Hadronic matrix elements for Kaons
Energy Technology Data Exchange (ETDEWEB)
Bijnens, Johan [Department of Theoretical Physics 2, Lund University, Soelvegatan 14A, S-22362 Lund (Sweden); Gamiz, Elvira [CAFPE and Departamento de Fisica Teorica y del Cosmos, Universidad de Granada Campus de Fuente Nueva, E-18002 Granada (Spain); Prades, Joaquim [CAFPE and Departamento de Fisica Teorica y del Cosmos, Universidad de Granada Campus de Fuente Nueva, E-18002 Granada (Spain)
2004-07-01
We review some work done by us calculating matrix elements for Kaons. Emphasis is put on the matrix elements which are relevant to predict non-leptonic Kaon CP violating observables. In particular, we recall our results for the B{sub K} parameter which governs the K{sup 0}-K{sup 0} mixing and update our results for {epsilon}'inK including estimated all-higher-order CHPT corrections and the new results from recent analytical calculations of the {delta}itI = 3/2 component. Some comments on future prospects on calculating matrix elements for Kaons are also added.
Hadronic matrix elements for TAUOLA: 3 π and KKπ channels
Roig, P.
2009-04-01
We emphasize that the motivation for including our hadronic matrix elements in TAUOLA is not only theoretical. We also show that our expressions describe better the τ→3π ALEPH data and are able to fit BABAR data on the isovector component of ee→KKπ. The theoretical foundations of our framework are the large- N limit of QCD, the chiral structure exhibited at low energies and the proper asymptotic behaviour, ruled by QCD, that is demanded to the associated form factors.
Basye, Austin Thomas
A matrix element method analysis of the Standard Model Higgs boson, produced in association with two top quarks decaying to the lepton-plus-jets channel is presented. Based on 20.3 fb−1 of √s=8 TeV data, produced at the Large Hadron Collider and collected by the ATLAS detector, this analysis utilizes multiple advanced techniques to search for tt ̄H signatures with a 125 GeV Higgs boson decaying to two b-quarks. After categorizing selected events based on their jet and b-tag multiplicities, signal rich regions are analyzed using the matrix element method. Resulting variables are then propagated to two parallel multivariate analyses utilizing Neural Networks and Boosted Decision Trees respectively. As no significant excess is found, an observed (expected) limit of 3.4 (2.2) times the Standard Model cross-section is determined at 95% confidence, using the CLs method, for the Neural Network analysis. For the Boosted Decision Tree analysis, an observed (expected) limit of 5.2 (2.7) times the Standard Model cr...
Matrix elements from moments of correlation functions
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bouchard, Chris [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-10-01
Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.
Effects of quenching and partial quenching on penguin matrix elements
Golterman, Maarten; Pallante, Elisabetta
2001-01-01
In the calculation of non-leptonic weak decay rates, a "mismatch" arises when the QCD evolution of the relevant weak hamiltonian down to hadronic scales is performed in unquenched QCD, but the hadronic matrix elements are then computed in (partially) quenched lattice QCD. This mismatch arises
Efficient Matrix-Element Matching with Sector Showers
Lopez-Villarejo, J J
2011-01-01
A Markovian shower algorithm based on "sector antennae" is presented and its main properties illustrated. Tree-level full-color matrix elements can be automatically incorporated in the algorithm and are re-interpreted as process-dependent 2 -> n antenna functions. In hard parts of phase-space, these functions generate tree-level matrix-element corrections to the shower. In soft parts, they should improve the logarithmic accuracy of it. The number of matrix-element evaluations required per order of matching is 1, with an unweighting efficiency that remains very high for arbitrary numbers of legs. Total rates can be augmented to NLO precision in a straightforward way. As a proof of concept, we present an implementation in the publicly available VINCIA plug-in to the PYTHIA 8 event generator, for hadronic $Z^0$ decays including tree-level matrix elements through ${\\cal O}(\\alpha_s^4)$.
Analytic matrix elements with shifted correlated Gaussians
DEFF Research Database (Denmark)
Fedorov, D. V.
2017-01-01
Matrix elements between shifted correlated Gaussians of various potentials with several form-factors are calculated analytically. Analytic matrix elements are of importance for the correlated Gaussian method in quantum few-body physics....
Energy Technology Data Exchange (ETDEWEB)
Bernard, C. (California Univ., Santa Barbara, CA (USA). Inst. for Theoretical Physics); Soni, A. (Brookhaven National Lab., Upton, NY (USA))
1989-01-01
We present results from the Wilson fermion part of the Grand Challenge'' weak matrix element project. A new procedure for correcting the chiral behavior of {Beta}{sub LL}{sup sd}, the K{sup 0}-{bar K}{sup 0} {Beta} parameter,'' is proposed and applied. On our largest lattice (24{sup 3} {times} 40 at {beta} = 6.0), we get {Beta}{sub LL}{sup sd} = .86 {plus minus} .11 {plus minus} .05, where the first error is statistical and the second is a measure of the systematic errors due to the procedure and to related finite-size effects. Results for the direct K{sup +} {yields} {pi}{sup +}{pi}{sup 0} amplitude are also presented. There is some evidence for higher order chiral effects which may make these results compatible both with experiment and with the {Beta}{sub LL}{sup sd} computation. The status of the direct K{sub s}{sup 0} {yields} {pi} {sup +} {pi}{sup {minus}} {Delta}I = 1/2 amplitude is then discussed. 11 refs., 6 figs., 1 tab.
Comix, a new matrix element generator
Gleisberg, Tanju; Höche, Stefan
2008-12-01
We present a new tree-level matrix element generator, based on the colour dressed Berends-Giele recursive relations. We discuss two new algorithms for phase space integration, dedicated to be used with large multiplicities and colour sampling.
Semiclassical form factor of matrix element fluctuations
Eckhardt, B; Eckhardt, Bruno; Main, Joerg
1995-01-01
We analyze within a semiclassical approximation the form factor for the fluctuations of quantum matrix elements around their classical average. We find two contributions: one is proportional to the form factor for the density of states, with an amplitude determined by the squared average of the matrix elements. The other is constant and related to the fluctuations of finite time classical trajectory segments around the phase space average. The results are illustrated for an observable in the quadratic Zeeman effect.
Energy Technology Data Exchange (ETDEWEB)
Adametz, Aleksandra
2011-07-06
This thesis presents the branching fraction measurement of the τ{sup -}→K{sup -}(nπ{sup 0})ν{sub τ} (n=0,1,2,3) and τ{sup -}→π{sup -}(nπ{sup 0})ν{sub τ} (n=3,4) decays. The measurement is based on a data sample of 435 million τ pairs produced in e{sup +}e{sup -} collisions and collected with the BABAR detector in 1999-2008. The analysis is validated using precisely known τ decays as control modes. The measured branching fractions are B(τ{sup -}→K{sup -}ν{sub τ})=(7.100±0.033±0.156) x 10{sup -3}, B(τ{sup -}→K{sup -}π{sup 0}ν{sub τ})=(5.000±0.020±0.139) x 10{sup -3}, B(τ{sup -}→K{sup -}(2π{sup 0})ν{sub τ})=(5.654±0.144±0.323) x 10{sup -4}, B(τ{sup -}→K{sup -}(3π{sup 0})ν{sub τ})=(1.642±0.279±0.375) x 10{sup -4}, B(τ{sup -}→π{sup -}(3π{sup 0})ν{sub τ})=(1.216±0.010±0.047) x 10{sup -2}, B(τ{sup -}→π{sup -}(4π{sup 0})ν{sub τ})=(1.041±0.067±0.090) x 10{sup -3}, where the first uncertainty is statistical and the second systematic. The branching fraction B(τ{sup -}→π{sup -}(4π{sup 0})ν{sub τ}) is measured for the first time. The precision of the results is comparable or significantly improved with respect to previous measurements. The branching fraction B(τ{sup -}→K{sup -}ν{sub τ}) is combined with a lattice QCD calculation of the kaon decay constant to obtain the Cabibbo-Kobayashi-Maskawa matrix element vertical stroke V{sub us} vertical stroke =0.2224±0.0025(exp)±0.0029(theo). The branching fractions of the τ decays into a kaon are combined with the current world averages. The resulting averages are used in the determination of the total τ branching fraction, B{sub s}, into strangeness vertical stroke S vertical stroke =1 final states. B{sub s} is used in conjunction with vertical stroke V{sub ud} vertical stroke and a small SU(3)-symmetry breaking correction to compute vertical stroke V{sub us} vertical stroke =0.2176±0.0025(exp)±0.0010(theo).
Double-β decay matrix elements from lattice quantum chromodynamics
Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Nplqcd Collaboration
2017-09-01
A lattice quantum chromodynamics (LQCD) calculation of the nuclear matrix element relevant to the n n →p p e e ν¯eν¯e transition is described in detail, expanding on the results presented in Ref. [P. E. Shanahan et al., Phys. Rev. Lett. 119, 062003 (2017), 10.1103/PhysRevLett.119.062003]. This matrix element, which involves two insertions of the weak axial current, is an important input for phenomenological determinations of double-β decay rates of nuclei. From this exploratory study, performed using unphysical values of the quark masses, the long-distance deuteron-pole contribution to the matrix element is separated from shorter-distance hadronic contributions. This polarizability, which is only accessible in double-weak processes, cannot be constrained from single-β decay of nuclei, and is found to be smaller than the long-distance contributions in this calculation, but non-negligible. In this work, technical aspects of the LQCD calculations, and of the relevant formalism in the pionless effective field theory, are described. Further calculations of the isotensor axial polarizability, in particular near and at the physical values of the light-quark masses, are required for precise determinations of both two-neutrino and neutrinoless double-β decay rates in heavy nuclei.
Energy Technology Data Exchange (ETDEWEB)
Volk, Alexei
2009-07-01
This thesis presents an analysis of inclusive semileptonic B{yields} X{sub u}e anti {nu}{sub e} decays using approximately 454 million {upsilon}(4S){yields}B anti B decays collected during the years 1999 to 2008 with the BABAR detector. The electron energy, E{sub e}, and the invariant mass squared of the electron-neutrino pair, q{sup 2}, are reconstructed, where the neutrino kinematics is deduced from the decay products of both B mesons. The final hadronic state, X{sub u}, consists of a sum of many hadronic channels, each of which contains at least one u quark. The variables q{sup 2} and E{sub e} are then combined to compute the maximum kinematically allowed invariant mass squared of the hadronic system, s{sub h}{sup max}. Using these kinematic quantities, the partial branching fraction, {delta}B(B {yields} X{sub u}lv), unfolded for detector effects, is measured to be {delta}B(E{sub e}>2.0 GeV, s{sub h}{sup max}<3.52 GeV{sup 2}) (3.33{+-}0.18{+-}0.21) x 10{sup -4} in the {upsilon}(4S) and {delta}B(E{sub e}>1.9 GeV, s{sub h}{sup max}<3.5 GeV{sup 2})= (4.57{+-}0.24{+-}0.32) x 10{sup -4} in the B meson rest frames. The quoted errors are statistical and systematic, respectively. The CKM matrix element vertical stroke V{sub ub} vertical stroke is determined from the measured {delta}B using theoretical calculation based on Heavy Quark Expansion. The result is vertical stroke V{sub ub} vertical stroke =(4.19{+-}0.18{sub -0.20-0.25}{sup +0.26+0.26}) x 10{sup -3}, where the errors represent experimental uncertainties, uncertainties from HQE parameters and theoretical uncertainties, respectively. (orig.)
The Common Elements of Atomic and Hadronic Physics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)
2015-02-26
Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.
Measurements of the CKM matrix element V(cb)
Di Ciaccio, L
1996-01-01
A review of the measurements of the element V ch of the CabibboKobayashi-Maskawa matrix is presented. The experimental results discussed here are based on the selection of the decays B -t D' lv and on the study of the differential decay rate as a function of the momentum transfer from the B to D' particle. This method allows to measure IV chi with a reduced model dependence. This review describes mainly the most recent analyses which have been performed by the LEP Collaborations. The IVcbl determination based on the inclusive semileptonic decay width of the B hadrons is also shortly presented. The results obtained with these two methods are averaged and prospects for the future are discussed
Weak matrix elements on the lattice - Circa 1995
Energy Technology Data Exchange (ETDEWEB)
Soni, A.
1995-10-03
Status of weak matrix elements is reviewed. In particular, e{prime}/e, B {yields} K*{gamma}, B{sub B} and B{sub B}, are discussed and the overall situation with respect to the lattice effort and some of its phenomenological implications are summarised. For e{prime}/e the need for the relevant matrix elements is stressed in view of the forthcoming improved experiments. For some of the operators, (e.g. O{sub 6}), even bound on their matrix elements would be very helpful. On B {yields} K{degrees}{gamma}, a constant behavior of T{sub 2} appears disfavored although dependence of T{sub 2} could, of course, be milder than a simple pole. Improved data is badly needed to settle this important issue firmly, especially in view of its ramification for extractions of V{sub td} from B {yields} {rho}{gamma}. On B{sub {kappa}}, the preliminary result from JLQCD appears to contradict Sharpe et al. JLQCD data seems to fit very well to linear {alpha} dependence and leads to an appreciably lower value of B{sub {kappa}}. Four studies of B{sub {kappa}} in the {open_quotes}full{close_quotes} (n{sub f} = 2) theory indicate very little quenching effects on B{sub {kappa}}; the full theory value seems to be just a little less than the quenched result. Based on expectations from HQET, analysis of B-parameter (B{sub h}{ell}) for the heavy-light mesons via B{sub h}{ell}) = constant + constants{prime}/m{sub h}{ell} is suggested. A summary of an illustrative sample of hadron matrix elements is given and constraints on CKM parameters (e.g. V{sub td}/V{sub ts}, on the unitarity triangle and on x{sub s}/x{sub d}, emerging from the lattice calculations along with experimental results are briefly discussed. In quite a few cases, for the first time, some indication of quenching errors on weak matrix elements are now becoming available.
The Matrix Element Method and Vector-Like Quark Searches
Morrison, Benjamin
2016-01-01
In my time at the CERN summer student program, I worked on applying the matrix element method to vector-like quark identification. I worked in the ATLAS University of Geneva group under Dr. Olaf Nackenhorst. I developed automated plotting tools with ROOT, a script for implementing and optimizing generated matrix element calculation code, and kinematic transforms for the matrix element method.
The Protection System for the Superconducting Elements of the Large Hadron Collider at CERN
Dahlerup-Petersen, K; Gómez-Costa, J L; Hagedorn, Dietrich; Proudlock, Paul; Rodríguez-Mateos, F; Schmidt, R; Sonnemann, F
1999-01-01
The protection system for the superconducting elements of the Large Hadron Collider (LHC) [1] at the European Laboratory for Particle Physics (CERN), and its associated equipment are presented: quench detectors, cold diodes, quench heaters and related power supplies, extraction resistors and associated current breakers. Features such as radiation resistance, redundancy and required reliability are discussed.
CERN celebrating the Lowering of the final detector element for large Hadron Collider
2008-01-01
In the early hours of the morning the final element of the Compact Muon Solenoid (CMS) detector began the descent into its underground experimental cavern in preparation for the start-up of CERNs Large Hadron Collider (LHC) this summer. This is a pivotal moment for the CMS collaboration.
A top quark mass measurement using a matrix element method
Energy Technology Data Exchange (ETDEWEB)
Linacre, Jacob Thomas [St. John' s College, Annapolis, MD (United States)
2009-01-01
A measurement of the mass of the top quark is presented, using top-antitop pair (t$\\bar{t}$) candidate events for the lepton+jets decay channel. The measurement makes use of Tevatron p$\\bar{p}$ collision data at centre-of-mass energy √s = 1.96 TeV, collected at the CDF detector. The top quark mass is measured by employing an unbinned maximum likelihood method where the event probability density functions are calculated using signal (t$\\bar{t}$) and background (W+jets) matrix elements, as well as a set of parameterised jet-to-parton mapping functions. The likelihood function is maximised with respect to the top quark mass, the fraction of signal events, and a correction to the jet energy scale (JES) of the calorimeter jets. The simultaneous measurement of the JES correction (Δ_{JES}) provides an in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using 578 lepton+jets candidate events corresponding to 3.2 fb ^{-1} of integrated luminosity, the top quark mass is measured to be m_{t} = 172.4± 1.4 (stat+Δ_{JES}) ±1.3 (syst) GeV=c^{2}, one of the most precise single measurements to date.
Nuclear Matrix Elements for Tests of Local Lorentz Invariance Violation
Brown, B. A.; Bertsch, G. F.; Robledo, L. M.; Romalis, M. V.; Zelevinsky, V.
2017-11-01
The nuclear matrix elements for the spin operator and the momentum quadrupole operator are important for the interpretation of precision atomic physics experiments that search for violations of local Lorentz and C P T symmetry and for new spin-dependent forces. We use the configuration-interaction nuclear shell model and self-consistent mean-field theory to calculate the momentum matrix elements for 21Ne, 23Na, 133Cs, 173Yb, and 201Hg. We show that these momentum matrix are strongly suppressed by the many-body correlations, in contrast to the well-known enhancement of the spatial quadrupole nuclear matrix elements.
Rovibrational matrix elements of the multipole moments and of the ...
Indian Academy of Sciences (India)
Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is ...
Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [Univ. of Illinois, Champaign, IL (United States)
2015-01-01
We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched N_{f} = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a^{2} tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a^{2} tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We report values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.
$B^0_{(s)}$-mixing matrix elements from lattice QCD for the Standard Model and beyond
Bazavov, A; Bouchard, C M; Chang, C C; DeTar, C; Du, Daping; El-Khadra, A X; Freeland, E D; Gamiz, E; Gottlieb, Steven; Heller, U M; Kronfeld, A S; Laiho, J; Mackenzie, P B; Neil, E T; Simone, J; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran
2016-01-01
We calculate---for the first time in three-flavor lattice QCD---the hadronic matrix elements of all five local operators that contribute to neutral $B^0$- and $B_s$-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral $B$-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio $\\xi = 1.203(17)(6)$, where the second error stems from the omission of charm sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty tightens the constraint from $B$ mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings a...
Elements of matrix modeling and computing with Matlab
White, Robert E
2006-01-01
As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat
Precision Measurement of Transition Matrix Elements via Light Shift Cancellation
Herold, C. D.; Vaidya, V. D.; Li, X.; Rolston, S. L.; Porto, J. V.; Safronova, M. S.
2012-12-01
We present a method for accurate determination of atomic transition matrix elements at the 10-3 level. Measurements of the ac Stark (light) shift around “magic-zero” wavelengths, where the light shift vanishes, provide precise constraints on the matrix elements. We make the first measurement of the 5s-6p matrix elements in rubidium by measuring the light shift around the 421 and 423 nm zeros through diffraction of a condensate off a sequence of standing wave pulses. In conjunction with existing theoretical and experimental data, we find 0.3235(9)ea0 and 0.5230(8)ea0 for the 5s-6p1/2 and 5s-6p3/2 elements, respectively, an order of magnitude more accurate than the best theoretical values. This technique can provide needed, accurate matrix elements for many atoms, including those used in atomic clocks, tests of fundamental symmetries, and quantum information.
Something different - caching applied to calculation of impedance matrix elements
CSIR Research Space (South Africa)
Lysko, AA
2012-09-01
Full Text Available This paper introduces a new method generally termed memoization, to accelerate filling in the impedance matrix, e.g. in the method of moments (MoM). The memoization stores records for recently computed matrix elements in a cache, and, when...
Finite size effects of a pion matrix element
Energy Technology Data Exchange (ETDEWEB)
Guagnelli, M. [Dipartimento di Fisica, Universita di Roma Tor Vergata and INFN, Sezione di Roma II, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Jansen, K. [NIC/DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen (Germany); Palombi, F. [Dipartimento di Fisica, Universita di Roma Tor Vergata and INFN, Sezione di Roma II, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); E. Fermi Research Center, c/o Compendio Viminale, pal. F, I-00184 Rome (Italy); Petronzio, R. [Dipartimento di Fisica, Universita di Roma Tor Vergata and INFN, Sezione di Roma II, Via della Ricerca Scientifica 1, I-00133 Rome (Italy); Shindler, A. [NIC/DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen (Germany); Wetzorke, I. [NIC/DESY Zeuthen, Platanenallee 6, D-15738 Zeuthen (Germany)]. E-mail: ines.wetzorke@desy.de
2004-09-09
We investigate finite size effects of the pion matrix element of the non-singlet, twist-2 operator corresponding to the average momentum of non-singlet quark densities. Using the quenched approximation, they come out to be surprisingly large when compared to the finite size effects of the pion mass. As a consequence, simulations of corresponding nucleon matrix elements could be affected by finite size effects even stronger which could lead to serious systematic uncertainties in their evaluation.
B s → Kℓν ℓ and B ( s) → π( K) ℓ + ℓ - decays at large recoil and CKM matrix elements
Khodjamirian, Alexander; Rusov, Aleksey V.
2017-08-01
We provide hadronic input for the B-meson semileptonic transitions to a light pseudoscalar meson at large recoil. The B s → K form factor calculated from QCD light-cone sum rule is updated, to be used for a | V ub | determination from the B s → Kℓν width. Furthermore, we calculate the hadronic input for the binned observables of B → πℓ + ℓ - and B → Kℓ + ℓ -. In addition to the form factors, the nonlocal hadronic matrix elements are obtained, combining QCD factorization and light-cone sum rules with hadronic dispersion relations. We emphasize that, due to nonlocal effects, the ratio of branching fractions of these decays is not sufficient for an accurate extraction of the | V td /V ts | ratio. Instead, we suggest to determine the Wolfenstein parameters A, ρ, η of the CKM matrix, combining the branching fractions of B → Kℓ + ℓ - and B → πℓ + ℓ - with the direct CP -asymmetry in the latter decay. We also obtain the hadronic matrix elements for a yet unexplored channel B s → Kℓ + ℓ -.
A Matrix Element for Chaotic Tunnelling Rates and Scarring Intensities
Creagh, S C; Creagh, Stephen C.; Whelan, Niall D.
1998-01-01
It is shown that tunnelling splittings in ergodic double wells and resonant widths in ergodic metastable wells can be approximated as easily-calculated matrix elements involving the wavefunction in the neighbourhood of a certain real orbit. This orbit is a continuation of the complex orbit which crosses the barrier with minimum imaginary action. The matrix element is computed by integrating across the orbit in a surface of section representation, and uses only the wavefunction in the allowed region and the stability properties of the orbit. When the real orbit is periodic, the matrix element is a natural measure of the degree of scarring of the wavefunction. This scarring measure is canonically invariant and independent of the choice of surface of section, within semiclassical error. The result can alternatively be interpretated as the autocorrelation function of the state with respect to a transfer operator which quantises a certain complex surface of section mapping. The formula provides an efficient numeri...
The matrix element method at next-to-leading order
Campbell, John M.; Giele, Walter T.; Williams, Ciaran
2012-11-01
This paper presents an extension of the matrix element method to next-to-leading order in perturbation theory, for electro-weak final states. To accomplish this we have developed a method to calculate next-to-leading order weights on an event-by-event basis. This allows for the definition of next-to-leading order likelihoods in exactly the same fashion as at leading order, thus extending the matrix element method to next-to-leading order. A welcome by-product of the method is the straightforward and efficient generation of unweighted next-to-leading order events. As examples of the application of our next-to-leading order matrix element method we consider the measurement of the mass of the Z boson and also the search for the Higgs boson in the four lepton channel.
The Matrix Element Method at Next-to-Leading Order
Campbell, John M.; Giele, Walter T.; Williams, Ciaran
2012-01-01
This paper presents an extension of the matrix element method to next-to-leading order in perturbation theory. To accomplish this we have developed a method to calculate next-to-leading order weights on an event-by-event basis. This allows for the definition of next-to-leading order likelihoods in exactly the same fashion as at leading order, thus extending the matrix element method to next-to-leading order. A welcome by-product of the method is the straightforward and efficient generation of...
Radial Matrix Elements of Hydrogen Atom and the Correspondence ...
Indian Academy of Sciences (India)
Radial dipole matrix elements having astrophysical importance have been computed for highly excited states of hydrogen atom. Computation is based on Heisenberg's form of correspondence principle for Coulomb potential. Particular attention has been paid to the choice of classical analogue (c) of principal quantum ...
Rovibrational matrix elements of the multipole moments and of the ...
Indian Academy of Sciences (India)
a maximum of 2% from the free molecule matrix elements. 2. Theoretical details and method of computation. In a linear molecule, the strength of the 2 -pole moment tensor of ranki is characterized by a single (scalar) component Q , and i is necessarily even valued if the molecule is centro- symmetric like H2. If we align the ...
Radial Matrix Elements of Hydrogen Atom and the Correspondence ...
Indian Academy of Sciences (India)
R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22
Abstract. Radial dipole matrix elements having astrophysical impor- tance have been computed for highly excited states of hydrogen atom. Computation is based on Heisenberg's form of correspondence principle for Coulomb potential. Particular attention has been paid to the choice of classical analogue (nc) of principal ...
Application of FIRE for the calculation of photon matrix elements
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... In order to evaluate the two-loop Feynman diagrams for the photon matrix element of the gluon operator, I apply the recently developed algorithm FIRE which reduces a complicated sum of scalar Feynman integrals to a linear combination of a few master integrals. The details of the calculation are presented ...
Structure of nuclear transition matrix elements for neutrinoless ...
Indian Academy of Sciences (India)
Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double- decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...
Structure of nuclear transition matrix elements for neutrinoless ...
Indian Academy of Sciences (India)
Abstract. The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double-β decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously ...
Ivanov, A. N.
2018-02-01
We analyse the Lorentz structure of the matrix elements of the ‘neutron \\longleftrightarrow proton’ transitions, induced by the charged hadronic vector current. We show that the term providing conservation of the charged hadronic vector current in the sense of the vanishing matrix element of the divergence of the charged hadronic vector current of the ‘neutron \\longleftrightarrow proton’ transitions even for different neutron and proton masses (see T Leitner et al 2006 Phys. Rev. C 73 065502 and A M Ankowski 2016 arXiv:1601.06169 [hep-ph]) has a dynamical origin, related to the G-even first class current contribution. We show that because of the invariance of strong low-energy interactions under G-parity transformations, the G-odd contribution with Lorentz structure {q}μ , where {q}μ is a transferred momentum, does not appear in the matrix elements of the ‘neutron \\longleftrightarrow proton’ transitions.
Hill, E J
2005-01-01
This thesis presents several measurements of the CKM quark mixing matrix element |Vub| with reduced theoretical model dependency. The data sample for these results consists of about 90 million ϒ(4 S) → BB¯ decays collected between 1999 and 2002 with the BABAR detector at the PEP-II asymmetric- energy e+e- collider, located at the Stanford Linear Accelerator Center. The determinations of | Vub| are performed by measuring the invariant hadronic mass spectrum from inclusive semileptonic B meson decays recoiling from a fully reconstructed B meson decaying hadronically. In one method, the partial rate extracted from the charmless semileptonic hadronic mass spectrum below 1.67 GeV/c2 is combined with a weighted integral over the endpoint of the photon energy spectrum from b → sγ decays and the result |Vub| = (4.43 ± 0.38stat ± 0.25syst ± 0.28theo ) × 10- 3 is obtained. In a second method, the charmless hadronic mass spectrum ...
Arazi, Lior; Breskin, Amos; Bressler, Shikma; Moleri, Luca; Natal da Luz, Hugo; Oliveri, Eraldo; Pitt, Michael; Rubin, Adam; Marques Ferreira dos Santos, Joaquim; Calapez Albuquerque Veloso, João Filipe; White, Andrew Paul
2013-01-01
Thick Gas Electron Multipliers (THGEMs) have the potential of constituting thin, robust sampling elements in Digital Hadron Calorimetry (DHCAL) in future colliders. We report on recent beam studies of new single- and double-THGEM-like structures; the multiplier is a Segmented Resistive WELL (SRWELL) - a single-faced THGEM in contact with a segmented resistive layer inductively coupled to readout pads. Several 10$\\times$10 cm$^2$ configurations with a total thickness of 5-6 mm (excluding electronics) with 1 cm$^2$ pads coupled to APV-SRS readout were investigated with muons and pions. Detection efficiencies in the 98$%$ range were recorded with average pad-multiplicity of $\\sim$1.1. The resistive anode resulted in efficient discharge damping, with potential drops of a few volts; discharge probabilities were $\\sim10^{-7}$ for muons and $\\sim10^{-6}$ for pions in the double-stage configuration, at rates of a few kHz/cm$^2$. Further optimization work and research on larger detectors are underway.
Energy Technology Data Exchange (ETDEWEB)
Arazi, Lior, E-mail: lior.arazi@weizmann.ac.il [Weizmann Institute of Science, Rehovot (Israel); Davide Rocha Azevedo, Carlos [I3N—Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Breskin, Amos; Bressler, Shikma; Moleri, Luca [Weizmann Institute of Science, Rehovot (Israel); Natal da Luz, Hugo [University of Coimbra, Coimbra (Portugal); Oliveri, Eraldo [CERN, Geneva (Switzerland); Pitt, Michael; Rubin, Adam [Weizmann Institute of Science, Rehovot (Israel); Marques Ferreira dos Santos, Joaquim [University of Coimbra, Coimbra (Portugal); Filipe Calapez de Albuquerque Veloso, João [I3N—Physics Department, University of Aveiro, 3810-193 Aveiro (Portugal); Paul White, Andrew [University of Texas, Arlington (United States)
2013-12-21
Thick Gas Electron Multipliers (THGEMs) have the potential of constituting thin, robust sampling elements in Digital Hadron Calorimetry (DHCAL) at future colliders. We report on recent beam studies of new single- and double-THGEM-like structures: the multiplier is a Segmented Resistive WELL (SRWELL) – a single-faced THGEM in contact with a segmented resistive layer inductively coupled to readout pads. Several 10×10 cm{sup 2} configurations with a total thickness of 5–6 mm (excluding electronics) with 1 cm{sup 2} pads were investigated with muons and pions. The pads were coupled to a scalable readout system APV chip, APV-SRS (Raymond et al. [22]). Detection efficiencies in the 98% range were recorded with an average pad-multiplicity of ∼1.1. The resistive anode resulted in efficient discharge damping, with potential drops of a few volts; the discharge probabilities were ∼10{sup −7} for muons and ∼10{sup −6} for pions, at rates of a few kHz/cm{sup 2} and for detectors in the double-stage configuration. Further optimization work and research on larger detectors are underway. -- Highlights: •THGEM-based detectors with resistive anodes are proposed as DHCAL sampling elements. •Single- and double-stage detectors were successfully tested with muons and pions. •Detectors were 10×10 cm{sup 2} in size, 5–6 mm thick (excluding electronics). •Readout provided by SRS-APV chip coupled to 64 1×1 cm{sup 2} pads. •Detectors efficiencies were >97% at 1.1 multiplicity with effective spark damping.
Modelling hadronic interactions in HEP MC generators
Skands, Peter
2015-01-01
HEP event generators aim to describe high-energy collisions in full exclusive detail. They combine perturbative matrix elements and parton showers with dynamical models of less well-understood phenomena such as hadronization, diffraction, and the so-called underlying event. We briefly summarise some of the main concepts relevant to the modelling of soft/inclusive hadron interactions in MC generators, in particular PYTHIA, with emphasis on questions recently highlighted by LHC data.
Measurement of Dipole Matrix Elements with a Single Trapped Ion.
Hettrich, M; Ruster, T; Kaufmann, H; Roos, C F; Schmiegelow, C T; Schmidt-Kaler, F; Poschinger, U G
2015-10-02
We demonstrate a method to determine dipole matrix elements by comparing measurements of dispersive and absorptive light ion interactions. We measure the matrix element pertaining to the Ca II H line, i.e., the 4(2)S(1/2)↔4(2)P(1/2) transition of (40)Ca(+), for which we find the value 2.8928(43) ea(0). Moreover, the method allows us to deduce the lifetime of the 4(2)P(1/2) state to be 6.904(26) ns, which is in agreement with predictions from recent theoretical calculations and resolves a long-standing discrepancy between calculated values and experimental results.
Antenna Showers with One-Loop Matrix Elements
Hartgring, L; Skands, P
2013-01-01
We consider the probability for a colour-singlet qqbar pair to emit a gluon, in strongly and smoothly ordered antenna showers. We expand to second order in alphaS and compare to the second-order QCD matrix elements for Z -> 3 jets, neglecting terms suppressed by 1/NC^2. We give a prescription that corrects the shower to the matrix-element result at this order for both soft and hard emissions, thereby explicitly reducing its dependence on evolution- and renormalization-scale choices. We confirm that the choice of pT for both of these scales absorbs all logarithms through order alphaS^2, and contrast this with various alternatives. We include these corrections in the VINCIA shower generator and study the impact on LEP event-shape and fragmentation observables. An uncertainty estimate is provided for each event, in the form of a vector of alternative weights.
Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method
Directory of Open Access Journals (Sweden)
Emir Gülümser
2014-01-01
Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.
Automatic Generation of Matrix Element Derivatives for Tight Binding Models
Alin M. Elena; Meister, Matthias
2005-01-01
Tight binding (TB) models are one approach to the quantum mechanical many particle problem. An important role in TB models is played by hopping and overlap matrix elements between the orbitals on two atoms, which of course depend on the relative positions of the atoms involved. This dependence can be expressed with the help of Slater-Koster parameters, which are usually taken from tables. Recently, a way to generate these tables automatically was published. If TB approaches are applied to sim...
Application of FIRE for the calculation of photon matrix elements
Indian Academy of Sciences (India)
perturbative QCD for the kinematical region Λ2 ≪ P2 ≪ Q2, where −Q2 (−P2) is the mass square of the probe (target) photon and Λ is the QCD scale parameter. In order to evaluate the two-loop Feynman diagrams for the photon matrix element of the gluon operator, I apply the recently developed algorithm FIRE which ...
Study of color-octet matrix elements through J/ψ production in e{sup +}e{sup -} annihilation
Energy Technology Data Exchange (ETDEWEB)
Li, Yi-Jie; Xu, Guang-Zhi; Zhang, Pan-Pan; Liu, Kui-Yong [Liaoning University, Department of Physics, Shenyang (China); Zhang, Yu-Jie [Beihang University, School of Physics, Beijing (China); CAS Center for Excellence in Particle Physics, Beijing (China)
2017-09-15
In this paper, the color-octet long distance matrix elements are studied through the inclusive J/ψ production in e{sup +}e{sup -} annihilation within the framework of non-relativistic QCD factorization. The calculations are up-to next-to-leading order with the radiative and relativistic corrections in the energy region of the B-factory and the near-threshold region of 4.6-5.6 GeV. A constraint of the long distance matrix elements (left angle {sup 1}S{sub 0}{sup 8} right angle, left angle {sup 3}P{sub 0}{sup 8} right angle) is obtained. Through our estimation, the P-wave color-octet matrix element (left angle 0 vertical stroke {sup 3}P{sup 8}{sub 0} vertical stroke 0 right angle) should be of the order of 0.008m{sub c}{sup 2} GeV{sup 3} or less. The constrained region is not compatible with the values of the long distance matrix elements fitted at hadron colliders. (orig.)
The Matrix Element Method in the LHC era
Wertz, Sébastien
2017-03-01
The Matrix Element Method (MEM) is a powerful multivariate method allowing to maximally exploit the experimental and theoretical information available to an analysis. The method is reviewed in depth, and several recent applications of the MEM at LHC experiments are discussed, such as searches for rare processes and measurements of Standard Model observables in Higgs and Top physics. Finally, a new implementation of the MEM is presented. This project builds on established phase-space parametrisations known to greatly improve the speed of the calculations, and aims at a much improved modularity and maintainability compared to previous software, easing the use of the MEM for high-statistics data analyses.
Neutrinoless Double Beta Decay Matrix Elements in Light Nuclei
Energy Technology Data Exchange (ETDEWEB)
Pastore, S.; Carlson, J.; Cirigliano, V.; Dekens, W.; Mereghetti, E.; Wiringa, R. B.
2018-01-17
We present the first ab initio calculations of neutrinoless double-β decay matrix elements in A=6-12 nuclei using variational Monte Carlo wave functions obtained from the Argonne v_{18} two-nucleon potential and Illinois-7 three-nucleon interaction. We study both light Majorana neutrino exchange and potentials arising from a large class of multi-TeV mechanisms of lepton-number violation. Our results provide benchmarks to be used in testing many-body methods that can be extended to the heavy nuclei of experimental interest. In light nuclei we also study the impact of two-body short-range correlations and the use of different forms for the transition operators, such as those corresponding to different orders in chiral effective theory.
Implications of unitarity and precision measurements on CKM matrix elements
Energy Technology Data Exchange (ETDEWEB)
Ahuja, Gulsheen [Department of Physics, Centre of Advanced Study, P.U., Chandigarh (India); Gupta, Manmohan [Department of Physics, Centre of Advanced Study, P.U., Chandigarh (India)]. E-mail: mmgupta@pu.ac.in; Kumar, Sanjeev [Department of Physics, H.P.U., Shimla (India); Randhawa, Monika [University Institute of Engineering and Technology, P.U., Chandigarh (India)
2007-04-19
Unitarity along with precision measurements of sin2{beta}, V{sub us} and V{sub cb} allows one to find a lower bound V{sub ub}>=0.0035 which, on using the recently measured angle {alpha} of the unitarity triangle, translates to V{sub ub}=0.0035+/-0.0002. This precise value, stable for a good deal of changes in {alpha}, along with CP violating phase {delta} found from unitarity allows the construction of a 'precise' CKM matrix. The above unitarity based value of V{sub ub} is in agreement with the latest exclusive value used as input by UTfit, CKMfitter, HFAG, however underlines the so-called 'tension' faced by the latest inclusive V{sub ub}=0.00449+/-0.00033. Further, using this inclusive value of V{sub ub} along with the latest sin2{beta}, one finds {delta}=23{sup o}-39{sup o}, again in conflict with {delta} measured in B-decays. The calculated ranges of the elements of the CKM matrix are in excellent agreement with those obtained recently by UTfit, CKMfitter and HFAG. Also, the ratio V{sub ts}V{sub td} is in agreement with its latest measured value, whereas there is some disagreement between the 'measured' and the calculated V{sub td} values.
LATTICE MATRIX ELEMENTS AND CP VIOLATION IN B AND KA PHYSICS: STATUS AND OUTLOOK.
Energy Technology Data Exchange (ETDEWEB)
SONI,A.
2003-01-03
Status of lattice calculations of hadron matrix elements along with CP violation in B and in K systems is reviewed. Lattice has provided useful input which, in conjunction with experimental data, leads to the conclusion that CP-odd phase in the CKM matrix plays the dominant role in the observed asymmetry in B {yields} {psi}K{sub s}. It is now quite likely that any beyond the SM, CP-odd, phase will cause only small deviations in B-physics. Search for the effects of the new phase(s) will consequently require very large data samples as well as very precise theoretical predictions. Clean determination of all the angles of the unitarity triangle therefore becomes essential. In this regard B {yields} KD{sup 0} processes play a unique role. Regarding K-decays, remarkable progress made by theory with regard to maintenance of chiral symmetry on the lattice is briefly discussed. First application already provide quantitative information on B{sub K} and the {Delta}I = 1/2 rule. The enhancement in ReA{sub 0} appears to arise solely from tree operators, esp. Q{sub 2}; penguin contribution to ReA{sub 0} appears to be very small. However, improved calculations are necessary for {epsilon}{prime}/{epsilon} as there the contributions of QCD penguins and electroweak penguins largely seem to cancel. There are good reasons, though, to believe that these cancellations will not survive improvements that are now underway. Importance of determining the unitarity triangle purely from K-decays is also emphasized.
Time Dependent Channel Packet Calculation of Two Nucleon Scattering Matrix Elements
2010-03-01
CHANNEL PACKET CALCULATION OF TWO NUCLEON SCATTERING MATRIX ELEMENTS DISSERTATION Brian S. Davis, Major, USAF AFIT/DS/ENP/10-M03...CALCULATION OF TWO NUCLEON SCATTERING MATRIX ELEMENTS DISSERTATION Presented to the Faculty Graduate School of Engineering and Management...ENPIlO-M03 TIME DEPENDENT CHANNEL PACKET CALCULATION OF TWO NUCLEON SCATTERING MATRIX ELEMENTS Brian S. Davis, BA, MS Major, USAF Approved: ~ !Y
Gamberg, Leonard; Mukherjee, Asmita; Mulders, Piet J.
2010-01-01
Gluonic pole matrix elements explain the appearance of single spin asymmetries (SSA) in high-energy scattering processes. They involve a combination of operators which are odd under time reversal (T-odd). Such matrix elements appear in principle both for parton distribution functions and parton fragmentation functions. We show that for parton fragmentation functions these gluonic pole matrix elements vanish as a consequence of the analytic structure of scattering amplitudes in Quantum Chromod...
Controlling excited-state contamination in nucleon matrix elements
Energy Technology Data Exchange (ETDEWEB)
Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank
2016-06-01
We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_{\\rm sep} \\to \\infty $ estimates is presented.
Matrix element method for high performance computing platforms
Grasseau, G.; Chamont, D.; Beaudette, F.; Bianchini, L.; Davignon, O.; Mastrolorenzo, L.; Ochando, C.; Paganini, P.; Strebler, T.
2015-12-01
Lot of efforts have been devoted by ATLAS and CMS teams to improve the quality of LHC events analysis with the Matrix Element Method (MEM). Up to now, very few implementations try to face up the huge computing resources required by this method. We propose here a highly parallel version, combining MPI and OpenCL, which makes the MEM exploitation reachable for the whole CMS datasets with a moderate cost. In the article, we describe the status of two software projects under development, one focused on physics and one focused on computing. We also showcase their preliminary performance obtained with classical multi-core processors, CUDA accelerators and MIC co-processors. This let us extrapolate that with the help of 6 high-end accelerators, we should be able to reprocess the whole LHC run 1 within 10 days, and that we have a satisfying metric for the upcoming run 2. The future work will consist in finalizing a single merged system including all the physics and all the parallelism infrastructure, thus optimizing implementation for best hardware platforms.
Measurement of the Cabibbo-Kobayashi-Maskawa matrix element V(ub) with B-->rhoenu decays.
Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Steinke, M; Barlow, N R; Bhimji, W; Boyd, J T; Chevalier, N; Clark, P J; Cottingham, W N; Mackay, C; Wilson, F F; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Yushkov, A N; Best, D; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; McMahon, S; Mommsen, R K; Stoker, D P; Buchanan, C; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, Sh; Raven, G; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beringer, J; Eisner, A M; Grothe, M; Heusch, C A; Lockman, W S; Pulliam, T; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Blanc, F; Bloom, P; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Lacker, H M; Maly, E; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; T'Jampens, S; Thiebaux, Ch; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Falbo, M; Borean, C; Bozzi, C; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Pastore, F C; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Morii, M; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Yi, J; Davier, M; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; van Bibber, K; Wright, D M; Bevan, A J; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Morton, G W; Nash, J A; Sanders, P; Taylor, G P; Back, J J; Bellodi, G; Dixon, P; Harrison, P F; Shorthouse, H W; Strother, P; Vidal, P B; Cowan, G; Flaecher, H U; George, S; Green, M G; Kurup, A; Marker, C E; McMahon, T R; Ricciardi, S; Salvatore, F; Vaitsas, G; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, R J; Forti, A C; Hart, P A; Jackson, F; Lafferty, G D; Lyon, A J; Savvas, N; Weatherall, J H; Williams, J C; Farbin, A; Jawahery, A; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Staengle, H; Willocq, S; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H; Hast, C; Taras, P; Nicholson, H; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R G; Gabriel, T A; Brau, B; Brau, J; Frey, R; Iwasaki, M; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de la Vaissière, Ch; Del Buono, L; Hamon, O; Leruste, Ph; Ocariz, J; Pivk, M; Roos, L; Stark, J; Manfredi, P F; Re, V; Speziali, V; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Campagna, E; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Danielson, N; Elmer, P; Lu, C; Miftakov, V; Olsen, J; Smith, A J S; Tumanov, A; Varnes, E W; Bellini, F; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Tehrani, F Safai; Serra, M; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B; Geddes, N I; Gopal, G P; Olaiya, E O; Xella, S M; Aleksan, R; Emery, S; Gaidot, A; Giraud, P-F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Schott, G; Serfass, B; Vasseur, G; Yeche, Ch; Zito, M; Purohit, M V; Weidemann, A W; Yumiceva, F X; Abe, K; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmueller, O L; Convery, M R; Coupal, D P; Dong, D; Dorfan, J; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Grauges-Pous, E; Hadig, T; Halyo, V; Himel, T; Hryn'ova, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langenegger, U; Leith, D W G S; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Robertson, S H; Roodman, A; Salnikov, A A; Schietinger, T; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Meyer, T I; Roat, C; Bugg, W; Krishnamurthy, M; Spanier, S M; Izen, J M; Kitayama, I; Lou, X C; Bianchi, F; Bona, M; Gamba, D; Bosisio, L; Della Ricca, G; Dittongo, S; Lanceri, L; Poropat, P; Vitale, L; Vuagnin, G; Henderson, R; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R; Roney, J M; Band, H R; Dasu, S; Datta, M; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Di Lodovico, F; Mohapatra, A K; Pan, Y; Prepost, R; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, J; Wu, S L; Yu, Z; Neal, H
2003-05-09
We present a measurement of the branching fraction for the rare decays B-->rhoenu and extract a value for the magnitude of V(ub), one of the smallest elements of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix. The results are given for five different calculations of form factors used to para-metrize the hadronic current in semileptonic decays. Using a sample of 55 x 10(6) BB meson pairs recorded with the BABAR detector at the PEP-II e(+)e(-) storage ring, we obtain B(B0-->rho(-)e(+)nu)=(3.29+/-0.42+/-0.47+/-0.55) x 10(-4) and |V(ub)|=(3.64+/-0.22+/-0.25(+0.39)(-0.56)) x 10(-3), where the uncertainties are statistical, systematic, and theoretical, respectively.
Beyond-Standard-Model Tensor Interaction and Hadron Phenomenology.
Courtoy, Aurore; Baeßler, Stefan; González-Alonso, Martín; Liuti, Simonetta
2015-10-16
We evaluate the impact of recent developments in hadron phenomenology on extracting possible fundamental tensor interactions beyond the standard model. We show that a novel class of observables, including the chiral-odd generalized parton distributions, and the transversity parton distribution function can contribute to the constraints on this quantity. Experimental extractions of the tensor hadronic matrix elements, if sufficiently precise, will provide a, so far, absent testing ground for lattice QCD calculations.
Averages of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties as of summer 2014
Energy Technology Data Exchange (ETDEWEB)
Amhis, Y.; et al.
2014-12-23
This article reports world averages of measurements of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2014. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, $CP$ violation parameters, parameters of semileptonic decays and CKM matrix elements.
Averages of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties as of summer 2016
Energy Technology Data Exchange (ETDEWEB)
Amhis, Y.; et al.
2016-12-21
This article reports world averages of measurements of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, \\CP~violation parameters, parameters of semileptonic decays and CKM matrix elements.
arXiv Averages of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties as of summer 2016
Amhis, Y.; Ben-Haim, E.; Bernlochner, F.; Bozek, A.; Bozzi, C.; Chrząszcz, M.; Dingfelder, J.; Duell, S.; Gersabeck, M.; Gershon, T.; Goldenzweig, P.; Harr, R.; Hayasaka, K.; Hayashii, H.; Kenzie, M.; Kuhr, T.; Leroy, O.; Lusiani, A.; Lyu, X.R.; Miyabayashi, K.; Naik, P.; Nanut, T.; Oyanguren Campos, A.; Patel, M.; Pedrini, D.; Petrič, M.; Rama, M.; Roney, M.; Rotondo, M.; Schneider, O.; Schwanda, C.; Schwartz, A.J.; Serrano, J.; Shwartz, B.; Tesarek, R.; Trabelsi, K.; Urquijo, P.; Van Kooten, R.; Yelton, J.; Zupanc, A.
2017-12-21
This article reports world averages of measurements of $b$-hadron, $c$-hadron, and $\\tau$-lepton properties obtained by the Heavy Flavor Averaging Group using results available through summer 2016. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, \\CP~violation parameters, parameters of semileptonic decays and CKM matrix elements.
Application of the Finite-Element Z-Matrix Method to e-H2 Collisions
Huo, Winifred M.; Brown, David; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
The present study adapts the Z-matrix formulation using a mixed basis of finite elements and Gaussians. This is a energy-independent basis which allows flexible boundary conditions and is amenable to efficient algorithms for evaluating the necessary matrix elements with molecular targets.
High convergence order finite elements with lumped mass matrix
DEFF Research Database (Denmark)
Jensen, Morten skårup
1996-01-01
A method for deriving hexahedral finite elements with lumped mass matrices for three-dimensional problems is presented. These elements meet the theoretical conditions for high order convergence, and two numerical examples based on the three-dimensional scalar wave equation show that this is also...... the case in practice and that their accuracy is comparable to elements with consistent mass matrices....
Lin, Zeng; Wang, Dongdong
2017-10-01
Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.
Prompt photon production in hadronic events at LEP
Boutigny, D
1992-01-01
We review some recent results on photon emission off quarks obtained by the four LEP experiments. These experimental results are compared to different Monte-Carlo predictions and to an exact matrix element calculation at the order (ems). The estimation of the background coming from neutral hadron decays is also discussed.
Symmetric Matrix Fields in the Finite Element Method
Directory of Open Access Journals (Sweden)
Gerard Awanou
2010-07-01
Full Text Available The theory of elasticity is used to predict the response of a material body subject to applied forces. In the linear theory, where the displacement is small, the stress tensor which measures the internal forces is the variable of primal importance. However the symmetry of the stress tensor which expresses the conservation of angular momentum had been a challenge for finite element computations. We review in this paper approaches based on mixed finite element methods.
Komninos, Yannis; Nicolaides, Cleanthes A
2014-01-01
In a variety of problems concerning the coupling of atomic and molecular states to strong and or short electromagnetic pulses, it is necessary to solve the time-dependent Schroedinger equation nonperturbatively. To this purpose, we have proposed and applied to various problems the state-specific expansion approach. Its implementation requires the computation of bound-bound, bound-free and free-free N-electron matrix elements of the operator that describes the coupling of the electrons to the external electromagnetic field. The present study penetrates into the mathematical properties of the free-free matrix elements of the full electric field operator of the multipolar Hamiltonian. kk is the photon wavenumber, and the field is assumed linearly polarized, propagating along the z axis. Special methods are developed and applied for the computation of such matrix elements using energy-normalized, numerical scattering wavefunctions. It is found that, on the momentum (energy) axis, the free-free matrix elements hav...
Spin Operator Matrix Elements in the Superintegrable Chiral Potts Quantum Chain
Iorgov, N.; Pakuliak, S.; Shadura, V.; Tykhyy, Y.; von Gehlen, G.
2010-06-01
We derive spin operator matrix elements between general eigenstates of the superintegrable ℤ N -symmetric chiral Potts quantum chain of finite length. Our starting point is the extended Onsager algebra recently proposed by Baxter. For each pair of spaces (Onsager sectors) of the irreducible representations of the Onsager algebra, we calculate the spin matrix elements between the eigenstates of the Hamiltonian of the quantum chain in factorized form, up to an overall scalar factor. This factor is known for the ground state Onsager sectors. For the matrix elements between the ground states of these sectors we perform the thermodynamic limit and obtain the formula for the order parameters. For the Ising quantum chain in a transverse field ( N=2 case) the factorized form for the matrix elements coincides with the corresponding expressions obtained recently by the Separation of Variables method.
Directory of Open Access Journals (Sweden)
G. Akinci
2014-12-01
Full Text Available Sparse matrices are occasionally encountered during solution of various problems by means of numerical methods, particularly the finite element method. ELLPACK sparse matrix storage scheme, one of the most widely used methods due to its implementation ease, is investigated in this study. The scheme uses excessive memory due to its definition. For the conventional finite element method, where the node elements are used, the excessive memory caused by redundant entries in the ELLPACK sparse matrix storage scheme becomes negligible for large scale problems. On the other hand, our analyses show that the redundancy is still considerable for the occasions where facet or edge elements have to be used.
Neutrinoless double beta nuclear matrix elements around mass 80 in the nuclear shell-model
Directory of Open Access Journals (Sweden)
Yoshinaga N.
2015-01-01
Full Text Available The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. For theoretical nuclear physics it is particularly important to estimate three types of matrix elements, namely Fermi (F, Gamow-Teller (GT, and tensor (T matrix elements. In this paper, we carry out shell-model calculations and also pair-truncated shell-model calculations to check the model dependence in the case of mass A=82 nuclei.
Directory of Open Access Journals (Sweden)
Romanas Karkauskas
2011-04-01
Full Text Available The expressions of the finite element method tangent stiffness matrix of geometrically nonlinear constructions are not fully presented in publications. The matrixes of small displacements stiffness are usually presented only. To solve various problems of construction analysis or design and to specify the mode of the real deflection of construction, it is necessary to have a fully described tangent matrix analytical expression. This paper presents a technique of tangent stiffness matrix generation using discrete body total potential energy stationary conditions considering geometrically nonlinear 2D frame element taking account of interelement interaction forces only. The obtained vector-function derivative of internal forces considering nodal displacements is the tangent stiffness matrix. The analytical expressions having nodal displacements of matrixes forming the content of the 2D frame construction element tangent stiffness matrix are presented in the article. The suggested methodology has been checked making symbolical calculations in the medium of MatLAB calculation complex. The analytical expression of the stiffness matrix has been obtained.Article in Lithuanian
Dynamic Stiffness Matrix for a Beam Element with Shear Deformation
Directory of Open Access Journals (Sweden)
Walter D. Pilkey
1995-01-01
Full Text Available A method for calculating the dynamic transfer and stiffness matrices for a straight Timoshenko shear beam is presented. The method is applicable to beams with arbitrarily shaped cross sections and places no restrictions on the orientation of the element coordinate system axes in the plane of the cross section. These new matrices are needed because, for a Timoshenko beam with an arbitrarily shaped cross section, deflections due to shear in the two perpendicular planes are coupled even when the coordinate axes are chosen to be parallel to the principal axes of inertia.
Quasi-exact evaluation of time domain MFIE MOT matrix elements
Shi, Yifei
2013-07-01
A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.
Local bulk S-matrix elements and conformal field theory singularities
Gary, Michael; Penedones, Joao
2009-01-01
We give a procedure for deriving certain bulk S-matrix elements from corresponding boundary correlators. These are computed in the plane wave limit, via an explicit construction of certain boundary sources that give bulk wavepackets. A critical role is played by a specific singular behavior of the lorentzian boundary correlators. It is shown in examples how correlators derived from the bulk supergravity exhibit the appropriate singular structure, and reproduce the corresponding S-matrix elements. This construction thus provides a nontrivial test for whether a given boundary conformal field theory can reproduce bulk physics, and where it does, supplies a prescription to extract bulk S-matrix elements in the plane wave limit.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
Savage, Martin J; Tiburzi, Brian C; Wagman, Michael L; Winter, Frank; Beane, Silas R; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas
2016-01-01
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Savage, Martin [Univ. of Washington, Seattle, WA (United States); Shanahan, Phiala E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Tiburzi, Brian C. [Univ. of Maryland, College Park, MD (United States); Wagman, Michael L. [Univ. of Washington, Seattle, WA (United States); Winter, Frank T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Davoudi, Zohreh; Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)
2016-12-01
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.
Energy Technology Data Exchange (ETDEWEB)
Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2015-05-15
The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite.
Kumar, Deepak; Roy, Rene; Kweon, Jin-Hwe; Choi, Jin-ho
2016-06-01
Sub-laminate damage in the form of matrix cracking and delamination was simulated by using interface cohesive elements in the finite element (FE) software ABAQUS. Interface cohesive elements were inserted parallel to the fiber orientation in the transverse ply with equal spacing (matrix cracking) and between the interfaces (delamination). Matrix cracking initiation in the cohesive elements was based on stress traction separation laws and propagated under mixed-mode loading. We expanded the work of Shi et al. (Appl. Compos. Mater. 21, 57-70 2014) to include delamination and simulated additional [45/-45/0/90]s and [02/90n]s { n = 1,2,3} CFRP laminates and a [0/903]s GFRP laminate. Delamination damage was quantified numerically in terms of damage dissipative energy. We observed that transverse matrix cracks can propagate to the ply interface and initiate delamination. We also observed for [0/90n/0] laminates that as the number of 90° ply increases past n = 2, the crack density decreases. The predicted crack density evolution compared well with experimental results and the equivalent constraint model (ECM) theory. Empirical relationships were established between crack density and applied stress by linear curve fitting. The reduction of laminate elastic modulus due to cracking was also computed numerically and it is in accordance with reported experimental measurements.
DEFF Research Database (Denmark)
Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard
2009-01-01
of quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due...
Shao, H; Guan, H; Li, C; Shi, T; Gao, K
2016-01-01
We report the first experimental determination of the $4s \\ ^{2}S_{1/2} $ $\\leftrightarrow $ $3d \\ ^{2}D_{5/2}$ quadrupole transition matrix element in $^{40}$Ca$^+$ by measuring the branching ratio of the $3d \\ ^{2}D_{5/2} $ state decaying into the ground state $4s \\ ^{2}S_{1/2} $ and the lifetime of the $3d \\ ^{2}D_{5/2} $ state, using a technique of highly synchronized measurement sequence for laser control and highly efficient quantum state detection for quantum jumps. The measured branching ratio and improved lifetime are, respectively, 0.9992(80) and 1.1652(46) s, which yield the value of the quadrupole transition matrix element (in absolute value) 9.737(43)~$ea_{0}^{2}$ with the uncertainty at the level of 0.44\\%. The measured quadrupole transition matrix element is in good agreement with the most precise many-body atomic structure calculations. Our method can be universally applied to measurements of transition matrix elements in single ions and atoms of similar structure.
Effects of quenching and partial quenching on QCD penguin matrix elements
Golterman, Maarten; Pallante, Elisabetta
2002-01-01
We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation
Rigorous constraints on the matrix elements of the energy–momentum tensor
Directory of Open Access Journals (Sweden)
Peter Lowdon
2017-11-01
Full Text Available The structure of the matrix elements of the energy–momentum tensor play an important role in determining the properties of the form factors A(q2, B(q2 and C(q2 which appear in the Lorentz covariant decomposition of the matrix elements. In this paper we apply a rigorous frame-independent distributional-matching approach to the matrix elements of the Poincaré generators in order to derive constraints on these form factors as q→0. In contrast to the literature, we explicitly demonstrate that the vanishing of the anomalous gravitomagnetic moment B(0 and the condition A(0=1 are independent of one another, and that these constraints are not related to the specific properties or conservation of the individual Poincaré generators themselves, but are in fact a consequence of the physical on-shell requirement of the states in the matrix elements and the manner in which these states transform under Poincaré transformations.
Nuclear Matrix Elements for the $\\beta\\beta$ Decay of the $^{76}$Ge
Brown, B A; Horoi, M
2015-01-01
The nuclear matrix elements for two-neutrino double-beta (2 n$\\beta\\beta$ ) and zero-neutrino double-beta (0 n$\\beta\\beta$) decay of 76 Ge are evaluated in terms of the configuration interaction (CI), quasiparticle random phase approximation (QRPA) and interacting boson model (IBM) methods. We show that the decomposition of the matrix elements in terms of interemediate states in 74 Ge is dominated by ground state of this nucleus. We consider corrections to the CI results that arise from configurations admixtures involving orbitals out-side of the CI configuration space by using results from QRPA, many-body-perturbation theory, and the connections to related observables. The CI two-neutrino matrix element is reduced due to the inclusion of spin-orbit partners, and to many-body correlations connected with Gamow-Teller beta decay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced due to particle-particle correlations that are connected with the odd-even oscillations in the nuclear masse...
Muñoz, O.; Volten, H.; Hovenier, J.W.; Laan, E.; Roush, T.; Stam, D.
2008-01-01
We present laboratory measurements for Martian analog particles, consisting of palagonite. We measured all elements of the scattering matrix as functions of the scattering angle from 3 to 174 degrees at a wavelength of 632.8 nm. The results may be used in studies of the Martian atmosphere.
Rigorous constraints on the matrix elements of the energy-momentum tensor
Lowdon, Peter; Chiu, Kelly Yu-Ju; Brodsky, Stanley J.
2017-11-01
The structure of the matrix elements of the energy-momentum tensor play an important role in determining the properties of the form factors A (q2), B (q2) and C (q2) which appear in the Lorentz covariant decomposition of the matrix elements. In this paper we apply a rigorous frame-independent distributional-matching approach to the matrix elements of the Poincaré generators in order to derive constraints on these form factors as q → 0. In contrast to the literature, we explicitly demonstrate that the vanishing of the anomalous gravitomagnetic moment B (0) and the condition A (0) = 1 are independent of one another, and that these constraints are not related to the specific properties or conservation of the individual Poincaré generators themselves, but are in fact a consequence of the physical on-shell requirement of the states in the matrix elements and the manner in which these states transform under Poincaré transformations.
Effects of quenching and partial quenching on QCD penguin matrix elements
Golterman, Maarten; Pallante, Elisabetta
2002-01-01
We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation theory.
Briceño, Raúl A.; Hansen, Maxwell T.; Monahan, Christopher J.
2017-07-01
Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate that the matrix elements obtained from Euclidean lattice QCD are identical to those obtained using the Lehmann-Symanzik-Zimmermann reduction formula in Minkowski space. After arguing the equivalence on general grounds, we also show that it holds in a perturbative calculation, where special care is needed to identify the lattice prediction. Finally we present a proof of the uniqueness of the matrix elements obtained from Minkowski and Euclidean correlation functions to all order in perturbation theory.
Propriety of Approximation for Calculations of Nuclear Matrix Elements by Woods-Saxon Wave Functions
Utamuratov, R K; Nasirov, A K
2005-01-01
Single-particle matrix elements of nucleon transfer were calculated by Woods--Saxon potential wave functions and results are compared with ones calculated by spherical well approximation. The application of the approximation of the mean-field of nuclei at heavy-ion collisions by the spherical well, which is widely used in the model based on dinuclear concept, is proved.
Scheuerlein, C; Leroy, D; Oberli, L; Rehmer, B
2007-01-01
Conventional indentation hardness measurements to obtain load independent Vickers hardness values for the different phases in multifilamentary superconducting (SC) wires are described. The concept of composite hardness is validated for a binary metal-matrix metal-filament Nb-Ti/Cu composite wire. The tensile materials properties of the individual wire components are estimated from their indentation hardness. The potential and limitations of this approach are critically discussed, based on a comparison with tensile test results obtained for wires and extracted Nb-Ti filaments.
Nuclear matrix element of neutrinoless double-β decay: Relativity and short-range correlations
Song, L. S.; Yao, J. M.; Ring, P.; Meng, J.
2017-02-01
Background:The discovery of neutrinoless double-β (0 ν β β ) decay would demonstrate the nature of neutrinos, have profound implications for our understanding of matter-antimatter mystery, and solve the mass hierarchy problem of neutrinos. The calculations for the nuclear matrix elements M0 ν of 0 ν β β decay are crucial for the interpretation of this process. Purpose: We study the effects of relativity and nucleon-nucleon short-range correlations on the nuclear matrix elements M0 ν by assuming the mechanism of exchanging light or heavy neutrinos for the 0 ν β β decay. Methods:The nuclear matrix elements M0 ν are calculated within the framework of covariant density functional theory, where the beyond-mean-field correlations are included in the nuclear wave functions by configuration mixing of both angular-momentum and particle-number projected quadrupole deformed mean-field states. Results: The nuclear matrix elements M0 ν are obtained for ten 0 ν β β -decay candidate nuclei. The impact of relativity is illustrated by adopting relativistic or nonrelativistic decay operators. The effects of short-range correlations are evaluated. Conclusions: The effects of relativity and short-range correlations play an important role in the mechanism of exchanging heavy neutrinos though the influences are marginal for light neutrinos. Combining the nuclear matrix elements M0 ν with the observed lower limits on the 0 ν β β -decay half-lives, the predicted strongest limits on the effective masses are ||light neutrinos and | |-1>3.065 ×108GeV for heavy neutrinos.
Modelling of polypropylene fibre-matrix composites using finite element analysis
Directory of Open Access Journals (Sweden)
2009-01-01
Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.
Averages of B-Hadron, C-Hadron, and tau-lepton properties as of early 2012
Energy Technology Data Exchange (ETDEWEB)
Amhis, Y.; et al.
2012-07-01
This article reports world averages of measurements of b-hadron, c-hadron, and tau-lepton properties obtained by the Heavy Flavor Averaging Group (HFAG) using results available through the end of 2011. In some cases results available in the early part of 2012 are included. For the averaging, common input parameters used in the various analyses are adjusted (rescaled) to common values, and known correlations are taken into account. The averages include branching fractions, lifetimes, neutral meson mixing parameters, CP violation parameters, parameters of semileptonic decays and CKM matrix elements.
Reby Roy, K. E.; Mohammed, Jesna; Abhiroop, V. M.; Thekkethil, S. R.
2017-02-01
Cryogenic fluids have many applications in space, medicine, preservation etc. The chill-down of cryogenic fluid transfer line is a complicated phenomenon occurring in most of the cryogenic systems. The cryogenic fluid transfer line, which is initially at room temperature, has to be cooled to the temperature of the cryogen as fast as possible. When the cryogenic fluid at liquid state passes along the line, transient heat transfer between the cryogen and the transfer line causes voracious evaporation of the liquid. This paper makes a contribution to the two-phase flow along a rectangular flow passage consisting of an array of elliptically shaped matrix elements. A simplified 2D model is considered and the problem is solved using ANSYS FLUENT. The present analysis aims to study the influence of the slenderness ratio of matrix elements on the heat transfer rate and chill down time. For a comparative study, matrix elements of slenderness ratios 5 and 10 are considered. Liquid nitrogen at 74K flows through the matrix. The material of the transfer line is assumed to be aluminium which is initially at room temperature. The influence of Reynolds numbers from 800 to 3000 on chill-down is also investigated.
Monte Carlo event generators for hadron-hadron collisions
Energy Technology Data Exchange (ETDEWEB)
Knowles, I.G. [Argonne National Lab., IL (United States). High Energy Physics Div.; Protopopescu, S.D. [Brookhaven National Lab., Upton, NY (United States)
1993-06-01
A brief review of Monte Carlo event generators for simulating hadron-hadron collisions is presented. Particular emphasis is placed on comparisons of the approaches used to describe physics elements and identifying their relative merits and weaknesses. This review summarizes a more detailed report.
Gamberg, L. P.; Mukherjee, A.B.; Mulders, P.J.G.
2011-01-01
Gluonic pole matrix elements explain the appearance of single spin asymmetries (SSA) in high-energy scattering processes. They involve a combination of operators which are odd under time reversal (T-odd). Such matrix elements appear in principle both for parton distribution functions and parton
A new formulation to calculate general HFB matrix elements through the Pfaffian
Mizusaki, Takahiro; Oi, Makito
2012-08-01
A new formula is presented for the calculation of matrix elements between multi-quasiparticle Hartree-Fock-Bogoliubov (HFB) states. The formula is expressed in terms of the Pfaffian, and is derived by using Fermion coherent states with Grassmann numbers. It turns out that the formula corresponds to an extension of the generalized Wick's theorem and simplifies the combinatorial complexity resulting from practical applications of the generalized Wick's theorem by unifying the transition density and the transition pairing tensor in HFB theory. The resultant formula is simpler and more compact than the traditional description of matrix elements of general many-body operators. In addition, through the derivation of our new formula, we found that the Pfaffian version of the Lewis Carroll formula corresponds to a relation suggested by Balian and Brezin for HFB theory in 1969.
Study of the Matrix Effect on the Plasma Characterization of Heavy Elements in Soil Sediments
Directory of Open Access Journals (Sweden)
Tawfik W.
2007-01-01
Full Text Available Laser-induced breakdown spectroscopy (LIBS has been applied to perform a study of the matrix effect on the plasma characterization of soil sediment targets. The plasma is generated by focusing a pulsed Nd: YAG laser on the target in air at atmospheric pressure. The plasma emission spectrum was detected using a portable Echelle spectrometer (Mechelle 7500 — Multichannel Instruments, Stockholm, Sweden with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, and electron temperature. Four heavy elements V, Pb, Mn and Co were determined in the obtained spectra. The LTE and optically thin plasma conditions were verified for the produced plasma. The electron temperature and density were determined using the emission intensity and stark broadening, respectively, of the spectral lines of the heavy elements in the soil sediments. The electron temperature does not change with concentration. For environmental applications, the obtained results showed the capability of the proposed LIBS setup with the portable Mechelle 7500 spectrometer to be applied in-situ for real-time measurements of the variation of the matrix elemental composition of soil sediments by following up only a single element as a marker for the composition of the soil sediment without need of analysis of the other elements.
Three-loop contributions to the gluonic massive operator matrix elements at general values of N
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Hasselhuhn, Alexander [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); De Freitas, Abilio; Round, Mark; Schneider, Carsten; Wissbrock, Fabian [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Klein, Sebastian [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Physik E
2012-12-15
Recent results on the calculation of 3-loop massive operator matrix elements in case of one and two heavy quark masses are reported. They concern the O(n{sub f}T{sup 2}{sub F}C{sub F,A}) and O(T{sup 2}{sub F}C{sub F,A}) gluonic corrections, two-mass quarkonic moments, and ladder- and Benz-topologies. We also discuss technical aspects of the calculations.
Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; Schneider, C.; Wißbrock, F.
2017-08-01
Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η = mc2/mb2 ∼ 1 / 10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS) has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived in [1]. We present the moments N = 2 , 4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element Agq(3). We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element Agg. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation (RISC); IHES, Bures-sur-Yvette (France)
2017-05-15
Starting at 3-loop order, the massive Wilson coefficients for deep-inelastic scattering and the massive operator matrix elements describing the variable flavor number scheme receive contributions of Feynman diagrams carrying quark lines with two different masses. In the case of the charm and bottom quarks, the usual decoupling of one heavy mass at a time no longer holds, since the ratio of the respective masses, η=m{sup 2}{sub c}/m{sup 2}{sub b}∝1/10, is not small enough. Therefore, the usual variable flavor number scheme (VFNS) has to be generalized. The renormalization procedure in the two-mass case is different from the single mass case derived earlier (I. Bierenbaum, J: Bluemlein, S. Klein, 2009). We present the moments N=2,4 and 6 for all contributing operator matrix elements, expanding in the ratio η. We calculate the analytic results for general values of the Mellin variable N in the flavor non-singlet case, as well as for transversity and the matrix element A{sup (3)}{sub gq}. We also calculate the two-mass scalar integrals of all topologies contributing to the gluonic operator matrix element A{sub gg}. As it turns out, the expansion in η is usually inapplicable for general values of N. We therefore derive the result for general values of the mass ratio. From the single pole terms we derive, now in a two-mass calculation, the corresponding contributions to the 3-loop anomalous dimensions. We introduce a new general class of iterated integrals and study their relations and present special values. The corresponding functions are implemented in computer-algebraic form.
A Data Matrix Method for Improving the Quantification of Element Percentages of SEM/EDX Analysis
Lane, John
2009-01-01
A simple 2D M N matrix involving sample preparation enables the microanalyst to peer below the noise floor of element percentages reported by the SEM/EDX (scanning electron microscopy/ energy dispersive x-ray) analysis, thus yielding more meaningful data. Using the example of a 2 3 sample set, there are M = 2 concentration levels of the original mix under test: 10 percent ilmenite (90 percent silica) and 20 percent ilmenite (80 percent silica). For each of these M samples, N = 3 separate SEM/EDX samples were drawn. In this test, ilmenite is the element of interest. By plotting the linear trend of the M sample s known concentration versus the average of the N samples, a much higher resolution of elemental analysis can be performed. The resulting trend also shows how the noise is affecting the data, and at what point (of smaller concentrations) is it impractical to try to extract any further useful data.
Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites
Nemeth, Noel N.; Mital, Subodh; Lang, Jerry
2010-01-01
Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.
Mondaini, Rubem; Rigol, Marcos
2017-07-01
We study the matrix elements of few-body observables, focusing on the off-diagonal ones, in the eigenstates of the two-dimensional transverse field Ising model. By resolving all symmetries, we relate the onset of quantum chaos to the structure of the matrix elements. In particular, we show that a general result of the theory of random matrices, namely, the value 2 of the ratio of variances (diagonal to off-diagonal) of the matrix elements of Hermitian operators, occurs in the quantum chaotic regime. Furthermore, we explore the behavior of the off-diagonal matrix elements of observables as a function of the eigenstate energy differences and show that it is in accordance with the eigenstate thermalization hypothesis ansatz.
Matrix elements of the singlet axial vector current in the proton
Gupta, Rajan; Mandula, Jeffrey E.
1994-12-01
We present a method to estimate the matrix element of the singlet axial vector current within a polarized proton state using lattice QCD. The method relies on using the Adler-Bell-Jackiw anomaly and gives the desired result in the chiral limit. We show that this method fails in the quenched approximation. For heavy quarks one does not expect much difference between simulations including dynamical quarks and those done in the quenched approximation. For that reason we explore numerical methods on an existing set of quenched configurations. The data obtained in this exploratory study show a poor statistical signal.
Electron-H2 Collisions Studied Using the Finite Element Z-Matrix Method
Huo, Winifred M.; Brown, David; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
We have applied the Z-matrix method, using a mixed basis of finite elements and Gaussians, to study e-H2 elastic and inelastic collisions. Special attention is paid to the quality of the basis set and the treatment of electron correlation. The calculated cross sections are invariant, to machine accuracy, with respect to the choice of parameters a, b, d, e as long as they satisfy Equation (3). However, the log derivative approach, i.e., the choice a = -e = 1, b = d = 0 appears to converge slightly faster than other choices. The cross sections agree well with previous theoretical results. Comparison will be made with available experimental data.
Covariances of nuclear matrix elements for O{nu}{beta}{beta} decay
Energy Technology Data Exchange (ETDEWEB)
Fogli, G L; Rotunno, A M [Dipartimento Interateneo di Fisica ' Michelangelo Merlin' , Via Orabona 4, 70126 Bari (Italy); Lisi, E, E-mail: annamaria.rotunno@ba.infn.i [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy)
2010-01-01
Estimates of nuclear matrix elements (NME) for neutrinoless double beta decay (O{nu}{beta}{beta}) based on the quasiparticle random phase approximations (QRPA) are affected by theoretical uncertainties, which may play a dominant role in comparison with projected experimental errors of future O{nu}{beta}{beta} experiments. We discuss the estimated variances and covariances of NME of several candidate nuclei within the QRPA, focusing on the following aspects: 1) the comparison of O{nu}{beta}{beta} signals, or limits, in different nuclei; 2) the prospects for testing nonstandard O{nu}2{beta} mechanisms in future experiments.
Using the modified matrix element method to constrain Lμ-Lτ interactions
Elahi, Fatemeh; Martin, Adam
2017-07-01
In this paper, we explore the discriminatory power of the matrix element method (MEM) in constraining the Lμ-Lτ model at the LHC. The Z' boson associated with the spontaneously broken U (1 )Lμ-Lτ symmetry only interacts with the second and third generation of leptons at tree level, and is thus difficult to produce at the LHC. We argue that the best channels for discovering this Z' are in Z →4 μ and 2 μ + ET. Both these channels have a large number of kinematic observables, which strongly motivates the usage of a multivariate technique. The MEM is a multivariate analysis that uses the squared matrix element |M |2 to quantify the likelihood of the testing hypotheses. As the computation of the |M |2 requires knowing the initial and final state momenta and the model parameters, it is not commonly used in new physics searches. Conventionally, new parameters are estimated by maximizing the likelihood of the signal with respect to the background, and we outline scenarios in which this procedure is (in)effective. We illustrate that the new parameters can also be estimated by studying the |M |2 distributions, and, even if our parameter estimation is off, we can gain better sensitivity than cut-and-count methods. Additionally, unlike the conventional MEM, where one integrates over all unknown momenta in processes with ET, we show an example scenario where these momenta can be estimated using the process topology. This procedure, which we refer to as the "modified squared matrix element," is computationally much faster than the canonical matrix element method and maintains signal-background discrimination. Bringing the MEM and the aforementioned modifications to bear on the Lμ-Lτ model, we find that with 300 fb-1 of integrated luminosity, we are sensitive to the couplings of gZ'≳0.002 g1 and MZ'<20 GeV , and gZ'≳0.005 g1 and 20 GeV
Measurement of the top quark mass in the lepton+jets final state with the matrix element method
Energy Technology Data Exchange (ETDEWEB)
Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro,
2006-09-01
We present a measurement of the top quark mass with the Matrix Element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the Matrix Element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty.
Description of Changes in Crystal Orientations by the Elements of Logarithm of a Rotation Matrix
Directory of Open Access Journals (Sweden)
Susumu Onaka
2017-01-01
Full Text Available The logarithm lnR of rotation matrix R is a skew symmetric tensor consisting of three independent elements of real numbers. In addition to the Euler angles and the axis/angle pair, the elements of lnR called the log angles are also the set of three parameters of R. In this paper, we will show that the concept of the log angles is also useful to discuss changes in crystal orientations. The changes in R as a function of the position are given by the changes in the log angles. As an example, orientation changes caused by arrays of dislocations in a plastically deformed Cu single crystal are discussed.
Top Quark Mass Measurement in the Lepton plus Jets Channel Using a Modified Matrix Element Method
Energy Technology Data Exchange (ETDEWEB)
Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Alvarez Gonzalez, B.; /CSIC, Catalunya; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U.
2008-12-01
The authors report a measurement of the top quark mass, m{sub t}, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. They analyze a sample corresponding to an integrated luminosity of 1.9 rfb{sup -1}. They select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. They calculate a signal likelihood using a matrix element integration method, where the matrix element is modified by using effective propagators to take into account assumptions on event kinematics. The event likelihood is a function of m{sub t} and a parameter JES that determines in situ the calibration of the jet energies. They use a neural network discriminant to distinguish signal from background events. They also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, they find m{sub t} = 172.7 {+-} 1.8 (stat. + JES) {+-} 1.2(syst.) GeV/c{sup 2}.
Symbolic algorithms for the computation of Moshinsky brackets and nuclear matrix elements
Ursescu, D.; Tomaselli, M.; Kuehl, T.; Fritzsche, S.
2005-12-01
To facilitate the use of the extended nuclear shell model (NSM), a FERMI module for calculating some of its basic quantities in the framework of MAPLE is provided. The Moshinsky brackets, the matrix elements for several central and non-central interactions between nuclear two-particle states as well as their expansion in terms of Talmi integrals are easily given within a symbolic formulation. All of these quantities are available for interactive work. Program summaryTitle of program:Fermi Catalogue identifier:ADVO Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVO Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Computer for which the program is designed and others on which is has been tested:All computers with a licence for the computer algebra package MAPLE [Maple is a registered trademark of Waterloo Maple Inc., produced by MapleSoft division of Waterloo Maple Inc.] Instalations:GSI-Darmstadt; University of Kassel (Germany) Operating systems or monitors under which the program has beentested: WindowsXP, Linux 2.4 Programming language used:MAPLE 8 and 9.5 from MapleSoft division of Waterloo Maple Inc. Memory required to execute with typical data:30 MB No. of lines in distributed program including test data etc.:5742 No. of bytes in distributed program including test data etc.:288 939 Distribution program:tar.gz Nature of the physical problem:In order to perform calculations within the nuclear shell model (NSM), a quick and reliable access to the nuclear matrix elements is required. These matrix elements, which arise from various types of forces among the nucleons, can be calculated using Moshinsky's transformation brackets between relative and center-of-mass coordinates [T.A. Brody, M. Moshinsky, Tables of Transformation Brackets, Monografias del Instituto de Fisica, Universidad Nacional Autonoma de Mexico, 1960] and by the proper use of the nuclear states in different coupling notations
Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces
Energy Technology Data Exchange (ETDEWEB)
Posik, Matthew; Flay, David; Parno, Diana; Allada, Kalyan; Armstrong, Whitney; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; Deng, Xiaoyan; Deur, Alexandre; Dutta, Chiranjib; El Fassi, Lamiaa; Franklin, Gregg; Friend, Megan; Gao, Haiyan; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Gomez, Javier; Guo, Lei; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, J; Hyde, Charles; Ibrahim Abdalla, Hassan; Jiang, Xiaodong; Jin, Ge; Katich, Joseph; Kelleher, Aidan; Kolarkar, Ameya; Korsch, Wolfgang; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lukhanin, Oleksandr; Mamyan, Vahe; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Moffit, Bryan; Muangma, Navaphon; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Nuruzzaman, nfn; Oh, Yongseok; Peng, Jen-chieh; Qian, Xin; Qiang, Yi; Rakhman, Abdurahim; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Hashemi Shabestari, Mitra; Shahinyan, Albert; Sirca, Simon; Solvignon-Slifer, Patricia; Subedi, Ramesh; Sulkosky, Vincent; Tobias, William; Troth, Wolfgang; Wang, Diancheng; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Zhihong; Yuan, Lulin; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao
2014-07-01
Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.
A Precision Measurement of the Neutron Twist-3 Matrix Element $d_2^n$: Probing Color Forces
Posik, M; Parno, D S; Allada, K; Armstrong, W; Averett, T; Benmokhtar, F; Bertozzi, W; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Choi, S; Chudakov, E; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; Deng, X; Deur, A; Dutta, C; Fassi, L El; Franklin, G B; Friend, M; Gao, H; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Gomez, J; Guo, L; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Hyde, C; Ibrahim, H F; Jiang, X; Jin, G; Katich, J; Kelleher, A; Kolarkar, A; Korsch, W; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Long, E; Lukhanin, A; Mamyan, V; McNulty, D; Meziani, Z -E; Michaels, R; Mihovilovič, M; Moffit, B; Muangma, N; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Nuruzzaman,; Oh, Y; Peng, J C; Qian, X; Qiang, Y; Rakhman, A; Riordan, S; Saha, A; Sawatzky, B; Shabestari, M H; Shahinyan, A; Širca, S; Solvignon, P; Subedi, R; Sulkosky, V; Tobias, A; Troth, W; Wang, D; Wang, Y; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X
2014-01-01
Double-spin asymmetries and absolute cross sections were measured at large Bjorken $x$ (0.25 $ \\le x \\le $ 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized $^3$He target. In this dedicated experiment, the spin structure function $g_2$ on $^3$He was determined with precision at large $x$, and the neutron twist-three matrix element $d_2^n$ was measured at $\\left$ of 3.21 and 4.32 GeV$^2$/$c^2$, with an absolute precision of about $10^{-5}$. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at $\\left =$ 5 GeV$^2$/$c^2$. Combining $d_2^n$ and a newly extracted twist-four matrix element, $f_2^n$, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.
Novel Approaches to Calculate Nuclear Matrix Elements for Double Beta Decays
Directory of Open Access Journals (Sweden)
Horoi Mihai
2014-03-01
Full Text Available Neutrinoless double beta decay is a unique process that could reveal physics beyond the Standard Model of particle physics. If observed, it would prove that neutrinos are Majorana particles, and it could give information regarding the neutrino masses and their hierarchy, provided that reliable nuclear matrix elements (NME can be obtained. The two-neutrino double beta decay is an associate process that is allowed by the Standard Model and it was observed for about ten nuclei. The NME associated with this decay mode could be even more difficult to calculate, but they can be directly related to the experimental half-lives, and they can be constrained using data from charge-exchange reactions. Here we offer a brief overview of the theoretical challenges associated with these two processes, emphasizing the tools necessary to reliably calculate the associated nuclear matrix elements. We also emphasize the role of the competing mechanisms that could contribute to the neutrinoless double beta decay half-life.
Measurement of the top quark mass in the dilepton final state using the matrix element method
Energy Technology Data Exchange (ETDEWEB)
Grohsjean, Alexander [Ludwig Maximilian Univ., Munich (Germany)
2008-12-15
The top quark, discovered in 1995 by the CDF and D0 experiments at the Fermilab Tevatron Collider, is the heaviest known fundamental particle. The precise knowledge of its mass yields important constraints on the mass of the yet-unobserved Higgs boson and allows to probe for physics beyond the Standard Model. The first measurement of the top quark mass in the dilepton channel with the Matrix Element method at the D0 experiment is presented. After a short description of the experimental environment and the reconstruction chain from hits in the detector to physical objects, a detailed review of the Matrix Element method is given. The Matrix Element method is based on the likelihood to observe a given event under the assumption of the quantity to be measured, e.g. the mass of the top quark. The method has undergone significant modifications and improvements compared to previous measurements in the lepton+jets channel: the two undetected neutrinos require a new reconstruction scheme for the four-momenta of the final state particles, the small event sample demands the modeling of additional jets in the signal likelihood, and a new likelihood is designed to account for the main source of background containing tauonic Z decay. The Matrix Element method is validated on Monte Carlo simulated events at the generator level. For the measurement, calibration curves are derived from events that are run through the full D0 detector simulation. The analysis makes use of the Run II data set recorded between April 2002 and May 2008 corresponding to an integrated luminosity of 2.8 fb^{-1}. A total of 107 t$\\bar{t}$ candidate events with one electron and one muon in the final state are selected. Applying the Matrix Element method to this data set, the top quark mass is measured to be m_{top}^{Run IIa} = 170.6 ± 6.1(stat.)_{-1.5}^{+2.1}(syst.)GeV; m_{top}^{Run IIb} = 174.1 ± 4.4(stat.)_{-1.8}^{+2.5}(syst.)GeV; m
Ntuples for NLO Events at Hadron Colliders
Bern, Z.; Febres Cordero, F.; Höche, S.; Ita, H.; Kosower, D.A.; Maitre, D.
2014-01-01
We present an event-file format for the dissemination of next-to-leading-order (NLO) predictions for QCD processes at hadron colliders. The files contain all information required to compute generic jet-based infrared-safe observables at fixed order (without showering or hadronization), and to recompute observables with different factorization and renormalization scales. The files also make it possible to evaluate cross sections and distributions with different parton distribution functions. This in turn makes it possible to estimate uncertainties in NLO predictions of a wide variety of observables without recomputing the short-distance matrix elements. The event files allow a user to choose among a wide range of commonly-used jet algorithms and jet-size parameters. We provide event files for a $W$ or $Z$ boson accompanied by up to four jets, and for pure-jet events with up to four jets. The files are for the Large Hadron Collider with a center of mass energy of 7 or 8 TeV. A C++ library along with a Python in...
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
with the required precision. However, quantum field theory has a very important fundamental property, which allows to make progress: When the variable ''time'' is analytically continued to imaginary time (in the sense of square root of minus one) it gets mapped onto thermodynamics and statistics and questions in quantum field theory are transformed into purely statistical problems, which can be solved numerically by Monte Carlo techniques. While there might be more to it, this can be seen as just a mathematical trick. This trick does not only make numerical simulations of quantum field theories possible, but it solves at the same time the problem alluded to above: Within QCD any quark-gluon model which is simple enough that one can use it for practical calculations, fails to describe a real hadron. More precisely a simple quark-gluon state, which can easily be described within QCD corresponds to an infinitely complicated superposition of hadronic states. However, if such a superposition is propagated in imaginary time in the right manner all components except the lowest mass physical hadron, e.g. the proton, get exponentially suppressed. Thus the exact many particle wave function of the physical proton is obtained with which one can then calculate all physical quantities one is interested in, with one constraint: Because time has lost its meaning, only time-independent quantities can be obtained. Consequently, Lattice QCD has nearly always to be combined with real time treatments, most prominently perturbative QCD, to obtain physical predictions. The schematic structure of hadron structure lattice calculations is illustrated. Because source, sink and matrix element define three points in space-time such amplitudes are called ''3-point functions''.The Greens function on the lattice is just the inverse of a large sparse matrix. This inversion is one of the computationally most expensive tasks in lattice QCD calculations. To
Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad
2011-01-01
A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…
Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms
Energy Technology Data Exchange (ETDEWEB)
Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC)
2014-02-15
We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a{sup N}, a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.
Double beta decay nuclear matrix elements in extended shell model spaces
Horoi, Mihai
2017-09-01
In a recent publication we concluded that the shell model double beta decay nuclear matrix elements may be affected to certain degrees by the lack of pairing correlations with orbitals outside the typical shell model spaces. Here we report results of calculations for 48Ca that includes 21 spherical orbitals for both protons and neutrons. We are using a realistic Hamiltonian inside the fp model space, thus maintaining a good description of the nuclear structure properties of the nuclei of interest. We are only allowing pairing interactions between the fp orbitals and the remaining 17 orbitals, and up to two particle excitations in and out of the fp model space. This approach could be also extended to the case of 82Se. Support from U.S. NSF Grant PHY-1404442 and DOE Grants DE-SC0008529 and DE-SC0015376 is acknowledged.
Single-particle parity-nonconserving matrix elements in {sup 207}Pb
Energy Technology Data Exchange (ETDEWEB)
Komives, A.; Knott, J.E.; Leuschner, M.; Szymanski, J.J.; Bowman, J.D.; Jamrisk, D.
1993-10-01
Measurements of the helicity dependence of neutron scattering off of heavy nuclei by the TRIPLE collaboration have yielded multiple parity-nonconserving asymmetries. The asymmetries are predominantly positive, in contradiction to the zero average asymmetry predicted by the statistical model of neutron- nucleus scattering. Theoretical calculations that explain the non-zero average asymmetry require single-particle parity- nonconserving matrix elements 10-100 times larger than those predicted by meson exchange models. We are determining the single-particle parity non-conserving mixing in {sup 207}Pb by measuring the circular polarization of the 1.064 MeV {gamma} ray. The experiment uses a transmission polarimeter and a fast data acquisition system. Initial results are presented.
Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States
Abazov, Victor Mukhamedovich
2016-08-18
We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.
Energy Technology Data Exchange (ETDEWEB)
Cwik, T.; Jamnejad, V.; Zuffada, C. [California Institute of Technology, Pasadena, CA (United States)
1994-12-31
The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Molina, Jorge; Mora Herrera, Clemencia; Pol, Maria Elena; Rebello Teles, Patricia; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zhang, Fengwangdong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Chapon, Emilien; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Heister, Arno; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Sammet, Jan; Schael, Stefan; Schulte, Jan-Frederik; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrens, Ulf; Bell, Alan James; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Nowatschin, Dominik; Ott, Jochen; Peiffer, Thomas; Perieanu, Adrian; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Akbiyik, Melike; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Gilbert, Andrew; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Tziaferi, Eirini; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Strologas, John; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Sharma, Archana; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Gonella, Franco; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Ryu, Min Sang; Kim, Jae Yool; Moon, Dong Ho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Yoo, Hwi Dong; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Wan Abdullah, Wan Ahmad Tajuddin; Casimiro Linares, Edgar; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kortelainen, Matti J; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Musella, Pasquale; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Perrozzi, Luca; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Robmann, Peter; Ronga, Frederic Jean; Salerno, Daniel; Taroni, Silvia; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Petrakou, Eleni; Tsai, Jui-fa; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Isildak, Bora; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Albayrak, Elif Asli; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Taylan; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Senkin, Sergey; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Ferguson, William; Fulcher, Jonathan; Futyan, David; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Pastika, Nathaniel; Scarborough, Tara; Wu, Zhenbin; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Zou, David; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Sagir, Sinan; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Holzner, André; Kelley, Ryan; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Mullin, Sam Daniel; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Pierini, Maurizio; Spiropulu, Maria; Vlimant, Jean-Roch; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Krohn, Michael; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Xiao, Meng; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Majumder, Devdatta; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Chakaberia, Irakli; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Mignerey, Alice; Pedro, Kevin; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Nourbakhsh, Shervin; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Meier, Frank; Ratnikov, Fedor; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Lynch, Sean; Marinelli, Nancy; Musienko, Yuri; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Smith, Geoffrey; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hart, Andrew; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Luo, Wuming; Puigh, Darren; Rodenburg, Marissa; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Malik, Sudhir; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Miller, David Harry; Neumeister, Norbert; Primavera, Federica; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Zablocki, Jakub; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Hindrichs, Otto; Khukhunaishvili, Aleko; Korjenevski, Sergey; Petrillo, Gianluca; Verzetti, Mauro; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Dalchenko, Mykhailo; De Mattia, Marco; Dildick, Sven; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Suarez, Indara; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wolfe, Evan; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Vuosalo, Carl; Woods, Nathaniel
2015-06-09
A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5 fb$^{-1}$ collected by the CMS experiment at the LHC in pp collisions at a centre-of-mass energy of 8 TeV. In order to separate the signal from the larger $\\mathrm{t \\bar{t}}$+jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, $\\mu$, relative to the standard model prediction for a Higgs boson mass of 125 GeV. The observed (expected) exclusion limit at a 95% confidence level is $\\mu$ lower than 4.2 (3.3), corresponding to a best fit value $\\hat{\\m...
Heavy-ion double charge exchange reactions: A tool toward 0 νββ nuclear matrix elements
Energy Technology Data Exchange (ETDEWEB)
Cappuzzello, F.; Bondi, M. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Laboratori Nazionali del Sud, Catania (Italy); Cavallaro, M.; Agodi, C.; Carbone, D.; Cunsolo, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Foti, A. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Sezione di Catania, Catania (Italy)
2015-11-15
The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial- and final-state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the {sup 40}Ca({sup 18}O,{sup 18}Ne){sup 40}Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0{sup +} → 0{sup +} transition to {sup 40}Ar{sub gs}, at least at very forward angles. (orig.)
Matrix elements in the coupled-cluster approach - With application to low-lying states in Li
Martensson-Pendrill, Ann-Marie; Ynnerman, Anders
1990-01-01
A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.
Energy Technology Data Exchange (ETDEWEB)
Cooper, S.
1985-10-01
Heavy quark systems and glueball candidates, the particles which are relevant to testing QCD, are discussed. The review begins with the heaviest spectroscopically observed quarks, the b anti-b bound states, including the chi state masses, spins, and hadronic widths and the non-relativistic potential models. Also, P states of c anti-c are mentioned. Other heavy states are also discussed in which heavy quarks combine with lighter ones. The gluonium candidates iota(1460), theta(1700), and g/sub T/(2200) are then covered. The very lightest mesons, pi-neutral and eta, are discussed. 133 refs., 24 figs., 16 tabs. (LEW)
Barate, R; Affholderbach, K; Ajaltouni, Ziad J; Alemany, R; Aleppo, M; Antonelli, A; Antonelli, M; Armstrong, S R; Aubert, Jean-Jacques; Azzurri, P; Badaud, F; Bagliesi, G; Batignani, G; Becker, U; Benchouk, C; Bencivenni, G; Berlich, R; Bettarini, S; Betteridge, A P; Beuselinck, R; Binnie, David M; Black, S N; Blair, G A; Bloch-Devaux, B; Blondel, A; Blum, Walter; Boccali, T; Boix, G; Bologna, G; Bonissent, A; Bonneaud, G R; Booth, C N; Bossi, F; Botterill, David R; Boucrot, J; Bourdon, P; Bowdery, C K; Bozzi, C; Brandt, S; Brient, J C; Bright-Thomas, P G; Bryant, L M; Buchmüller, O L; Buck, P G; Bujosa, G; Buskulic, Damir; Böhrer, A; Büscher, V; Calderini, G; Callot, O; Cameron, W; Campana, P; Capon, G; Carpinelli, M; Carr, J; Cartwright, S L; Casado, M P; Casper, David William; Cattaneo, M; Cerutti, F; Chambers, J T; Charles, E; Chazelle, G; Chen, S; Chiarella, V; Chmeissani, M; Ciocci, M A; Ciulli, V; Clifft, R W; Colaleo, A; Colas, P; Colrain, P; Combley, F; Corden, M; Cordier, A; Cowan, G D; Coyle, P; Crawford, G; Creanza, D; Crespo, J M; Curtis, L; Dann, J H; Daskalakis, G; Davier, M; De Palma, M; Delfino, M C; Dell'Orso, R; Deschamps, O; Dhamotharan, S; Dietl, H; Dissertori, G; Dornan, Peter J; Drevermann, H; Duflot, L; Décamp, D; Edgecock, T R; Elmer, P; Emery, S; Etienne, F; Falvard, A; Fantechi, R; Felici, G; Ferdi, C; Ferguson, D P S; Fernández, E; Fernández-Bosman, M; Ferrante, I; Finch, A J; Focardi, E; Forti, F; Forty, Roger W; Foster, F; Foà, L; Frank, M; Ganis, G; Gao, Y; Garrido, L; Gay, P; Gelao, G; Georgiopoulos, C H; Geweniger, C; Ghete, V M; Ghez, P; Giannini, G; Giassi, A; Giehl, I; Giorgi, M A; Girone, M; Girtler, P; Gobbo, B; González, S; Goodsir, S M; Goy, C; Graefe, G; Graugès-Pous, E; Green, M G; Greening, T C; Gregorio, A; Grivaz, J F; Grupen, Claus; Guicheney, C; Hagelberg, R; Halley, A W; Hanke, P; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Hansper, G; Harvey, J; Hayes, O J; Haywood, S; Henrard, P; Hepp, V; Heusse, P; Hoffmann, C; Hu, H; Huang, X; Hughes, G; Höcker, A; Iaselli, Giuseppe; Jacholkowska, A; Jaffe, D E; Jakobs, K; Janot, P; Jin, S; Johnson, R P; Jones, R W L; Jost, B; Jousset, J; Juste, A; Kelly, M S; Kim, D W; Kim, H Y; Kleinknecht, K; Kluge, E E; Kneringer, E; Konstantinidis, N P; Kozanecki, Witold; Kroha, H; Kuhn, D; Kyriakis, A; Lançon, E; Laurelli, P; Le Diberder, F R; Lees, J P; Lefrançois, J; Lehraus, Ivan; Lehto, M H; Lemaire, M C; Leroy, O; Ligabue, F; Lin, J; Litke, A M; Locci, E; Lucotte, A; Lusiani, A; Lutz, A M; Lynch, J G; Lütjens, G; Maggi, G; Maggi, M; Mannert, C; Mannocchi, G; Marinelli, N; Markou, C; Marrocchesi, P S; Martin, E B; Martin, F; Martínez, M; Mato, P; McNamara, P A; McNeil, M A; Medcalf, T; Merino, G; Merle, E; Messineo, A; Michel, B; Minard, M N; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Monteil, S; Montret, J C; Moser, H G; Motsch, F; Moutoussi, A; Murtas, F; Murtas, G P; Musolino, G; Männer, W; Nachtman, J M; Nash, J; Negus, P; Nief, J Y; Nielsen, J; Nilsson, B S; Norton, P R; Nuzzo, S; O'Shea, V; Orejudos, W; Ouyang, Q; Pacheco, A; Palla, Fabrizio; Pallin, D; Pan, Y B; Park, I C; Parrini, G; Pascual, A; Passalacqua, L; Payre, P; Pepé-Altarelli, M; Perret, P; Perrodo, P; Pietrzyk, B; Podlyski, F; Proriol, J; Putzer, A; Pérez, P; Quast, G; Ragusa, F; Raine, C; Rander, J; Ranieri, A; Ranjard, F; Raso, G; Renardy, J F; Renk, B; Rensch, B; Riu, I; Rizzo, G; Robertson, N A; Rohne, E; Rolandi, Luigi; Rosnet, P; Rothberg, J E; Rougé, A; Roussarie, A; Rousseau, D; Rudolph, G; Ruggieri, F; Rumpf, M; Saadi, Y; Sadouki, A; Sander, H G; Sanguinetti, G; Saraiva, P; Scarr, J M; Schael, S; Schlatter, W D; Schmitt, M; Schneider, O; Schuller, J P; Schune, M H; Schwindling, J; Sciabà, A; Scott, I J; Sedgbeer, J K; Selvaggi, G; Settles, Ronald; Seywerd, H C J; Sguazzoni, G; Silvestris, L; Simopoulou, Errietta; Siotis, I; Smith, K; Smolik, L; Sommer, J; Spagnolo, P; Stenzel, H; Stephan, F; Strong, J A; Sánchez, F; Talby, M; Tanaka, R; Taylor, G; Teixeira-Dias, P; Tejessy, W; Tempesta, P; Tenchini, Roberto; Teubert, F; Thompson, A S; Thompson, J C; Thompson, L F; Thomson, E; Thulasidas, M; Tittel, K; Tomalin, I R; Tonelli, G; Tournefier, E; Trabelsi, A; Trabelsi, K; Tricomi, A; Vallage, B; Van Gemmeren, P; Vannini, C; Vayaki, Anna; Veillet, J J; Venturi, A; Verderi, M; Verdini, P G; Videau, H L; Videau, I; Von Wimmersperg-Töller, J H; Wachsmuth, H W; Walsh, J; Wang, T; Wasserbaech, S R; Werner, S; Wiedenmann, W; Williams, M D; Williams, M I; Wolf, G; Wright, A E; Wu Sau Lan; Wu, X; Wunsch, M; Wäänänen, A; Xie, Y; Xu, R; Xue, S; Zachariadou, K; Zeitnitz, C; Zerwas, D; Zhang, J; Zhang, L; Zhao, W; Zito, G; Zobernig, G
1999-01-01
From a study of the kinematic properties of the final state produced in the semileptonic decays b-->X l nu, the inclusive charmless semileptonic branching ratio of b hadrons is measured. With a sam ple of 3.6 million hadronic Z decays recorded between 1992 and 1995 with the ALEPH detector at LEP, the value Br(b-->X_u l nu) is determined to be (1.73 +- 0.55_stat +- 0.55_syst)*10^{-3}, where X_u represents any charmless hadronic state and b is a mixture of b hadrons weighted by their production rates. This measurement yields the result |V_ub|^2= (18.68 +- 5.94_stat +- 5.94_syst +- 1 .45_HQE)*10^{-6}, where the last error comes from the conversion of the branching ratio to the CKM matrix element squared.
Characterization of metal matrix composites by linear ultrasonics and finite element modeling.
Chen, Xuesheng; Sharples, Steve D; Clark, Matt; Wright, David
2013-02-01
Titanium metal matrix composites (TiMMCs) offer advantages over traditional materials for aerospace applications due to the increased mechanical strength of the materials. But the non-destructive inspection of these materials, especially with ultrasound, is in an infancy stage. If the manufacturing process of TiMMC is not correctly controlled, then disbonds and voids between the fibers can result. The effective microstructure of the composite makes difficulty to interpret results from traditional ultrasound techniques because of the scattering caused by fibers; the scattering prevents the ultrasound from penetrating far into the composite region and produces a background signal masking any reflections from voids. In this paper, relatively low frequency ultrasound is used to probe the composite region, and the state of the composite (porosity) is inferred from the velocity of the ultrasound traversing the composite. The relationship between the velocity and porosity is complex in this regime, so finite element (FE) analysis is used to model the composite regions and relate the velocity to the porosity. The FE simulated results are validated by ultrasound velocity measurements.
Angeli, C.; Cimiraglia, R.
2013-02-01
A symbolic program performing the Formal Reduction of Density Operators (FRODO), formerly developed in the MuPAD computer algebra system with the purpose of evaluating the matrix elements of the electronic Hamiltonian between internally contracted functions in a complete active space (CAS) scheme, has been rewritten in Mathematica. New version : A program summaryProgram title: FRODO Catalogue identifier: ADV Y _v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVY_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3878 No. of bytes in distributed program, including test data, etc.: 170729 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which the Mathematica computer algebra system can be installed Operating system: Linux Classification: 5 Catalogue identifier of previous version: ADV Y _v1_0 Journal reference of previous version: Comput. Phys. Comm. 171(2005)63 Does the new version supersede the previous version?: No Nature of problem. In order to improve on the CAS-SCF wavefunction one can resort to multireference perturbation theory or configuration interaction based on internally contracted functions (ICFs) which are obtained by application of the excitation operators to the reference CAS-SCF wavefunction. The previous formulation of such matrix elements in the MuPAD computer algebra system, has been rewritten using Mathematica. Solution method: The method adopted consists in successively eliminating all occurrences of inactive orbital indices (core and virtual) from the products of excitation operators which appear in the definition of the ICFs and in the electronic Hamiltonian expressed in the second quantization formalism. Reasons for new version: Some years ago we published in this journal a couple of papers [1, 2
A measurement of the top quark mass with a matrix element method
Energy Technology Data Exchange (ETDEWEB)
Gibson, Adam Paul [Univ. of California, Berkeley, CA (United States)
2006-01-01
The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb^{-1} dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order t$\\bar{t}$ and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb^{-1} dataset they extract a top quark mass of 172.0 ± 2.6(stat) ± 3.3(syst) GeV/c^{2} from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c^{2} for m $\\bar{t}$ = 178 GTeV/c^{2} and 3.1 GeV/c^{2} for m $\\bar{t}$ = 172.5 GeV/c^{2}. The systematic error is dominated by the uncertainty of the jet energy scale.
Quarkonium polarization and the long distance matrix elements hierarchies using jet substructure
Dai, Lin; Shrivastava, Prashant
2017-08-01
We investigate the quarkonium production mechanisms in jets at the LHC, using the fragmenting jet functions (FJF) approach. Specifically, we discuss the jet energy dependence of the J /ψ production cross section at the LHC. By comparing the cross sections for the different NRQCD production channels (1S0[8], 3S1[8], 3PJ[8], and 3cripts>S1[1]), we find that at fixed values of energy fraction z carried by the J /ψ , if the normalized cross section is a decreasing function of the jet energy, in particular for z >0.5 , then the depolarizing 1S0[8] must be the dominant channel. This makes the prediction made in [Baumgart et al., J. High Energy Phys. 11 (2014) 003, 10.1007/JHEP11(2014)003] for the FJF's also true for the cross section. We also make comparisons between the long distance matrix elements extracted by various groups. This analysis could potentially shed light on the polarization properties of the J /ψ production in high pT region.
Energy Technology Data Exchange (ETDEWEB)
Klingebiel, Dennis
2014-07-25
The electroweak production of single top quarks offers a unique access to the Cabibbo-Kobayashi-Maskawa (CKM) matrix element V{sub tb}, which is a fundamental parameter of the Standard Model of particle physics (SM). In this thesis, measurements of the inclusive t-channel single-top-quark-production cross section, the CKM-matrix element V{sub tb}, and the ratio of t-channel top-quark-production and top-antiquark-production cross sections are presented. Proton-proton collisions with a center-of-mass energy of 7 TeV are analyzed. These collisions were recorded with the Compact Muon Solenoid (CMS) experiment at the particle-accelerator complex Large Hadron Collider (LHC), which is operated by the European Organization for Nuclear Research (CERN) near Geneva, Switzerland. The analyzed data correspond to an integrated luminosity of 1.6/fb. This analysis uses events with at least two jets and either an electron or muon. Each event is classified according to the flavor and charge of the electron or muon, the number of jets, and the number of b-tagged jets. Signal and background processes are discriminated using Boosted Decision Trees (BDTs). The signal cross section is simultaneously measured in twelve orthogonal categories. A Bayesian approach is used to infer the signal cross section from data. Particular emphasis is placed on the modeling of systematic uncertainties and the evaluation of their impact on the measurement. Systematic uncertainties are incorporated as additional nuisance parameters into the likelihood function. Marginalization is used to eliminate the nuisance parameters. The single-top-quark t-channel production cross section is measured to be (66.6{sup +6.7}{sub -6.2}) pb. The measured value is in agreement with the next-to-next-to-leading order SM prediction. With a relative uncertainty of -9.3% +10.1%, this measurement is significantly more precise than previous measurements in proton-proton und proton-antiproton collisions. The absolute value of the
Light-cone quantized QCD and novel hadron phenomenology
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J.
1997-09-01
The authors reviews progress made in solving gauge theories such as collinear quantum chromodynamics using light-cone Hamiltonian methods. He also shows how the light-cone Fock expansion for hadron wavefunctions can be used to compute operator matrix elements such as decay amplitudes, form factors, distribution amplitudes, and structure functions, and how it provides a tool for exploring novel features of QCD. The author also reviews commensurate scale relations, leading-twist identities which relate physical observables to each other, thus eliminating renormalization scale and scheme ambiguities in perturbative QCD predictions.
Energy Technology Data Exchange (ETDEWEB)
Kirsch, Matthias [RWTH Aachen Univ. (Germany)
2009-06-29
At particle accelerators the Standard Model has been tested and will be tested further to a great precision. The data analyzed in this thesis have been collected at the world's highest energetic-collider, the Tevatron, located at the Fermi National Accelerator Laboratory (FNAL) in the vicinity of Chicago, IL, USA. There, protons and antiprotons are collided at a center-of-mass energy of {radical}s = 1.96 TeV. The discovery of the top quark was one of the remarkable results not only for the CDF and D0 experiments at the Tevatron collider, but also for the Standard Model, which had predicted the existence of the top quark because of symmetry arguments long before already. Still, the Tevatron is the only facility able to produce top quarks. The predominant production mechanism of top quarks is the production of a top-antitop quark pair via the strong force. However, the Standard Model also allows the production of single top quarks via the electroweak interaction. This process features the unique opportunity to measure the |V_{tb}| matrix element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix directly, without assuming unitarity of the matrix or assuming that the number of quark generations is three. Hence, the measurement of the cross section of electroweak top quark production is more than the technical challenge to extract a physics process that only occurs one out of ten billion collisions. It is also an important test of the V-A structure of the electroweak interaction and a potential window to physics beyond the Standard Model in the case where the measurement of |V{sub tb}| would result in a value significantly different from 1, the value predicted by the Standard Model. At the Tevatron two production processes contribute significantly to the production of single top quarks: the production via the t-channel, also called W-gluon fusion, and the production via the s-channel, known as well as W* process. This analysis searches for the combined s
Reconstruction of B hadron decays at DELPHI
Salmi, Laura Tiina Maria
2006-01-01
This thesis describes three analyses related to heavy quarks. The analysis with the largest impact is the extraction of parameters of heavy quark decays using the lepton energy spectrum and the hadronic mass spectrum in semileptonic B decays. The extraction of the parameters allows to test the framework used to theoretically describe the decay of heavy mesons, and more accurate knowledge of the parameter values results in greater accuracy in the determination of the element |Vcb| of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix. The determination described in this thesis is important, since it is so far the only one where the full lepton energy spectrum has been used. The other determinations are based on using only a part of the spectrum. The first extraction of the parameters in the kinetic mass scheme was based on the statistical moments of the lepton energy spectrum and hadronic mass spectrum measured using the data collected at delphi. In the second analysis, the angular distribution of fragmen...
Directory of Open Access Journals (Sweden)
Leandro Ferreira Friedrich
Full Text Available Abstract Fiber-matrix interface performance has a great influence on the mechanical properties of fiber reinforced composite. This influence is mainly presented during fiber pullout from the matrix. As fiber pullout process consists of fiber debonding stage and pullout stage which involve complex contact problem, numerical modeling is a best way to investigate the interface influence. Although many numerical research works have been conducted, practical and effective technique suitable for continuous modeling of fiber pullout process is still scarce. The reason is in that numerical divergence frequently happens, leading to the modeling interruption. By interacting the popular finite element program ANSYS with the MATLAB, we proposed continuous modeling technique and realized modeling of fiber pullout from cement matrix with desired interface mechanical performance. For debonding process, we used interface elements with cohesive surface traction and exponential failure behavior. For pullout process, we switched interface elements to spring elements with variable stiffness, which is related to the interface shear stress as a function of the interface slip displacement. For both processes, the results obtained are very good in comparison with other numerical or analytical models and experimental tests. We suggest using the present technique to model toughening achieved by randomly distributed fibers.
Swain, J D
1999-01-01
We present a new method for the determination of the Cabibbo- Kobayashi-Maskawa quark mixing matrix element V/sub tb/ from electroweak loop corrections, in particular those affecting the process Z to bb. From a combined analysis of results from the LEP, SLC, Tevatron, and neutrino scattering experiments we determine V /sub tb/=0.77/sub -0.24//sup +18/. We comment briefly on the implications of this measurement for the mass of the top quark and Higgs boson, alpha /sub s/, and CKM unitarity. (19 refs).
AUTHOR|(SzGeCERN)683657; Quadt, Arnulf; Shabalina, Elizaveta; Kröninger, Kevin
A search for the Standard Model Higgs boson produced in association with a pair of top quarks (ttH) is presented. The analysis uses 20.3 fb−1 of pp collision data at √s = 8 TeV, collected with the ATLAS detector at the Large Hadron Collider during 2012. The search is designed for the H → bb decay mode and is performed in the single lepton (electrons or muons) decay channel of the top quark pair. In order to improve the sensitivity of the search, events are categorised according to their jet and b-tagged jet multiplicities into nine different analysis regions. A matrix element method is developed and applied to regions with six jets to obtain discriminants separating ttH events from the irreducible tt+ bb background. In signal-enriched regions, a neural network is employed combining kinematic variables and variables obtained from the matrix element method to maximise the separation between signal and background events. The nine analysis regions are statistically combined using a profile likelihood fit to...
Shahmiri, Reza; Das, Raj
2016-01-01
The aim of this study was to investigate the effect of different matrix designs on resilient attachment on an implant-assisted removable partial denture (IARPD) using finite element analysis (FEA). A laser scanner was used to extract the geometrical data of a human partially edentulous mandible. A 12-mm-long and 4.8-mm-diameter-wide implant was modeled, and two types of intradental attachment of snap fastener principle (elliptical) and resilient attachment (titanium) matrices were modeled along with tooth roots and periodontal ligaments. The modeling was performed with a combination of reverse engineering and solid modeling. The model incorporated a removable partial denture and was loaded with realistic bilateral forces. The FEA was used to analyze the stress and strain distributions in the IARPD and in the metal framework. Stresses and deformations in the metal framework and resin denture base surfaces were analyzed for the elliptical and titanium matrix designs. The maximum von Mises stresses were 605.85 and 614.96 MPa in the metal framework surface and 10.35 and 10.63 MPa in the resin denture base surface, respectively, for the elliptical and titanium matrix designs. The maximum deformations (displacements) were 418.5 and 428.3 μm in the metal framework surface for the elliptical and titanium matrix designs, respectively. The corresponding values of displacements for the resin denture base surface were 325.52 and 249.22 μm for the elliptical and titanium matrix designs, respectively. The maximum displacements in the matrixes were, however, nearly the same (229.51 and 229.47 μm) for both the elliptical and titanium matrixes. The titanium matrix design was a more favorable design compared with the elliptical design, because it had lower lateral deformation as indicated by the maximum displacement.
Heavy quarks and the CKM matrix
Peter, K A
2002-01-01
In the last decade, the LEP experiments played a central role in the study of B hadrons (hadrons containing a b quark). New B hadrons have been observed (B/sub S//sup 0/, Lambda /sub B/, Xi /sub b/ and B**) and their production and decay properties have been measured. In this paper we will focus on measurements of the CKM matrix elements: Â¿V /sub cb/Â¿, Â¿V/sub ub/Â¿, Â¿V/sub td/Â¿ and Â¿V/sub ts/Â¿. We will show how all these measurements, together with theoretical developments, have significantly improved our knowledge on the flavour sector of the standard model. (4 refs).
Whiting, Daniel J; Adams, Charles S; Hughes, Ifan G
2016-01-01
Applying large magnetic fields to gain access to the hyperfine Paschen-Back regime can isolate three-level systems in a hot alkali metal vapors, thereby simplifying usually complex atom-light interactions. We use this method to make the first direct measurement of the $|\\langle\\mathrm{5P}| er||\\mathrm{5D}\\rangle|$ matrix element in $^{87}$Rb. An analytic model with only three-levels accurately models the experimental electromagnetically induced transparency spectra and extracted Rabi-frequencies are used to determine the dipole matrix element. We measure $|\\langle\\mathrm{5P}_{3/2}|er||\\mathrm{5D}_{5/2}\\rangle| = (2.290\\pm0.002_{\\rm stat}\\pm0.05_{\\rm syst})~ea_{0}$ which is in excellent agreement with the theoretical calculations of Safronova, Williams and Clark, Phys. Rev. A 69(2), 022509 (2004).
Solution of Angular Parts of the Forbidden Beta Moment Matrix Elements for Rank 0, 1 and 2
Directory of Open Access Journals (Sweden)
Necla ÇAKMAK
2015-01-01
Full Text Available In astrophysical environments, allowed Gamow-Teller (GT transitions are important, particularly for β-decay rates in presupernova evolution of massive stars, since they contribute to the fine-tuning of the lepton-to baryon content of the stellar matter prior to and during the collapse of a heavy star. In environments where GT transitions are unfavored, first-forbidden transitions become important especially in medium heavy and heavy nuclei. Particularly in case of neutron-rich nuclei, first-forbidden transitions are favored primarily due to the phase-space amplification for these transitions. In this study, the angular part of the beta (β moment matrix elements of the , and first forbidden beta decay transition have been solved directly without any assumption. In the calculation of the nuclear matrix elements have been considered the contribution coming from the spin-orbit term in the shell model potential.
Directory of Open Access Journals (Sweden)
Gautam Pennathur
2010-06-01
Full Text Available Abstract Background Chromatin in the nucleus of all eukaryotes is organized into a system of loops and domains. These loops remain fastened at their bases to the fundamental framework of the nucleus, the matrix or the scaffold. The DNA sequences which anchor the bases of the chromatin loops to the matrix are known as Scaffold/Matrix Attachment Regions or S/MARs. Though S/MARs have been studied in yeast and higher eukaryotes and they have been found to be associated with gene organization and regulation of gene expression, they have not been reported in protists like Giardia. Several tools have been discovered and formulated to predict S/MARs from a genome of a higher eukaryote which take into account a number of features. However, the lack of a definitive consensus sequence in S/MARs and the randomness of the protozoan genome in general, make it a challenge to predict and identify such sequences from protists. Results Here, we have analysed the Giardia genome for the probable S/MARs predicted by the available computational tools; and then shown these sequences to be physically associated with the nuclear matrix. Our study also reflects that while no single computational tool is competent to predict such complex elements from protist genomes, a combination of tools followed by experimental verification is the only way to confirm the presence of these elements from these organisms. Conclusion This is the first report of S/MAR elements from the protozoan parasite Giardia lamblia. This initial work is expected to lay a framework for future studies relating to genome organization as well as gene regulatory elements in this parasite.
Energy levels and transition probability matrix elements of ruby for maser applications
Berwin, R. W.
1971-01-01
Program computes fine structure energy levels of ruby as a function of magnetic field. Included in program is matrix formulation, each row of which contains a magnetic field and four corresponding energy levels.
V-A hadronic tau decays : a QCD laboratory
Energy Technology Data Exchange (ETDEWEB)
Narison, Stephan E-mail: narison@lpm.univ-montp2.fr
2001-04-01
Recent ALEPH/OPAL data on the V-A spectral functions from hadronic {tau} decays are used for fixing the QCD continuum threshold at which the first and second Weinberg sum rules should be satisfied in the chiral limit, and for predicting the values of the low-energy constants f{sub {pi}}, m{sub {pi}{sup +}} - m{sub {pi}{sup 0}} and L{sub 10}. Some DMO-like sum rules and the {tau}-total hadronic widths R{sub {tau}}{sub ,V-A} are also used for extracting the values of the D = 6, 8 QCD vacuum condensates and the corresponding (in the chiral limit) electroweak kaon penguin matrix elements {sub 2{pi}}, where a deviation from the vacuum saturation estimate has been obtained. Combining these results with the one of the QCD penguin matrix element
{sub 2{pi}} obtained from a (maximal) q-barq-gluonium mixing scheme from the scalar meson sum rules, we deduce, in the Electroweak Standard Model (ESM), the conservative upper bound for the CP-violating ratio: {epsilon}'/{epsilon} {<=} (22 {+-} 9)10{sup -4}, in agreement with the present measurements.
Simplification of flavour combinatorics in evaluation of hadronic processes
Boos, Ernst E.; Ilyin, Viacheslav A.; Skachkova, Anne N.
2000-05-01
A serious computational problem in the evaluation of hadronic collision processes is connected with the large number of partonic subprocesses included in the calculation. These are from the quark and gluon content of the initial hadrons, and from CKM quark mixing. For example, there are 180 subprocesses which contribute to the W + 2 jets process, and 292 subprocesses in W + 3 jets production at the LHC, even when quarks from only the first two generations are taken into account. We propose a simple modification of the rules for evaluation of cross sections and distributions, which avoids multiplication of channels from the mixture of quark states. The method is based on a unitary rotation of down quarks, thus, transporting the mixing matrix elements from vertices of Feynman diagrams to the parton distribution functions (PDF). As a result, one can calculate cross sections with significantly fewer subprocesses. For the example mentioned above, with the new rules, one need evaluate only 21 and 33 subprocesses, respectively. The matrix elements of the subprocesses are calculated without quark mixing but with a modified PDF convolution which depends on the quark mixing angle, and on the topologies of gauge invariant classes of diagrams. The proposed method has been incorporated into the CompHEP program and checked with various examples.
QCD in hadron-hadron collisions
Energy Technology Data Exchange (ETDEWEB)
Albrow, M.
1997-03-01
Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.
The extracellular matrix - the under-recognized element in lung disease?
Burgess, Janette K.; Mauad, Thais; Tjin, Gavin; Karlsson, Jenny C.; Westergren-Thorsson, Gunilla
2016-01-01
The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has
Energy Technology Data Exchange (ETDEWEB)
Whitbeck, Andrew J. [Johns Hopkins Univ., Baltimore, MD (United States)
2013-09-01
Understanding the exact mechanism of electroweak symmetry breaking through the discovery and characterization of the Higgs boson is one of the primary goals of the Large Hadron Collider (LHC). Two searches for a Higgs boson decaying to a pair of Z bosons with subsequent decays to either 2ℓ2q or 4ℓ are presented using data recorded with the Compact Muon Solenoid (CMS). The discovery and characterization of a Higgs-like resonance using a new set of tools is reported. The foundations of such tools are developed and prospects for their use in other Higgs channels and at future colliders are addressed. Although the Standard Model (SM) of electroweak interactions has been extremely successful in describing a number of phenomena, there are still questions to be addressed pertaining to its naturalness and its possible connection to beyond the SM physics. Results are interpreted in the context of possible extensions to the SM and their effect on our understanding of the universe.
Indian Academy of Sciences (India)
medium properties of hadrons. I discuss the relevant symmetries of QCD and how they might affect the observed hadron properties. I then discuss at length the observable consequences of in-medium changes of hadronic properties in reactions with ...
2003-01-01
Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)
Haxton, Wick; Lunardini, Cecilia
2008-09-01
Semi-leptonic electroweak interactions in nuclei—such as β decay, μ capture, charged- and neutral-current neutrino reactions, and electron scattering—are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |p→|/M, where p→ and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q, where q is the magnitude of the three-momentum transfer. While results for such matrix elements are available in tabular form, with certain restriction on quantum numbers, the task of determining the analytic form of a response function can still be quite tedious, requiring the folding of the tabulated matrix elements with the nuclear density matrix, and subsequent algebra to evaluate products of operators. Here we provide a Mathematica script for generating these matrix elements, which will allow users to carry out all such calculations by symbolic manipulation. This will eliminate the errors that may accompany hand calculations and speed the calculation of electroweak nuclear cross sections and rates. We illustrate the use of the new script by calculating the cross sections for charged- and neutral-current neutrino scattering in 12C. Program summaryProgram title: SevenOperators Catalogue identifier: AEAY_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAY_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland
Matrix of MIM Elements with Anodic Aluminuim Oxide for Vacuum Luminescent Displays
Vorobiova, A. I.; Utkina, E. A.
1996-04-01
The structure of metal-insulator-metal (MIM) elements with anodic alimunium oxide is described. These structures may be especially important for large size displays when compared with thin film transistor structures.
Wu, Yueqian; Yang, Minglin; Sheng, Xinqing; Ren, Kuan Fang
2015-05-01
Light scattering properties of absorbing particles, such as the mineral dusts, attract a wide attention due to its importance in geophysical and environment researches. Due to the absorbing effect, light scattering properties of particles with absorption differ from those without absorption. Simple shaped absorbing particles such as spheres and spheroids have been well studied with different methods but little work on large complex shaped particles has been reported. In this paper, the surface Integral Equation (SIE) with Multilevel Fast Multipole Algorithm (MLFMA) is applied to study scattering properties of large non-spherical absorbing particles. SIEs are carefully discretized with piecewise linear basis functions on triangle patches to model whole surface of the particle, hence computation resource needs increase much more slowly with the particle size parameter than the volume discretized methods. To improve further its capability, MLFMA is well parallelized with Message Passing Interface (MPI) on distributed memory computer platform. Without loss of generality, we choose the computation of scattering matrix elements of absorbing dust particles as an example. The comparison of the scattering matrix elements computed by our method and the discrete dipole approximation method (DDA) for an ellipsoid dust particle shows that the precision of our method is very good. The scattering matrix elements of large ellipsoid dusts with different aspect ratios and size parameters are computed. To show the capability of the presented algorithm for complex shaped particles, scattering by asymmetry Chebyshev particle with size parameter larger than 600 of complex refractive index m = 1.555 + 0.004 i and different orientations are studied.
Study of the Matrix Effect on the Plasma Characterization of Heavy Elements in Soil Sediments
Tawfik W.; Askar A.
2007-01-01
Laser-induced breakdown spectroscopy (LIBS) has been applied to perform a study of the matrix effect on the plasma characterization of soil sediment targets. The plasma is generated by focusing a pulsed Nd: YAG laser on the target in air at atmospheric pressure. The plasma emission spectrum was detected using a portable Echelle spectrometer (Mechelle 7500 — Multichannel Instruments, Stockholm, Sweden) with intensified CCD camera. Spectroscopic analysis of plasma evolu...
The nuclear matrix elements of 0νββ decay and the NUMEN project at INFN-LNS
Directory of Open Access Journals (Sweden)
Cappuzzello F.
2016-01-01
Full Text Available An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross sections measurements of double charge exchange reactions is proposed. A key aspect of the project is the use of the MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the LNS K800 Superconducting Cyclotron (CS, for the acceleration of the required high resolution and low emittance heavyion beams, already in operation at INFN Laboratory Nazionali del Sud in Catania (Italy.
Nuclear transition matrix elements for neutrinoless double-β decay of 76Ge and 82Se isotopes
Rath, P. K.
2017-10-01
Within mechanisms involving light and heavy Majorana neutrinos, the nuclear transition matrix elements (NTMEs) for the neutrinoless double-β decay of 76Ge and 82Se isotopes are calculated. Uncertainties in the average NTMEs M¯ (0 v ) and M¯ (0 N ) due to the exchange of light and heavy Majorana neutrinos, respectively, turn out to be about 10% and 37%, respectively. Limits on the effective mass of light Majorana neutrino , heavy Majorana neutrino and Majoron-neutrino coupling constant of classical Majoron model are extracted.
3-Loop massive O(T{sub 2}{sup F}) contributions to the DIS operator matrix element A{sub gg}
Energy Technology Data Exchange (ETDEWEB)
Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hasselhuhn, A.; Round, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence
2014-09-15
Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element A{sup (3)}{sub gg,Q} is performed. In the Mellin space result one finds finite nested binomial sums. In x-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.
Spin alignment of leading $K^{*}(892)^{0}$ mesons in hadronic $Z^0$ decays
Ackerstaff, K.; Allison, John; Altekamp, N.; Anderson, K.J.; Anderson, S.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Ball, A.H.; Barberio, E.; Barlow, Roger J.; Bartoldus, R.; Barillari, T.; Batley, J.R.; Baumann, S.; Bechtluft, J.; Beeston, C.; Behnke, T.; Bell, A.N.; Bell, Kenneth Watson; Bella, G.; Bentvelsen, S.; Bethke, S.; Biebel, O.; Biguzzi, A.; Bird, S.D.; Blobel, V.; Bloodworth, I.J.; Bloomer, J.E.; Bobinski, M.; Bock, P.; Bonacorsi, D.; Boutemeur, M.; Bouwens, B.T.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Burgard, C.; Burgin, R.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Chrisman, D.; Clarke, P.E.L.; Cohen, I.; Conboy, J.E.; Cooke, O.C.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G.Marco; Davies, R.; De Jong, S.; del Pozo, L.A.; Desch, K.; Dienes, B.; Dixit, M.S.; do Couto e Silva, E.; Doucet, M.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Eatough, D.; Edwards, J.E.G.; Estabrooks, P.G.; Evans, H.G.; Evans, M.; Fabbri, F.; Fanti, M.; Faust, A.A.; Fiedler, F.; Fierro, M.; Fischer, H.M.; Fleck, I.; Folman, R.; Fong, D.G.; Foucher, M.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gascon, J.; Gascon-Shotkin, S.M.; Geddes, N.I.; Geich-Gimbel, C.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W.R.; Gingrich, D.M.; Glenzinski, D.; Goldberg, J.; Goodrick, M.J.; Gorn, W.; Grandi, C.; Gross, E.; Grunhaus, J.; Gruwe, M.; Hajdu, C.; Hanson, G.G.; Hansroul, M.; Hapke, M.; Hargrove, C.K.; Hart, P.A.; Hartmann, C.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herndon, M.; Herten, G.; Heuer, R.D.; Hildreth, M.D.; Hill, J.C.; Hillier, S.J.; Hobson, P.R.; Homer, R.J.; Honma, A.K.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Hutchcroft, D.E.; Igo-Kemenes, P.; Imrie, D.C.; Ingram, M.R.; Ishii, K.; Jawahery, A.; Jeffreys, P.W.; Jeremie, H.; Jimack, M.; Joly, A.; Jones, C.R.; Jones, G.; Jones, M.; Jost, U.; Jovanovic, P.; Junk, T.R.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Kayal, P.I.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kirk, J.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D.S.; Kokott, T.P.; Kolrep, M.; Komamiya, S.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G.D.; Lahmann, R.; Lai, W.P.; Lanske, D.; Lauber, J.; Lautenschlager, S.R.; Layter, J.G.; Lazic, D.; Lee, A.M.; Lefebvre, E.; Lellouch, D.; Letts, J.; Levinson, L.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mannelli, M.; Marcellini, S.; Markus, C.; Martin, A.J.; Martin, J.P.; Martinez, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; Mckigney, E.A.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Menke, S.; Merritt, F.S.; Mes, H.; Meyer, J.; Michelini, A.; Mikenberg, G.; Miller, D.J.; Mincer, A.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Morii, M.; Muller, U.; Mihara, S.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nellen, B.; Nisius, R.; O'Neale, S.W.; Oakham, F.G.; Odorici, F.; Ogren, H.O.; Oh, A.; Oldershaw, N.J.; Oreglia, M.J.; Orito, S.; Palinkas, J.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Patt, J.; Pearce, M.J.; Perez-Ochoa, R.; Petzold, S.; Pfeifenschneider, P.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Rees, D.L.; Rigby, D.; Robertson, S.; Robins, S.A.; Rodning, N.; Roney, J.M.; Rooke, A.; Ros, E.; Rossi, A.M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Ruppel, U.; Rust, D.R.; Rylko, R.; Sachs, K.; Saeki, T.; Sarkisian, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schenk, P.; Schieck, J.; Schleper, P.; Schmitt, B.; Schmitt, S.; Schoning, A.; Schroder, Matthias; Schultz-Coulon, H.C.; Schumacher, M.; Schwick, C.; Scott, W.G.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Siroli, G.P.; Sittler, A.; Skillman, A.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Springer, Robert Wayne; Sproston, M.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Stoll, K.; Strom, David M.; Szymanski, P.; Tafirout, R.; Talbot, S.D.; Tanaka, S.; Taras, P.; Tarem, S.; Teuscher, R.; Thiergen, M.; Thomson, M.A.; von Torne, E.; Towers, S.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turcot, A.S.; Turner-Watson, M.F.; Utzat, P.; Van Kooten, Rick J.; Verzocchi, M.; Vikas, P.; Vokurka, E.H.; Voss, H.; Wackerle, F.; Wagner, A.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wermes, N.; White, J.S.; Wilkens, B.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Yekutieli, G.; Zacek, V.; Zer-Zion, D.
1997-01-01
Helicity density matrix elements for inclusive K*(892)^0 mesons from hadronic Z^0 decays have been measured over the full range of K^*0 momentum using data taken with the OPAL experiment at LEP. A preference for occupation of the helicity zero state is observed at all scaled momentum x_p values above 0.3, with the matrix element rho_00 rising to 0.66 +/- 0.11 for x_p > 0.7. The values of the real part of the off-diagonal element rho_1-1 are negative at large x_p, with a weighted average value of -0.09 +/- 0.03 for x_p > 0.3, in agreement with new theoretical predictions based on Standard Model parameters and coherent fragmentation of the qq(bar) system from the Z^0 decay. All other helicity density matrix elements measured are consistent with zero over the entire x_p range. The K^*0 fragmentation function has also been measured and the total rate determined to be 0.74 +/- 0.02 +/- 0.02 K*(892)^0 mesons per hadronic Z^0 decay.
Wellisch, J P
1999-01-01
The exploitation of hadronic final states played a key role in the successes of all recent HEP collider experiments, and the ability to use the hadronic final state will continue to be one of the decisive issues during the LHC era. Monte Carlo techniques to make efficient use of hadronic final states have been developed for many years, and have a technological culmination in object oriented tool-kits for hadronic shower simulation that now are becoming available. In the present paper we give a brief overview on the physics modeling underlying hadronic shower simulation, and report on advanced techniques used and developed for simulation of hadronic showers in HEP experiments. We will discuss the three basic types of modelling - data driven, parametrisation driven, and theory driven modelling - and demonstrate ways to combine them in a flexible manner for concrete applications. We will confront the different types of modelling with the stringent requirements on hadronic shower simulation posed by LHC, and inve...
Directory of Open Access Journals (Sweden)
Stanišić Svetlana M.
2012-01-01
Full Text Available The single agent extractions of major and trace metals from soil sample were conducted by means of rotary mixer and ultrasonic bath with sonication time of 10, 20, 30, 40 and 50 min. The sequential extraction according to the BCR scheme was undertaken. The obtained soil extracts were analyzed by ICP-OES and according to the results the rotary mixer assisted extraction was more efficient in the case of alkaline-earth elements. However, by the use of ultrasound several times higher amounts of matrix elements (Fe, Al and Mn and heavy metals predominantly associated with Fe, Al and Mn oxyhydroxides were extracted. The increase of the sonication time failed to improve extraction yields. The changes of the conductivity, pH, oxidoreduction potential, particle size diameter and zeta potential of colloid particles, with the sonication time increase were measured. The extraction mechanism and expressed selectivity of ultrasound is discussed and explanation is suggested.
Energy Technology Data Exchange (ETDEWEB)
Pascual, J.
1987-12-01
An X-ray fluorescence method for determining trace elements in silicate rock samples was studied. The procedure focused on the application of the pertinent matrix corrections. Either the Compton peak or the reciprocal of the mass absorption coefficient of the sample was used as internal standard for this purpose. X-ray tubes with W or Cr anodes were employed, and the W L..beta.. and Cr K..cap alpha.. Compton intensities scattered by the sample were measured. The mass absorption coefficients at both sides of the absorption edge for Fe (1.658 and 1.936 A) were calculated. The elements Zr, Y, Rb, Zn, Ni, Cr and V were determined in 15 international reference rocks covering wide ranges of concentration. Relative mean errors were in many cases less than 10%.
1992-10-01
Se0 j 1(n+l) rJ ,(0,n) (1.3) e~j fi eo aoo In r ui-u° UP ror J •"lu,ɘ, n)(13 The constants A to, o, come from the Ramberg - Osgood description of a...of the yield surface. PAPSTapproximates the true stress-strain curve of a material using either multilinear or Ramberg - Osgood power hardening...Dilatational component of the strain energy density ao Yield stress ( Ramberg -Os-’od relation) Ti Matrix-fiber interfacial shear strength Vf Volume fraction of
Wang, X Y; Zhang, J H; Sun, Q L; Yao, Z Y; Deng, B G; Guo, W Y; Wang, L; Dong, W H; Wang, F; Zhao, C P; Wang, T Y
2015-08-07
Preliminary studies have suggested that a characteristic element of the matrix attachment region (MAR) in human interferon-β mediates the adhesion of vectors to Chinese hamster ovary (CHO) cells. In this study, we investigated if vector adhesion increased nerve growth factor (NGF) expression in CHO cells. The MAR characteristic element sequence of human interferon-β was inserted into the multiple-cloning site of the pEGFP-C1 vector. The target NGF gene was inserted upstream of the MAR characteristic element sequence to construct the MAR/NGF expression vector. The recombinant plasmid was transfected into CHO cells and stable monoclonal cells were selected using G418. NGF mRNA and protein expression was detected by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Plasmid reduction experiments were used to determine the state of transfected plasmid in mammalian cells. The insertion of MAR into the vector increased NGF expression levels in CHO cells (1.93- fold) compared to the control. The recombinant plasmid expressing the MAR sequence was digested into a linear space vector. The inserted MAR and NGF sequences were consistent with those inserted into the plasmid before recombination. Therefore, we concluded that the MAR characteristic element mediates vector adhesion to CHO cells and enhances the stability and efficiency of the target gene expression.
Hu, Anguang; Chan, Nora W. C.; Dunlap, Brett I.
2017-08-01
The computation of s-type Gaussian pseudopotential matrix elements involving low powers of the distance from the pseudopotential center using Gaussian orbitals can be reduced to familiar integrals. They may be directly expressed as either simple three-center overlap integrals for even powers of the radial distance from the pseudopotential center or related to the three-center nuclear integrals of a Gaussian charge distribution for odd powers. Orbital angular momentum about each atom is added to these integrals by solid-harmonic differentiation with respect to its center. The solid-harmonic addition theorem allows all the integrals to be factored into products of invariant one-dimensional integrals involving the Gaussian exponents and angular factors that contain the azimuthal quantum numbers but are independent of all Gaussian exponents. Precomputing the angular factors allow looping over all Gaussian exponents about the three centers. The fact that solid harmonics are eigenstates of angular momentum removes the singularities seen in previous treatments of pseudopotential matrix elements.
Directory of Open Access Journals (Sweden)
Kicošev Vesna
2015-01-01
Full Text Available Salt steppes and marshes represent the most valuable ecosystems in the world, providing numerous ecosystem services that are extremely vulnerable to anthropogenic influences. These types of habitat in the territory of Serbia are most dominant in Banat and a significant portion of them is under protection or in the process of becoming protected. The section surrounding the protected areas of Slano Kopovo Special Nature Reserve, Rusanda Nature Park and Okanj Bara Special Nature Reserve with the non-building area of Novi Bečej, Kumane, Melenci, Elemir and Taraš cadastral municipalities, has been chosen for the analysis. The aim of this paper was to assess the influence of specific anthropogenic factors on the elements of an ecological network using the analytical method that can generate the required results in a manner suitable for presentation to various stakeholders. To achieve this aim, the Leopold matrix model, used for assessing anthropogenic influence on the environment, has been chosen. The specificity of this issue of protecting and preserving elements of an ecological network resulted in the need to isolate and evaluate the factors affecting the preservation of habitats and functionality of ecosystems, unlike the concept of Leopold matrix, which treats all factors as equally important in the process of evaluation. Evaluation results indicate significant effects of historical, perennial manner of using the area and other resources in the non-building area.
Cao, Li; Guilak, Farshid; Setton, Lori A
2009-09-01
Anulus fibrosus (AF) cells have been demonstrated to exhibit dramatic differences in morphology and biologic responses to different types of mechanical stimuli. AF cells may reside as single cell, paired or multiple cells in a contiguous pericellular matrix (PCM), whose structure and properties are expected to have a significant influence on the mechanical stimuli that these cells may experience during physiologic loading of the spine, as well as in tissue degeneration and regeneration. In this study, a computational model was developed to predict the micromechanical stimuli, such as stress and strain, fluid pressure and flow, of cells and their surrounding PCM in the AF tissue using three-dimensional (3D) finite element models based on in situ morphology. 3D solid geometries of cell-PCM regions were registered from serial confocal images obtained from mature rat AF tissues by custom codes. Distinct cell-matrix units were modeled with a custom 3D biphasic finite element code (COMSOL Multiphysics), and simulated to experience uni-axial tensile strain along the local collagen fiber direction. AF cells were predicted to experience higher volumetric strain with a strain amplification ratio (relative to that in the extracellular matrix) of ~ 3.1 - 3.8 at equilibrium, as compared to the PCM domains (1.3 - 1.9). The strain concentrations were generally found at the cell/PCM interface and stress concentration at the PCM/ECM interface. Increased numbers of cells within a contiguous PCM was associated with an apparent increase of strain levels and decreased rate of fluid pressurization in the cell, with magnitudes dependent on the cell size, shape and relative position inside the PCM. These studies provide spatio-temporal information on micromechanics of AF cells in understanding the mechanotransduction in the intervertebral disc.
Hadron melting and QCD thermodynamics
Jakovac, A.
2013-01-01
We study in this paper mechanisms of hadron melting based on the spectral representation of hadronic quantum channels, and examine the hadron width dependence of the pressure. The findings are applied to a statistical hadron model of QCD thermodynamics, where hadron masses are distributed by the Hagedorn model and a uniform mechanism for producing hadron widths is assumed. According to this model the hadron - quark gluon plasma transition occurs at $T\\approx 200$-250 MeV, the numerically obse...
Cheung, Isabella M Y; McGhee, Charles N J; Sherwin, Trevor
2014-07-01
Keratoconus manifests as a conical protrusion of the cornea and is characterised by stromal thinning. This causes debilitating visual impairment which may necessitate corneal transplantation. Therapeutic targets related to disease mechanisms are currently lacking, as the pathobiology remains unclear. Many pathological features may be manifestations of defects in wound healing and reactive oxygen species (ROS)-associated functions. In a wide range of tissue and cell types, antioxidant exposure has beneficial effects on both of these pathways. This study investigated the effect of treatment with the antioxidant riboflavin on wound healing and ROS-associated functions in keratoconus. Stromal cells were isolated from human central keratoconic (n = 3) and normal (n = 3) corneas. Total RNA was extracted and reverse-transcribed into complementary DNA. The gene expression of 22 genes involved in repair (eight normal and four repair-type extracellular matrix constituents) and ROS-associated processes (eight antioxidants and two ROS-synthesising oxidases) was quantified using quantitative polymerase chain reaction. This was also performed on keratoconic stromal cells treated in vitro with riboflavin (n = 3). In stromal cells from untreated keratoconic corneas (compared with untreated normal corneas), there was an up-regulation of 7/12 extracellular matrix elements. Four of eight antioxidants and two of two oxidases were also increased. In treated keratoconic corneas (compared with untreated keratoconic corneas), six out of eight normal extracellular matrix constituents were up-regulated and two of four repair-type molecules were reduced. An increase was also observed in seven out of eight antioxidants and there was a diminution in two out of two oxidases. Riboflavin encourages the synthesis of a normal extracellular matrix and reduces reactive oxygen species levels in keratoconus. This supports the occurrence of wound healing and ROS-associated abnormalities in keratoconus
Yuan, Ji-hai; Zhan, Xiu-chun; Hu, Ming-yue; Zhao, Ling-hao; Sun, Dong-yang
2015-02-01
Matrix effect between reference materials and samples is one of the major factors affecting the accuracy of analytical results by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). However, there is no method or calculation formula to quantify matrix effect between standards and samples up to date. In this paper, the linear correlation coefficient r of the Ii/I(is-Ci)/Cis graphs of element pairs were used to characterize the matrix effect, which took the ratios of concentrations (ci/ c(is)) and intensities (Ii/Iis) of the analytical element and internal standard element as x-axis and gamma-axis, respectively. Matrix effects of 6 element pairs in 13 glass reference materials, 2 sulfide reference materials and 2 sulfide minerals using Fe as internal standard was studied, with the linear correlation coefficient r of Fe-Cu, Fe-Zn element pairs both less than 0. 999 and trace Fe--Mn, Fe--Co, Fe--Ga, Fe--Pb element pairs all better than 0.999. Matrix effects of 3 major element pairs in 2 sulfide ref- erence materials and 6 sulfide minerals using S as internal standard was also studied, with the linear correlation coefficient r of S--Fe, S--Cu, S--Zn all less than 0.999. The great majority of relative errors of EMPA analytical results for major elements in sulfide minerals were greater than 10%, whether analyzed using Fe as internal standard with glass reference materials as external standard, or S as internal standard with sulfide reference materials MASS-1, IMER-1 as external standard, respectively. But the most analytical results for trace elements calibrated by glass reference materials using Fe as internal standard were well agreed with sulfide standard MASS-1, with the relative errors less than 15%. The results showed that matrix effects existed in glass reference materials, sulfide reference materials and sulfide minerals, and it also proved a certain rationality and practicability for quantification of matrix effect using the linear
Energy Technology Data Exchange (ETDEWEB)
Cwik, T. [California Institute of Technology, Pasadena, CA (United States); Katz, D.S. [Cray Research, El Segundo, CA (United States)
1996-12-31
Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.
Directory of Open Access Journals (Sweden)
Prokhin Egor Anatol’evich
2016-10-01
Full Text Available In the modern conditions innovatization of construction is of great necessity, though it is associated with a number of problems of first of all institutional genesis. The development of green construction in Russia is on its first stages, though its necessity is growing according to the tendency for energy efficiency and sustainable development. The innovative process of ecological construction has a network model and requires its optimization with the aim of further development by advancing the institutional platform. The author proposed a conceptual scheme for an institutional platform of the innovative process of green construction and conducted systematization of institutional structures. The unique role of innovative and ecological institutes is substantiated. The author recommends an optimization method for institutional interaction of the subjects using the stakeholder theory and the theory of matrix games aimed at activation of innovative green technologies. Practical application of the offered algorithms and methods will allow increasing the efficiency of green construction development.
Duffy, Stephen F.
1998-01-01
The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural
Directory of Open Access Journals (Sweden)
A. S. Avrunin
2013-01-01
Full Text Available For the first time on the basis of computer modeling using the finite element method the mechanical role of mineral compounds, binding all of the bone minerals in the whole monolith was evaluated. By multivariate computational experiments the authors established the qualitative features and obtained the quantitative assessment of the influence of the bridges on the stiffness and stress-strain state of the representative volume element (RVE. The effective elastic moduli of the nanocomposite bone RVE were estimated by the of finite element homogenization method taking into account the availability of bridges. The presence of the bridge enhances bone stiffness regardless of the direction of acting loads. Consequently, bridge plays an important biological role in increasing the strength properties of the skeleton at nonstandard directions of the load. Data presented in this paper show an extremely complex mechanical phenomena developing in the mineral matrix, which can be adequately assessed only by using a computer modeling based on the morphologically correct structural relationships of its components.
Averett, Rodney D; Scogin, Tyler; Walker, Mitchell L R
2016-01-01
Blood clots occur in the human body when they are required to prevent bleeding. In pathological states such as diabetes and sickle cell disease, blood clots can also form undesirably due to hypercoagulable plasma conditions. With the continued effort in developing fibrin therapies for potential life-saving solutions, more mechanical modeling is needed to understand the properties of fibrin structures with inclusions. In this study, a fibrin matrix embedded with magnetic micro particles was subjected to a magnetic field to determine the plastic deformation of the clot. Using finite element analysis, we estimate the magnetic force from an electromagnet at a sample space located approximately 3 cm away from the coil center. This electromagnetic force along with gravity is applied on a fibrin sub model to calculate the stresses and displacements. Initial analyses show the forces are not sufficient to create fibrinolysis and hence we extended the study using parametric sweep analysis and redesign the coil paramete...
The extracellular matrix - the under-recognized element in lung disease?
Burgess, Janette K; Mauad, Thais; Tjin, Gavin; Karlsson, Jenny C; Westergren-Thorsson, Gunilla
2016-12-01
The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has provided novel insights revealing that the ECM is also a bioactive environment that orchestrates the cellular responses in its environs. Changes in the ECM in the airway or parenchymal tissues are now recognized in the pathological profiles of many respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Only recently have we begun to investigate whether these ECM changes result from the disease process, or whether they constitute a driving factor that orchestrates the pathological outcomes. This review summarizes our current knowledge of the alterations in the ECM in asthma, COPD, and IPF, and the contributions of these alterations to the pathologies. Emerging data suggest that alterations in the composition, folding or rigidity of ECM proteins may alter the functional responses of cells within their environs, and in so doing change the pathological outcomes. These characteristics highlight potential avenues for targeting lung pathologies in the future. This may ultimately contribute to a better understanding of chronic lung diseases, and novel approaches for finding therapeutic solutions. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Fragmentation and Hadronization
Webber, B.R.
1999-01-01
Experimental data, theoretical ideas and models concerning jet fragmentation and the hadronization process are reviewed, concentrating on the following topics: factorization and small-x resummation of fragmentation functions, hadronization models, single-particle yields and spectra in Z decay, comparisons between quark and gluon jets, current and target fragmentation in deep inelastic scattering, heavy quark fragmentation, Bose-Einstein correlations and WW fragmentation.
Fragmentation and Hadronization
Webber, B.R.
2000-01-01
Experimental data, theoretical ideas and models concerning jet fragmentation and the hadronization process are reviewed, concentrating on the following topics: factorization and small-x resummation of fragmentation functions, hadronization models, single-particle yields and spectra in Z decay, comparisons between quark and gluon jets, current and target fragmentation in deep inelastic scattering, heavy quark fragmentation, Bose-Einstein correlations and WW fragmentation.
Statistical Hadronization and Holography
DEFF Research Database (Denmark)
Bechi, Jacopo
2009-01-01
In this paper we consider some issues about the statistical model of the hadronization in a holographic approach. We introduce a Rindler like horizon in the bulk and we understand the string breaking as a tunneling event under this horizon. We calculate the hadron spectrum and we get a thermal...
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Ryzhov, Andrey; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2016-05-10
This Letter presents evidence for single top-quark production in the $s$-channel using proton--proton collisions at a centre-of-mass energy of $8\\,$TeV with the ATLAS detector at the CERN Large Hadron Collider. The analysis is performed on events containing one isolated electron or muon, large missing transverse momentum and exactly two $b$-tagged jets in the final state. The analysed data set corresponds to an integrated luminosity of $20.3\\,$fb$^{-1}$. The signal is extracted using a maximum-likelihood fit of a discriminant which is based on the matrix element method and optimized in order to separate single-top-quark $s$-channel events from the main background contributions, which are top-quark pair production and $W$ boson production in association with heavy-flavour jets. The measurement leads to an observed signal significance of $3.2$ standard deviations and a measured cross-section of $\\sigma_s\\!=\\!4.8\\!\\pm\\!0.8$(stat.)$^{+1.6}_{-1.3}$(cyst.) pb, which is consistent with the Standard Model expectation...
Directory of Open Access Journals (Sweden)
G. Aad
2016-05-01
Full Text Available This Letter presents evidence for single top-quark production in the s-channel using proton–proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS detector at the CERN Large Hadron Collider. The analysis is performed on events containing one isolated electron or muon, large missing transverse momentum and exactly two b-tagged jets in the final state. The analysed data set corresponds to an integrated luminosity of 20.3 fb−1. The signal is extracted using a maximum-likelihood fit of a discriminant which is based on the matrix element method and optimized in order to separate single-top-quark s-channel events from the main background contributions, which are top-quark pair production and W boson production in association with heavy-flavour jets. The measurement leads to an observed signal significance of 3.2 standard deviations and a measured cross-section of σs=4.8±0.8(stat.−1.3+1.6(syst. pb, which is consistent with the Standard Model expectation. The expected significance for the analysis is 3.9 standard deviations.
Kramer, Harald; Michaely, Henrik J; Matschl, Volker; Schmitt, Peter; Reiser, Maximilian F; Schoenberg, Stefan O
2007-06-01
Recent developments in hard- and software help to significantly increase image quality of magnetic resonance angiography (MRA). Parallel acquisition techniques (PAT) help to increase spatial resolution and to decrease acquisition time but also suffer from a decrease in signal-to-noise ratio (SNR). The movement to higher field strength and the use of dedicated angiography coils can further increase spatial resolution while decreasing acquisition times at the same SNR as it is known from contemporary exams. The goal of our study was to compare the image quality of MRA datasets acquired with a standard matrix coil in comparison to MRA datasets acquired with a dedicated peripheral angio matrix coil and higher factors of parallel imaging. Before the first volunteer examination, unaccelerated phantom measurements were performed with the different coils. After institutional review board approval, 15 healthy volunteers underwent MRA of the lower extremity on a 32 channel 3.0 Tesla MR System. In 5 of them MRA of the calves was performed with a PAT acceleration factor of 2 and a standard body-matrix surface coil placed at the legs. Ten volunteers underwent MRA of the calves with a dedicated 36-element angiography matrix coil: 5 with a PAT acceleration of 3 and 5 with a PAT acceleration factor of 4, respectively. The acquired volume and acquisition time was approximately the same in all examinations, only the spatial resolution was increased with the acceleration factor. The acquisition time per voxel was calculated. Image quality was rated independently by 2 readers in terms of vessel conspicuity, venous overlay, and occurrence of artifacts. The inter-reader agreement was calculated by the kappa-statistics. SNR and contrast-to-noise ratios from the different examinations were evaluated. All 15 volunteers completed the examination, no adverse events occurred. None of the examinations showed venous overlay; 70% of the examinations showed an excellent vessel conspicuity
Chiral symmetry and dispersion relations: from $\\pi \\pi$ scattering to hadronic light-by-light.
CERN. Geneva
2018-01-01
Chiral symmetry provides strong constraints on hadronic matrix elements at low energy, which are most efficiently derived with chiral perturbation theory. As an effective quantum field theory the latter also accounts for rescattering or unitarity effects, albeit only perturbatively, via the loop expansion. In cases where rescattering effects are important it becomes necessary to go beyond the perturbative expansion, e.g. by using dispersion relations. A matching between the chiral and the dispersive representation provides in several cases results of high precision. I will discuss this approach with the help of a few examples, like $\\pi \\pi$ scattering (which has been tested successfully by CERN experiments like NA48/2 and DIRAC), $\\eta \\to 3 \\pi$ and the hadronic light-by-light contribution to $(g-2)_\\mu$. For the latter quantity the implementation of the dispersive approach has opened up the way to a model-independent calculation and the concrete possibility to significantly reduce the theoretical uncertain...
A direct measurement of $|V_{cs}|$ in hadronic W decays using a charm tag
Barate, R; Affholderbach, K; Ajaltouni, Ziad J; Alemany, R; Aleppo, M; Antonelli, A; Antonelli, M; Armstrong, S R; Aubert, Jean-Jacques; Azzurri, P; Badaud, F; Bagliesi, G; Becker, U; Bencivenni, G; Beuselinck, R; Binnie, David M; Black, S N; Blair, G A; Bloch-Devaux, B; Blondel, A; Boccali, T; Boix, G; Bologna, G; Bonissent, A; Booth, C N; Bossi, F; Botterill, David R; Boucrot, J; Bowdery, C K; Bozzi, C; Brandt, S; Bravo, S; Brient, J C; Buchmüller, O L; Buck, P G; Böhrer, A; Büscher, V; Calderini, G; Callot, O; Cameron, W; Campana, P; Capon, G; Carr, J; Cartwright, S L; Casado, M P; Cattaneo, M; Cavanaugh, R J; Cerutti, F; Chalmers, M; Chazelle, G; Chen, S; Chiarella, V; Chmeissani, M; Ciulli, V; Clifft, R W; Colaleo, A; Colas, P; Coles, J; Combley, F; Corden, M; Cowan, G D; Coyle, P; Creanza, D; Crespo, J M; Curtis, L; Dann, J H; Daskalakis, G; Davier, M; De Palma, M; De Vivie de Régie, J B; Dell'Orso, R; Deschamps, O; Dessagne, S; Dhamotharan, S; Dietl, H; Dissertori, G; Dornan, Peter J; Drevermann, H; Duflot, L; Décamp, D; Ealet, A; Edgecock, T R; Ellis, G; Elmer, P; Fabbro, B; Falvard, A; Faïf, G; Ferdi, C; Ferguson, D P S; Fernández, E; Fernández-Bosman, M; Ferrante, I; Finch, A J; Focardi, E; Forty, Roger W; Foster, F; Fouchez, D; Frank, M; Ganis, G; Gao, Y; Garrido, L; Gay, P; Georgiopoulos, C H; Geweniger, C; Ghete, V M; Ghez, P; Giannini, G; Gianotti, F; Giassi, A; Giehl, I; Gilardoni, S S; Girone, M; Girtler, P; Gobbo, B; González, S; Goodsir, S M; Goy, C; Graugès-Pous, E; Green, M G; Greening, T C; Gregorio, A; Grivaz, J F; Grupen, Claus; Guicheney, C; Halley, A W; Hanke, P; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Harvey, J; Hayes, O J; Henrard, P; Hepp, V; Hess, J; Heusse, P; Hodgson, P N; Hu, H; Huang, X; Hughes, G; Hutchcroft, D E; Hölldorfer, F; Hüttmann, K; Iaselli, Giuseppe; Jacholkowska, A; Jakobs, K; Janot, P; Jin, S; Jones, L T; Jones, R W L; Jost, B; Jousset, J; Juste, A; Jézéquel, S; Kado, M; Kile, J; Kim, H Y; Kleinknecht, K; Kluge, E E; Kneringer, E; Konstantinidis, N P; Kröcker, M; Kuhn, D; Kyriakis, A; Lançon, E; Laurelli, P; Lees, J P; Lefrançois, J; Lehraus, Ivan; Lehto, M H; Lemaire, M C; Leroy, O; Ligabue, F; Lin, J; Litke, A M; Locci, E; Loomis, C; Lynch, J G; Lütjens, G; Machefert, F P; Maggi, G; Maggi, M; Maley, P; Mannert, C; Mannocchi, G; Marinelli, N; Markou, C; Marrocchesi, P S; Martin, E B; Martin, F; Martínez, M; Mato, P; McNamara, P A; McNeil, M A; Medcalf, T; Merino, G; Merle, E; Messineo, A; Michel, B; Minard, M N; Minten, Adolf G; Miquel, R; Mir, L M; Misiejuk, A; Monteil, S; Montret, J C; Morawitz, P; Moser, H G; Moutoussi, A; Murtas, F; Murtas, G P; Männer, W; Müller, A S; Nash, J; Negus, P; Nielsen, J; Nilsson, B S; Norton, P R; Nowell, J; Nuzzo, S; Nürnberger, H A; O'Shea, V; Orejudos, W; Ouyang, Q; Pacheco, A; Palla, Fabrizio; Pallin, D; Pan, Y B; Parrini, G; Passalacqua, L; Pepé-Altarelli, M; Perret, P; Pietrzyk, B; Podlyski, F; Prange, G; Przysiezniak, H; Putzer, A; Pérez, P; Pütz, J; Quast, G; Ragusa, F; Raine, C; Rander, J; Ranieri, A; Ranjard, F; Raso, G; Renardy, J F; Renk, B; Rensch, B; Riu, I; Rizzo, G; Robertson, N A; Rohne, E; Rolandi, Luigi; Rosowsky, A; Rothberg, J E; Rougé, A; Rudolph, G; Ruggieri, F; Ruiz, H; Räven, B; Saadi, Y; Saeger, P; Sander, H G; Sanguinetti, G; Schael, S; Schlatter, W D; Schmeling, S; Schmitt, M; Schneider, O; Sciabà, A; Scott, I J; Sedgbeer, J K; Selvaggi, G; Serin, L; Settles, Ronald; Seywerd, H C J; Sguazzoni, G; Sieler, U; Silvestris, L; Simopoulou, Errietta; Smith, D; Smizanska, M; Spagnolo, P; Stenzel, H; Strong, J A; Swynghedauw, M; Tanaka, R; Taylor, G; Teixeira-Dias, P; Tejessy, W; Tempesta, P; Tenchini, Roberto; Teubert, F; Thompson, A S; Thompson, J C; Thompson, L F; Thomson, E; Tilquin, A; Tittel, K; Tomalin, I R; Tournefier, E; Trabelsi, A; Tricomi, A; Tuchming, B; Valassi, Andrea; Vallage, B; Vayaki, Anna; Veillet, J J; Venturi, A; Verdini, P G; Videau, H L; Videau, I; Von Wimmersperg-Töller, J H; Wachsmuth, H W; Walsh, J; Wang, T; Ward, J J; Wasserbaech, S R; Werner, S; Wiedenmann, W; Williams, M D; Williams, M I; Williams, R W; Wolf, G; Wright, A E; Wu Sau Lan; Wu, X; Wunsch, M; Wäänänen, A; Xie, Y; Xu, R; Xue, S; Zachariadou, K; Zeitnitz, C; Zerwas, D; Zhang, J; Zhang, L; Zhao, W; Ziegler, T; Zito, G; Zobernig, G
1999-01-01
The inclusive charm production rate in W decays is measured from a study of the properties of final state particles. The sample of W pairs is selected from 67.7 pb-1 collected by ALEPH in 1996 and 1997 at centre-of-mass energies near 172 and 183 GeV in the channels W+W- -->4q and W+W- -->lvqq. The branching fraction of hadronic W decays to a final state containing a c quark, R^W_c=Gamma(W-->cX)/Gamma(W-->hadrons), is measured to be 0.51 +- 0.05_stat +- 0.03_syst. This allows a direct determination of the CKM matrix element |V_cs| = 1.00 +- 0.11_stat +- 0.07_syst.
Combined results on b-hadron production rates, lifetimes, oscillations and semileptonic decays
Energy Technology Data Exchange (ETDEWEB)
WIllocq, stephane
2000-08-02
Combined results on b-hadron lifetimes, b-hadron production rates B{sub d}{sup 0}--Anti-B{sub d}{sup 0} and B{sub s}{sup 0}--Anti-B{sub s}{sup 0} oscillations, the decay width difference between the mass eigenstates of the B{sub s}{sup 0}--Anti-B{sub s}{sup 0} system, and the values of the CKM matrix elements {vert_bar}V{sub cb}{vert_bar} and {vert_bar}V{sub ub}{vert_bar} are obtained from published and preliminary measurements available in Summer 99 from the ALEPH, CDF, DELPHI, L3, OPAL and SLD Collaborations.
Directory of Open Access Journals (Sweden)
A. G. Ushenko
2010-01-01
Full Text Available This research is aimed to investigate the reliability of Mueller-matrix differentiation of birefringence change of optically thick layers of biological liquid crystals at the early stages of the change in their physiological state. This is performed by measuring the set of skewness and kurtosis values of Mueller matrix image of the phase element M44 in various points of the object under investigation.
Luminosity Measurement at the Large Hadron Collider
Caron, B L; Pinfold, J L
2006-01-01
Two novel methods of measuring the luminosity delivered to the ATLAS Experiment at the CERN Large Hadron Collider experiments are presented. The production of $\\mu^{+}\\mu^{-}$ pair via two photon interactions and single $W^{\\pm}/Z^{0}$ boson production are evaluated as methods for the measurement and monitoring of the proton-proton luminosity at the LHC. The characteristics of the $\\mu^{+}\\mu^{-}$ pairs from coherent $\\gamma \\gamma$ interactions are examined for both matrix element and equivalent photon based monte carlo generators with subsequent simulation of the ATLAS detector effects. The application of specific kinematic and vertex fit requirements is shown to offer a strong method of isolating signal from background and in turn yield an accurate offline measurement of the delivered luminosity via the pure QED process. The choice of kinematic cuts is shown to reduce the overall uncertainty in the method by limiting the size of corrections to the two photon interaction cross section to the level of 1\\%. B...
Update on the sea contributions to hadron polarizabilities via reweighting
Freeman, Walter; Lujan, Mike; Lee, Frank X
2014-01-01
We have made significant progress on extending lattice QCD calculation of the polarizability of the neutron and other hadrons to include the effects of charged dynamical quarks. This is done by perturbatively reweighting the charges of the sea quarks to couple them to the background field. The dominant challenge in such a calculation is stochastic estimation of the weight factors, and we discuss the difficulties in this estimation. Here we use an extremely aggressive dilution scheme with N = 124,416 sources per configuration to reduce the stochastic noise to a manageable level. We find that \\alpha_E = 2.70(55) * 10^-4 fm^3 for the neutron on one ensemble. We show that low-mode substitution can be used in tandem with dilution to construct an even better estimator, and introduce the offdiagonal matrix element mapping technique for predicting estimator quality.
Parrish, Robert M; Hohenstein, Edward G; Schunck, Nicolas F; Sherrill, C David; Martínez, Todd J
2013-09-27
Configuration-space matrix elements of N-body potentials arise naturally and ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local, finite-range potentials, we develop the exact tensor hypercontraction method, which provides a quantized renormalization of the coordinate-space form of the N-body potential, allowing for a highly separable tensor factorization of the configuration-space matrix elements. This representation allows for substantial computational savings in chemical, atomic, and nuclear physics simulations, particularly with respect to difficult "exchangelike" contractions.
Precise Predictions for W + 4 Jet Production at the Large Hadron Collider
Berger, C F; Dixon, Lance J; Cordero, F Febres; Forde, D; Gleisberg, T; Ita, H; Kosower, D A; Maitre, D
2011-01-01
We present the first next-to-leading order QCD results for W + 4-jet production at hadron colliders. Total cross sections, as well as distributions in the jet transverse momenta and in the total transverse energy H_T are provided for the initial LHC energy of \\sqrt{s} = 7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The virtual matrix elements and the most complicated real-emission matrix elements are handled by the BlackHat library, based on on-shell methods. The remaining parts of the calculation, including the integration over phase space, are performed by the SHERPA package.
Directory of Open Access Journals (Sweden)
Deppman Airton
2017-01-01
Full Text Available The non extensive aspects of pT distributions obtained in high energy collisions are discussed in relation to possible fractal structure in hadrons, in the sense of the thermofractal structure recently introduced. The evidences of self-similarity in both theoretical and experimental works in High Energy and in Hadron Physics are discussed, to show that the idea of fractal structure of hadrons and fireballs have being under discussion for decades. The non extensive self-consistent thermodynamics and the thermofractal structure allow one to connect non extensivity to intermittence and possibly to parton distribution functions in a single theoretical framework.
The extraction of hadronic parameters from experiments on pionium
Energy Technology Data Exchange (ETDEWEB)
Gashi, A.; Rasche, G. [Zurich Univ. (Switzerland). Inst. fuer Theoretische Physik; Oades, G.C. [Institute of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C (Denmark); Woolcock, W.S. [Department of Theoretical Physics, IAS, The Australian National University, Canberra, ACT 0200 (Australia)
1998-01-05
We show how experimental values of the lifetime of the 1s level of pionium and of the difference between the energies of the 2s and 2p levels yield values of the elements a{sub oc} and a{sub cc} respectively of the s-wave scattering matrix for the two-channel ({pi}{sup +}{pi}{sup -},{pi}{sup 0}{pi}{sup 0}) system at the {pi}{sup +}{pi}{sup -}threshold. We then develop a method, using energy independent hadronic potentials which reproduce the best available pion-pion phase shifts up to 500 MeV total energy in the c.m. frame, for obtaining the values of the isospin invariant quantities a{sub 0}{sup 2}-a{sub 0}{sup 0} and 2a{sub 0}{sup 0}+a{sub 0}{sup 2} from a{sub oc} and a{sub cc} respectively. We emphasize that the isospin invariant scattering lengths a{sub 0}{sup 0} and a{sub 0}{sup 2} universally used in the literature cannot be considered to be purely hadronic quantities. (orig.). 22 refs.
Fischer, N.; Prestel, S.; Ritzmann, M.; Skands, P.
2016-11-01
We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2→ 3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p_perp measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g→ qbar{q}) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q^2. Recoils and kinematics are governed by exact on-shell 2→ 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α _s^4) (4 jets), and for Drell-Yan and Higgs production up to O(α _s^3) ( V / H + 3 jets). The resulting algorithm has been made publicly available in Vincia 2.0.
Fischer, N; Prestel, S; Ritzmann, M; Skands, P
2016-01-01
We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are [Formula: see text] antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a [Formula: see text] measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., [Formula: see text]) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of [Formula: see text]. Recoils and kinematics are governed by exact on-shell [Formula: see text] phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to [Formula: see text] (4 jets), and for Drell-Yan and Higgs production up to [Formula: see text] (V / H + 3 jets). The resulting algorithm has been made publicly available in Vincia 2.0.
Cowey, L; Krischel, D; Bock, J J
2000-01-01
Ability to safely withstand and survive self quench conditions is an important consideration in the design and utilisation of HTS current leads. The provision of a non superconducting shunt path allows current to be diverted in the event of a transition to the normal state. This shunt should allow very rapid transfer of current out of the HTS material and be able to safely support the full load current for the time required to detect the fault and reduce the current to zero. However, the shunt should also be designed to minimise the increased heat load which will result from it's addition to the lead. Test of leads based on melt cast BSCCO 2212 utilising a fully integrated silver gold alloy sheath are described. The HTS sub- elements form part of a full 13 kA lead, designed to the specifications of CERN for the LHC project. The sub-elements proved able to fully comply with and exceed the quench performance required by CERN. The HTS module was quenched at the full design current and continued to maintain this ...
Energy Technology Data Exchange (ETDEWEB)
Tang, Alfred [Univ. of Wiscon, Milwaukee, WI (United States)
2002-08-01
Hadron production cross sections are calculated in the perturbative QCD frame work. Parton distribution functions are obtained from a strip-soliton model. The fragmentation functions are derived from the Lund model of string breaking.
Determination of the Form Factors for the Decay B0 --> D*-l+nu_l and of the CKM Matrix Element |Vcb|
Aubert, B; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Y G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del Amo-Sánchez, P; Barrett, M; Ford, K E; Hart, A J; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Y; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côte, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Banerjee, S; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihályi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H
2006-01-01
We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ and of the parameters $\\rho^2$, $R_1$, and $R_2$, which fully characterize the form factors of the $B^0 \\to D^{*-}\\ell^{+}\
Search for rare processes with a Z+bb signature at the LHC, with the matrix element method
Beluffi, Camille; Lemaitre, Vincent
This thesis presents a detailed study of the final state with the Z boson decaying into two leptons, produced in the CMS detector at the LHC. In order to tag this topology, sophisticated b jet tagging algorithms have been used, and the calibration of one of them, the Jet Probability (JP) tagger is exposed. A study of the tagger degradation at high energy has been done and led to a small gain of performance. This investigation is followed by the search for the associated production of the standard model (SM) Higgs boson with a Z boson and decaying into two b quarks (ZH channel), using the Matrix Element Method (MEM) and two b-taggers: JP and Combined Secondary Vertex (CSV). The MEM is an advanced tool that produces an event-by-event discriminating variable, called weight. To apply it, several sets of transfer function have been produced. The final results give an observed limit on the ZH production cross section with the H → bb branching ratio of 5.46xσSM when using the CSV tagger and 4.89xσSM when using t...
Ejiri, Hiroyasu
2017-10-01
Nuclear matrix elements (NMEs) for GT (Gamow Teller), spin dipole (SD) and higher multipole transitions are associated with double beta decays and astro neutrino nuclear interactions. They are reduced with respect to quasi-particle (QP) NMEs by a factor k ≈ 0.2-0.3. The reduction coefficient k is discussed in terms of the nucleonic spin isospin correlations and the non-nucleonic nuclear medium effects. The latter may be incorporated by the effective (quenching) factor gAe f f/gAf r e e . The SD NMEs derived from the (3He,t) charge exchange reactions (CERs) are consistent with the empirical NMEs M(S D) based on the quasi-particle model with the empirical effective SD coupling constant k. The SD NMEs derived from CERs are reduced uniformly in the wide momentum range of q ≈20-100 MeV/c. Impacts of the universal reduction(quenching) on NMEs for neutrino-less DBDs and low and medium energy astro neutrinos are discussed.
Energy Technology Data Exchange (ETDEWEB)
Klein, Christoph
2011-09-23
Transitions of charmed hadrons are of significant importance, since they provide possibilities to extract the CKM matrix elements V{sub cd} and V{sub cs} from experimental data as well as interesting channels to search for new physics effects. However, quarks are bound in hadrons, and it is necessary to describe this effect in a reliable way, to study the underlying flavour dynamics. For this, one has to use nonperturbative tools, to determine the corresponding transition amplitudes. The results of such calculations can furthermore be of use, to test the predictions of QCD and to contribute to a deeper understanding of the structure of hadrons. In this thesis two topics are investigated using the method of QCD light-cone sum rules (LCSRs). The first topic consists in the form factors of the semileptonic decays D {yields} {pi}l{nu}{sub l} and D {yields} Kl{nu}{sub l}, for which new results are calculated using up-to-date input values. Since LCSRs are not applicable in the whole range of kinematics, they are extrapolated by the use of appropriate parametrisations and the results agree well with experimental data. The second topic are the transitions of charmed baryons to a nucleon. Here the corresponding transition form factors and in addition the hadronic {lambda}{sub c}D{sup (*)}N and {sigma}{sub c}D{sup (*)}N coupling constants are calculated - the latter by the consideration of double dispersion relations. These coupling constants are of special interest for the description of hadronic interactions, like open charm production in proton-antiprotoncollisions. Furthermore there appears the problem, that both parity states of a baryon contribute to the considered functional representation, for which a consistent way to separate them is presented. (orig.)
2009-01-01
The CERN Dragon Boat team – the Hadron Dragons – achieved a fantastic result at the "Paddle for Cancer" Dragon Boat Festival at Lac de Joux on 6 September. CERN Hadron Dragons heading for the start line.Under blue skies and on a clear lake, the Hadron Dragons won 2nd place in a hard-fought final, following top times in the previous heats. In a close and dramatic race – neck-and-neck until the final 50 metres – the local Lac-de-Joux team managed to inch ahead at the last moment. The Hadron Dragons were delighted to take part in this festival. No one would turn down a day out in such a friendly and fun atmosphere, but the Dragons were also giving their support to cancer awareness and fund-raising in association with ESCA (English-Speaking Cancer Association of Geneva). Riding on their great success in recent competitions, the Hadron Dragons plan to enter the last Dragon Boat festival of 2009 in Annecy on 17-18 October. This will coincide with t...
Goodmanson, David M.
2000-09-01
This paper describes a recursion relation for matrix elements of the quantum bouncer. The relation provides an exact expression for the normalization integral, and allows recursive calculation of matrix elements of the form , where z is the spatial coordinate and |m>,|n> are quantum bouncer eigenstates.
Studies of hadronic event structure and comparisons with QCD models at the Z sup 0 resonance
Energy Technology Data Exchange (ETDEWEB)
Adeva, B.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Akbari, H.; Alcaraz, J.; Aloisio, A.; Alverson, G.; Alviggi, M.G.; Ambrosi, G.; An, Q.; Anderhub, H.; Anderson, A.L.; Andreev, V.P.; Angelov, T.; Antonov, L.; Antreasyan, D.; Arce, P.; Arefiev, A.; Atamanchuk, A.; Azemoon, T.; Aziz, T.; Baba, P.V.K.S.; Bagnaia, P.; Bakken, J.A.; Baksay, L.; Ball, R.C.; Banerjee, S.; Bao, J.; Barillere, R.; Barone, L.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Behrens, J.; Beingessner, S.; Bencze, G.L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biland, A.; Bilei, G.M.; Bizzarri, R.; Blaising, J.J.; Bloemeke, P.; Blumenfeld, B.; Bobbink, G.J.; Bocciolini, M.; Bock, R.; Boehm, A.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Boutigny, D.; Bouwens, B.; Brambilla, E.; Branson, J.G.; Brock, I.C.; Brooks, M.; Bruyant, F.; Buisson, C.; Bujak, A.; Burger, J.D.; Burger, W.J.; Burq, J.P.; Busenitz, J.; Cai, X.D.; Capell, M.; Caria, M.; Carminati, F.; Cartacci, A.M.; Ce; L3 Collaboration
1992-07-01
The structure of hadronic events from Z{sup 0} decay is studied by measuring event shape variables, factorial moments, and the energy flow distribution. The distributions, after correction for detector effects and initial and final state radiation, are compared with the predictions of different QCD Monte Carlo programs with optimized parameter values. These Monte Carlo programs use either the second order matrix element or the parton shower evolution for the perturbative QCD calculations and use the string, the cluster, or the independent fragmentation model for hadronization. Both parton shower and O({alpha}{sub s}{sup 2}) matrix element based models with string fragmentation describe the daata well. The predictions of the model based on parton shower and cluster fragmentation are also in good agreement with the data. The model with independent fragmentation gives a poor description of the energy flow distribution. The predicted energy evolutions for the mean values of thrust, sphericity, aplanarity, and charge multiplicity are compared with the data measured at different center-of-mass energies. The parton shower based models with string or cluster fragmentation are found to describe the energy dependences well while the model based on the O({alpha}{sub s}{sup 2}) calculation fails to reproduce the energy dependences of these mean values. (orig.).
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Mallik, Samirnath
2016-01-01
High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...
Barillari, T; Carli, T; Erdmann, J; Giovannini, P; Grahn, K J; Issever, C; Jantsch, A; Kiryunin, A; Lohwasser, K; Maslennikov, A; Menke, S; Oberlack, H; Pospelov, G; Rauter, E; Schacht, P; Spanó, F; Speckmayer, P; Stavina, P; Strízenec, P
2008-01-01
The scheme of the hadronic calibration is discussed. Based on the cluster reconstruction an effective noise suppression is achieved. In a first step clusters are classified as electromagnetic or hadronic clusters. The weighting scheme to correct for the different e/pion response in the ATLAS calorimeter is presented. Dead material corrections and out of cluster corrections yield finally a signal which is rather close to the energy deposited by the final state particles in the ATLAS calorimeter. The constants and algorithms are derived from single pion MC studies and tested with jets. The validation of the scheme using testbeam data is presented as well.
Directory of Open Access Journals (Sweden)
S.M. Moosavi Nejad
2016-04-01
Full Text Available Basically, the energy distribution of bottom-flavored hadrons produced through polarized top quark decays t(↑→W++b(→Xb, is governed by the unpolarized rate and the polar and the azimuthal correlation functions which are related to the density matrix elements of the decay t(↑→bW+. Here we present, for the first time, the analytical expressions for the O(αs radiative corrections to the differential azimuthal decay rates of the partonic process t(↑→b+W+ in two helicity systems, which are needed to study the azimuthal distribution of the energy spectrum of the hadrons produced in polarized top decays. These spin-momentum correlations between the top quark spin and its decay product momenta will allow the detailed studies of the top decay mechanism. Our predictions of the hadron energy distributions also enable us to deepen our knowledge of the hadronization process and to test the universality and scaling violations of the bottom-flavored meson fragmentation functions.
Bottomonium production in hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Brenner Mariotto, C. [Universidade de Caxias do Sul, RS (Brazil). Centro de Ciencias Exatas e Tecnologia]. E-mail: mariotto@if.ufrgs.br; Gay Ducati, M.B. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas em Altas Energias; Ingelman, G. [Uppsala Univ. (Sweden). High Energy Physics
2004-07-01
Production of bottomonium in hadronic collisions is studied in the framework of the soft colour approach. We report some results for production of {upsilon} in the Tevatron and predictions for the future Large Hadron Collider (LHC). (author)
Ablinger, J.; Blümlein, J.; Klein, S.; Schneider, C.; Wißbrock, F.
2011-01-01
The contributions ∝nf to the O(αs3) massive operator matrix elements describing the heavy flavor Wilson coefficients in the limit Q2≫m2 are computed for the structure function F2(x,Q2) and transversity for general values of the Mellin variable N. Here, for two matrix elements, Aqq,QPS(N) and Aqg,Q(N), the complete result is obtained. A first independent computation of the contributions to the 3-loop anomalous dimensions γqg(N), γqqPS(N), and γqqNS,(TR)(N) is given. In the computation advanced summation technologies for nested sums over products of hypergeometric terms with harmonic sums have been used. For intermediary results generalized harmonic sums occur, while the final results can be expressed by nested harmonic sums only. PMID:27293308
The $B \\to \\pi \\pi, \\pi K$ Puzzles: Implications for Hadron Physics, New Physics and Rare Decays
Fleischer, Robert
2006-01-01
The B-meson system is an interesting probe for the exploration of strong interactions, the quark-flavour sector of the Standard Model, and the search for new physics. In this programme, non-leptonic B decays, which are particularly challenging from the point of view of QCD, play a key role. After discussing strategies to deal with the corresponding hadronic matrix elements of four-quark operators and popular avenues for new physics to manifest itself in B decays, we focus on puzzling patterns in the B-factory data for B -> pi pi, pi K decays; we explore their implications for hadron physics, new physics and rare K and B decays.
Energy Technology Data Exchange (ETDEWEB)
Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Bierenbaum, I. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Klein, S. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Wissbrock, F. [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Johannes Kepler University, Research Institute for Symbolic Computation (RISC), Linz (Austria); IHES, Bures-sur-Yvette (France)
2014-09-15
We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region Q{sup 2} >> m{sup 2} to 3-loop order in the fixed flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given in Mellin N-space. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bierenbaum, I. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Klein, S. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2014-03-15
We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region Q{sup 2} >> m{sup 2} to 3-loop order in the fixed-flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given both in Mellin-N space and z-space.
Energy Technology Data Exchange (ETDEWEB)
Freeman, John C [Univ. of California, Berkeley, CA (United States)
2007-01-01
A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix elements techniques, the method involves an integration using the Standard Model matrix element for tt production and decay. however, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb^{-1 }data sample, using events with a high-p_{T} lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M_{meas} = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c^{2}.
Energy Technology Data Exchange (ETDEWEB)
Kroeninger, Kevin Alexander; /Bonn U.
2004-04-01
Using a data set of 158 and 169 pb{sup -1} of D0 Run-II data in the electron and muon plus jets channel, respectively, the top quark mass has been measured using the Matrix Element Method. The method and its implementation are described. Its performance is studied in Monte Carlo using ensemble tests and the method is applied to the Moriond 2004 data set.
Lin Yan Chang; Lai Wan Chang; Zhou Si Chun
2002-01-01
Dot matrix LCD based on T6963C is a low power supply module. It needs no complex interface circuits connecting with MCU. Application in text and graphics is easy. Application of this LCD in multi-element portable XRF spectrometry is show. How to use it in Chinese, pull-down menu, spectrum and how to design the interface circuits with embedded computer are shown as well
Energy Technology Data Exchange (ETDEWEB)
Freeman, John [Univ. of California, Berkeley, CA (United States)
2007-01-01
A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t$\\bar{t}$ production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb^{-1} data sample, using events with a high-p_{T} lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M_{meas} = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c^{2}.
Ablikim, M.; Achasov, M. N.; Ai, X.C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; Haddadi, Z.; Kalantar-Nayestanaki, N.; Kavatsyuk, M.; Loehner, H.; Messchendorp, J.G.; Tiemens, M.
2015-01-01
Based on a sample of 1.31 x 10(9) J/psi events collected with the BESIII detector at the BEPCII collider, Dalitz plot analyses of selected 79,625 eta -> pi(+)pi(-)pi(0) events, 33,908 eta -> pi(0)pi(0)pi(0) events, and 1,888 eta' -> pi(0)pi(0)pi(0) events are performed. The measured matrix elements
Energy Technology Data Exchange (ETDEWEB)
Haefner, Petra
2008-07-31
The top quark plays a special role in the Standard Model of Particle Physics. With its enormous mass of about 170 GeV it is as heavy as a gold atom and is the only quark with a mass near the electroweak scale. Together with the W boson mass, the top quark mass allows indirect constraints on the mass of the hypothetical Higgs boson, which might hold the clue to the origin of mass. Top pair production with a semileptonic decay t anti t{yields}W{sup {+-}}W{sup -+}b anti b{yields}q anti ql{nu}b anti b is the ''golden channel'' for mass measurements, due to a large branching fraction and a relatively low background contamination compared to other decay channels. Top mass measurements based on this decay, performed with the matrix element method, have always been among the single best measurements in the world. In 2007, the top mass world average broke the 1% level of precision. Its measurement is no longer dominated by statistical but instead by systematic uncertainties. The reduction of systematic uncertainties has therefore become a key issue for further progress. This thesis introduces two new developments in the treatment of b jets. The first improvement is an optimization in the way b identification information is used. It leads to an enhanced separation between signal and background processes and reduces the statistical uncertainty by about 16%. The second improvement determines differences in the detector response and thus the energy scales of light jets and b jets. Thereby, it addresses the major source of systematic uncertainty in the latest top mass measurements. The method was validated on Monte Carlo events at the generator level, calibrated with fully simulated events, including detector simulation, and applied to D0 Run II data corresponding to 1 fb{sup -1} of integrated luminosity. Possible sources of systematic uncertainties were studied. The top mass is measured to be: m{sub t}=(169.2{+-}3.5(stat.){+-}1.0(syst.)) GeV. The
Indian Academy of Sciences (India)
volving Bose–Einstein condensates of antikaons within relativistic models. Also, the structures of non-rotating neutron stars are calculated using this EoS. 2. Hadrons in cold and dense medium. At normal nuclear matter density, neutron star matter mainly consists of neutrons, protons and electrons. The particle population is ...
Seymour, Michael H
2000-01-01
Comment: 13 pages, 18 figures, talks given at XXXVth Rencontres de Moriond, QCD and Hadronic Interactions, Les Arcs 1800, France, March 18th-25th 2000, and DIS 2000, 8th International Workshop on Deep-Inelastic Scattering, Liverpool, UK, April 25th-30th 2000
Hirstius, Andreas
2008-01-01
Plans for dealing with the torrent of data from the Large Hadron Collider's detectors have made the CERN particle-phycis lab, yet again, a pioneer in computing as well as physics. The author describes the challenges of processing and storing data in the age of petabyt science. (4 pages)
Traini, Marco
I report on the research activities performed under the (italian) MURST-PRIN project "Fisica Teorica del Nuc1eo e dei sistemi a piú corpi" covering part of the topics on hadronic degrees of freedom. The most recent achievements in the field are summarized focusing on the specific role of the nuclear physics community.
Wright, Alison
2007-01-01
"We are on the threshold of a new era in particle-physics research. In 2008, the Large Hadron Collider (LHC) - the hightest-energy accelerator ever built - will come into operation at CERN, the European labortory that straddles the French-Swiss border near Geneva." (1/2 page)
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...
Directory of Open Access Journals (Sweden)
Weidinger Matthias
2013-12-01
Full Text Available The ongoing systematic search for sources of extragalactic gamma rays has now revealed many blazars in which the very high energy output can not consistently be described as synchrotron self-Compton radiation. In this paper a self consistent hybrid model is described, explaining the very high energy radiation of those blazars as proton synchrotron radiation accompanied by photo-hadronic cascades. As the model includes all relevant radiative processes it naturally includes the synchrotron self-Compton case as well, depending on the chosen parameters. This paper focuses on rather high magnetic fields to be present within the jet, hence the hadronically dominated case. To discriminate the hadronic scenario against external photon fields being upscattered within the jet to produce the dominating gamma-ray output, the temporal behavior of blazars may be exploited with the presented model. Variability reveals both, the highly non-linear nature caused by the photohadronic cascades and typical timescales as well as fingerprints in the inter-band lightcurves of the involved hadrons. The modeling of two individual sources is shown : 1 ES 1011+496, a high frequency peaked blazar at redshift z = 0.212, which is well described within the hybrid scenario using physically reasonable parameters. The short term variability of the second example, namely 3C 454.3, a Flat Spectrum Radio Quasar at z = 0.859, reveals the limitations of the gamma-rays being highly dominated by proton synchrotron radiation.
Energy Technology Data Exchange (ETDEWEB)
Pondrom, L.
1991-10-03
An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.
Hadron Multiplicities at HERMES
Hartig, M
2005-01-01
Hadron multiplicities of $\\pim$, $\\pip$, $\\km$ and $\\kp$ have been measured in the deep-inelastic scattering of 27.5 GeV positrons off a hydrogen target. The data used in this analysis have been collected during the 2000 HERA running period. The multiplicities were obtained for 0.15$$ = 2.5 GeV$^2$.
2007-01-01
"In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)
Energy Technology Data Exchange (ETDEWEB)
Paredes, Eduardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Maestre, Salvador E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, Jose L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain)]. E-mail: jose.todoli@ua.es
2006-03-15
A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l{sup -1} in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l{sup -1} for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.
Extracting hadron-neutron scattering amplitudes from hadron-proton and hadron-deuteron measurements
Franco, V.
1977-01-01
A method is presented for extracting hadron-neutron scattering amplitudes from hadron-proton and hadron-deuteron measurements within the framework of the Glauber approximation. This method, which involves the solution of a linear integral equation, is applied to pn collisions between 15 and 275 GeV/c. Effects arising from inelastic intermediate states are estimated.
Melvin L., MOSS; Department of Anatomy, Columbia University
1994-01-01
The functional matrix hypothesis (FMH) provides qualitative (phenomenological) descriptions of the dynamics of the biological processes underlying the growth and development of the craniofacial region. The FMH suggests that the biological growth processes (i.e., the growth dynamics) are extrinsically, epigenetically and non-deterministically regulated ; and not genomically or deterministically, as is often suggested in the clinical literature. Such growth entails space-time related changes in...
Energy Technology Data Exchange (ETDEWEB)
Haefner, Petra [Ludwig Maximilian Univ., Munich (Germany)
2008-07-31
The top quark plays a special role in the Standard Model of Particle Physics. With its enormous mass of about 170 GeV it is as heavy as a gold atom and is the only quark with a mass near the electroweak scale. Together with theW boson mass, the top quark mass allows indirect constraints on the mass of the hypothetical Higgs boson, which might hold the clue to the origin of mass. Top pair production with a semileptonic decay t $\\bar{t}$ →W^{±}W^{∓} b$\\bar{b}$ →q $\\bar{t}$lnb$\\bar{b}$ is the ”golden channel” for mass measurements, due to a large branching fraction and a relatively low background contamination compared to other decay channels. Top mass measurements based on this decay, performed with the matrix element method, have always been among the single best measurements in the world. In 2007, the top mass world average broke the 1% level of precision. Its measurement is no longer dominated by statistical but instead by systematic uncertainties. The reduction of systematic uncertainties has therefore become a key issue for further progress. This thesis introduces two new developments in the treatment of b jets. The first improvement is an optimization in the way b identification information is used. It leads to an enhanced separation between signal and background processes and reduces the statistical uncertainty by about 16%. The second improvement determines differences in the detector response and thus the energy scales of light jets and b jets. Thereby, it addresses the major source of systematic uncertainty in the latest top mass measurements. The method was validated on Monte Carlo events at the generator level, calibrated with fully simulated events, including detector simulation, and applied to D0 Run II data corresponding to 1 fb^{-1} of integrated luminosity. Possible sources of systematic uncertainties were studied. The top mass is measured to be: m_{t} = (169.2±3.5(stat.)±1.0(syst.)) GeV . The
Energy Technology Data Exchange (ETDEWEB)
Cairns, Warren R.L.; Cozzi, Giulio [Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); De Boni, Antonella; Gabrieli, Jacopo [University of Venice, Department of Environmental Science, Venice (Italy); Asti, Massimo; Merlone Borla, Edoardo; Parussa, Flavio [Centro Ricerche Fiat, Orbassano (Italy); Moretto, Ezio [FIAT Powertrain Technologies S.p.A, Turin (Italy); Cescon, Paolo; Barbante, Carlo [University of Venice, Department of Environmental Science, Venice (Italy); Institute for the Dynamics of Environmental Processes-CNR, Venice (Italy); Boutron, Claude [Laboratoire de Glaciologie et Geophysique de l' Environnement, UMR CNRS 5183, B.P. 96, Saint Martin d' Heres Cedex (France)
2011-03-15
Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g{sup -1} for Pd, 0.4 ng g{sup -1} for Rh and 4.3 ng g{sup -1} for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and ''soluble'' phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km{sup -1} for Rh to 70.5 ng km{sup -1} for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter. (orig.)
Cairns, Warren R L; De Boni, Antonella; Cozzi, Giulio; Asti, Massimo; Borla, Edoardo Merlone; Parussa, Flavio; Moretto, Ezio; Cescon, Paolo; Boutron, Claude; Gabrieli, Jacopo; Barbante, Carlo
2011-03-01
Inductively coupled plasma-mass spectrometry coupled with cation exchange matrix separation has been optimised for the direct determination of platinum group element (PGE) and trace element emissions from a diesel engine car. After matrix separation method detection limits of 1.6 ng g(-1) for Pd, 0.4 ng g(-1) for Rh and 4.3 ng g(-1) for Pt were achieved, the method was validated against the certified reference material BCR 723, urban road dust. The test vehicle was fitted with new and aged catalytic converters with and without diesel particulate filters (DPF). Samples were collected after three consecutive New European Driving Cycle (NEDC) of the particulate and "soluble" phases using a home-made sampler optimised for trace element analysis. Emission factors for the PGEs ranged from 0.021 ng km(-1) for Rh to 70.5 ng km(-1) for Pt; when a DPF was fitted, the emission factors for the PGEs actually used in the catalysts dropped by up to 97% (for Pt). Trace element emission factors were found to drop by a maximum of 92% for Ni to a minimum of 18% for Y when a DPF was fitted; a new DPF was also found to cause a reduction of up to 86% in the emission of particulate matter.
Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee
2015-10-01
Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT.
Lavender, Gemma
2018-01-01
What is the universe made of? How did it start? This Manual tells the story of how physicists are seeking answers to these questions using the worlds largest particle smasher the Large Hadron Collider at the CERN laboratory on the Franco-Swiss border. Beginning with the first tentative steps taken to build the machine, the digestible text, supported by color photographs of the hardware involved, along with annotated schematic diagrams of the physics experiments, covers the particle accelerators greatest discoveries from both the perspective of the writer and the scientists who work there. The Large Hadron Collider Manual is a full, comprehensive guide to the most famous, record-breaking physics experiment in the world, which continues to capture the public imagination as it provides new insight into the fundamental laws of nature.
Keil, Eberhard
1998-01-01
Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.
2015-02-26
This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.
Energy Technology Data Exchange (ETDEWEB)
Tosciri, Cecilia [Univ. of Pisa (Italy)
2016-01-01
The discovery of the bottom quark in 1977 at the Tevatron Collider triggered the search for its partner in the third fermion isospin doublet, the top quark, which was discovered 18 years later in 1995 by the CDF and D=0 experiments during the Tevatron Run I. By 1990, intensive efforts by many groups at several accelerators had lifted to over 90 GeV=c2 the lower mass limit, such that since then the Tevatron became the only accelerator with high-enough energy to possibly discover this amazingly massive quark. After its discovery, the determination of top quark properties has been one of the main goals of the Fermilab Tevatron Collider, and more recently also of the Large Hadron Collider (LHC) at CERN. Since the mass value plays an important role in a large number of theoretical calculations on fundamental processes, improving the accuracy of its measurement has been at any time a goal of utmost importance. The present thesis describes in detail the contributions given by the candidate to the massive preparation work needed to make the new analysis possible, during her 8 months long stay at Fermilab.
The role of hadron resonances in hot hadronic matter
Energy Technology Data Exchange (ETDEWEB)
Goity, Jose [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hampton Univ., Hampton, VA (United States)
2017-02-01
Hadron resonances can play a significant role in hot hadronic matter. Of particular interest for this workshop are the contributions of hyperon resonances. The question about how to quantify the effects of resonances is here addressed. In the framework of the hadron resonance gas, the chemically equilibrated case, relevant in the context of lattice QCD calculations, and the chemically frozen case relevant in heavy ion collisions are discussed.
Amory, V.; Lhémery, A.
2008-02-01
Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.
Bodewig, E
1959-01-01
Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well
Energy Technology Data Exchange (ETDEWEB)
Zghiche, A.; /Annecy, LAPP
2007-04-18
By means of hadronic B decays, the BABAR experiment aims to constrain the CKM matrix performing CP parameter measurements. It also seeks to test QCD factorization predictions and other models for B structure and decay mechanisms. We will present some of the on-going CP related analyses in the first section, while the second section will be dedicated to report on the conducted investigations on subjects as diverse as probing the gluon component in the B meson wave function, new physics and final state interactions in annihilation processes, intrinsic charm searches and first observation of strange charmed baryon production in B decays.
Weiblen, P. W.; Day, W. C.; Miller, J. D., Jr.
1980-01-01
Attention is given to the significance of the results of a study of Ca, K, Ti, Fe, Mn, and Mg variations in plagioclase in highlands sample 67915,84. This polymict breccia from Outhouse Rock station 11 at the Apollo 16 site has been selected for study because it contains a wide variety of clast types, including a differentiated type-sodic ferrogabbro. It is found that the data on Ca, K, Ti, Fe, Mn, and Mg in plagioclase show no evidence of reaction between sodic ferrogabbro and breccia matrix clasts. Two groups of plagioclase compositions have been recognized in the breccia matrix. The data suggest that the prebreccia characteristics of plagioclase compositions have been preserved in 67915. Data on Mg/(Mg+FE) ratios suggest that the sodic ferrogabbro and the intermediate-Ca plagioclase clasts could be related to the Mg-rich plutonic rock suite and the high-Ca plagioclase clasts to the ferroan anorthosites.
Schwenke, David W
2015-04-14
In this work, we systematically derive the matrix elements of the nuclear rotation operators for open shell diatomic and polyatomic molecules in a parity adapted Hund's case (a) basis. Our expressions are valid for an arbitrary number of electrons and arbitrary electronic configurations. The common ad hoc sign changes of angular momentum operators are shown to be equivalent to a change in phase of basis functions. We show how to relate this basis to that required for scattering calculations. We also give the expressions for Einstein A coefficients for electric dipole, electric quadrupole, and magnetic dipole transitions.
Bianchini, Lorenzo; Conway, John; Fowlie, Andrew; Marzola, Luca; Veelken, Christian; Perrini, Lucia
2017-08-01
We present an algorithm for the reconstruction of the Higgs mass in events with Higgs bosons decaying into a pair of tau leptons. The algorithm is based on matrix element (ME) techniques and achieves a relative resolution on the Higgs boson mass of typically 15-20%. A previous version of the algorithm has been used in analyses of Higgs boson production performed by the CMS collaboration during LHC Run 1. The algorithm is described in detail and its performance on simulated events is assessed. The development of techniques to handle tau decays in the ME formalism represents an important result of this paper.
DEFF Research Database (Denmark)
Qing, Hai
2013-01-01
Two-dimensional finite element (FE) simulations of the deformation and damage evolution of Silicon–Carbide (SiC) particle reinforced aluminum alloy composite including interphase are carried out for different microstructures and particle volume fractions of the composites. A program is developed...... for the automatic generation of 2D micromechanical FE-models with randomly distributed SiC particles. In order to simulate the damage process in aluminum alloy matrix and SiC particles, a damage parameter based on the stress triaxial indicator and the maximum principal stress criterion based elastic brittle damage...... are performed to study the influence of boundary condition, particle number and volume fraction of the representative volume element (RVE) on composite stiffness and strength properties....
Directory of Open Access Journals (Sweden)
Wada Masayuki
2012-11-01
Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.
Single spin asymmetries in hadron-hadron collisions
Bacchetta, A.; Bomhof, C.J.; Mulders, P.J.G.; Pijlman, F.
2005-01-01
We study weighted azimuthal single spin asymmetries in hadron-hadron scattering using the diagrammatic approach at leading order and assuming factorization. The effects of the intrinsic transverse momenta of the partons are taken into account. We show that the way in which T-odd functions, such as
Johan, Zdenek; Hughes, Thomas J. R.; Shakib, Farzin
1991-01-01
A solution procedure for solving nonlinear time-marching problems is presented. The nonsymmetric systems of equations arising from a Newton-type linearization of these time-marching problems are solved using an iterative strategy based on the generalized minimal residual (GMRES) algorithm. Matrix-free techniques leading to reduction in storage are presented. Incorporation of a linesearch algorithm in the Newton-GMRES scheme is discussed. An automatic time-increment control strategy is developed to increase the stability of the time-marching process. High-speed flow computations demonstrate the effectiveness of these algorithms.
Williams, Mike
This work presents measurements of differential cross sections, dsigma/dcos qwCM , and spin density matrix elements, r0MM' , for the reaction gammap → po in the energy range 1.72 GeVjob of describing our data. In particular, u-channel models fail to reproduce our highest energy backwards r0MM' measurements. A mass-independent partial wave analysis has also been performed. Near threshold, the dominant resonance contributions extracted are the **** F15 (1680) and *** D 13(1700). Together with the t-channel pi0 exchange, these three waves provide a remarkably good description of our differential cross section and spin density matrix element measurements for s < 2 GeV. Strong, but not conclusive, evidence for the **** G17(2190) has also been extracted. Improved non-resonant models may be necessary to irrefutably show whether this state contributes to o photoproduction. Evidence for missing resonances is suggestive, but inconclusive without theoretical input.
Gamma-hadron families and scaling violation
Gaisser, T. K.; Stanev, T.; Wrotniak, J. A.
1985-01-01
For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments.
Quarkonium production in hadronic collisions
Energy Technology Data Exchange (ETDEWEB)
Gavai, R. [Tata Institute for Fundamental Research, Bombay (India); Schuler, G.A.; Sridhar, K. [CERN, Geneva (Switzerland)] [and others
1995-07-01
We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.
Dijet imbalance in hadronic collisions
Boer, Daniel; Mulders, Piet J.; Pisano, Cristian
2009-01-01
The imbalance of dijets produced in hadronic collisions has been used to extract the average transverse momentum of partons inside the hadrons. In this paper we discuss new contributions to the dijet imbalance that could complicate or even hamper this extraction. They are due to polarization of
Heavy hadrons in nuclear matter
Hosaka, Atsushi; Hyodo, Tetsuo; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro
2017-09-01
Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia (J / ψ, ϒ), heavy-light mesons (D/ D ¯ , B ¯ / B) and heavy baryons (Λc, Λb). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in infinite nuclear matter, but also in finite-size atomic nuclei with finite baryon numbers, to serve future experiments.
Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.
2008-02-01
A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data
First Half Of CMS Hadron Calorimeter Completed
2001-01-01
CMS HCAL electronics coordinator John Elias from Fermilab inspecting the assembled first half of the calorimeter. The first half barrel of the CMS hadron calorimeter was completed last month and assembly work on the elements of the second half commenced just last week. This is not a simple task considering the fact that the constructed half-barrel consists of eighteen 30 tonne segments each made with 0.15 mm tolerance. But through the work of everyone on the CMS hadron calorimeter team it is all moving forward. In the LHC, detection of particles produced in collisions of two proton beams requires measurement of their energy. To do this, the particle energy has to be changed into a form that can be easily measured. This is achieved by stopping the initial particles in a dense medium, where they create a shower of secondary particles. While particles that interact through electromagnetic forces (electrons and positrons) create relatively small showers, the size of showers created by hadrons, particles that i...
QCD analysis of heavy quarks production in hadronic collisions
Energy Technology Data Exchange (ETDEWEB)
Mirjalili, A. [Physics Department, Yazd University, Yazd (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O.Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: a.mirjalili@yazduni.ac.ir; Khorramian, Ali. N. [Physics Department, Semnan University, Semnan (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O.Box 19395-5531, Tehran (Iran, Islamic Republic of); Atashbar Tehrani, S. [Physics Department, Persian Gulf University, Boushehr (Iran, Islamic Republic of); Institute for Studies in Theoretical Physics and Mathematics (IPM), P.O.Box 19395-5531, Tehran (Iran, Islamic Republic of)
2007-05-15
The problem of renormalization scheme dependence in QCD perturbation theory remains on obstacle to making precise tests of the theory. The renormalization scale dependence of dimensionless physical QCD observable, depending on a single energy scale Q, can be avoided provided that all ultraviolet logarithms which build the physical energy dependence on Q are resummed. This was termed complete Renormalization Group improvement(CORGI). This argument can be extended to processes involving factorization of operator matrix elements and coefficient functions. We are trying to employ the idea of CORGI approach on analyzing of heavy quarks production in hadron collisions. There is a sizable and systematic discrepancy between experimental data on the bb-bar production in pp-bar , {gamma}p and {gamma}{gamma} collisions and existing theoretical calculations within perturbative QCD. One suggested way to cope with this discrepancy is to employ the CORGI approach in which one should perform a resummation to all-orders of renormalization and factorization group -predictable terms at each order of perturbation theory. Then the scales dependence will be avoided and it is expected that the mentioned discrepancy is reduced significantly.
Directory of Open Access Journals (Sweden)
Tawfik W.
2007-04-01
Full Text Available Volume 2 PROGRESS IN PHYSICS April, 2007 Laser-induced breakdown spectroscopy (LIBS has been applied to perform a study of the matrix effect on the plasma characterization of Fe, Mg, Be, Si, Mn, and Cu in aluminum alloy targets. The generated plasma emissions due to focusing of a 100 mj Nd: YAG pulsed laser at 1064 nm at the target surface were detected using a portable Echelle spectrometer with intensified CCD camera. Spectroscopic analysis of plasma evolution of laser produced plasmas has been characterized in terms of their spectra, electron density N e and electron temperature T e assuming the LTE and optically thin plasma conditions. The obtained average values of T e and N e were 7600 K and 3 × 10 17 cm − 3 , respectively, for the six elements in the aluminum alloy samples. The electron density increases with the element concentration while the plasma temperature does not has significance change with concentration. For industrial applications, LIBS with the portable Echelle spectrometer could be applied in the on-line production control that following up elemental concentration in metals and pharmaceuticals by only measuring N e.
Evans, Lyndon
2012-01-01
The construction of the Large Hadron Collider (LHC) has been a massive endeavour spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing large electron–positron (LEP) collider tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of a two-in-one magnet, where the two rings are integrated into a single magnetic structure. This compact two-in-one structure was essential for the LHC owing to the limited space available in the existing LEP collider tunnel and the cost. The second was a bold move to the use of superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor.
Kaplan, Alexander; Schultz-Coulon, Hans-Christian; Dubbers, Dirk
This thesis focuses on a prototype of a highly granular hadronic calorimeter at the planned International Linear Collider optimized for the Particle Flow Approach. The 5.3 nuclear interaction lengths deep sandwich calorimeter was built by the CALICE collaboration and consists of 38 active plastic scintillator layers. Steel is used as absorber material and the active layers are subdivided into small tiles. In total 7608 tiles are read out individually via embedded Silicon Photomultipliers (SiPM). The prototype is one of the first large scale applications of these novel and very promising miniature photodetectors. The work described in this thesis comprises the commissioning of the detector and the data acquisition with test beam particles over several months at CERN and Fermilab. The calibration of the calorimeter and the analysis of the recorded data is presented. A method to correct for the temperature dependent response of the SiPM has been developed and implemented. Its successful application shows that it...
Ostroumov, Peter
2013-01-01
This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...
Evans, Lyndon
2011-11-01
The Large Hadron Collider (LHC) is the most complex instrument ever built for particle physics research. It will, for the first time, provide access to the TeV-energy scale. Numerous technological innovations are necessary to achieve this goal. For example, two counterrotating proton beams are guided and focused by superconducting magnets whose novel two-in-one structure saves cost and allowed the machine to be installed in an existing tunnel. The very high (>8-T) field in the dipoles can be achieved only by cooling them below the transition temperature of liquid helium to the superfluid state. More than 80 tons of superfluid helium are needed to cool the whole machine. So far, the LHC has behaved reliably and predictably. Single-bunch currents 30% above the design value have been achieved, and the luminosity has increased by five orders of magnitude. In this review, I briefly describe the design principles of the major systems and discuss some initial results.
Evans, Lyndon
2012-02-28
The construction of the Large Hadron Collider (LHC) has been a massive endeavour spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing large electron-positron (LEP) collider tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of a two-in-one magnet, where the two rings are integrated into a single magnetic structure. This compact two-in-one structure was essential for the LHC owing to the limited space available in the existing LEP collider tunnel and the cost. The second was a bold move to the use of superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor.
Energy Technology Data Exchange (ETDEWEB)
Pangilinan, Monica [Brown Univ., Providence, RI (United States)
2010-05-01
The top quark produced through the electroweak channel provides a direct measurement of the V_{tb} element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb^{-1} of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30_{-1.20}^{+0.98} pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |V_{tb}| < 1, the 95% confidence level (C.L.) lower limit is |V_{tb}| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'_{L} with SM couplings) > 840 GeV; M(W'_{R}) > 880 GeV or 890 GeV if the
Energy Technology Data Exchange (ETDEWEB)
Schieferdecker, Philipp [Ludwig Maximilian Univ. of Munich (Germany)
2005-08-05
The mass of the top quark is a fundamental parameter of the Standard Model. Its precise knowledge yields valuable insights into unresolved phenomena in and beyond the Standard Model. A measurement of the top quark mass with the matrix element method in the lepton+jets final state in D0 Run II is presented. Events are selected requiring an isolated energetic charged lepton (electron or muon), significant missing transverse energy, and exactly four calorimeter jets. For each event, the probabilities to originate from the signal and background processes are calculated based on the measured kinematics, the object resolutions and the respective matrix elements. The jet energy scale is known to be the dominant source of systematic uncertainty. The reference scale for the mass measurement is derived from Monte Carlo events. The matrix element likelihood is defined as a function of both, m{sub top} and jet energy scale JES, where the latter represents a scale factor with respect to the reference scale. The top mass is obtained from a two-dimensional correlated fit, and the likelihood yields both the statistical and jet energy scale uncertainty. Using a dataset of 320 pb^{-1} of D0 Run II data, the mass of the top quark is measured to be: m$ℓ+jets\\atop{top}$ = 169.5 ± 4.4(stat. + JES)$+1.7\\atop{-1.6}$(syst.) GeV; m$e+jets\\atop{top}$ = 168.8 ± 6.0(stat. + JES)$+1.9\\atop{-1.9}$(syst.) GeV; m$μ+jets\\atop{top}$ = 172.3 ± 9.6(stat.+JES)$+3.4\\atop{-3.3}$(syst.) GeV. The jet energy scale measurement in the ℓ+jets sample yields JES = 1.034 ± 0.034, suggesting good consistency of the data with the simulation. The measurement forecasts significant improvements to the total top mass uncertainty during Run II before the startup of the LHC, as the data sample will grow by a factor of ten and D0's tracking capabilities will be employed in jet energy reconstruction and flavor identification.
de Oliveira, Fernanda Ataide; de Abreu, Adriana Trópia; de Oliveira Nascimento, Nathália; Froes-Silva, Roberta Eliane Santos; Antonini, Yasmine; Nalini, Hermínio Arias; de Lena, Jorge Carvalho
2017-01-01
Bees are considered the main pollinators in natural and agricultural environments. Chemical elements from honey and pollen have been used for monitoring the environment, the health of bees and the quality of their products. Nevertheless, there are not many studies on honey and pollen of native Brazilian bees. The goal of this work was to determine important chemical elements (Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Lu and Yb) along with As, Bi, Cd, Pb, Se and In, in honey and pollen of native Brazilian bees, assessing analytical interferences from the matrix. A proposed analytical method was developed for these elements by quadrupole ICP-MS. Matrix effect was verified in honey matrix in the quantification of As, Bi and Dy; and in pollen matrix for Bi, Cd, Ce, Gd, La, Pb and Sc. The quality of the method was considered satisfactory taking into consideration the recovery rate of each element in the spiked solutions: honey matrix (91.6-103.9%) and pollen matrix (94.1-115.6%). The quantification limits of the method ranged between 0.00041 and 10.3μgL-1 for honey and 0.00041-0.095μgL-1 for pollen. The results demonstrate that the method is accurate, precise and suitable. Copyright © 2016 Elsevier B.V. All rights reserved.
Liko, Dietrich
1995-01-01
Charmless decays of B hadrons have been of considerable interest during the last years. Decays in hadronic modes proceed either trough tree level b � u transitions or loop diagrams involving so-called "hadronic" penguins. Tree level dominated decays confirm the non zero value of JVubl in the CKM mixing matrix while those induced by penguin processes provide tests of the loop structure of the Standard Model. Decays in the radiative modes b -+ s-y are forbidden at tree level and proceed only trough loop diagrams. Possible contributions to the decay rate due to new physics provide a test of the Standard Model. During the last years various measurements of decay rates have been performed at colliders at the bb-threshold. Experiments at the LEP collider have already collected sufficient data to study these decays in a different experimental environment. Results of searches at the DELPHI experiment are presented.
Judson, Richard S.; Kouri, Donald J.; Neuhauser, Daniel; Baer, Michael
1990-01-01
An alternative time-dependent wave-packet method for treating three-dimensional gas phase reactive atom-diatom collisions is presented. The method employs a nonreactive body-frame wave packet propagation procedure, made possible by judicious use of absorbing optical potentials, a novel scheme for interpolating the wave function from coordinates in one arrangement to those in another and the fact that the time-dependent Schroedinger equation is an initial-value problem. The last feature makes possible a computationally viable and accurate procedure for changing from one arrangement's coordinates to another. In addition, the method allows the determination of S-matrix elements over a wide range of energies from a single wave-packet propagation. The method is illustrated by carrying out detailed calculations of inelastic and reactive scattering in the H + H2 system using the Liu-Siegbahn-Truhlar-Horowitz potential surface.
Energy Technology Data Exchange (ETDEWEB)
Li, Zhendong; Suo, Bingbing; Liu, Wenjian, E-mail: liuwjbdf@gmail.com [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistryand Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)
2014-12-28
The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects.
Li, Zhendong; Suo, Bingbing; Liu, Wenjian
2014-12-01
The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects.
De Simone, Bruna Clara; Mazzone, Gloria; Russo, Nino; Sicilia, Emilia; Toscano, Marirosa
2018-01-24
Bis(borondifluoride)-8-imidazodipyrromethene (BOIMPY) based molecules show interesting photophysical properties. We have undertaken a computational study at DFT and TDDFT levels of theory with the aim of verifying if the non-fluorescent BOIMPYs meet those properties necessary to be proposed as potential photosensitizers for photodynamic therapy (PDT). In particular, we have computed the absorption wavelengths, the singlet-triplet energy gaps and the spin-orbit matrix elements. The effect of halogen atom substitution (Br, I), in different amounts and positions in the BOIMPY skeleton, on the photophysical properties, has been elucidated. Some possible pathways for the population of the lowest triplet state have been examined and rationalized on the basis of Kasha rules. The results indicate that many of the studied systems can be indicated as potential photosensitizers for photodynamic therapy.
Hadron collider physics at UCR
Energy Technology Data Exchange (ETDEWEB)
Kernan, A.; Shen, B.C.
1997-07-01
This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.
Heavy quarks in hadronic collisions
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.J.; Peterson, C.
1982-03-01
It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data for charm hadron production. The theoretical foundations of the intrinsic charm hypothesis together with its consequences for lepton- and hadron-induced reactions are discussed in some detail. There is no contradiction with the EMC data on F/sub 2//sup c/ provided the appropriate threshold dependence is taken into account.
Fundamentals in hadronic atom theory
Deloff, A
2003-01-01
Hadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good know
Physics at Future Hadron Colliders
Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.
2001-01-01
We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.
Hsieh, Hui-Fang; Chen, Yi-Hsiang; Wang, Chu-Fang
2011-08-15
This paper describes a simple method for simultaneous preconcentration and matrix reduction during the analysis of rare earth elements (REEs) in water samples through laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). From a systematic investigation of the co-precipitation of REEs using magnesium hydroxide, we optimized the effects of several parameters - the pH, the amount of magnesium, the shaking time, the efficiency of Ba removal, and the sample matrix - to ensure quantitative recoveries. We employed repetitive laser ablation to remove the dried-droplet samples from the filter medium and introduce them into the ICP-MS system for determinations of REEs. The enrichment factors ranged from 8 to 88. The detection limit, at an enrichment factor of 32, ranged from 0.03 to 0.20 pg mL(-1). The relative standard deviations for the determination of REEs at a concentration of 1 ng mL(-1) when processing 40 mL sample solution were 2.0-4.8%. We applied this method to the satisfactory determination of REEs in lake water and synthetic seawater samples. Copyright © 2011 Elsevier B.V. All rights reserved.
A Hadron Radiation Installation and Verification Method
Beekman, F.J.; Bom, V.R.
2013-01-01
A hadron radiation installation adapted to subject a target to irradiation by a hadron radiation beam, said installation comprising: - a target support configured to support, preferably immobilize, a target: - a hadron radiation apparatus adapted to emit a hadron radiation beam along a beam axis to
The CMS Outer Hadron Calorimeter
Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush
2006-01-01
The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.
Lare Hadron Collider faces today
Cartwright, Jon
2007-01-01
"The start-up of the Large Hadron Collider (LHC) at CERN could be delayed after three of the magnets used to focus and manipulate the accelerator's proton beams failed premilinary tests at CERN earlier this week." (1 page)
Large Hadron Collider nears completion
2008-01-01
Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.
Physics at Hadronic Colliders course
CERN. Geneva
2006-01-01
Present and future hadron colliders play an important role in the investigation of fundamental questions of particle physics. After an introductory lecture, tests of the Standard Model and measurements of its parameters (like the mass of the top quark) at hadron colliders are presented. In addition, it will be discussed how the Higgs boson can be searched for at hadron colliders and how "New Physics", i.e. physics beyond the Standard Model, can be explored. Results are presented from the currently ongoing run at the Tevatron proton antiproton collider at the US research lab Fermilab. In addition, the rich physics potential of the experiments at the CERN Large Hadron Collider is discussed. Note: Prerequisite Knowledge: - The Standard Model (Lecture by A. Pich) - Beyond The Standard Model (Lecture by E. Kiritsis)
Fixed target hadron production measurements
Panman, J
2009-01-01
The knowledge of light hadron production cross-sections in proton-nucleus interactions is an important prerequisite to the analysis of a wide variety of experiments. One of the important limiting factors for the precision of accelerator based and atmospheric neutrino oscillation experiments is the uncertainty in the composition and spectrum of the neutrino flux. Cosmic-ray experiments detecting extensive air-showers can greatly improve their ability to interpret the data when precise hadron production spectra are available over a large range of energies. Dedicated hadron production experiments have been taking data recently and are now publishing their results. Other experiments have just started their data-taking and plan to supply measurements which can significantly extend the kinematic range in which data will be available. Early measurements at the LHC can extend this range to much higher energies than available up to now. Recent results will be shown and compared with hadronic production models. An outl...
Measurement of the Top Quark Mass in the All Hadronic Channel at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Lungu, Gheorghe [Univ. of Florida, Gainesville, FL (United States)
2007-01-01
This study presents a measurement of the top quark mass in the all hadronic channel of the top quark pair production mechanism, using 1 fb^{-1} of p$\\bar{p}$ collisions at √s =1.96 TeV collected at the Collider Detector at Fermilab (CDF). Few novel techniques have been used in this measurement. A template technique was used to simultaneously determine the mass of the top quark and the energy scale of the jets. Two sets of distributions have been parameterized as a function of the top quark mass and jet energy scale. One set of distributions is built from the event-by-event reconstructed top masses, determined using the Standard Model matrix element for the t$\\bar{t}$ all hadronic process. This set is sensitive to changes in the value of the top quark mass. The other set of distributions is sensitive to changes in the scale of jet energies and is built from the invariant mass of pairs of light flavor jets, providing an in situ calibration of the jet energy scale. The energy scale of the measured jets in the final state is expressed in units of its uncertainty, sigmac. The measured mass of the top quark is 171.1±3.7(stat.unc.)±2.1(syst.unc.) GeV/_{c} ^{2} and to the date represents the most precise mass measurement in the all hadronic channel and third best overall.
Hadron production near threshold
Indian Academy of Sciences (India)
Final state interaction effects in → + and → 3He reactions are explored near threshold to study the sensitivity of the cross-sections to the potential and the scattering matrix. The final state scattering wave functions between and and and 3He are described rigorously. The production is ...
Energy Technology Data Exchange (ETDEWEB)
Davier, M
1999-12-01
Hadronic decays of the {tau} lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)
Czerwinski, Eryk; Babusci, D; Badoni, D; Bencivenni, G; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Budano, A; Bulychjev, S A; Campana, P; Capon, G; Ceradini, F; Ciambrone, P; Czerwinski, E; Dane, E; De Lucia, E; De Robertis, G; De Santis, A; De Zorzi, G; Di Domenico, A; Di Donato, C; Di Micco, B; Domenici, D; Erriquez, O; Felici, G; Fiore, S; Franzini, P; Gauzzi, P; Giovannella, S; Gonnella, F; Graziani, E; Happacher, F; Hoistad, B; Iarocci, E; Jacewicz, M; Johansson, T; Kulikov, V V; Kupsc, A; Lee-Franzini, J; Loddo, F; Martemianov, M A; Martini, M; Matsyuk, M A; Messi, R; Miscetti, S; Moricciani, D; Morello, G; Moskal, P; Nguyen, F; Passeri, A; Patera, V; Ranieri, A; Santangelo, P; Sarra, I; Schioppa, M; Sciascia, B; Sciubba, A; Silarski, M; Taccini, C; Tortora, L; Venanzoni, G; Versaci, R; Wislicki, W; Wolke, M; Zdebik, J
2010-01-01
In the upcoming month the KLOE-2 data taking campaign will start at the upgraded DAFNE phi-factory of INFN Laboratori Nazionali di Frascati. The main goal is to collect an integrated luminosity of about 20 fb^(-1) in 3-4 years in order to refine and extend the KLOE program on both kaon physics and hadron spectroscopy. Here the expected improvements on the results of hadron spectroscopy are presented and briefly discussed.
A. Skuja
Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...
Late effects from hadron therapy
Energy Technology Data Exchange (ETDEWEB)
Blakely, Eleanor A.; Chang, Polly Y.
2004-06-01
Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.
Late effects from hadron therapy.
Blakely, Eleanor A; Chang, Polly Y
2004-12-01
Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.
Directory of Open Access Journals (Sweden)
Salah AM Elmoselhy
2015-07-01
Full Text Available The pursuit of radically improving the strength and stiffness of materials while maintaining satisfactory level of ductility for formability has been on for decades. A patent has laid in 2005 the foundation for alloying a metallic matrix, such as steel matrix, with nano-meter-sized elements while exploiting amorphous cross-linking of the matrix. This patented innovation is expected to trigger the third industrial revolution based on mass production of the alloying of a metallic matrix, such as steel matrix, with nano-meter-sized elements in order to produce bulk metallic glasses. The first industrial revolution had been triggered by the mass production of steel in about 1840 and the second industrial revolution was triggered by the mass production of the synthetic polymeric materials and composites in about 1960. This article presents an approach of computer-aided manufacturing based on this patent for the mass production of an E-like-shaped spring made of the alloying of heterogeneous composite ferromagnetic metallic glass matrix with nano-meter-sized elements. The proposed heterogeneous nanocomposite metallic glass alloy exhibits features that are promising in applications such as vehicle suspension springs.
Energy Technology Data Exchange (ETDEWEB)
Bernlochner, Florian Urs
2011-09-15
In this work, the preliminary measurements of two fundamental parameters of the Standard Model of particles physics are presented: the CKM matrix element vertical stroke V{sub cb} vertical stroke, and the b-quark mass. The measurement of the absolute value of the CKM matrix element V{sub cb} uses the full set of recorded data of 429.06 fb{sup -1} of B anti B mesons of the BABAR experiment. The CKM matrix element is obtained by measuring the branching fractions and non-perturbative shape parameters of the two transitions into the charmed 1S ground states, B {yields} Dl{nu}{sub l} and B {yields} D{sup *}l {nu}{sub l}, respectively. The kinematic of the produced lepton is measured and the kinematics of the short-lived charmed mesons is reconstructed from kaon and pion candidates. By combining the reconstructed three-momenta of both particles with the angular information of the decay, three independent variables can be obtained. The measured distributions in these variables are analyzed in a three-dimensional global fit, which simultaneously extracts the decay parameters and branching fractions of both charmed transitions. We find that B {yields} Dl {nu}{sub l}: vertical stroke V{sub cb} vertical stroke =(36.14{+-}0.57{sub stat.}{+-}1.30{sub sys.}{+-}0.80{sub theo.}) x 10{sup -3}, B {yields} D{sup *}l {nu}{sub l}: vertical stroke V{sub cb} vertical stroke =(39.71{+-}0.26{sub stat.}{+-}0.73{sub sys.}{+-}0.74{sub theo.}) x 10{sup -3}, where the uncertainties are statistical, systematic, and theoretical, respectively. In the Standard Model, both measured values of vertical stroke V{sub cb} vertical stroke can be averaged to further minimize the uncertainties. We find Combined: vertical stroke V{sub cb} vertical stroke =(38.29{+-}0.26{sub stat.}{+-}0.64{sub sys.}{+-}0.52{sub theo.}) x 10{sup -3}. Furthermore, several scenarios are explored how possible future unquenched lattice QCD points can be incorporated into the measurement, to further reduce the uncertainty on
Energy Technology Data Exchange (ETDEWEB)
Bluemlein, Johannes; Hasselhuhn, Alexander [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik E; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2012-05-15
The O({alpha}{sub s}{sup 3}n{sub f}T{sub F}{sup 2}C{sub A,F}) terms to the massive gluonic operator matrix elements are calculated for general values of the Mellin variable N. These twist-2 matrix elements occur as transition functions in the variable flavor number scheme at NNLO. The calculation uses sum-representations in generalized hypergeometric series turning into harmonic sums. The analytic continuation to complex values of N is provided.
High precision tools for slepton pair production processes at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Thier, Stephan Christoph
2015-01-20
In this thesis, we develop high precision tools for the simulation of slepton pair production processes at hadron colliders and apply them to phenomenological studies at the LHC. Our approach is based on the POWHEG method for the matching of next-to-leading order results in perturbation theory to parton showers. We calculate matrix elements for slepton pair production and for the production of a slepton pair in association with a jet perturbatively at next-to-leading order in supersymmetric quantum chromodynamics. Both processes are subsequently implemented in the POWHEG BOX, a publicly available software tool that contains general parts of the POWHEG matching scheme. We investigate phenomenological consequences of our calculations in several setups that respect experimental exclusion limits for supersymmetric particles and provide precise predictions for slepton signatures at the LHC. The inclusion of QCD emissions in the partonic matrix elements allows for an accurate description of hard jets. Interfacing our codes to the multi-purpose Monte-Carlo event generator PYTHIA, we simulate parton showers and slepton decays in fully exclusive events. Advanced kinematical variables and specific search strategies are examined as means for slepton discovery in experimentally challenging setups.
Hadron production near threshold
Indian Academy of Sciences (India)
Abstract. Final state interaction effects in pp → pΛK+ and pd → 3He η reactions are explored near threshold to study the sensitivity of the cross-sections to the pΛ potential and the ηN scattering matrix. The final state scattering wave functions between Λ and p and η and 3He are described rigorously. The Λ production is ...
Precision calculations for gauge-boson pair production with a hadronic jet at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Kallweit, Stefan
2008-11-21
Gauge-boson pair-production processes with an additional hadronic jet are of particular interest as background to Higgs and new-physics searches at hadron colliders. Moreover, they enable - besides genuine gauge-boson pair production - a direct analysis of the non-Abelian gauge-boson self-interactions in the electroweak sector. In this work we provide precision calculations for the processes pp/p anti p {yields} VV+jet+X. In detail, corrections to WW+jet, ZZ+jet, and WZ+jet production are evaluated at next-to-leading-order in the strong coupling (NLO QCD). Particular care has to be taken when treating the infrared singularities arising in the virtual and real corrections. The FormCalc/LoopTools package is applied for the virtual corrections, where dimensionally regularized infrared-divergent integrals are added to the FF library which is used for the regular ones. The real-emission matrix elements are evaluated in terms of helicity amplitudes in the Weyl--van-der-Waerden formalism. The Catani--Seymour dipole subtraction formalism mediates the cancellation of infrared divergences between the two contributions. To perform the numerical integration a multi-channel Monte Carlo integrator is written in C++, which is designed to meet the requirements of integrating cross sections in the dipole subtraction formalism. For all gauge-boson assignments, the NLO QCD corrections significantly stabilize the artificial dependence of the leading-order (LO) cross sections on renormalization and factorization scales for Tevatron. For LHC, however, only a modest reduction of the scale dependence results unless a veto on a second hard jet is applied. Beyond investigating the production processes, leptonic decays of the gauge bosons are considered. To this end, a full amplitude calculation including resonant and non-resonant contributions to the leptonic final states, a simple narrow-width approximation (NWA), and an improved version of the NWA that takes into account spin correlations
Single spin asymmetries in hadron-hadron collisions
Bacchetta, A.; Bomhof, C. J.; Mulders, P. J.; Pijlman, F.
2005-01-01
We study weighted azimuthal single spin asymmetries in hadron-hadron scattering using the diagrammatic approach at leading order and assuming factorization. The effects of the intrinsic transverse momenta of the partons are taken into account. We show that the way in which $T$-odd functions, such as the Sivers function, appear in these processes does not merely involve a sign flip when compared with semi-inclusive deep inelastic scattering, such as in the case of the Drell-Yan process. Expres...
The COMPASS Hadron Spectroscopy Programme
Austregesilo, A
2011-01-01
COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...
Hocker, Andreas
1997-01-01
We present new results for the r hadronic spectral functions analysis using data accumulated by the ALEPH detector at LEP during the years 1991-94. The vector and the axial-vector spectral functions are determined from their respective unfolded, i.e., physical invariant mass spectra. The r vector and axial-vector hadronic widths and certain spectral moments are exploited to measure a, and nonperturbative contributions at the r mass scale. The best, and experimentally and theoretically most robust, determination of a,(Mr) is obtained from the inclusive (V + A) fit that yields a,(Mr) = 0.349 ± 0.018 giving a,(Mz) = 0.1 212 ± 0.0022 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the r hadronic width to masses smaller than the r mass.
Local Hadron Calibration in Atlas.
Giovannini, P; The ATLAS collaboration
2010-01-01
The method of Local Hadron Calibration is used in Atlas as one of two major calibration schemes for hadronic signals like jets and missing transverse energy. Starting from noise suppressed energy clusters a modular chain of classification and corrections steps are applied to distinguish electro-magnetic from hadronic deposits and to compensate invisible energy losses, deposits in dead material and noise threshold related losses. Finally jet-level corrections take care of missing energy due to particles never reaching the calorimeter. The method and its application to single charged and neutral pion simulations as well as di-jet simulations are presented. First comparisons of MinBias simulations and real Atlas data at sqrt(s)=900 GeV are shown.
History of hadron therapy accelerators.
Degiovanni, Alberto; Amaldi, Ugo
2015-06-01
In the last 60 years, hadron therapy has made great advances passing from a stage of pure research to a well-established treatment modality for solid tumours. In this paper the history of hadron therapy accelerators is reviewed, starting from the first cyclotrons used in the thirties for neutron therapy and passing to more modern and flexible machines used nowadays. The technical developments have been accompanied by clinical studies that allowed the selection of the tumours which are more sensitive to this type of radiotherapy. This paper aims at giving a review of the origin and the present status of hadron therapy accelerators, describing the technological basis and the continuous development of this application to medicine of instruments developed for fundamental science. At the end the present challenges are reviewed. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Aubert, B; Boutigny, D; Karyotakis, Yu; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Graugès-Pous, E; López, L; Palano, A; Eigen, G; Ofte, I; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes-Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Tackmann, K; Wenzel, W A; Del Amo-Sánchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schröder, T; Steinke, M; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Bequilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F R; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Fisher, P H; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, Gallieno; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; Leruste, P; Malcles, J; Ocariz, J; Pérez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Röthel, W; Wilson, F F; Aleksan, R; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H
2007-01-01
We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V_{cb}| and of the parameters rho^2, R_1(1), and R_2(1), which fully characterize the form factors for the B0 -> D*- l+ nu_l decay in the framework of HQET. The results, based on a selected sample of about 52,800 B0 -> D*- l+ nu_l decays, recorded by the BaBar detector, are rho2=1.156+-0.094+-0.028, R_1(1)=1.329+-0.131+-0.044, R_2(1)=0.859+-0.077+-0.022, and F(1)|V_cb|=(35.0+-0.4+-1.1)x10^-3. The first error is the statistical and the second is the systematic uncertainty. Combining these measurements with the previous BaBar measurement of the form factors, which employs a different fit technique on a partial sample of the data, we improve the statistical precision of the result, rho2=1.179+-0.048+-0.028, R_1(1)=1.417+-0.061+-0.044, R_2(1)=0.836+-0.037+-0.022, and F(1)|V_cb| = (34.7+-0.3+-1.1)x10^-3. Using lattice calculations for the axial form factor $\\mathcal{F}(1)$, we extract |V_cb| =(37.7+-0.3+-1.2+1.2-1.4)x10^-3, where th...
Energy Technology Data Exchange (ETDEWEB)
Nicklass, Andreas [Department of Chemistry, Washington State University and the Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Peterson, Kirk A. [Department of Chemistry, Washington State University and the Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Berning, Andreas [Institut fuer Theoretische Chemie, Universitaet Stuttgart, 70550 Stuttgart, (Germany); Werner, Hans-Joachim [Institut fuer Theoretische Chemie, Universitaet Stuttgart, 70550 Stuttgart, (Germany); Knowles, Peter J. [School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, (United Kingdom)
2000-04-01
Systematic sequences of basis sets are used to calculate the spin-orbit splittings of the halogen atoms F, Cl, and Br in the framework of first-order perturbation theory with the Breit-Pauli operator and internally contracted configuration interaction wave functions. The effects of both higher angular momentum functions and the presence of tight functions are studied. By systematically converging the one-particle basis set, an unambiguous evaluation of the effects of correlating different numbers of electrons in the Cl treatment is carried out. Correlation of the 2p-electrons in chlorine increases the spin-orbit splitting by {approx}80 cm-1, while in bromine we observe incremental increases of 130, 145, and 93 cm-1, when adding the 3d, 3p, and 2p electrons to the set of explicitly correlated electrons, respectively. For fluorine and chlorine the final basis set limit, all-electrons correlated results match the experimentally observed spin-orbit splittings to within {approx}5 cm-1, while for bromine the Breit-Pauli operator underestimates the splitting by about 100 cm-1. More extensive treatment of electron correlation results in only a slight lowering of the spin-orbit matrix elements. Thus, the discrepancy for bromine is proposed to arise from the nonrelativistic character of the underlying wave function. (c) 2000 American Institute of Physics.
Directory of Open Access Journals (Sweden)
Parnaíba-da Silva Antenor J.
2006-01-01
Full Text Available RHF and MP2 ab initio molecular orbital calculations using the 4-31G**, 6-311G** and cc-pVTZ basis sets have revealed that the Green's function matrix element (G D,A values show a good correlation with the amount of intermolecular transferred charges obtained from different charge partitioning schemes for the CNH?CNH, NCH?CNH, CNH?NCH and NCH?NCH hydrogen bonded complexes. This is evident specially when the hydrogen bond distance is progressively increased from the equilibrium position until 4.5 Å. However, G D,A values show a better linear correlation with deltaQ values using corrected Mülliken charges, which are obtained from the charge-charge flux-overlap (CCFO model for infrared intensities. In this case, both G D,A and deltaQcorr form two practically superposed exponential curves. On the other hand, G D,A values show a smaller agreement with deltaQ values obtained from atomic charges derived from natural bonding orbitals. This is clearly verified when considering the first order exponential decay rate of G D,A versus deltaQ obtained from different charge partitioning schemes.
Hadron scattering, resonances, and QCD
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-12-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Measurement of the B hadron lifetime
Decamp, D.; Deschizeaux, B.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Alemany, R.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Gaitan, V.; Garrido, Ll.; Mato, P.; Miquel, R.; Mir, Ll. M.; Orteu, S.; Pacheco, A.; Perlas, J. A.; Tubau, E.; Catanesi, M. G.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Maggi, M.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Gao, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Lou, J.; Qiao, C.; Ruan, T.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhao, W.; Albrecht, H.; Atwood, W. B.; Bird, F.; Blucher, E.; Bonvicini, G.; Bossi, F.; Brown, D.; Burnett, T. H.; Drevermann, H.; Dydak, F.; Forty, R. W.; Grab, C.; Hagelberg, R.; Haywood, S.; Jost, B.; Kasemann, M.; Kellner, G.; Knobloch, J.; Lacourt, A.; Lehraus, I.; Lohse, T.; Lüke, D.; Marchioro, A.; Martinez, M.; May, J.; Menary, S.; Minten, A.; Miotto, A.; Nash, J.; Palazzi, P.; Ranjard, F.; Redlinger, G.; Roth, A.; Rothberg, J.; Rotscheidt, H.; von Rüden, W.; St. Denis, R.; Schlatter, D.; Takashima, M.; Talby, M.; Tejessy, W.; Wachsmuth, H.; Wasserbaech, S.; Wheeler, S.; Wiedenmann, W.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Bardadin-Otwinowska, M.; Falvard, A.; El Fellous, R.; Gay, P.; Harvey, J.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Proriol, J.; Prulhière, F.; Stimpfl, G.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nielsen, E. R.; Nilsson, B. S.; Efthymiopoulos, I.; Simopoulou, E.; Vayaki, A.; Badier, J.; Blondel, A.; Bonneaud, G.; Bourotte, J.; Braems, F.; Brient, J. C.; Fouque, G.; Gamess, A.; Guirlet, R.; Rosowsky, A.; Rougé, A.; Rumpf, M.; Tanaka, R.; Videau, H.; Candlin, D. J.; Veitch, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Lannutti, J.; Levinthal, D.; Mermikides, M.; Sawyer, L.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Campana, P.; Capon, G.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Massimo-Brancaccio, F.; Murtas, F.; Murtas, G. P.; Nicoletti, G.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Zografou, P.; Altoon, B.; Boyle, O.; Halley, A. W.; Have, I. Ten; Hearns, J. L.; Lynch, J. G.; Morton, W. T.; Raine, C.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geiges, R.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Belk, A. T.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Dornan, P. J.; Dugeay, S.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Patton, S. J.; Payne, D. G.; Phillips, M. J.; Sedgbeer, J. K.; Taylor, G.; Tomalin, I. R.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Keemer, N. R.; Nuttall, M.; Patel, A.; Rowlingson, B. S.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Barczewski, T.; Bauerdick, L. A. T.; Kleinknecht, K.; Renk, B.; Roehn, S.; Sander, H.-G.; Schmelling, M.; Schmidt, H.; Steeg, F.; Albanese, J.-P.; Aubert, J.-J.; Benchouk, C.; Bernard, V.; Bonissent, A.; Courvoisier, D.; Etienne, F.; Papalexiou, S.; Payre, P.; Pietrzyk, B.; Qian, Z.; Blum, W.; Cattaneo, P.; Cowan, G.; Dehning, B.; Dietl, H.; Fernandez-Bosman, M.; Hansl-Kozanecka, T.; Jahn, A.; Kozanecki, W.; Lange, E.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Pan, Y.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Stierlin, U.; Thomas, J.; Wolf, G.; Bertin, V.; de Bouard, G.; Boucrot, J.; Callot, O.; Chen, X.; Cordier, A.; Davier, M.; Ganis, G.; Grivaz, J.-F.; Heusse, Ph.; Janot, P.; Journé, V.; Kim, D. W.; Lefrançois, J.; Lutz, J.-M.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Zomer, F.; Amendolia, S. R.; Bagliesi, G.; Batignani, G.; Bosisio, L.; Bottigli, U.; Bradaschia, C.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Focardi, E.; Forti, F.; Giassi, A.; Giorgi, M. A.; Ligabue, F.; Lusiani, A.; Mannelli, E. B.; Marrocchesi, P. S.; Messineo, A.; Moneta, L.; Palla, F.; Sanguinetti, G.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Triggiani, G.; Vannini-Castaldi, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Carter, J. M.; Green, M. G.; March, P. V.; Medcalf, T.; Quazi, I. S.; Saich, M. R.; Strong, J. A.; Thomas, R. M.; West, L. R.; Wildish, T.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Edwards, M.; Fisher, S. M.; Jones, T. J.; Norton, P. R.; Salmon, D. P.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Klopfenstein, C.; Lançon, E.; Locci, E.; Loucatos, S.; Monnier, E.; Perez, P.; Perrier, F.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Ashan, J. G.; Booth, C. N.; Buttar, C.; Carney, R.; Cartwright, S.; Combley, F.; Dinsdale, M.; Dogru, M.; Hatfield, F.; Martin, J.; Parker, D.; Reeves, P.; Thompson, L. F.; Brandt, S.; Burkhardt, H.; Grupen, C.; Meinhard, H.; Mirabito, L.; Neugebauer, E.; Schäfer, U.; Seywerd, H.; Apollinari, G.; Giannini, G.; Gobbo, B.; Liello, F.; Rolandi, L.; Stiegler, U.; Bellantoni, L.; Boudreau, J. F.; Cinabro, D.; Conway, J. S.; Cowen, D. F.; Deweerd, A. J.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hilgart, J.; Jacobsen, J. E.; Jared, R. C.; Johnson, R. P.; Leclaire, B. W.; Pan, Y. B.; Pater, J. R.; Saadi, Y.; Sharma, V.; Walsh, M. A.; Wear, J. A.; Weber, F. V.; Whitney, M. H.; Lan Wu, Sau Lan Wu; Zhou, Z. L.; Zobernig, G.; Aleph Collaboration
1991-03-01
The average lifetime of B hadrons has been measured by the ALEPH experiment at LEP. Events containing B hadrons are selected by the identification of leptons with high transverse momentum in hadronic Z decays, and the lifetime is extracted from a fit to the impact parameter distribution of the lepton tracks. From a sample of 1.7×10 5 hadronic Z decays a lifetime of 1.29±0.06±0.10 ps is measured.
16th International Conference on Hadron Spectroscopy
2015-01-01
The aim of this conference is to review the status, progress and future plans of the field of hadron spectroscopy, and relate these to understanding hadron dynamics. This series of biennial conferences began in 1985 at College Park, Maryland, USA, with the 15th conference held in Nara, Japan in November 2013. Hadron 2015 will be organized by Jefferson Lab.
Hadron bubbles in nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Troitskii, M.A.; Khodel' , V.A.
1983-08-25
Nonlinear effects in the interaction of hadrons with a nucleus are analyzed. It is shown that K/sup +/ mesons form bubbles in nuclear matter which are similar to electron bubbles in liquid helium. Charged pions produced in collisions of heavy relativistic ions may collect and form droplets approx.5--7 Fm in size containing approx.10/sup 2/ particles.
Salazar De Paula, Leandro
2015-01-01
The latest years have seen a resurrection of interest in searches for exotic states motivated by tantalising observations by Belle and CDF. Using the data collected at pp collisions at 7 and 8 TeV by the LHCb experiment we present the unambiguous new observation of exotic charmonia hadrons produced in B decays.
A PARTNERship for hadron therapy
2008-01-01
PARTNER, the Particle Training Network for European Radiotherapy, has recently been awarded 5.6 million euros by the European Commission. The project, which is coordinated by CERN, has been set up to train researchers of the future in hadron therapy and in doing so aid the battle against cancer.
Hadron structure from lattice QCD
Constantinou, Martha
2017-09-01
More than 99 per cent of the mass of the visible world resides in hadrons which are bound states of quarks and gluons, the fundamental constituents of Quantum Chromodynamics (QCD). The proton is at the heart of the hadronic matter and is an ideal laboratory for studying the QCD dynamics. Lattice QCD (LQCD) is a powerful non-perturbative tool for the ab inition calculation of hadron observables that are well determined experimentally, or not easily accessible in experiment. Progress in the simulation of LQCD has been impressive, mainly due to improvements in the algorithms, development of new techniques and increase in computational power, that have enabled simulations to be carried out at parameters very close to their physical values. In this talk I will present recent developments in hadron structure focusing on achievements in the evaluation of nucleon quantities, such as the nucleon charges, form factors, and gluonic contributions, in view of simulations close or at the physical value of the pion mass. I will also discuss the enormous efforts towards a new direct approach to compute quark parton distributions functions on the lattice. Work partly supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the TMD Topical Collaboration.
Top production at hadron colliders
Indian Academy of Sciences (India)
New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including ...
Theoretical predictions for exotic hadrons
Energy Technology Data Exchange (ETDEWEB)
Barnes, T. [Oak Ridge National Lab., TN (United States). Computational and Theoretical Physics Group]|[Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy
1996-12-31
In this contribution the authors discuss current theoretical expectations for the properties of light meson exotica, which are meson resonances outside the q{anti q} quark model. Specifically they discuss expectations for gluonic hadrons (glueballs and hybrids) and multiquark systems (molecules). Experimental candidates for these states are summarized, and the relevance of a TCF to these studies is stressed.
Koppenburg, Patrick; Smizanska, Maria
2016-01-01
Rare decays of b hadrons provide a powerful way of identifying contributions from physics beyond the Standard Model, in particular from new hypothetical particles too heavy to be produced at colliders. The most relevant experimental measurements are reviewed and possible interpretations are briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Butler, J.N.; /Fermilab
2005-09-01
This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.
Energy Technology Data Exchange (ETDEWEB)
Moch, S.
2008-02-15
We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)
Charmed hadrons in nuclear medium
Tolos, L.; Gamermann, D.; Garcia-Recio, C.; Molina, R.; Nieves, J.; Oset, E.; Ramos, A.
We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the
Large Hadron Collider nears completion
2008-01-01
Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument. It is being constructed by the European Organization for Nuclear Research, one of the world's largest particle physics laboratories.
The very large hadron collider
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-09-01
This paper reviews the purposes to be served by a very large hadron collider and the organization and coordination of efforts to bring it about. There is some discussion of magnet requirements and R&D and the suitability of the Fermilab site.
Energy Technology Data Exchange (ETDEWEB)
Wilkinson, III, Richard Paul [Univ. of Pennsylvania, Philadelphia, PA (United States)
1997-01-01
We present evidence for hadronic W decays in t$\\bar{t}$ → lepton + neutrino + ≥ 4 jet events using a 109 pb ^{-1} data sample of p$\\bar{p}$ collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF).
Seid, C A; Ramachandran, R K; George, J M; Govindarajan, V; González-Rimbau, M F; Flytzanis, C N; Tomlinson, C R
1997-08-01
The extracellular matrix (ECM) has been shown to play an important role in development and tissue-specific gene expression, yet the mechanism by which genes receive signals from the ECM is poorly understood. The aboral ectoderm-specific LpS1-alpha and -beta genes of Lytechinus pictus , members of the Spec gene family, provide an excellent model system to study ECM- mediated gene regulation. Disruption of the ECM by preventing collagen deposition using the lathrytic agent beta-aminopropionitrile (BAPN) inhibits LpS1 gene transcription. LpS1 transcription resumes after removal of BAPN and subsequent collagen reformation. Using a chloramphenicol acetyltransferase (CAT) reporter gene assay, we show that a 125 bp region of the LpS1-beta promoter from -108 to +17 contains an ECM response element (ECM RE). Insertion of the 125 bp region into the promoter of the metallothionein gene of L. pictus, a gene unaffected by ECM disruption, caused the fused promoter to become ECM dependent. As with the endogenous LpS1 genes, CAT activity directed by the fused LpS1-beta promoter resumed in embryos recovered from ECM disruption. A mutation in a cis -acting element called the proximal G-string, which lies in the 125 bp region, caused CAT activity levels in ECM-disrupted embryos to equal that of the wild-type LpS1-bet apromoter in ECM-intact embryos. These results suggest that the intact ECM normally transmits signals to inhibit repressor activity at the proximal G-string in aboral ectoderm cells. Consistent with these results were our findings which showed that in addition to expression in the aboral ectoderm, the proximal G-string mutation caused expression of the CAT gene in oral ectoderm cells. These studies suggested that the proximal G-string serves as a binding site for negative regulation of the LpS1 genes in oral ectoderm during development. We also examined trans -acting factors binding the proximal G-string following ECM disruption. Band shift gels revealed a predominant
Anomalous correlation between hadron and electromagnetic particles in hadron and gamma-ray families
Tamada, M.
1985-01-01
Correlations between hadrons and electromagnetic particles were studied in the hadron-gamma families observed in the Chacaltaya emulsion chamber experiment. It is found that there exist a number of hadrons which associate electromagnetic showers in extraordinarily close vicinity. The probability to have such a large number of hadrons associating electromagnetic showers, expected from background calculation, is found to be negligibly small and it means there exists anomalous correlation between hadrons and electromagnetic particles in the characteristic spread of atmospheric electromagnetic cascade.
Energy Technology Data Exchange (ETDEWEB)
Barnes, Alexander E. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2017-05-31
The quark model has been successful in classifying the spectrum of mesons observed since the 1960s, however, it fails to explain some of the measured bound states. Lattice QCD predictions have shown that an excited gluonic field may contribute to the quantum numbers of the bound state and form hybrid mesons, qq-bar-g, where g is a constituent gluon. It is possible for some hybrids to possess quantum numbers forbidden by the quark model and are known as \\smoking gun" hybrids due to their lack of mixing with conventional qq-bar states. The GlueX photoproduction experiment at Jefferson Lab in Newport News, VA is designed to study hybrid mesons and to map their spectrum. A 12 GeV electron beam produces 9 GeV linearly polarized photons via coherent bremsstrahlung in a diamond radiator which are incident on a liquid H2 target. In order to determine the photon energy, the use of a tagging spectrometer which measures the energy of the post-bremsstrahlung electron is required. The tagger microscope is a scintillating fiber detector designed to measure the energy of electrons corresponding to the polarized photons. The main focus of this work is the design and construction of the tagger microscope electronics as well as the calibration of the microscope within the experiment. Additionally, the analysis of the reaction gamma-p -> phi-p, where phi (1020) -> K+K-, is discussed. This analysis provides a high-level calibration for GlueX in regards to understanding the acceptance and sensitivity of the detectors to mesons with strange quark content. By studying the phi with linearly polarized photons, information on the production mechanism can be extracted. The measurement of the phi spin-density matrix elements are shown and compared with past data which are found to be in agreement.
Energy Technology Data Exchange (ETDEWEB)
Aubert, B.
2007-06-06
We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V{sub cb}| and of the parameters {rho}{sup 2}, R{sub 1}(1), and R{sub 2}(1), which fully characterize the form factors for the B{sup 0} {yields} D*-{ell}+?{sub {ell}} decay in the framework of HQET. The results, based on a selected sample of about 52,800 B{sup 0} {yields} D*-{ell}+?{sub {ell}} decays, recorded by the BABAR detector, are {rho}{sup 2} = 1.156 {+-} 0.094 {+-} 0.028, R{sub 1}(1) = 1.329{+-}0.131{+-}0.044, R{sub 2}(1) = 0.859{+-}0.077{+-}0.022, and F(1)|V{sub cb}| = (35.0{+-}0.4{+-}1.1)x10-3. The first error is the statistical and the second is the systematic uncertainty. Combining these measurements with the previous BABAR measurement of the form factors, which employs a different ?t technique on a partial sample of the data, we improve the statistical precision of the result, {rho}{sup 2} = 1.179 {+-} 0.048 {+-} 0.028,R{sub 1}(1) = 1.417 {+-} 0.061 {+-} 0.044,R{sub 2}(1) = 0.836 {+-} 0.037 {+-} 0.022, and F(1)|V{sub cb}| = (34.7 {+-} 0.3 {+-} 1.1) x 10-3. Using lattice calculations for the axial form factor F(1), we extract |V{sub cb}| = (37.7{+-}0.3{+-}1.2{+-}{sup 1.2}{sub 1.4})x10{sup -3}, where the third error is due to the uncertainty in F(1). We also present a measurement of the exclusive branching fraction, B = (4.77 {+-} 0.04 {+-} 0.39)%.
Energy Technology Data Exchange (ETDEWEB)
Lujan, Paul Joseph [Univ. of California, Berkeley, CA (United States)
2009-12-01
This thesis presents a measurement of the top quark mass obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. The measurement uses a matrix element integration method to calculate a t$\\bar{t}$ likelihood, employing a Quasi-Monte Carlo integration, which enables us to take into account effects due to finite detector angular resolution and quark mass effects. We calculate a t$\\bar{t}$ likelihood as a 2-D function of the top pole mass m_{t} and Δ_{JES}, where Δ_{JES} parameterizes the uncertainty in our knowledge of the jet energy scale; it is a shift applied to all jet energies in units of the jet-dependent systematic error. By introducing Δ_{JES} into the likelihood, we can use the information contained in W boson decays to constrain Δ_{JES} and reduce error due to this uncertainty. We use a neural network discriminant to identify events likely to be background, and apply a cut on the peak value of individual event likelihoods to reduce the effect of badly reconstructed events. This measurement uses a total of 4.3 fb^{-1} of integrated luminosity, requiring events with a lepton, large E_{T}, and exactly four high-energy jets in the pseudorapidity range |η| < 2.0, of which at least one must be tagged as coming from a b quark. In total, we observe 738 events before and 630 events after applying the likelihood cut, and measure m_{t} = 172.6 ± 0.9 (stat.) ± 0.7 (JES) ± 1.1 (syst.) GeV/c^{2}, or m_{t} = 172.6 ± 1.6 (tot.) GeV/c^{2}.
CMS Hadron Forward Calorimeter Phase I Upgrade Status
Onel, Yasar
2015-01-01
The Hadron Forward Calorimeter of CMS is going through a complete Phase I upgrade. The current photomultiplier tubes (PMTs) are being replaced with thinner window, higher quantum efficiency, four-anode photomultiplier tubes. The new PMTs will provide better light detection performance, a significantly reduced background and unique handles to recover the signal in the presence of background. This report will describe the nature of the essential upgrade elements with supporting beam test results and the status of the upgrade progression.
Hadronic correlation functions with quark-disconnected contributions in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Guelpers, Vera Magdalena
2015-09-14
One of the fundamental interactions in the Standard Model of particle physics is the strong force, which can be formulated as a non-abelian gauge theory called Quantum Chromodynamics (QCD). In the low-energy regime, where the QCD coupling becomes strong and quarks and gluons are confined to hadrons, a perturbative expansion in the coupling constant is not possible. However, the introduction of a four-dimensional Euclidean space-time lattice allows for an ab initio treatment of QCD and provides a powerful tool to study the low-energy dynamics of hadrons. Some hadronic matrix elements of interest receive contributions from diagrams including quark-disconnected loops, i.e. disconnected quark lines from one lattice point back to the same point. The calculation of such quark loops is computationally very demanding, because it requires knowledge of the all-to-all propagator. In this thesis we use stochastic sources and a hopping parameter expansion to estimate such propagators. We apply this technique to study two problems which relay crucially on the calculation of quark-disconnected diagrams, namely the scalar form factor of the pion and the hadronic vacuum polarization contribution to the anomalous magnet moment of the muon. The scalar form factor of the pion describes the coupling of a charged pion to a scalar particle. We calculate the connected and the disconnected contribution to the scalar form factor for three different momentum transfers. The scalar radius of the pion is extracted from the momentum dependence of the form factor. The use of several different pion masses and lattice spacings allows for an extrapolation to the physical point. The chiral extrapolation is done using chiral perturbation theory (χPT). We find that our pion mass dependence of the scalar radius is consistent with χPT at next-to-leading order. Additionally, we are able to extract the low energy constant anti l{sub 4} from the extrapolation, and our result is in agreement with results
Single spin asymmetries in hadron-hadron collisions
Bacchetta, A.; Bomhof, C. J.; Mulders, P. J.; Pijlman, F.
2005-08-01
We study weighted azimuthal single spin asymmetries in hadron-hadron scattering using the diagrammatic approach at leading order and assuming factorization. The effects of the intrinsic transverse momenta of the partons are taken into account. We show that the way in which T-odd functions, such as the Sivers function, appear in these processes does not merely involve a sign flip when compared with semi-inclusive deep inelastic scattering, such as in the case of the Drell-Yan process. Expressions for the weighted scattering cross sections in terms of distribution and fragmentation functions folded with hard cross sections are obtained by introducing modified hard cross sections, referred to as gluonic-pole cross sections.
NEUTRONIC REACTOR CONTROL ELEMENT
Beaver, R.J.; Leitten, C.F. Jr.
1962-04-17
A boron-10 containing reactor control element wherein the boron-10 is dispersed in a matrix material is describeri. The concentration of boron-10 in the matrix varies transversely across the element from a minimum at the surface to a maximum at the center of the element, prior to exposure to neutrons. (AEC)
Towner, I. S.; Hardy, J. C.
2010-04-01
The determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vud is reviewed. Data from 0+ → 0+ superallowed beta decay in nuclei, neutron decay, beta decay of odd-mass mirror nuclei and pion beta decay are considered. Theoretical radiative and isospin-symmetry breaking corrections are applied. The most precise result comes from the nuclear 0+ → 0+ decays, which yield a recommended value of |Vud| = 0.974 25(22). We further summarize the data leading to the CKM matrix element Vus: Kell3 decays, Kell2 decays, hyperon decays and hadronic tau decay. Again SU(3)-symmetry breaking corrections (from lattice QCD) and radiative corrections are applied. We adopt values from Kell3 decay of |Vus| = 0.2246(12) and from Kell2 decay of |Vus/Vud| = 0.2319(14). From the three data just cited, a least squares fit determines two CKM matrix elements: |Vud| = 0.974 25(22) and |Vus| = 0.225 21(94). Data leading to the third member of the top row of the CKM matrix, Vub, are summarized as well but, being of order 10-3, that matrix element contributes negligibly to the unitarity sum, |Vud|2 + |Vus|2 + |Vub|2. We find this sum to be 0.999 90(60) showing unitarity to be satisfied to a precision of 0.06%. We discuss the constraints this result places on selected extensions to the standard model.
Charmonium and light hadron spectroscopy
Shen, Chengping
2014-01-01
In this report I review some results on the charmonium and light hadron spectroscopy mainly from BESIII and Belle experiments. For the charmonium, the contents include the observation of $\\psi(4040)/\\psi(4160) \\to \\eta \\jpsi$, the measurements of the $\\eta_c/\\eta_c(2S)$ resonance parameters and their decays, the evidence of the $\\psi_2(1^3D_2)$ state in the $\\chi_{c1}\\gamma$ mass spectrum. For the light hadron spectroscopy, the contents include the $X(1835)$ research in $e^+e^- \\to \\jpsi + X(1835)$ and $\\gamma \\gamma \\to \\eta' \\pi^+ \\pi^-$ processes, and the analysis of the $\\eta \\eta$, $\\omega \\phi$, $\\phi\\phi$ and $\\omega \\omega$ mass spectra in low mass region.
Hadron therapy information sharing prototype
Roman, Faustin Laurentiu; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose
2013-01-01
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.
Supersymmetry across the Hadronic Spectrum
Directory of Open Access Journals (Sweden)
Hans Günter Dosch
2017-01-01
Full Text Available Semiclassical light-front bound-state equations for hadrons are presented and compared with experiment. The essential dynamical feature is the holographic approach; that is, the hadronic equations in four-dimensional Minkowski space are derived as holograms of classical equations in a 5-dimensional anti-de Sitter space. The form of the equations is constrained by the imposed superconformal algebra, which fixes the form of the light-front potential. If conformal symmetry is strongly broken by heavy quark masses, the combination of supersymmetry and the classical action in the 5-dimensional space still fixes the form of the potential. By heavy quark symmetry, the strength of the potential is related to the heavy quark mass. The contribution is based on several recent papers in collaboration with Stan Brodsky and Guy de Téramond.
Hadron therapy physics and simulations
d’Ávila Nunes, Marcos
2014-01-01
This brief provides an in-depth overview of the physics of hadron therapy, ranging from the history to the latest contributions to the subject. It covers the mechanisms of protons and carbon ions at the molecular level (DNA breaks and proteins 53BP1 and RPA), the physics and mathematics of accelerators (Cyclotron and Synchrotron), microdosimetry measurements (with new results so far achieved), and Monte Carlo simulations in hadron therapy using FLUKA (CERN) and MCHIT (FIAS) software. The text also includes information about proton therapy centers and carbon ion centers (PTCOG), as well as a comparison and discussion of both techniques in treatment planning and radiation monitoring. This brief is suitable for newcomers to medical physics as well as seasoned specialists in radiation oncology.
Hadron therapy information sharing prototype.
Roman, Faustin Laurentiu; Abler, Daniel; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose
2013-07-01
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.
Hard processes in hadronic interactions
Energy Technology Data Exchange (ETDEWEB)
Satz, H. [CERN, Geneva (Switzerland)]|[Universitat Bielefeld (Germany); Wang, X.N. [Lawrence Berkeley Lab., CA (United States)
1995-07-01
Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.
Hadronic shift in pionic hydrogen
Energy Technology Data Exchange (ETDEWEB)
Hennebach, M.; Gotta, D. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Anagnostopoulos, D.F. [University of Ioannina, Department of Materials Science and Engineering, Ioannina (Greece); Dax, A.; Liu, Y.W.; Markushin, V.E.; Simons, L.M. [Paul Scherrer Institut, Laboratory for Particle Physics, Villigen (Switzerland); Fuhrmann, H.; Gruber, A.; Hirtl, A.; Zmeskal, J. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics, Vienna (Austria); Indelicato, P. [UPMC Univ. Paris 06, Laboratoire Kastler Brossel, Sorbonne Universites, Paris (France); CNRS, Laboratoire Kastler Brossel, Paris (France); Departement de Physique de l' Ecole Normale Superieure, Laboratoire Kastler Brossel, Paris (France); Manil, B. [UPMC Univ. Paris 06, Laboratoire Kastler Brossel, Sorbonne Universites, Paris (France); Rusi el Hassani, A.J. [Universite Abdelmalek Essaadi, Faculte des Sciences et Techniques, Tanger (Morocco); Trassinelli, M. [Sorbonne Universites, Institut des NanoSciences de Paris, Paris (France); CNRS, Institut des NanoSciences de Paris, Paris (France)
2014-12-01
The hadronic shift in pionic hydrogen has been redetermined to be ε {sub 1s} = 7.086 ± 0.007(stat) ± 0.006(sys) eV by X-ray spectroscopy of ground-state transitions applying various energy calibration schemes. The experiment was performed at the high-intensity low-energy pion beam of the Paul Scherrer Institut by using the cyclotron trap and an ultimate-resolution Bragg spectrometer with bent crystals. (orig.)
Observation of charmless hadronic B decays
Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
Four candidates for charmless hadronic B decay are observed in a data sample of four million hadronic Z decays recorded by the {\\sc aleph} detector at {\\sc lep} . The probability that these events come from background sources is estimated to b e less than $10^{-6}$. The average branching ratio of weakly decaying B hadrons (a mixture of $\\bd$, $\\bs$ and $\\lb$ weighted by their production cross sections and lifetimes , here denoted B) into two long-lived charged hadrons (pions, kaons or protons) is measured to be $\\Br(\\btohh) = \\resultBR$. The relative branching fraction $\\rratio$, where $\\rs$ is the ratio of $\\bs$ to $\\bd$ decays in the sample, is measured to be $\\resultR$. %Branching ratio upper limits are also obtained for a variety In addition, branching ratio upper limits are obtained for a variety of exclusive charmless hadronic two-body decays of B hadrons.
Hadron calorimetry in the L3 detector
Energy Technology Data Exchange (ETDEWEB)
Adriani, O.; Civinini, C.; D' Alessandro, R.; Gallo, E.; Marchionni, A.; Meschini, M.; Pieri, M.; Wang, Y.F. (Istituto Nazionale di Fisica Nucleare, Florence (Italy) Florence Univ. (Italy)); Arefiev, A.; Galaktionov, Yu.; Gordeev, A.; Gorodkov, Yu.; Kamyshkov, Y.U.; Klimentov, A.; Koutsenko, V.; Malinin, A.; Morgunov, V.; Plyaskin, V.; Pojidaev, V.; Savin, A.; Shevchenko, S.; Shevchenko, V.; Shmakov, K.; Shoumilov, E.; Shoutko, V.; Tarkovsky, E.; Vetlitsky, I.; Vorobiev, I. (Institut Teoreticheskoj i Ehksperimental' noj Fiziki, Moscow (USSR)); An, Q.; Blomeke, P.; Cai, X.; Cui, X.; Gong, Z.F.; Ilyas, M.M.; Khan, R.; Kumar, V.; Kunin, A.; Lin, Y.B.; Qureshi, K.; Siedling, R.; Wadhawa, M.; Wu, R.J.; Wu, S.W.; Wu, Y.G.; Zichichi, A. (World Lab., Geneva (Switzerland). FBLJA Project); Azemoon, T.; Ball, R.C.; Capell, M.; Chen, M.L.; Goldfarb, S.; Jones, L.W.; Mills, G.B.; Roe, B.P. (Michigan Univ., Ann Arbor (USA)); Aziz, T.; Banerjee, S.; Chendvankar, S.R.; Ganguli, S.N.; Gurtu, A.; Malh
1991-04-01
The characteristics of the L3 hadron calorimeter as realized in the observation of hadronic jets and other events from e{sup +}e{sup -} c collisions at LEP are presented and discussed. The pattern-recognition algorithm utilizing the fine granularity of the calorimeter is described, and the observed overall resolution of 10.2% for hadron jets from Z decay is reported. The use of the calorimeter in providing information on muon energy losses is also noted. (orig.).
Free Quarks and Antiquarks versus Hadronic Matter
Xu, Xiao-Ming; Peng, Ru
2007-01-01
Meson-meson reactions A(q_1 \\bar{q}_1) + B(q_2 \\bar{q}_2) to q_1 + \\bar{q}_1 + q_2 + \\bar{q}_2 in high-temperature hadronic matter are found to produce an appreciable amount of quarks and antiquarks freely moving in hadronic matter and to establish a new mechanism for deconfinement of quarks and antiquarks in hadronic matter.
Validation of Hadronic Models in GEANT4
Energy Technology Data Exchange (ETDEWEB)
Koi, Tatsumi; Wright, Dennis H.; /SLAC; Folger, Gunter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; /CERN; Heikkinen, Aatos; /Helsinki Inst. of Phys.; Truscott,; Lei, Fan; /QinetiQ; Wellisch, Hans-Peter
2007-09-26
Geant4 is a software toolkit for the simulation of the passage of particles through matter. It has abundant hadronic models from thermal neutron interactions to ultra relativistic hadrons. An overview of validations in Geant4 hadronic physics is presented based on thin target measurements. In most cases, good agreement is available between Monte Carlo prediction and experimental data; however, several problems have been detected which require some improvement in the models.
Hadronization systematics and top mass reconstruction
Directory of Open Access Journals (Sweden)
Corcella Gennaro
2014-01-01
Full Text Available I discuss a few issues related to the systematic error on the top mass mea- surement at hadron colliders, due to hadronization effects. Special care is taken about the impact of bottom-quark fragmentation in top decays, especially on the reconstruction relying on final states with leptons and J/Ψ in the dilepton channel. I also debate the relation between the measured mass and its theoretical definition, and report on work in progress, based on the Monte Carlo simulation of fictitious top-flavoured hadrons, which may shed light on this issue and on the hadronization systematics.
Heavy flavor production from photons and hadrons
Energy Technology Data Exchange (ETDEWEB)
Heusch, C.A.
1982-01-01
The present state of the production and observation of hadrons containing heavy quarks or antiquarks as valence constituents, in reactions initiated by real and (space-like) virtual photon or by hadron beams is discussed. Heavy flavor production in e/sup +/e/sup -/ annihilation, which is well covered in a number of recent review papers is not discussed, and similarly, neutrino production is omitted due to the different (flavor-changing) mechanisms that are involved in those reactions. Heavy flavors from spacelike photons, heavy flavors from real photons, and heavy flavors from hadron-hadron collisions are discussed. (WHK)
Exotic hadrons from heavy ion collisions
Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi
2017-07-01
High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally
Hadronic molecules with hidden charm and bottom
Directory of Open Access Journals (Sweden)
Guo Feng-Kun
2016-01-01
Full Text Available Many of the new structures observed since 2003 in experiments in the heavy quarkonium mass region, such as the X(3872 and Zc (3900, are rather close to certain thresholds, and thus can be good candidates of hadronic molecules, which are loose bound systems of hadrons. We will discuss the consequences of heavy quark symmetry for hadronic molecules with heavy quarks. We will also emphasize that the hadronic molecular component of a given structure can be directly probed in long-distance processes, while the short-distance processes are not sensitive to it.
Hadron-hadron total cross sections and soft high-energy scattering on the lattice
Giordano, M.; Meggiolaro, E.
2011-01-01
The nonperturbative approach to soft high-energy hadron-hadron scattering, based on the analytic continuation of Euclidean Wilson-loop correlation functions, makes possible the investigation of the problem of the asymptotic energy dependence of hadron-hadron total cross sections by means of lattice calculations. In this contribution we compare the lattice numerical results to analytic results obtained with various nonperturbative techniques. We also discuss the possibility to obtain indicatio...
Palazzi, Paolo
2007-01-01
A stability analysis of the mass spectrum indicates that hadrons, like atoms and nuclei, are shell-structured. The mesonic shells mass series, combined with the results of a mass quantization analysis, reveals striking similarities with the nuclear shells. In addition, the mesonic mass patterns suggest solid-phase partonic bound states on an fcc lattice, compatible with a model by A. O. Barut with stable leptons as constituents, bound by magnetism. Baryonic shells grow with a lower density, and only start at shell 3 with the nucleon.
Hadron Interactions from lattice QCD
Directory of Open Access Journals (Sweden)
Aoki Sinya
2016-01-01
Full Text Available We review our strategy to study hadron interactions from lattice QCD using newly proposed potential method. We first explain our strategy in the case of nuclear potentials and its application to nuclear physics. We then discuss the origin of the repulsive core, by adding strange quarks to the system. We also explore a possibility for H-dibaryon to exist in flavor SU(3 limit of lattice QCD. We conclude the paper with an application of our strategy to investigate the maximum mass of neutron stars.
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
Energy Technology Data Exchange (ETDEWEB)
Gonzalez, Barbara Alvarez [Univ. of Oviedo (Spain)
2010-05-01
method used to estimate the background contribution. The Matrix Element method, that was successfully used in the single top discovery analysis and many other analyses within the CDF collaboration, is the multivariate technique used in this thesis to discriminate signal from background events. With this technique is possible to calculate a probability for an event to be classified as signal or background. These probabilities are then combined into a discriminant function called the Event Probability Discriminant, EPD, which increases the sensitivity of the WH process. This method is described in detail in Chapter 7. As no evidence for the signal has been found, the results obtained with this work are presented in Chapter 8 in terms of exclusion regions as a function of the mass of the Higgs boso, taking into account the full systematics. The conclusions of this work to obtain the PhD are presnted in Chapter 9.
Energy Technology Data Exchange (ETDEWEB)
Kirsch, Matthias
2009-06-29
.2 standard deviations. The measured cross section value exceeds the Standard Model expectation by 2 standard deviations. The result of the analysis presented here is in good agreement with the result of {sigma}(p anti p{yields}tb+X,tqb+X)=4.8{+-} 1.3 pb, obtained from the combination of three other analyses performed on the same data set. From the cross section measurement a measurement of the strength vertical stroke V{sub tb} x f{sub 1}{sup L} vertical stroke of the V-A coupling at the Wtb-vertex has been extracted. The result is vertical stroke V{sub tb} x f{sub 1}{sup L} vertical stroke =1.42{sub -0.20}{sup +0.21}. This value is above the Standard Model expectation by about 2{proportional_to}standard deviations. The measurement agrees within uncertainties with the measurement of vertical stroke V{sub tb} x f{sub 1}{sup L} vertical stroke =1.31{sub -0.21}{sup +0.25} obtained by another analysis performed on the same data set. Constraining the prior of this measurement to the interval [0,1], i.e. setting the strength of the left-handed coupling f{sub 1}{sup L}=1, a result for the CKM matrix element vertical stroke V{sub tb} vertical stroke has been determined to vertical stroke V{sub tb} vertical stroke =1.00{sub -0.08}{sup +0.00}. From the posterior probability density of this measurement a lower limit for V{sub tb} has been set at 95% confidence level: vertical stroke V{sub tb} vertical stroke >0.79 rate at 95% C.L. (orig.)
Cunningham, J M; Purucker, M E; Jane, S M; Safer, B; Vanin, E F; Ney, P A; Lowrey, C H; Nienhuis, A W
1994-08-15
A cis-acting DNA regulatory element 3' to the A gamma-globin gene contains eight distinct regions of DNA-protein interaction distributed over 750 bp of DNA. The sequences of two foot-printed regions (sites I and IV) are A-T rich and generate a highly retarded complex on gel shift analysis with nuclear extract from human erythroleukemia (K562) cells. We have purified a 98-kD protein that reproduces this gel shift. Tryptic cleavage and peptide sequence analysis demonstrated that the 98-kD protein is identical to a recently cloned protein, special A-T-rich binding protein 1 (SATB1), that binds selectively to nuclear matrix/scaffold-associated regions of DNA (MARs/SARs). We have shown by functional analysis that the 3' A gamma regulatory element associates with the nuclear matrix. SATB1 mRNA was identified in K562 cells, and reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated its transcript in several other hematopoietic lines. Antisera to SATB1 caused ablation of the gel shift complex generated by both the crude nuclear extract and the purified 98-kD protein with the site I oligonucleotide. Furthermore, oligonucleotides that bind SATB1 inhibited formation of the site I gel shift complex when added as excess unlabeled competitor. An immunoblot analysis of the site I gel shift complex documented the presence of SATB1. Binding of SATB1 to two sites within the 3' A gamma regulatory element and its MAR/SAR activity suggests that this element may influence gene expression through interaction with the nuclear matrix.
Novel Perspectives for Hadron Physics
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC
2012-03-09
I discuss several novel and unexpected aspects of quantum chromodynamics. These include: (a) the nonperturbative origin of intrinsic strange, charm and bottom quarks in the nucleon at large x; the breakdown of pQCD factorization theorems due to the lensing effects of initial- and final-state interactions; (b) important corrections to pQCD scaling for inclusive reactions due to processes in which hadrons are created at high transverse momentum directly in the hard processes and their relation to the baryon anomaly in high-centrality heavy-ion collisions; and (c) the nonuniversality of quark distributions in nuclei. I also discuss some novel theoretical perspectives in QCD: (a) light-front holography - a relativistic color-confining first approximation to QCD based on the AdS/CFT correspondence principle; (b) the principle of maximum conformality - a method which determines the renormalization scale at finite order in perturbation theory yielding scheme independent results; (c) the replacement of quark and gluon vacuum condensates by 'in-hadron condensates' and how this helps to resolve the conflict between QCD vacuum and the cosmological constant.
State of hadron collider physics
Energy Technology Data Exchange (ETDEWEB)
Grannis, P.D. [State Univ. of New York, Stony Brook, NY (United States)]|[Fermi National Accelerator Lab., Batavia, IL (United States)
1993-12-01
The 9th Topical Workshop on Proton-Antiproton Collider Physics in Tsukuba Japan demonstrated clearly the enormous breadth of physics accessible in hadron cowders. Although no significant chinks were reported in the armor of the Standard Model, new results presented in this meeting have expanded our knowledge of the electroweak and strong interactions and have extended the searches for non-standard phenomena significantly. Much of the new data reported came from the CDF and D0 experiments at the Fermilab cowder. Superb operation of the Tevatron during the 1992-1993 Run and significant advances on the detector fronts -- in particular, the emergence of the new D0 detector as a productive physics instrument in its first outing and the addition of the CDF silicon vertex detector -- enabled much of this advance. It is noteworthy however that physics from the CERN collider experiments UA1 and UA4 continued to make a large impact at this meeting. In addition, very interesting summary talks were given on new results from HERA, cosmic ray experiments, on super-hadron collider physics, and on e{sup +}e{sup {minus}} experiments at LEP and TRISTAN. These summaries are reported in elsewhere in this volume.
AUTHOR|(CDS)2083962; Beaudette, Florian; Beaudette, Florian
2016-01-01
I performed my thesis work in Particle Physics at the laboratoire Leprince-Ringuet of the Ecole Polytechnique. I have been involved in the analysis of the data produced in the proton-proton collisions at the Large Hadron Collider (CERN) and collected by the CMS experiment. Particle physics is a scientific field which is currently undergoing very important breakthroughs. The discovery of the Higgs boson is a major step forward as the mass of vector bosons are explained through their interactions with the corresponding field. I worked on the newly discovered heavy boson analysis. As its direct coupling to fermions remained to be exhibited, I focused on the search for the Higgs boson decaying in tau lepton pairs. The Higgs decay into tau pairs is the most promising decay channel to measure the couplings between the Standard Model Higgs boson and the fermions. Indeed, this decay channel benefits from a large expected event rate compared to the other leptonic decay modes. The Higgs boson decaying to tau lepton ana...
Doskaliuk, Nataliia; Khalavka, Yuriy; Fochuk, Petro
2016-12-01
This paper reports a study of photooxidation and photomodification processes of the CdTe/CdS quantum dots embedded in a polymer matrix under ambient condition. During the first few minutes of irradiation, the quasi-inverse increase in photoluminescence intensity has been observed indicating the passivation of the nanocrystal surface traps by water molecules. A prolonged irradiation of the polymer film containing CdTe/CdS quantum dots leads to a significant decrease in the photoluminescence intensity together with the "blue shift" of the photoluminescence peak energy associated with quantum dot photooxidation. The mechanisms of the CdTe/CdS core/shell quantum dot photooxidation and photomodification in a polymer matrix are discussed. We have found a correlation between the photostability of the quantum dots and the CdS shell thickness as well as the ratio of core elements.
Di-hadron production at Jefferson Lab
Energy Technology Data Exchange (ETDEWEB)
Anefalos Pereira, Sergio [Lab. Naz. Frascati, Frascati, Italy; et. al.,
2014-10-01
Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Hadron pair (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complement single hadron SIDIS. Di-hadrons allow the study of low- and high-twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs ( f1, g1, h1), the Higher Twist (HT) e and hL functions are very interesting because they offer insights into the physics of the largely unexplored quark-gluon correlations, which provide access into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on di-hadron beam-, target- and double-spin asymmetries will be presented.
Successive combination jet algorithm for hadron collisions
Ellis, S D; Ellis, Stephen D.; Soper, Davision E.
1993-01-01
Jet finding algorithms, as they are used in $e^+ e^-$ and hadron collisions, are reviewed and compared. It is suggested that a successive combination style algorithm, similar to that used in $e^+ e^-$ physics, might be useful also in hadron collisions, where cone style algorithms have been used previously.
Particle Ratios from Strongly Interacting Hadronic Matter
Directory of Open Access Journals (Sweden)
Waseem Bashir
2017-01-01
Full Text Available We calculate the particle ratios K+/π+, K-/π-, and Λ/π- for a strongly interacting hadronic matter using nonlinear Walecka model (NLWM in relativistic mean field (RMF approximation. It is found that interactions among hadrons modify K+/π+ and Λ/π- particle ratios, while K-/π- is found to be insensitive to these interactions.
Light-Front Dynamics in Hadron Physics
Ji, C.R.; Bakker, B.L.G.; Choi, H.M.
2013-01-01
Light-front dynamics(LFD) plays an important role in the analyses of relativistic few-body systems. As evidenced from the recent studies of generalized parton distributions (GPDs) in hadron physics, a natural framework for a detailed study of hadron structures is LFD due to its direct application in
A Survey of Hadron Therapy Accelerator Technologies.
Energy Technology Data Exchange (ETDEWEB)
PEGGS,S.; SATOGATA, T.; FLANZ, J.
2007-06-25
Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.
Exclusive hadronic processes and color transparency
Indian Academy of Sciences (India)
Hadronic processes; color transparency. PACS Nos 24.85.+p; 25.30.-c. 1. Introduction. It is known that at asymptotically large momentum transfer certain exclusive hadronic reac- tions are calculable within the framework of perturbative QCD (pQCD) due to asymptotic freedom. However the applicability of pQCD to exclusive ...
Hadron05 summary: heavy quark hadrons and theory
Energy Technology Data Exchange (ETDEWEB)
Barnes, T. [Oak Ridge National Lab., TN (United States). Physics Div.; University of Tennessee, TN (United States). Dept. of Physics and Astronomy
2005-07-01
This HADRON05 summary covers the topics of (1) mesons containing heavy quarks, and (2) theory. The new material discussed here is taken mainly from plenary presentations. We specifically emphasize new or recent results in spectroscopy that are likely to appear in future editions of the PDG. An exception is made for the pentaquark, which was withdrawn at this meeting. We undoubtedly have something important to (re)learn about multiquarks from the pentaquark saga, and this merits a phrase in Portuguese. The three general areas we consider are: I. QQ-bar spectroscopy, II. Qq-bar spectroscopy, and III. lessons from the pentaquark. Finally, in Section IIIb. we conclude with 'Our moment of Zen'. (author)
Large momentum transfer scattering and hadronic bremsstrahlung
Blankenbecler, Richard
1975-01-01
The interchange theory provides a simple picture of large momentum transfer scattering which correlates many features of hadrons and their interactions. It is simple to compute and has considerable predictive power. It unites the electromagnetic structure of hadrons as expressed through their form factors and inelastic structure functions with elastic and inelastic hadron-hadron scattering. The theory joins smoothly onto Regge behavior which controls forward scattering and in fact predicts such behaviour. The unified description of large and small momentum transfer scattering provided by the interchange model should allow considerable insight into the interaction of hadrons and their possible composite nature. It already yields a remarkably simple quantitative description which seems valid all the way from large angle elastic scattering at 5 GeV/c to inclusive scattering at the CERN-ISR. (13 refs).
Hadron muoproduction at the COMPASS experiment
Rajotte, J F
The COMPASS Collaboration has two main fields of interest: to improve our knowledge of the nucleon spin structure and to study hadrons through spectroscopy. These goals require a multipurpose universal spectrometer such as the COmmon Muon and Proton Apparatus for Structure and Spectroscopy, COMPASS. In its first years of data taking (2002-2007), the nucleon spin structure was studied with a polarized muon beam scattering off a polarized target. These studies resumed in 2010 and will continue until at least 2011. The years 2008 and 2009 were dedicated to hadron spectroscopy using hadron beams. In the case of the nucleon structure studies, it is crucial to detect with high precision the incoming beam muon (160 GeV), the scattered muon and the produced hadrons. The large amount of high quality data accumulated provides access to the unpolarized and polarized parton distributions of the nucleon and the hadronization process. Subtle differences (asymmetries) between polarized cross sections have been predicted for...
Bon voyage to the hadronic calorimeter
2006-01-01
It was a grand entourage for the first half of the CMS hadronic forward calorimeter (HF) that was escorted to Cessy, France by the police on 11 July. The impressive trailer carrying the 7-m-long and 4-m-wide element was pushed and pulled by two specially designed trucks. It took the 64-m-long convoy around 5 hours to travel the 15 km to its final destination. The days leading up to this operation involved intensive checks to the balance and pressure of the hydraulic system of the trailer's wheels. As one side of the HF is slightly heavier than the other, it is crucial to take this into account when transporting such a massive object (each half of the HF weighs 260 tonnes). However, once these checks were complete, the transport was safely underway. The second half of the HF also received a police escort on 18 July as it made its way to the assembly hall at Point 5. The HF will be the first major detector to be lowered into the CMS cavern via the gantry crane in the coming months.
Tawfik W.
2007-01-01
Volume 2 PROGRESS IN PHYSICS April, 2007 Laser-induced breakdown spectroscopy (LIBS) has been applied to perform a study of the matrix effect on the plasma characterization of Fe, Mg, Be, Si, Mn, and Cu in aluminum alloy targets. The generated plasma emissions due to focusing of a 100 mj Nd: YAG pulsed laser at 1064 nm at the target surface were detected using a portable Echel...
Seid, C A; Ramachandran, R K; George, J. M.; Govindarajan, V.; González-Rimbau, M F; Flytzanis, C N; Tomlinson, C R
1997-01-01
The extracellular matrix (ECM) has been shown to play an important role in development and tissue-specific gene expression, yet the mechanism by which genes receive signals from the ECM is poorly understood. The aboral ectoderm-specific LpS1-alpha and -beta genes of Lytechinus pictus , members of the Spec gene family, provide an excellent model system to study ECM- mediated gene regulation. Disruption of the ECM by preventing collagen deposition using the lathrytic agent beta-aminopropionitri...
Finite-width effects in unstable-particle production at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Falgari, P. [Utrecht Univ. (Netherlands). Inst. for Theoretical Physics; Utrecht Univ. (Netherlands). Spinoza Inst.; Papanastasiou, A.S. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Signer, A. [Paul Scherrer Institut, Villigen (Switzerland); Zuerich Univ. (Switzerland). Inst. for Theoretical Physics
2013-03-15
We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of {Gamma}{sub X}/m{sub X}, with {Gamma}{sub X} and m{sub X} the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the q anti q partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the naive counting {proportional_to}{Gamma}{sub t}/m{sub t}{proportional_to}1%. However, they can be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The dependence of the results on the mass renormalization scheme, and its implication for a precise extraction of the top-quark mass, is also discussed.
Next-to-Leading Order Predictions for W + 3-Jet Distributions at Hadron Colliders
Energy Technology Data Exchange (ETDEWEB)
Berger, C.F.; /MIT, LNS; Bern, Z.; /UCLA; Dixon, L.J.; /SLAC; Febres Cordero, F.; /UCLA; Forde, D.; Gleisberg, T.; /SLAC; Ita, H.; /UCLA; Kosower, D.A.; /Saclay, SPhT; Maitre, D.; /Durham U.
2009-12-09
We present next-to-leading order QCD predictions for a variety of distributions in W + 3-jet production at both the Tevatron and the Large Hadron Collider. We include all subprocesses and incorporate the decay of the W boson into leptons. Our results are in excellent agreement with existing Tevatron data and provide the first quantitatively precise next-to-leading order predictions for the LHC. We include all terms in an expansion in the number of colors, confirming that the specific leading-color approximation used in our previous study is accurate to within three percent. The dependence of the cross section on renormalization and factorization scales is reduced significantly with respect to a leading-order calculation. We study different dynamical scale choices, and find that the total transverse energy is significantly better than choices used in previous phenomenological studies. We compute the one-loop matrix elements using on-shell methods, as numerically implemented in the BlackHat code. The remaining parts of the calculation, including generation of the real-emission contributions and integration over phase space, are handled by the SHERPA package.
Yamazaki, T
2000-01-01
A new type of nuclear spectroscopy to study hadron-nucleus bound states is described. The first successful experiment was to search for deeply bound pi sup - states in heavy nuclei using the sup 2 sup 0 sup 8 Pb(d, sup 3 He) reaction at GSI, in which a narrow peak arising from the 2p pi sup - orbital coupled with the neutron-hole states was observed at 135 MeV excitation energy. An improved experiment has just been carried out to separately identify the 1s and 2p pi sup - states. These experiments provide important information on the local potential strength, from which the effective mass of pi sup - is deduced to be 20 MeV. This method will be extended to search for eta and omega bound states as well as for K sup - bound states. The advantage of the bound-state spectroscopy versus invariant mass spectroscopy is emphasized.
The ATLAS hadronic tau trigger
Black, C; The ATLAS collaboration
2012-01-01
With the high luminosities of proton-proton collisions achieved at the LHC, the strategies for triggering have become more important than ever for physics analysis. The naive inclusive single tau lepton triggers now suffer from severe rate limitations. To allow for a large program of physics analyses with taus, the development of topological triggers that combine tau signatures with other measured quantities in the event is required. These combined triggers open many opportunities to study new physics beyond the Standard Model and to search for the Standard Model Higgs. We present the status and performance of the hadronic tau trigger in ATLAS. We demonstrate that the ATLAS tau trigger ran remarkably well over 2011, and how the lessons learned from 2011 led to numerous improvements in the preparation of the 2012 run. These improvements include the introduction of tau selection criteria that are robust against varying pileup scenarios, and the implementation of multivariate selection techniques in the tau trig...
The ATLAS hadronic tau trigger
Black, C; The ATLAS collaboration
2012-01-01
With the high luminosities of proton-proton collisions achieved at the LHC, the strategies for triggering have become more important than ever for physics analysis. The naïve inclusive single tau lepton triggers now suffer from severe rate limitations. To allow for a large program of physics analyses with taus, the development of topological triggers that combine tau signatures with other measured quantities in the event is required. These combined triggers open many opportunities to study new physics beyond the Standard Model and to search for the Standard Model Higgs. We present the status and performance of the hadronic tau trigger in ATLAS. We demonstrate that the ATLAS tau trigger ran remarkably well over 2011, and how the lessons learned from 2011 led to numerous improvements in the preparation of the 2012 run. These improvements include the introduction of tau selection criteria that are robust against varying pileup scenarios, and the implementation of multivariate selection techniques in the tau tri...
Nuclear Physics and Hadron Therapy
Energy Technology Data Exchange (ETDEWEB)
Braunn, B. [Laboratoire de Physique Corpusculaire de Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3 Caen (France); CEA/Saclay, DSM/IRFU/SPhN, Gif-sur-Yvette (France); Colin, J.; Courtois, C.; Cussol, D.; Fontbonne, J. M.; Labalme, M. [Laboratoire de Physique Corpusculaire de Caen, ENSICAEN, Universite de Caen, CNRS/IN2P3 Caen (France)
2011-12-13
Hadron therapy uses light charged particles beams (mainly proton and {sup 12}C ions) to irradiate tumors. These beams present a ballistic advantage with a maximum energy deposition at the end of the path. A large dose can be delivered inside a deep tumor while the surrounding healthy tissues are preserved. There is an obvious advantage in using these beams but the beam control has to be achieved and all the physical processes leading to the energy deposition have to be fully under control. This treatment protocol requires accurate control devices and a good knowledge of the physical processes occurring all along the path of the projectile in human tissues. In this report, we will present one example of a beam monitor for the proton therapy. We will also present the experimental program which has been initiated to obtain fundamental data on the nuclear fragmentation process.
Nuclear Physics and Hadron Therapy
Braunn, B.; Colin, J.; Courtois, C.; Cussol, D.; Fontbonne, J. M.; Labalme, M.
2011-12-01
Hadron therapy uses light charged particles beams (mainly proton and 12C ions) to irradiate tumors. These beams present a ballistic advantage with a maximum energy deposition at the end of the path. A large dose can be delivered inside a deep tumor while the surrounding healthy tissues are preserved. There is an obvious advantage in using these beams but the beam control has to be achieved and all the physical processes leading to the energy deposition have to be fully under control. This treatment protocol requires accurate control devices and a good knowledge of the physical processes occurring all along the path of the projectile in human tissues. In this report, we will present one example of a beam monitor for the proton therapy. We will also present the experimental program which has been initiated to obtain fundamental data on the nuclear fragmentation process.
Local hadron calibration with ATLAS
Giovannini, P; The ATLAS collaboration
2010-01-01
The method of Local Hadron Calibration is used in ATLAS as one of the two major calibration schemes for the reconstruction of jets and missing transverse energy. The method starts from noise suppressed clusters and corrects them for non-compensation effects and for losses due to noise threshold and dead material. Jets are reconstructed on the calibrated clusters and are then corrected for out of cone effects. The performance of the corrections applied to the calorimeter clusters is tested with detailed GEANT4 information. Results obtained with this procedure are discussed both for single pion simulations and for di-jet simulations. The calibration schema is validated on data, by comparing the calibrated cluster energy with data and Mote Carlo simulations. Preliminary results obtained with sqrt(s)=900 GeV are presented. The agreement between data and Monte Carlo is inside 5% for the final cluster scale.
The Large Hadron Collider project
Engelen, Joseph J
2005-01-01
The Large Hadron Collider (LHC) will enable proton-proton collisions at an energy of more than fourteen thousand times the proton mass. This allows the discovery of new elementary particles with very large masses, in particular of the Higgs boson. The Higgs boson is crucial for understanding the mechanism that Nature chose to give mass to particles. The Higgs boson has turned out to be very hard to find but the LHC should allow a decisive step into new territory, unveiling one or even more Higgs bosons. The new energy domain of the LHC also inspires speculations about discoveries relevant for understanding dark matter and about the discovery of new space dimensions, so far hidden to us. In the talk an overview of the physics at LHC and a report on the status of the project, accelerator and experiments, will be presented.
Beam collimation at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Nikolai V. Mokhov
2003-08-12
Operational and accidental beam losses in hadron colliders can have a serious impact on machine and detector performance, resulting in effects ranging from minor to catastrophic. Principles and realization are described for a reliable beam collimation system required to sustain favorable background conditions in the collider detectors, provide quench stability of superconducting magnets, minimize irradiation of accelerator equipment, maintain operational reliability over the life of the machine, and reduce the impact of radiation on personnel and the environment. Based on detailed Monte-Carlo simulations, such a system has been designed and incorporated in the Tevatron collider. Its performance, comparison to measurements and possible ways to further improve the collimation efficiency are described in detail. Specifics of the collimation systems designed for the SSC, LHC, VLHC, and HERA colliders are discussed.
Leading Hadron Production at HERA
Directory of Open Access Journals (Sweden)
Buniatyan Armen
2013-06-01
Full Text Available Data from the recent measurements of very forward baryon and photon production with the H1 and ZEUS detectors at electron-proton collider HERA are presented and compared to the theoretical calculations and Monte Carlo models. Results are presented of the production of leading protons, neutrons and photons in deep inelastic scattering (ep → e' pX, ep → e'nX, ep → e'γX as well as the leading neutron production in the photoproduction of dijets (ep → ejjXn. The forward baryon and photon results from the H1 and ZEUS Experiments are compared also with the models of the hadronic interactions of high energy Cosmic Rays. The sensitivity of the HERA data to the differences between the models is demonstrated.
Odd tracks at hadron colliders.
Meade, Patrick; Papucci, Michele; Volansky, Tomer
2012-07-20
New physics that exhibits irregular tracks such as kinks, intermittent hits, or decay in flight may easily be missed at hadron colliders. We demonstrate this by studying viable models of light, O(10 GeV), colored particles that decay predominantly inside the tracker. Such particles can be produced at staggering rates, and yet, may not be identified or triggered on at the LHC, unless specifically searched for. In addition, the models we study provide an explanation for the original measurement of the anomalous charged track distribution by CDF. The presence of irregular tracks in these models reconcile that measurement with the subsequent reanalysis and the null results of ATLAS and CMS. Our study clearly illustrates the need for a comprehensive study of irregular tracks at the LHC.
SHARE: Statistical hadronization with resonances
Torrieri, G.; Steinke, S.; Broniowski, W.; Florkowski, W.; Letessier, J.; Rafelski, J.
2005-05-01
interaction feed-down corrections, the observed hadron abundances are obtained. SHARE incorporates diverse physical approaches, with a flexibility of choice of the details of the statistical hadronization model, including the selection of a chemical (non-)equilibrium condition. SHARE also offers evaluation of the extensive properties of the source of particles, such as energy, entropy, baryon number, strangeness, as well as the determination of the best intensive input parameters fitting a set of experimental yields. This allows exploration of a proposed physical hypothesis about hadron production mechanisms and the determination of the properties of their source. Method of solving the problem: Distributions at freeze-out of both the stable particles and the hadronic resonances are set according to a statistical prescription, technically calculated via a series of Bessel functions, using CERN library programs. We also have the option of including finite particle widths of the resonances. While this is computationally expensive, it is necessary to fully implement the essence of the strong interaction dynamics within the statistical hadronization picture. In fact, including finite width has a considerable effect when modeling directly detectable short-lived resonances ( Λ(1520),K, etc.), and is noticeable in fits to experimentally measured yields of stable particles. After production, all hadronic resonances decay. Resonance decays are accomplished by addition of the parent abundances to the daughter, normalized by the branching ratio. Weak interaction decays receive a special treatment, where we introduce daughter particle acceptance factors for both strongly interacting decay products. An interface for fitting to experimental particle ratios of the statistical model parameters with the help of MINUIT[1] is provided. The χ function is defined in the standard way. For an investigated quantity f and experimental error Δ f, χ=((N=N-N. (note that systematic and statistical
CMS Hadron Forward Calorimeter Phase I Upgrade Status
AUTHOR|(CDS)2071924
2015-01-01
The Hadron Forward Calorimeter of CMS completed the Long Shutdown 1 part of the Phase I upgrade. Approximately 1800 photomultiplier tubes were replaced with thinner window, higher quantum efficiency, four-anode photomultiplier tubes. The new photomultiplier tubes will provide better light detection performance, a significantly reduced background and unique handles to recover the signal in the presence of background. The upgrade is also associated with new cabling and channel segmentation options. This report will describe the upgrade and the nature of the essential upgrade elements with supporting test results.
Energy Technology Data Exchange (ETDEWEB)
Rousseau, P. [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires
1967-06-01
In a first part, after a brief recall concerning 'planar' technology we discuss the various parasitic elements associated with integrated circuits components. Mathematical formulae of these elements are derived. In a second part, we present a matrix of 22 transistors and 12 resistors which has been realized. This matrix enables the integration of the major part of nuclear circuits. Some of the obtained circuits are shown, particularly an emitter coupled logic gate which presents good electrical behaviour. (author) [French] Dans uns premiere partie, apres un bref rappel de la technologie 'planar' nous etudions les divers elements parasites associes a tout composant d'un circuit integre. Un developpement sommaire des expressions mathematiques de ces elements est propose. Dans une seconde partie nous presentons la matrice de 22 transistors et 12 resistances que nous avons realisee. Cette matrice repond aux principaux besoins de l'electronique nucleaire. Nous proposons ensuite quelques exemples de circuits realises a partir de cette matrice dont notamment une porte logique a emetteurs couples de performances tres interessantes. (auteur)
Quark Hadron Duality - Recent Jefferson Lab Results
Energy Technology Data Exchange (ETDEWEB)
Niculescu, Maria Ioana [James Madison Univ., Harrisonburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-08-01
The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.
Constraints on hadronically decaying dark matter
Energy Technology Data Exchange (ETDEWEB)
Garny, Mathias [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tran, David [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Minnesota Univ., Minneapolis, MN (United States). School of Physics and Astronomy
2012-05-15
We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons.We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.
Hadron scattering and resonances in QCD
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef J. [Old Dominion Univ., Norfolk, VA (United States)
2016-05-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study pi pi elastic scattering, including the rho resonance, as well as coupled-channel pi K, eta K scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Hadron mass spectrum from lattice QCD.
Majumder, Abhijit; Müller, Berndt
2010-12-17
Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.
Franklin, Joel N
2003-01-01
Mathematically rigorous introduction covers vector and matrix norms, the condition-number of a matrix, positive and irreducible matrices, much more. Only elementary algebra and calculus required. Includes problem-solving exercises. 1968 edition.
Hadronic production of high p$_{T}$ leptons and hadrons
2002-01-01
This experiment measures the production of direct real photons with large transverse momentum in pion-nucleon collisions at the SPS (H8 beam) using the NA3 spectrometer with an upgraded e-$\\gamma$ calorimeter. The experiment proceeds in steps of increasing complexity: \\item a) measurement of the direct $\\gamma$ cross-section in $\\pi^{\\pm}$C $\\rightarrow \\gamma +$ X and search for the annihilation process $q\\bar{q} \\rightarrow \\gamma$g by measuring the charge asymmetry at 200 GeV/c; \\item b) determination of the gluon structure function of the pion and the nucleon; \\item c) use of the $\\pi^{-}-\\pi^{+}$ difference on carbon, if found experimentally, to extract the gluon fragmentation from the $\\gamma$ hadron correlations. \\end{enumerate}\\\\ \\\\ For comparison, the quark fragmentation functions can, in principle, be extracted from processes where the Compton scattering qg $\\rightarrow$ q$\\gamma$ dominates and compared with data from D.I.S. as a test of the method. \\\\ \\\\ The existing standard NA3 spectrometer is we...
Lattice QCD spectroscopy for hadronic CP violation
de Vries, Jordy; Mereghetti, Emanuele; Seng, Chien-Yeah; Walker-Loud, André
2017-03-01
The interpretation of nuclear electric dipole moment (EDM) experiments is clouded by large theoretical uncertainties associated with nonperturbative matrix elements. In various beyond-the-Standard Model scenarios nuclear and diamagnetic atomic EDMs are expected to be dominated by CP-violating pion-nucleon interactions that arise from quark chromo-electric dipole moments. The corresponding CP-violating pion-nucleon coupling strengths are, however, poorly known. In this work we propose a strategy to calculate these couplings by using spectroscopic lattice QCD techniques. Instead of directly calculating the pion-nucleon coupling constants, a challenging task, we use chiral symmetry relations that link the pion-nucleon couplings to nucleon sigma terms and mass splittings that are significantly easier to calculate. In this work, we show that these relations are reliable up to next-to-next-to-leading order in the chiral expansion in both SU (2) and SU (3) chiral perturbation theory. We conclude with a brief discussion about practical details regarding the required lattice QCD calculations and the phenomenological impact of an improved understanding of CP-violating matrix elements.
Constraining hadronic models of the Fermi bubbles
Razzaque, Soebur
2018-01-01
The origin of sub-TeV gamma rays detected by Fermi-LAT from the Fermi bubbles at the Galactic center is unknown. In a hadronic model, acceleration of protons and/or nuclei and their subsequent interactions with gas in the bubble volume can produce observed gamma ray. Such interactions naturally produce high-energy neutrinos, and detection of those can discriminate between a hadronic and a leptonic origin of gamma rays. Additional constraints on the Fermi bubbles gamma-ray flux in the PeV range from recent HAWC observations restrict hadronic model parameters, which in turn disfavor Fermi bubbles as the origin of a large fraction of neutrino events detected by IceCube along the bubble directions. We revisit our hadronic model and discuss future constraints on parameters from observations in very high-energy gamma rays by CTA and in neutrinos.
ENLIGHT: Hadron-therapy in Europe
CERN BULLETIN; Nathalie Hospital; Manuela Cirilli
2011-01-01
ENLIGHT was established in 2002 to coordinate the European efforts in hadron therapy. The ENLIGHT network is formed by the European hadrontherapy Community, with more than 300 participants from twenty European countries.
Multidimensional study of hadronization in nuclei
Energy Technology Data Exchange (ETDEWEB)
Airapetian, A. [Univ. Giessen, Physikalisches Inst., Giessen (Germany); University of Michigan, Randall Lab. of Physics, Ann Arbor, Michigan (United States); Akopov, N.; Avakian, R.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Grigoryan, L.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Petrosyan, A.; Taroian, S. [Yerevan Physics Institute, Yerevan (Armenia); Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; Hartig, M.; Holler, Y.; Rostomyan, A.; Ye, Z.; Zihlmann, B. [DESY, Hamburg (Germany); Aschenauer, E.C.; Fabbri, R.; Golembiovskaya, M.; Hillenbrand, A.; Hristova, I.; Lu, X.G.; Negodaev, M.; Nowak, W.D.; Riedl, C.; Stewart, J. [DESY, Zeuthen (Germany); Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Warsaw (Poland); Belostotski, S.; Kisselev, A.; Manaenkov, S.I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V. [Petersburg Nuclear Physics Inst., Gatchina, Leningrad Region (Russian Federation); Bianchi, N.; Capitani, G.P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A.R. [Ist. Nazionale di Fisica Nucleare, Lab. Nazionali di Frascati, Frascati (Italy); Blok, H.P. [National Institute for Subatomic Physics, Amsterdam (Netherlands); VU Univ., Dept. of Physics and Astronomy, Amsterdam (Netherlands); Bowles, J.; Burns, J.; Hoek, M.; Kaiser, R.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B. [Univ. of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Brodski, I.; Dueren, M.; Ehrenfried, M.; Perez-Benito, R.; Yu, W. [Univ. Giessen, Physikalisches Inst., Giessen (Germany); Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y. [Inst. for High Energy Physics, Protvino, Moscow Region (Russian Federation); Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F.; Lenisa, P.; Pappalardo, L.L.; Stancari, M.; Statera, M. [Univ. di Ferrara, Ist. Nazionale di Fisica Nucleare, Ferrara (Italy)] [and others
2011-09-15
Hadron multiplicities in semi-inclusive deep-inelastic scattering were measured on neon, krypton, and xenon targets relative to deuterium at an electron(positron)-beam energy of 27.6GeV at HERMES. These ratios were determined as a function of the virtual-photon energy {nu}, its virtuality Q{sup 2}, the fractional hadron energy z and the transverse hadron momentum with respect to the virtual-photon direction p{sub t}. Dependences were analysed separately for positively and negatively charged pions and kaons as well as protons and antiprotons in a two-dimensional representation. Compared to the one-dimensional dependences, some new features were observed. In particular, when z > 0.4 positive kaons do not show the strong monotonic rise of the multiplicity ratio with {nu} as exhibited by pions and negative kaons. Protons were found to behave very differently from the other hadrons. (orig.)
Multidimensional study of hadronization in nuclei
Energy Technology Data Exchange (ETDEWEB)
Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)
2011-07-15
Hadron multiplicities in semi-inclusive deep-inelastic scattering were measured on neon, krypton and xenon targets relative to deuterium at an electron(positron)-beam energy of 27.6 GeV at HERMES. These ratios were determined as a function of the virtual-photon energy {nu}, its virtuality Q{sup 2}, the fractional hadron energy z and the transverse hadron momentum with respect to the virtual-photon direction p{sub t}. Dependences were analysed separately for positively and negatively charged pions and kaons as well as protons and antiprotons in a two-dimensional representation. Compared to the one-dimensional dependences, some new features were observed. In particular, when z>0:4 positive kaons do not show the strong monotonic rise of the multiplicity ratio with {nu} as exhibited by pions and K{sup -}. Protons were found to behave very differently from the other hadrons. (orig.)
The Compact Pulsed Hadron Source Construction Status
Wei, Jie; Cai, Jinchi; Chen, Huaibi; Cheng, Cheng; Du, Qiang; Du, Taibin; Feng, Qixi; Feng, Zhe; Gong, Hui; Guan, Xialing; Han, Xiaoxue; Huang, Tuchen; Huang, Zhifeng; Li, Renkai; Li, Wenqian; Loong, Chun-Keung; Tang, Chuanxiang; Tian, Yang; Wang, Xuewu; Xie, Xiaofeng; Xing, Qingzi; Xiong, Zhengfeng; Xu, Dong; Yang, Yigang; Zeng, Zhi; Zhang, Huayi; Zhang, Xiaozhang; Zheng, Shu-xin; Zheng, Zhihong; Zhong, Bin; Billen, James; Young, Lloyd; Fu, Shinian; Tao, Juzhou; Zhao, Yaliang; Guan, Weiqiang; He, Yu; Li, Guohua; Li, Jian; Zhang, Dong-sheng; Li, Jinghai; Liang, Tianjiao; Liu, Zhanwen; Sun, Liangting; Zhao, Hongwei; Shao, Beibei; Stovall, James
2010-01-01
This paper reports the design and construction status, technical challenges, and future perspectives of the proton-linac based Compact Pulsed Hadron Source (CPHS) at the Tsinghua University, Beijing, China
Hadron physics at Fermilab. [Review lectures
Energy Technology Data Exchange (ETDEWEB)
Ferbel, T.
1976-08-30
Recent experimental results from studies of hadron interactions at Fermilab are surveyed. Elastic, total and charge-exchange cross section measurements, diffractive phenomena, and inclusive production, using nuclear as well as hydrogen targets, are discussed in these lectures.
The CMS central hadron calorimeter: Update
Energy Technology Data Exchange (ETDEWEB)
Freeman, J.
1998-06-01
The CMS central hadron calorimeter is a brass absorber/ scintillator sampling structure. We describe details of the mechanical and optical structure. We also discuss calibration techniques, and finally the anticipated construction schedule.
Hadron physics programs at J-PARC
Directory of Open Access Journals (Sweden)
Naruki M.
2014-06-01
Full Text Available The J-PARC Hadron Facility is designed as a multipurpose experimental facility for a wide range of particle and nuclear physics programs, aiming to provide the world highest intensity secondary beams. Currently three secondary beam lines; K1.8, K1.8BR and KL together with the test beam line named K1.1BR come into operation. Various experimental programs are proposed at each beam line and some of them have been performed so far. As the first experiment at the J-PARC Hadron Facility, the Θ+ pentaquark was searched for via the pion-induced hadronic reaction in the autumn of 2010. Also experimental programs to search for new hadronic states such as K−pp have started to perform a physics run. The current status and near future programs are introduced.
Hadron Spectroscopy with COMPASS at CERN
Schönning, Karin
2012-01-01
The aim of the COMPASS hadron programme is to study the light-quark hadron spectrum, and in particular, to search for evidence of hybrids and glueballs. COMPASS is a fixed-target experiment at the CERN SPS and features a two-stage spectrometer with high momentum resolution, large acceptance, particle identification and calorimetry. A short pilot run in 2004 resulted in the observation of a spin-exotic state with $J^{PC} = 1^{-+}$ consistent with the debated $\\pi1(1600)$. In addition, Coulomb production at low momentum transfer data provide a test of Chiral Perturbation Theory. During 2008 and 2009, a world leading data set was collected with hadron beam which is currently being analysed. The large statistics allows for a thorough decomposition of the data into partial waves. The COMPASS hadron data span over a broad range of channels and shed light on several different aspects of QCD.
Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter
Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dannheim, D.; Dotti, A.; Folger, G.; Ivantchenko, V.; Klempt, W.; Kraaij, E.van der; Lucaci-Timoce, A.-I; Ribon, A.; Schlatter, D.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.-Y; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Feege, N.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Magnan, A.-M; Bartsch, V.; Wing, M.; Salvatore, F.; Gil, E.Cortina; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Negra, R.Della; Grenier, G.; Han, R.; Ianigro, J-C; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Donckt, M.Vander; Zoccarato, Y.; Alamillo, E.Calvo; Fouz, M.-C; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Lorenzo, S.Conforti di; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; der Kolk, N.van; Li, H.; Martin-Chassard, G.; Richard, F.; Taille, Ch de la; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Takeshita, T.; Uozumi, S.; Jeans, D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.
2013-01-01
We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.
LHC suppliers win Golden Hadron awards
Maximilien Brice
2004-01-01
In a ceremony on 30 July, three of the 200 suppliers for the Large Hadron Collider (LHC) were presented with Golden Hadron awards. It is the third year that the awards have been presented to suppliers, not only for their technical and financial achievements but also for their compliance with contractual deadlines. This year the three companies are all involved in the supplies for the LHC's main magnet system.
Summary of the Hadronic Weak Interaction session
Bock, G.; Bryman, D. A.; Numao, T.
1993-07-01
We summarize and discuss present and future experiments on decays of light mesons and muons that were presented in the Hadronic Weak Interaction working group session of the Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Facilities. Precise measurements and rare-decay searches, which sense mass scales in the 1-1000 TeV region, are discussed in the context of the standard model and beyond.
Summary of the Hadronic Weak Interaction session
Energy Technology Data Exchange (ETDEWEB)
Bock, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Bryman, D.A.; Numao, T. [British Columbia Univ., Vancouver, BC (Canada). TRIUMF Facility
1993-07-01
We summarize and discuss present and future experiments on decays of light mesons and muons that were presented in the Hadronic Weak Interaction working group session of the ``Workshop on Future Directions in Particle and Nuclear Physics at Multi-GeV Hadron Facilities.`` Precise measurements and rare-decay searches, which sense mass scales in the 1--1000 TeV region, are discussed in the context of the standard model and beyond.
Hadron thermodynamics in relativistic nuclear collisions
Ammiraju, P.
1985-01-01
Various phenomenological models based on statistical thermodynamical considerations were used to fit the experimental data at high P sub T to a two temperature distribution. Whether this implies that the two temperatures belong to two different reaction mechanisms, or consequences of Lorentz-contraction factor, or related in a fundamental way to the intrinsic thermodynamics of Space-Time can only be revealed by further theoretical and experimental investigations of high P sub T phenomena in extremely energetic hadron-hadron collisions.
Very large hadron collider (VLHC)
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-09-01
A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.
On the hadronic component of extensive air showers
Energy Technology Data Exchange (ETDEWEB)
Hoerandel, J.R.; Antoni, T.; Apel, W.D.; Badea, F.; Bekk, K.; Bercuci, A.; Bluemerba, H.; Bozdog, H.; Brancus, I.M.; Buettner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engler, J.; Fessler, F.; Gils, H.J.; Glasstetter, R.; Haeusler, R.; Hambsch, M.; Haungs, A.; Heck, D.; Iwan, A.; Kampert, K.-H.; Klages, H.O.; Maier, G.; Mathes, H.J.; Mayer, H.J.; Milke, J.; Mueller, M.; Obenland, R.; Oehlschlaeger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Ulrich, H.; Weber, J.H.; Weindl, A.; Wentz, J.; Wochele, J.; Zabierowski, J
2003-07-01
The hadronic component of extensive air showers is investigated with the large calorimeter of the KASCADE experiment. The transverse momentum transfer in EAS is explored by investigations of the geometrical structure in the hadronic shower core and the arrival times of hadrons. The flux of unaccompanied hadrons is studied to probe hadronic cross sections. The measured results are compatible with simulations using CORSIKA/QGSJET.
Observation of charmless hadronic B decays
Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Bright-Thomas, P.; Cattaneo, M.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Walsh, J.; Blair, G. A.; Bryant, L. M.; Cerutti, F.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration
1996-02-01
Four candidates for charmless hadronic B decay are observed in a data sample of four million hadronic Z decays recorded by the ALEPH detector at LEP. The probability that these events come from background sources is estimated to be less than 10 -6. The average branching ratio of weakly decaying B hadrons (a mixture of B d0, B s0 and Λb weighted by their production cross sections and lifetimes, here denoted B) into two long-lived charged hadrons (pions, kaons or protons) is measured to be Br(B → h +h -) = (1.7 -0.7+1.0 ± 0.2) × 10 -5. The relative branching fraction {Br( B d(s)0 → π +π -(K -)) }/{Br( B d(s)0 → h +h -) } is measured to be 1.0 -0.3 -0.1+0.0 +0.0. In addition, branching ratio upper limits are obtained for a variety of exclusive charmless hadronic two-body decays of B hadrons.
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg; Frandsen, Peter Frands
2009-01-01
We consider maintaining information about the rank of a matrix under changes of the entries. For n×n matrices, we show an upper bound of O(n1.575) arithmetic operations and a lower bound of Ω(n) arithmetic operations per element change. The upper bound is valid when changing up to O(n0.575) entries...... in a single column of the matrix. We also give an algorithm that maintains the rank using O(n2) arithmetic operations per rank one update. These bounds appear to be the first nontrivial bounds for the problem. The upper bounds are valid for arbitrary fields, whereas the lower bound is valid for algebraically...... closed fields. The upper bound for element updates uses fast rectangular matrix multiplication, and the lower bound involves further development of an earlier technique for proving lower bounds for dynamic computation of rational functions....
Fast symplectic map tracking for the CERN Large Hadron Collider
Directory of Open Access Journals (Sweden)
Dan T. Abell
2003-06-01
Full Text Available Tracking simulations remain the essential tool for evaluating how multipolar imperfections in ring magnets restrict the domain of stable phase-space motion. In the Large Hadron Collider (LHC at CERN, particles circulate at the injection energy, when multipole errors are most significant, for more than 10^{7} turns, but systematic tracking studies are limited to a small fraction of this total time—even on modern computers. A considerable speedup is expected by replacing element-by-element tracking with the use of a symplectified one-turn map. We have applied this method to the realistic LHC lattice, version 6, and report here our results for various map orders, with special emphasis on precision and speed.
GR@PPA 2.8: Initial-state jet matching for weak-boson production processes at hadron collisions
Odaka, Shigeru; Kurihara, Yoshimasa
2012-04-01
The initial-state jet matching method introduced in our previous studies has been applied to the event generation of single W and Z production processes and diboson (WW, WZ and ZZ) production processes at hadron collisions in the framework of the GR@PPA event generator. The generated events reproduce the transverse momentum spectra of weak bosons continuously in the entire kinematical region. The matrix elements (ME) for hard interactions are still at the tree level. As in previous versions, the decays of weak bosons are included in the matrix elements. Therefore, spin correlations and phase-space effects in the decay of weak bosons are exact at the tree level. The program package includes custom-made parton shower programs as well as ME-based hard interaction generators in order to achieve self-consistent jet matching. The generated events can be passed to general-purpose event generators to make the simulation proceed down to the hadron level. Catalogue identifier: ADRH_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRH_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 112 146 No. of bytes in distributed program, including test data, etc.: 596 667 Distribution format: tar.gz Programming language: Fortran; with some included libraries coded in C and C++ Computer: All Operating system: Any UNIX-like system RAM: 1.6 Mega bytes at minimum Classification: 11.2 Catalogue identifier of previous version: ADRH_v2_0 Journal reference of previous version: Comput. Phys. Comm. 175 (2006) 665 External routines: Bash and Perl for the setup, and CERNLIB, ROOT, LHAPDF, PYTHIA according to the user's choice. Does the new version supersede the previous version?: No, this version supports only a part of the processes included in the previous versions. Nature of problem: We
Schwinger Model and String Percolation in Hadron-Hadron and Heavy Ion Collisions
Dias De Deus, J; Ferreiro, E. G.; Pajares, C.; Ugoccioni, R.
2003-01-01
In the framework of the Schwinger Model for percolating strings we establish a general relation between multiplicity and transverse momentum square distributions in hadron-hadron and heavy ion collisions. Some of our results agree with the Colour Glass Condensate model.
Titov, V. I.; Tarasenko, L. V.; Utkina, A. N.
2017-01-01
Based on the results of phase physicochemical analysis of high-carbon chromium-vanadium steel, the predominant type of carbide that provides high wear resistance has been established, and its amount and amount of carbon in martensite have been determined. Data on the composition and the amount of carbide phase and on the chemical composition of the martensite of high-carbon steel have been obtained, which allows determination of the alloying-element concentration limits. The mechanical testing of heats of a chosen chemical composition has been carried out after quenching and low-temperature tempering. The tests have demonstrated benefits of new steel in wear resistance and bending strength with the fatigue strength being retained, compared to steels subjected to cementation. The mechanism of secondary strengthening of the steel upon high-temperature tempering has been revealed. High-temperature tempering can be applied to articles that are required to possess both high wear resistance and heat resistance.
Hadronic interactions in the MINOS detectors
Energy Technology Data Exchange (ETDEWEB)
Kordosky, Michael Alan [Univ. of Texas, Austin, TX (United States)
2004-08-01
MINOS, the Main Injector Neutrino Oscillation Search, will study neutrino flavor transformations using a Near detector at the Fermi National Accelerator Laboratory and a Far detector located in the Soudan Underground Laboratory in northern Minnesota. The MINOS collaboration also constructed the CalDet (calibration detector), a smaller version of the Near and Far detectors, to determine the topological and signal response to hadrons, electrons and muons. The detector was exposed to test-beams in the CERN Proton Synchrotron East Hall during 2001-2003, where it collected events at momentum settings between 200 MeV/c and 10 GeV/c. In this dissertation we present results of the CalDet experiment, focusing on the topological and signal response to hadrons. We briefly describe the MINOS experiment and its iron-scintillator tracking-sampling calorimters as a motivation for the CalDet experiment. We discuss the operation of the CalDet in the beamlines as well as the trigger and particle identification systems used to isolate the hadron sample. The method used to calibrate the MINOS detector is described and validated with test-beam data. The test-beams were simulated to model the muon flux, energy loss upstream of the detector and the kaon background. We describe the procedure used to discriminate between pions and muons on the basis of the event topology. The hadron samples were used to benchmark the existing GEANT3 based hadronic shower codes and determine the detector response and resolution for pions and protons. We conclude with comments on the response to single hadrons and to neutrino induced hadronic showers.
Energy Technology Data Exchange (ETDEWEB)
Lueck, Thomas
2013-01-30
This document presents a measurement of the CKM matrix-element vertical stroke V{sub ub} vertical stroke in inclusive semileptonic B→X{sub u}eν events on a dataset of 471 million B anti B events recorded by the BABAR detector. Inclusive B→X{sub u}eν decays are selected by reconstructing a high energetic electron (positron). Background suppression is achieved by selecting events with electron (positron) energies near the kinematical allowed endpoint of B→X{sub u}eν decays. A B→D{sup *}eν veto is applied to further suppress background. This veto uses D{sup *} mesons which have been reconstructed with a partial reconstruction technique.
Workshop on Hadron-Hadron & Cosmic-Ray Interactions at multi-TeV Energies
Alessandro, B; Bergman, D; Bongi, M; Bunyatyan, A; Cazon, L; d'Enterria, D; de Mitri, I; Doll, P; Engel, R; Eggert, K; Garzelli, M; Gerhardt, L; Gieseke, S; Godbole, R; Grosse-Oetringhaus, J F; Gustafson, G; Hebbeker, T; Kheyn, L; Kiryluk, J; Lipari, P; Ostapchenko, S; Pierog, T; Piskounova, O; Ranft, J; Rezaeian, A; Rostovtsev, A; Sakurai, N; Sapeta, S; Schleich, S; Schulz, H; Sjostrand, T; Sonnenschein, L; Sutton, M; Ulrich, R; Werner, K; Zapp, K; CRLHC10; CRLHC 10
2011-01-01
The workshop on "Hadron-Hadron and Cosmic-Ray Interactions at multi-TeV Energies" held at the ECT* centre (Trento) in Nov.-Dec. 2010 gathered together both theorists and experimentalists to discuss issues of the physics of high-energy hadronic interactions of common interest for the particle, nuclear and cosmic-ray communities. QCD results from collider experiments -- mostly from the LHC but also from the Tevatron, RHIC and HERA -- were discussed and compared to various hadronic Monte Carlo generators, aiming at an improvement of our theoretical understanding of soft, semi-hard and hard parton dynamics. The latest cosmic-ray results from various ground-based observatories were also presented with an emphasis on the phenomenological modeling of the first hadronic interactions of the extended air-showers generated in the Earth atmosphere. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.
Chakraborty, Dhiman; The ATLAS collaboration
2017-01-01
The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy in highest energy proton-proton and heavy-ion collisions at CERN’s Large Hadron Collider. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs) located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each read out by two PMTs in parallel. A multi-component calibration system is employed to calibrate and monitor the stability and performance of each part of the readout chain during data taking. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and ...
Chakraborty, Dhiman; The ATLAS collaboration
2017-01-01
The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy in highest energy proton-proton and heavy-ion collisions at CERN’s Large Hadron Collider. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs) located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each read out by two PMTs in parallel. A multi-component calibration system is employed to calibrate and monitor the stability and performance of each part of the readout chain during data taking. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and ...
Energy Technology Data Exchange (ETDEWEB)
Freire, Aline Soares [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil); Santelli, Ricardo Erthal, E-mail: santelli@iq.ufrj.br [Departamento de Geoquimica, Universidade Federal Fluminense, Outeiro Sao Joao Batista s/n, Centro, Niteroi/RJ, 24020-150 (Brazil); Departamento de Quimica Analitica, Universidade Federal do Rio de Janeiro Av. Athos da Silveira Ramos 149, Centro de Tecnologia, Bloco A, Cidade Universitaria, Rio de Janeiro/RJ, 21941-909 (Brazil)
2012-05-15
This study describes a procedure used for the determination of trace metals (Co, Cu, Mn, Ni and Pb) in high salinity petroleum produced formation water (PFW) employing high-resolution continuum source graphite furnace atomic absorption spectrometry for detection and Chelex-100 Registered-Sign resin for matrix elimination and analytes preconcentration. Using 15.0 mL of PFW for the separation/preconcentration, detection limits of 0.006, 0.07, 0.03, 0.08 and 0.02 {mu}g L{sup -1} were obtained for Co, Cu, Mn, Ni and Pb, respectively. The accuracy of the proposed method was evaluated by analyzing three seawater certified reference materials and by recovery tests, and the data indicate that the methodology can be successfully applied to this kind of samples. The precision values, expressed as relative standard deviation (% RSD, n = 10) for 2.0 {mu}g L{sup -1}, were found to be 3.5, 4.0, 9.0, 5.3 and 5.9 for Co, Cu, Mn, Ni and Pb, respectively. The proposed procedure was applied for the determination of these metals in medium and high salinity PFW samples obtained from Brazilian offshore petroleum exploration platforms. - Highlights: Black-Right-Pointing-Pointer Petroleum-produced formation water were analyzed for Co, Cu, Mn, Ni and Pb determination. Black-Right-Pointing-Pointer In batch analyte preconcentration/matrix separation using Chelex-100 Registered-Sign was used. Black-Right-Pointing-Pointer Detection limits between 0.006 and 0.08 {mu}g L{sup -1} were found by using HR-CS-GFAAS. Black-Right-Pointing-Pointer Trace elements characterization is possible using the developed method. Black-Right-Pointing-Pointer Maximum trace element concentrations found could support future Brazilian directives.
Matrix theory selected topics and useful results
Mehta, Madan Lal
1989-01-01
Matrices and operations on matrices ; determinants ; elementary operations on matrices (continued) ; eigenvalues and eigenvectors, diagonalization of normal matrices ; functions of a matrix ; positive definiteness, various polar forms of a matrix ; special matrices ; matrices with quaternion elements ; inequalities ; generalised inverse of a matrix ; domain of values of a matrix, location and dispersion of eigenvalues ; symmetric functions ; integration over matrix variables ; permanents of doubly stochastic matrices ; infinite matrices ; Alexander matrices, knot polynomials, torsion numbers.
Multiplicities of Hadrons Within Jets at STAR
Wheeler, Suzanne; Drachenberg, Jim; STAR Collaboration
2017-09-01
Jet measurements have long been tools used to understand QCD phenomena. There is still much to be learned from the production of hadrons inside of jets. In particular, hadron yields within jets from proton-proton collisions have been proposed as a way to unearth more information on gluon fragmentation functions. In 2011, the STAR experiment at RHIC collected 23 pb-1 of data from proton-proton collisions at √{ s} = 500 GeV. The jets of most interest for gluon fragmentation functions are those with transverse momentum around 6-15 GeV/c. Large acceptance charged particle tracking and electromagnetic calorimetry make STAR an excellent jet detector. Time-of-flight and specific energy loss in the tracking system allow particle identification on the various types of hadrons within the jets, e.g., distinguishing pions from kaons and protons. An integral part of analyzing the data collected is understanding how the finite resolutions of the various detector subsystems influence the measured jet and hadron kinematics. For this reason, Monte Carlo simulations can be used to track the shifting of the hadron and jet kinematics between the generator level and the detector reconstruction level. The status of this analysis will be presented. We would like to acknowledge the Ronald E. McNair program for supporting this research.
Theoretical studies of hadrons and nuclei
Energy Technology Data Exchange (ETDEWEB)
COTANCH, STEPHEN R
2007-03-20
This report details final research results obtained during the 9 year period from June 1, 1997 through July 15, 2006. The research project, entitled Theoretical Studies of Hadrons and Nuclei , was supported by grant DE-FG02-97ER41048 between North Carolina State University [NCSU] and the U. S. Department of Energy [DOE]. In compliance with grant requirements the Principal Investigator [PI], Professor Stephen R. Cotanch, conducted a theoretical research program investigating hadrons and nuclei and devoted to this program 50% of his time during the academic year and 100% of his time in the summer. Highlights of new, significant research results are briefly summarized in the following three sections corresponding to the respective sub-programs of this project (hadron structure, probing hadrons and hadron systems electromagnetically, and many-body studies). Recent progress is also discussed in a recent renewal/supplemental grant proposal submitted to DOE. Finally, full detailed descriptions of completed work can be found in the publications listed at the end of this report.
Highlights from COMPASS in hadron spectroscopy
Krinner, Fabian
2015-01-01
Since Quantum Choromdynamics allows for gluon self-coupling, quarks and gluons cannot be observed as free particles, but only their bound states, the hadrons. This so-called confinement phenomenon is responsible for $98\\%$ of the mass in the visible universe. The measurement of the hadron excitation spectra therefore gives valuable input for theory and phenomenology to quantitatively understand this phenomenon. One simple model to describe hadrons is the Constituent Quark Model (CQM), which knows two types of hadrons: mesons, consisting of a quark and an antiquark, and baryons, which are made out of three quarks. More advanced models, which are inspired by QCD as well as calculations within Lattice QCD predict the existence of other types of hadrons, which may be e.g. described solely by gluonic excitations (glueballs) or mixed quark and gluon excitations (hybrids). In order to search for such states, the COMPASS experiment at the Super Proton Synchrotron at CERN has collected large data sets, which allow to ...
First Results on Hadron Spectroscopy at COMPASS
Nerling, Frank
2010-01-01
The COMPASS fixed-target experiment at the CERN SPS is dedicated to the study of hadron structure and dynamics. One goal of the physics programme using hadron beams is the search for new states, in particular the search for $J^{PC}$ exotic states and glueballs. After a short pilot run in 2004 (190 GeV/c $\\pi^{-}$ beam, lead target), we started our hadron spectroscopy programme in 2008 by collecting unprecedented statistics using 190 GeV/c negative hadron beams on a liquid hydrogen target. A similar amount of data with 190 GeV/c positive hadron beams has been taken in 2009, as well as some data (negative beam) on nuclear targets. As a first result the observation of a significant $J^{PC}$ spin-exotic signal in the 2004 data -- consistent with the disputed $\\pi_1(1600)$ -- was recently published. Our spectrometer features good coverage by electromagnetic calorimetry, crucial for the detection of final states involving $\\pi^0$, $\\eta$ or $\\eta'$, and the 2008/09 data provide an excellent opportunity for the simu...
Sivers effect in two-hadron electroproduction.
Kotzinian, Aram; Matevosyan, Hrayr H; Thomas, Anthony W
2014-08-08
The Sivers effect in single hadron semi-inclusive deep inelastic scattering on a transversely polarized nucleon describes the modulation of the cross section with the sine of the azimuthal angle between the produced hadron's transverse momentum and the nucleon spin (P(h) and φ(S), respectively). This effect is attributed to the so-called Sivers parton distribution function of the nucleon. We employ a simple phenomenological parton model to derive the relevant cross section for two-hadron production in semi-inclusive deep inelastic scattering including the Sivers effect. We show that the Sivers effect can be observed in such a process as sine modulations involving the azimuthal angles φ(T) and φ(R) of both the total and the relative transverse momenta of the hadron pair. The existence of the modulation with respect to φ(R) is new. Finally, we employ a modified version of the lepto Monte Carlo event generator that includes the Sivers effect to estimate the size of single spin asymmetries corresponding to these modulations. We show that sin(φ(R)-φ(S)) modulations can be significant, especially if we impose asymmetric cuts on the momenta of the hadrons in the pairs.
Medium-induced color flow softens hadronization
Beraudo, A; Wiedemann, U A
2012-01-01
Medium-induced parton energy loss, resulting from gluon exchanges between the QCD matter and partonic projectiles, is expected to underly the strong suppression of jets and high-$p_T$ hadron spectra observed in ultra-relativistic heavy ion collisions. Here, we present the first color-differential calculation of parton energy loss. We find that color exchange between medium and projectile enhances the invariant mass of energetic color singlet clusters in the parton shower by a parametrically large factor proportional to the square root of the projectile energy. This effect is seen in more than half of the most energetic color-singlet fragments of medium-modified parton branchings. Applying a standard cluster hadronization model, we find that it leads to a characteristic additional softening of hadronic spectra. A fair description of the nuclear modification factor measured at the LHC may then be obtained for relatively low momentum transfers from the medium.
Imaging hadron calorimetry for future Lepton Colliders
Energy Technology Data Exchange (ETDEWEB)
Repond, José, E-mail: repond@hep.anl.gov
2013-12-21
To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R and D efforts beyond the present prototypes are being discussed.
Imaging hadron calorimetry for future Lepton Colliders
Repond, José
2013-12-01
To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.
Morningstar, C; Fahy, B; Foley, J; Jhang, Y C; Juge, K J; Lenkner, D; Wong, C C H
2013-01-01
Multi-hadron operators are crucial for reliably extracting the masses of excited states lying above multi-hadron thresholds in lattice QCD Monte Carlo calculations. The construction of multi-hadron operators with significant coupling to the lowest-lying states of interest involves combining single hadron operators of various momenta. The design and implementation of large sets of spatially-extended single-hadron operators of definite momentum and their combinations into two-hadron operators are described. The single hadron operators are all assemblages of gauge-covariantly-displaced, smeared quark fields. Group-theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. Tests of these operators on 24^3 x 128 and 32^3 x 256 anisotropic lattices using a stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing are presented. The method provides reliable estimat...
Monte Carlo implementation of polarized hadronization
Matevosyan, Hrayr H.; Kotzinian, Aram; Thomas, Anthony W.
2017-01-01
We study the polarized quark hadronization in a Monte Carlo (MC) framework based on the recent extension of the quark-jet framework, where a self-consistent treatment of the quark polarization transfer in a sequential hadronization picture has been presented. Here, we first adopt this approach for MC simulations of the hadronization process with a finite number of produced hadrons, expressing the relevant probabilities in terms of the eight leading twist quark-to-quark transverse-momentum-dependent (TMD) splitting functions (SFs) for elementary q →q'+h transition. We present explicit expressions for the unpolarized and Collins fragmentation functions (FFs) of unpolarized hadrons emitted at rank 2. Further, we demonstrate that all the current spectator-type model calculations of the leading twist quark-to-quark TMD SFs violate the positivity constraints, and we propose a quark model based ansatz for these input functions that circumvents the problem. We validate our MC framework by explicitly proving the absence of unphysical azimuthal modulations of the computed polarized FFs, and by precisely reproducing the earlier derived explicit results for rank-2 pions. Finally, we present the full results for pion unpolarized and Collins FFs, as well as the corresponding analyzing powers from high statistics MC simulations with a large number of produced hadrons for two different model input elementary SFs. The results for both sets of input functions exhibit the same general features of an opposite signed Collins function for favored and unfavored channels at large z and, at the same time, demonstrate the flexibility of the quark-jet framework by producing significantly different dependences of the results at mid to low z for the two model inputs.
The Ways of Four-Quark Hadrons
CERN. Geneva
2014-01-01
Ten years after the discovery of the X(3872) we can assert that a number of exotic four-quark hadrons with hidden charm and beauty have been discovered, the most recent, Z(3900), found by BES in 2013, being among the top-striking ones. However, ten years have not been enough to dispel the controversy about their inner structure, with two body hadron molecules and compact multiquark states being the withstanding antipodal models. In this seminar I will review the status of the field, presenting both the experimental facts and the theoretical pictures attempting to interpret them.
Top quark studies at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)
1997-01-01
The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.
DEFF Research Database (Denmark)
Heisterkamp, Simon Johann Franz
In this thesis I motivate and present a search for long lived massive R-hadrons using the data collected by the ATLAS detector in 2011. Both ionisation- and time-of-ight-based methods are described. Since no signal was found, a lower limit on the mass of such particles is set. The analysis was also...... published by the ATLAS collboration in Phys.Lett.B. titled `Searches for heavy long-lived sleptons and R-Hadrons with the ATLAS detector in pp collisions at sqrt(s) = 7 TeV'....
Recent results on hadron physics at KLOE
Babusci, D; Balwierz-Pytko, I; Bencivenni, G; Bini, C; Bloise, C; Bossi, F; Branchini, P; Budano, A; Balkest, L Caldeira; Capon, G; Ceradini, F; Ciambrone, P; Curciarello, F; Czerwinski, E; Dane, E; De Leo, V; De Lucia, E; De Robertis, G; De Santis, A; Di Domenico, A; Di Donato, C; Di Salvo, R; Domenici, D; Erriquez, O; Fanizzi, G; Fantini, A; Felici, G; Fiore, S; Franzini, P; Gajos, A; Gauzzi, P; Giardina, G; Giovannella, S; Graziani, E; Happacher, F; Heijkenskjold, L; Hoistad, B; Iafolla, L; Jacewicz, M; Johansson, T; Kacprzak, K; Kupsc, A; Lee-Franzini, J; Leverington, B; Loddo, F; Loffredo, S; Mandaglio, G; Martemianov, M; Martini, M; Mascolo, M; Messi, R; Miscetti, S; Morello, G; Moricciani, D; Moskal, P; Nguyen, F; Palladino, A; Passeri, A; Patera, V; Longhi, I Prado; Ranieri, A; Redmer, C F; Santangelo, P; Sarra, I; Schioppa, M; Sciascia, B; Silarski, M; Taccini, C; Tortora, L; Venanzoni, G; Wislicki, W; Wolke, M; Zdebik, J
2013-01-01
One of the basic motivations of the KLOE and KLOE-2 collaborations is the test of fundamental symmetries and the search for phenomena beyond the Standard Model via the hadronic and leptonic decays of ground-state mesons and via their production in the fusion of virtual gamma quanta exchanged between colliding electrons and positrons. This contribution includes brief description of results of recent analysis of the KLOE data aimed at (i) the search for the dark matter boson, (ii) determination of the hadronic and light-by-light contributions to the g-2 muon anomaly and (iii) tests of QCD anomalies.
Hadron Spectroscopy in Double Pomeron Exchange Experiments
Energy Technology Data Exchange (ETDEWEB)
Albrow, Michael [Fermilab
2016-11-15
Central exclusive production in hadron-hadron collisions at high energies, for example p + p -> p + X + p, where the "+" represents a large rapidity gap, is a valuable process for spectroscopy of mesonic states X. At collider energies the gaps can be large enough to be dominated by pomeron exchange, and then the quantum numbers of the state X are restricted. Isoscalar JPC = 0++ and 2++ mesons are selected, and our understanding of these spectra is incomplete. In particular, soft pomeron exchanges favor gluon-dominated states such as glueballs, which are expected in QCD but not yet well established. I will review some published data.
Moment analysis of hadronic vacuum polarization
Energy Technology Data Exchange (ETDEWEB)
Rafael, Eduardo de
2014-09-07
I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon a{sub μ}{sup HVP} in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how a{sub μ}{sup HVP} is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
Hadron spectroscopy in double pomeron exchange experiments
Albrow, Michael G.
2017-03-01
Central exclusive production in hadron-hadron collisions at high energies, for example p + p → p + X + p, where the + represents a large rapidity gap, is a valuable process for spectroscopy of mesonic states X. At collider energies the gaps can be large enough to be dominated by pomeron exchange, and then the quantum numbers of the state X are restricted. Isoscalar JPC = 0++ and 2++ mesons are selected, and our understanding of these spectra is incomplete. In particular, soft pomeron exchanges favor gluon-dominated states such as glueballs, which are expected in QCD but not yet well established. I will review some published data.
Moment analysis of hadronic vacuum polarization
Directory of Open Access Journals (Sweden)
Eduardo de Rafael
2014-09-01
Full Text Available I suggest a new approach to the determination of the hadronic vacuum polarization (HVP contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
Hadron polarizability data analysis: GoAT
Energy Technology Data Exchange (ETDEWEB)
Stegen, H., E-mail: hkstegen@mta.ca; Hornidge, D. [Mount Allison University, Sackville (Canada); Collicott, C. [Dalhousie University, Halifax (Canada); Martel, P. [Mount Allison University, Sackville (Canada); Johannes Gutenberg University, Mainz (Germany); Ott, P. [Johannes Gutenberg University, Mainz (Germany)
2015-12-31
The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.
Neutronic fuel element fabrication
Korton, George
2004-02-24
This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure
Abreu, P; Adye, T; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbi, M S; Barbiellini, Guido; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Bates, M J; Battaglia, Marco; Baubillier, M; Baudot, J; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Billoir, P; Bizouard, M A; Bloch, D; Blume, M; Bonesini, M; Bonivento, W; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Bricman, C; Brown, R C A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Cao, F; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Cindro, V; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Dahm, J; D'Almagne, B; Dam, M; Damgaard, G; Dauncey, P D; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; La Vaissière, C de; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Durand, J D; Edsall, D M; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Fichet, S; Filippas-Tassos, A; Firestone, A; Fischer, P A; Föth, H; Fokitis, E; Fontanelli, F; Formenti, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Gokieli, R; Golob, B; Gonçalves, P; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Hajduk, Z; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, Christian; Juillot, P; Kaiser, M; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Korcyl, K; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Krupinski, W; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Laktineh, I; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Legan, C K; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Maehlum, G; Mahon, J R; Maio, A; Malmgren, T G M; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Meyer, S; Meyer, W T; Myagkov, A; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Morettini, P; Müller, H; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Niss, P; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Pain, R; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernegger, H; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Reale, M; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Roos, L; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Rybicki, K; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sannino, M; Schneider, H; Schwickerath, U; Schyns, M A E; Sciolla, G; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seitz, A; Sekulin, R L; Serbelloni, L; Shellard, R C; Sheridan, A; Siegrist, P; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sosnowski, R; Souza-Santos, D; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tavernet, J P; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tyndel, M; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Vilanova, D; Vincent, P; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wielers, M; Wilkinson, G R; Williams, W S C; Winter, M; Witek, M; Wlodek, T; Yi, J; Yip, K; Yushchenko, O P; Zach, F; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G
1997-01-01
The spin density matrix elements for the $\\rho^0$, K$^{*0}(892)$ and $\\phi$ produced in hadronic Z$^0$ decays are measured in the DELPHI detector. There is no evidence for spin alignment of the K$^{*0}(892)$ and $\\phi$ in the region $x_p \\leq 0.3$ ($x_p = p/p_{beam}$), where $\\rho_{00} = 0.33 \\pm 0.05$ and $\\rho_{00} = 0.30 \\pm 0.04$, respectively. In the fragmentation region, $x_p \\geq 0.4$, there is some indication for spin alignment of the $\\rho^0$ and K$^{*0}(892)$, since $\\rho_{00} = 0.43 \\pm 0.05$ and $\\rho_{00} = 0.46 \\pm 0.08$, respectively. These values are compared with those found in meson-induced hadronic reactions. For the $\\phi$, $\\rho_{00} = 0.30 \\pm 0.04$ for $x_p \\geq 0.4$ and $0.55 \\pm 0.10$ for $x_p \\geq 0.7$. The off-diagonal spin density matrix element $\\rho_{1-1}$ is consistent with zero in all cases.
Fully differential NNLO computations with MATRIX arXiv
Grazzini, Massimiliano; Wiesemann, Marius
We present the computational framework MATRIX which allows us to evaluate fully differential cross sections for a wide class of processes at hadron colliders in next-to-next-to-leading order (NNLO) QCD. The processes we consider are $2\\to 1$ and $2\\to 2$ hadronic reactions involving Higgs and vector bosons in the final state. All possible leptonic decay channels of the vector bosons are included for the first time in the calculations, by consistently accounting for all resonant and non-resonant diagrams, off-shell effects and spin correlations. We briefly introduce the theoretical framework MATRIX is based on, discuss its relevant features and provide a detailed description of how to use MATRIX to obtain NNLO accurate results for the various processes. We report reference predictions for inclusive and fiducial cross sections of all the physics processes considered here and discuss their corresponding uncertainties. MATRIX features an automatic extrapolation procedure that allows us, for the first time, to con...
Interplay among transversity induced asymmetries in hadron leptoproduction
Adolph, C.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse-Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; Hsieh, C.Yu; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; Pesaro, G.; Pesek, M.; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rychter, A.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Weisrock, T.; Wilfert, M.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2016-01-01
In the fragmentation of a transversely polarized quark several left-right asymmetries are possible for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation known as Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we have investigated for the first time the dependence of these three asymmetries on the difference of the azimuthal angles of the two hadrons. The similarity of transversity induced single and di-hadron asymmetries is discussed. A phenomenological analysis of the data allows to establish quantitative relationships among them, providing strong indication that the underlying fragmentation mechanisms are all driven ...
Parton-hadron cascade approach at SPS and RHIC
Energy Technology Data Exchange (ETDEWEB)
Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment
1998-07-01
A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)
R-hadrons at ATLAS -discovery prospects and properties
Johansen, M
2007-01-01
R-hadrons are massive, meta-stable particles predicted in several Super- symmetry scenarios. Studies exploring the discovery potential of R-hadrons at the ATLAS detector have mainly focused on gluino R-hadrons. These studies have shown that gluino R-hadrons should be discovered in early running of the LHC, that they are easily isolated by simple cuts and that their mass can be measured to an accuracy of a few percent.
$b$-hadron production at ATLAS and CMS experiments
De La Cruz Burelo, Eduard
2016-01-01
We report on a selected number of studies performed by the ATLAS and the CMS collaborations on b -hadron production. Both experiments have a rich program on b -hadron physics exploiting the large cross section of b -hadrons at the high energies of the LHC.
Hadron wave functions and the issue of nucleon deformation
Alexandrou, C; Tsapalis, A; Forcrand, Ph. de
2003-01-01
Using gauge invariant hadronic two- and three- density correlators we extract information on the spatial distributions of quarks in hadrons, and on hadron shape and multipole moments within quenched lattice QCD. Combined with the calculation of N to Delta transition amplitudes the issue of nucleon deformation can be addressed.
An Investigation of Hadronization Mechanism at $Z^{0}$ Factory
Jin, Yi; Si, Zongguo; Xie, Qubing; Yao, Tao
2010-01-01
We briefly review the hadronization pictures adopted in the LUND String Fragmentation Model(LSFM), Webber Cluster Fragmentation Model(WCFM) and Quark Combination Model(QCM), respectively. Predictions of hadron multiplicity, baryon to meson ratios and baryon-antibaryon flavor correlations, especially related to heavy hadrons at $Z^0$ factory obtained by LSFM and QCM are reported.
An investigation of hadronization mechanism at a Z 0 factory
Jin, Yi; Si, Zongguo; Xie, Qubing; Yao, Tao
2010-11-01
We briefly review the hadronization pictures adopted in the LUND String Fragmentation Model (LSFM), Webber Cluster Fragmentation Model (WCFM) and Quark Combination Model (QCM), respectively. Predictions of hadron multiplicity, baryon to meson ratios and baryon-antibaryon flavor correlations, especially those related to heavy hadrons at a Z 0 factory obtained by LSFM and QCM, are reported.
Production of strange particles in hadronization processes
Energy Technology Data Exchange (ETDEWEB)
Hofmann, W.
1987-08-01
Strange particles provide an important tool for the study of the color confinement mechanisms involved in hadronization processes. We review data on inclusive strange-particle production and on correlations between strange particles in high-energy reactions, and discuss phenomenological models for parton fragmentation. 58 refs., 24 figs.
Hadron Spectroscopy with COMPASS – Newest Results
Directory of Open Access Journals (Sweden)
Nerling Frank
2012-12-01
Full Text Available The COMPASS experiment at the CERN SPS investigates the structure and spectrum of hadrons by scattering high energetic hadrons and polarised muons off various fixed targets. During the years 2002–2007, COMPASS focused on nucleon spin physics using 160 GeV/c polarised µ+ beams on polarised deuteron and proton targets, including measurements of the gluon contribution to the nucleon spin using longitudinal target polarisation as well as studies of transverse spin effects in the nucleon on a transversely polarised target. One major goal of the physics programme using hadron beams is the search for new states, in particular the search for JPC exotic states and glue-balls. COMPASS measures not only charged but also neutral final-state particles, allowing for investigation of new objects in different reactions and decay channels. In addition COMPASS can measure low-energy QCD constants like, e.g. the electromagnetic polarisability of the pion. Apart from a few days pilot run data taken in 2004 with a 190 GeV/c π− beam on a Pb target, showing a significant spin-exotic JPC = 1−+ resonance at around 1660 MeV/c2, COMPASS collected high statistics with negative and positive 190 GeV/c hadron beams on a proton (H2 and nuclear (Ni, Pb targets in 2008 and 2009. We give a selected overview of the newest results and discuss the status of various ongoing analyses.
Heavy flavour hadron spectroscopy: An overview
Indian Academy of Sciences (India)
tributions from the forthcoming PANDA Facility are expected. Scopes and outlook of the hadron physics at the heavy flavour sector in view of the future experimental facilities are highlighted. Keywords. Heavy flavour; spectroscopy; potential models; exotics. PACS Nos 12.40.Yx; 14.40.Pq; 14.40.Rt; 12.39.Pn. 1. Introduction.
Heavy flavour hadron spectroscopy: An overview
Indian Academy of Sciences (India)
2014-10-31
Oct 31, 2014 ... ... CLEO-c, BaBar, Belle, LHC etc., the scope for theoretical extensions of the present knowledge of heavy flavour physics would be very demanding. In this context, many relevant contributions from the forthcoming PANDA Facility are expected. Scopes and outlook of the hadron physics at the heavy flavour ...
Vector boson production in hadron nuclear collisions
Energy Technology Data Exchange (ETDEWEB)
Walker, W.D. (Duke Univ., Durham, NC (USA)); Whitmore, J. (Pennsylvania State Univ., University Park, PA (USA). Lab. for Elementary Particle Science); Toothacker, W.S. (Pennsylvania State Univ., Mont Alto (USA)); Hill, J.C.; Neale, W.W. (Cambridge Univ. (UK)); Lucas, P.; Voyvodic, L. (Fermi National Accelerator Lab., Batavia, IL (USA)); Ammar, R.; Gress, J. (Kansas Univ., Lawrence (USA)); Bishop, J.M.; Biswas, N.N.; Cason, N.M.; Mattingly, M.C.K.; Ruchti, R.C.; Shephard, W.D. (Notre Dame Univ., IN (USA))
1991-01-31
We report a search for the production of light quark vector bosons in hadron-nucleus collisions at 100 GeV bombarding energy. We find surprisingly few of these resonances produced. The lack of these particles is though to be due to the absorption by the many modestly energetic nucleons and the few anti-nucleons in the final state. (orig.).
Hadronic b decays and $\\gamma$ at LHCb
AUTHOR|(CDS)2067638
2014-01-01
The LHCb experiment is ideally suited to the study of decays involving b quarks to fully hadronic final states. In these proceedings I summarise the status of the LHCb $\\gamma$ combination and present several recent analyses involving beauty baryon and meson decays.
CP violation in $b$ hadrons at LHCb
Hicheur, Adlene
2017-01-01
The most recent results on $CP$ violation in b hadrons obtained by the LHCb Collaboration with Run I and years 2015-2016 of Run II are reviewed. The different types of violation are covered by the studies presented in this paper.
Black Holes and the Large Hadron Collider
Roy, Arunava
2011-01-01
The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…
QCD and the physics of hadronic collisions
Energy Technology Data Exchange (ETDEWEB)
Mangano, Michelangelo L [Theory Group, PH Department, CERN, Geneva (Switzerland)
2010-05-11
We review the basic principles underlying the use of quantum chromodynamics in understanding the structure of high-Q{sup 2} processes in high-energy hadronic collisions. Several applications relevant to the Tevatron and the LHC are illustrated. (reviews of topical problems)
Introduction to quantum chromodynamics at hadron colliders
Indian Academy of Sciences (India)
Abstract. A basic introduction to the application of QCD at hadron colliders is presented. I brieﬂy review the phenomenological and theoretical origins of QCD, and then discuss factorization and infrared safety, parton distributions, the computation of hard scattering amplitudes and applications of perturbative QCD.
Future hadron physics facilities at Fermilab
Energy Technology Data Exchange (ETDEWEB)
Appel, Jeffrey A.; /Fermilab
2004-12-01
Fermilab's hadron physics research continues in all its accelerator-based programs. These efforts will be identified, and the optimization of the Fermilab schedules for physics will be described. In addition to the immediate plans, the Fermilab Long Range Plan will be cited, and the status and potential role of a new proton source, the Proton Driver, is described.
Hadron structure in the ladder model
Energy Technology Data Exchange (ETDEWEB)
Soper, D.E.
1979-01-01
The (flavor non-singlet) Green's function to find a far-off-shell quark in a hadron is obtained in the renormalization group improved ladder model for QCD in the space-like axial gauge. Particular attention is paid to the role of the singularity in the gluon propagator. 4 figures.
Hadronic Cross Section Measurement at CMD-3
Akhmetshin, R. R.; Anisenkov, A. V.; Aulchenko, V. M.; Banzarov, V. S.; Barkov, L. M.; Bashtovoy, N. S.; Berkaev, D. E.; Bragin, A. V.; Eidelman, S. I.; Epifanov, D. A.; Epshteyn, L. B.; Erofeev, A. L.; Fedotovich, G. V.; Gayazov, S. E.; Grebenuk, A. A.; Grigoriev, D. N.; Gromov, E. M.; Ignatov, F. V.; Karpov, S. V.; Kazanin, V. F.; Khazin, B. I.; Kirpotin, A. N.; Koop, I. A.; Kovalenko, O. A.; Kozyrev, A. N.; Kozyrev, E. A.; Krokovny, P. P.; Kuzmenko, A. E.; Kuzmin, A. S.; Logashenko, I. B.; Lukin, P. A.; Lysenko, A. P.; Mikhailov, K. Yu.; Okhapkin, V. S.; Pestov, Yu. N.; Perevedentsev, E. A.; Popov, A. S.; Popov, Yu. S.; Razuvaev, G. P.; Rogovsky, Yu. A.; Romanov, A. L.; Ruban, A. A.; Ryskulov, N. M.; Ryzhenenkov, A. E.; Shebalin, V. E.; Shemyakin, D. N.; Shwartz, B. A.; Shwartz, D. B.; Sibidanov, A. L.; Shatunov, P. Yu.; Shatunov, Yu. M.; Solodov, E. P.; Titov, V. M.; Talyshev, A. A.; Vorobiov, A. I.; Yudin, Yu. V.; Zharinov, Yu. M.
2014-12-01
The VEPP-2000 electron-positron collider was commissioned in 2010. About 60 pb-1 were collected so far by CMD-3 detector in the whole available c.m. energy range from 0.32 GeV to 2.0 GeV. The preliminary results of data analysis for various modes of e+e- → hadrons are discussed.
Scaling violation in hadron-nucleus interaction
Verbetski, Y. G.; Garsevanishvili, L. P.; Kotlyarevski, D. M.; Ladaria, N. K.; Tatalashvili, N. G.; Tsomaya, P. V.; Sherer, N. I.; Shabelski, Y. M.; Stemanetyan, G. Z.
1985-01-01
The scaling violation within the pionization region in the energy range of 0.2 to 2.0 TeV is shown on the basis of the analysis of angular characteristics in the interactions of the cosmic radiation hadrons with the nuclei of various substances (CH2, Al, Cu, Pb).
Lattice studies of hadrons with heavy flavors
Energy Technology Data Exchange (ETDEWEB)
Christopher Aubin
2009-07-01
I will discuss recent developments in lattice studies of hadrons composed of heavy quarks. I will mostly cover topics which are at a state of direct comparison with experiment, but will also discuss new ideas and promising techniques to aid future studies of lattice heavy quark physics.
Emergence String and Mass Formulas of Hadrons
Chang, Yi-Fang
2011-01-01
Assume that hadrons are formed from the emergence string. Usual string should possess two moving states: oscillation and rotation, so we propose corresponding potential and the equation of the emergence string, whose energy spectrum is namely the GMO mass formula and its modified accurate mass formula. These are some relations between the string and observable experimental data.
Hadron physics at the COMPASS experiment
Krinner, Fabian
2015-05-01
Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The Compass experiment at the CERN Super Proton Synchrotron has acquired large data sets, which allow to study light-quark meson and baryon spectra in unprecedented detail. The presented overview of the first results from this data set focuses in particular on the light meson sector and presents a detailed analysis of three-pion final states. A new JPC = 1++ state, the a1(1420), is observed with a mass and width in the ranges m = 1412 - 1422MeV/c2 and Γ = 130 - 150MeV/c2.
Higgs physics at the Large Hadron Collider
Indian Academy of Sciences (India)
In this talk I shall begin by summarizing the importance of the Higgs physics studies at the Large Hadron Collider (LHC). I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with ...
Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter
Eigen, G.; Watson, N.K.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Hostachy, J.Y.; Morin, L.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Doren, B.van; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Bonnevaux, A.; Combaret, C.; Caponetto, L.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Steen, A.; Antequera, J.Berenguer; Alamillo, E.Calvo; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Markin, O.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Ilyin, A.; Mironov, D.; Mizuk, R.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; der Kolk, N.van; Simon, F.; Szalay, M.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.C.; Cizel, J.B.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; de Freitas, P.Mora; Musat, G.; Pavy, S.; Rubio-Roy, M.; Ruan, M.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; Raux, L.; Seguin-Moreau, N.; Taille, Ch.de la; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.
2016-06-23
The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.
Directory of Open Access Journals (Sweden)
Abdelhakim Chillali
2017-05-01
Full Text Available In classical cryptography, the Hill cipher is a polygraphic substitution cipher based on linear algebra. In this work, we proposed a new problem applicable to the public key cryptography, based on the Matrices, called “Matrix discrete logarithm problem”, it uses certain elements formed by matrices whose coefficients are elements in a finite field. We have constructed an abelian group and, for the cryptographic part in this unreliable group, we then perform the computation corresponding to the algebraic equations, Returning the encrypted result to a receiver. Upon receipt of the result, the receiver can retrieve the sender’s clear message by performing the inverse calculation.
Detector electronics for experiments at the large hadron collider
Nikityuk, N. M.; Samoylov, V. N.
2006-12-01
The state of the art of a tracking detector and calorimeter electronics that are being developed for experiments at the Large Hadron Collider (LHC) is discussed. Construction of the detectors is briefly described. The problems of fabrication of integrated circuits based on a radiation-resistant technology are considered, as well as the solution to the problem of microconnections between sensitive elements and readout amplifiers in two-coordinate semiconductor detectors. The parameters and block diagrams of both analog and digital integrated circuits are given; these circuits are used for amplifying and shaping the signals measured by tracking detectors of elementary particles and calorimeters. The contributions of Russian experimenters and physicists of the Joint Institute for Nuclear Research to the development of detector electronics for experiments at the LHC is described.
The quark-hadron transition in cosmology and astrophysics.
Olive, K A
1991-03-08
A transition from normal hadronic matter (such as protons and neutrons) to quark-gluon matter is expected at both high temperatures and densities. In physical situations, this transition may occur in heavy ion collisions, the early universe, and in the cores of neutron stars. Astrophysics and cosmology can be greatly affected by such a phase transition. With regard to the early universe, big bang nucleosynthesis, the theory describing the primordial origin of the light elements, can be affected by inhomogeneities produced during the transition. A transition to quark matter in the interior by neutron stars further enhances our uncertainties regarding the equation of state of dense nuclear matter and neutron star properties such as the maximum mass and rotation frequencies.
Hadronic weak decays in the heavy quark limit
Energy Technology Data Exchange (ETDEWEB)
Bartsch, Matthaeus
2011-12-20
We mainly investigate the parameters vertical stroke V{sub ub} vertical stroke and {gamma} of the CKM matrix that are associated with b {yields} u transitions in electroweak theory. These investigations are motivated by the search for New Physics, which is expected to have an influence on CP-violation. There is a wealth of experimental data available from an active experimental community, which provides a broad foundation to determine and control parameters of the theory. In order to make use of a large amount of data we discuss exclusive charmless decays of B{sub d} and B{sub s} mesons to light hadrons. We apply an expansion in {lambda}{sub QCD}/m{sub b} and express nonperturbative QCD by light cone distribution amplitudes and form factors. This procedure is known as QCD factorization. We discuss two separate classes of B-decays. In the first part of this thesis we perform a phenomenological analysis of B-decays to longitudinal vector mesons, B {yields} V{sub L}V{sub L}. We exploit the smallness of 2 parameters in the decay B{sub d} {yields} {rho}{sup +}{sub L}{rho}{sup -}{sub L} and express CKM parameters in an expansion. We observe that for vertical stroke V{sub ub} vertical stroke such an expansion starts at second order and use this fact to provide a precise value assuming the standard model. This method also serves to constrain possible New Physics phases in the mixing of B{sub d} mesons. A major troubling aspect of hadronic decays are the general power corrections of order 10%. Therefore we develop a strategy to constrain the power corrections with the help of an additional measurement of a branching fraction. Apart from CKM parameters, we also extract the hadronic parameter in order to check the leading power prediction. On the experimental side particularly the sector of B{sub s} decays will be developed in the future. Among the decays into hadrons that are suitable for probes of New Physics is B{sub s} {yields} {phi}{phi}. We provide an upper bound for
Highlights from Compass in hadron spectroscopy
Krinner, Fabian
2015-06-01
Since Quantum Choromdynamics allows for gluon self-coupling, quarks and gluons cannot be observed as free particles, but only their bound states, the hadrons. This so-called confinement phenomenon is responsible for 98% of the mass in the visible universe. Measurement of the hadron excitation spectra therefore gives valuable input for theory and phenomenology to quantitatively understand this phenomenon. One simple model to describe hadrons is the Constituent Quark Model (CQM), which knows two types of hadrons: mesons consisting of a quark and an antiquark and baryons, which are made of three quarks. More advanced models, which are inspired by QCD as well as calculations within Lattice QCD, predict the existence of other types of hadrons, which may be, e.g., described solely by gluonic excitations (glueballs) or mixed quark and gluon excitations (hybrids). In order to search for such states, the Compass experiment at the Super Proton Synchrotron at CERN has collected large data sets, which allow to study the light-quark meson and baryon spectra with unmatched precision. The overview shown here focuses on the light meson sector, presenting a detailed Partial-Wave Analysis of the processes: π- p → π-π+π- p and π- p → π-π0π0 p. A new state, the a1(1420) with JPC = 1++, is observed. Its Breit-Wigner parameters are found to be in the ranges: m = 1412 - 1422MeV/c2 and Γ = 130 - 150MeV/c2. In the same analysis, a signal in a wave with JPC = 1- + is observed. A resonant origin of this signal would not be explicable within the CQM. In addition to this possibility of an exotic state, possible non-resonant origin of this signal is discussed.
CP Violation and the CKM Matrix Assessing the Impact of the Asymmetric B Factories
Charles, J.; Lacker, H.; Laplace, S.; Le Diberder, F.R.; Malcles, J.; Ocariz, J.; Pivk, M.; Roos, L.
2005-01-01
and Kpi data with the other constraints in the unitarity plane when the hadronic matrix elements are calculated within QCD Factorization, where we apply a conservative treatment of the theoretical uncertainties. A global fit of QCD Factorization to all pipi and Kpi data leads to precise predictions of the related observables. Using an isospin-based phenomenological parameterization, we analyze separately the B --> Kpi decays, and the impact of electroweak penguins in response to recent discussions. We find that the present data are not sufficiently precise to constrain electroweak parameters neither hadronic amplitude ratios. We do not observe any unambiguous sign of New Physics, whereas there is some evidence for potentially large non-perturbative rescattering effects. Finally we use a model-independent description of a large class of New Physics effects in both B0/B0bar mixing and B decays, namely in the b --> d and b --> s gluonic penguin amplitudes, to perform a new numerical analysis. Significant non-sta...
Black, L.P.; Kamo, S.L.; Allen, C.M.; Davis, D.W.; Aleinikoff, J.N.; Valley, J.W.; Mundil, R.; Campbell, I.H.; Korsch, R.J.; Williams, I.S.; Foudoulis, C.
2004-01-01
Precise isotope dilution-thermal ionisation mass spectrometry (ID-TIMS) documentation is given for two new Palaeozoic zircon standards (TEMORA 2 and R33). These data, in combination with results for previously documented standards (AS3, SL13, QGNG and TEMORA 1), provide the basis for a detailed investigation of inconsistencies in 206Pb/238U ages measured by microprobe. Although these ages are normally consistent between any two standards, their relative age offsets are often different from those established by ID-TIMS. This is true for both sensitive high-resolution ion-microprobe (SHRIMP) and excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) dating, although the age offsets are in the opposite sense for the two techniques. Various factors have been investigated for possible correlations with age bias, in an attempt to resolve why the accuracy of the method is worse than the indicated precision. Crystallographic orientation, position on the grain-mount and oxygen isotopic composition are unrelated to the bias. There are, however, striking correlations between the 206Pb/238U age offsets and P, Sm and, most particularly, Nd abundances in the zircons. Although these are not believed to be the primary cause of this apparent matrix effect, they indicate that ionisation of 206Pb/238U is influenced, at least in part, by a combination of trace elements. Nd is sufficiently representative of the controlling trace elements that it provides a quantitative means of correcting for the microprobe age bias. This approach has the potential to reduce age biases associated with different techniques, different instrumentation and different standards within and between laboratories. Crown Copyright ?? 2004 Published by Elsevier B.V. All rights reserved.
Akers, R J; Allison, J; Anderson, K J; Arcelli, S; Astbury, Alan; Axen, D A; Azuelos, Georges; Baines, J T M; Ball, A H; Banks, J; Barlow, R J; Barnett, S; Bartoldus, R; Batley, J Richard; Beaudoin, G; Beck, A; Beck, G A; Becker, J; Beeston, C; Behnke, T; Bell, K W; Bella, G; Bentkowski, P; Berlich, P; Bethke, Siegfried; Biebel, O; Bloodworth, Ian J; Bock, P; Boden, B; Bosch, H M; Boutemeur, M; Breuker, Horst; Bright-Thomas, P G; Brown, R M; Buijs, A; Burckhart, Helfried J; Burgard, C; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chu, S L; Clarke, P E L; Clayton, J C; Cohen, I; Conboy, J E; Cooper, M; Coupland, M; Cuffiani, M; Dado, S; Dallavalle, G M; De Jong, S; del Pozo, L A; Deng, H; Dieckmann, A; Dittmar, Michael; Dixit, M S; do Couto e Silva, E; Duboscq, J E; Duchovni, E; Duckeck, G; Duerdoth, I P; Dumas, D J P; Elcombe, P A; Estabrooks, P G; Etzion, E; Evans, H G; Fabbri, Franco Luigi; Fabbro, B; Fierro, M; Fincke-Keeler, Margret; Fischer, H M; Fong, D G; Foucher, M; Gaidot, A; Gary, J W; Gascon, J; Geddes, N I; Geich-Gimbel, C; Gensler, S W; Gentit, F X; Giacomelli, G; Giacomelli, R; Gibson, V; Gibson, W R; Gillies, James D; Goldberg, J; Gingrich, D M; Goodrick, M J; Gorn, W; Grandi, C; Grant, F C; Hagemann, J; Hanson, G G; Hansroul, M; Hargrove, C K; Harrison, P F; Hart, J; Hattersley, P M; Hauschild, M; Hawkes, C M; Heflin, E; Hemingway, Richard J; Herten, G; Heuer, R D; Hill, J C; Hillier, S J; Hilse, T; Hinshaw, D A; Hobbs, J D; Hobson, P R; Hochman, D; Homer, R James; Honma, A K; Hughes-Jones, R E; Humbert, R; Igo-Kemenes, P; Ihssen, H; Imrie, D C; Janissen, A C; Jawahery, A; Jeffreys, P W; Jeremie, H; Jimack, Martin Paul; Jones, M; Jones, R W L; Jovanovic, P; Jui, C; Karlen, D A; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; King, J; Kluth, S; Kobayashi, T; Koetke, D S; Kokott, T P; Komamiya, S; Kral, J F; Kowalewski, R V; Von Krogh, J; Kroll, J; Kyberd, P; Lafferty, G D; Lafoux, H; Lahmann, R; Lamarche, F; Lauber, J; Layter, J G; Leblanc, P; Lee, A M; Lefebvre, E; Lehto, M H; Lellouch, Daniel; Leroy, C; Letts, J; Levinson, L; Lloyd, S L; Loebinger, F K; Lorah, J M; Lorazo, B; Losty, Michael J; Lou, X C; Ludwig, J; Luig, A; Mannelli, M; Marcellini, S; Markus, C; Martin, A J; Martin, J P; Mashimo, T; Mättig, P; Maur, U; McKenna, J A; McMahon, T J; McNutt, J R; Meijers, F; Menszner, D; Merritt, F S; Mes, H; Michelini, Aldo; Middleton, R P; Mikenberg, G; Mildenberger, J L; Miller, D J; Mir, R; Mohr, W; Moisan, C; Montanari, A; Mori, T; Morii, M; Müller, U; Nellen, B; Nguyen, H H; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oram, C J; Oreglia, M J; Orito, S; Pansart, J P; Panzer-Steindel, B; Paschievici, P; Patrick, G N; Paz-Jaoshvili, N; Pearce, M J; Pfister, P; Pilcher, J E; Pinfold, James L; Pitman, D; Plane, D E; Poffenberger, P R; Poli, B; Pritchard, T W; Przysiezniak, H; Quast, G; Redmond, M W; Rees, D L; Richards, G E; Rison, M; Robins, S A; Robinson, D; Rollnik, A; Roney, J M; Ros, E; Rossberg, S; Rossi, A M; Rosvick, M; Routenburg, P; Runge, K; Runólfsson, O; Rust, D R; Sasaki, M; Sbarra, C; Schaile, A D; Schaile, O; Schappert, W; Scharf, F; Scharff-Hansen, P; Schenk, P; Schmitt, B; von der Schmitt, H; Schröder, M; Schwick, C; Schwiening, J; Scott, W G; Settles, M; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Skillman, A; Skuja, A; Smith, A M; Smith, T J; Snow, G A; Sobie, Randall J; Springer, R W; Sproston, M; Stahl, A; Stegmann, C; Stephens, K; Steuerer, J; Ströhmer, R; Strom, D; Takeda, H; Takeshita, T; Tarem, S; Tecchio, M; Teixeira-Dias, P; Tesch, N; Thomson, M A; Torrente-Lujan, E; Towers, S; Tranströmer, G; Tresilian, N J; Tsukamoto, T; Turner, M F; Van den Plas, D; Van Kooten, R; VanDalen, G J; Vasseur, G; Wagner, A; Wagner, D L; Wahl, C; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Weber, M; Weber, P; Wells, P S; Wermes, N; Whalley, M A; Wilkens, B; Wilson, G W; Wilson, J A; Winterer, V H; Wlodek, T; Wolf, G; Wotton, S A; Wyatt, T R; Yaari, R; Yeaman, A; Yekutieli, G; Yurko, M; Zeuner, W; Zorn, G T
1993-01-01
Measurements of $B^{0}-\\overline{B}^{0}$ Mixing, $\\Gamma(Z^{0} \\to b\\overline{b}) / \\Gamma (Z^{0} \\to$ Hadrons) and Semileptonic Branching Ratios for $b$-Flavoured Hadrons in Hadronic $Z^{0}$ Decays
The transfer matrix in four-dimensional CDT
Ambjorn, Jan; Gizbert-Studnicki, Jakub; Görlich, Andrzej; Jurkiewicz, Jerzy
2012-01-01
The Causal Dynamical Triangulation model of quantum gravity (CDT) has a transfer matrix, relating spatial geometries at adjacent (discrete lattice) times. The transfer matrix uniquely determines the theory. We show that the measurements of the scale factor of the (CDT) universe are well described by an effective transfer matrix where the matrix elements are labeled only by the scale factor. Using computer simulations we determine the effective transfer matrix elements and show how they relate...
Energy Technology Data Exchange (ETDEWEB)
Aaltonen, T.; /Helsinki Inst. of Phys.; Alvarez Gonzalez, B.; /Oviedo U. /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U. /Fermilab; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Appel, J.A.; /Fermilab; Arisawa, T.; /Waseda U.; Artikov, A.; /Dubna, JINR /Texas A-M
2011-12-01
This paper presents a search for standard model Higgs boson production in association with a W boson using events recorded by the CDF experiment in a dataset corresponding to an integrated luminosity of 5.6 fb{sup -1}. The search is performed using a matrix element technique in which the signal and background hypotheses are used to create a powerful discriminator. The discriminant output distributions for signal and background are fit to the observed events using a binned likelihood approach to search for the Higgs boson signal. We find no evidence for a Higgs boson, and 95% confidence level (C.L.) upper limits are set on {sigma}(p{bar p} {yields} WH) x {Beta}(H {yields} b{bar b}). The observed limits range from 3.5 to 37.6 relative to the standard model expectation for Higgs boson masses between m{sub H} = 100 GeV/c{sup 2} and m{sub H} = 150 GeV/c{sup 2}. The 95% C.L. expected limit is estimated from the median of an ensemble of simulated experiments and varies between 2.9 and 32.7 relative to the production rate predicted by the standard model over the Higgs boson mass range studied.
Scattering Matrix Elements for the Nonadiabatic Collision
2010-12-01
axis system is oriented in the space fixed coordinate axes using the Euler angles α and β. The angle α is defined between the projection of the z...energy operator T̂ are functions only of the spacial coordinates and momentum respectively, V̂ is diagonal in the coordinate adiabatic
Precision for B-meson matrix elements
Energy Technology Data Exchange (ETDEWEB)
Guazzini, D.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Tantalo, N. [INFN sezione ' ' Tor Vergata' ' , Rome (Italy)]|[Centro E. Fermi, Rome (Italy)
2007-10-15
We demonstrate how HQET and the Step Scaling Method for B-physics, pioneered by the Tor Vergata group, can be combined to reach a further improved precision. The observables considered are the mass of the b-quark and the B{sub s}-meson decay constant. The demonstration is carried out in quenched lattice QCD. We start from a small volume, where one can use a standard O(a)-improved relativistic action for the b-quark, and compute two step scaling functions which relate the observables to the large volume ones. In all steps we extrapolate to the continuum limit, separately in HQET and in QCD for masses below m{sub b}. The physical point m{sub b} is then reached by an interpolation of the continuum results in 1/m. The essential, expected and verified, feature is that the step scaling functions have a weak mass-dependence resulting in an easy interpolation to the physical point. With r{sub 0}=0.5 fm and the experimental B{sub s} and K masses as input, we find F{sub B{sub s}}=191(6) MeV and the renormalization group invariant mass M{sub b}=6.88(10) GeV, translating into anti m{sub b}(anti m{sub b})=4.42(6) GeV in the MS scheme. This approach seems very promising for full QCD. (orig.)
Higher-twist dynamics in large transverse momentum hadron production.
Arleo, François; Brodsky, Stanley J; Hwang, Dae Sung; Sickles, Anne M
2010-08-06
A scaling law analysis of the world data on inclusive large-p(⊥) hadron production in hadronic collisions is carried out. Significant deviations from leading-twist perturbative QCD predictions at next-to-leading order are observed, particularly at high x(⊥)=2p(⊥)/sqrt[s]. In contrast, the production of prompt photons and jets exhibits near-conformal scaling behavior in agreement with leading-twist expectations. These results indicate a non-negligible contribution of higher-twist processes in large-p(⊥) hadron production, where the hadron is produced directly in the hard subprocess, rather than by quark and gluon fragmentation. Predictions for the scaling exponents at RHIC and LHC are given. Triggering on isolated large-p(⊥) hadron production will enhance the higher-twist processes. We also note that the use of isolated hadrons as a signal for new physics can be affected by the presence of direct hadron production.
Double-hadron leptoproduction in the nuclear medium.
Airapetian, A; Akopov, N; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetissian, E; Bailey, P; Belostotski, S; Bianchi, N; Blok, H P; Böttcher, H; Borissov, A; Borysenko, A; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Gharibyan, V; Giordano, F; Grebeniouk, O; Gregor, I M; Griffioen, K; Guler, H; Hadjidakis, C; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kisselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lu, J; Lu, S; Ma, B-Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Mikloukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Y; Negodaev, M; Nowak, W-D; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Roelon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T-A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Tanaka, H; Taroian, S; Tchuiko, B; Terkulov, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; van der Nat, P B; van der Steenhoven, G; van Haarlem, Y; Veretennikov, D; Vikhrov, V; Vogel, C; Wang, S; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P
2006-04-28
The first measurements of double-hadron production in deep-inelastic scattering within the nuclear medium were made with the HERMES spectrometer at DESY HERA using a 27.6 GeV positron beam. By comparing data for deuterium, nitrogen, krypton, and xenon nuclei, the influence of the nuclear medium on the ratio of double-hadron to single-hadron yields was investigated. Nuclear effects on the additional hadron are clearly observed, but with little or no difference among nitrogen, krypton, or xenon, and with smaller magnitude than effects seen on previously measured single-hadron multiplicities. The data are compared with models based on partonic energy loss or prehadronic scattering and with a model based on a purely absorptive treatment of the final-state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter.
NUCLEOSYNTHESIS IN CORE-COLLAPSE SUPERNOVA EXPLOSIONS TRIGGERED BY A QUARK-HADRON PHASE TRANSITION
Energy Technology Data Exchange (ETDEWEB)
Nishimura, Nobuya; Thielemann, Friedrich-Karl; Hempel, Matthias; Kaeppeli, Roger; Rauscher, Thomas; Winteler, Christian [Department of Physics, University of Basel, CH-4056 Basel (Switzerland); Fischer, Tobias; Martinez-Pinedo, Gabriel [GSI, Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Froehlich, Carla [Department of Physics, North Carolina State University, NC 27695 (United States); Sagert, Irina, E-mail: nobuya.nishimura@unibas.ch [Department of Physics and Astronomy, Michigan State University, MI 48824 (United States)
2012-10-10
We explore heavy-element nucleosynthesis in the explosion of massive stars that are triggered by a quark-hadron phase transition during the early post-bounce phase of core-collapse supernovae. The present study is based on general-relativistic radiation hydrodynamics simulations with three-flavor Boltzmann neutrino transport in spherical symmetry, which utilize a quark-hadron hybrid equation of state based on the MIT bag model for strange quark matter. The quark-hadron phase transition inside the stellar core forms a shock wave propagating toward the surface of the proto-neutron star. This shock wave results in an explosion and ejects neutron-rich matter from the outer accreted layers of the proto-neutron star. Later, during the cooling phase, the proto-neutron star develops a proton-rich neutrino-driven wind. We present a detailed analysis of the nucleosynthesis outcome in both neutron-rich and proton-rich ejecta and compare our integrated nucleosynthesis with observations of the solar system and metal-poor stars. For our standard scenario, we find that a 'weak' r-process occurs and elements up to the second peak (A {approx} 130) are successfully synthesized. Furthermore, uncertainties in the explosion dynamics could barely allow us to obtain the strong r-process which produces heavier isotopes, including the third peak (A {approx} 195) and actinide elements.
Superconformal Algebraic Approach to Hadron Structure
Energy Technology Data Exchange (ETDEWEB)
de Teramond, Guy F. [Univ. of Costa Rica, San Pedro (Costa Rica); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Deur, Alexandre [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Dosch, Hans Gunter [Heidelberg Univ. (Germany). Inst. for Theoretische Physik; Sufian, Raza Sabbir [Univ. of Kentucky, Lexington, KY (United States)
2017-03-01
Fundamental aspects of nonperturbative QCD dynamics which are not obvious from its classical Lagrangian, such as the emergence of a mass scale and confinement, the existence of a zero mass bound state, the appearance of universal Regge trajectories and the breaking of chiral symmetry are incorporated from the onset in an effective theory based on superconformal quantum mechanics and its embedding in a higher dimensional gravitational theory. In addition, superconformal quantum mechanics gives remarkable connections between the light meson and nucleon spectra. This new approach to hadron physics is also suitable to describe nonperturbative QCD observables based on structure functions, such as GPDs, which are not amenable to a first-principle computation. The formalism is also successful in the description of form factors, the nonperturbative behavior of the strong coupling and diffractive processes. We also discuss in this article how the framework can be extended rather successfully to the heavy-light hadron sector.
1st Large Hadron Collider Physics Conference
Juste, A; Martínez, M; Riu, I; Sorin, V
2013-01-01
The conference is the result of merging two series of international conferences, "Physics at Large Hadron Collider" (PLHC2012) and "Hadron Collider Physics Symposium" (HCP2012). With a program devoted to topics such as the Standard Model and Beyond, the Higgs Boson, Supersymmetry, Beauty and Heavy Ion Physics, the conference aims at providing a lively forum for discussion between experimenters and theorists of the latest results and of new ideas. LHCP 2013 will be hosted by IFAE (Institut de Fisica d'Altes Energies) in Barcelona (Spain), and will take place from May 13 to 18, 2013. The venue will be the Hotel Catalonia Plaza, Plaza España (Barcelona). More information will be posted soon. For questions, please contact lhcp2013@ifae.es.
Future Prospects for Hadron Physics at PANDA
Wiedner, Ulrich
2011-01-01
The PANDA experiment at the new FAIR facility will be the major hadron physics experiment at the end of this decade. It has an ambitious far-reaching physics program that spans the most fascinating topics that are emerging in contemporary hadron physics. The universality of the antiproton annihilation process, with either protons or nuclei as targets, allows physicists to address questions like the structure of glueballs and hybrids; to clarify the nature of the X, Y and Z states; to investigate electromagnetic channels in order to measure form factors of the nucleon; and to provide theory with input with respect to non-perturbative aspects of QCD. The possibility to use different nuclear targets opens the window for charm physics with nuclei or for color transparency studies, as well as for an intensive hypernuclear physics program. Previous experimental experience has clearly demonstrated that the key to success lies in high levels of precision complemented with sophisticated analysis methods, only possible...
Muon Detection Based on a Hadronic Calorimeter
Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M
2010-01-01
The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.
Quark-Hadron Duality in Electron Scattering
Energy Technology Data Exchange (ETDEWEB)
Wally Melnitchouk; Rolf Ent; Cynthia Keppel
2004-08-01
The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified.
Hadronic density of states from string theory.
Pando Zayas, Leopoldo A; Vaman, Diana
2003-09-12
We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge.
Transverse Momentum Correlations in Hadronic Z decays
Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Hoffmann, C; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1997-01-01
Using data obtained with the ALEPH detector at the Z resonance, a measure based on transverse momentum is shown to exhibit a correlation between the two halves of a hadronic event which cannot be explained by energy-momentum conservation, flavour conservation, the imposition of an event axis or imperfect event reconstruction. Two possible explanations based on Monte Carlo models are examined: a) ARIADNE, with the correlation forming early in the parton shower and with the transition from partons to hadrons playing only a minor part; b) JETSET, with the correlation forming at the fragmentation stage. A correlation technique based on a jet cluster analysis is used to make a comparison of the models with the data. It is concluded that both non-perturbative and perturbative effects make important contributions to the observed correlation.
Neutron stars as cosmic hadron physics laboratories
Pines, D.
1985-05-01
Extensive observations of Her-1 with the Exosat satellite have led to a new understanding of both the dynamics of neutron-star superfluids and the free precession of neutron stars. Detailed microscopic calculations on neutron matter and the properties of the pinned crustal superfluid are provided to serve as a basis for comparing theory with observation on neutron stars. Topics discussed include the Hadron matter equation of state, neutron star structure, Hadron superfluids, the vortex creep theory, Vela pulsar glitches, astrophysical constraints on neutron matter energy gaps, the 35 day periodicity of Her-1, and the neutron matter equation of state. It is concluded that since the post-glitch fits and the identification of the 35th periodicity in Her X-1 as stellar wobble require a rigid neutron matter equation of state, the astrophysical evidence for such an equation seems strong, as well as that for an intermediate Delta(rho) curve.
Hadron muoproduction at the COMPASS experiment
Energy Technology Data Exchange (ETDEWEB)
Rajotte, Jean-Francois
2010-09-30
The COMPASS Collaboration has two main fields of interest: to improve our knowledge of the nucleon spin structure and to study hadrons through spectroscopy. These goals require a multipurpose universal spectrometer such as the COmmon Muon and Proton Apparatus for Structure and Spectroscopy, COMPASS. In its first years of data taking (2002-2007), the nucleon spin structure was studied with a polarized muon beam scattering off a polarized target. These studies resumed in 2010 and will continue until at least 2011. The years 2008 and 2009 were dedicated to hadron spectroscopy using hadron beams. In the case of the nucleon structure studies, it is crucial to detect with high precision the incoming beam muon (160 GeV), the scattered muon and the produced hadrons. The large amount of high quality data accumulated provides access to the unpolarized and polarized parton distributions of the nucleon and the hadronization process. Subtle differences (asymmetries) between polarized cross sections have been predicted for hadron production from polarized muon-nucleon interaction for COMPASS. It is based on these differences that the polarized parton distributions can be measured. In this context, it is important to first compare predictions with the gross features of the measured unpolarized semi-inclusive differential cross sections or the closely related differential multiplicities. In order to determine cross sections, the data has to be corrected for the acceptance of the spectrometer. In this thesis, a multidimensional acceptance correction method, based on Monte Carlo simulation, is developed and applied to the data measured in 2004. The method is first used to determine the inclusive muon-nucleon cross section which is compared with a global fit to world data. This serves as a test of the acceptance correction method and to verify if the results from previous experiments can be reproduced. Then, unpolarized differential multiplicities as a function of transverse momentum
Hadronization via coalescence at RHIC and LHC
Directory of Open Access Journals (Sweden)
Minissale V.
2016-01-01
Full Text Available An hadronization model that includes coalescence and fragmentation is used in this work to obtain predictions at both RHIC and LHC energy for light and strange hadrons transverse momentum spectra (π, p, k, Λ and baryon to meson ratios (p/π, Λ/k in a wide range of pT. This is accomplished without changing coalescence parameters. The ratios p/π and Λ/K shows the right behaviour except for some lack of baryon yield in a limited pT range around 6 GeV. This would indicate that the AKK fragmentation functions is too flat at pT < 8 GeV.
Performance of the ATLAS hadronic Tile calorimeter
AUTHOR|(INSPIRE)INSPIRE-00304670; The ATLAS collaboration
2016-01-01
The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.
Theory of hadronic production of heavy quarks
Energy Technology Data Exchange (ETDEWEB)
Peterson, C.
1981-07-01
Conventional theoretical predictions for hadronic production of heavy quarks (Q anti Q) are reviewed and confronted with data. Perturbative hard scattering predictions agree qualitatively well with hidden Q anti Q production (e.g., psi, chi, T) whereas for open Q anti Q-production (e.g., pp ..-->.. ..lambda../sub c//sup +/X) additional mechanisms or inputs are needed to explain the forwardly produced ..lambda../sub c//sup +/ at ISR. It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data. The theoretical foundations of the intrinsic charm hypotheses together with its consequences for lepton-induced reactions is discussed in some detail.
Unraveling hadron structure with generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Andrei Belitsky; Anatoly Radyushkin
2004-10-01
The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We