelial cells are targets for influenza virus replication.

    Science.gov (United States)

    Khatri, Mahesh; Goyal, Sagar M; Saif, Yehia M

    2012-06-01

    We isolated stem/progenitor epithelial cells from the lungs of 4- to 6-week-old pigs. The epithelial progenitor colony cells were surrounded by mesenchymal stromal cells. The progenitor epithelial colony cells expressed stem cell markers such as octamer binding transcription factor 4 (Oct4) and stage-specific embryonic antigen 1 (SSEA-1), as well as the epithelial markers pancytokeratin, cytokeratin-18, and occludin, but not mesenchymal (CD44, CD29, and CD90) and hematopoietic (CD45) markers. The colony cells had extensive self-renewal potential and had the capacity to undergo differentiation to alveolar type I- and type II-like pneumocytes. Additionally, these cells expressed sialic acid receptors and supported the active replication of influenza virus, which was accompanied by cell lysis. The lysis of progenitor epithelial cells by influenza virus may cause a marked reduction in the potential of progenitor cells for self renewal and for their ability to differentiate into specialized cells of the lung. These observations suggest the possible involvement of lung stem/progenitor cells in influenza virus infection.

  7. Haematopoietic protein tyrosine phosphatase (HePTP) phosphorylation by cAMP-dependent protein kinase in T-cells: dynamics and subcellular location.

    Science.gov (United States)

    Nika, Konstantina; Hyunh, Huong; Williams, Scott; Paul, Surojit; Bottini, Nunzio; Taskén, Kjetil; Lombroso, Paul J; Mustelin, Tomas

    2004-01-01

    The HePTP (haematopoietic protein tyrosine phosphatase) is a negative regulator of the ERK2 (extracellular signal-regulated protein kinase 2) and p38 MAP kinases (mitogen-activated protein kinases) in T-cells. This inhibitory function requires a physical association of HePTP through an N-terminal KIM (kinase-interaction motif) with ERK and p38. We previously reported that PKA (cAMP-dependent protein kinase) phosphorylates Ser-23 within the KIM of HePTP, resulting in dissociation of HePTP from ERK2. Here we follow the phosphorylation of this site in intact T-cells. We find that HePTP is phosphorylated at Ser-23 in resting T-cells and that this phosphorylation increases upon treatment of the cells with agents that elevate intracellular cAMP, such as prostaglandin E2. HePTP phosphorylation occurred at discrete regions at the cell surface. Phosphorylation was reduced by inhibitors of PKA and increased by inhibitors of protein phosphatases PP1 and PP2A, but not by inhibitors of calcineurin. In vitro, PP1 efficiently dephosphorylated HePTP at Ser-23, while PP2A was much less efficient. Activation of PP1 by treatment of the cells with ceramide suppressed Ser-23 phosphorylation, as did transfection of the catalytic subunit of PP1. Phosphorylation at Ser-23 is also increased in a transient manner upon T-cell antigen receptor ligation. In contrast, treatment of cells with phorbol ester had no effect on HePTP phosphorylation at Ser-23. We conclude from these results that HePTP is under continuous control by PKA and a serine-specific phosphatase, probably PP1, in T-cells and that this basal phosphorylation at Ser-23 can rapidly change in response to external stimuli. This, in turn, will affect the ability of HePTP to inhibit the ERK and p38 MAP kinases. PMID:14613483

  8. Sun Ginseng Protects Endothelial Progenitor Cells From Senescence Associated Apoptosis

    Science.gov (United States)

    Im, Wooseok; Chung, Jin-Young; Bhan, Jaejun; Lim, Jiyeon; Lee, Soon-Tae; Chu, Kon; Kim, Manho

    2012-01-01

    Endothelial progenitor cells (EPC) are a population of cells that circulate in the blood stream. They play a role in angiogenesis and, therefore, can be prognostic markers of vascular repair. Ginsenoside Rg3 prevents endothelial cell apoptosis through the inhibition of the mitochondrial caspase pathway. It also affects estrogen activity, which reduces EPC senescence. Sun ginseng (SG), which is heat-processed ginseng, has a high content of ginsenosides. The purpose of this study was to investigate the protective effects of SG on senescence-associated apoptosis in EPCs. In order to isolate EPCs, mononuclear cells of human blood buffy coats were cultured and characterized by their uptake of acetylated low-density lipoprotein (acLDL) and their binding of Ulex europaeus agglutinin I (ulex-lectin). Flow cytometry with annexin-V staining was performed in order to assess early and late apoptosis. Senescence was determined by β-galactosidase (β-gal) staining. Staining with 4′-6-Diamidino-2-phenylindole verified that most adherent cells (93±2.7%) were acLDL-positive and ulex-lectin-positive. The percentage of β-gal-positive EPCs was decreased from 93.8±2.0% to 62.5±3.6% by SG treatment. A fluorescence-activated cell sorter (FACS) analysis showed that 4.9% of EPCs were late apoptotic in controls. Sun ginseng decreased the apoptotic cell population by 39% in the late stage of apoptosis from control baseline levels. In conclusion, these results show antisenescent and antiapoptotic effects of SG in human-derived EPCs, indicating that SG can enhance EPC-mediated repair mechanisms. PMID:23717107

  9. Alantolactone selectively ablates acute myeloid leukemia stem and progenitor cells

    Directory of Open Access Journals (Sweden)

    Yahui Ding

    2016-09-01

    Full Text Available Abstract Background The poor outcomes for patients diagnosed with acute myeloid leukemia (AML are largely attributed to leukemia stem cells (LSCs which are difficult to eliminate with conventional therapy and responsible for relapse. Thus, new therapeutic strategies which could selectively target LSCs in clinical leukemia treatment and avoid drug resistance are urgently needed. However, only a few small molecules have been reported to show anti-LSCs activity. Methods The aim of the present study was to identify alantolactone as novel agent that can ablate acute myeloid leukemia stem and progenitor cells from AML patient specimens and evaluate the anticancer activity of alantolactone in vitro and in vivo. Results The present study is the first to demonstrate that alantolactone, a prominent eudesmane-type sesquiterpene lactone, could specifically ablate LSCs from AML patient specimens. Furthermore, in comparison to the conventional chemotherapy drug, cytosine arabinoside (Ara-C, alantolactone showed superior effects of leukemia cytotoxicity while sparing normal hematopoietic cells. Alantolactone induced apoptosis with a dose-dependent manner by suppression of NF-kB and its downstream target proteins. DMA-alantolactone, a water-soluble prodrug of alantolactone, could suppress tumor growth in vivo. Conclusions Based on these results, we propose that alantolactone may represent a novel LSCs-targeted therapy and eudesmane-type sesquiterpene lactones offer a new scaffold for drug discovery towards anti-LSCs agents.

  10. Endothelial progenitor cells regenerate infracted myocardium with neovascularisation development

    Directory of Open Access Journals (Sweden)

    M.T. Abd El Aziz

    2015-03-01

    Full Text Available We achieved possibility of isolation, characterization human umbilical cord blood endothelial progenitor cells (EPCs, examination potency of EPCs to form new blood vessels and differentiation into cardiomyoctes in canines with acute myocardial infarction (AMI. EPCs were separated and cultured from umbilical cord blood. Their phenotypes were confirmed by uptake of double stains dioctadecyl tetramethylindocarbocyanine-labeled acetylated LDL and FITC-labeled Ulex europaeus agglutinin 1 (DILDL-UEA-1. EPCs of cord blood were counted. Human VEGFR-2 and eNOS from the cultured EPCs were assessed by qPCR. Human EPCs was transplanted intramyocardially in canines with AMI. ECG and cardiac enzymes (CK-MB and Troponin I were measured to assess severity of cellular damage. Histopathology was done to assess neovascularisation. Immunostaining was done to detect EPCs transdifferentiation into cardiomyocytes in peri-infarct cardiac tissue. qPCR for human genes (hVEGFR-2, and eNOS was done to assess homing and angiogenic function of transplanted EPCs. Cultured human cord blood exhibited an increased number of EPCs and significant high expression of hVEGFR-2 and eNOS genes in the culture cells. Histopathology showed increased neovascularization and immunostaining showed presence of EPCs newly differentiated into cardiomyocyte-like cells. Our findings suggested that hEPCs can mediate angiogenesis and differentiate into cardiomyoctes in canines with AMI.

  11. Impact of Lipid Nutrition on Neural Stem/Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sakayori

    2013-01-01

    Full Text Available The neural system originates from neural stem/progenitor cells (NSPCs. Embryonic NSPCs first proliferate to increase their numbers and then produce neurons and glial cells that compose the complex neural circuits in the brain. New neurons are continually produced even after birth from adult NSPCs in the inner wall of the lateral ventricle and in the hippocampal dentate gyrus. These adult-born neurons are involved in various brain functions, including olfaction-related functions, learning and memory, pattern separation, and mood control. NSPCs are regulated by various intrinsic and extrinsic factors. Diet is one of such important extrinsic factors. Of dietary nutrients, lipids are important because they constitute the cell membrane, are a source of energy, and function as signaling molecules. Metabolites of some lipids can be strong lipid mediators that also regulate various biological activities. Recent findings have revealed that lipids are important regulators of both embryonic and adult NSPCs. We and other groups have shown that lipid signals including fat, fatty acids, their metabolites and intracellular carriers, cholesterol, and vitamins affect proliferation and differentiation of embryonic and adult NSPCs. A better understanding of the NSPCs regulation by lipids may provide important insight into the neural development and brain function.

  12. Bmp signaling maintains a mesoderm progenitor cell state in the mouse tailbud.

    Science.gov (United States)

    Sharma, Richa; Shafer, Maxwell E R; Bareke, Eric; Tremblay, Mathieu; Majewski, Jacek; Bouchard, Maxime

    2017-08-15

    Caudal somites are generated from a pool of progenitor cells located in the tailbud region. These progenitor cells form the presomitic mesoderm that gradually differentiates into somites under the action of the segmentation clock. The signals responsible for tailbud mesoderm progenitor pool maintenance during axial elongation are still elusive. Here, we show that Bmp signaling is sufficient to activate the entire mesoderm progenitor gene signature in primary cultures of caudal mesoderm cells. Bmp signaling acts through the key regulatory genes brachyury (T) and Nkx1-2 and contributes to the activation of several other regulators of the mesoderm progenitor gene network. In the absence of Bmp signaling, tailbud mesoderm progenitor cells acquire aberrant gene expression signatures of the heart, blood, muscle and skeletal embryonic lineages. Treatment of embryos with the Bmp inhibitor noggin confirmed the requirement for Bmp signaling for normal T expression and the prevention of abnormal lineage marker activation. Together, these results identify Bmp signaling as a non-cell-autonomous signal necessary for mesoderm progenitor cell homeostasis. © 2017. Published by The Company of Biologists Ltd.

  13. Human haematopoietic stem cells express Oct4 pseudogenes and lack the ability to initiate Oct4 promoter-driven gene expression

    Directory of Open Access Journals (Sweden)

    Strain Alastair J

    2010-03-01

    Full Text Available Abstract The transcription factor Oct4 is well defined as a key regulator of embryonic stem (ES cell pluripotency. In recent years, the role of Oct4 has purportedly extended to the self renewal and maintenance of multipotency in adult stem cell (ASC populations. This profile has arisen mainly from reports utilising reverse transcription-polymerase chain reaction (RT-PCR based methodologies and has since come under scrutiny following the discovery that many developmental genes have multiple pseudogenes associated with them. Six known pseudogenes exist for Oct4, all of which exhibit very high sequence homology (three >97%, and for this reason the generation of artefacts may have contributed to false identification of Oct4 in somatic cell populations. While ASC lack a molecular blueprint of transcription factors proposed to be involved with 'stemness' as described for ES cells, it is not unreasonable to assume that similar gene patterns may exist. The focus of this work was to corroborate reports that Oct4 is involved in the regulation of ASC self-renewal and differentiation, using a combination of methodologies to rule out pseudogene interference. Haematopoietic stem cells (HSC derived from human umbilical cord blood (UCB and various differentiated cell lines underwent RT-PCR, product sequencing and transfection studies using an Oct4 promoter-driven reporter. In summary, only the positive control expressed Oct4, with all other cell types expressing a variety of Oct4 pseudogenes. Somatic cells were incapable of utilising an exogenous Oct4 promoter construct, leading to the conclusion that Oct4 does not appear involved in the multipotency of human HSC from UCB.

  14. Umbilical Cord Blood Circulating Progenitor Cells and Endothelial Colony-Forming Cells Are Decreased in Preeclampsia.

    Science.gov (United States)

    Gumina, Diane L; Black, Claudine P; Balasubramaniam, Vivek; Winn, Virginia D; Baker, Christopher D

    2017-07-01

    Preeclampsia (PE) is a pregnancy-specific disease characterized by the new onset of hypertension and proteinuria. Mothers with PE are known to develop endothelial dysfunction, but its effect on infants has been understudied, as newborns are often asymptomatic. Recent studies indicate that infants born from preeclamptic pregnancies develop endothelial dysfunction including higher blood pressure during childhood and an increased risk of stroke later in life. We hypothesize that PE reduces the number and function of fetal angiogenic progenitor cells and may contribute to this increased risk. We quantified 2 distinct types of angiogenic progenitors, pro-angiogenic circulating progenitor cells (CPCs) and endothelial colony-forming cells (ECFCs), from the umbilical cord blood of preeclamptic pregnancies and normotensive controls. Pro-angiogenic and nonangiogenic CPCs were enumerated via flow cytometry and ECFCs by cell culture. Additionally, we studied the growth, migration, and tube formation of ECFCs from PE and gestational age-matched normotensive control pregnancies. We found that PE resulted in decreased cord blood pro-angiogenic CPCs and ECFCs. Nonangiogenic CPCs were also decreased. Preeclamptic ECFCs demonstrated decreased growth and migration but formed tube-like structures in vitro similar to controls. Our results suggest that the preeclamptic environment alters the number and function of angiogenic progenitor cells and may increase the risk of later vascular disease.

  15. Extracoporeal photopheresis treatment of acute graft-versus-host disease following allogeneic haematopoietic stem cell transplantation [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Aisling M. Flinn

    2016-06-01

    Full Text Available Acute graft-versus-host disease (aGvHD continues to be a major obstacle to allogeneic haematopoietic stem cell transplantation. Thymic damage secondary to aGvHD along with corticosteroids and other non-selective T lymphocyte-suppressive agents used in the treatment of aGvHD concurrently impair thymopoiesis and negatively impact on immunoreconstitution of the adaptive immune compartment and ultimately adversely affect clinical outcome. Extracorporeal photopheresis (ECP is an alternative therapeutic strategy that appears to act in an immunomodulatory fashion, potentially involving regulatory T lymphocytes and dendritic cells. By promoting immune tolerance and simultaneously avoiding systemic immunosuppression, ECP could reduce aGvHD and enable a reduction in other immunosuppression, allowing thymic recovery, restoration of normal T lymphopoiesis, and complete immunoreconstitution with improved clinical outcome. Although the safety and efficacy of ECP has been demonstrated, further randomised controlled studies are needed as well as elucidation of the underlying mechanisms responsible and the effect of ECP on thymic recovery.

  16. Pharmacologically active microcarriers for endothelial progenitor cell support and survival.

    Science.gov (United States)

    Musilli, Claudia; Karam, Jean-Pierre; Paccosi, Sara; Muscari, Claudio; Mugelli, Alessandro; Montero-Menei, Claudia N; Parenti, Astrid

    2012-08-01

    The regenerative potential of endothelial progenitor cell (EPC)-based therapies is limited due to poor cell viability and minimal retention following application. Neovascularization can be improved by means of scaffolds supporting EPCs. The aim of the present study was to investigate whether human early EPCs (eEPCs) could be efficiently cultured on pharmacologically active microcarriers (PAMs), made with poly(d,l-lactic-coglycolic acid) and coated with adhesion/extracellular matrix molecules. They may serve as a support for stem cells and may be used as cell carriers providing a controlled delivery of active protein such as the angiogenic factor, vascular endothelial growth factor-A (VEGF-A). eEPC adhesion to fibronectin-coated PAMs (FN-PAMs) was assessed by means of microscopic evaluation and by means of Alamar blue assay. Phospho ERK(1/2) and PARP-1 expression was measured by means of Western blot to assess the survival effects of FN-PAMs releasing VEGF-A (FN-VEGF-PAMs). The Alamar blue assay or a modified Boyden chamber assay was employed to assess proliferative or migratory capacity, respectively. Our data indicate that eEPCs were able to adhere to empty FN-PAMs within a few hours. FN-VEGF-PAMs increased the ability of eEPCs to adhere to them and strongly supported endothelial-like phenotype and cell survival. Moreover, the release of VEGF-A by FN-PAMs stimulated in vitro HUVEC migration and proliferation. These data strongly support the use of PAMs for supporting eEPC growth and survival and for stimulating resident mature human endothelial cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Distinct progenitor origin distinguishes a lineage of dendritic-like cells in spleen.

    Science.gov (United States)

    Petvises, Sawang; O'Neill, Helen Christine

    2014-01-01

    The dendritic cell (DC) compartment comprises subsets of cells with distinct phenotypes. Previously this lab reported methodology for hematopoiesis of dendritic-like cells in vitro dependent on a murine splenic stromal cell line (5G3). Co-cultures of lineage-depleted bone marrow (Lin(-) BM) over 5G3 continuously produced a distinct population of dendritic-like "L-DC" for up to 35 days. Here the progenitor of L-DC is investigated in relation to known BM-derived hematopoietic progenitors. It is shown here that L-DC-like cells also derive from the CD150(+)Flt3(-) long-term reconstituting-hematopoietic stem cells (HSC), and also from the Flt3(+) multipotential progenitor subset in BM. Lin(-) BM co-cultures also produce a transient population of cells resembling conventional (c) DC. Production of cDC-like cells is shown here to be transient and M-CSF dependent, and also appears following co-culture of described common dendritic progenitors or monocyte dendritic progenitors over 5G3. BM cells from C57BL/6-flt3L(tm1lmx) and C57BL/6-Csf2(tm1Ard) mice which lack cDC precursors and monocytes, are shown here to contain L-DC progenitors which can seed 5G3 co-cultures. L-DC are functionally distinct cells, in that they arise independently of M-CSF, and by direct differentiation from HSC.

  18. Distinct progenitor origin distinguishes a lineage of dendritic-like cells in spleen

    Directory of Open Access Journals (Sweden)

    Sawang ePetvises

    2014-01-01

    Full Text Available The dendritic cell (DC compartment comprises subsets of cells with distinct phenotypes. Previously this lab reported methodology for hematopoiesis of dendritic-like cells in vitro dependent on a murine splenic stromal cell line (5G3. Co-cultures of lineage-depleted bone marrow (Lin- BM over 5G3 continuously produced a distinct population of dendritic-like ‘L-DC’ for up to 35 days. Here the progenitor of L-DC is investigated in relation to known BM-derived hematopoietic progenitors. It is shown here that L-DC-like cells also derive from the CD150+Flt3- longterm reconstituting-hematopoietic stem cells (HSC, and also from the Flt3+ multipotential progenitor subset in BM. Lin- BM co-cultures also produce a transient population of cells resembling conventional (c DC. Production of cDC-like cells is shown here to be transient and M-CSF dependent, and also appears following co-culture of described common dendritic progenitors or monocyte dendritic progenitors over 5G3. BM cells from C57BL/6-flt3Ltm1lmx and C57BL/6-Csf2tm1Ard mice which lack cDC precursors and monocytes, are shown here to contain L-DC progenitors which can seed 5G3 co-cultures. L-DC are functionally distinct cells, in that they arise independently of M-CSF, and by direct differentiation from HSC.

  19. Raman spectroscopy for discrimination of neural progenitor cells and their lineages (Conference Presentation)

    Science.gov (United States)

    Chen, Keren; Ong, William; Chew, Sing Yian; Liu, Quan

    2017-02-01

    Neurological diseases are one of the leading causes of adult disability and they are estimated to cause more deaths than cancer in the elderly population by 2040. Stem cell therapy has shown great potential in treating neurological diseases. However, before cell therapy can be widely adopted in the long term, a number of challenges need to be addressed, including the fundamental research about cellular development of neural progenitor cells. To facilitate the fundamental research of neural progenitor cells, many methods have been developed to identify neural progenitor cells. Although great progress has been made, there is still lack of an effective method to achieve fast, label-free and noninvasive differentiation of neural progenitor cells and their lineages. As a fast, label-free and noninvasive technique, spontaneous Raman spectroscopy has been conducted to characterize many types of stem cells including neural stem cells. However, to our best knowledge, it has not been studied for the discrimination of neural progenitor cells from specific lineages. Here we report the differentiation of neural progenitor cell from their lineages including astrocytes, oligodendrocytes and neurons using spontaneous Raman spectroscopy. Moreover, we also evaluate the influence of system parameters during spectral acquisition on the quality of measured Raman spectra and the accuracy of classification using the spectra, which yield a set of optimal system parameters facilitating future studies.

  20. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS cells, which once differentiated allow for the enrichment of Nkx2-5(+ cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+ cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological

  1. Characterization of microRNAs by deep sequencing in red claw crayfish Cherax quadricarinatus haematopoietic tissue cells after white spot syndrome virus infection.

    Science.gov (United States)

    Zhao, Meng-Ru; Meng, Chuang; Xie, Xiao-Lu; Li, Cheng-Hua; Liu, Hai-Peng

    2016-12-01

    White spot syndrome virus (WSSV) is one of the most prevalent and widespread viruses in both shrimp and crayfish aquaculture. MicroRNAs (miRNAs) are crucial post-transcriptional regulators and play critical roles in cell differentiation and proliferation, apoptosis, signal transduction and immunity. In this study, miRNA expression profiles were identified via deep sequencing in red claw crayfish Cherax quadricarinatus haematopoietic tissue (Hpt) cell cultures infected with WSSV at both early (i.e., 1 hpi) and late (i.e., 12 hpi) infection stages. The results showed that 2 known miRNAs, namely, miR-7 and miR-184 play key roles in immunity. Meanwhile, 106 novel miRNA candidates were predicted by software in these combined miRNA transcriptomes. Compared with two control groups, 36 miRNAs showed significantly different expression levels after WSSV challenge. Furthermore, 10 differentially expressed miRNAs in WSSV-exposed Hpt cells were randomly selected for expression analysis by quantitative real-time RT-PCR. Consistent with the expression profiles identified by deep sequencing, RT-PCR showed a significant increase or decrease in miRNA expression in Hpt cells after WSSV infection. Prediction of targets of miRNAs such as miR-7, cqu-miR-52, cqu-miR-126 and cqu-miR-141 revealed that their target genes have diverse biological roles, including not only immunity but also transcriptional regulation, energy metabolism, cell communication, cell differentiation, cell death, autophagy, endocytosis and apoptosis. These results provide insight into the molecular mechanism of WSSV infection and highlight the function of miRNAs in the regulation of the immune response against WSSV infection in crustaceans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Identification of Different Classes of Luminal Progenitor Cells within Prostate Tumors

    Directory of Open Access Journals (Sweden)

    Supreet Agarwal

    2015-12-01

    Full Text Available Primary prostate cancer almost always has a luminal phenotype. However, little is known about the stem/progenitor properties of transformed cells within tumors. Using the aggressive Pten/Tp53-null mouse model of prostate cancer, we show that two classes of luminal progenitors exist within a tumor. Not only did tumors contain previously described multipotent progenitors, but also a major population of committed luminal progenitors. Luminal cells, sorted directly from tumors or grown as organoids, initiated tumors of adenocarcinoma or multilineage histological phenotypes, which is consistent with luminal and multipotent differentiation potentials, respectively. Moreover, using organoids we show that the ability of luminal-committed progenitors to self-renew is a tumor-specific property, absent in benign luminal cells. Finally, a significant fraction of luminal progenitors survived in vivo castration. In all, these data reveal two luminal tumor populations with different stem/progenitor cell capacities, providing insight into prostate cancer cells that initiate tumors and can influence treatment response.

  3. The interstitial interface within the renal stem/progenitor cell niche exhibits an unique microheterogeneous composition.

    Science.gov (United States)

    Minuth, Will W; Denk, Lucia

    2013-06-28

    Repair of parenchyma by stem/progenitor cells is seen as a possible alternative to cure acute and chronic renal failure in future. To learn about this therapeutic purpose, the formation of nephrons during organ growth is under focus of present research. This process is triggered by numerous morphogenetic interactions between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Recent data demonstrate that an astonishingly wide interstitial interface separates both types of stem/progenitor cells probably controlling coordinated cell-to-cell communication. Since conventional fixation by glutaraldehyde (GA) does not declare in transmission electron microscopy the spatial separation, improved contrasting procedures were applied. As a consequence, the embryonic cortex of neonatal rabbit kidneys was fixed in solutions containing glutaraldehyde in combination with cupromeronic blue, ruthenium red or tannic acid. To obtain a comparable view to the renal stem/progenitor cell niche, the specimens had to be orientated along the cortico-medullary axis of lining collecting ducts. Analysis of tissue samples fixed with GA, in combination with cupromeronic blue, demonstrates demasked extracellular matrix. Numerous braces of proteoglycans cover, as well, the basal lamina of epithelial stem/progenitor cells as projections of mesenchymal stem/progenitor cells crossing the interstitial interface. Fixation with GA containing ruthenium red or tannic acid illustrates strands of extracellular matrix that originate from the basal lamina of epithelial stem/progenitor cells and line through the interstitial interface. Thus, for the first time, improved contrasting techniques make it possible to analyze in detail a microheterogeneous composition of the interstitial interface within the renal stem/progenitor cell niche.

  4. The Interstitial Interface within the Renal Stem/Progenitor Cell Niche Exhibits an Unique Microheterogeneous Composition

    Directory of Open Access Journals (Sweden)

    Will W. Minuth

    2013-06-01

    Full Text Available Repair of parenchyma by stem/progenitor cells is seen as a possible alternative to cure acute and chronic renal failure in future. To learn about this therapeutic purpose, the formation of nephrons during organ growth is under focus of present research. This process is triggered by numerous morphogenetic interactions between epithelial and mesenchymal cells within the renal stem/progenitor cell niche. Recent data demonstrate that an astonishingly wide interstitial interface separates both types of stem/progenitor cells probably controlling coordinated cell-to-cell communication. Since conventional fixation by glutaraldehyde (GA does not declare in transmission electron microscopy the spatial separation, improved contrasting procedures were applied. As a consequence, the embryonic cortex of neonatal rabbit kidneys was fixed in solutions containing glutaraldehyde in combination with cupromeronic blue, ruthenium red or tannic acid. To obtain a comparable view to the renal stem/progenitor cell niche, the specimens had to be orientated along the cortico-medullary axis of lining collecting ducts. Analysis of tissue samples fixed with GA, in combination with cupromeronic blue, demonstrates demasked extracellular matrix. Numerous braces of proteoglycans cover, as well, the basal lamina of epithelial stem/progenitor cells as projections of mesenchymal stem/progenitor cells crossing the interstitial interface. Fixation with GA containing ruthenium red or tannic acid illustrates strands of extracellular matrix that originate from the basal lamina of epithelial stem/progenitor cells and line through the interstitial interface. Thus, for the first time, improved contrasting techniques make it possible to analyze in detail a microheterogeneous composition of the interstitial interface within the renal stem/progenitor cell niche.

  5. Endothelial progenitor cells and hypertension: current concepts and future implications.

    Science.gov (United States)

    Luo, Shengyuan; Xia, Wenhao; Chen, Cong; Robinson, Eric A; Tao, Jun

    2016-11-01

    The discovery of endothelial progenitor cells (EPCs), a group of cells that play important roles in angiogenesis and the maintenance of vascular endothelial integrity, has led to considerable improvements in our understanding of the circulatory system and the regulatory mechanisms of vascular homoeostasis. Despite lingering disputes over where EPCs actually originate and how they facilitate angiogenesis, extensive research in the past decade has brought about significant advancements in this field of research, establishing EPCs as an essential element in the pathogenesis of various diseases. EPC and hypertensive disorders, especially essential hypertension (EH, also known as primary hypertension), represent one of the most appealing branches in this area of research. Chronic hypertension remains a major threat to public health, and the exact pathologic mechanisms of EH have never been fully elucidated. Is there a relationship between EPC and hypertension? If so, what is the nature of such relationship-is it mediated by blood pressure alterations, or other factors that lie in between? How can our current knowledge about EPCs be utilized to advance the prevention and clinical management of hypertension? In this review, we set out to answer these questions by summarizing the current concepts about EPC pathophysiology in the context of hypertension, while attempting to point out directions for future research on this subject. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  6. Endothelial progenitor cells as a therapeutic option in intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Juan Pías-Peleteiro

    2017-01-01

    Full Text Available Intracerebral hemorrhage (ICH is the most severe cerebrovascular disease, which represents a leading cause of death and disability in developed countries. However, therapeutic options are limited, so is mandatory to investigate repairing processes after stroke in order to develop new therapeutic strategies able to promote brain repair processes. Therapeutic angiogenesis and vasculogenesis hold promise to improve outcome of ICH patients. In this regard, circulating endothelial progenitor cells (EPCs have recently been suggested to be a marker of vascular risk and endothelial function. Moreover, EPC levels have been associated with good neurological and functional outcome as well as reduced residual hematoma volume in ICH patients. Finally, experimental and clinical studies indicate that EPC might mediate endothelial cell regeneration and neovascularization. Therefore, EPC-based therapy could be an excellent therapeutic option in ICH. In this mini-review, we discuss the present status of knowledge about the possible therapeutic role of EPCs in ICH, molecular mechanisms, and the future perspectives and strategies for their use in clinical practice.

  7. The WTX Tumor Suppressor Regulates Mesenchymal Progenitor Cell Fate Specification

    Science.gov (United States)

    Lotinun, Sutada; Akhavanfard, Sara; Coffman, Erik J.; Cook, Edward B.; Stoykova, Svetlana; Mukherjee, Siddhartha; Schoonmaker, Jesse A.; Burger, Alexa; Kim, Woo Jae; Kronenberg, Henry M.; Baron, Roland; Haber, Daniel A.; Bardeesy, Nabeel

    2014-01-01

    SUMMARY WTX is an X-linked tumor suppressor targeted by somatic mutations in Wilms tumor, a pediatric kidney cancer, and by germline inactivation in osteopathia striata with cranial sclerosis, a bone overgrowth syndrome. Here, we show that Wtx deletion in mice causes neonatal lethality, somatic overgrowth, and malformation of multiple mesenchyme-derived tissues, including bone, fat, kidney, heart, and spleen. Inactivation of Wtx at different developmental stages and in primary mesenchymal progenitor cells (MPCs) reveals that bone mass increase and adipose tissue deficiency are due to altered lineage fate decisions coupled with delayed terminal differentiation. Specification defects in MPCs result from aberrant β-catenin activation, whereas alternative pathways contribute to the subsequently delayed differentiation of lineage-restricted cells. Thus, Wtx is a regulator of MPC commitment and differentiation with stage-specific functions in inhibiting canonical Wnt signaling. Furthermore, the constellation of anomalies in Wtx null mice suggests that this tumor suppressor broadly regulates MPCs in multiple tissues. PMID:21571217

  8. CD34+ circulating progenitor cells after different training programs.

    Science.gov (United States)

    Niño, O; Balague, N; Aragones, D; Blasi, J; Alamo, J M; Corral, L; Javierre, C; Miguel, M; Viscor, G; Ventura, J L

    2015-04-01

    Circulating progenitor cells (CPC) are bone marrow-derived cells that are mobilized into the circulation. While exercise is a powerful mediator of hematopoiesis, CPC levels increase, and reports of their activation after different types of exercise are contradictory. Moreover, few studies have compared the possible effects of different training programs on CPC concentrations. 43 physically active healthy male subjects (age 22±2.4 years) were assigned to 4 different training groups: aerobic, resistance, mixed and control. Except for the control group, all participants trained for 6 weeks. Peripheral blood samples were collected through an antecubital vein, and CPC CD34(+) was analyzed on different days: pre-training, post-training, and 3 weeks after finishing the training period. While no significant differences in CPC were observed either within or between the different training groups, there was a tendency towards higher values post-training and large intra- and intergroup dispersion. We detected an inverse linear relationship between pre-training values and % of CPC changes post-training (pdifferent training groups, or after 3 weeks of follow-up. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces.

    Science.gov (United States)

    Ziebart, Thomas; Schnell, Anne; Walter, Christian; Kämmerer, Peer W; Pabst, Andreas; Lehmann, Karl M; Ziebart, Johanna; Klein, Marc O; Al-Nawas, Bilal

    2013-01-01

    Endothelial cells play an important role in peri-implant angiogenesis during early bone formation. Therefore, interactions between endothelial progenitor cells (EPCs) and titanium dental implant surfaces are of crucial interest. The aim of our in vitro study was to investigate the reactions of EPCs in contact with different commercially available implant surfaces. EPCs from buffy coats were isolated by Ficoll density gradient separation. After cell differentiation, EPC were cultured for a period of 7 days on different titanium surfaces. The test surfaces varied in roughness and hydrophilicity: acid-etched (A), sand-blasted-blasted and acid-etched (SLA), hydrophilic A (modA), and hydrophilic SLA (modSLA). Plastic and fibronectin-coated plastic surfaces served as controls. Cell numbers and morphology were analyzed by confocal laser scanning microscopy. Secretion of vascular endothelial growth factor (VEGF)-A was measured by enzyme-linked immunosorbent assay and expressions of iNOS and eNOS were investigated by real-time polymerase chain reaction. Cell numbers were higher in the control groups compared to the cells of titanium surfaces. Initially, hydrophilic titanium surfaces (modA and modSLA) showed lower cell numbers than hydrophobic surfaces (A and SLA). After 7 days smoother surfaces (A and modA) showed increased cell numbers compared to rougher surfaces (SLA and modSLA). Cell morphology of A, modA, and control surfaces was characterized by a multitude of pseudopodia and planar cell soma architecture. SLA and modSLA promoted small and plump cell soma with little quantity of pseudopodia. The lowest VEGF level was measured on A, the highest on modSLA. The highest eNOS and iNOS expressions were found on modA surfaces. The results of this study demonstrate that biological behaviors of EPCs can be influenced by different surfaces. The modSLA surface promotes an undifferentiated phenotype of EPCs that has the ability to secrete growth factors in great quantities. In

  10. Human mammary progenitor cell fate decisions are products of interactions with combinatorial microenvironments

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Nelson, Celeste M; Villadsen, Rene; Fridriksdottir, Agla; Ruth, Jason R; Stampfer, Martha R; Petersen, Ole W; Bissell, Mina J

    2008-09-19

    In adult tissues, multi-potent progenitor cells are some of the most primitive members of the developmental hierarchies that maintain homeostasis. That progenitors and their more mature progeny share identical genomes, suggests that fate decisions are directed by interactions with extrinsic soluble factors, ECM, and other cells, as well as physical properties of the ECM. To understand regulation of fate decisions, therefore, would require a means of understanding carefully choreographed combinatorial interactions. Here we used microenvironment protein microarrays to functionally identify combinations of cell-extrinsic mammary gland proteins and ECM molecules that imposed specific cell fates on bipotent human mammary progenitor cells. Micropatterned cell culture surfaces were fabricated to distinguish between the instructive effects of cell-cell versus cell-ECM interactions, as well as constellations of signaling molecules; and these were used in conjunction with physiologically relevant 3 dimensional human breast cultures. Both immortalized and primary human breast progenitors were analyzed. We report on the functional ability of those proteins of the mammary gland that maintain quiescence, maintain the progenitor state, and guide progenitor differentiation towards myoepithelial and luminal lineages.

  11. Differential growth of U and M type infectious haematopoietic necrosis virus in a rainbow trout–derived cell line, RTG-2

    Science.gov (United States)

    Kurath, Gael; Purcell, Maureen K.; Wargo, Andrew; Park, Jeong Woo; Moon, Chang Hoon

    2010-01-01

    Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout–derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.

  12. Endothelial progenitor cells display clonal restriction in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dai Kezhi

    2006-06-01

    Full Text Available Abstract Background In multiple myeloma (MM, increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI patterns in female patients by a human androgen receptor assay (HUMARA. In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. Methods A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (VH. Results In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele in 64% (n = 7. In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele. In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with VH primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5 of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status

  13. Long-Term Effects of Haematopoietic Stem Cell Transplantation after Pediatric Cancer: A Qualitative Analysis of Life Experiences and Adaptation Strategies

    Directory of Open Access Journals (Sweden)

    Magali Lahaye

    2017-05-01

    Full Text Available Haematopoietic stem cell transplantation (HSCT improves the survival rate of children and adolescents with malignant and non-malignant conditions; however, the physical, psychological and social burden of such a procedure is considerable both during and after treatment. The present qualitative study investigated the long-term effects of HSCT after pediatric cancer. Thirty adolescent and young adult (AYA survivors (Mage = 23.61 years, SD = 5.21 participated in individual interviews and were invited to speak about their life experiences following their treatment and strategies they use to deal with their past medical experiences and the long-term sequelae. Our results showed the presence of ongoing physical and psychosocial consequences of their past illness and its treatments with wide ranging psychosocial impacts, such as affected self-image, social withdrawal, sense of lack of choice, and need for specific attention. Different strategies were reported to overcome these consequences, such as talking about illness, giving a sense to their past medical experiences, and developing meaningful social relationships. Clinical and research implications are also discussed.

  14. Re-implantation of cryopreserved ovarian cortex resulting in restoration of ovarian function, natural conception and successful pregnancy after haematopoietic stem cell transplantation for Wilms tumour.

    Science.gov (United States)

    Dunlop, C E; Brady, B M; McLaughlin, M; Telfer, E E; White, J; Cowie, F; Zahra, S; Wallace, W H B; Anderson, R A

    2016-12-01

    With the improvement of long-term cancer survival rates, growing numbers of female survivors are suffering from treatment-related premature ovarian insufficiency (POI). Although pre-treatment embryo and oocyte storage are effective fertility preservation strategies, they are not possible for pre-pubertal girls or women who cannot delay treatment. In these cases, the only available treatment option is ovarian cortex cryopreservation and subsequent re-implantation. A 32-year-old woman had ovarian cortex cryopreserved 10 years previously before commencing high-dose chemotherapy and undergoing a haematopoietic stem cell transplant for recurrent adult Wilms tumour, which resulted in POI. She underwent laparoscopic orthotopic transplantation of cryopreserved ovarian cortex to the original site of biopsy on the left ovary. She ovulated at 15 and 29 weeks post-re-implantation with AMH detectable, then rising, from 21 weeks, and conceived naturally following the second ovulation. The pregnancy was uncomplicated and a healthy male infant was born by elective Caesarean section at 36(+4) weeks gestation. This is the first report of ovarian cortex re-implantation in the UK. Despite the patient receiving low-risk chemotherapy prior to cryopreservation and the prolonged tissue storage duration, the re-implantation resulted in rapid restoration of ovarian function and natural conception with successful pregnancy.

  15. BK-viruria and haemorrhagic cystitis are more frequent in allogeneic haematopoietic stem cell transplant patients receiving full conditioning and unrelated-HLA-mismatched grafts.

    Science.gov (United States)

    Giraud, G; Priftakis, P; Bogdanovic, G; Remberger, M; Dubrulle, M; Hau, A; Gutmark, R; Mattson, J; Svahn, B-M; Ringden, O; Winiarski, J; Ljungman, P; Dalianis, T

    2008-04-01

    The influence of conditioning regimen, donor background and HLA matching on development of BK virus (BKV)-associated haemorrhagic cystitis (HC) was examined in 175 allogeneic haematopoietic stem cell transplant (HSCT) patients, undergoing 179 HSCT events. Twenty-seven patients presented late-onset HC, and BK viruria was verified in 23/27 HC events. Seventy-one (40%) HSCTs were performed with myeloablative conditioning (MC), 108 (60%) were performed with reduced intensity conditioning (RIC), 66 (37%) were performed with a related donor (RD) grafts and 113 (63%) with an unrelated donor (URD) graft. BK viruria was more common during HC, than non-HC events, after MC as compared to RIC (both PBKV (OR 6.7; 95% CI 2.0-21.7; P=0.001), MC (OR 6.0; 95% CI 2.1-17.3; PBKV (OR 8.5; 95% CI 1.8-19.3; P=0.004) and MC (OR 5.9; 95% CI 1.3-11.3; P=0.009) increased the risk for HC only with a URD, but not with an RD graft.

  16. High Glucose Causes Human Cardiac Progenitor Cell Dysfunction by Promoting Mitochondrial Fission: Role of a GLUT1 Blocker.

    Science.gov (United States)

    Choi, He Yun; Park, Ji Hye; Jang, Woong Bi; Ji, Seung Taek; Jung, Seok Yun; Kim, Da Yeon; Kang, Songhwa; Kim, Yeon Ju; Yun, Jisoo; Kim, Jae Ho; Baek, Sang Hong; Kwon, Sang-Mo

    2016-07-01

    Cardiovascular disease is the most common cause of death in diabetic patients. Hyperglycemia is the primary characteristic of diabetes and is associated with many complications. The role of hyperglycemia in the dysfunction of human cardiac progenitor cells that can regenerate damaged cardiac tissue has been investigated, but the exact mechanism underlying this association is not clear. Thus, we examined whether hyperglycemia could regulate mitochondrial dynamics and lead to cardiac progenitor cell dysfunction, and whether blocking glucose uptake could rescue this dysfunction. High glucose in cardiac progenitor cells results in reduced cell viability and decreased expression of cell cycle-related molecules, including CDK2 and cyclin E. A tube formation assay revealed that hyperglycemia led to a significant decrease in the tube-forming ability of cardiac progenitor cells. Fluorescent labeling of cardiac progenitor cell mitochondria revealed that hyperglycemia alters mitochondrial dynamics and increases expression of fission-related proteins, including Fis1 and Drp1. Moreover, we showed that specific blockage of GLUT1 improved cell viability, tube formation, and regulation of mitochondrial dynamics in cardiac progenitor cells. To our knowledge, this study is the first to demonstrate that high glucose leads to cardiac progenitor cell dysfunction through an increase in mitochondrial fission, and that a GLUT1 blocker can rescue cardiac progenitor cell dysfunction and downregulation of mitochondrial fission. Combined therapy with cardiac progenitor cells and a GLUT1 blocker may provide a novel strategy for cardiac progenitor cell therapy in cardiovascular disease patients with diabetes.

  17. Mobilization of Hematopoietic Stem/Progenitor Cells: General Principles and Molecular Mechanisms

    Science.gov (United States)

    Bonig, Halvard; Papayannopoulou, Thalla

    2013-01-01

    Hematopoietic stem/progenitor cell mobilization can be achieved by a variety of bone marrow niche modifications, although efficient mobilization requires simultaneous expansion of the stem/progenitor cell pool and niche modification. Many of the mechanisms involved in G-CSF-induced mobilization have been described. With regard to mobilization of hematopoietic stem/progenitor cells, challenges for the future include the analysis of genetic factors responsible for the great variability in mobilization responses, and the identification of predictors of mobilization efficiency, as well as the development of mobilizing schemes for poor mobilizers. Moreover, improved regimens for enhanced or even preferential mobilization of nonhematopoietic stem/progenitor cell types, and their therapeutic potential for endogenous tissue repair will be questions to be vigorously pursued in the near future. PMID:22890918

  18. Epithelial progenitor cell lines as models of normal breast morphogenesis and neoplasia

    DEFF Research Database (Denmark)

    Petersen, Ole William; Gudjonsson, Thorarinn; Villadsen, René

    2003-01-01

    The majority of human breast carcinomas exhibit luminal characteristics and as such, are most probably derived from progenitor cells within the luminal epithelial compartment. This has been subdivided recently into at least three luminal subtypes based on gene expression patterns. The value of kn......% of breast cancers arise in TDLUs and more than 90% are also cytokeratin 19-positive, we suggest that this cell population contains a breast-cancer progenitor.......The majority of human breast carcinomas exhibit luminal characteristics and as such, are most probably derived from progenitor cells within the luminal epithelial compartment. This has been subdivided recently into at least three luminal subtypes based on gene expression patterns. The value...... of knowing the cellular origin of individual tumours is clear and should aid in designing effective therapies. To do this, however, we need strategies aimed at defining the nature of stem and progenitor cell populations in the normal breast. In this review, we will discuss our technical approach...

  19. Diabetes irreversibly depletes bone marrow-derived mesenchymal progenitor cell subpopulations

    National Research Council Canada - National Science Library

    Januszyk, Michael; Sorkin, Michael; Glotzbach, Jason P; Vial, Ivan N; Maan, Zeshaan N; Rennert, Robert C; Duscher, Dominik; Thangarajah, Hariharan; Longaker, Michael T; Butte, Atul J; Gurtner, Geoffrey C

    2014-01-01

    .... Here, we examine bone marrow-derived mesenchymal progenitor cells (BM-MPCs) that have previously been shown to be important for new blood vessel formation and demonstrate significant deficits in the context of diabetes...

  20. Cross talk with hematopoietic cells regulates the endothelial progenitor cell differentiation of CD34 positive cells.

    Science.gov (United States)

    Kwon, Sang-Mo; Lee, Jun-Hee; Lee, Sang-Hun; Jung, Seok-Yun; Kim, Da-Yeon; Kang, Song-Hwa; Yoo, So-Young; Hong, Jong-Kyu; Park, Ji-Hye; Kim, Jung-Hee; Kim, Sung-Wook; Kim, Yeon-Ju; Lee, Sun-Jin; Kim, Hwi-Gon; Asahara, Takayuki

    2014-01-01

    Despite the crucial role of endothelial progenitor cells (EPCs) in vascular regeneration, the specific interactions between EPCs and hematopoietic cells remain unclear. In EPC colony forming assays, we first demonstrated that the formation of EPC colonies was drastically increased in the coculture of CD34+ and CD34- cells, and determined the optimal concentrations of CD34+ cells and CD34- cells for spindle-shaped EPC differentiation. Functionally, the coculture of CD34+ and CD34- cells resulted in a significant enhancement of adhesion, tube formation, and migration capacity compared with culture of CD34+ cells alone. Furthermore, blood flow recovery and capillary formation were remarkably increased by the coculture of CD34+ and CD34- cells in a murine hind-limb ischemia model. To elucidate further the role of hematopoietic cells in EPC differentiation, we isolated different populations of hematopoietic cells. T lymphocytes (CD3+) markedly accelerated the early EPC status of CD34+ cells, while macrophages (CD11b+) or megakaryocytes (CD41+) specifically promoted large EPC colonies. Our results suggest that specific populations of hematopoietic cells play a role in the EPC differentiation of CD34+ cells, a finding that may aid in the development of a novel cell therapy strategy to overcome the quantitative and qualitative limitations of EPC therapy.

  1. Human Mammary Luminal Epithelial Cells Contain Progenitors to Myoepithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Pechoux, Christine; Gudjonsson, Thorarinn; Ronnov-Jessen, Lone; Bissell, Mina J; Petersen, Ole

    1999-02-01

    The origin of the epithelial and myoepithelial cells in the human breast has not been delineated. In this study we have addressed whether luminal epithelial cells and myoepithelial cells are vertically connected, i.e., whether one is the precursor for the other. We used a primary culture assay allowing preservation of basic phenotypic traits of luminal epithelial and myoepithelial cells in culture. The two cell types were then separated immunomagnetically using antibodies directed against lineage-specific cell surface antigens into at best 100% purity. The cellular identity was ascertained by cytochemistry, immunoblotting, and 2-D gel electrophoresis. Luminal epithelial cells were identified by strong expression of cytokeratins 18 and 19 while myoepithelial cells were recognized by expression of vimentin and {alpha}-smooth muscle actin. We used a previously devised culture medium (CDM4) that allows vigorous expansion of proliferative myoepithelial cells and also devised a medium (CDM6) that allowed sufficient expansion of differentiated luminal epithelial cells based on addition of hepatocyte growth factor/scatter factor. The two different culture media supported each lineage for at least five passages without signs of interconversion. We used parallel cultures where we switched culture media, thus testing the ability of each lineage to convert to the other. Whereas the myoepithelial lineage showed no signs of interconversion, a subset of luminal epithelial cells, gradually, but distinctly, converted to myoepithelial cells. We propose that in the mature human breast, it is the luminal epithelial cell compartment that gives rise to myoepithelial cells rather than the other way around.

  2. Endothelial Progenitor Cells in Diabetic Microvascular Complications: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Cai-Guo Yu

    2016-01-01

    Full Text Available Despite being featured as metabolic disorder, diabetic patients are largely affected by hyperglycemia-induced vascular abnormality. Accumulated evidence has confirmed the beneficial effect of endothelial progenitor cells (EPCs in coronary heart disease. However, antivascular endothelial growth factor (anti-VEGF treatment is the main therapy for diabetic retinopathy and nephropathy, indicating the uncertain role of EPCs in the pathogenesis of diabetic microvascular disease. In this review, we first illustrate how hyperglycemia induces metabolic and epigenetic changes in EPCs, which exerts deleterious impact on their number and function. We then discuss how abnormal angiogenesis develops in eyes and kidneys under diabetes condition, focusing on “VEGF uncoupling with nitric oxide” and “competitive angiopoietin 1/angiopoietin 2” mechanisms that are shared in both organs. Next, we dissect the nature of EPCs in diabetic microvascular complications. After we overview the current EPCs-related strategies, we point out new EPCs-associated options for future exploration. Ultimately, we hope that this review would uncover the mysterious nature of EPCs in diabetic microvascular disease for therapeutics.

  3. Whole-Somite Rotation Generates Muscle Progenitor Cell Compartments in the Developing Zebrafish Embryo

    National Research Council Canada - National Science Library

    Hollway, Georgina E; Bryson-Richardson, Robert J; Berger, Silke; Cole, Nicholas J; Hall, Thomas E; Currie, Peter D

    2007-01-01

    ... to the progenitors for skeletal muscle of the axis (the myotome) and to progenitors at limb levels, which are precursors of the appendicular muscles. The dermomyotome is also the source of resident adult skeletal muscle stem cells, the satellite cells ( Christ and Ordahl, 1995; Gros et al., 2005; Relaix et al., 2005; Kassar-Duchossoy et al., 2005; Schien...

  4. Wnt5a regulates dental follicle stem/progenitor cells of the periodontium

    OpenAIRE

    Xiang, Lusai; Chen, Mo; He, Ling; Cai, Bin; Du, Yu; Zhang, Xinchun; Zhou, Chen; Wang, Chenglin; Mao, Jeremy J.; Ling, Junqi

    2014-01-01

    Introduction Dental follicle gives rise to one or several tissues of the periodontium including the periodontal ligament, cementum and/or alveolar bone. Whether Wnt5a is expressed in the postnatal periodontium or regulates dental follicle stem/progenitor cells is unknown. Methods Dental follicle stem/progenitor cells were isolated from postnatal day 1 (p1) to p11 from rat mandibular first molars. Immunolocalization mapped Wnt5a expression in the alveolar bone, periodontal ligament, and the de...

  5. Characteristic of c-Kit+ progenitor cells in explanted human hearts

    OpenAIRE

    Matuszczak, Sybilla; Czapla, Justyna; Jarosz-Biej, Magdalena; Wiśniewska, Ewa; Cichoń, Tomasz; Smolarczyk, Ryszard; Kobusińska, Magdalena; Gajda, Karolina; Wilczek, Piotr; Śliwka, Joanna; Zembala, Michał; Zembala, Marian; Szala, Stanisław

    2014-01-01

    According to literature data, self-renewing, multipotent, and clonogenic cardiac c-Kit+ progenitor cells occur within human myocardium. The aim of this study was to isolate and characterize c-Kit+ progenitor cells from explanted human hearts. Experimental material was obtained from 19 adult and 7 pediatric patients. Successful isolation and culture was achieved for 95 samples (84.1 %) derived from five different regions of the heart: right and left ventricles, atrium, intraventricular septum,...

  6. Profibrotic potential of Prominin-1+ epithelial progenitor cells in pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Lüscher Thomas F

    2011-09-01

    Full Text Available Abstract Background In idiopathic pulmonary fibrosis loss of alveolar epithelium induces inflammation of the pulmonary tissue followed by accumulation of pathogenic myofibroblasts leading eventually to respiratory failures. In animal models inflammatory and resident cells have been demonstrated to contribute to pulmonary fibrosis. Regenerative potential of pulmonary and extra-pulmonary stem and progenitor cells raised the hope for successful treatment option against pulmonary fibrosis. Herein, we addressed the contribution of lung microenvironment and prominin-1+ bone marrow-derived epithelial progenitor cells in the mouse model of bleomycin-induced experimental pulmonary fibrosis. Methods Prominin-1+ bone marrow-derived epithelial progenitors were expanded from adult mouse lungs and differentiated in vitro by cytokines and growth factors. Pulmonary fibrosis was induced in C57Bl/6 mice by intratracheal instillation of bleomycin. Prominin-1+ progenitors were administered intratracheally at different time points after bleomycin challenge. Green fluorescence protein-expressing cells were used for cell tracking. Cell phenotypes were characterized by immunohistochemistry, flow cytometry and quantitative reverse transcription-polymerase chain reaction. Results Prominin-1+ cells expanded from healthy lung represent common progenitors of alveolar type II epithelial cells, myofibroblasts, and macrophages. Administration of prominin-1+ cells 2 hours after bleomycin instillation protects from pulmonary fibrosis, and some of progenitors differentiate into alveolar type II epithelial cells. In contrast, prominin-1+ cells administered at day 7 or 14 lose their protective effects and differentiate into myofibroblasts and macrophages. Bleomycin challenge enhances accumulation of bone marrow-derived prominin-1+ cells within inflamed lung. In contrast to prominin-1+ cells from healthy lung, prominin-1+ precursors isolated from inflamed organ lack regenerative

  7. Endothelial progenitor cells in vascular health: focus on lifestyle.

    Science.gov (United States)

    Van Craenenbroeck, Emeline M; Conraads, Viviane M

    2010-05-01

    Endothelial dysfunction, which is considered the functional equivalent of a disrupted balance between endothelial injury and repair, precedes overt atherosclerosis by many years. Although this phenomenon is part of the normal aging process, prevention of early and progressive endothelial dysfunction has become an important therapeutic target. Evidence has accumulated to show that endothelial progenitor cells (EPC), contribute substantially to preservation of a structurally and functionally intact endothelium. There has been considerable progress in our understanding of the various cell types that were in the past all covered by the term "EPC." EPC home to sites of endothelial injury and ischemia, where they proliferate, differentiate and integrate into the endothelial layer or exert a paracrine function by producing vascular growth factors. Although more emphasis has been put on the pharmacological approach of endothelial dysfunction, the effect of a healthy lifestyle, via mobilization and functional improvement of EPC, is increasingly recognized. This review will focus on successful lifestyle interventions that aim to maintain vascular health through beneficial actions on cell populations with vasculogenic potential ("EPC"). The role of physical activity and dietary recommendations, which are considered essential elements of a healthy lifestyle, will be particularly emphasized. A thorough understanding of the physiology of endothelial benefits, derived from such interventions, may help to implement these measures on top of classical drug therapy, but also provides a solid basis for primary prevention. The effects of additional elements of a comprehensive lifestyle advice, such as smoking cessation, weight and stress reduction, also comprise a modulation of EPC function and circulating numbers and are therefore included in this review as well. Copyright 2009 Elsevier Inc. All rights reserved.

  8. Enrichment of oral mucosa and skin keratinocyte progenitor/stem cells.

    Science.gov (United States)

    Izumi, Kenji; Marcelo, Cynthia L; Feinberg, Stephen E

    2013-01-01

    The isolation of human oral mucosa/skin keratinocytes progenitor/stem cells is clinically important to regenerate epithelial tissues for the treatment of oral mucosa/skin defects. Researchers have attempted to isolate a keratinocyte progenitor/stem cell population using cell markers, rapid adherence to collagen type IV, and other methods. In this regard, one of the specific characteristics of keratinocyte progenitor/stem cells is that these cells have a smaller diameter than differentiated cells. This chapter describes methods used in our laboratory to set up primary human oral mucosa and skin keratinocytes in a chemically defined culture system devoid of animal derived products. We utilized the cells in a FDA-approved human clinical trial that involved the intraoral grafting of an ex vivo produced oral mucosa equivalent to increase keratinized tissue around teeth. We also provide two protocols on how to sort keratinocytes using physical criterion, cell size, using a cell sorter and a serial filtration system.

  9. Distinct tissue formation by heterogeneous printing of osteo- and endothelial progenitor cells.

    Science.gov (United States)

    Fedorovich, Natalja E; Wijnberg, Hans M; Dhert, Wouter J A; Alblas, Jacqueline

    2011-08-01

    The organ- or tissue-printing approach, based on layered deposition of cell-laden hydrogels, is a new technique in regenerative medicine suitable to investigate whether mimicking the anatomical organization of cells, matrix, and bioactive molecules is necessary for obtaining or improving functional engineered tissues. Currently, data on performance of multicellular printed constructs in vivo are limited. In this study we illustrate the ability of the system to print intricate porous constructs containing two different cell types--endothelial progenitors and multipotent stromal cells--and show that these grafts retain heterogeneous cell organization after subcutaneous implantation in immunodeficient mice. We demonstrate that cell differentiation leading to the expected tissue formation occurs at the site of the deposited progenitor cell type. While perfused blood vessels are formed in the endothelial progenitor cell-laden part of the constructs, bone formation is taking place in the multipotent stromal cell-laden part of the printed grafts.

  10. Characterization of the Transcriptomes of Lgr5+ Hair Cell Progenitors and Lgr5- Supporting Cells in the Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Haibo Shi

    2017-04-01

    Full Text Available Cochlear supporting cells (SCs have been shown to be a promising resource for hair cell (HC regeneration in the neonatal mouse cochlea. Previous studies have reported that Lgr5+ SCs can regenerate HCs both in vitro and in vivo and thus are considered to be inner ear progenitor cells. Lgr5+ progenitors are able to regenerate more HCs than Lgr5- SCs, and it is important to understand the mechanism behind the proliferation and HC regeneration of these progenitors. Here, we isolated Lgr5+ progenitors and Lgr5- SCs from Lgr5-EGFP-CreERT2/Sox2-CreERT2/Rosa26-tdTomato mice via flow cytometry. As expected, we found that Lgr5+ progenitors had significantly higher proliferation and HC regeneration ability than Lgr5- SCs. Next, we performed RNA-Seq to determine the gene expression profiles of Lgr5+ progenitors and Lgr5- SCs. We analyzed the genes that were enriched and differentially expressed in Lgr5+ progenitors and Lgr5- SCs, and we found 8 cell cycle genes, 9 transcription factors, and 24 cell signaling pathway genes that were uniquely expressed in one population but not the other. Last, we made a protein–protein interaction network to further analyze the role of these differentially expressed genes. In conclusion, we present a set of genes that might regulate the proliferation and HC regeneration ability of Lgr5+ progenitors, and these might serve as potential new therapeutic targets for HC regeneration.

  11. Establishment of Human Neural Progenitor Cells from Human Induced Pluripotent Stem Cells with Diverse Tissue Origins

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2016-01-01

    Full Text Available Human neural progenitor cells (hNPCs have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi. Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

  12. Comparison of culture media for ex vivo cultivation of limbal epithelial progenitor cells.

    Science.gov (United States)

    Loureiro, Renata Ruoco; Cristovam, Priscila Cardoso; Martins, Caio Marques; Covre, Joyce Luciana; Sobrinho, Juliana Aparecida; Ricardo, José Reinaldo da Silva; Hazarbassanov, Rossen Myhailov; Höfling-Lima, Ana Luisa; Belfort, Rubens; Nishi, Mauro; Gomes, José Álvaro Pereira

    2013-01-01

    To compare the effectiveness of three culture media for growth, proliferation, differentiation, and viability of ex vivo cultured limbal epithelial progenitor cells. Limbal epithelial progenitor cell cultures were established from ten human corneal rims and grew on plastic wells in three culture media: supplemental hormonal epithelial medium (SHEM), keratinocyte serum-free medium (KSFM), and Epilife. The performance of culturing limbal epithelial progenitor cells in each medium was evaluated according to the following parameters: growth area of epithelial migration; immunocytochemistry for adenosine 5'-triphosphate-binding cassette member 2 (ABCG2), p63, Ki67, cytokeratin 3 (CK3), and vimentin (VMT) and real-time reverse transcription polymerase chain reaction (RT-PCR) for CK3, ABCG2, and p63, and cell viability using Hoechst staining. Limbal epithelial progenitor cells cultivated in SHEM showed a tendency to faster migration, compared to KSFM and Epilife. Immunocytochemical analysis showed that proliferated cells in the SHEM had lower expression for markers related to progenitor epithelial cells (ABCG2) and putative progenitor cells (p63), and a higher percentage of positive cells for differentiated epithelium (CK3) when compared to KSFM and Epilife. In PCR analysis, ABCG2 expression was statistically higher for Epilife compared to SHEM. Expression of p63 was statistically higher for Epilife compared to SHEM and KSFM. However, CK3 expression was statistically lower for KSFM compared to SHEM. Based on our findings, we concluded that cells cultured in KSFM and Epilife media presented a higher percentage of limbal epithelial progenitor cells, compared to SHEM.

  13. Biology of the adult hepatic progenitor cell: "ghosts in the machine".

    Science.gov (United States)

    Darwiche, Houda; Petersen, Bryon E

    2010-01-01

    This chapter reviews some of the basic biological principles governing adult progenitor cells of the liver and the mechanisms by which they operate. If scientists were better able to understand the conditions that govern stem cell mechanics in the liver, it may be possible to apply that understanding in a clinical setting for use in the treatment or cure of human pathologies. This chapter gives a basic introduction to hepatic progenitor cell biology and explores what is known about progenitor cell-mediated liver regeneration. We also discuss the putative stem cell niche in the liver, as well as the signaling pathways involved in stem cell regulation. Finally, the isolation and clinical application of stem cells to human diseases is reviewed, along with the current thoughts on the relationship between stem cells and cancer. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Transplantation of neural progenitor cells in chronic spinal cord injury.

    Science.gov (United States)

    Jin, Y; Bouyer, J; Shumsky, J S; Haas, C; Fischer, I

    2016-04-21

    Previous studies demonstrated that neural progenitor cells (NPCs) transplanted into a subacute contusion injury improve motor, sensory, and bladder function. In this study we tested whether transplanted NPCs can also improve functional recovery after chronic spinal cord injury (SCI) alone or in combination with the reduction of glial scar and neurotrophic support. Adult rats received a T10 moderate contusion. Thirteen weeks after the injury they were divided into four groups and received either: 1. Medium (control), 2. NPC transplants, 3. NPC+lentivirus vector expressing chondroitinase, or 4. NPC+lentivirus vectors expressing chondroitinase and neurotrophic factors. During the 8 weeks post-transplantation the animals were tested for functional recovery and eventually analyzed by anatomical and immunohistochemical assays. The behavioral tests for motor and sensory function were performed before and after injury, and weekly after transplantation, with some animals also tested for bladder function at the end of the experiment. Transplant survival in the chronic injury model was variable and showed NPCs at the injury site in 60% of the animals in all transplantation groups. The NPC transplants comprised less than 40% of the injury site, without significant anatomical or histological differences among the groups. All groups also showed similar patterns of functional deficits and recovery in the 12 weeks after injury and in the 8 weeks after transplantation using the Basso, Beattie, and Bresnahan rating score, the grid test, and the Von Frey test for mechanical allodynia. A notable exception was group 4 (NPC together with chondroitinase and neurotrophins), which showed a significant improvement in bladder function. This study underscores the therapeutic challenges facing transplantation strategies in a chronic SCI in which even the inclusion of treatments designed to reduce scarring and increase neurotrophic support produce only modest functional improvements. Further

  15. [Circulating endothelial progenitor cell levels in treated hypertensive patients].

    Science.gov (United States)

    Maroun-Eid, C; Ortega-Hernández, A; Abad, M; García-Donaire, J A; Barbero, A; Reinares, L; Martell-Claros, N; Gómez-Garre, D

    2015-01-01

    Most optimally treated hypertensive patients still have an around 50% increased risk of any cardiovascular event, suggesting the possible existence of unidentified risk factors. In the last years there has been evidence of the essential role of circulating endothelial progenitor cells (EPCs) in the maintenance of endothelial integrity and function, increasing the interest in their involvement in cardiovascular disease. In this study, the circulating levels of EPCs and vascular endothelial growth factor (VEGF) are investigated in treated hypertensive patients with adequate control of blood pressure (BP). Blood samples were collected from treated hypertensive patients with controlled BP. Plasma levels of EPCs CD34+/KDR+ and CD34+/VE-cadherin+ were quantified by flow cytometry. Plasma concentration of VEGF was determined by ELISA. A group of healthy subjects without cardiovascular risk factors was included as controls. A total of 108 hypertensive patients were included (61±12 years, 47.2% men) of which 82.4% showed BP<140/90 mmHg, 91.7% and 81.5% controlled diabetes (HbA1c <7%) and cLDL (<130 or 100 mg/dL), respectively, and 85.2% were non-smokers. Around 45% of them were obese. Although patients had cardiovascular parameters within normal ranges, they showed significantly lower levels of CD34+/KDR+ and CD34+/VE-cadherin+ compared with healthy control group, although plasma VEGF concentration was higher in patients than in controls. Despite an optimal treatment, hypertensive patients show a decreased number of circulating EPCs that could be, at least in part, responsible for their residual cardiovascular risk, suggesting that these cells could be a therapeutic target. Copyright © 2015 SEHLELHA. Published by Elsevier España, S.L.U. All rights reserved.

  16. The GATA1s isoform is normally down-regulated during terminal haematopoietic differentiation and over-expression leads to failure to repress MYB, CCND2 and SKI during erythroid differentiation of K562 cells

    Directory of Open Access Journals (Sweden)

    Halsey Christina

    2012-08-01

    Full Text Available Abstract Background Although GATA1 is one of the most extensively studied haematopoietic transcription factors little is currently known about the physiological functions of its naturally occurring isoforms GATA1s and GATA1FL in humans—particularly whether the isoforms have distinct roles in different lineages and whether they have non-redundant roles in haematopoietic differentiation. As well as being of general interest to understanding of haematopoiesis, GATA1 isoform biology is important for children with Down syndrome associated acute megakaryoblastic leukaemia (DS-AMKL where GATA1FL mutations are an essential driver for disease pathogenesis. Methods Human primary cells and cell lines were analyzed using GATA1 isoform specific PCR. K562 cells expressing GATA1s or GATA1FL transgenes were used to model the effects of the two isoforms on in vitro haematopoietic differentiation. Results We found no evidence for lineage specific use of GATA1 isoforms; however GATA1s transcripts, but not GATA1FL transcripts, are down-regulated during in vitro induction of terminal megakaryocytic and erythroid differentiation in the cell line K562. In addition, transgenic K562-GATA1s and K562-GATA1FL cells have distinct gene expression profiles both in steady state and during terminal erythroid differentiation, with GATA1s expression characterised by lack of repression of MYB, CCND2 and SKI. Conclusions These findings support the theory that the GATA1s isoform plays a role in the maintenance of proliferative multipotent megakaryocyte-erythroid precursor cells and must be down-regulated prior to terminal differentiation. In addition our data suggest that SKI may be a potential therapeutic target for the treatment of children with DS-AMKL.

  17. Effect of vitamin D on endothelial progenitor cells function.

    Science.gov (United States)

    Hammer, Yoav; Soudry, Alissa; Levi, Amos; Talmor-Barkan, Yeela; Leshem-Lev, Dorit; Singer, Joel; Kornowski, Ran; Lev, Eli I

    2017-01-01

    Endothelial progenitor cells (EPCs) are a population of bone marrow-derived cells, which have an important role in the process of endothelialization and vascular repair following injury. Impairment of EPCs, which occurs in patients with diabetes, was shown to be related to endothelial dysfunction, coronary artery disease (CAD) and adverse clinical outcomes. Recent evidence has shown that calcitriol, the active hormone of vitamin D, has a favorable impact on the endothelium and cardiovascular system. There is limited data on the effect of vitamin D on EPCs function. To examine the in vitro effects of Calcitriol on EPCs from healthy subjects and patients with diabetes. Fifty-one patients with type 2 diabetes (60±11 years, 40% women, HbA1C: 9.1±0.8%) and 23 healthy volunteers were recruited. EPCs were isolated and cultured with and without calcitriol. The capacity of the cells to form colony-forming units (CFUs), their viability (measured by MTT assay), KLF-10 levels and angiogenic markers were evaluated after 1 week of culture. In diabetic patients, EPC CFUs and cell viability were higher in EPCs exposed to calcitriol vs. EPCs not exposed to calcitriol [EPC CFUs: 1.25 (IQR 1.0-2.0) vs. 0.5 (IQR 0.5-1.9), p < 0.001; MTT:0.62 (IQR 0.44-0.93) vs. 0.52 (IQR 0.31-0.62), p = 0.001]. KLF-10 levels tended to be higher in EPCs exposed to vitamin D, with no differences in angiopoietic markers. In healthy subjects, calcitriol supplementation also resulted in higher cell viability [MTT: 0.23 (IQR 0.11-0.46) vs. 0.19 (0.09-0.39), p = 0.04], but without differences in CFU count or angiopoietic markers. In patients with diabetes mellitus, in vitro vitamin D supplementation improved EPCs capacity to form colonies and viability. Further studies regarding the mechanisms by which vitamin D exerts its effect are required.

  18. Effect of vitamin D on endothelial progenitor cells function.

    Directory of Open Access Journals (Sweden)

    Yoav Hammer

    Full Text Available Endothelial progenitor cells (EPCs are a population of bone marrow-derived cells, which have an important role in the process of endothelialization and vascular repair following injury. Impairment of EPCs, which occurs in patients with diabetes, was shown to be related to endothelial dysfunction, coronary artery disease (CAD and adverse clinical outcomes. Recent evidence has shown that calcitriol, the active hormone of vitamin D, has a favorable impact on the endothelium and cardiovascular system. There is limited data on the effect of vitamin D on EPCs function.To examine the in vitro effects of Calcitriol on EPCs from healthy subjects and patients with diabetes.Fifty-one patients with type 2 diabetes (60±11 years, 40% women, HbA1C: 9.1±0.8% and 23 healthy volunteers were recruited. EPCs were isolated and cultured with and without calcitriol. The capacity of the cells to form colony-forming units (CFUs, their viability (measured by MTT assay, KLF-10 levels and angiogenic markers were evaluated after 1 week of culture.In diabetic patients, EPC CFUs and cell viability were higher in EPCs exposed to calcitriol vs. EPCs not exposed to calcitriol [EPC CFUs: 1.25 (IQR 1.0-2.0 vs. 0.5 (IQR 0.5-1.9, p < 0.001; MTT:0.62 (IQR 0.44-0.93 vs. 0.52 (IQR 0.31-0.62, p = 0.001]. KLF-10 levels tended to be higher in EPCs exposed to vitamin D, with no differences in angiopoietic markers. In healthy subjects, calcitriol supplementation also resulted in higher cell viability [MTT: 0.23 (IQR 0.11-0.46 vs. 0.19 (0.09-0.39, p = 0.04], but without differences in CFU count or angiopoietic markers.In patients with diabetes mellitus, in vitro vitamin D supplementation improved EPCs capacity to form colonies and viability. Further studies regarding the mechanisms by which vitamin D exerts its effect are required.

  19. Lineage tracing of resident tendon progenitor cells during growth and natural healing.

    Directory of Open Access Journals (Sweden)

    Nathaniel A Dyment

    Full Text Available Unlike during embryogenesis, the identity of tissue resident progenitor cells that contribute to postnatal tendon growth and natural healing is poorly characterized. Therefore, we utilized 1 an inducible Cre driven by alpha smooth muscle actin (SMACreERT2, that identifies mesenchymal progenitors, 2 a constitutively active Cre driven by growth and differentiation factor 5 (GDF5Cre, a critical regulator of joint condensation, in combination with 3 an Ai9 Cre reporter to permanently label SMA9 and GDF5-9 populations and their progeny. In growing mice, SMA9+ cells were found in peritendinous structures and scleraxis-positive (ScxGFP+ cells within the tendon midsubstance and myotendinous junction. The progenitors within the tendon midsubstance were transiently labeled as they displayed a 4-fold expansion from day 2 to day 21 but reduced to baseline levels by day 70. SMA9+ cells were not found within tendon entheses or ligaments in the knee, suggesting a different origin. In contrast to the SMA9 population, GDF5-9+ cells extended from the bone through the enthesis and into a portion of the tendon midsubstance. GDF5-9+ cells were also found throughout the length of the ligaments, indicating a significant variation in the progenitors that contribute to tendons and ligaments. Following tendon injury, SMA9+ paratenon cells were the main contributors to the healing response. SMA9+ cells extended over the defect space at 1 week and differentiated into ScxGFP+ cells at 2 weeks, which coincided with increased collagen signal in the paratenon bridge. Thus, SMA9-labeled cells represent a unique progenitor source that contributes to the tendon midsubstance, paratenon, and myotendinous junction during growth and natural healing, while GDF5 progenitors contribute to tendon enthesis and ligament development. Understanding the mechanisms that regulate the expansion and differentiation of these progenitors may prove crucial to improving future repair strategies.

  20. [Collection of hematopoietic progenitor cells from healthy donors].

    Science.gov (United States)

    Bojanić, Ines; Cepulić, Branka Golubić; Mazić, Sanja

    2009-06-01

    Allogeneic hematopoietic progenitor cell (HPC) transplantation is an established therapy for many hematologic disorders. HPCs may be collected from bone marrow, peripheral blood, or umbilical cord blood. In order to minimize the risk for healthy HPC donors, thorough investigation is required before donation. The donor work-up should include medical history, physical examination, ECG, chest x-ray, blood count, coagulation screening, and testing for infectious disease markers. Donors should be fully informed on the donation procedure and sign an informed consent for donation. HPCs are traditionally collected from bone marrow with the donor in general anesthesia. The procedure includes multiple bone marrow aspirates from pelvic bones and at least overnight hospital stay. Although marrow donation is generally safe and well tolerated, minor complications like pain at the collection site, fatigue and pain on walking or sitting may occur in a relatively small proportion of donors (6%-20%). Major and life-threatening complications such as anesthesia-related events, mechanical injury to the bone, sacroiliac joint and sciatic nerve following marrow donation are relatively rare, being estimated to 0.1%-0.3% of cases. In the last decade, peripheral blood progenitor cells (PBPC) have become an increasingly used altemative to bone marrow. PBPC transplantation offers faster hematopoietic recovery and lower early transplant-related morbidity and mortality. The incidence of acute graft vs. host disease (GvHD) is no greater than in bone marrow transplants. However, there is evidence for increased chronic GvHD, which is in part related to the higher number of T and NK cells that are collected with PBPC and re-infused to the patient. Recombinant human granulocyte colony-stimulating factor (G-CSF) is used to mobilize PBPCs for collection by leukapheresis. Leukapheresis is usually perfomed after 4 to 5 days of G-CSF subcutaneous administration at a dose of 10 mg/kg b.w. Vascular access

  1. A Molecular Switch Regulating Cell Fate Choice between Muscle Progenitor Cells and Brown Adipocytes.

    Science.gov (United States)

    An, Yitai; Wang, Gang; Diao, Yarui; Long, Yanyang; Fu, Xinrong; Weng, Mingxi; Zhou, Liang; Sun, Kun; Cheung, Tom H; Ip, Nancy Y; Sun, Hao; Wang, Huating; Wu, Zhenguo

    2017-05-22

    During mouse embryo development, both muscle progenitor cells (MPCs) and brown adipocytes (BAs) are known to derive from the same Pax7 + /Myf5 + progenitor cells. However, the underlying mechanisms for the cell fate control remain unclear. In Pax7-null MPCs from young mice, several BA-specific genes, including Prdm16 and Ucp1 and many other adipocyte-related genes, were upregulated with a concomitant reduction of Myod and Myf5, two muscle lineage-determining genes. This suggests a cell fate switch from MPC to BA. Consistently, freshly isolated Pax7-null but not wild-type MPCs formed lipid-droplet-containing UCP1 + BA in culture. Mechanistically, MyoD and Myf5, both known transcription targets of Pax7 in MPC, potently repress Prdm16, a BA-specific lineage-determining gene, via the E2F4/p107/p130 transcription repressor complex. Importantly, inducible Pax7 ablation in developing mouse embryos promoted brown fat development. Thus, the MyoD/Myf5-E2F4/p107/p130 axis functions in both the Pax7 + /Myf5 + embryonic progenitor cells and postnatal myoblasts to repress the alternative BA fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy.

    Science.gov (United States)

    Maeshima, Akito; Nakasatomi, Masao; Nojima, Yoshihisa

    2014-01-01

    The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  3. Effect of hypoxia on the proliferation of murine cornea limbal epithelial progenitor cells in vitro.

    Science.gov (United States)

    Ma, Xiao-Li; Liu, Han-Qiang

    2011-01-01

    To investigate the effect of hypoxia on the proliferation of mouse corneal epithelial cells in vitro. Mouse corneal epithelial cells(MCEs) were cultured in normoxia (210mL/L O(2) and 50mL/L CO(2)) and hypoxia (20mL/L O(2) and 50mL/L CO(2)), respectively. Colony forming efficiency (CFE) and cell proliferation were determined. The expression of corneal epithelial progenitor cell marker p63 and K19 was investigated by immunostaining. Normoxic colonies were smaller compared with colonies formed in hypoxia. CFE was (12.50±1.50)% in hypoxic cultures, which was similar compared with normoxia cultures [(11.13±1.86)%, P>0.05)]. Cell proliferation was enhanced in hypoxia. Progenitor markers p63 and K19 were expressed in most cells under both normoxic and hypoxic conditions. Murine limbal epithelial progenitor cells can be efficiently expanded in hypoxic conditions.

  4. Testosterone Levels Influence Mouse Fetal Leydig Cell Progenitors Through Notch Signaling1

    Science.gov (United States)

    DeFalco, Tony; Saraswathula, Anirudh; Briot, Anaïs; Iruela-Arispe, M. Luisa; Capel, Blanche

    2013-01-01

    ABSTRACT Leydig cells are the steroidogenic lineage of the mammalian testis that produces testosterone, a key hormone required throughout male fetal and adult life for virilization and spermatogenesis. Both fetal and adult Leydig cells arise from a progenitor population in the testis interstitium but are thought to be lineage-independent of one another. Genetic evidence indicates that Notch signaling is required during fetal life to maintain a balance between differentiated Leydig cells and their progenitors, but the elusive progenitor cell type and ligands involved have not been identified. In this study, we show that the Notch pathway signals through the ligand JAG1 in perivascular interstitial cells during fetal life. In the early postnatal testis, we show that circulating levels of testosterone directly affect Notch signaling, implicating a feedback role for systemic circulating factors in the regulation of progenitor cells. Between Postnatal Days 3 and 21, as fetal Leydig cells disappear from the testis and are replaced by adult Leydig cells, the perivascular population of interstitial cells active for Notch signaling declines, consistent with distinct regulation of adult Leydig progenitors. PMID:23467742

  5. Isolation of Enteric Nervous System Progenitor Cells from the Aganglionic Gut of Patients with Hirschsprung's Disease.

    Directory of Open Access Journals (Sweden)

    David J Wilkinson

    Full Text Available Enteric nervous system progenitor cells isolated from postnatal human gut and cultured as neurospheres can then be transplanted into aganglionic gut to restore normal patterns of contractility. These progenitor cells may be of future use to treat patients with Hirschprung's disease, a congenital condition characterized by hindgut dysmotility due to the lack of enteric nervous system ganglia. Here we demonstrate that progenitor cells can also be isolated from aganglionic gut removed during corrective surgery for Hirschsprung's disease. Although the enteric nervous system marker calretinin is not expressed in the aganglionic gut region, de novo expression is initiated in cultured neurosphere cells isolated from aganglionic Hirschsprung bowel. Furthermore, expression of the neural markers NOS, VIP and GFAP also increased during culture of aganglionic gut neurospheres which we show can be transplantation into cultured embryonic mouse gut explants to restore a normal frequency of contractility. To determine the origin of the progenitor cells in aganglionic region, we used fluorescence-activated cell sorting to demonstrate that only p75-positive neural crest-derived cells present in the thickened nerve trunks characteristic of the aganglionic region of Hirschsprung gut gave rise to neurons in culture. The derivation of enteric nervous system progenitors in the aganglionic gut region of Hirschprung's patients not only means that this tissue is a potential source of cells for future autologous transplantation, but it also raises the possibility of inducing the differentiation of these endogenous cells in situ to compensate for the aganglionosis.

  6. It Is All in the Blood: The Multifaceted Contribution of Circulating Progenitor Cells in Diabetic Complications

    Directory of Open Access Journals (Sweden)

    Gian Paolo Fadini

    2012-01-01

    Full Text Available Diabetes mellitus (DM is a worldwide growing disease and represents a huge social and healthcare problem owing to the burden of its complications. Micro- and macrovascular diabetic complications arise from excess damage through well-known biochemical pathways. Interestingly, microangiopathy hits the bone marrow (BM microenvironment with features similar to retinopathy, nephropathy and neuropathy. The BM represents a reservoir of progenitor cells for multiple lineages, not limited to the hematopoietic system and including endothelial cells, smooth muscle cells, cardiomyocytes, and osteogenic cells. All these multiple progenitor cell lineages are profoundly altered in the setting of diabetes in humans and animal models. Reduction of endothelial progenitor cells (EPCs along with excess smooth muscle progenitor (SMP and osteoprogenitor cells creates an imbalance that promote the development of micro- and macroangiopathy. Finally, an excess generation of BM-derived fusogenic cells has been found to contribute to diabetic complications in animal models. Taken together, a growing amount of literature attributes to circulating progenitor cells a multi-faceted role in the pathophysiology of DM, setting a novel scenario that puts BM and the blood at the centre of the stage.

  7. Circulating human CD34(+) progenitor cells modulate neovascularization and inflammation in a nude mouse model

    NARCIS (Netherlands)

    van der Strate, B. W. A.; Popa, E. R.; Schipper, M.; Brouwer, L. A.; Hendriks, M.; Harmsen, M. C.; van Luyn, M. J. A.

    CD34(+) progenitor cells hold promise for therapeutic neovascularization in various settings. In this study, the role of human peripheral blood CD34(+) cells in neovascularization and inflammatory cell recruitment was longitudinally studied in vivo. Human CD34(+) cells were incorporated in Matrigel,

  8. In vitro effects of Epidiferphane™ on adult human neural progenitor cells

    Science.gov (United States)

    Neural stem cells have the capacity to respond to their environment, migrate to the injury site and generate functional cell types, and thus they hold great promise for cell therapies. In addition to representing a source for central nervous system (CNS) repair, neural stem and progenitor cells als...

  9. Environmental cues from CNS, PNS, and ENS cells regulate CNS progenitor differentiation

    DEFF Research Database (Denmark)

    Brännvall, Karin; Corell, Mikael; Forsberg-Nilsson, Karin

    2008-01-01

    Cellular origin and environmental cues regulate stem cell fate determination. Neuroepithelial stem cells form the central nervous system (CNS), whereas neural crest stem cells generate the peripheral (PNS) and enteric nervous system (ENS). CNS neural stem/progenitor cell (NSPC) fate determination...

  10. Label-Retaining Cells in the Adult Murine Salivary Glands Possess Characteristics of Adult Progenitor Cells

    Science.gov (United States)

    Chibly, Alejandro M.; Querin, Lauren; Harris, Zoey; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy is the primary treatment for patients with head and neck cancer, which account for roughly 500,000 annual cases worldwide. Dysfunction of the salivary glands and associated conditions like xerostomia and dysphagia are often developed by these patients, greatly diminishing their life quality. Current preventative and palliative care fail to deliver an improvement in the quality of life, thus accentuating the need for regenerative therapies. In this study, a model of label retaining cells (LRCs) in murine salivary glands was developed, in which LRCs demonstrated proliferative potential and possessed markers of putative salivary progenitors. Mice were labeled with 5-Ethynyl-2′-deoxyuridine (EdU) at postnatal day 10 and chased for 8 weeks. Tissue sections from salivary glands obtained at the end of chase demonstrated co-localization between LRCs and the salivary progenitor markers keratin 5 and keratin 14, as well as kit mRNA, indicating that LRCs encompass a heterogeneous population of salivary progenitors. Proliferative potential of LRCs was demonstrated by a sphere assay, in which LRCs were found in primary and secondary spheres and they co-localized with the proliferation marker Ki67 throughout sphere formation. Surprisingly, LRCs were shown to be radio-resistant and evade apoptosis following radiation treatment. The clinical significance of these findings lie in the potential of this model to study the mechanisms that prevent salivary progenitors from maintaining homeostasis upon exposure to radiation, which will in turn facilitate the development of regenerative therapies for salivary gland dysfunction. PMID:25238060

  11. Dysregulation of Vascular Endothelial Progenitor Cells Lung-Homing in Subjects with COPD

    Directory of Open Access Journals (Sweden)

    Brittany M. Salter

    2016-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by fixed airflow limitation and progressive decline of lung function and punctuated by occasional exacerbations. The disease pathogenesis may involve activation of the bone marrow stimulating mobilization and lung-homing of progenitor cells. We investigated the hypothesis that lower circulating numbers of vascular endothelial progenitor cells (VEPCs are a consequence of increased lung-sequestration in COPD. Nonatopic, current or ex-smokers with diagnosed COPD and nonatopic, nonsmoking normal controls were enrolled. Blood and induced sputum extracted primitive hemopoietic progenitors (HPCs and VEPC were enumerated by flow cytometry. Migration and adhesive responses to fibronectin were assessed. In sputum, VEPC numbers were significantly greater in COPD compared to normal controls. In blood, VEPCs were significantly lower in COPD versus normal controls. There were no differences in HPC levels between the two groups in either compartment. Functionally, there was a greater migrational responsiveness of progenitors from COPD subjects to stromal cell-derived factor-1alpha (SDF-1α compared to normal controls. This was associated with greater numbers of CXCR4+ progenitors in sputum from COPD. Increased migrational responsiveness of progenitor cells may promote lung-homing of VEPC in COPD which may disrupt maintenance and repair of the airways and contribute to COPD disease pathogenesis.

  12. Exercise-Induced Skeletal Muscle Adaptations Alter the Activity of Adipose Progenitor Cells.

    Directory of Open Access Journals (Sweden)

    Daniel Zeve

    Full Text Available Exercise decreases adiposity and improves metabolic health; however, the physiological and molecular underpinnings of these phenomena remain unknown. Here, we investigate the effect of endurance training on adipose progenitor lineage commitment. Using mice with genetically labeled adipose progenitors, we show that these cells react to exercise by decreasing their proliferation and differentiation potential. Analyses of mouse models that mimic the skeletal muscle adaptation to exercise indicate that muscle, in a non-autonomous manner, regulates adipose progenitor homeostasis, highlighting a role for muscle-derived secreted factors. These findings support a humoral link between skeletal muscle and adipose progenitors and indicate that manipulation of adipose stem cell function may help address obesity and diabetes.

  13. Glioma migration: clues from the biology of neural progenitor cells and embryonic CNS cell migration.

    Science.gov (United States)

    Dirks, P B

    2001-06-01

    Neural stem cells have recently come to the forefront in neurobiology because of the possibilities for CNS repair by transplantation. Further understanding of the biology of these cells is critical for making their use in CNS repair possible. It is likely that these discoveries will also have spin-offs for neuro-oncology as primary brain tumors may arise from a CNS progenitor cell. An understanding of the normal migratory ability of these cells is also likely to have a very important impact on the knowledge of brain tumor invasion.

  14. Nestin expressing progenitor cells during establishment of the neural retina and its vasculature

    Science.gov (United States)

    Lee, Jong-Hyun; Park, Hyo-Suk; Shin, Ji Man; Chun, Myung-Hoon

    2012-01-01

    In order to test if nestin is a useful marker for various types of progenitor cells, we explored nestin expression in the retina during development. Nestin expression was co-evaluated with bromodeoxyuridine (BrdU) labeling and Griffonia simplicifolia isolectin B4 (GSIB4) histochemistry. Nestin immunoreactivity appears in cell soma of dividing neural progenitor cells and their leading processes in retinas from embryonic day (E) 13 to E20, in accordance with a BrdU-labeled pattern. At postnatal day (P) 5, it is restricted to the end feet of Müller cells. BrdU-labeled nuclei were mainly in the inner part of the inner nuclear layer in postnatal neonates. The retinal vessels demarcated with GSIB4-positive endothelial cells were first distributed in the nerve fiber layer from P3. Afterward the vascular branches sprouted and penetrated deeply into the retina. The endothelial cells positive for GSIB4 and the pericytes in the microvessels were additionally immunoreactive for nestin. Interestingly, the presumed migrating microglial cells showing only GSIB4 reactivity preceded the microvessels throughout the neuroblast layer during vascular sprouting and extension. These findings may suggest that nestin expression represents the proliferation and movement potential of the neural progenitor cells as well as the progenitor cells of the endothelial cell and the pericyte during retinal development. Thus, Müller glial cells might be potential neural progenitor cells of the retina, and the retinal microvasculature established by both the endothelial and the pericyte progenitor cells via vasculogenesis along microglia migrating routes sustains its angiogenic potential. PMID:22536550

  15. Human endothelial progenitor cells internalize high-density lipoprotein.

    Directory of Open Access Journals (Sweden)

    Kaemisa Srisen

    Full Text Available Endothelial progenitor cells (EPCs originate either directly from hematopoietic stem cells or from a subpopulation of monocytes. Controversial views about intracellular lipid traffic prompted us to analyze the uptake of human high density lipoprotein (HDL, and HDL-cholesterol in human monocytic EPCs. Fluorescence and electron microscopy were used to investigate distribution and intracellular trafficking of HDL and its associated cholesterol using fluorescent surrogates (bodipy-cholesterol and bodipy-cholesteryl oleate, cytochemical labels and fluorochromes including horseradish peroxidase and Alexa Fluor® 568. Uptake and intracellular transport of HDL were demonstrated after internalization periods from 0.5 to 4 hours. In case of HDL-Alexa Fluor® 568, bodipy-cholesterol and bodipy-cholesteryl oleate, a photooxidation method was carried out. HDL-specific reaction products were present in invaginations of the plasma membrane at each time of treatment within endocytic vesicles, in multivesicular bodies and at longer periods of uptake, also in lysosomes. Some HDL-positive endosomes were arranged in form of "strings of pearl"- like structures. HDL-positive multivesicular bodies exhibited intensive staining of limiting and vesicular membranes. Multivesicular bodies of HDL-Alexa Fluor® 568-treated EPCs showed multilamellar intra-vacuolar membranes. At all periods of treatment, labeled endocytic vesicles and organelles were apparent close to the cell surface and in perinuclear areas around the Golgi apparatus. No HDL-related particles could be demonstrated close to its cisterns. Electron tomographic reconstructions showed an accumulation of HDL-containing endosomes close to the trans-Golgi-network. HDL-derived bodipy-cholesterol was localized in endosomal vesicles, multivesicular bodies, lysosomes and in many of the stacked Golgi cisternae and the trans-Golgi-network Internalized HDL-derived bodipy-cholesteryl oleate was channeled into the lysosomal

  16. Date Palm (Phoenix dactylifera) Fruits as a Potential Cardioprotective Agent: The Role of Circulating Progenitor Cells.

    Science.gov (United States)

    Alhaider, Ibrahim A; Mohamed, Maged E; Ahmed, K K M; Kumar, Arun H S

    2017-01-01

    Context: Date palms, along with their fruits' dietary consumption, possess enormous medicinal and pharmacological activities manifested in their usage in a variety of ailments in the various traditional systems of medicine. In recent years, the identification of progenitor cells in the adult organ systems has opened an altogether new approach to therapeutics, due to the ability of these cells to repair the damaged cells/tissues. Hence, the concept of developing therapeutics, which can mobilize endogenous progenitor cells, following tissue injury, to enhance tissue repair process is clinically relevant. Objectives: The present study investigates the potential of date of palm fruit extracts in repairing tissue injury following myocardial infarction (MI) potentially by mobilizing circulating progenitor cells. Methods: Extracts of four different varieties of date palm fruits common in Saudi Arabia eastern provision were scrutinized for their total flavonoid, total phenolic, in vitro antioxidant capacity, as well as their effects on two different rodent MI models. Results: High concentrations of phenolic and flavonoid compounds were observed in date palm fruit extracts, which contributed to the promising antioxidant activities of these extracts and the observed high protective effect against various induced in vivo MI. The extracts showed ability to build up reserves and to mobilize circulating progenitor cells from bone marrow and peripheral circulation to the site of myocardial infraction. Conclusion: Date palm fruit extracts have the potential to mobilize endogenous circulating progenitor cells, which can promote tissue repair following ischemic injury.

  17. Targeted Ablation of Crb1 and Crb2 in Retinal Progenitor Cells Mimics Leber Congenital Amaurosis

    Science.gov (United States)

    Pellissier, Lucie P.; Alves, Celso Henrique; Quinn, Peter M.; Vos, Rogier M.; Tanimoto, Naoyuki; Lundvig, Ditte M. S.; Dudok, Jacobus J.; Hooibrink, Berend; Richard, Fabrice; Beck, Susanne C.; Huber, Gesine; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Le Bivic, André; Seeliger, Mathias W.; Wijnholds, Jan

    2013-01-01

    Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways. PMID:24339791

  18. Targeted ablation of CRB1 and CRB2 in retinal progenitor cells mimics Leber congenital amaurosis.

    Directory of Open Access Journals (Sweden)

    Lucie P Pellissier

    Full Text Available Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results in severe impairment of retinal function, abnormal lamination and thickening of the retina mimicking human Leber congenital amaurosis due to loss of CRB1 function. We show that the levels of CRB1 and CRB2 proteins are crucial for mouse retinal development, as they restrain the proliferation of retinal progenitor cells. The lack of these apical proteins results in altered cell cycle progression and increased number of mitotic cells leading to an increased number of late-born cell types such as rod photoreceptors, bipolar and Müller glia cells in postmitotic retinas. Loss of CRB1 and CRB2 in the retina results in dysregulation of target genes for the Notch1 and YAP/Hippo signaling pathways and increased levels of P120-catenin. Loss of CRB1 and CRB2 result in altered progenitor cell cycle distribution with a decrease in number of late progenitors in G1 and an increase in S and G2/M phase. These findings suggest that CRB1 and CRB2 suppress late progenitor pool expansion by regulating multiple proliferative signaling pathways.

  19. Aging of tissue-resident adult stem/progenitor cells and their pathological consequences.

    Science.gov (United States)

    Mimeault, M; Batra, S K

    2009-06-01

    The fascinating discovery of tissue-resident adult stem/progenitor cells in recent years led to an explosion of interest in the development of novel stem cell-based therapies for improving the regenerative capacity of these endogenous immature cells or transplanted cells for the repair of damaged and diseased tissues. In counterbalance, a growing body of evidence has revealed that the changes in phenotypic and functional properties of human adult stem/progenitor cells may occur during chronological aging and have severe pathological consequences. Especially, intense oxidative and metabolic stress and chronic inflammation, enhanced telomere attrition and defects in DNA repair mechanisms may lead to severe DNA damages and genomic instability in adult stem/progenitor cells with advancing age that may in turn trigger their replicative senescence and/or programmed cell death. Moreover, the changes in the intrinsic and extrinsic factors involved in the stringent control of self-renewal and multilineage differentiation capacities of these regenerative cells, including deregulated signals from the aged niche, may also contribute to their dysfunctions or loss during chronological aging. This age-associated decline in the regenerative capacity and number of functional adult stem/progenitor cells may increase the risk to develop certain diseases. At opposed end, the telomerase reactivation and accumulation of genetic alterations leading to a down-regulation of numerous tumor suppressor genes concomitant with the enhanced expression of diverse oncogenic products may result in their malignant transformation into cancer-initiating cells. Therefore, the rescue or replacement of aged and dysfunctional endogenous adult stem/progenitor cells or molecular targeting of their malignant counterpart, cancer stem/progenitor cells may constitute potential anti-aging and cancer therapies. These therapeutic strategies could be used for treating diverse devastating premature aging and age

  20. Derivation of myogenic progenitors directly from human pluripotent stem cells using a sphere-based culture.

    Science.gov (United States)

    Hosoyama, Tohru; McGivern, Jered V; Van Dyke, Jonathan M; Ebert, Allison D; Suzuki, Masatoshi

    2014-05-01

    Using stem cells to replace degenerating muscle cells and restore lost skeletal muscle function is an attractive therapeutic strategy for treating neuromuscular diseases. Myogenic progenitors are a valuable cell type for cell-based therapy and also provide a platform for studying normal muscle development and disease mechanisms in vitro. Human pluripotent stem cells represent a valuable source of tissue for generating myogenic progenitors. Here, we present a novel protocol for deriving myogenic progenitors from human embryonic stem (hES) and induced pluripotent stem (iPS) cells using free-floating spherical culture (EZ spheres) in a defined culture medium. hES cell colonies and human iPS cell colonies were expanded in medium supplemented with high concentrations (100 ng/ml) of fibroblast growth factor-2 (FGF-2) and epidermal growth factor in which they formed EZ spheres and were passaged using a mechanical chopping method. We found myogenic progenitors in the spheres after 6 weeks of culture and multinucleated myotubes following sphere dissociation and 2 weeks of terminal differentiation. A high concentration of FGF-2 plays a critical role for myogenic differentiation and is necessary for generating myogenic progenitors from pluripotent cells cultured as EZ spheres. Importantly, EZ sphere culture produced myogenic progenitors from human iPS cells generated from both healthy donors and patients with neuromuscular disorders (including Becker's muscular dystrophy, spinal muscular atrophy, and familial amyotrophic lateral sclerosis). Taken together, this study demonstrates a simple method for generating myogenic cells from pluripotent sources under defined conditions for potential use in disease modeling or cell-based therapies targeting skeletal muscle.

  1. Patients with refractory cytomegalovirus (CMV) infection following allogeneic haematopoietic stem cell transplantation are at high risk for CMV disease and non-relapse mortality.

    Science.gov (United States)

    Liu, J; Kong, J; Chang, Y J; Chen, H; Chen, Y H; Han, W; Wang, Y; Yan, C H; Wang, J Z; Wang, F R; Chen, Y; Zhang, X H; Xu, L P; Liu, K Y; Huang, X J

    2015-12-01

    Pre-emptive therapy is an effective approach for cytomegalovirus (CMV) control; however, refractory CMV still occurs in a considerable group of recipients after allogeneic haematopoietic stem cell transplantation (allo-HSCT). Until now, hardly any data have been available about the clinical characteristics and risk factors of refractory CMV, or its potential harmful impact on the clinical outcome following allo-HSCT. We studied transplant factors affecting refractory CMV in the 100 days after allo-HSCT, and the impact of refractory CMV on the risk of CMV disease and non-relapse mortality (NRM). We retrospectively studied 488 consecutive patients with CMV infection after allo-HSCT. Patients with refractory CMV in the 100 days after allo-HSCT had a higher incidence of CMV disease and NRM than those without refractory CMV (11.9% vs. 0.8% and 17.1% vs. 8.3%, respectively). Multivariate analysis showed that refractory CMV infection in the 100 days after allo-HSCT was an independent risk factor for CMV disease (hazard ratio (HR) 10.539, 95% CI 2.467-45.015, p 0.001), and that refractory CMV infection within 60-100 days after allo-HSCT was an independent risk factor for NRM (HR 8.435, 95% CI 1.511-47.099, p 0.015). Clinical factors impacting on the risk of refractory CMV infection included receiving transplants from human leukocyte antigen-mismatched family donors (HR 2.012, 95% CI 1.603-2.546, p refractory CMV infection during the early stage after allo-HSCT are at high risk for both CMV disease and NRM. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Efficacy and safety of low-dose ganciclovir preemptive therapy in allogeneic haematopoietic stem cell transplant recipients compared with conventional-dose ganciclovir: a prospective observational study.

    Science.gov (United States)

    Park, So-Youn; Lee, Sang-Oh; Choi, Sang-Ho; Kim, Yang Soo; Woo, Jun Hee; Baek, Seunghee; Sung, Heungsup; Kim, Mi-Na; Kim, Dae-Young; Lee, Jung-Hee; Lee, Je-Hwan; Lee, Kyoo-Hyung; Kim, Sung-Han

    2012-06-01

    We performed a prospective observational study comparing the efficacy and safety of low-dose ganciclovir (5 mg/kg/day) as initial preemptive therapy in allogeneic haematopoietic stem cell transplantation (HSCT) recipients with conventional-dose ganciclovir (10 mg/kg/day). All adult patients undergoing allogeneic HSCT were enrolled at a transplant centre over a 24 month period. The decision to use low-dose or conventional-dose ganciclovir was at the discretion of each attending haematologist. A logistic regression model with inverse probability of treatment weighting (IPTW) using propensity scores was performed to reduce the effect of the selection bias in assignment for ganciclovir preemptive therapy. Of the 252 HSCT recipients, 97 (38%) received preemptive ganciclovir therapy. Of these, 53 (55%) and 44 (45%) received low-dose and conventional-dose ganciclovir, respectively. The viral clearance rate was higher in the low-dose ganciclovir group [98% (52/53)] than in the conventional-dose ganciclovir group [86% (38/44), P = 0.04], while the low-dose ganciclovir group exhibited a longer viral clearance time (median 21.0 days) than the conventional-dose ganciclovir group (median 14.0 days, P = 0.05). The rate of discontinuation of therapy due to neutropenia or nephrotoxicity was similar in the two groups, although conventional-dose ganciclovir was changed to another regimen more frequently than low-dose ganciclovir. There were three cases of cytomegalovirus (CMV) disease in each group after the initial preemptive therapy. The logistic regression models using propensity scores also revealed that there were no significant differences in viral clearance, secondary episodes of CMV infection, CMV disease and overall mortality between the two groups. Low-dose ganciclovir appears to be safe, and to be at least as effective as conventional-dose ganciclovir for CMV viraemia in allogeneic HSCT recipients.

  3. Identification of human embryonic progenitor cell targeting peptides using phage display.

    Directory of Open Access Journals (Sweden)

    Paola A Bignone

    Full Text Available Human pluripotent stem (hPS cells are capable of differentiation into derivatives of all three primary embryonic germ layers and can self-renew indefinitely. They therefore offer a potentially scalable source of replacement cells to treat a variety of degenerative diseases. The ability to reprogram adult cells to induced pluripotent stem (iPS cells has now enabled the possibility of patient-specific hPS cells as a source of cells for disease modeling, drug discovery, and potentially, cell replacement therapies. While reprogramming technology has dramatically increased the availability of normal and diseased hPS cell lines for basic research, a major bottleneck is the critical unmet need for more efficient methods of deriving well-defined cell populations from hPS cells. Phage display is a powerful method for selecting affinity ligands that could be used for identifying and potentially purifying a variety of cell types derived from hPS cells. However, identification of specific progenitor cell-binding peptides using phage display may be hindered by the large cellular heterogeneity present in differentiating hPS cell populations. We therefore tested the hypothesis that peptides selected for their ability to bind a clonal cell line derived from hPS cells would bind early progenitor cell types emerging from differentiating hPS cells. The human embryonic stem (hES cell-derived embryonic progenitor cell line, W10, was used and cell-targeting peptides were identified. Competition studies demonstrated specificity of peptide binding to the target cell surface. Efficient peptide targeted cell labeling was accomplished using multivalent peptide-quantum dot complexes as detected by fluorescence microscopy and flow cytometry. The cell-binding peptides were selective for differentiated hPS cells, had little or no binding on pluripotent cells, but preferential binding to certain embryonic progenitor cell lines and early endodermal hPS cell derivatives. Taken

  4. Characterization of interstitial Cajal progenitors cells and their changes in Hirschsprung's disease.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Chen

    Full Text Available Interstitial cells of Cajal (ICC are critical to gastrointestinal motility. The phenotypes of ICC progenitors have been observed in the mouse gut, but whether they exist in the human colon and what abnormal changes in their quantity and ultrastructure are present in Hirschsprung's disease (HSCR colon remains uncertain. In this study, we collected the surgical resection of colons, both proximal and narrow segments, from HSCR patients and normal controls. First, we identified the progenitor of ICC in normal adult colon using immunofluorescent localization techniques with laser confocal microscopy. Next, the progenitors were sorted to observe their morphology. We further applied flow cytometry to examine the content of ICC progenitors in these fresh samples. The ultrastructural changes in the narrow and proximal parts of the HSCR colon were observed using transmission electron microscopy (TEM and were compared with the normal adult colon. The presumed early progenitor (c-Kit(lowCD34(+Igf1r(+ and committed progenitor (c-Kit(+CD34(+Igf1r(+ of ICC exist in adult normal colon as well as in the narrow and proximal parts of the HSCR colon. However, the proportions of mature, early and committed progenitors of ICC were dramatically reduced in the narrow segment of the HSCR colon. The proportions of mature and committed progenitors of ICC in the proximal segment of the HSCR colon were lower than in the adult normal colon. Ultrastructurally, ICC, enteric nerves, and smooth muscle in the narrow segment of the HSCR colon showed severe injury, including swollen vacuola or ted mitochondria, disappearance of mitochondrial cristae, dilated rough endoplasmic reticulum, vesiculation and degranulation, and disappearance of the caveolae on the ICC membrane surface. The contents of ICC and its progenitors in the narrow part of the HSCR colon were significantly decreased than those of adult colon, which may be associated with HSCR pathogenesis.

  5. ETV5 Regulates Sertoli Cell Chemokines Involved in Mouse Stem/Progenitor Spermatogonia Maintenance

    Science.gov (United States)

    Simon, Liz; Ekman, Gail C; Garcia, Thomas; Carnes, Kay; Zhang, Zhen; Murphy, Theresa; Murphy, Kenneth M; Hess, Rex A; Cooke, Paul S; Hofmann, Marie–Claude

    2010-01-01

    Spermatogonial stem cells are the only stem cells in the body that transmit genetic information to offspring. Although growth factors responsible for self–renewal of these cells are known, the factors and mechanisms that attract and physically maintain these cells within their microenvironment are poorly understood. Mice with targeted disruption of Ets variant gene 5 (Etv5) show total loss of stem/progenitor spermatogonia following the first wave of spermatogenesis, resulting in a Sertoli cell–only phenotype and aspermia. Microarray analysis of primary Sertoli cells from Etv5 knockout (Etv5−/−) versus wild–type (WT) mice revealed significant decreases in expression of several chemokines. Chemotaxis assays demonstrated that migration of stem/progenitor spermatogonia toward Etv5−/− Sertoli cells was significantly decreased compared to migration toward WT Sertoli cells. Interestingly, differentiating spermatogonia, spermatocytes, and round spermatids were not chemoattracted by WT Sertoli cells, whereas stem/progenitor spermatogonia showed a high and significant chemotactic index. Rescue assays using recombinant chemokines indicated that C-C-motif ligand 9 (CCL9) facilitates Sertoli cell chemoattraction of stem/progenitor spermatogonia, which express C-C-receptor type 1 (CCR1). In addition, there is protein–DNA interaction between ETV5 and Ccl9, suggesting that ETV5 might be a direct regulator of Ccl9 expression. Taken together, our data show for the first time that Sertoli cells are chemoattractive for stem/progenitor spermatogonia, and that production of specific chemokines is regulated by ETV5. Therefore, changes in chemokine production and consequent decreases in chemoattraction by Etv5−/− Sertoli cells helps to explain stem/progenitor spermatogonia loss in Etv5−/− mice. PMID:20799334

  6. An imbalance in progenitor cell populations reflects tumour progression in breast cancer primary culture models

    LENUS (Irish Health Repository)

    Donatello, Simona

    2011-04-26

    Abstract Background Many factors influence breast cancer progression, including the ability of progenitor cells to sustain or increase net tumour cell numbers. Our aim was to define whether alterations in putative progenitor populations could predict clinicopathological factors of prognostic importance for cancer progression. Methods Primary cultures were established from human breast tumour and adjacent non-tumour tissue. Putative progenitor cell populations were isolated based on co-expression or concomitant absence of the epithelial and myoepithelial markers EPCAM and CALLA respectively. Results Significant reductions in cellular senescence were observed in tumour versus non-tumour cultures, accompanied by a stepwise increase in proliferation:senescence ratios. A novel correlation between tumour aggressiveness and an imbalance of putative progenitor subpopulations was also observed. Specifically, an increased double-negative (DN) to double-positive (DP) ratio distinguished aggressive tumours of high grade, estrogen receptor-negativity or HER2-positivity. The DN:DP ratio was also higher in malignant MDA-MB-231 cells relative to non-tumourogenic MCF-10A cells. Ultrastructural analysis of the DN subpopulation in an invasive tumour culture revealed enrichment in lipofuscin bodies, markers of ageing or senescent cells. Conclusions Our results suggest that an imbalance in tumour progenitor subpopulations imbalances the functional relationship between proliferation and senescence, creating a microenvironment favouring tumour progression.

  7. EMT Involved in Migration of Stem/Progenitor Cells for Pituitary Development and Regeneration

    Science.gov (United States)

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    Epithelial–mesenchymal transition (EMT) and cell migration are important processes in embryonic development of many tissues as well as oncogenesis. The pituitary gland is a master endocrine tissue and recent studies indicate that Sox2-expressing stem/progenitor cells actively migrate and develop this tissue during embryogenesis. Notably, although migration activity of stem/progenitor cells in the postnatal period seems to be reduced compared to that in the embryonic period, it is hypothesized that stem/progenitor cells in the adult pituitary re-migrate from their microenvironment niche to contribute to the regeneration system. Therefore, elucidation of EMT in the pituitary stem/progenitor cells will promote understanding of pituitary development and regeneration, as well as diseases such as pituitary adenoma. In this review, so as to gain more insights into the mechanisms of pituitary development and regeneration, we summarize the EMT in the pituitary by focusing on the migration of pituitary stem/progenitor cells during both embryonic and postnatal organogenesis. PMID:27058562

  8. Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development

    NARCIS (Netherlands)

    Barker, N.; Rookmaaker, M.B.; Kujala, P.; Ng, A.; Leushacke, M.; Snippert, H.; van de Wetering, M.; Tan, S.; van Es, J.H.; Huch, M.; Poulsom, R.; Verhaar, M.C.; Peters, P.J.; Clevers, H.

    2012-01-01

    Multipotent stem cells and their lineage-restricted progeny drive nephron formation within the developing kidney. Here, we document expression of the adult stem cell marker Lgr5 in the developing kidney and assess the stem/progenitor identity of Lgr5(+ve) cells via in vivo lineage tracing. The

  9. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation

    NARCIS (Netherlands)

    Walasek, Marta A.; Bystrykh, Leonid; van den Boom, Vincent; Olthof, Sandra; Ausema, Albertina; Ritsema, Martha; Huls, Gerwin; de Haan, Gerald; van Os, Ronald

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small

  10. The combination of valproic acid and lithium delays hematopoietic stem/progenitor cell differentiation.

    NARCIS (Netherlands)

    Walasek, M.A.; Bystrykh, L.; Boom, V. van den; Olthof, S.; Ausema, A.; Ritsema, M.; Huls, G.A.; Haan, G. de; Os, R. van

    2012-01-01

    Despite increasing knowledge on the regulation of hematopoietic stem/progenitor cell (HSPC) self-renewal and differentiation, in vitro control of stem cell fate decisions has been difficult. The ability to inhibit HSPC commitment in culture may be of benefit to cell therapy protocols. Small

  11. Transplantation of human fetal pancreatic progenitor cells ameliorates renal injury in streptozotocin-induced diabetic nephropathy.

    Science.gov (United States)

    Jiang, Yongwei; Zhang, Wenjian; Xu, Shiqing; Lin, Hua; Sui, Weiguo; Liu, Honglin; Peng, Liang; Fang, Qing; Chen, Li; Lou, Jinning

    2017-06-27

    Diabetic nephropathy (DN) is a severe complication of diabetes mellitus (DM). Pancreas or islet transplantation has been reported to prevent the development of DN lesions and ameliorate or reverse existing glomerular lesions in animal models. Shortage of pancreas donor is a severe problem. Islets derived from stem cells may offer a potential solution to this problem. To evaluate the effect of stem cell-derived islet transplantation on DN in a rat model of streptozotocin-induced DM. Pancreatic progenitor cells were isolated from aborted fetuses of 8 weeks of gestation. And islets were prepared by suspension culture after a differentiation of progenitor cells in medium containing glucagon-like peptide-1 (Glp-1) and nicotinamide. Then islets were transplanted into the liver of diabetic rats via portal vein. Blood glucose, urinary volume, 24 h urinary protein and urinary albumin were measured once biweekly for 16 weeks. Graft survival was evaluated by monitoring human C-peptide level in rat sera and by immunohistochemical staining for human mitochondrial antigen and human C-peptide in liver tissue. The effect of progenitor-derived islets on filtration membrane was examined by electron microscopy and real-time polymerase chain reaction (PCR). Immunohistochemical staining, real-time PCR and western blot were employed for detecting fibronectin, protein kinase C beta (PKCβ), protein kinase A (PKA), inducible nitric oxide synthase (iNOS) and superoxide dismutase (SOD). Islet-like clusters derived from 8th gestational-week human fetal pancreatic progenitors survived in rat liver. And elevated serum level of human C-peptide was detected. Blood glucose, 24 h urinary protein and urinary albumin were lower in progenitor cell group than those in DN or insulin treatment group. Glomerular basement membrane thickness and fibronectin accumulation decreased significantly while podocytes improved morphologically in progenitor cell group. Furthermore, receptor of advanced glycation

  12. Changes of number of cells expressing proliferation and progenitor cell markers with age in rabbit intervertebral discs.

    Science.gov (United States)

    Yasen, Miersalijiang; Fei, Qinming; Hutton, William C; Zhang, Jian; Dong, Jian; Jiang, Xiaoxing; Zhang, Feng

    2013-05-01

    Basic knowledge about the normal regeneration process within the intervertebral disc (IVD) is important to the understanding of the underlying biology. The presence of progenitor and stem cells in IVD has been verified. However, changes of number of progenitor and stem cells with age are still unknown. In this study, changes of cell proliferation and progenitor cell markers with age in IVD cells from rabbits of two different ages were investigated using flow cytometry, immunohistochemistry, real-time polymerase chain reaction, and western blot analysis. Proliferating cell nuclear antigen (PCNA) was chosen as a marker for proliferation, and Notch1, Jagged1, C-KIT, CD166 were chosen as stem/progenitor cell markers. Cell cycle analysis showed that cell number in the G2/M phase of the young rabbits was significantly higher than that of mature rabbits. Immunohistochemical staining demonstrated the expression of PCNA, C-KIT, CD166, Notch1, and Jagged1 in both young and mature annulus fibrosus (AF). Protein expressions of these cell markers in the young rabbits were all significantly higher than those in the mature rabbits. The expression levels of PCNA, CD166, C-KIT, Jagged1 were significantly higher in the AF, and PCNA, C-KIT in the nucleus pulposus from young rabbits than those from the mature rabbits. These findings demonstrated that both proliferation and progenitor cells exist in rabbit IVDs and the number of cells expressing proliferation and progenitor cell markers decreases with age in the rabbit IVD cells. Methods that are designed to maintain the endogenous progenitor cells and stimulate their proliferation could be successful in preventing or inhibiting degenerative disc disease.

  13. Blockade of CD40–TRAF2,3 or CD40–TRAF6 is sufficient to inhibit pro-inflammatory responses in non-haematopoietic cells

    Science.gov (United States)

    Portillo, Jose-Andres C; Greene, Jennifer A; Schwartz, Isaac; Subauste, Maria Cecilia; Subauste, Carlos S

    2015-01-01

    Inhibition of the CD40–CD154 pathway controls inflammatory disorders. Unfortunately, administration of anti-CD154 monoclonal antibodies causes thromboembolism. Blockade of signalling downstream of CD40 may represent an approach to treat CD40-driven inflammatory disorders. Blocking tumour necrosis factor receptor-associated factor 6 (TRAF6) signalling downstream of CD40 in MHC II+ cells diminishes inflammation. However, CD40–TRAF6 blockade may cause immunosuppression. We examined the role of CD40–TRAF2,3 and CD40–TRAF6 signalling in the development of pro-inflammatory responses in human non-haematopoietic and monocytic cells. Human aortic endothelial cells, aortic smooth muscle cells, renal proximal tubule epithelial cells, renal mesangial cells and monocytic cells were transduced with retroviral vectors that encode wild-type CD40, CD40 with a mutation that prevents TRAF2,3 recruitment (ΔT2,3), TRAF6 recruitment (ΔT6) or both TRAF2,3 plus TRAF6 recruitment (ΔT2,3,6). Non-haematopoietic cells that expressed CD40 ΔT2,3 exhibited marked inhibition in CD154-induced up-regulation of vascular cell adhesion molecule 1, intercellular adhesion molecule 1 (ICAM-1), monocyte chemotactic protein 1 (MCP-1), tissue factor and matrix metalloproteinase 9. Similar results were obtained with cells that expressed CD40 ΔT6. Although both mutations impaired ICAM-1 up-regulation in monocytic cells, only expression of CD40 ΔT6 reduced MCP-1 and tissue factor up-regulation in these cells. Treatment of endothelial and smooth muscle cells with cell-permeable peptides that block CD40–TRAF2,3 or CD40–TRAF6 signalling impaired pro-inflammatory responses. In contrast, while the CD40–TRAF2,3 blocking peptide did not reduce CD154-induced dendritic cell maturation, the CD40–TRAF6 blocking peptide impaired this response. Hence, preventing CD40–TRAF2,3 or CD40–TRAF6 interaction inhibits pro-inflammatory responses in human non-haematopoietic cells. In contrast to inhibition

  14. Ultrastructural Evidence of Exosome Secretion by Progenitor Cells in Adult Mouse Myocardium and Adult Human Cardiospheres

    Directory of Open Access Journals (Sweden)

    Lucio Barile

    2012-01-01

    Full Text Available The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34+ stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an “off-the-shelf” product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.

  15. Characterization of Lgr5+ Progenitor Cell Transcriptomes after Neomycin Injury in the Neonatal Mouse Cochlea

    Directory of Open Access Journals (Sweden)

    Shasha Zhang

    2017-07-01

    Full Text Available Lgr5+ supporting cells (SCs are enriched hair cell (HC progenitors in the cochlea. Both in vitro and in vivo studies have shown that HC injury can spontaneously activate Lgr5+ progenitors to regenerate HCs in the neonatal mouse cochlea. Promoting HC regeneration requires the understanding of the mechanism of HC regeneration, and this requires knowledge of the key genes involved in HC injury-induced self-repair responses that promote the proliferation and differentiation of Lgr5+ progenitors. Here, as expected, we found that neomycin-treated Lgr5+ progenitors (NLPs had significantly greater HC regeneration ability, and greater but not significant proliferation ability compared to untreated Lgr5+ progenitors (ULPs in response to neomycin exposure. Next, we used RNA-seq analysis to determine the differences in the gene-expression profiles between the transcriptomes of NLPs and ULPs from the neonatal mouse cochlea. We first analyzed the genes that were enriched and differentially expressed in NLPs and ULPs and then analyzed the cell cycle genes, the transcription factors, and the signaling pathway genes that might regulate the proliferation and differentiation of Lgr5+ progenitors. We found 9 cell cycle genes, 88 transcription factors, 8 microRNAs, and 16 cell-signaling pathway genes that were significantly upregulated or downregulated after neomycin injury in NLPs. Lastly, we constructed a protein-protein interaction network to show the interaction and connections of genes that are differentially expressed in NLPs and ULPs. This study has identified the genes that might regulate the proliferation and HC regeneration of Lgr5+ progenitors after neomycin injury, and investigations into the roles and mechanisms of these genes in the cochlea should be performed in the future to identify potential therapeutic targets for HC regeneration.

  16. The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor.

    Science.gov (United States)

    Seehus, Corey R; Aliahmad, Parinaz; de la Torre, Brian; Iliev, Iliyan D; Spurka, Lindsay; Funari, Vincent A; Kaye, Jonathan

    2015-06-01

    Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.

  17. Generation of stratified squamous epithelial progenitor cells from mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Satoru Yoshida

    Full Text Available BACKGROUND: Application of induced pluripotent stem (iPS cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. METHODOLOGY/PRINCIPAL FINDINGS: We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. CONCLUSIONS/SIGNIFICANCE: These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets.

  18. Generation of Stratified Squamous Epithelial Progenitor Cells from Mouse Induced Pluripotent Stem Cells

    Science.gov (United States)

    Yoshida, Satoru; Yasuda, Miyuki; Miyashita, Hideyuki; Ogawa, Yoko; Yoshida, Tetsu; Matsuzaki, Yumi; Tsubota, Kazuo; Okano, Hideyuki; Shimmura, Shigeto

    2011-01-01

    Background Application of induced pluripotent stem (iPS) cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. Methodology/Principal Findings We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method) with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. Conclusions/Significance These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets. PMID:22174914

  19. Protection of neurons derived from human neural progenitor cells by veratridine.

    Science.gov (United States)

    Morgan, Peter J; Ortinau, Stefanie; Frahm, Jana; Krüger, Norman; Rolfs, Arndt; Frech, Moritz J

    2009-08-26

    The survival of developing dopaminergic neurons has been shown to be modulated by voltage-dependent mechanisms. Manipulation of these mechanisms in human neural progenitor cell cultures could improve the survival of immature dopaminergic neurons, and therefore aid research into pharmacological and cell replacement therapies for Parkinson's disease. Here, we examined the effect of the Na+ channel agonist veratridine on the human fetal neural progenitor ReNcell VM cell line. Neuronal differentiation was determined by immunocytochemistry, whereas patch clamp recordings showed the expression of functional voltage-gated sodium channels. Our results show that veratridine is neuroprotective in human fetal neural progenitor cells, which may benefit studies investigating neuronal development by reducing premature death amongst developing neurons.

  20. Resistance exercise increases endothelial progenitor cells and angiogenic factors.

    Science.gov (United States)

    Ross, Mark D; Wekesa, Antony L; Phelan, John P; Harrison, Michael

    2014-01-01

    Bone marrow-derived endothelial progenitor cells (EPC) are involved in vascular growth and repair. They increase in the circulation after a single bout of aerobic exercise, potentially related to muscle ischemia. Muscular endurance resistance exercise (MERE) bouts also have the potential to induce muscle ischemia if appropriately structured. The objective of this study is to determine the influence of a single bout of MERE on circulating EPC and related angiogenic factors. Thirteen trained men age 22.4 ± 0.5 yr (mean ± SEM) performed a bout of MERE consisting of three sets of six exercises at participants' 15-repetition maximum without resting between repetitions or exercises. The MERE bout duration was 12.1 ± 0.6 min. Blood lactate and HR were 11.9 ± 0.9 mmol·L and 142 ± 5 bpm, respectively, at the end of MERE. Blood was sampled preexercise and at 10 min, 2 h, and 24 h postexercise. Circulating EPC and serum concentrations of vascular endothelial growth factors (VEGF-A, VEGF-C, and VEGF-D), granulocyte colony stimulating factor, soluble Tie-2, soluble fms-like tyrosine kinase-1, and matrix metalloproteinases (MMP-1, MMP-2, MMP-3, MMP-9, and MMP-9) were higher (P < 0.05) in the postexercise period. Circulating EPC levels were unchanged at 10 min postexercise but higher at 2 h postexercise (P < 0.05). The concentration of most angiogenic factors and metalloproteinases were higher at 10 min postexercise (VEGF-A, +38%; VEGF-C, +40%; VEGF-D, +9%; soluble Tie-2, +15%; soluble fms-like tyrosine kinase-1, +24%; MMP-1, +62%; MMP-2, +3%; MMP-3, +54%; and MMP-9, +45%; all P < 0.05). Soluble E-selectin was lower (P < 0.05) at 2 and 24 h postexercise, with endothelial microparticles and thrombomodulin unchanged. Short intense bouts of MERE can trigger increases in circulating EPC and related angiogenic factors, potentially contributing to vascular adaptation and vasculoprotection.

  1. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells.

    Science.gov (United States)

    Stopp, Sabine; Bornhäuser, Martin; Ugarte, Fernando; Wobus, Manja; Kuhn, Matthias; Brenner, Sebastian; Thieme, Sebastian

    2013-04-01

    The melanoma cell adhesion molecule defines mesenchymal stromal cells in the human bone marrow that regenerate bone and establish a hematopoietic microenvironment in vivo. The role of the melanoma cell adhesion molecule in primary human mesenchymal stromal cells and the maintenance of hematopoietic stem and progenitor cells during ex vivo culture has not yet been demonstrated. We applied RNA interference or ectopic overexpression of the melanoma cell adhesion molecule in human mesenchymal stromal cells to evaluate the effect of the melanoma cell adhesion molecule on their proliferation and differentiation as well as its influence on co-cultivated hematopoietic stem and progenitor cells. Knockdown and overexpression of the melanoma cell adhesion molecule affected several characteristics of human mesenchymal stromal cells related to osteogenic differentiation, proliferation, and migration. Furthermore, knockdown of the melanoma cell adhesion molecule in human mesenchymal stromal cells stimulated the proliferation of hematopoietic stem and progenitor cells, and strongly reduced the formation of long-term culture-initiating cells. In contrast, melanoma cell adhesion molecule-overexpressing human mesenchymal stromal cells provided a supportive microenvironment for hematopoietic stem and progenitor cells. Expression of the melanoma cell adhesion molecule increased the adhesion of hematopoietic stem and progenitor cells to human mesenchymal stromal cells and their migration beneath the monolayer of human mesenchymal stromal cells. Our results demonstrate that the expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells determines their fate and regulates the maintenance of hematopoietic stem and progenitor cells through direct cell-cell contact.

  2. Embryonic Hematopoietic Progenitor Cells Reside in Muscle before Bone Marrow Hematopoiesis.

    Directory of Open Access Journals (Sweden)

    Yuka Tanaka

    Full Text Available In mice, hematopoietic cells home to bone marrow from fetal liver prenatally. To elucidate mechanisms underlying homing, we performed immunohistochemistry with the hematopoietic cell marker c-Kit, and observed c-Kit(+ cells localized inside muscle surrounding bone after 14.5 days post coitum. Flow cytometric analysis showed that CD45(+ c-Kit(+ hematopoietic cells were more abundant in muscle than in bone marrow between 14.5 and 17.5 days post coitum, peaking at 16.5 days post coitum. CD45(+ c-Kit(+ cells in muscle at 16.5 days post coitum exhibited higher expression of Gata2, among several hematopoietic genes, than did fetal liver or bone marrow cells. Colony formation assays revealed that muscle hematopoietic cells possess hematopoietic progenitor activity. Furthermore, exo utero transplantation revealed that fetal liver hematopoietic progenitor cells home to muscle and then to BM. Our findings demonstrate that hematopoietic progenitor cell homing occurs earlier than previously reported and that hematopoietic progenitor cells reside in muscle tissue before bone marrow hematopoiesis occurs during mouse embryogenesis.

  3. Embryonic Hematopoietic Progenitor Cells Reside in Muscle before Bone Marrow Hematopoiesis.

    Science.gov (United States)

    Tanaka, Yuka; Inoue-Yokoo, Tomoko; Kulkeaw, Kasem; Yanagi-Mizuochi, Chiyo; Shirasawa, Senji; Nakanishi, Yoichi; Sugiyama, Daisuke

    2015-01-01

    In mice, hematopoietic cells home to bone marrow from fetal liver prenatally. To elucidate mechanisms underlying homing, we performed immunohistochemistry with the hematopoietic cell marker c-Kit, and observed c-Kit(+) cells localized inside muscle surrounding bone after 14.5 days post coitum. Flow cytometric analysis showed that CD45(+) c-Kit(+) hematopoietic cells were more abundant in muscle than in bone marrow between 14.5 and 17.5 days post coitum, peaking at 16.5 days post coitum. CD45(+) c-Kit(+) cells in muscle at 16.5 days post coitum exhibited higher expression of Gata2, among several hematopoietic genes, than did fetal liver or bone marrow cells. Colony formation assays revealed that muscle hematopoietic cells possess hematopoietic progenitor activity. Furthermore, exo utero transplantation revealed that fetal liver hematopoietic progenitor cells home to muscle and then to BM. Our findings demonstrate that hematopoietic progenitor cell homing occurs earlier than previously reported and that hematopoietic progenitor cells reside in muscle tissue before bone marrow hematopoiesis occurs during mouse embryogenesis.

  4. Simultaneous Measurement of Human Hematopoietic Stem and Progenitor Cells In Blood Using Multi-color Flow Cytometry

    Science.gov (United States)

    Cimato, Thomas R.; Furlage, Rosemary L.; Conway, Alexis; Wallace, Paul K.

    2016-01-01

    Hematopoietic stem cells are the source of all inflammatory cell types. Discovery of specific cell surface markers unique to human hematopoietic stem (HSC) and progenitor (HSPC) cell populations has facilitated studies of their development from stem cells to mature cells. The specific marker profiles of HSCs and HSPCs can be used to understand their role in human inflammatory diseases. The goal of this study is to simultaneously measure HSCs and HSPCs in normal human venous blood using multi-color flow cytometry. Our secondary aim is to determine how G-CSF mobilization alters the quantity of each HSC and HSPC population. Here we show that cells within the CD34+ fraction of human venous blood contains cells with the same cell surface markers found in human bone marrow samples. Mobilization with G-CSF significantly increases the quantity of total CD34+ cells, blood borne HSCs, multipotent progenitors, common myeloid progenitors, and megakaryocyte erythroid progenitors as a percentage of total MNCs analyzed. The increase in blood borne common lymphoid and granulocyte macrophage progenitors with G-CSF treatment did not reach significance. G-CSF treatment predominantly increased the numbers of HSCs and multipotent progenitors in the total CD34+ cell population; common myeloid progenitors and megakaryocyte erythroid progenitors were enriched relative to total MNCs analyzed, but not relative to total CD34+ cells. Our findings illustrate the utility of multi-color flow cytometry to quantify circulating HSCs and HSPCs in venous blood samples from human subjects. PMID:26663713

  5. Human neural progenitors express functional lysophospholipid receptors that regulate cell growth and morphology

    Directory of Open Access Journals (Sweden)

    Callihan Phillip

    2008-12-01

    Full Text Available Abstract Background Lysophospholipids regulate the morphology and growth of neurons, neural cell lines, and neural progenitors. A stable human neural progenitor cell line is not currently available in which to study the role of lysophospholipids in human neural development. We recently established a stable, adherent human embryonic stem cell-derived neuroepithelial (hES-NEP cell line which recapitulates morphological and phenotypic features of neural progenitor cells isolated from fetal tissue. The goal of this study was to determine if hES-NEP cells express functional lysophospholipid receptors, and if activation of these receptors mediates cellular responses critical for neural development. Results Our results demonstrate that Lysophosphatidic Acid (LPA and Sphingosine-1-phosphate (S1P receptors are functionally expressed in hES-NEP cells and are coupled to multiple cellular signaling pathways. We have shown that transcript levels for S1P1 receptor increased significantly in the transition from embryonic stem cell to hES-NEP. hES-NEP cells express LPA and S1P receptors coupled to Gi/o G-proteins that inhibit adenylyl cyclase and to Gq-like phospholipase C activity. LPA and S1P also induce p44/42 ERK MAP kinase phosphorylation in these cells and stimulate cell proliferation via Gi/o coupled receptors in an Epidermal Growth Factor Receptor (EGFR- and ERK-dependent pathway. In contrast, LPA and S1P stimulate transient cell rounding and aggregation that is independent of EGFR and ERK, but dependent on the Rho effector p160 ROCK. Conclusion Thus, lysophospholipids regulate neural progenitor growth and morphology through distinct mechanisms. These findings establish human ES cell-derived NEP cells as a model system for studying the role of lysophospholipids in neural progenitors.

  6. Primary liver tumour of intermediate (hepatocyte-bile duct cell) phenotype: a progenitor cell tumour?

    Science.gov (United States)

    Robrechts, C; De Vos, R; Van den Heuvel, M; Van Cutsem, E; Van Damme, B; Desmet, V; Roskams, T

    1998-08-01

    A 57-year-old female patient presented with painless obstructive jaundice and mild mesogastric pain; she was in good general condition on admission. Abdominal ultrasonography revealed diffuse tumoral invasion of the liver, suggesting diffuse metastases. A liver biopsy showed a tumour with a trabecular growth pattern, composed of uniform relatively small cells, very suggestive of an endocrine carcinoma. Additional immunohistochemical stains, however, did not show any endocrine differentiation, but showed positivity for both hepatocyte-type cytokeratins (cytokeratin 8 and 18) and bile duct-type cytokeratins (cytokeratin 7 and 19). In addition, parathyroid hormone-related peptide, shown to be a good marker for cholangiocarcinoma, was immunoreactive. Electron microscopy revealed tumour cells with an intermediate phenotype: the cells clearly showed hepatocyte features on one hand and bile duct cell features on the other hand. Nine days after admission, the patient died due to liver failure and hepatic encephalopathy. Autopsy excluded another primary tumour site. Overall, this tumour was a primary liver tumour with an intermediate phenotype and with a very rapid clinical course. The intermediate (between hepatocyte and bile duct cell) phenotype suggests an immature progenitor cell origin, which is concordant with a rapid clinical course. This type of tumour has not been described previously and provides additional evidence for the existence of progenitor cells in human liver.

  7. Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice.

    Science.gov (United States)

    Li, Lei; Newton, Phillip T; Bouderlique, Thibault; Sejnohova, Marie; Zikmund, Tomas; Kozhemyakina, Elena; Xie, Meng; Krivanek, Jan; Kaiser, Jozef; Qian, Hong; Dyachuk, Vyacheslav; Lassar, Andrew B; Warman, Matthew L; Barenius, Björn; Adameyko, Igor; Chagin, Andrei S

    2017-03-01

    Articular cartilage has little regenerative capacity. Recently, genetic lineage tracing experiments have revealed chondrocyte progenitors at the articular surface. We further characterized these progenitors by using in vivo genetic approaches. Histone H2B-green fluorescent protein retention revealed that superficial cells divide more slowly than underlying articular chondrocytes. Clonal genetic tracing combined with immunohistochemistry revealed that superficial cells renew their number by symmetric division, express mesenchymal stem cell markers, and generate chondrocytes via both asymmetric and symmetric differentiation. Quantitative analysis of cellular kinetics, in combination with phosphotungstic acid-enhanced micro-computed tomography, showed that superficial cells generate chondrocytes and contribute to the growth and reshaping of articular cartilage. Furthermore, we found that cartilage renewal occurs as the progeny of superficial cells fully replace fetal chondrocytes during early postnatal life. Thus, superficial cells are self-renewing progenitors that are capable of maintaining their own population and fulfilling criteria of unipotent adult stem cells. Furthermore, the progeny of these cells reconstitute adult articular cartilage de novo, entirely substituting fetal chondrocytes.-Li, L., Newton, P. T., Bouderlique, T., Sejnohova, M., Zikmund, T., Kozhemyakina, E., Xie, M., Krivanek, J., Kaiser, J., Qian, H., Dyachuk, V., Lassar, A. B., Warman, M. L., Barenius, B., Adameyko, I., Chagin, A. S. Superficial cells are self-renewing chondrocyte progenitors, which form the articular cartilage in juvenile mice. © FASEB.

  8. Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain.

    Science.gov (United States)

    Pilaz, Louis-Jan; McMahon, John J; Miller, Emily E; Lennox, Ashley L; Suzuki, Aussie; Salmon, Edward; Silver, Debra L

    2016-01-06

    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Electrotaxis of cardiac progenitor cells, cardiac fibroblasts, and induced pluripotent stem cell-derived cardiac progenitor cells requires serum and is directed via PI3'K pathways.

    Science.gov (United States)

    Frederich, Bert J; Timofeyev, Valeriy; Thai, Phung N; Haddad, Michael J; Poe, Adam; Lau, Victor C; Moshref, Maryam; Knowlton, Anne A; Sirish, Padmini; Chiamvimonvat, Nipavan

    2017-06-28

    The limited regenerative capacity of cardiac tissue has long been an obstacle to treating damaged myocardium. Cell-based therapy offers an enormous potential to the current treatment paradigms. However, the efficacy of regenerative therapies remains limited by inefficient delivery and engraftment. Electrotaxis (electrically guided cell movement) has been clinically used to improve recovery in a number of tissues but has not been investigated for treating myocardial damage. The purpose of this study was to test the electrotactic behaviors of several types of cardiac cells. Cardiac progenitor cells (CPCs), cardiac fibroblasts (CFs), and human induced pluripotent stem cell-derived cardiac progenitor cells (hiPSC-CPCs) were used. CPCs and CFs electrotax toward the anode of a direct current electric field, whereas hiPSC-CPCs electrotax toward the cathode. The voltage-dependent electrotaxis of CPCs and CFs requires the presence of serum in the media. Addition of soluble vascular cell adhesion molecule to serum-free media restores directed migration. We provide evidence that CPC and CF electrotaxis is mediated through phosphatidylinositide 3-kinase signaling. In addition, very late antigen-4, an integrin and growth factor receptor, is required for electrotaxis and localizes to the anodal edge of CPCs in response to direct current electric field. The hiPSC-derived CPCs do not express very late antigen-4, migrate toward the cathode in a voltage-dependent manner, and, similar to CPCs and CFs, require media serum and phosphatidylinositide 3-kinase activity for electrotaxis. The electrotactic behaviors of these therapeutic cardiac cells may be used to improve cell-based therapy for recovering function in damaged myocardium. Published by Elsevier Inc.

  10. Mesenchymal stem cell therapy stimulates endogenous host progenitor cells to improve colonic epithelial regeneration.

    Directory of Open Access Journals (Sweden)

    Alexandra Sémont

    Full Text Available Patients who undergo pelvic radiotherapy may develop severe and chronic complications resulting from gastrointestinal alterations. The lack of curative treatment highlights the importance of novel and effective therapeutic strategies. We thus tested the therapeutic benefit of mesenchymal stem cells (MSC treatment and proposed molecular mechanisms of action. MSC efficacy was tested in an experimental model of radiation-induced severe colonic ulceration histologically similar to that observed in patients. In this model, MSC from bone marrow were administered intravenously, immediately or three weeks (established lesions after irradiation. MSC therapy reduces radiation-induced colonic ulceration and increases animal survival. MSC treatment induces therapeutic efficacy whatever the time of cell infusion. Infused-MSC engraft in the colon but also increase endogenous MSC mobilization in blood that have lasting benefits over time. In vitro analysis demonstrates that the MSC effect is mediated by paracrine mechanisms through the non-canonical WNT (Wingless integration site pathway. In irradiated rat colons, MSC treatment increases the expression of the non-canonical WNT4 ligand by epithelial cells. The epithelial regenerative process is improved after MSC injection by stimulation of colonic epithelial cells positive for SOX9 (SRY-box containing gene 9 progenitor/stem cell markers. This study demonstrates that MSC treatment induces stimulation of endogenous host progenitor cells to improve the regenerative process and constitutes an initial approach to arguing in favor of the use of MSC to limit/reduce colorectal damage induced by radiation.

  11. Effects of Substrate and Co-Culture on Neural Progenitor Cell Differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Erin Boote [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    In recent years the study of stem and progenitor cells has moved to the forefront of research. Since the isolation of human hematopoietic stem cells in 1988 and the subsequent discovery of a self renewing population of multipotent cells in many tissues, many researchers have envisioned a better understanding of development and potential clinical usage in intractable diseases. Both these goals, however, depend on a solid understanding of the intracellular and extracellular forces that cause stem cells to differentiate to a specific cell fate. Many diseases of large scale cell loss have been suggested as candidates for stem cell based treatments. It is proposed that replacing the function of the damaged or defective cells by specific differentiation of stem or progenitor cells could treat the disease. Before cells can be directed to specific lineages, the mechanisms of differentiation must be better understood. Differentiation in vivo is an intensively complex system that is difficult to study. The goal of this research is to develop further understanding of the effects of soluble and extracellular matrix (ECM) cues on the differentiation of neural progenitor cells with the use of a simplified in vitro culture system. Specific research objectives are to study the differentiation of neural progenitor cells in response to astrocyte conditioned medium and protein substrate composition and concentration. In an effort to reveal the mechanism of the conditioned medium interaction, a test for the presence of a feedback loop between progenitor cells and astrocytes is presented along with an examination of conditioned medium storage temperature, which can reveal enzymatic dependencies. An examination of protein substrate composition and concentration will help to reveal the role of any ECM interactions on differentiation. This thesis is organized into a literature review covering recent advances in use of external modulators of differentiation such as surface coatings, co

  12. MANF Promotes Differentiation and Migration of Neural Progenitor Cells with Potential Neural Regenerative Effects in Stroke

    DEFF Research Database (Denmark)

    Tseng, Kuan-Yin; Anttila, Jenni E; Khodosevich, Konstantin

    2018-01-01

    Cerebral ischemia activates endogenous reparative processes, such as increased proliferation of neural stem cells (NSCs) in the subventricular zone (SVZ) and migration of neural progenitor cells (NPCs) toward the ischemic area. However, this reparative process is limited because most of the NPCs...

  13. Directed differentiation of porcine epiblast-derived neural progenitor cells into neurons and glia

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Carter, T.F.

    2011-01-01

    Neural progenitor cells (NPCs) are promising candidates for cell-based therapy of neurodegenerative diseases; however, safety concerns must be addressed through transplantation studies in large animal models, such as the pig. The aim of this study was to derive NPCs from porcine blastocysts...

  14. Multipotent adult progenitor cells : their role in wound healing and the treatment of dermal wounds

    NARCIS (Netherlands)

    Herdrich, B. J.; Lind, R. C.; Liechty, K. W.

    2008-01-01

    The use of cellular therapy in the treatment of dermal wounds is currently an active area of investigation. Multipotent adult progenitor cells (MAPC) are an attractive choice for cytotherapy because they have a large proliferative potential, the ability to differentiate into different cell types and

  15. Stem and Progenitor Cell-Based Therapy of the Central Nervous System

    DEFF Research Database (Denmark)

    Goldman, Steven A.

    2016-01-01

    A variety of neurological disorders are attractive targets for stem and progenitor cell-based therapy. Yet many conditions are not, whether by virtue of an inhospitable disease environment, poorly understood pathophysiology, or poor alignment of donor cell capabilities with patient needs. Moreove...

  16. Growth factors and hepatic progenitor cells in liver regeneration : translating bench to bedside

    NARCIS (Netherlands)

    Kruitwagen, H.S.

    2017-01-01

    Upon severe acute or chronic liver injury, hepatic progenitor cells (HPCs) become activated. HPCs are adult stem cells of the liver and are considered a reserve population acting as second line of defense in liver regeneration. However, in many cases of severe liver disease this repair mechanism

  17. c-Myb is required for progenitor cell homeostasis in colonic crypts

    NARCIS (Netherlands)

    Malaterre, J.; Carpinelli, M.; Ernst, M.; Alexander, W.; Cooke, M.; Sutton, S.; Dworkin, S.; Heakth, J.K.; Frampton, J.; McArthur, G.; Clevers, J.C.; Hilton, D.; Mantamadiotis, Th.; Ramsay, R.G.

    2007-01-01

    The colonic crypt is the functional unit of the colon mucosa with a central role in ion and water reabsorption. Under steady-state conditions, the distal colonic crypt harbors a single stem cell at its base that gives rise to highly proliferative progenitor cells that differentiate into columnar,

  18. Co-infusion of adipose tissue derived mesenchymal stem cell-differentiated insulin-making cells and haematopoietic cells with renal transplantation: a novel therapy for type 1 diabetes mellitus with end-stage renal disease.

    Science.gov (United States)

    Dave, Shruti D; Vanikar, Aruna V; Trivedi, Hargovind L

    2013-05-23

    Type 1 diabetes mellitus (T1DM) is a common cause of end-stage renal disease (ESRD). Various factors contribute to wide fluctuations in blood glucose levels and exogenous insulin requirement in such patients even after renal transplantation (RT). Simultaneous pancreas-kidney transplantation is one of the therapies for these patients. Stem cell (SC) therapy for T1DM and for minimisation of immunosuppression after RT has shown encouraging results. We report a 30-year-old-man with T1DM since 15 years and ESRD since 2 years, who underwent living donor RT and co-infusion of in vitro generated insulin-making cells differentiated from donor adipose tissue derived mesenchymal stem cells and bone marrow -derived haematopoietic SC into subcutaneous tissue, portal and thymic circulation under non-myeloablative conditioning. Over follow-up of 13 months he has stable graft function with serum creatinine, 1.2 mg/dl, zero rejection and glycosylated haemoglobin level of 6.1% on calcineurin-inhibitor based therapy.

  19. Haematopoietic malignancies caused by dysregulation of a chromatin-binding PHD finger

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gang G.; Song, Jikui; Wang, Zhanxin; Dormann, Holger L.; Casadio, Fabio; Li, Haitao; Luo, Jun-Li; Patel, Dinshaw J.; Allis, C. David; (MSKCC); (Scripps); (Rockefeller)

    2009-07-21

    Histone H3 lysine4 methylation (H3K4me) has been proposed as a critical component in regulating gene expression, epigenetic states, and cellular identities. The biological meaning of H3K4me is interpreted by conserved modules including plant homeodomain (PHD) fingers that recognize varied H3K4me states. The dysregulation of PHD fingers has been implicated in several human diseases, including cancers and immune or neurological disorders. Here we report that fusing an H3K4-trimethylation (H3K4me3)-binding PHD finger, such as the carboxy-terminal PHD finger of PHF23 or JARID1A (also known as KDM5A or RBBP2), to a common fusion partner nucleoporin-98 (NUP98) as identified in human leukaemias, generated potent oncoproteins that arrested haematopoietic differentiation and induced acute myeloid leukaemia in murine models. In these processes, a PHD finger that specifically recognizes H3K4me3/2 marks was essential for leukaemogenesis. Mutations in PHD fingers that abrogated H3K4me3 binding also abolished leukaemic transformation. NUP98-PHD fusion prevented the differentiation-associated removal of H3K4me3 at many loci encoding lineage-specific transcription factors (Hox(s), Gata3, Meis1, Eya1 and Pbx1), and enforced their active gene transcription in murine haematopoietic stem/progenitor cells. Mechanistically, NUP98-PHD fusions act as 'chromatin boundary factors', dominating over polycomb-mediated gene silencing to 'lock' developmentally critical loci into an active chromatin state (H3K4me3 with induced histone acetylation), a state that defined leukaemia stem cells. Collectively, our studies represent, to our knowledge, the first report that deregulation of the PHD finger, an 'effector' of specific histone modification, perturbs the epigenetic dynamics on developmentally critical loci, catastrophizes cellular fate decision-making, and even causes oncogenesis during mammalian development.

  20. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  1. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    Science.gov (United States)

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  2. Restricted growth of U-type infectious haematopoietic necrosis virus (IHNV) in rainbow trout cells may be linked to casein kinase II activity

    Science.gov (United States)

    Park, J.-W.; Moon, C.H.; Harmache, A.; Wargo, A.R.; Purcell, M.K.; Bremont, M.; Kurath, G.

    2011-01-01

    Previously, we demonstrated that a representative M genogroup type strain of infectious haematopoietic necrosis virus (IHNV) from rainbow trout grows well in rainbow trout-derived RTG-2 cells, but a U genogroup type strain from sockeye salmon has restricted growth, associated with reduced genome replication and mRNA transcription. Here, we analysed further the mechanisms for this growth restriction of U-type IHNV in RTG-2 cells, using strategies that assessed differences in viral genes, host immune regulation and phosphorylation. To determine whether the viral glycoprotein (G) or non-virion (NV) protein was responsible for the growth restriction, four recombinant IHNV viruses were generated in which the G gene of an infectious IHNV clone was replaced by the G gene of U- or M-type IHNV and the NV gene was replaced by NV of U- or M-type IHNV. There was no significant difference in the growth of these recombinants in RTG-2 cells, indicating that G and NV proteins are not major factors responsible for the differential growth of the U- and M-type strains. Poly I:C pretreatment of RTG-2 cells suppressed the growth of both U- and M-type IHNV, although the M virus continued to replicate at a reduced level. Both viruses induced type 1 interferon (IFN1) and the IFN1 stimulated gene Mx1, but the expression levels in M-infected cells were significantly higher than in U-infected cells and an inhibitor of the IFN1-inducible protein kinase PKR, 2-aminopurine (2-AP), did not affect the growth of U- or M-type IHNV in RTG-2 cells. These data did not indicate a role for the IFN1 system in the restricted growth of U-type IHNV in RTG-2 cells. Prediction of kinase-specific phosphorylation sites in the viral phosphoprotein (P) using the NetPhosK program revealed differences between U- and M-type P genes at five phosphorylation sites. Pretreatment of RTG-2 cells with a PKC inhibitor or a p38MAPK inhibitor did not affect the growth of the U- and M-type viruses. However, 100 μm of the

  3. The role of stem cell factor in mobilization of peripheral blood progenitor cells.

    Science.gov (United States)

    McNiece, I K; Briddell, R A; Yan, X Q; Hartley, C A; Gringeri, A; Foote, M A; Andrews, R G

    1994-11-01

    Stem cell factor (SCF) is a hematopoietic growth factor which acts on both primitive and mature progenitors cells. In animals, high doses of SCF alone stimulate increases in cells of multiple lineages and mobilize peripheral blood progenitor cells (PBPC). Phase I studies of rhSCF have demonstrated dose related side effects which are consistent with mast cell activation. Based upon in vitro synergy between SCF and G-CSF we have demonstrated the potential of low doses of SCF to synergize with G-CSF to give enhanced mobilization of PBPC. These PBPC have increased potential for both short and long term engraftment in lethally irradiated mice and lead to more rapid recovery of platelets. On going Phase I/II studies with rhSCF plus rhG-CSF for mobilization of PBPC, demonstrated similar increases in PBPC compared to rhG-CSF alone. These data suggest a clinical role of rhSCF in combination with rhG-CSF for optimal mobilization of PBPC.

  4. Developmental potential of defined neural progenitors derived from mouse embryonic stem cells.

    Science.gov (United States)

    Plachta, Nicolas; Bibel, Miriam; Tucker, Kerry Lee; Barde, Yves-Alain

    2004-11-01

    The developmental potential of a uniform population of neural progenitors was tested by implanting them into chick embryos. These cells were generated from retinoic acid-treated mouse embryonic stem (ES) cells, and were used to replace a segment of the neural tube. At the time of implantation, the progenitors expressed markers defining them as Pax6-positive radial glial (RG) cells, which have recently been shown to generate most pyramidal neurons in the developing cerebral cortex. Six days after implantation, the progenitors generated large numbers of neurons in the spinal cord, and differentiated into interneurons and motoneurons at appropriate locations. They also colonized the host dorsal root ganglia (DRG) and differentiated into neurons, but, unlike stem cell-derived motoneurons, they failed to elongate axons out of the DRG. In addition, they neither expressed the DRG marker Brn3a nor the Trk neurotrophin receptors. Control experiments with untreated ES cells indicated that when colonizing the DRG, these cells did elongate axons and expressed Brn3a, as well as Trk receptors. Our results thus indicate that ES cell-derived progenitors with RG characteristics generate neurons in the spinal cord and the DRG. They are able to respond appropriately to local cues in the spinal cord, but not in the DRG, indicating that they are restricted in their developmental potential.

  5. Periodontal Bioengineering: A Discourse in Surface Topographies, Progenitor Cells and Molecular Profiles

    Science.gov (United States)

    Dangaria, Smit J.

    2011-12-01

    Stem/progenitor cells are a population of cells capable of providing replacement cells for a given differentiated cell type. We have applied progenitor cell-based technologies to generate novel tissue-engineered implants that use biomimetic strategies with the ultimate goal of achieving full regeneration of lost periodontal tissues. Mesenchymal periodontal tissues such as cementum, alveolar bone (AB), and periodontal ligament (PDL) are neural crest-derived entities that emerge from the dental follicle (DF) at the onset of tooth root formation. Using a systems biology approach we have identified key differences between these periodontal progenitors on the basis of global gene expression profiles, gene cohort expression levels, and epigenetic modifications, in addition to differences in cellular morphologies. On an epigenetic level, DF progenitors featured high levels of the euchromatin marker H3K4me3, whereas PDL cells, AB osteoblasts, and cementoblasts contained high levels of the transcriptional repressor H3K9me3. Secondly, we have tested the influence of natural extracellular hydroxyapatite matrices on periodontal progenitor differentiation. Dimension and structure of extracellular matrix surfaces have powerful influences on cell shape, adhesion, and gene expression. Here we show that natural tooth root topographies induce integrin-mediated extracellular matrix signaling cascades in tandem with cell elongation and polarization to generate physiological periodontium-like tissues. In this study we replanted surface topography instructed periodontal ligament progenitors (PDLPs) into rat alveolar bone sockets for 8 and 16 weeks, resulting in complete attachment of tooth roots to the surrounding alveolar bone with a periodontal ligament fiber apparatus closely matching physiological controls along the entire root surface. Displacement studies and biochemical analyses confirmed that progenitor-based engineered periodontal tissues were similar to control teeth and

  6. Infectious haematopoietic necrosis virus: Chapter 2

    Science.gov (United States)

    Leong, Jo-Ann; Kurath, Gael

    2017-01-01

    Infectious haematopoietic necrosis virus (IHNV) is a Rhabdovirus that causes significant disease in Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), and rainbow and steelhead trout (O. mykiss). IHNV causes necrosis of the haematopoietic tissues, and consequently it was named infectious haematopoietic necrosis. This virus is waterborne and may transmit horizontally and vertically through virus associated with seminal and ovarian fluids. The clinical signs of disease and diagnosis; pathology; pathophysiology; and control strategies against IHNV are discussed.

  7. Haematopoietic stem cell transplantation as first-line treatment in myeloma: a global perspective of current concepts and future possibilities

    Directory of Open Access Journals (Sweden)

    Catriona Elizabeth Mactier

    2012-10-01

    Full Text Available Stem cell transplantation forms an integral part of the treatment for multiple myeloma. This paper reviews the current role of transplantation and the progress that has been made in order to optimize the success of this therapy. Effective induction chemotherapy is important and a combination regimen incorporating the novel agent bortezomib is now favorable. Adequate induction is a crucial adjunct to stem cell transplantation and in some cases may potentially postpone the need for transplant. Different conditioning agents prior to transplantation have been explored: high-dose melphalan is most commonly used and bortezomib is a promising additional agent. There is no well-defined superior transplantation protocol but single or tandem autologous stem cell transplantations are those most commonly used, with allogeneic transplantation only used in clinical trials. The appropriate timing of transplantation in the treatment plan is a matter of debate. Consolidation and maintenance chemotherapies, particularly thalidomide and bortezomib, aim to improve and prolong disease response to transplantation and delay recurrence. Prognostic factors for the outcome of stem cell transplant in myeloma have been highlighted. Despite good responses to chemotherapy and transplantation, the problem of disease recurrence persists. Thus, there is still much room for improvement. Treatments which harness the graft-versus-myeloma effect may offer a potential cure for this disease. Trials of novel agents are underway, including targeted therapies for specific antigens such as vaccines and monoclonal antibodies.

  8. Collection, processing and testing of bone, corneas, umbilical cord blood and haematopoietic stem cells by European Blood Alliance members

    DEFF Research Database (Denmark)

    Närhi, M; Natri, O; Desbois, I

    2013-01-01

    A questionnaire study was carried out in collaboration with the European Blood Alliance (EBA) Tissues and Cells (T&C) working group. The aim was to assess the level of involvement and commonality of processes on the procurement, testing and storage of bone, corneas, umbilical cord blood (UCB...

  9. Polycomb group protein Ezh2 regulates hepatic progenitor cell proliferation and differentiation in murine embryonic liver.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Koike

    Full Text Available In embryonic liver, hepatic progenitor cells are actively proliferating and generate a fundamental cellular pool for establishing parenchymal components. However, the molecular basis for the expansion of the progenitors maintaining their immature state remains elusive. Polycomb group proteins regulate gene expression throughout the genome by modulating of chromatin structure and play crucial roles in development. Enhancer of zeste homolog 2 (Ezh2, a key component of polycomb group proteins, catalyzes tri-methylation of lysine 27 of histone H3 (H3K27me3, which trigger the gene suppression. In the present study, we investigated a role of Ezh2 in the regulation of the expanding hepatic progenitor population in vivo. We found that Ezh2 is highly expressed in the actively proliferating cells at the early developmental stage. Using a conditional knockout mouse model, we show that the deletion of the SET domain of Ezh2, which is responsible for catalytic induction of H3K27me3, results in significant reduction of the total liver size, absolute number of liver parenchymal cells, and hepatic progenitor cell population in size. A clonal colony assay in the hepatic progenitor cells directly isolated from in vivo fetal livers revealed that the bi-potent clonogenicity was significantly attenuated by the Ezh2 loss of function. Moreover, a marker expression based analysis and a global gene expression analysis showed that the knockout of Ezh2 inhibited differentiation to hepatocyte with reduced expression of a number of liver-function related genes. Taken together, our results indicate that Ezh2 is required for the hepatic progenitor expansion in vivo, which is essential for the functional maturation of embryonic liver, through its activity for catalyzing H3K27me3.

  10. Establishment and characterization of a unique 1 {mu}m diameter liver-derived progenitor cell line

    Energy Technology Data Exchange (ETDEWEB)

    Aravalli, Rajagopal N., E-mail: arava001@umn.edu [Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Behnan Sahin, M. [Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Cressman, Erik N.K. [Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Steer, Clifford J., E-mail: steer001@umn.edu [Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455 (United States); Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455 (United States)

    2010-01-01

    Liver-derived progenitor cells (LDPCs) are recently identified novel stem/progenitor cells from healthy, unmanipulated adult rat livers. They are distinct from other known liver stem/progenitor cells such as the oval cells. In this study, we have generated a LDPC cell line RA1 by overexpressing the simian virus 40 (SV40) large T antigen (TAg) in primary LDPCs. This cell line was propagated continuously for 55 passages in culture, after which it became senescent. Interestingly, following transformation with SV40 TAg, LDPCs decreased in size significantly and the propagating cells measured 1 {mu}m in diameter. RA1 cells proliferated in vitro with a doubling time of 5-7 days, and expressed cell surface markers of LDPCs. In this report, we describe the characterization of this novel progenitor cell line that might serve as a valuable model to study liver cell functions and stem cell origin of liver cancers.

  11. Infusion of megakaryocytic progenitor products generated from cord blood hematopoietic stem/progenitor cells: results of the phase 1 study.

    Directory of Open Access Journals (Sweden)

    Jiafei Xi

    Full Text Available BACKGROUND: Currently, a constant shortage in the supply of platelets has become an important medical and society challenge, especially in developing country, and the in vitro production of megakaryocytic progenitor cells (MPs from cord blood could represent an effective platelet substitute. In the present study, our objective was to determine the safety and feasibility of ex vivo generated MPs in patients. METHODS AND FINDINGS: MPs were produced and characterized from cord blood mononuclear cells under a serum free medium with cytokines. We investigated the feasibility of expansion and infusion of cord blood-derived MPs in 24 patients with advanced hematological malignancies. The primary end point was the safety and tolerability of the infusion of cord blood-derived MPs. No adverse effects were observed in patients who received ex vivo-generated cells at concentrations of up to a median value of 5.45 × 10(6cells/kg of body weight. With one year follow-up, acute and chronic GVHD had not been observed among patients who received MPs infusion, even without ABO blood group and HLA typing matching. CONCLUSIONS: These initial results in patients are very encouraging. They suggest that infusion of cord blood-derived MPs appears safe and feasible for treatment of thrombocytopenia.

  12. Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus

    Science.gov (United States)

    Wood, Michelle A.; Acharya, Asha; Finco, Isabella; Swonger, Jessica M.; Elston, Marlee J.; Tallquist, Michelle D.; Hammer, Gary D.

    2013-01-01

    The lineage relationships of fetal adrenal cells and adrenal capsular cells to the differentiated adrenal cortex are not fully understood. Existing data support a role for each cell type as a progenitor for cells of the adult cortex. This report reveals that subsets of capsular cells are descendants of fetal adrenocortical cells that once expressed Nr5a1. These fetal adrenocortical cell descendants within the adrenal capsule express Gli1, a known marker of progenitors of steroidogenic adrenal cells. The capsule is also populated by cells that express Tcf21, a known inhibitor of Nr5a1 gene expression. We demonstrate that Tcf21-expressing cells give rise to Nr5a1-expressing cells but only before capsular formation. After the capsule has formed, capsular Tcf21-expressing cells give rise only to non-steroidogenic stromal adrenocortical cells, which also express collagen 1a1, desmin and platelet-derived growth factor (alpha polypeptide) but not Nr5a1. These observations integrate prior observations that define two separate origins of adult adrenocortical steroidogenic cells (fetal adrenal cortex and/or the adrenal capsule). Thus, these observations predict a unique temporal and/or spatial role of adult cortical cells that arise directly from either fetal cortical cells or from fetal cortex-derived capsular cells. Last, the data uncover the mechanism by which two populations of fetal cells (fetal cortex derived Gli1-expressing cells and mesenchymal Tcf21-expressing mesenchymal cells) participate in the establishment of the homeostatic capsular progenitor cell niche of the adult cortex. PMID:24131628

  13. Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells.

    Science.gov (United States)

    Jacobs, Sandra A; Roobrouck, Valerie D; Verfaillie, Catherine M; Van Gool, Stefaan W

    2013-01-01

    Somatic, also termed adult, stem cells are highly attractive biomedical cell candidates because of their extensive replication potential and functional multilineage differentiation capacity. They can be used for drug and toxicity screenings in preclinical studies, as in vitro model to study differentiation or for regenerative medicine to aid in the repair of tissues or replace tissues that are lost upon disease, injury or ageing. Multipotent adult progenitor cells (MAPCs) and mesenchymal stem cells (MSCs) are two types of adult stem cells derived from bone marrow that are currently being used clinically for tissue regeneration and for their immunomodulatory and trophic effects. This review will give an overview of the phenotypic and functional differences between human MAPCs and MSCs, with a strong emphasis on their immunological characteristics. Finally, we will discuss the clinical studies in which MSCs and MAPCs are already used.

  14. File list: NoD.Neu.20.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.20.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346675,SRX346817 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.20.AllAg.Neural_progenitor_cells.bed ...

  15. File list: NoD.Neu.05.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.05.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346675,SRX298043 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.05.AllAg.Neural_progenitor_cells.bed ...

  16. File list: NoD.Neu.50.AllAg.Neural_progenitor_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Neu.50.AllAg.Neural_progenitor_cells mm9 No description Neural Neural progenito...SRX346817,SRX346814 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Neu.50.AllAg.Neural_progenitor_cells.bed ...

  17. Mechanisms of adhesion and subsequent actions of a haematopoietic stem cell line, HPC-7, in the injured murine intestinal microcirculation in vivo.

    Directory of Open Access Journals (Sweden)

    Dean P J Kavanagh

    Full Text Available Although haematopoietic stem cells (HSCs migrate to injured gut, therapeutic success clinically remains poor. This has been partially attributed to limited local HSC recruitment following systemic injection. Identifying site specific adhesive mechanisms underpinning HSC-endothelial interactions may provide important information on how to enhance their recruitment and thus potentially improve therapeutic efficacy. This study determined (i the integrins and inflammatory cyto/chemokines governing HSC adhesion to injured gut and muscle (ii whether pre-treating HSCs with these cyto/chemokines enhanced their adhesion and (iii whether the degree of HSC adhesion influenced their ability to modulate leukocyte recruitment.Adhesion of HPC-7, a murine HSC line, to ischaemia-reperfused (IR injured mouse gut or cremaster muscle was monitored intravitally. Critical adhesion molecules were identified by pre-treating HPC-7 with blocking antibodies to CD18 and CD49d. To identify cyto/chemokines capable of recruiting HPC-7, adhesion was monitored following tissue exposure to TNF-α, IL-1β or CXCL12. The effects of pre-treating HPC-7 with these cyto/chemokines on surface integrin expression/clustering, adhesion to ICAM-1/VCAM-1 and recruitment in vivo was also investigated. Endogenous leukocyte adhesion following HPC-7 injection was again determined intravitally.IR injury increased HPC-7 adhesion in vivo, with intestinal adhesion dependent upon CD18 and muscle adhesion predominantly relying on CD49d. Only CXCL12 pre-treatment enhanced HPC-7 adhesion within injured gut, likely by increasing CD18 binding to ICAM-1 and/or CD18 surface clustering on HPC-7. Leukocyte adhesion was reduced at 4 hours post-reperfusion, but only when local HPC-7 adhesion was enhanced using CXCL12.This data provides evidence that site-specific molecular mechanisms govern HPC-7 adhesion to injured tissue. Importantly, we show that HPC-7 adhesion is a modulatable event in IR injury and

  18. [Optimization of a haematopoietic stem cell freezing process using a qualification protocol applicable to a programmable freezer].

    Science.gov (United States)

    Thibaudeau, C; Flandrois, G; Piteux, E; Auffray, F; Martin, S; Simon, P; Laviron, B; Duvieu, N; Morineau, C; Leaute, A G; Dehaut, F; Derenne, S

    2011-12-01

    The freezing phase is a critical step of the freezing process of the hematopoietic stem cells. To standardize the decrease of the temperature, the use of a programmable freezer is recommended. There is no available protocol, neither to describe exactly the validation of a programmable freezer, nor to prove the performance of the freezing/thawing step of the grafts. We describe a validation protocol with three phases: first a qualification of installation, then an operational qualification and finally, a qualification of performance. The validation is performed in tandem between the freezer which is routinely used (Nicool Plus) and a new one (Freezal). With this protocol, we demonstrate the efficacy of the freezing program and its ability to assure the quality of the grafts reinjected to the patients, particularly in terms of cellular efficiency on CD34+ hematopoietic stem cells. On these cells, we measured a significant increase of cellular efficiency (+10%) after freezing with the Freezal. Here, we propose a validation protocol which is able to qualify a programmable freezer. This protocol can optimize the capability of the freezer and is able to prove its performance. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  19. Impaired adult myeloid progenitor CMP and GMP cell function in conditional c-myb-knockout mice.

    Science.gov (United States)

    Lieu, Yen K; Reddy, E Premkumar

    2012-09-15

    The differentiation of myeloid progenitors to mature, terminally differentiated cells is a highly regulated process. Here, we showed that conditional disruption of the c-myb proto-oncogene in adult mice resulted in dramatic reductions in CMP, GMP and MEP myeloid progenitors, leading to a reduction of neutrophils, basophils, monocytes and platelets in peripheral blood. In addition, c-myb plays a critical role at multiple stages of myeloid development, from multipotent CMP and bipotent GMP to unipotent CFU-G and CFU-M progenitor cells. c-myb controls the differentiation of these cells and is required for the proper commitment, maturation and normal differentiation of CMPs and GMPs. Specifically, c-myb regulates the precise commitment to the megakaryocytic and granulo-monocytic pathways and governs the granulocytic-monocytic lineage choice. c-myb is also required for the commitment along the granulocytic pathway for early myeloid progenitor cells and for the maturation of committed precursor cells along this pathway. On the other hand, disruption of the c-myb gene favors the commitment to the monocytic lineage, although monocytic development was abnormal with cells appearing more mature with atypical CD41 surface markers. These results demonstrate that c-myb plays a pivotal role in the regulation of multiple stages in adult myelogenesis.

  20. Genome-wide gene amplification during differentiation of neural progenitor cells in vitro.

    Directory of Open Access Journals (Sweden)

    Ulrike Fischer

    Full Text Available DNA sequence amplification is a phenomenon that occurs predictably at defined stages during normal development in some organisms. Developmental gene amplification was first described in amphibians during gametogenesis and has not yet been described in humans. To date gene amplification in humans is a hallmark of many tumors. We used array-CGH (comparative genomic hybridization and FISH (fluorescence in situ hybridization to discover gene amplifications during in vitro differentiation of human neural progenitor cells. Here we report a complex gene amplification pattern two and five days after induction of differentiation of human neural progenitor cells. We identified several amplified genes in neural progenitor cells that are known to be amplified in malignant tumors. There is also a striking overlap of amplified chromosomal regions between differentiating neural progenitor cells and malignant tumor cells derived from astrocytes. Gene amplifications in normal human cells as physiological process has not been reported yet and may bear resemblance to developmental gene amplifications in amphibians and insects.

  1. Evaluation of islets derived from human fetal pancreatic progenitor cells in diabetes treatment.

    Science.gov (United States)

    Zhang, Wen-Jian; Xu, Shi-Qing; Cai, Han-Qing; Men, Xiu-Li; Wang, Zai; Lin, Hua; Chen, Li; Jiang, Yong-Wei; Liu, Hong-Lin; Li, Cheng-Hui; Sui, Wei-Guo; Deng, Hong-Kui; Lou, Jin-Ning

    2013-01-01

    With the shortage of donor organs for islet transplantation, insulin-producing cells have been generated from different types of stem cell. Human fetal pancreatic stem cells have a better self-renewal capacity than adult stem cells and can readily differentiate into pancreatic endocrine cells, making them a potential source for islets in diabetes treatment. In the present study, the functions of pancreatic islets derived from human fetal pancreatic progenitor cells were evaluated in vitro and in vivo. Human pancreatic progenitor cells isolated from the fetal pancreas were expanded and differentiated into islet endocrine cells in culture. Markers for endocrine and exocrine functions as well as those for alpha and beta cells were analyzed by immunofluorescent staining and enzyme-linked immunosorbent assay (ELISA). To evaluate the functions of these islets in vivo, the islet-like structures were transplanted into renal capsules of diabetic nude mice. Immunohistochemical staining for human C-peptide and human mitochondrion antigen was applied to confirm the human origin and the survival of grafted islets. Human fetal pancreatic progenitor cells were able to expand in medium containing basic fibroblast growth factor (bFGF) and leukemia inhibitor factor (LIF), and to differentiate into pancreatic endocrine cells with high efficiency upon the actions of glucagon-like peptide-1 and activin-A. The differentiated cells expressed insulin, glucagon, glucose transporter-1 (GLUT1), GLUT2 and voltage-dependent calcium channel (VDCC), and were able to aggregate into islet-like structures containing alpha and beta cells upon suspension. These structures expressed and released a higher level of insulin than adhesion cultured cells, and helped to maintain normoglycemia in diabetic nude mice after transplantation. Human fetal pancreatic progenitor cells have good capacity for generating insulin producing cells and provide a promising potential source for diabetes treatment.

  2. Fetal liver hepatic progenitors are supportive stromal cells for hematopoietic stem cells.

    Science.gov (United States)

    Chou, Song; Lodish, Harvey F

    2010-04-27

    Previously we showed that the ~2% of fetal liver cells reactive with an anti-CD3epsilon monoclonal antibody support ex vivo expansion of both fetal liver and bone marrow hematopoietic stem cells (HSCs); these cells express two proteins important for HSC ex vivo expansion, IGF2, and angiopoietin-like 3. Here we show that these cells do not express any CD3 protein and are not T cells; rather, we purified these HSC-supportive stromal cells based on the surface phenotype of SCF(+)DLK(+). Competitive repopulating experiments show that SCF(+)DLK(+) cells support the maintenance of HSCs in ex vivo culture. These are the principal fetal liver cells that express not only angiopoietin-like 3 and IGF2, but also SCF and thrombopoietin, two other growth factors important for HSC expansion. They are also the principal fetal liver cells that express CXCL12, a factor required for HSC homing, and also alpha-fetoprotein (AFP), indicating that they are fetal hepatic stem or progenitor cells. Immunocytochemistry shows that >93% of the SCF(+) cells express DLK and Angptl3, and a portion of SCF(+) cells also expresses CXCL12. Thus SCF(+)DLK(+) cells are a highly homogenous population that express a complete set of factors for HSC expansion and are likely the primary stromal cells that support HSC expansion in the fetal liver.

  3. Collective adhesion and displacement of retinal progenitor cells upon extracellular matrix substrates of transplantable biomaterials

    Science.gov (United States)

    Thakur, Ankush; Mishra, Shawn; Pena, Juan; Zhou, Jing; Redenti, Stephen; Majeska, Robert

    2018-01-01

    Strategies to replace retinal photoreceptors lost to damage or disease rely upon the migration of replacement cells transplanted into sub-retinal spaces. A significant obstacle to the advancement of cell transplantation for retinal repair is the limited migration of transplanted cells into host retina. In this work, we examine the adhesion and displacement responses of retinal progenitor cells on extracellular matrix substrates found in retina as well as widely used in the design and preparation of transplantable scaffolds. The data illustrate that retinal progenitor cells exhibit unique adhesive and displacement dynamics in response to poly-l-lysine, fibronectin, laminin, hyaluronic acid, and Matrigel. These findings suggest that transplantable biomaterials can be designed to improve cell integration by incorporating extracellular matrix substrates that affect the migratory behaviors of replacement cells. PMID:29344334

  4. SOX17 Regulates Conversion of Human Fibroblasts Into Endothelial Cells and Erythroblasts by Dedifferentiation Into CD34+ Progenitor Cells.

    Science.gov (United States)

    Zhang, Lianghui; Jambusaria, Ankit; Hong, Zhigang; Marsboom, Glenn; Toth, Peter T; Herbert, Brittney-Shea; Malik, Asrar B; Rehman, Jalees

    2017-06-20

    The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and

  5. Modulation of beta1-integrins on hemopoietic progenitor cells after allergen challenge in asthmatic subjects.

    Science.gov (United States)

    Catalli, Adriana E; Thomson, Jennifer V; Babirad, Irene M; Duong, Mylinh; Doyle, Tracey M; Howie, Karen J; Newbold, Paul; Craggs, Richard I; Foster, Martyn; Gauvreau, Gail M; O'Byrne, Paul M; Sehmi, Roma

    2008-10-01

    Mobilization of hemopoietic progenitor cells from the bone marrow (BM) is a feature of inflammatory asthmatic responses. Understanding the mechanisms regulating progenitor cell mobilization and trafficking to the peripheral circulation might be important for the development of effective asthma therapies. We investigated the role of adhesion molecules in the mobilization of hemopoietic progenitor cells from the BM during an allergen-induced asthmatic response. BM and peripheral blood samples were obtained from dual-responders with mild asthma before and at several time points after allergen challenge. Fluctuations in expression and adhesive properties of beta1- and beta2-integrins on CD34(+)CD45(+) progenitor cells were assessed by using flow cytometry and adhesion to protein-coated wells, respectively. On BM-derived CD34(+)CD45(+) cells, expression of very late antigen (VLA) 4, but not VLA-5 or Mac-1, decreased significantly 24 hours after allergen challenge and had begun to recover by 48 hours after challenge. In peripheral blood allergen challenge induced a significant decrease in VLA-4 levels after 6 hours, which had not recovered by 96 hours after challenge. Similarly, VLA-5 expression decreased, most prominently at 72 to 96 hours after allergen challenge. In contrast, Mac-1 levels did not change. Chemokine-stimulated adhesion of BM-derived CD34(+)CD45(+) cells to fibronectin was significantly attenuated 24 hours after challenge. Furthermore, adhesion to fibronectin and vascular cell adhesion molecule 1 was greatly reduced by anti-VLA-4 or anti-VLA-5 antibodies. Preferential downregulation of beta1-integrin expression on progenitor cells can reduce the tethering forces to BM components, thus facilitating their egress to the peripheral circulation during an allergic inflammatory response.

  6. Ethanol alters cell fate of fetal human brain-derived stem and progenitor cells.

    Science.gov (United States)

    Vangipuram, Sharada D; Lyman, William D

    2010-09-01

    Prenatal ethanol (ETOH) exposure can lead to fetal alcohol spectrum disorder (FASD). We previously showed that ETOH alters cell adhesion molecule gene expression and increases neurosphere size in fetal brain-derived neural stem cells (NSC). Here, our aim was to determine the effect of ETOH on the cell fate of NSC, premature glial-committed precursor cells (GCP), and premature neuron-committed progenitor cells (NCP). NSC, GCP, and NCP were isolated from normal second-trimester fetal human brains (n = 3) by positive selection using magnetic microbeads labeled with antibodies to CD133 (NSC), A2B5 (GCP), or PSA-NCAM (NCP). As a result of the small percentage in each brain, NSC were cultured in mitogenic media for 72 hours to produce neurospheres. The neurospheres from NSC and primary isolates of GCP and NCP were used for all experiments. Equal numbers of the 3 cell types were treated either with mitogenic media or with differentiating media, each containing 0 or 100 mM ETOH, for 120 hours. Expression of Map2a, GFAP, and O4 was determined by immunoflourescence microscopy and western blot analysis. Fluorescence intensities were quantified using Metamorph software by Molecular Devices, and the bands of western blots were quantified using densitometry. ETOH in mitogenic media promoted formation of neurospheres by NSC, GCP, and NCP. Under control conditions, GCP attached and differentiated, NSC and NCP formed neurospheres that were significantly smaller in size than those in ETOH. Under differentiating conditions, Map2a expression increased significantly in NSC and GCP and reduced significantly in NCP, and GFAP expression reduced significantly in GCP and NCP, and Gal-C expression reduced significantly in all 3 cell types in the presence of ETOH compared to controls. This study shows that ETOH alters the cell fate of neuronal stem and progenitor cells. These alterations could contribute to the mechanism for the abnormal brain development in FASD.

  7. Dynamic Pax6 expression during the neurogenic cell cycle influences proliferation and cell fate choices of retinal progenitors

    Directory of Open Access Journals (Sweden)

    Yang Xian-Jie

    2009-08-01

    Full Text Available Abstract Background The paired homeobox protein Pax6 is essential for proliferation and pluripotency of retinal progenitors. However, temporal changes in Pax6 protein expression associated with the generation of various retinal neurons have not been characterized with regard to the cell cycle. Here, we examine the dynamic changes of Pax6 expression among chicken retinal progenitors as they progress through the neurogenic cell cycle, and determine the effects of altered Pax6 levels on retinogenesis. Results We provide evidence that during the preneurogenic to neurogenic transition, Pax6 protein levels in proliferating progenitor cells are down-regulated. Neurogenic retinal progenitors retain a relatively low level of Pax6 protein, whereas postmitotic neurons either elevate or extinguish Pax6 expression in a cell type-specific manner. Cell imaging and cell cycle analyses show that neurogenic progenitors in the S phase of the cell cycle contain low levels of Pax6 protein, whereas a subset of progenitors exhibits divergent levels of Pax6 protein upon entering the G2 phase of the cell cycle. We also show that M phase cells contain varied levels of Pax6, and some correlate with the onset of early neuronal marker expression, forecasting cell cycle exit and cell fate commitment. Furthermore, either elevating or knocking down Pax6 attenuates cell proliferation and results in increased cell death. Reducing Pax6 decreases retinal ganglion cell genesis and enhances cone photoreceptor and amacrine interneuron production, whereas elevating Pax6 suppresses cone photoreceptor and amacrine cell fates. Conclusion These studies demonstrate for the first time quantitative changes in Pax6 protein expression during the preneurogenic to neurogenic transition and during the neurogenic cell cycle. The results indicate that Pax6 protein levels are stringently controlled in proliferating progenitors. Maintaining a relatively low Pax6 protein level is necessary for S phase

  8. Thy-1 (CD90)-Positive Hepatic Progenitor Cells, Hepatoctyes, and Non-parenchymal Liver Cells Isolated from Human Livers.

    Science.gov (United States)

    Weiss, Thomas S; Dayoub, Rania

    2017-01-01

    In response to liver injury, hepatic cells, especially hepatocytes, can rapidly proliferate to repair liver damage. Additionally, it was shown that under certain circumstances liver resident cells with progenitor capabilities are involved in liver cell proliferation and differentiation. These hepatic progenitor cells (HPCs), known as oval cells in rodents, are derived from the canals of Hering, which are located in the periportal region of the liver. Regarding to different cell niches, which were defined for human HPCs, several markers have been used to identify these cells such as CD34, c-kit, OV-6, and Thy-1 (CD90). The latter was shown to be expressed on HPCs in human liver tissue with histological signs of regeneration. In this chapter we describe a detailed method for the isolation of Thy-1 positive cells from human resected liver tissue. Based on a procedure for isolating primary human hepatocytes and non-parenchymal cells (NPCs) we expanded this protocol to additional enzymatic dissociation, filtration, and centrifugation steps. This results in a bile duct cell enriched fraction of NPCs from which Thy-1 (CD90) positive cells were purified by Thy-1 positivity selection using MACS technique. Bipotential progenitor cells from human liver resections can be isolated using Thy-1 and was shown to be a suitable tool for the enrichment of liver resident progenitor cells for xenotransplantation.

  9. A novel role of microRNA146b in promoting mammary alveolar progenitor cell maintenance.

    Science.gov (United States)

    Elsarraj, Hanan S; Hong, Yan; Valdez, Kelli; Carletti, Martha; Salah, Sally M; Raimo, Monica; Taverna, Daniela; Prochasson, Philippe; Bharadwaj, Uddalak; Tweardy, David J; Christenson, Lane K; Behbod, Fariba

    2013-06-01

    In this report, we have shown that miR146b promotes the maintenance of pregnancy-derived mammary luminal alveolar progenitors. MiR146b expression was significantly higher in the mammary glands of pregnant and lactating mice than in virgin mice. Furthermore, miR146b levels were significantly higher in mouse mammary glands exposed to the sex hormones, estrogen and progesterone, compared with those of untreated control animals. Pregnancy-derived primary mouse mammary epithelial cells in which miR146b was knocked down showed a significant reduction in the number of hollow acinar organoid structures formed on three-dimensional Matrigel and in β-casein expression. This demonstrates that miR146b promotes the maintenance of pregnancy-derived mammary luminal alveolar progenitors. It has been shown that mouse mammary luminal progenitors give rise to hollow organoid structures, whereas solid organoid structures are derived from stem cells. Among several miR146b targets, miR146b knockdown resulted in preferential STAT3β overexpression. In the primary mouse mammary epithelial cells, overexpression of STAT3β isoform caused mammary epithelial cell death and a significant reduction in β-casein mRNA expression. Therefore, we conclude that during pregnancy miR146b is involved in luminal alveolar progenitor cell maintenance, at least partially, by regulating STAT3β.

  10. FGF8 activates proliferation and migration in mouse post-natal oligodendrocyte progenitor cells.

    Directory of Open Access Journals (Sweden)

    Pablo Cruz-Martinez

    Full Text Available Fibroblast growth factor 8 (FGF8 is a key molecular signal that is necessary for early embryonic development of the central nervous system, quickly disappearing past this point. It is known to be one of the primary morphogenetic signals required for cell fate and survival processes in structures such as the cerebellum, telencephalic and isthmic organizers, while its absence causes severe abnormalities in the nervous system and the embryo usually dies in early stages of development. In this work, we have observed a new possible therapeutic role for this factor in demyelinating disorders, such as leukodystrophy or multiple sclerosis. In vitro, oligodendrocyte progenitor cells were cultured with differentiating medium and in the presence of FGF8. Differentiation and proliferation studies were performed by immunocytochemistry and PCR. Also, migration studies were performed in matrigel cultures, where oligodendrocyte progenitor cells were placed at a certain distance of a FGF8-soaked heparin bead. The results showed that both migration and proliferation was induced by FGF8. Furthermore, a similar effect was observed in an in vivo demyelinating mouse model, where oligodendrocyte progenitor cells were observed migrating towards the FGF8-soaked heparin beads where they were grafted. In conclusion, the results shown here demonstrate that FGF8 is a novel factor to induce oligodendrocyte progenitor cell activation, migration and proliferation in vitro, which can be extrapolated in vivo in demyelinated animal models.

  11. CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice.

    Science.gov (United States)

    Xie, Weiliang; Fisher, John T; Lynch, Thomas J; Luo, Meihui; Evans, Turan I A; Neff, Traci L; Zhou, Weihong; Zhang, Yulong; Ou, Yi; Bunnett, Nigel W; Russo, Andrew F; Goodheart, Michael J; Parekh, Kalpaj R; Liu, Xiaoming; Engelhardt, John F

    2011-08-01

    In cystic fibrosis (CF), a lack of functional CF transmembrane conductance regulator (CFTR) chloride channels causes defective secretion by submucosal glands (SMGs), leading to persistent bacterial infection that damages airways and necessitates tissue repair. SMGs are also important niches for slow-cycling progenitor cells (SCPCs) in the proximal airways, which may be involved in disease-related airway repair. Here, we report that calcitonin gene-related peptide (CGRP) activates CFTR-dependent SMG secretions and that this signaling pathway is hyperactivated in CF human, pig, ferret, and mouse SMGs. Since CGRP-expressing neuroendocrine cells reside in bronchiolar SCPC niches, we hypothesized that the glandular SCPC niche may be dysfunctional in CF. Consistent with this hypothesis, CFTR-deficient mice failed to maintain glandular SCPCs following airway injury. In wild-type mice, CGRP levels increased following airway injury and functioned as an injury-induced mitogen that stimulated SMG progenitor cell proliferation in vivo and altered the proliferative potential of airway progenitors in vitro. Components of the receptor for CGRP (RAMP1 and CLR) were expressed in a very small subset of SCPCs, suggesting that CGRP indirectly stimulates SCPC proliferation in a non-cell-autonomous manner. These findings demonstrate that CGRP-dependent pathways for CFTR activation are abnormally upregulated in CF SMGs and that this sustained mitogenic signal alters properties of the SMG progenitor cell niche in CF airways. This discovery may have important implications for injury/repair mechanisms in the CF airway.

  12. Wnt signaling induces differentiation of progenitor cells in organotypic keratinocyte cultures

    Directory of Open Access Journals (Sweden)

    Liu Bob Y

    2007-02-01

    Full Text Available Abstract Background Interfollicular skin develops normally only when the activity of the progenitor cells in the basal layer is counterbalanced by the exit of cells into the suprabasal layers, where they differentiate and cornify to establish barrier function. Distinct stem and progenitor compartments have been demonstrated in hair follicles and sebaceous glands, but there are few data to describe the control of interfollicular progenitor cell activity. Wnt signaling has been shown to be an important growth-inducer of stem cell compartments in skin and many other tissues. Results Here, we test the effect of ectopic Wnt1 expression on the behavior of interfollicular progenitor cells in an organotypic culture model, and find that Wnt1 signaling inhibits their growth and promotes terminal differentiation. Conclusion These results are consistent with the phenotypes reported for transgenic mice engineered to have gain or loss of function of Wnt signaling in skin, which would recommend our culture model as an accurate one for molecular analysis. Since it is known that canonical ligands are expressed in skin, it is likely that this pathway normally regulates the balance of growth and differentiation, and suggests it could be important to pathogenesis.

  13. MUC-1-/ESA+ progenitor cells in normal, benign and malignant human breast epithelial cells.

    Science.gov (United States)

    Lü, Xinquan; Li, Huixiang; Xu, Kejia; Nesland, Jahn M; Suo, Zhenhe

    2009-11-01

    The existence of mammary epithelial stem/progenitor cells has been demonstrated in MUC-1-/ESA+ subpopulations of breast epithelial cells. However, knowledge about the expression and localization in benign and malignant breast lesions is unknown. Using a double-staining immunohistochemistry method, we investigated MUC-1-/ESA+ cells in 10 normal breast tissues, 49 cases with fibrocystic disease, 40 fibroadenomas, 36 invasive ductal carcinomas and the breast cancer cell lines MCF-7 and MDA-MB-468. In normal breast tissues MUC-1-/ESA+ cells were mainly found in the suprabasal layer, but under the apical surface of the duct/alveolus. In the hyperplastic areas of fibrocystic disease, the number of this subpopulation of cells was higher than that in hypoplastic areas and in fibroadenomas. In invasive ductal carcinoma, the MMUC-1-/ESA+ cells were heterogeneously present in different carcinoma nests. In the MCF-7 cell line most cells were MUC-1-/ESA+, and in the MDA-MB-468 cell line MUC-1-/ESA+ cells and MUC-1-/ESA+ cells were almost equal. Our results show that the MUC-1-/ESA+ subpopulation increases in fibrocystic disease within the hyperplastic areas, and varies in benign and malignant breast tumours, indicating that breast carcinogenesis may develop from malignant changes of normal MUC-1-/ESA+ cells.

  14. Soluble Interleukin-7 receptor levels and risk of acute graft-versus-disease after allogeneic haematopoietic stem cell transplantation

    DEFF Research Database (Denmark)

    Kielsen, Katrine; Shamim, Zaiba; Thiant, Stephanie

    2017-01-01

    in patients developing grade II-IV aGVHD (OR = 4.3, P = 0.026). Furthermore, donor carriage of the rs6897932 T allele was associated with reduced sIL-7Rα levels, increased risk of grades II-IV aGVHD (OR = 2.4, P = 0.055) and increased transplant-related mortality (CC = 4.5%, CT = 21.4% and TT = 27.3%, P = 0.......0037). In conclusion, this study suggests an impact of sIL-7Rα levels and rs6897932 donor genotype on alloreactivity and outcome after HSCT.......Interleukin-7 is a cytokine essential for T cell homeostasis. IL-7 binds to cellular IL-7 receptors in competition with a soluble form of the receptor (sIL-7Rα). We hypothesized that altered sIL-7Rα levels may cause adverse outcomes in patients undergoing HSCT. In parallel, we investigated...

  15. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands.

    Science.gov (United States)

    Saxena, Shobhit; Wahl, Joachim; Huber-Lang, Markus S; Stadel, Dominic; Braubach, Peter; Debatin, Klaus-Michael; Beltinger, Christian

    2013-01-01

    Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS.

  16. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement...... therapy. The pig has become recognized as an important large animal model and establishment of in vitro-derived porcine NPCs would allow for preclinical safety testing by transplantation in a porcine biomedical model. In this chapter, a detailed method for isolation and in vitro culture of porcine NPCs...... from porcine embryos or induced pluripotent stem cells is presented. The neural induction is performed in coculture and the isolation of rosette structures is carried out manually to ensure a homogenous population of NPCs. Using this method, multipotent NPCs can be obtained in approximately 1 month...

  17. CD14+ cells from peripheral blood positively regulate hematopoietic stem and progenitor cell survival resulting in increased erythroid yield

    OpenAIRE

    Heideveld, Esther; Masiello, Francesca; Marra, Manuela; Esteghamat, Fatemehsadat; Yağcı, Nurcan; von Lindern, Marieke; Migliaccio, Anna Rita F.; van den Akker, Emile

    2015-01-01

    Expansion of erythroblasts from human peripheral blood mononuclear cells is 4- to 15-fold more efficient than that of CD34+ cells purified from peripheral blood mononuclear cells. In addition, purified CD34+ and CD34− populations from blood do not reconstitute this erythroid yield, suggesting a role for feeder cells present in blood mononuclear cells that increase hematopoietic output. Immunodepleting peripheral blood mononuclear cells for CD14+ cells reduced hematopoietic stem and progenitor...

  18. Characterization of Cardiac-Resident Progenitor Cells Expressing High Aldehyde Dehydrogenase Activity

    Directory of Open Access Journals (Sweden)

    Marc-Estienne Roehrich

    2013-01-01

    Full Text Available High aldehyde dehydrogenase (ALDH activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDHbr cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDHbr cells in the heart has not been evaluated so far. We have characterized ALDHbr cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDHbr. ALDHvery-br cells were more frequent in neonatal hearts than adult. ALDHbr cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDHvery-br cells, intermediate in ALDHbr cells, and lowest in ALDHdim cells. ALDH1A2 expression was highest in ALDHvery-br cells, intermediate in ALDHdim cells, and lowest in ALDHbr cells. ALDH1A3 and ALDH2 expression was detectable in ALDHvery-br and ALDHbr cells, unlike ALDHdim cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDHbr cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDHbr cells, unlike ALDHdim cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α-actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDHbr cells declined with cell passage. In conclusion, the cardiac-derived ALDHbr population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDHbr cells remains to be evaluated.

  19. Further phenotypic characterization and isolation of human hematopoietic progenitor cells using a monoclonal antibody to the c-kit receptor.

    Science.gov (United States)

    Briddell, R A; Broudy, V C; Bruno, E; Brandt, J E; Srour, E F; Hoffman, R

    1992-06-15

    A mouse antihuman monoclonal IgG2a antibody, termed stem cell receptor-1 (SR-1), specific for a determinant of the c-kit ligand receptor (KR), was used as an immunologic probe to analyze KR expression by human bone marrow hematopoietic progenitor cells. Monoclonal antibodies to CD34 and HLA-DR were used in a multicolor staining protocol in conjunction with SR-1 to further define the phenotypes of various classes of hematopoietic progenitor cells. Expression of KR (SR-1+) on hematopoietic progenitor cells identified subpopulations of cells expressing CD34 (CD34+). While one-half of the CD34- and HLA-DR-expressing cells (CD34+ HLA-DR+) expressed the KR (SR-1+), one-third of the CD34+ cells that lacked HLA-DR expression (CD34+ HLA-DR-) were SR-1+. The CD34+ HLA-DR+ SR-1+ cell population contained the vast majority of the more differentiated progenitor cells, including the colony-forming unit (CFU) granulocyte-macrophage; burst-forming unit-erythrocyte; CFU-granulocyte, erythrocyte, macrophage, megakaryocyte; and the CFU-megakaryocyte. The overall progenitor cell cloning efficiency of this subpopulation was greater than 31%. By contrast, the CD34+ HLA-DR- SR-1+ cell population contained fewer of these more differentiated progenitor cells but exclusively contained the more primitive progenitor cells, the BFU-megakaryocyte, high proliferative potential-colony-forming cell, and long-term bone marrow culture-initiating cell. The overall progenitor cell cloning efficiency of this subpopulation was greater than 7%. Both the CD34+ HLA-DR- and CD34+ HLA-DR+ cell subpopulations lacking KR expression contained few assayable hematopoietic progenitor cells. Long-term bone marrow cultures initiated with CD34+ HLA-DR- SR-1+ but not CD34+ HLA-DR- SR-1- cells, which were repeatedly supplemented with c-kit ligand (KL) and interleukin-3, generated assayable progenitor cells of at least 2 lineages for 10 weeks. These experiments demonstrate the expression of the KR throughout the

  20. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    Science.gov (United States)

    Alvarez, P.; Carrillo, E.; Vélez, C.; Hita-Contreras, F.; Martínez-Amat, A.; Rodríguez-Serrano, F.; Boulaiz, H.; Ortiz, R.; Melguizo, C.; Prados, J.; Aránega, A.

    2013-01-01

    Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM) and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs) cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a) the role of different factors, such as stromal cell derived factor-1 (SDF-1), granulocyte colony-stimulating factor (G-CSF), and vascular cell adhesion molecule-1 (VCAM-1), among other ligands; (b) the stem cell count in peripheral blood and BM and influential factors; (c) the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d) the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases. PMID:23844360

  1. A novel method of mouse ex utero transplantation of hepatic progenitor cells into the fetal liver.

    Science.gov (United States)

    Shikanai, Mima; Asahina, Kinji; Iseki, Sachiko; Teramoto, Kenichi; Nishida, Tomohiro; Shimizu-Saito, Keiko; Ota, Masato; Eto, Kazuhiro; Teraoka, Hirobumi

    2009-04-03

    Avoiding the limitations of the adult liver niche, transplantation of hepatic stem/progenitor cells into fetal liver is desirable to analyze immature cells in a hepatic developmental environment. Here, we established a new monitor tool for cell fate of hepatic progenitor cells transplanted into the mouse fetal liver by using ex utero surgery. When embryonic day (ED) 14.5 hepatoblasts were injected into the ED14.5 fetal liver, the transplanted cells expressed albumin abundantly or alpha-fetoprotein weakly, and contained glycogen in the neonatal liver, indicating that transplanted hepatoblasts can proliferate and differentiate in concord with surrounding recipient parenchymal cells. The transplanted cells became mature in the liver of 6-week-old mice. Furthermore, this method was applicable to transplantation of hepatoblast-like cells derived from mouse embryonic stem cells. These data indicate that this unique technique will provide a new in vivo experimental system for studying cell fate of hepatic stem/progenitor cells and liver organogenesis.

  2. Functional evidence for derivation of systemic histiocytic neoplasms from hematopoietic stem/progenitor cells.

    Science.gov (United States)

    Durham, Benjamin H; Roos-Weil, Damien; Baillou, Claude; Cohen-Aubart, Fleur; Yoshimi, Akihide; Miyara, Makoto; Papo, Matthias; Hélias-Rodzewicz, Zofia; Terrones, Nathalie; Ozkaya, Neval; Dogan, Ahmet; Rampal, Raajit; Urbain, Fanny; Le Fèvre, Lucie; Diamond, Eli L; Park, Christopher Y; Papo, Thomas; Charlotte, Frédéric; Gorochov, Guy; Taly, Valérie; Bernard, Olivier A; Amoura, Zahir; Abdel-Wahab, Omar; Lemoine, François M; Haroche, Julien; Emile, Jean-François

    2017-07-13

    Langerhans cell histiocytosis (LCH) and the non-LCH neoplasm Erdheim-Chester disease (ECD) are heterogeneous neoplastic disorders marked by infiltration of pathologic macrophage-, dendritic cell-, or monocyte-derived cells in tissues driven by recurrent mutations activating MAPK signaling. Although recent data indicate that at least a proportion of LCH and ECD patients have detectable activating kinase mutations in circulating hematopoietic cells and bone marrow-based hematopoietic progenitors, functional evidence of the cell of origin of histiocytosis from actual patient materials has long been elusive. Here, we provide evidence for mutations in MAPK signaling intermediates in CD34(+) cells from patients with ECD and LCH/ECD, including detection of shared origin of LCH and acute myelomonocytic leukemia driven by TET2-mutant CD34(+) cell progenitors in one patient. We also demonstrate functional self-renewal capacity for CD34(+) cells to drive the development of histiocytosis in xenotransplantation assays in vivo. These data indicate that the cell of origin of at least a proportion of patients with systemic histiocytoses resides in hematopoietic progenitor cells prior to committed monocyte/macrophage or dendritic cell differentiation and provide the first example of a patient-derived xenotransplantation model for a human histiocytic neoplasm. © 2017 by The American Society of Hematology.

  3. Regulatory Systems in Bone Marrow for Hematopoietic Stem/Progenitor Cells Mobilization and Homing

    Directory of Open Access Journals (Sweden)

    P. Alvarez

    2013-01-01

    Full Text Available Regulation of hematopoietic stem cell release, migration, and homing from the bone marrow (BM and of the mobilization pathway involves a complex interaction among adhesion molecules, cytokines, proteolytic enzymes, stromal cells, and hematopoietic cells. The identification of new mechanisms that regulate the trafficking of hematopoietic stem/progenitor cells (HSPCs cells has important implications, not only for hematopoietic transplantation but also for cell therapies in regenerative medicine for patients with acute myocardial infarction, spinal cord injury, and stroke, among others. This paper reviews the regulation mechanisms underlying the homing and mobilization of BM hematopoietic stem/progenitor cells, investigating the following issues: (a the role of different factors, such as stromal cell derived factor-1 (SDF-1, granulocyte colony-stimulating factor (G-CSF, and vascular cell adhesion molecule-1 (VCAM-1, among other ligands; (b the stem cell count in peripheral blood and BM and influential factors; (c the therapeutic utilization of this phenomenon in lesions in different tissues, examining the agents involved in HSPCs mobilization, such as the different forms of G-CSF, plerixafor, and natalizumab; and (d the effects of this mobilization on BM-derived stem/progenitor cells in clinical trials of patients with different diseases.

  4. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration.

    Science.gov (United States)

    Giroux, Véronique; Lento, Ashley A; Islam, Mirazul; Pitarresi, Jason R; Kharbanda, Akriti; Hamilton, Kathryn E; Whelan, Kelly A; Long, Apple; Rhoades, Ben; Tang, Qiaosi; Nakagawa, Hiroshi; Lengner, Christopher J; Bass, Adam J; Wileyto, E Paul; Klein-Szanto, Andres J; Wang, Timothy C; Rustgi, Anil K

    2017-06-01

    The esophageal lumen is lined by a stratified squamous epithelium comprised of proliferative basal cells that differentiate while migrating toward the luminal surface and eventually desquamate. Rapid epithelial renewal occurs, but the specific cell of origin that supports this high proliferative demand remains unknown. Herein, we have described a long-lived progenitor cell population in the mouse esophageal epithelium that is characterized by expression of keratin 15 (Krt15). Genetic in vivo lineage tracing revealed that the Krt15 promoter marks a long-lived basal cell population able to self-renew, proliferate, and generate differentiated cells, consistent with a progenitor/stem cell population. Transcriptional profiling demonstrated that Krt15+ basal cells are molecularly distinct from Krt15- basal cells. Depletion of Krt15-derived cells resulted in decreased proliferation, thereby leading to atrophy of the esophageal epithelium. Further, Krt15+ cells were radioresistant and contributed to esophageal epithelial regeneration following radiation-induced injury. These results establish the presence of a long-lived and indispensable Krt15+ progenitor cell population that provides additional perspective on esophageal epithelial biology and the widely prevalent diseases that afflict this epithelium.

  5. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids.

    Science.gov (United States)

    Seet, Christopher S; He, Chongbin; Bethune, Michael T; Li, Suwen; Chick, Brent; Gschweng, Eric H; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B; Baltimore, David; Crooks, Gay M; Montel-Hagen, Amélie

    2017-05-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3(+)TCR-αβ(+) single-positive CD8(+) or CD4(+) cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.

  6. LIVER AND BONE MARROW STEM/PROGENITOR CELLS AS REGULATORS OF REPARATIVE REGENERATION OF DAMAGED LIVER

    Directory of Open Access Journals (Sweden)

    А. V. Lundup

    2010-01-01

    Full Text Available In this review the modern information about effectiveness of liver insufficiency treatment by stem/ progenitor cells of liver (oval cells and bone marrow (hemopoietic cells and mesenchymal cells was presented. It is shown that medical action of these cells is referred on normalization of liver cell interaction and reorganization of processes of a reparative regeneration in damaged liver. It is believed that application of mesenchymal stromal cells from an autological bone marrow is the most perspective strategy. However, for definitive judgement about regenerative possibilities of the autological bone marrow cells it is necessary to carry out large-scale double blind clinical researches. 

  7. Human placenta is a potent hematopoietic niche containing hematopoietic stem and progenitor cells throughout development

    Science.gov (United States)

    Robin, Catherine; Bollerot, Karine; Mendes, Sandra; Haak, Esther; Crisan, Mihaela; Cerisoli, Francesco; Lauw, Ivoune; Kaimakis, Polynikis; Jorna, Ruud; Vermeulen, Mark; Kayser, Manfred; van der Linden, Reinier; Imanirad, Parisa; Verstegen, Monique; Nawaz-Yousaf, Humaira; Papazian, Natalie; Steegers, Eric; Cupedo, Tom; Dzierzak, Elaine

    2009-01-01

    Hematopoietic stem cells (HSC) are responsible for the life-long production of the blood system and are pivotal cells in hematologic transplantation therapies. During mouse and human development, the first HSCs are produced in the aorta-gonad-mesonephros region. Subsequent to this emergence, HSCs are found in other anatomical sites of the mouse conceptus. While the mouse placenta contains abundant HSCs at midgestation, little is known concerning whether HSCs or hematopoietic progenitors are present and supported in the human placenta during development. In this study we show, over a range of developmental times including term, that the human placenta contains hematopoietic progenitors and HSCs. Moreover, stromal cell lines generated from human placenta at several developmental time points are pericyte-like cells and support human hematopoiesis. Immunostaining of placenta sections during development localizes hematopoietic cells in close contact with pericytes/perivascular cells. Thus, the human placenta is a potent hematopoietic niche throughout development. PMID:19796619

  8. Controlled skeletal progenitor cell migration on nanostructured porous silicon/silicon micropatterns

    Science.gov (United States)

    Torres-Costa, V.; Sánchez-Vaquero, V.; Muñoz-Noval, Á.; González-Méndez, L.; Punzón-Quijorna, E.; Gallach-Pérez, D.; Manso-Silván, M.; Martínez-Muñoz, G.; Climent-Font, A.; García-Ruiz, J. P.; Martín-Palma, R. J.

    2011-10-01

    In this work nanostructured porous silicon (nanoPS) was used for the fabrication of surface micropatterns aiming at controlling cell adhesion and migration. In particular, surface patterns of nanoPS and Si were engineered by high-energy ion-beam irradiation and subsequent anodization. It was found that human skeletal progenitor cells are sensitive to oneand two-dimensional patterns and that focal adhesion is inhibited on nanoPS areas. In spite of this anti-fouling characteristics, studies on patterns with reduced Si areas show that cells conform to nanoPS pathways favoring migration through cell protrusion, body translocation and tail retraction from two parallel Si traction rails. Moreover, migration can be blocked and cells tend to arrange when grid patterns with the appropriate dimensions are fabricated. The experimental results confirm that progenitor cells are able to exploit nanoPS anti-fouling designs by adapting to it for migration purposes.

  9. Smoking decreases the level of circulating CD34+ progenitor cells in young healthy women - a pilot study

    Directory of Open Access Journals (Sweden)

    Baumann Gert

    2010-05-01

    Full Text Available Abstract Background Decreased levels of circulating bone marrow-derived progenitor cells have been associated with risk factors and cardiovascular diseases. Smoking is the most important modifiable risk factor for atherosclerosis in young women. The aim of this pilot study was to assess in healthy premenopausal women without other risk factors for cardiovascular disease the influence of nicotine abuse on the number of circulating progenitor cells in relation to endothelial function. Methods The number of endothelial progenitor cells, measured as colony-forming units in a cell-culture assay (EPC-CFU and the number of circulating CD34 + and CD34 + /CD133 + cells, measured by flow cytometry, was estimated in 32 women at the menstrual phase of the menstrual cycle. In addition, flow-mediated dilation (FMD was assessed as a marker for vascular function. In a subgroup of these women (n = 20, progenitor cells were also investigated at the mid-follicular and luteal phases of the menstrual cycle. Results Compared to non-smokers, the abundance of circulating CD34 + cells was significantly lower in smoking women in the menstrual, mid-luteal, and mid-follicular phases of the menstrual cycle. The number of CD34 + progenitor cells was revealed to have significant positive correlation with FMD in young healthy women, whereas CD34 + /CD133 + progenitor cells and EPC-CFU showed no significant correlation. Conclusion The number of CD34 + progenitor cells positively correlates with FMD in young healthy women and is decreased by smoking.

  10. Optimizing culture medium composition to improve oligodendrocyte progenitor cell yields in vitro from subventricular zone-derived neural progenitor cell neurospheres.

    Science.gov (United States)

    Franco, Paula G; Pasquini, Juana M; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC.

  11. Eotaxin-rich Proangiogenic Hematopoietic Progenitor Cells and CCR3+ Endothelium in the Atopic Asthmatic Response

    Science.gov (United States)

    Asosingh, Kewal; Vasanji, Amit; Tipton, Aaron; Queisser, Kimberly; Wanner, Nicholas; Janocha, Allison; Grandon, Deepa; Anand-Apte, Bela; Rothenberg, Marc. E.; Dweik, Raed; Erzurum, Serpil C.

    2016-01-01

    Angiogenesis is closely linked to and precedes eosinophilic infiltration in asthma. Eosinophils are recruited into the airway by chemoattractant eotaxins, which are expressed by endothelial cells, smooth muscles cells, epithelial cells, and hematopoietic cells. We hypothesized that bone marrow-derived proangiogenic progenitor cells that contain eotaxins contribute to the initiation of angiogenesis and inflammation in asthma. Whole lung allergen challenge of atopic asthma patients revealed vascular activation occurs within hours of challenge, and prior to airway inflammation. The eotaxin receptor CCR3 was expressed at high levels on submucosal endothelial cells in patients and murine model of asthma. Exvivo exposure of murine endothelial cells to eotaxins induced migration and angiogenesis. In mechanistic studies, wildtype mice transplanted with eotaxin-1/2 deficient bone marrow had markedly less angiogenesis and inflammation in an atopic asthma model, while adoptive transfer of proangiogenic progenitor cells from wildtype mice in an atopic asthma model into the eotaxin-1/2 deficient mice led to angiogenesis and airway inflammation. The findings indicate that TH2-promoting hematopoietic progenitor cells are rapidly recruited to the lung upon allergen exposure and release eotaxins that coordinately activate endothelial cells, angiogenesis, and airway inflammation. PMID:26810221

  12. Lipidome of midbody released from neural stem and progenitor cells during mammalian cortical neurogenesis

    Directory of Open Access Journals (Sweden)

    Yoko eArai

    2015-08-01

    Full Text Available Midbody release from proliferative neural progenitor cells is tightly associated with the neuronal commitment of neural progenitor cells during the progression of neurogenesis in the mammalian cerebral cortex. While the central portion of the midbody, a cytoplasmic bridge between nascent daughter cells, is engulfed by one of the daughter cell by most cells in vitro, it is shown to be released into the extracellular cerebrospinal fluid in vivo in mouse embryos. Several proteins have been involved in midbody release; however, few studies have addressed the participation of the plasma membrane’s lipids in this process. Here, we show by Shotgun Lipidomic analysis that phosphatydylserine (PS, among other lipids, is enriched in the released midbodies compared to lipoparticles and cellular membranes, both collected from the cerebrospinal fluid of the developing mouse embryos. Moreover, the developing mouse embryo neural progenitor cells released two distinct types of midbodies carrying either internalized PS or externalized PS on their membrane. This strongly suggests that phagocytosis and an alternative fate of released midbodies exists. HeLa cells, which are known to mainly engulf the midbody show almost no PS exposure, if any, on the outer leaflet of the midbody membrane. These results point towards that PS exposure might be involved in the selection of recipients of released midbodies, either to be engulfed by daughter cells or phagocytosed by non-daughter cells or another cell type in the developing cerebral cortex.

  13. Analysis of variation in results of CD34+ hematopoietic progenitor cell enumeration in a multicenter study

    NARCIS (Netherlands)

    Gratama, J. W.; Kraan, J.; Levering, W.; van Bockstaele, D. R.; Rijkers, G. T.; van der Schoot, C. E.

    1997-01-01

    A workshop was held in The Netherlands and Belgium with the aim of investigating whether or not the use of a standard protocol vs. local protocols for flow cytometric enumeration of CD34+ hematopoietic progenitor cells would reduce interlaboratory variation. The standard protocol consisted of a

  14. Targeted ablation of CRB1 and CRB2 in retinal progenitor cells mimics Leber congenital amaurosis

    NARCIS (Netherlands)

    Pellissier, Lucie P.; Alves, Celso Henrique; Quinn, Peter M.; Vos, Rogier M.; Tanimoto, Naoyuki; Lundvig, Ditte M. S.; Dudok, Jacobus J.; Hooibrink, Berend; Richard, Fabrice; Beck, Susanne C.; Huber, Gesine; Sothilingam, Vithiyanjali; Garcia Garrido, Marina; Le Bivic, André; Seeliger, Mathias W.; Wijnholds, Jan

    2013-01-01

    Development in the central nervous system is highly dependent on the regulation of the switch from progenitor cell proliferation to differentiation, but the molecular and cellular events controlling this process remain poorly understood. Here, we report that ablation of Crb1 and Crb2 genes results

  15. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease

    NARCIS (Netherlands)

    Krenning, Guido; Dankers, Patricia Y. W.; Drouven, Johannes W.; Waanders, Femke; Franssen, Casper F. M.; van Luyn, Marja J. A.; Harmsen, Martin C.; Popa, Eliane R.

    Krenning G, Dankers PY, Drouven JW, Waanders F, Franssen CF, van Luyn MJ, Harmsen MC, Popa ER. Endothelial progenitor cell dysfunction in patients with progressive chronic kidney disease. Am J Physiol Renal Physiol 296: F1314-F1322, 2009. First published April 1, 2009; doi:

  16. Effects of Electromagnetic Radiation from Smartphones on Learning Ability and Hippocampal Progenitor Cell Proliferation in Mice.

    Science.gov (United States)

    Choi, Yu-Jin; Choi, Yun-Sik

    2016-02-01

    Nonionizing radiation is emitted from electronic devices, such as smartphones. In this study, we intended to elucidate the effect of electromagnetic radiation from smartphones on spatial working memory and progenitor cell proliferation in the hippocampus. Both male and female mice were randomly separated into two groups (radiated and control) and the radiated group was exposed to electromagnetic radiation for 9 weeks and 11 weeks for male and female mice, respectively. Spatial working memory was examined with a Y maze, and proliferation of hippocampal progenitor cells were examined by 5-bromo-2'-deoxyuridine administration and immunohistochemical detection. When spatial working memory on a Y maze was examined in the 9(th) week, there was no significant difference in the spontaneous alternation score on the Y maze between the two groups. In addition, there was no significant difference in hippocampal progenitor cell proliferation. However, immunoreactivity to glial fibrillary acidic protein was increased in exposed animals. Next, to test the effect of recovery following chronic radiation exposure, the remaining female mice were further exposed to electromagnetic radiation for 2 more weeks (total 11 weeks), and spontaneous alternation was tested 4 weeks later. In this experiment, although there was no significant difference in the spontaneous alternation scores, the number of arm entry was significantly increased. These data indicate that although chronic electromagnetic radiation does not affect spatial working memory and hippocampal progenitor cell proliferation it can mediate astrocyte activation in the hippocampus and delayed hyperactivity-like behavior.

  17. Multifactorial treatment increases endothelial progenitor cells in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Reinhard, H; Jacobsen, P Karl; Lajer, Marianne

    2010-01-01

    Endothelial progenitor cells (EPC) augment vascular repair and neovascularisation. Patients with type 2 diabetes have reduced EPC and increased risk of cardiovascular disease (CVD), which is reduced by multifactorial intervention. Our aim, therefore, was to evaluate in type 2 diabetic patients...

  18. MRI visualization of endogenous neural progenitor cell migration along the RMS in the adult mouse brain

    DEFF Research Database (Denmark)

    Vreys, Ruth; Vande Velde, Greetje; Krylychkina, Olga

    2010-01-01

    The adult rodent brain contains neural progenitor cells (NPCs), generated in the subventricular zone (SVZ), which migrate along the rostral migratory stream (RMS) towards the olfactory bulb (OB) where they differentiate into neurons. The aim of this study was to visualize endogenous NPC migration...

  19. Conditionally reprogrammed normal and transformed mouse mammary epithelial cells display a progenitor-cell-like phenotype.

    Directory of Open Access Journals (Sweden)

    Francisco R Saenz

    Full Text Available Mammary epithelial (ME cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV-Neu-induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam. These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.

  20. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Meifang; Ai, Hongmei; Li, Tao [Department of Laboratory Medicine, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China); Rajoria, Pasupati; Shahu, Prakash [Department of Clinical Medicine, Medical School of Yangtze University, Jingzhou (China); Li, Xiansong, E-mail: lixiansongjz@hotmail.com [Department of Neurosurgery, JingZhou Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Jingzhou (China)

    2016-04-15

    Imatinib, a tyrosine kinase inhibitor (TKI) has significantly improved clinical outcome for chronic myeloid leukemia (CML) patients. However, patients develop resistance when the disease progresses to the blast phase (BP) and the mechanisms are not well understood. Here we show that BCR-ABL activates BLT2 in hematopoietic stem/progenitor cells to promote leukemogenesis and this involves the p53 signaling pathway. Compared to normal bone marrow (NBM), the mRNA and protein levels of BLT2 are significantly increased in BP-CML CD34{sup +} stem/progenitor cells. This is correlated with increasing BCR-ABL expression. In contrast, knockdown of BCR-ABL or inhibition of its tyrosine kinase activity decreases Blt2 protein level. BLT2 inhibition induces apoptosis, inhibits proliferation, colony formation and self-renewal capacity of CD34{sup +} cells from TKI-resistant BP-CML patients. Importantly, the inhibitory effects of BCR-ABL TKI on CML stem/progenitor cells are further enhanced upon combination with BLT2 inhibition. We further show that BLT2 activation selectively suppresses p53 but not Wnt or BMP-mediated luciferase activity and transcription. Our results demonstrate that BLT2 is a novel pathway activated by BCR-ABL and critically involved in the resistance of BP-CML CD34{sup +} stem/progenitors to TKIs treatment. Our findings suggest that BLT2 and p53 can serve as therapeutic targets for CML treatment. - Highlights: • BCR-ABL regulates BLT2 expression to promote leukemogenesis. • BLT2 is essential to maintain CML cell function. • Activation of BLT2 suppresses p53 signaling pathway in CML cells. • Inhibition of BLT2 and BCR-ABL synergize in eliminating CML CD34{sup +} stem/progenitors.