The muon g-2: Dyson-Schwinger status on hadronic light-by-light scattering
Eichmann, Gernot; Fischer, Christian S.; Heupel, Walter; Williams, Richard [Institut für Theoretische Physik, Justus-Liebig–Universität Giessen, 35392 Giessen (Germany)
2016-01-22
We give a status report on the hadronic light-by-light scattering contribution to the muon’s anomalous magnetic moment from the Dyson-Schwinger approach. We discuss novel, model-independent properties of the light-by-light amplitude: we give its covariant decomposition in view of electromagnetic gauge invariance and Bose symmetry, and we identify the relevant kinematic regions that are probed under the integral. The decomposition of the amplitude at the quark level and the importance of its various diagrams are discussed and related to model approaches.
On calculating disconnected-type hadronic light-by-light scattering diagrams from lattice QCD
Hayakawa, M; Christ, N H; Izubuchi, T; Jin, L C; Lehner, C
2015-01-01
For reliable comparison of the standard model prediction to the muon g-2 with its experimental value, the hadronic light-by-light scattering (HLbL) contribution must be calculated by lattice QCD simulation. HLbL contribution has many types of disconnected-type diagrams. Here, we start with recalling the point that must be taken care of in every method to calculate them by lattice QCD, and present one concrete method called nonperturbative QED method.
Towards a data-driven analysis of hadronic light-by-light scattering
Colangelo, Gilberto; Kubis, Bastian; Procura, Massimiliano; Stoffer, Peter
2014-01-01
The hadronic light-by-light contribution to the anomalous magnetic moment of the muon was recently analyzed in the framework of dispersion theory, providing a systematic formalism where all input quantities are expressed in terms of on-shell form factors and scattering amplitudes that are in principle accessible in experiment. We briefly review the main ideas behind this framework and discuss the various experimental ingredients needed for the evaluation of one- and two-pion intermediate states. In particular, we identify processes that in the absence of data for doubly-virtual pion-photon interactions can help constrain parameters in the dispersive reconstruction of the relevant input quantities, the pion transition form factor and the helicity partial waves for $\\gamma^*\\gamma^*\\to\\pi\\pi$.
Dispersion relation for hadronic light-by-light scattering: theoretical foundations
Colangelo, Gilberto; Procura, Massimiliano; Stoffer, Peter
2015-01-01
In this paper we make a further step towards a dispersive description of the hadronic light-by-light (HLbL) tensor, which should ultimately lead to a data-driven evaluation of its contribution to $(g-2)_\\mu$. We first provide a Lorentz decomposition of the HLbL tensor performed according to the general recipe by Bardeen, Tung, and Tarrach, generalizing and extending our previous approach, which was constructed in terms of a basis of helicity amplitudes. Such a tensor decomposition has several advantages: the role of gauge invariance and crossing symmetry becomes fully transparent; the scalar coefficient functions are free of kinematic singularities and zeros, and thus fulfill a Mandelstam double-dispersive representation; and the explicit relation for the HLbL contribution to $(g-2)_\\mu$ in terms of the coefficient functions simplifies substantially. We demonstrate explicitly that the dispersive approach defines both the pion-pole and the pion-loop contribution unambiguously and in a model-independent way. Th...
Position-space approach to hadronic light-by-light scattering in the muon $g-2$ on the lattice
Asmussen, Nils; Meyer, Harvey B; Nyffeler, Andreas
2016-01-01
The anomalous magnetic moment of the muon currently exhibits a discrepancy of about three standard deviations between the experimental value and recent Standard Model predictions. The theoretical uncertainty is dominated by the hadronic vacuum polarization and the hadronic light-by-light (HLbL) scattering contributions, where the latter has so far only been fully evaluated using different models. To pave the way for a lattice calculation of HLbL, we present an expression for the HLbL contribution to $g-2$ that involves a multidimensional integral over a position-space QED kernel function in the continuum and a lattice QCD four-point correlator. We describe our semi-analytic calculation of the kernel and test the approach by evaluating the $\\pi^0$-pole contribution in the continuum.
Light-by-light scattering in ultraperipheral PbPb collisions at the Large Hadron Collider
Klusek-Gawenda, Mariola; Szczurek, Antoni
2016-01-01
We calculate cross sections for diphoton production in (semi)exclusive $PbPb$ collisions, relevant for the LHC. The calculation is based on equivalent photon approximation in the impact parameter space. The cross sections for elementary $\\gamma \\gamma \\to \\gamma \\gamma$ subprocess are calculated including two different mechanisms. We take into account box diagrams with leptons and quarks in the loops. In addition, we consider a vector-meson dominance (VDM-Regge) contribution with virtual intermediate hadronic (vector-like) excitations of the photons. We get much higher cross sections in $PbPb$ collisions than in earlier calculation from the literature. This opens a possibility to study the $\\gamma \\gamma \\to \\gamma \\gamma$ (quasi)elastic scattering at the LHC. We present many interesting differential distributions which could be measured by the ALICE, CMS or ATLAS Collaborations at the LHC. We study whether a separation or identification of different components (boxes, VDM-Regge) is possible. We find that the...
Kłusek-Gawenda, Mariola; Lebiedowicz, Piotr; Szczurek, Antoni
2016-04-01
We calculate cross sections for diphoton production in (semi)exclusive PbPb collisions, relevant for the CERN Large Hadron Collider (LHC). The calculation is based on the equivalent photon approximation in the impact parameter space. The cross sections for the elementary γ γ →γ γ subprocess are calculated including two different mechanisms. We take into account box diagrams with leptons and quarks in the loops. In addition, we consider a vector-meson dominance (VDM-Regge) contribution with virtual intermediate hadronic (vector-like) excitations of the photons. We get measurable cross sections in PbPb collisions. This opens a possibility to study the γ γ →γ γ (quasi)elastic scattering at the LHC. We present many interesting differential distributions which could be measured by the ALICE, CMS, or ATLAS Collaborations at the LHC. We study whether a separation or identification of different components (boxes, VDM-Regge) is possible. We find that the cross section for elastic γ γ scattering could be measured in the heavy-ion collisions for subprocess energies smaller than Wγ γ≈15 -20 GeV.
ATLAS Event Display: Light-by-Light Scattering
ATLAS Collaboration
2017-01-01
An event display of light-by-light scattering in ultra-peripheral lead+lead collisions at 5.02 TeV with the ATLAS detector at the LHC. The event 461251458 from run 287931 recorded on 13 December 2015 at 09:51:07 is shown. Two back-to-back photons with an invariant mass of 24 GeV with no additional activity in the detector are presented. All calorimeter cells with E>500 MeV are shown.
Analysis of the hadronic light-by-light contributions to the muon g - 2
Bijnens, Johan; Pallante, Elisabetta; Prades, Joaquim
1996-01-01
We calculate the hadronic light-by-light contributions to the muon g - 2. We use both 1/Nc and chiral counting to organize the calculation. Then we calculate the leading and next-to-leading order in the 1/Nc expansion low energy contributions using the Extended Nambu-Jona-Lasinio model as hadronic m
Light-by-Light Hadronic Corrections to the Muon G-2 Problem Within the Nonlocal Chiral Quark Model
Dorokhov, A. E.; Radzhabov, A. E.; Zhevlakov, A. S.
2017-03-01
Results of calculation of the light-by-light contribution from the lightest neutral pseudoscalar and scalar mesons and the dynamical quark loop to the muon anomalous magnetic moment are discussed in the framework of the nonlocal SU(3) × SU(3) chiral quark model. The model is based on four-quark interaction of the Nambu-Jona-Lasinio type and Kobayashi-Maskawa-`t Hooft six-quark interaction. The full kinematic dependence of vertices with off-shell mesons and photons in intermediate states in the light-by-light scattering amplitude is taken into account. All calculations are elaborated in explicitly gauge-invariant manner. These results complete calculations of all hadronic light-by-light scattering contributions to aμ in the leading order in the 1/Nc expansion. The final result does not allow the discrepancy between the experiment and the Standard Model to be explained.
Positron Production in Multiphoton Light-by-Light Scattering
Koffas, Thomas
2003-07-28
We present the results of an experimental study on e{sup +}e{sup -} pair production during the collision of a low emittance 46.6 GeV electron beam with terawatt laser pulses from a Nd:glass laser at 527 nm wavelength and with linear polarization. The experiment was conducted at the Final Focus Test Beam facility in the Stanford Linear Accelerator Center. Results with a 49.1 GeV electron beam are also included. A signal of 106 {+-} 14 positrons for the 46.6 GeV electron beam case and of 22 {+-} 10 positrons for the 49.1 GcV case above background, has been detected. We interpret the positrons as the products of a two-step process during which laser photons are backscattered to high energy gamma photons that absorb in their turn several laser photons in order to produce a e{sup +}e{sup -} pair. The data compare well with the existing theoretical models. This is the first observation in the laboratory of inelastic Light-by-Light scattering with only real photons. Alternatively, the data are interpreted as a manifestation of the spontaneous breakdown of the vacuum under the influence of an intense external alternating electric field.
Light-by-light scattering in UPC at the LHC
Klusek-Gawenda, Mariola; Szczurek, Antoni
2016-01-01
We discuss diphoton semi(exclusive) production in ultraperipheral $PbPb$ collisions at energy of $\\sqrt{s_{NN}}=$ 5.5 TeV (LHC). The nuclear calculations are based on equivalent photon approximation in the impact parameter space. The cross sections for elementary $\\gamma \\gamma \\to \\gamma \\gamma$ subprocess are calculated including two different mechanisms: box diagrams with leptons and quarks in the loops and a VDM-Regge contribution with virtual intermediate hadronic excitations of the photons. We got relatively high cross sections in $PbPb$ collisions ($306$ nb). This opens a possibility to study the $\\gamma \\gamma \\to \\gamma \\gamma$ (quasi)elastic scattering at the LHC. We find that the cross section for elastic $\\gamma\\gamma$ scattering could be measured in the lead-lead collisions for the diphoton invariant mass $W_{\\gamma\\gamma} \\approx 15-20$ GeV.
Light-by-light scattering sum rules in light of new data
Danilkin, Igor
2016-01-01
We evaluate the light-quark meson contributions to three exact light-by-light scattering sum rules in light of new data by the Belle Collaboration, which recently has extracted the transition form factors of the tensor meson $f_2(1270)$ as well as of the scalar meson $f_0(980)$. We confirm a previous finding that the $\\eta, \\eta^\\prime$ and helicity-2 $f_2(1270)$ contributions saturate one of these sum rules up to photon virtualities up to around 1 GeV$^2$. At larger virtualities, our sum rule analysis shows an important contribution of the $f_2(1565)$ meson and provides a first empirical extraction of its helicity-2 transition form factor. Two further sum rules allow us to predict the helicity-0 and helicity-1 transition form factors of the $f_2(1270)$ meson. Furthermore, our analysis also provides an update for the scalar and tensor meson hadronic light-by-light contributions to the muon's anomalous magnetic moment.
Updated pseudoscalar contributions to the hadronic light-by-light of the muon (g-2)
Sanchez-Puertas, Pablo
2016-01-01
In this work, we present our recent results on a new and alternative data-driven determination for the hadronic light-by-light pseudoscalar-pole contribution to the muon $(g-2)$. Our approach is based on Canterbury approximants, a rational approach to describe the required transition form factors, which provides a systematic and model-independent framework beyond traditional large-$N_c$ approaches. As a result, we obtain a competitive determination with errors according to future $(g-2)$ experiments including, for the first time, a well-defined systematic uncertainty.
An Upper Bound on the Hadronic Light-by-Light Contribution to the Muon g-2
Erler, J; Erler, Jens; Sanchez, Genaro Toledo
2006-01-01
There are indications that hadronic loops in some electroweak observables are almost saturated by parton level effects. Taking this as the hypothesis for this work, we propose a genuine parton level estimate of the hadronic light-by-light contribution to the anomalous magnetic moment of the muon, a_mu (LBL,had). Our quark mass definitions and values are motivated in detail, and the simplicity of our approach allows for a transparent error estimate. For infinitely heavy quarks our treatment is exact, while for asymptotically small quark masses a_mu (LBL,had) is overestimated. Interpolating, this suggests to quote an upper bound. We obtain a_mu (LBL,had) < 1.59 10^-9 (95% CL).
Hadronic Light by Light Contributions to the Muon Anomalous Magnetic Moment With Physical Pions
Jin, Luchang; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Lehner, Christoph
2015-01-01
The current measurement of muonic $g - 2$ disagrees with the theoretical calculation by about 3 standard deviations. Hadronic vacuum polarization (HVP) and hadronic light by light (HLbL) are the two types of processes that contribute most to the theoretical uncertainty. The current value for HLbL is still given by models. I will describe results from a first-principles lattice calculation with a 139 MeV pion in a box of 5.5 fm extent. Our current numerical strategies, including noise reduction techniques, evaluating the HLbL amplitude at zero external momentum transfer, and important remaining challenges, in particular those associated with finite volume effects, will be discussed.
Jin, Luchang; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Lehner, Christoph
2015-01-01
The anomalous magnetic moment of muon, $g-2$, is a very precisely measured quantity. However, the current measurement disagrees with standard model by about 3 standard deviations. Hadronic vacuum polarization and hadronic light by light are the two types of processes that contribute most to the theoretical uncertainty. I will describe how lattice methods are well-suited to provide a first-principle's result for the hadronic light by light contribution, the various numerical strategies that are presently being used to evaluate it, our current results and the important remaining challenges which must be overcome.
Hadronic light-by-light contribution to the muon g — 2
Guevara, Adolfo
2016-10-01
We have computed the hadronic light-by-light (LbL) contribution to the muon anomalous magnetic moment aμ in the frame of Chiral Perturbation Theory with the inclusion of the lightest resonance multiplets as dynamical fields (RχT). It is essential to give a more accurate prediction of this hadronic contribution due to the future projects of J-Parc and FNAL on reducing the uncertainty in this observable. We, therefore, computed the pseudoscalar transition form factor and proposed the measurement of the e+ e - →μ+ μ- π0 cross section and dimuon invariant mass spectrum to determine more accurately its parameters. Then, we evaluated the pion exchange contribution to αμ, obtaining (6.66 ± 0.21) • 10-10. By comparing the pion exchange contribution and the pion-pole approximation to the corresponding transition form factor (πTFF) we recalled that the latter underestimates the complete πTFF by (15-20)%. Then, we obtained the η(') TFF, obtaining a total contribution of the lightest pseudoscalar exchanges of (10.47 ± 0.54) • 10-10, in agreement with previous results and with smaller error.
Bijnens, Johan
2012-01-01
We give a short overview of the theory of the muon anomalous magnetic moment with emphasis on the hadronic light-by-light and the pion loop contribution. We explain the difference between the hidden local symmetry and full VMD pion loop and discuss leading logarithms in the anomalous sector of 2-flavour chiral perturbation theory.
Abyaneh Mehran Zahiri
2012-12-01
Full Text Available We give a short overview of the theory of the muon anomalous magnetic moment with emphasis on the hadronic light-by-light and the pion loop contribution. We explain the difference between the hidden local symmetry and full VMD pion loop and discuss leading logarithms in the anomalous sector of 2-flavour chiral perturbation theory.
Light-by-light scattering in the Lamb shift and the bound electron g factor
Czarnecki, Andrzej; Szafron, Robert
2016-12-01
We compute an O ( α2(Zα ) 6) contribution to the hydrogen-atom Lamb shift arising from light-by-light scattering. Analogous diagrams, with one atomic electric field insertion replaced by an external magnetic field, contribute to the gyromagnetic factor of the bound electron at O ( α2(Zα ) 4) . We also calculate the contribution to the gyromagnetic factor from the muon magnetic loop.
Light-by-light scattering in the Lamb shift and the bound electron g factor
Czarnecki, Andrzej
2016-01-01
We compute an $\\mathcal{O}\\left(\\alpha^2(Z\\alpha)^6\\right)$ contribution to the hydrogen-atom Lamb shift arising from the light-by-light scattering. Analogous diagrams, with one atomic electric field insertion replaced by an external magnetic field, contribute to the gyromagnetic factor of the bound electron at $\\mathcal{O}\\left(\\alpha^2(Z\\alpha)^4\\right)$. We also calculate the contribution to the gyromagnetic factor from the muon magnetic loop.
Dispersion relation for hadronic light-by-light scattering
Procura Massimiliano
2016-01-01
Our dispersive approach defines unambiguously the pion-pole and the pion-box contribution to the HLbL tensor. Using Mandelstam’s double-spectral representation, we have proven that the pion-box contribution coincides exactly with the one-loop scalar QED amplitude, multiplied by the appropriate pion vector form factors.
Jin, Luchang; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph
2016-01-01
We report our recent lattice calculation of hadronic light-by-light contribution to muon $g-2$ using our recently developed moment method. The connected diagrams and the leading disconnected diagrams are included. The calculation is performed on a $48^3 \\times 96$ lattice with physical pion mass and 5.5 fm box size. We expect sizable finite volume and finite lattice spacing corrections to the results of these calculations which will be estimated in calculations to be carried out over the next 1-2 years.
arXiv Light-by-Light Scattering Constraint on Born-Infeld Theory
Ellis, John; You, Tevong
2017-06-27
The recent measurement by ATLAS of light-by-light scattering in LHC Pb-Pb collisions is the first direct evidence for this basic process. We find that it excludes a range of the mass scale of a nonlinear Born-Infeld extension of QED that is ≲100 GeV, a much stronger constraint than those derived previously. In the case of a Born-Infeld extension of the standard model in which the U(1)Y hypercharge gauge symmetry is realized nonlinearly, the limit on the corresponding mass reach is ∼90 GeV, which, in turn, imposes a lower limit of ≳11 TeV on the magnetic monopole mass in such a U(1)Y Born-Infeld theory.
Adkins, Gregory S; Salinger, M D; Wang, Ruihan; Fell, Richard N
2014-01-01
Recent and ongoing experimental work on the positronium spectrum motivates new efforts to calculate positronium energy levels at the level of three loop corrections. We have obtained results for one set of such corrections involving light-by-light scattering of the photons produced in a two-photon virtual annihilation process. Our result is an energy shift $1.58377(8) m \\alpha^7/\\pi^3$ for the n=1 singlet state, correcting the ground state hyperfine splitting by -6.95 kHz. We also obtained a new and more precise result for the light-by-light scattering correction to the real decay of parapositronium into two photons.
Blum, Thomas; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph
2016-01-01
We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the $48^3 \\times 96$ ensemble generated with a physical-pion-mass and a 5.5 fm spatial extent by the RBC and UKQCD collaborations using the chiral, domain wall fermion (DWF) formulation. We find $a_\\mu^{\\text{HLbL}} = 5.35 (1.35) \\times 10^{- 10}$, where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of on-going research. The omitted disconnected graphs, while expected to give a correction of order 10\\%, also need to be computed.
Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC
Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela
2017-08-14
Light-by-light scattering ($\\gamma\\gamma\\rightarrow\\gamma\\gamma$) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead (Pb) ions. Using 480 $\\mu$b$^{-1}$ of Pb+Pb collision data recorded at a centre-of-mass energy per nucleon pair of 5.02 TeV by the ATLAS detector, the ATLAS Collaboration reports evidence for the $\\gamma\\gamma\\rightarrow\\gamma\\gamma$ reaction. A total of 13 candidate events are observed with an expected background of $2.6\\pm0.7$ events. After background subtraction and analysis corrections, the fiducial cross section of the process $\\textrm{Pb+Pb}\\,(\\gamma\\gamma)\\rightarrow \\textrm{Pb}^{(\\ast)}\\textrm{+}\\textrm{Pb}^{(\\ast)}\\,\\gamma\\gamma$, for photon transverse energy $E_{\\mathrm{T}}>3$ GeV, photon absolute pseudorapidity $|\\eta|<2.4$, diphoton invariant mass greater than 6 GeV, diphoton transver...
Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC
Sydorenko, Alexander; The ATLAS collaboration
2017-01-01
LHCC 2017 POSTER. Light-by-light scattering ($\\gamma\\gamma\\rightarrow\\gamma\\gamma$) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead (Pb) ions. Using 480$\\mu \\text{b}^{-1}$ of Pb+Pb collision data recorded at a centre-of-mass energy per nucleon pair of $5.02$ TeV by the ATLAS detector, the ATLAS Collaboration reports evidence for the $\\gamma\\gamma\\rightarrow\\gamma\\gamma$ reaction. A total of $13$ candidate events are observed with an expected background of $2.6\\pm0.7$ events. After background subtraction and analysis corrections, the fiducial cross section of the process $\\textrm{Pb+Pb}\\,(\\gamma\\gamma)\\rightarrow \\textrm{Pb}^{(\\ast)}\\textrm{+}\\textrm{Pb}^{(\\ast)}\\,\\gamma\\gamma$, for photon transverse energy $E_{\\text{T}}>3$ GeV, photon absolute pseudorapidity $|\\eta|<2.4$, diphoton invariant mass greater than...
Aoyama, T; Hayakawa, M; Kinoshita, T; Nio, M; Watanabe, N
2010-01-01
This paper reports the result of our evaluation of the tenth-order QED correction to the lepton g-2 from Feynman diagrams which have sixth-order light-by-light-scattering subdiagrams, none of whose vertices couples to the external magnetic field. The gauge-invariant set of these diagrams, called Set II(e), consists of 180 vertex diagrams. In the case of the electron g-2 (a_e) where the light-by-light subdiagram consists of the electron loop, the contribution to a_e is found to be $-1.344 9 (10) (\\alpha /\\pi)^5$. The contribution of the muon loop to a_e is $-0.000 465 (4) (\\alpha /\\pi)^5$. The contribution of the tau-lepton loop is about two orders of magnitudes smaller than that of the muon loop and hence negligible. The sum of all these contributions to a_e is $-1.345 (1) (\\alpha/\\pi)^5$. We have also evaluated the contribution of Set II(e) to the muon g-2 (a_\\mu). The contribution to a_\\mu from the electron loop is $3.265 (12) (\\alpha /\\pi)^5$, while the contribution of the tau-lepton loop is $-0.038 06 (13...
Light-by-light scattering in ultraperipheral heavy-ion collisions at the LHC
Szczurek, Antoni; Lebiedowicz, Piotr
2016-01-01
We present cross sections for diphoton production in (semi)exclusive $PbPb$ collisions, relevant for the LHC. The calculation is based on equivalent photon approximation in the impact parameter space. The cross sections for elementary elastic scattering $\\gamma \\gamma \\to \\gamma \\gamma$ subprocess are calculated including two mechanisms: box diagrams with leptons and quarks in the loops and a mechanism based on vector-meson dominance (VDM-Regge) model with virtual intermediate vector-like excitations of the photons. We get measureable cross sections in $PbPb$ collisions. We present many interesting differential distributions which could be measured by the ALICE, CMS or ATLAS Collaborations at the LHC. We study whether a separation of box and VDM-Regge contributions is possible. We find that the cross section for elastic $\\gamma \\gamma$ scattering could be measured in the heavy-ion collisions for subprocess energies smaller than $W_{\\gamma\\gamma} \\approx 15-20$~GeV.
Janus, Piotr Andrzej; The ATLAS collaboration
2016-01-01
Light-by-light scattering ($\\gamma\\gamma\\rightarrow\\gamma\\gamma$) is a quantum-mechanical process that is forbidden in the classical theory of electrodynamics. This reaction is accessible at the Large Hadron Collider thanks to the large electromagnetic field strengths generated by ultra-relativistic colliding lead (Pb) ions. Using 480~\\invmub~of Pb+Pb collision data recorded a at centre-of-mass energy per nucleon pair of $5.02$~TeV by the ATLAS detector, we report evidence for the $\\gamma\\gamma\\rightarrow\\gamma\\gamma$ reaction. A total of $13$ candidate events are observed with a background expectation of $2.6\\pm0.7$ events. After background subtraction and analysis corrections, the fiducial cross-section of the process $\\textrm{Pb+Pb}\\,(\\gamma\\gamma)\\rightarrow \\textrm{Pb}^{(\\ast)}\\textrm{+}\\textrm{Pb}^{(\\ast)}\\,\\gamma\\gamma$ has been measured to be $70 \\pm 24~\\textrm{(stat.)} \\pm 17~\\textrm{(syst.)}$ nb, which is in agreement with the Standard Model predictions.
Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph
2017-01-01
We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 4 83×96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find aμHLbL=5.35 (1.35 )×10-10 , where the error is statistical only. The finite-volume and finite lattice-spacing errors could be quite large and are the subject of ongoing research. The omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.
Dremin, I M
2012-01-01
When colliding, the high energy hadrons can either produce new particles or scatter elastically without change of their quantum num- bers and other particles produced. Namely elastic scattering of hadrons is considered in this review paper. Even though the inelastic processes dominate at high energies, the elastic scattering constitutes the notice- able part of the total cross section ranging between 18 and 25% with some increase at higher energies. The scattering proceeds mostly at small angles and reveals peculiar dependences at larger angles disclos- ing the geometrical structure of the colliding particles and di?erent dynamical mechanisms. The fast decreasing Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoul- ders and dips and then by the power-like decrease. Results of various theoretical approaches are compared with exper- imental data. Phenomenological models pretending to describe this process are reviewed. The unitarity condition requires the exponen- tial re...
Kinoshita, T
2003-01-01
The $\\alpha^4$ contribution to the lepton $g-2$ from a gauge-invariant set of 18 Feynman diagrams containing a light-by-light scattering subdiagram internally has been reevaluated by a method independent of the previous approach. Comparison of two methods revealed a program error in the first version. Correcting this error, the contributions of these 18 diagrams become -0.990 72 (10)$(\\alpha/\\pi)^4$ and -4.432 43 (58)$(\\alpha/\\pi)^4$ for the electron and muon $g-2$, respectively.
Light-by-light scattering in ultra-peripheral Pb+Pb collisions at 5.02 TeV with the ATLAS detector
Janus, Piotr Andrzej; The ATLAS collaboration
2016-01-01
A signal of light-by-light scattering has been searched for in ultra-peripheral Pb+Pb collisions at $\\sqrt{s_{\\text{NN}}}=5.02$ TeV by the ATLAS experiment at the LHC. The data set has been recorded in 2015 and corresponds to 480 $\\mu b^{-1} $. After background subtraction and analysis corrections, the cross section of γγ→γγ process for photon transverse momentum, $E_{\\text{T}}$>3 GeV, photon pseudorapidity, |η|<2.37 and invariant mass of the diphoton system greater than 6 GeV, has been measured.
Aoyama, T; Kinoshita, T; Nio, M; Watanabe, N
2008-01-01
We have evaluated the contribution to the anomalous magnetic moment of the electron from six tenth-order Feynman diagrams which contain eighth-order vacuum-polarization function formed by two light-by-light scattering diagrams connected by three photons. The integrals are constructed by two different methods. In the first method the subtractive counter terms are used to deal with ultraviolet (UV) singularities together with the requirement of gauge-invariance. In the second method, the Ward-Takahashi identity is applied to the light-by-light scattering amplitudes to eliminate UV singularities. Numerical evaluation confirms that the two methods are consistent with each other within their numerical uncertainties. Combining the two results statistically and adding small contribution from the muons and/or tau leptons, we obtain $ 0.000 399 9 (18) (\\alpha/\\pi)^5$. We also evaluated the contribution to the muon $g-2$ from the same set of diagrams and found $ -1.263 44 (14) (\\alpha/\\pi)^5$.
Dremin, I. M.
2013-01-01
Colliding high-energy hadrons either produce new particles or scatter elastically with their quantum numbers conserved and no other particles produced. We consider the latter case here. Although inelastic processes dominate at high energies, elastic scattering contributes considerably (18-25%) to the total cross section. Its share first decreases and then increases at higher energies. Small-angle scattering prevails at all energies. Some characteristic features can be seen that provide information on the geometrical structure of the colliding particles and the relevant dynamical mechanisms. The steep Gaussian peak at small angles is followed by the exponential (Orear) regime with some shoulders and dips, and then by a power-law decrease. Results from various theoretical approaches are compared with experimental data. Phenomenological models claiming to describe this process are reviewed. The unitarity condition predicts an exponential fall for the differential cross section with an additional substructure to occur exactly between the low momentum transfer diffraction cone and a power-law, hard parton scattering regime under high momentum transfer. Data on the interference of the Coulomb and nuclear parts of amplitudes at extremely small angles provide the value of the real part of the forward scattering amplitude. The real part of the elastic scattering amplitude and the contribution of inelastic processes to the imaginary part of this amplitude (the so-called overlap function) are also discussed. Problems related to the scaling behavior of the differential cross section are considered. The power-law regime at highest momentum transfer is briefly described.
Aoyama, T; Kinoshita, T; Nio, M
2012-01-01
This paper reports the tenth-order QED contribution to the lepton g-2 from the gauge-invariant set, called Set III(c), which consists of 390 Feynman vertex diagrams containing an internal fourth-order light-by-light-scattering subdiagram. The mass-independent contribution of Set III(c) to the electron g-2 (a_e) is 4.9210(103) in units of (alpha/pi)^5. The mass-dependent contributions to a_e from diagrams containing a muon loop is 0.00370(37) (alpha/pi)^5. The tau-lepton loop contribution is negligible at present. Altogether the contribution of Set III(c) to a_e is 4.9247 (104) (alpha/pi)^5. We have also evaluated the contribution of the closed electron loop to the muon g-2 (a_mu). The result is 7.435(134) (alpha/pi)^5. The contribution of the tau-lepton loop to a_mu is 0.1999(28)(alpha/pi)^5. The total contribution of variousleptonic loops (electron, muon, and tau-lepton) of Set III(c) to a_mu is 12.556 (135) (alpha/pi)^5.
Aoyama, T; Kinoshita, T; Nio, M
2010-01-01
This paper reports the tenth-order QED contribution to lepton g-2 from diagrams of three gauge-invariant sets VI(d), VI(g), and VI(h), which are obtained by including various fourth-order radiative corrections to the sixth-order g-2 containing light-by-light-scattering subdiagrams. In the case of electron g-2, they consist of 492, 480, and 630 vertex Feynman diagrams, respectively. The results of numerical integration, including mass-dependent terms containing muon loops, are 1.8418(95) (alpha/pi)^5 for the Set VI(d), -1.5918(65) (alpha/pi)^5 for the Set VI(g), and 0.1797(40) (alpha/pi)^5 for the Set VI(h), respectively. We also report the contributions to the muon g-2, which derive from diagrams containing an electron, muon or tau lepton loop: Their sums are -5.876(802) (alpha/pi)^5 for the Set VI(d), 5.710(490) (alpha/pi)^5 for the Set VI(g), and -8.361(232) (alpha/pi)^5 for the Set VI(h), respectively.
Hadron scattering, resonances, and QCD
Briceno, Raul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-12-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Hadron scattering and resonances in QCD
Dudek, Jozef J. [Old Dominion Univ., Norfolk, VA (United States)
2016-05-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study pi pi elastic scattering, including the rho resonance, as well as coupled-channel pi K, eta K scattering. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Dynamical quark loop light-by-light contribution to muon g-2 within the nonlocal chiral quark model
Dorokhov, A.E. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna (Russian Federation); M.V. Lomonosov Moscow State University, N.N. Bogoliubov Institute of Theoretical Problems of Microworld, Moscow (Russian Federation); Radzhabov, A.E. [Institute for System Dynamics and Control Theory SB RAS, Irkutsk (Russian Federation); Zhevlakov, A.S. [Institute for System Dynamics and Control Theory SB RAS, Irkutsk (Russian Federation); Tomsk State University, Department of Physics, Tomsk (Russian Federation)
2015-09-15
The hadronic corrections to the muon anomalous magnetic moment a{sub μ}, due to the gauge-invariant set of diagrams with dynamical quark loop light-by-light scattering insertions, are calculated in the framework of the nonlocal chiral quark model. These results complete calculations of all hadronic light-by-light scattering contributions to a{sub μ} in the leading order in the 1/N{sub c} expansion. The result for the quark loop contribution is a{sub μ}{sup HLbL,Loop} = (11.0 ± 0.9) @ x 10{sup -10}, and the total result is a{sub μ}{sup HLbL,NχQM} = (16.8 ± 1.2) @ x 10{sup -10}. (orig.)
The ATLAS collaboration
2016-01-01
This note reports evidence for light-by-light scattering, using 480 $\\mu$b$^{-1}$ of Pb+Pb collision data at $\\sqrt{s_{NN}}=5.02$ TeV recorded by the ATLAS experiment at the LHC. After background subtraction and analysis corrections, the cross section of $\\gamma\\gamma\\rightarrow\\gamma\\gamma$ process for photon transverse momentum, $E_\\textrm{T}>3$ GeV, photon pseudorapidity, $|\\eta|<2.4$, diphoton invariant mass greater than $6$ GeV, diphoton transverse momentum lower than 2 GeV and diphoton acoplanarity below 0.01, has been measured to be $70 \\pm 20~\\textrm{(stat.)} \\pm 17~\\textrm{(syst.)}$ nb, which is in agreement with the SM prediction of $49 \\pm 10$ nb.
Medium energy hadron scattering from nuclei
Ginocchio, J.N.; Wenes, G.
1986-01-01
The Glauber approximation for medium energy scattering of hadronic projectiles from nuclei is combined with the interacting boson model of nuclei to produce a transition matrix for elastic and inelastic scattering in algebraic form which includes coupling to all the intermediate states. We present closed form analytic expresions for the transition matrix elements for the three dynamical symmetries of the interacting boson model; that is for, a spherical quadrupole vibrator, a ..gamma.. unstable rotor, and both prolate and oblate axially symmetric rotors. We give examples of application of this formalism to proton scattering from /sup 154/Sm and /sup 154/Gd. 27 refs., 5 figs., 1 tab.
Hadron scattering in an asymmetric box*
China Lattice QCD Collaboration; Li, Xin; Chen, Ying; Meng, Guo-Zhan; Feng, Xu; Gong, Ming; He, Song; Li, Gang; Liu, Chuan; Liu, Yu-Bin; Ma, Jian-Ping; Meng, Xiang-Fei; Shen, Yan; Zhang, Jian-Bo
2007-06-01
We propose to study hadron-hadron scattering using lattice QCD in an asymmetric box which allows one to access more non-degenerate low-momentum modes for a given volume. The conventional Lüscher's formula applicable in a symmetric box is modified accordingly. To illustrate the feasibility of this approach, pion-pion elastic scattering phase shifts in the I = 2, J = 0 channel are calculated within quenched approximation using improved gauge and Wilson fermion actions on anisotropic lattices in an asymmetric box. After the chiral and continuum extrapolation, we find that our quenched results for the scattering phase shifts in this channel are consistent with the experimental data when the three-momentum of the pion is below 300MeV. Agreement is also found when compared with previous theoretical results from lattice and other means. Moreover, with the usage of asymmetric volume, we are able to compute the scattering phases in the low-momentum range (pion three momentum less than about 350MeV in the center of mass frame) for over a dozen values of the pion three-momenta, much more than using the conventional symmetric box with comparable volume.
Quark-Hadron Duality in Electron Scattering
Wally Melnitchouk; Rolf Ent; Cynthia Keppel
2004-08-01
The duality between partonic and hadronic descriptions of physical phenomena is one of the most remarkable features of strong interaction physics. A classic example of this is in electron-nucleon scattering, in which low-energy cross sections, when averaged over appropriate energy intervals, are found to exhibit the scaling behavior expected from perturbative QCD. We present a comprehensive review of data on structure functions in the resonance region, from which the global and local aspects of duality are quantified, including its flavor, spin and nuclear medium dependence. To interpret the experimental findings, we discuss various theoretical approaches which have been developed to understand the microscopic origins of quark-hadron duality in QCD. Examples from other reactions are used to place duality in a broader context, and future experimental and theoretical challenges are identified.
Hadron-hadron total cross sections and soft high-energy scattering on the lattice
Giordano, M
2011-01-01
The nonperturbative approach to soft high-energy hadron-hadron scattering, based on the analytic continuation of Euclidean Wilson-loop correlation functions, makes possible the investigation of the problem of the asymptotic energy dependence of hadron-hadron total cross sections by means of lattice calculations. In this contribution we compare the lattice numerical results to analytic results obtained with various nonperturbative techniques. We also discuss the possibility to obtain indications of the rise of hadron-hadron total cross sections with energy directly from the lattice data.
Nucleas (hadron) nucleus elastic scattering and geometrical picture
Aleem F.; Ali, S.; Saleem, M. [Univ. of the Punjab, Lahore (Pakistan)
1995-08-01
A comprehensive explanation of nucleus-nucleus and hadron-nucleus elastic scattering is elusive ever since the measurements of these reactions were made. By proposing energy dependent hadronic form factors for deuteron and alpha, in analogy to that of the proton as suggested by Chou and Yang recently, the authors have fitted all the available data for alpha-alpha and deuteron-deuteron elastic scattering. In order to further verify the validity of the proposed form factor, they have also fitted the data for proton-alpha and proton-deuteron elastic scattering. It is concluded that the hadronic matter is expanding with an increase in energy. 30 refs., 11 figs.
Energy spectra of hadrons in deep inelastic scattering
Gribov, L.V.; Dokshitzer, Yu.L.; Khoze, V.A.; Troyan, S.I.
1988-03-03
We summarize the results of perturbative QCD analysis of particle distributions in deep inelastic lepton-hadron scattering (DIS). The role of coherent phenomena in the structure of the final state in DIS is emphasized.
Virtual Hadronic Corrections to Massive Bhabha Scattering
Actis, Stefano; Riemann, Tord
2008-01-01
Virtual hadronic contributions to the Bhabha process at the NNLO level are discussed. They are substantial for predictions with per mil accuracy. The studies of heavy fermion and hadron corrections complete the calculation of Bhabha virtual effects at the NNLO level.
High--Energy Photon--Hadron Scattering in Holographic QCD
Nishio, Ryoichi
2011-01-01
This article provides an in-depth look at hadron high energy scattering by using gravity dual descriptions of strongly coupled gauge theories. Just like deeply inelastic scattering (DIS) and deeply virtual Compton scattering (DVCS) serve as clean experimental probes into non-perturbative internal structure of hadrons, elastic scattering amplitude of a hadron and a (virtual) "photon" in gravity dual can be exploited as a theoretical probe. Since the scattering amplitude at sufficiently high energy (small Bjorken x) is dominated by parton contributions (= Pomeron contributions) even in strong coupling regime, there is a chance to learn a lesson for generalized parton distribution (GPD) by using gravity dual models. We begin with refining derivation of Brower-Polchinski-Strassler-Tan (BPST) Pomeron kernel in gravity dual, paying particular attention to the role played by complex spin variable j. The BPST Pomeron on warped spacetime consists of a Kaluza-Klein tower of 4D Pomerons with non-linear trajectories, and...
Analytic Amplitudes for Hadronic Forward Scattering COMPETE Update
Nicolescu, Basarab; Ezhela, Vladimir V; Gauron, P; Kang, K; Kuyanov, Yu V; Lugovsky, S B; Martynov, E S; Razuvaev, E A; Tkachenko, N P; Kuyanov, Yu. V.
2002-01-01
We consider several classes of analytic parametrizations of hadronic scattering amplitudes, and compare their predictions to all available forward data in hadron-hadron, gamma-p and gamma-gamma reactions. Although these parametrizations are very close for SQRTs larger than 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term like ln**2 s enables one to extend the fit down to SQRTs equal to 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude (RHO parameter) for present and future pp and antipp colliders, and on total cross sections for gamma-p into hadrons at cosmic-ray energies and for gamma-gamma into hadrons up to SQRTs equal to 1 TeV.
Forward gluon production in hadron-hadron scattering with Pomeron loops
Iancu, E; Soyez, G
2006-01-01
We discuss new physical phenomena expected in particle production in hadron-hadron collisions at high energy, as a consequence of Pomeron loop effects in the evolution equations for the Color Glass Condensate. We focus on gluon production in asymmetric, `dilute-dense', collisions : a dilute projectile scatters off a dense hadronic target, whose gluon distribution is highly evolved. This situation is representative for particle production in proton-proton collisions at forward rapidities (say, at LHC) and admits a dipole factorization similar to that of deep inelastic scattering (DIS). We show that at sufficiently large forward rapidities, where the Pomeron loop effects become important in the evolution of the target wavefunction, gluon production is dominated by `black spots' (saturated gluon configurations) up to very large values of the transverse momentum, well above the average saturation momentum in the target. In this regime, the produced gluon spectrum exhibits diffusive scaling, so like DIS at suffici...
Production of Charged Hadrons in Muon Deep Inelastic Scattering
Al-Buriahi, Mohammed Sultan; Ghoneim, Mohammed Tawfik
2015-01-01
The production of charged hadrons, in muon Deep inelastic scattering (DIS), at light and heavy target is presented. The particles produced by the interaction with Xenon (Xe) is compared with that produced by the interaction with Deuteron (D), to obtain information on cascading process, forward-backward productions, and the rapidity distribution in different bins of the invariant mass of the interacting system W.
Colored-hadron distribution in hadron scattering in SU(2) lattice QCD
Takahashi, Toru T
2016-01-01
In color SU(2) lattice QCD, we investigate colored-diquark distributions in two-hadron scatterings by means of Bethe-Salpeter amplitudes on the lattice. With colored-diquark operators in the Coulomb gauge, we measure components of two colored diquarks realized as intermediate states via one gluon exchange (OGE) processes in hadron scattering. From the colored-diquark distributions, we estimate the dominant range of gluon (color) exchanges between closely located two hadrons. We find that the colored-diquark components are enhanced at the short range ($\\leq$0.2 fm) and their tails show the single-exponential damping. In order to distinguish the genuine colored-diquark components originating in the color exchange processes from trivial colored two-quark components contained in two color-singlet hadrons as a result of simple transformation of hadronic basis, we repeat the analyses on the artificially constructed gauge fields, where low- and high-momentum gluon components are decoupled and only restricted pair of...
HADRONIC SCATTERING IN THE COLOR GLASS CONDENSATE.
VENUGOPALAN, R.
2005-05-15
Multi-particle production in QCD is dominated by higher twist contributions. The operator product expansion is not very effective here because the number of relevant operators grow rapidly with increasing twist. The Color Glass Condensate (CGC) provides a framework in QCD to systematically discuss ''classical'' (multiple scattering) and ''quantum'' evolution (shadowing) effects in multi-particle production. The apparently insuperable problem of nucleus-nucleus scattering in QCD simplifies greatly in the CGC. A few examples are discussed with emphasis on open problems.
Evidence of Light-by-Light Scattering with Real Photons
Boege, J.
2003-12-19
In a new experiment at the Stanford Linear Accelerator Center, heretofore untested aspects of high field strength Quantum Electrodynamics were probed. Bunches of 46.6 GeV electrons available in the Final Focus Test Beam line were brought into collision with terawatt pulses of either 1.17 eV or 2.34 eV photons from a Nd:Glass laser system. Several physical process were investigated. This thesis describes the production of electron-positron pairs in photon-photon collisions. This is particularly interesting since it represents the generation of massive particles from massless particles. The bunch/pulse trajectories are approximately antiparallel. Due to the head-on nature of the collisions, the electrons see, in their rest frame, a transformed laser pulse electric field amplitude {bar {var_epsilon}}{sub 0} = 2{gamma}{var_epsilon}{sub 0}, and so a lab frame field {var_epsilon} {approx} 1.0 x 10{sup 11} V/cm corresponds to a 46.6 GeV electron rest frame field {bar {var_epsilon}}{sub 0} {approx} 1.8 x 10{sup 16} V/cm. For electric field amplitudes of this magnitude, perturbative QED is of limited validity. Multiphoton processes dominate collision results. The geometry of the experiments was such that any pairs produced came into existence in the midst of the electron/photon collision region. The electron from a produced pair was indistinguishable from the recoil electrons generated via other processes in collisions. Detecting the positron, then, was the only way to observe pair production. In data accumulated during the September 1994 Final Focus Test Beam run, positrons in excess of background were detected. Positron signals were extracted from an ensemble of data collected during electron bunch/laser pulse collisions. Calorimeter readings were used to measure the energy, and reconstruct the transverse displacement of positrons propagating downstream from the bunch/pulse collision region. Field maps of permanent magnets located downstream of the collision region but upstream of the calorimeter were used in implementing a cut of off-momentum background positrons. Effects of various cuts and the characteristics of the detected positrons are presented. Statistically significant positron production above background is reported. The rate for e{sup +} production is calculated, and the energy spectrum of the candidates is shown. The agreement of simulation results with these observations is described.
Virtual Hadronic and Leptonic Contributions to Bhabha Scattering
Actis, Stefano; Gluza, Janusz; Riemann, Tord
2007-01-01
Using dispersion relations, we derive the complete virtual QED contributions to Bhabha scattering due to vacuum polarization effects in photon propagation. We apply our result to hadronic corrections and to heavy lepton and top quark loop insertions. We give the first complete estimate of their net numerical effects for both small and large angle scattering at typical beam energies of meson factories, LEP, and the ILC. The effects turn out to be smaller, in most cases, than those corresponding to electron loop insertions, but stay, with amounts of typically one per mille, of relevance for precision experiments. Hadronic corrections themselves are typically about 2-3 times larger than those of intermediate muon pairs (the largest heavy leptonic terms).
QCD factorization for forward hadron scattering at high energies
Ermolaev, B I; Troyan, S I
2011-01-01
We consider the QCD factorization of DIS structure functions at small x and amplitudes of 2->2 -hadronic forward scattering at high energy. We show that both collinear and k_T-factorization for these processes can be obtained approximately as reductions of a more general (totally unintegrated) form of the factorization. The requirement of ultraviolet and infrared stability of the factorization convolutions allows us to obtain restrictions on the fits for the parton distributions in k_T- and collinear factorization.
Hadronic scattering amplitudes medium-energy constraints on asymptotic behaviour
Cudell, J R; Gauron, P; Kang, K; Kuyanov, Yu V; Lugovsky, S B; Nicolescu, Basarab; Tkachenko, N P; Kuyanov, Yu. V.
2002-01-01
We consider several classes of analytic parametrisations of hadronic scattering amplitudes, and compare their predictions to all available forward data (p p, pbar p, pi p, K p, gamma p, gamma gamma, Sigma p). Although these parametrisations are very close for sqrt(s) > 9 GeV, it turns out that they differ markedly at low energy, where a universal pomeron term ~log^2(s) enables one to extend the fit down to sqrt(s)=4 GeV.
Virtual hadronic and leptonic contributions to Bhabha scattering.
Actis, Stefano; Czakon, Michał; Gluza, Janusz; Riemann, Tord
2008-04-04
Using dispersion relations, we derive the complete virtual QED contributions to Bhabha scattering due to vacuum polarization effects. We apply our result to hadronic corrections and to heavy lepton and top quark loop insertions. We give the first complete estimate of their net numerical effects for both small and large angle scattering at typical beam energies of meson factories, the CERN Large Electron-Positron Collider, and the International Linear Collider. With a typical amount of 1-3 per mil they are of relevance for precision experiments.
Study of Hadron Scattering Using an Asymmetric Box
Liu, C; Li, X; Meng, G Z; Feng, X; Gong, M; He, S; Chen, Y; Li, G; Liu, Y B; Meng, X F; Ma, J P; Zhang, J B
2007-01-01
We propose to study hadron-hadron scattering using lattice QCD in an asymmetric box which allows one to access more non-degenerate low-momentum modes for a given volume. The conventional L\\"{u}scher's formula applicable in a symmetric box is modified accordingly. To illustrate the feasibility of this approach, pion-pion elastic scattering phase shifts in the I=2, J=0 channel are calculated within quenched approximation using improved gauge and Wilson fermion actions on anisotropic lattices in an asymmetric box. After the chiral and continuum extrapolation, we find that our quenched results for the scattering phase shifts in this channel are consistent with the experimental data when the three-momentum of the pion is below 300MeV. Agreement is also found when compared with previous theoretical results from lattice and other means. Moreover, with the usage of asymmetric volume, we are able to compute the scattering phases in the low-momentum range (pion three momentum less than about 350MeV in the center of mas...
High-energy hadron-hadron (dipole-dipole) scattering from lattice QCD
Giordano, M
2008-01-01
In this paper the problem of the high-energy hadron-hadron (dipole-dipole) scattering is approached (for the first time) from the point of view of lattice QCD, by means of Monte Carlo numerical simulations. In the first part, we give a brief review of how high-energy scattering amplitudes can be reconstructed, using a functional integral approach, in terms of certain correlation functions of two Wilson loops and we also briefly recall some relevant analyticity and crossing-symmetry properties of these loop-loop correlation functions, when going from Euclidean to Minkowskian theory. In the second part, we shall see how these (Euclidean) loop-loop correlation functions can be evaluated in lattice QCD and we shall compare our numerical results with some nonperturbative analytical estimates appeared in the literature, discussing in particular the question of the analytic continuation from Euclidean to Minkowskian theory and its relation to the still unsolved problem of the asymptotic s-dependence of the hadron-ha...
Hadronic weak charges and parity-violating forward Compton scattering
Gorchtein, Mikhail; Spiesberger, Hubert
2016-11-01
Background: Parity-violating elastic electron-nucleon scattering at low momentum transfer allows one to access the nucleon's weak charge, the vector coupling of the Z -boson to the nucleon. In the Standard Model and at tree level, the weak charge of the proton is related to the weak mixing angle and accidentally suppressed, QWp ,tree=1 -4 sin2θW≈0.07 . Modern experiments aim at extracting QWp at ˜1 % accuracy. Similarly, parity nonconservation in atoms allows to access the weak charge of atomic nuclei. Purpose: We consider a novel class of radiative corrections due to the exchange of two photons, with parity violation in the hadronic/nuclear system. These corrections are prone to long-range interactions and may affect the extraction of sin2θW from the experimental data at the relevant level of precision. Methods: The two-photon exchange contribution to the parity-violating electron-proton scattering amplitude is studied in the framework of forward dispersion relations. We address the general properties of the parity-violating forward Compton scattering amplitude and use relativistic chiral perturbation theory to provide the first field-theoretical proof that it obeys a superconvergence relation. Results: We show that the significance of this new correction increases with the beam energy in parity-violating electron scattering, but the superconvergence relation protects the formal definition of the weak charge as a limit at zero-momentum transfer and zero energy. We evaluate the new correction in a hadronic model with pion loops and the Δ (1232 ) resonance, supplemented with a high-energy contribution. For the kinematic conditions of existing and upcoming experiments we show that two-photon exchange corrections with hadronic or nuclear parity violation do not pose a problem for the interpretation of the data in terms of the weak mixing angle at the present level of accuracy. Conclusions: Two-photon exchange in presence of hadronic or nuclear parity violation
QCD factorization for forward hadron scattering at high energies
Ermolaev, B.I. [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Greco, M. [University Roma Tre, Department of Physics, Rome (Italy); INFN, Rome (Italy); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)
2012-03-15
We consider the QCD factorization of DIS structure functions at small x and amplitudes of 2{yields}2 hadronic forward scattering at high energy. We show that both collinear and k{sub T} -factorization for these processes can be obtained approximately as reductions of a more general (totally unintegrated) form of the factorization. The requirement of ultraviolet and infrared stability of the factorization convolutions allows us to obtain restrictions on the fits for the parton distributions in k{sub T} - and collinear factorization. (orig.)
Hadronic weak charges and parity-violating forward Compton scattering
Gorchtein, Mikhail
2016-01-01
Parity-violating elastic electron-nucleon scattering at low momentum transfer allows one to access the nucleon's weak charge, the vector coupling of the $Z$-boson to the nucleon. In the Standard Model and at tree level, the weak charge of the proton is related to the weak mixing angle and accidentally suppressed, $Q_W^{p,\\,{\\rm tree}}=1-4\\sin^2\\theta_W\\approx0.07$. Modern experiments aim at extracting $Q_W^p$ at $\\sim1\\%$ accuracy. Similarly, parity non-conservation in atoms allows to access the weak charge of atomic nuclei. We consider a novel class of radiative corrections, an exchange of two photons with parity violation in the hadronic/nuclear system. These corrections may affect the extraction of $\\sin^2\\theta_W$ from the experimental data at the relevant level of precision because they are affected by long-range interactions similar to other parity-violating radiative corrections, such as, e.g., the $\\gamma Z$-exchange, which has obtained much attention recently. We show that the significance of this ne...
Measurement of the hadronic final state in deep inelastic scattering at HERA
Ahmed, T.; Andreev, V.; Andrieu, B.; Arpagaus, M.; Babaev, A.; Baerwolff, H.; Ban, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Beck, G.A.; Beck, H.P.; Behrend, H.J.; Belousov, A.; Berger, C.; Bergstein, H.; Bernardi, G.; Bernet, R.; Berthon, U.; Bertrand-Coremans, G.; Besancon, M.; Biddulph, P.; Binder, E.; Bizot, J.C.; Blobel, V.; Borras, K.; Bosetti, P.C.; Boudry, V.; Bourdarios, C.; Brasse, F.; Braun, U.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Buerger, J.; Buesser, F.W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A.J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A.B.; Colombo, M.; Coughlan, J.A.; Courau, A.; Coutures, C.; Cozzika, G.; Criegee, L.; Cvach, J.; Dainton, J.B.; Danilov, M.; Dann, A.W.E.; Dau, W.D.; David, M.; Deffur, E.; Delcourt, B.; DelBuono, L.; Devel, M.; DeRoeck, A.; Dingus, P.; Dollfus, C.; Dowell, J.D.; Dreis, H.B.; Drescher, A.; Duboc, J.; Duellmann, D.; Duenger, O.; Duhm, H.; Eberle, M.; Ebert, J.; Ebert, T.R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellis, N.N.; Ellison, R.J.; Elsen, E.; Erdmann, M.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Feng, Y.; Fensome, I.F.; Ferencei, J.; Ferrarotto, F.; Flauger, W.; Fleischer, M.; Fluegge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formanek, J.; Foster, J.M.; Franke, G.; Fretwurst, E.; Fuhrmann, P.; Gabathuler, E.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gellrich, A.; Gennis, M.; Gensch, U.; Genzel, H.; Gerhards, R.; Gillespie, D.; Godfrey, L.; Goerlach, U.; Goerlich, L.; Goldberg, M.; Goodall, A.M.; Gorelov, I.; Goritchev, P.; Grab, C.; Graessler, H.; Graessler, R.; Greenshaw, T.; Greif, H.; Grindhammer, G.; Gruber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Handschuh, D.; Hanlon, E.M.; Hapke, M.; Harjes, J.; Hartz, P.; Haydar, R.; Haynes, W.J.; Heatherington, J.; Hedberg, V.; Hedgecock, R.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herma, R.; Herynek, I.; H1 Collab...
1992-11-01
We report on the first experimental study of the hadronic final state in deep inelastic electron-proton scattering with the H1 detector at HERA. Energy flow and transverse momentum characteristics are measured and presented both in the laboratory and in the hadronic center of mass frames. Comparison is made with QCD models distinguished by their different treatment of parton emission. (orig.).
Scattering and stopping of hadrons in nuclear matter
Strugalski, Z.
1985-01-01
It was observed, in the 180 litre xenon bubble chamber, that when hadrons with kinetic energy higher than the pion production threshold fall on a layer of nuclear matter - on an atomic nucleus in other words - in many cases they can pass through it without causing particles production but they are deflected through some deflection angles; if the energy is lower than a few GeV and the nuclear matter layer is thick enough, the hadrons can be stopped in it. The amount of the deflection at a given incident hadron energy varies with the way the hadron strikes the atomic nucleus; the probability of the occurrence of stopping depends on the incident hadron identity and energy, and on the way the hadron passed through the nucleus, as well.
Analytic structure of ϕ{sup 4} theory using light-by-light sum rules
Pauk, V. [PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, Mainz (Germany); Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz (Germany); Department of Physics, Taras Shevchenko National University of Kyiv (Ukraine); Pascalutsa, V. [PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, Mainz (Germany); Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz (Germany); Vanderhaeghen, M., E-mail: marcvdh@kph.uni-mainz.de [PRISMA Cluster of Excellence, Johannes Gutenberg-Universität, Mainz (Germany); Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz (Germany)
2013-10-01
We apply a sum rule for the forward light-by-light scattering process within the context of the ϕ{sup 4} quantum field theory. As a consequence of the sum rule a stringent causality criterion is presented and the resulting constraints are studied within a particular resummation of graphs. Such resummation is demonstrated to be consistent with the sum rule to all orders of perturbation theory. We furthermore show the appearance of particular non-perturbative solutions within such approximation to be a necessary requirement of the sum rule. For a range of values of the coupling constant, these solutions manifest themselves as a physical bound state and a K-matrix pole. For another domain however, they appear as tachyon solutions, showing the inconsistency of the approximation in this region.
Alekseev, M G; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Bravar, A; Bressan, A; Brona, G; Burtin, E; Bussa, M P; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Colantoni, M; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Diaz, V; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Efremov, A; El Alaoui, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M Jr; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmüller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Heß, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d’Hose, N; Ilgner, C; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuß, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konopka, R; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kowalik, K; Krämer, M; Kral, A; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Le Goff, J M; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Maggiora, M; Magnon, A; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Mutter, A; Nagaytsev, A; Nagel, T; Nassalski, J; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pawlukiewicz-Kaminska, B; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Robinet, F; Rocco, E; Rondio, E; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Santos, H; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmitt, L; Schopferer, S; Schröder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Takekawa, S; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Virius, M; Vlassov, N V; Vossen, A; Weitzel, Q; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhao, J; Zhuravlev, N; Zvyagin, A
2010-01-01
Azimuthal asymmetries in semi-inclusive production of positive (h^+) and negative hadrons (h^-) have been measured by scattering 160 GeV muons off longitudinally polarised deuterons at CERN. The asymmetries were decomposed in several terms according to their expected modulation in the azimuthal angle phi of the outgoing hadron. Each term receives contributions from one or several spin and transverse-momentum-dependent parton distribution and fragmentation functions. The amplitudes of all phi-modulation terms of the hadron asymmetries integrated over the kinematic variables are found to be consistent with zero within statistical errors, while the constant terms are nonzero and equal for h^+ and h^- within the statistical errors. The dependencies of the phi-modulated terms versus the Bjorken momentum fraction x, the hadron fractional momentum z, and the hadron transverse momentum p_h^T were studied. The x dependence of the constant terms for both positive and negative hadrons is in agreement with the longitudin...
SONG Li-Hua; LIU Na; DUAN Chun-Gui
2013-01-01
Hadron production in lepton-nucleus deep inelastic scattering is studied in a quark energy loss model.The leading-order computations for hadron multiplicity ratios are presented and compared with the selected HERMES pions production data with the quark hadronization occurring outside the nucleus by means of the hadron formation time.It is found that the obtained energy loss per unit length is 0.440±0.013 GeV/fm for an outgoing quark by the global fit.It is confirmed that the atomic mass number dependence of hadron attenuation is theoretically and experimentally in good agreement with the A2/3 power law for quark hadronization occurring outside the nucleus.
Time reversal odd fragmentation functions in semi-inclusive deep inelastic lepton-hadron scattering
Mulders, P.J. [National Inst. for Nuclear Physics and High Energy Physics, Amsterdam (Netherlands); Levelt, J. [Univ. of Erlangen-Nuernberg (Germany)
1994-04-01
In semi-inclusive scattering of polarized leptons from unpolarized hadrons, one can measure a time reversal odd structure function. It shows up as a sin({phi}) asymmetry of the produced hadrons. This asymmetry can be expressed as the product of a twist-three {open_quotes}hadron {r_arrow} quark{close_quotes} profile function and a time reversal odd twist-two {open_quotes}quark {r_arrow} hadron{close_quotes} fragmentation function. This fragmentation function can only be measured for nonzero transverse momenta of the produced hadron. Its appearance is a consequence of final state interactions between the produced hadron and the rest of the final state.
Hadronic sizes and observables in high-energy scattering
Ferreira, E; Ferreira, Erasmo; Pereira, Flávio
1997-01-01
The functional dependence of the high-energy observables of total cross section and slope parameter on the sizes of the colliding hadrons predicted by the model of the stochastic vacuum and the corresponding relations used in the geometric model of Povh and Hüfner are confronted with the experimental data. The existence of a universal term in the expression for the slope, due purely to vacuum effects, independent of the energy and of the particular hadronic system, is investigated. Accounting for the two independent correlation functions of the QCD vacuum, we improve the simple and consistent description given by the model of the stochastic vacuum to the high-energy pp and pbar-p data, with a new determination of parameters of non-perturbative QCD. The increase of the hadronic radii with the energy accounts for the energy dependence of the observables.
Hadron Formation in Deep-Inelastic Positron Scattering in a Nuclear Environment
Airapetian, A; Akushevich, I V; Amarian, M; Arrington, J; Aschenauer, E C; Avakian, H; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Bains, B; Baumgarten, C; Beckmann, M; Belostotskii, S; Bernreuther, S; Bianchi, N; Böttcher, Helmut B; Borisov, A; Bouwhuis, M; Brack, J; Brauksiepe, S; Braun, B; Brückner, W; Brüll, A; Budz, P; Bulten, H J; Capitani, G P; Carter, P; Chumney, P; Cisbani, E; Court, G R; Dalpiaz, P F; De Leo, R; De Nardo, L; De Sanctis, E; De Schepper, D; Devitsin, E G; De Witt-Huberts, P K A; Di Nezza, P; Dzhordzhadze, V; Düren, M; Dvoredsky, A P; Elbakian, G M; Ely, J; Fantoni, A; Feshchenko, A; Felawka, L; Ferro-Luzzi, M; Fiedler, K; Filippone, B W; Fischer, H; Fox, B; Franz, J; Frullani, S; Gärber, Y; Garibaldi, F; Garutti, E; Gavrilov, G E; Karibian, V; Golendukhin, A; Graw, G; Grebenyuk, O; Green, P W; Greeniaus, L G; Gute, A; Haeberli, W; Hartig, M; Hasch, D; Heesbeen, D; Heinsius, F H; Henoch, M; Hertenberger, R; Hesselink, W H A; Hofman, G J; Holler, Y; Holt, R J; Hommez, B; Iarygin, G; Iodice, M; Izotov, A A; Jackson, H E; Jgoun, A; Jung, P; Kaiser, R; Kanesaka, J; Kinney, E R; Kiselev, A; Kitching, P; Kobayashi, H; Koch, N; Königsmann, K C; Kolster, H; Korotkov, V A; Kotik, E; Kozlov, V; Krivokhizhin, V G; Kyle, G S; Lagamba, L; Laziev, A; Lenisa, P; Lindemann, T; Lorenzon, W; Makins, N C R; Martin, J W; Marukyan, H O; Masoli, F; McAndrew, M; McIlhany, K; McKeown, R D; Meissner, F; Menden, F; Metz, A; Meyners, N; Miklukho, O; Miller, C A; Milner, R; Muccifora, V; Mussa, R; Nagaitsev, A P; Nappi, E; Naryshkin, Yu; Nass, A; Negodaeva, K; Nowak, Wolf-Dieter; Oganesyan, K A; O'Neill, T G; Openshaw, R; Ouyang, J; Owen, B R; Pate, S F; Potashov, S Yu; Potterveld, D H; Rakness, G; Rappoport, V; Redwine, R P; Reggiani, D; Reolon, A R; Ristinen, R; Rith, K; Robinson, D; Rostomyan, A; Ruh, M; Ryckbosch, D; Sakemi, Y; Sato, T; Savin, I A; Scarlett, C; Schäfer, A; Schill, C; Schmidt, F; Schnell, G; Schüler, K P; Schwind, A; Seibert, J; Seitz, B; Shibata, T A; Shin, T; Shutov, V B; Simani, M C; Simon, A; Sinram, K; Steffens, E; Steijger, J J M; Stewart, J; Stösslein, U; Suetsugu, K; Sutter, M F; Taroian, S P; Terkulov, A R; Tessarin, S; Thomas, E; Tipton, B; Tytgat, M; Urciuoli, G M; Van den Brand, J F J; van der Steenhoven, G; Van de Vyver, R; Van Hunen, J J; Vetterli, Martin C; Vikhrov, V V; Vincter, M G; Visser, J; Volk, E; Weiskopf, C; Wendland, J; Wilbert, J; Wise, T; Yen, S; Yoneyama, S; Zohrabyan, H G
2001-01-01
The influence of the nuclear medium on the production of charged hadrons in semi-inclusive deep-inelastic scattering has been studied by the HERMES experiment at DESY using a 27.5 GeV positron beam. The differential multiplicity of charged hadrons and identified charged pions from nitrogen relative to that from deuterium has been measured as a function of the virtual photon energy \
Gashi, A; Oades, G C; Rasche, G; Woolcock, W S
1999-01-01
We calculate for the s-, p(1/2)- and p(3/2)-waves the electromagnetic corrections which must be subtracted from the nuclear phase shifts obtained from the analysis of low energy pi+ p elastic scattering data, in order to obtain hadronic phase shifts. The calculation uses relativised Schroedinger equations containing the sum of an electromagnetic potential and an effective hadronic potential. We compare our results with those of previous calculations and qualitatively estimate the uncertainties in the corrections.
Forward hard scattering in hadron-hadron collisions in the energy region approximately 10/sup 14/ eV
Shibata, T
1980-01-01
On the basis of the quark-parton picture, the author derives analytically the cross sections for production of hadrons and gamma rays through forward hard scattering in hadron-hadron collisions in the energy region approximately 10/sup 14/ eV. The author takes account of transverse motions both of partons inside proton (p/sub T/) /sub p to q/, and of hadrons fragmented from quark (gluon) (k/sub T/) /sub 1 to h/. In addition, the effects of scale violation are taken into account. The numerical results thus obtained are compared with cosmic-ray data in the energy region approximately 10/sup 14/ eV, observed at Mt. Chacaltaya by Japan-Brazil emulsion-chamber collaboration. After eliminating carefully the bias effect inherent there, it was found that the theoretical calculations reproduced surprisingly well the cosmic-ray data on large p/sub T gamma / not only in the shape, but also in the absolute value. The production cross sections of pi /sup +/ and K/sup +/ expected from the forthcoming p-p colliding beams wi...
Hadronization in semi-inclusive deep-inelastic scattering on nuclei
Airapetian, A
2007-01-01
A series of semi-inclusive deep-inelastic scattering measurements on deuterium, helium, neon, krypton, and xenon targets has been performed in order to study hadronization. The data were collected with the HERMES detector at the DESY laboratory using a 27.6 GeV positron or electron beam. Hadron multiplicities on nucleus A relative to those on the deuteron, R_A^h, are presented for various hadrons (\\pi^+, \\pi^-, \\pi^0, K^+, K^-, p, and \\bar{p}) as a function of the virtual-photon energy \
Virtual hadronic and heavy-fermion O(α2) corrections to Bhabha scattering
Actis, Stefano; Czakon, Michał; Gluza, Janusz; Riemann, Tord
2008-10-01
Effects of vacuum polarization by hadronic and heavy-fermion insertions were the last unknown two-loop QED corrections to high-energy Bhabha scattering and have been announced in [S. Actis, M. Czakon, J. Gluza, and T. Riemann, Phys. Rev. Lett. 100, 131602 (2008).PRLTAO0031-900710.1103/PhysRevLett.100.131602]. Here we describe the corrections in detail and explore their numerical influence. The hadronic contributions to the virtual O(α2) QED corrections to the Bhabha-scattering cross section are evaluated using dispersion relations and computing the convolution of hadronic data with perturbatively calculated kernel functions. The technique of dispersion integrals is also employed to derive the virtual O(α2) corrections generated by muon-, tau-, and top-quark loops in the small electron-mass limit for arbitrary values of the internal-fermion masses. At a meson factory with 1 GeV center-of-mass energy the complete effect of hadronic and heavy-fermion corrections amounts to less than 0.5 per mille and reaches, at 10 GeV, up to about 2 per mille. At the Z resonance it amounts to 2.3 per mille at 3 degrees; overall, hadronic corrections are less than 4 per mille. For ILC energies (500 GeV or above), the combined effect of hadrons and heavy fermions becomes 6 per mille at 3 degrees; hadrons contribute less than 20 per mille in the whole angular region.
Hadronic Interactions In Large N_c Qcd: Studies Of Excited Baryon Decays And Scattering Relations
Dakin, D C
2005-01-01
Decays and scattering events are two of the principal ways to learn about particle physics. Decays, in which a particle spontaneously disintegrates and we examine the debris, are quantified by a decay width. The decay of a resonance state provides information about the structure of the state and the interaction between its components. In particular, we can learn about the dynamics of quarks and gluons by studying the decay of hadrons. Scattering, in which particles are directed towards each other and interact, are quantified by partial-wave amplitudes. These amplitudes give us information about the interaction between the scattered particles. In principle, all of hadronic physics follows from quantum chromodynamics (QCD), which describes the interactions of quarks and gluons. However, the techniques of perturbation theory are not applicable to QCD at low energy because the strong coupling constant (the natural choice for the expansion parameter) is large at the energy scale of hadronic physics. A powerful mod...
Remarks on higher-order hadronic corrections to the muon g−2
Colangelo, Gilberto; Hoferichter, Martin; Nyffeler, Andreas [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Passera, Massimo [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Istituto Nazionale Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Stoffer, Peter [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2014-07-30
Recently, it was shown that insertions of hadronic vacuum polarization at O(α{sup 4}) generate non-negligible effects in the calculation of the anomalous magnetic moment of the muon. This result raises the question if other hadronic diagrams at this order might become relevant for the next round of g−2 measurements as well. In this note we show that a potentially enhanced such contribution, hadronic light-by-light scattering in combination with electron vacuum polarization, is already sufficiently suppressed.
A Center for the Analyses of Electromagnetic and Hadronic Scattering
Briscoe, William [George Washington University, Washington, DC (United States)
2017-05-24
The GWU Institute for Nuclear Studies (GWINS) continued activities, and began new initiatives, within the context of a program of Hadronic Physics. The intense program of meson photoproduction measurements has resulted in an extensive set of observables that includes not only cross sections, but also polarization and double-polarization observables. Analysis of these new data contributes toward a resolution of a long-standing issue in baryon spectroscopy, namely, the “missing resonance" problem. The study of baryons containing two and three strange quarks (the Ξ and Ω states, respectively) has begun in order to solve this problem.
Gashi, A; Oades, G C; Rasche, G; Woolcock, W S
2001-01-01
We calculate the s and p-wave electromagnetic corrections which must be subtracted from the nuclear phase shifts obtained from the analysis of low energy pi+p elastic scattering data, in order to obtain hadronic phase shifts. We compare our results with earlier calculations and estimate the uncertainties in the corrections.
Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Buchele, M; Chang, W-C; Chatterjee, C; Chiosso, M; Choi, I; Chung, S-U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grabmuller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d’Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Jorg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kramer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lian, Y-S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marianski, B; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofanov, E; Mitrofanov, N; Miyachi, Y; Nagaytsev, A; Nerling, F; Neyret, D; Novy, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pesek, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Roskot, M; Rossiyskaya, N S; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schonning, K; Seder, E; Selyunin, A; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tasevsky, M; Tessaro, S; Tessarotto, F; Thibaud, F; Thiel, A; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Vondra, J; Wallner, S; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M; Zink, A
2016-01-01
Single hadron azimuthal asymmetries in the cross sections of positive and negative hadron production in muon semi-inclusive deep inelastic scattering off longitudinally polarised deuterons are determined using the 2006 COMPASS data and also all deuteron COMPASS data. For each hadron charge, the dependence of the azimuthal asymmetry on the hadron azimuthal angle $\\phi$ is obtained by means of a five-parameter fitting function that besides a $\\phi$-independent term includes four modulations predicted by theory: $\\sin\\phi$, $\\sin 2 \\phi$, $\\sin 3\\phi$ and $\\cos\\phi$. The amplitudes of the five terms have been first extracted for the data integrated over all kinematic variables. In further fits, the $\\phi$-dependence is determined as a function of one of three kinematic variables (Bjorken-$x$, fractional energy of virtual photon taken by the outgoing hadron and hadron transverse momentum), while disregarding the other two. Except the $\\phi$-independent term, all the modulation amplitudes are very small, and no cl...
A New Optimal Bound on Logarithmic Slope of Elastic Hadron-Hadron Scattering
Ion, D B
2005-01-01
In this paper we prove a new optimal bound on the logarithmic slope of the elastic slope when: elastic cross section and differential cross sections in forward and backward directions are known from experimental data. The results on the experimental tests of this new optimal bound are presented in Sect. 3 for the principal meson-nucleon elastic scatterings: pion-nucleon, kaon-nucleon at all available energies. Then we have shown that the saturation of this optimal bound is observed with high accuracy practically at all available energies in meson-nucleon scattering.
Time-ordering of quark multi-scattering processes in hadron-proton scattering at high energy
Hassan, M A; El-Din, I M A T
2002-01-01
In the framework of non-relativistic Glauber theory with the quark model, the time-ordering of quark multi-scattering processes in hadron-proton elastic scattering at FNAL and CERN-ISR ranges of energy is considered. The time-ordering effect in the Glauber approximation with the geometrical scaling property of hadron reactions is presented. The phase variation effect, as suggested by Franco, is also discussed. A cloud effect is taken into account to obtain a good fit with the experimental data of elastic scattering differential cross section in the forward direction. The results obtained for proton-proton scattering at 200, 290, 500, 1070 and 1500 GeV/c lead us to neglect the phase variation effect in this range of energy. At the same time, the time-ordering of quark multi-scattering processes plays an important role in obtaining a good fit in the range of momentum transferred squared where q/sup 2/ > 3.5 (GeV/c) /sup 2/. In the case of pi-proton elastic scattering at 200 GeV/c, where the phase variation lead...
Electromagnetic corrections to the hadronic phase shifts in low energy pi sup + p elastic scattering
Gashi, A; Oades, G C; Rasche, G; Woolcock, W S
2001-01-01
We calculate for the s-, p sub 1 sub / sub 2 - and p sub 3 sub / sub 2 -waves the electromagnetic corrections which must be subtracted from the nuclear phase shifts obtained from the analysis of low-energy pi sup + p elastic scattering data, in order to obtain hadronic phase shifts. The calculation uses relativised Schroedinger equations containing the sum of an electromagnetic potential and an effective hadronic potential. We compare our results with those of previous calculations and estimate the uncertainties in the corrections.
Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering
Adolph, C; Alexakhin, V Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dhara, L; Donskov, S V; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; jr., M.Finger; Fischer, H; Franco, C; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu.A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Konigsmann, K; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kramer, M; Kroumchtein, Z V; Kunne, F.; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu.V; Moinester, M A; Morreale, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S.; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S.; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C.; Schluter, T; Schmidt, K; Schmitt, L; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O.Yu; Silva, L; Sinha, L; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Wolbeek, J.Ter; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Vossen, A; Wang, L; Windmolders, R; Wislicki, W; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A
2012-01-01
First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.
Virtual Hadronic and Heavy-Fermion O(alpha^2) Corrections to Bhabha Scattering
Actis, Stefano; Gluza, Janusz; Riemann, Tord
2008-01-01
Effects of vacuum polarization by hadronic and heavy-fermion insertions were the last unknown two-loop QED corrections to high-energy Bhabha scattering and have been first announced in \\cite{Actis:2007fs}. Here we describe the corrections in detail and explore their numerical influence. The hadronic contributions to the virtual O(alpha^2) QED corrections to the Bhabha-scattering cross-section are evaluated using dispersion relations and computing the convolution of hadronic data with perturbatively calculated kernel functions. The technique of dispersion integrals is also employed to derive the virtual O(alpha^2) corrections generated by muon-, tau- and top-quark loops in the small electron-mass limit for arbitrary values of the internal-fermion masses. At a meson factory with 1 GeV center-of-mass energy the complete effect of hadronic and heavy-fermion corrections amounts to less than 0.5 per mille and reaches, at 10 GeV, up to about 2 per mille. At the Z resonance it amounts to 2.3 per mille at 3 degrees; o...
Study of Shadowing and Hadron Production in High Energy $\\mu$ Scattering Using Nuclear Targets
2002-01-01
The experiment is based on the full EMC apparatus (Expts. NA2/NA9) and will in addition use a system of fine hodoscopes to trigger on scattered muons at very small angle. The trajectory of these scattered muons will be measured in proportional wire chambers which are live also in the beam region. \\\\ \\\\ The basic aim of the experiment are twofold: \\item a) Study of the components, point-like and hadron-like of the photon through a study of shadowing. This involves the measurement of the total virtual photon cross section as a function of its total mass squared (Q|2) and the Bjorken invariant x^b^J on a series of nuclear targets. Since two essential nuclei are H|2 and D|2, information will also be obtained on the proton and deuteron structure functions for very low x^b^J values. \\end{enumerate} \\item b) By examining the change of the distribution of hadrons produced by muon scattering on nuclei, information can be obtained on the evolution of the elementary quark system into the observed hadrons. Under certain ...
QED radiative corrections for elastic e (μ) p scattering in hadronic variables
Akhundov, A. A.; Alharbi, H. H.; Alhendi, H. A.
2004-08-01
A numerical analysis of QED radiative corrections for elastic e (μ) p scattering in hadronic variables at energies of the current experiment at JLab is performed. The explicit formulas from the review of Akhundov et al. [Fortschr. Phys.44, 373 (1996)] resulting from the integration over the phase space of leptonic variables plus photon are used to obtain the values of the cross sections and the radiative correction factor for unpolarized lepton-proton scattering. Our numerical results agree with the corresponding results arising from the formulas of Afanasev et al. [Phys. Lett. B514, 269 (2001); Phys. Rev. D64, 113009 (2001)].
Measurement of Hadron Multiplicities in Deep Inelastic Muon-Nucleon Scattering
du Fresne von Hohenesche, Nicolas
2016-06-02
In deep-inelastic muon-nucleon scattering, a single quark can be ejected out of the nucleon by the absorption of a high-energy photon. Such a free isolated quark has never been observed in nature. In quantum chromodynamics (QCD), coloured objects, such as a single quark, create additional quark anti-quark pairs out of the colour field and the final state comprises a jet of hadrons. The hadronisation process can be described by fragmentation functions D_q^h, the probability that a quark with the flavour q turns into a hadron of the type h. Similar to the parton distribution function, the fragmentation functions are fundamental, universal and process-independent quantities. The fragmentation functions are measured with the COM- PASS spectrometer in muon-nucleon scattering. The observables are the hadron multiplicities M_h. The COMPASS experiment consists of a two-stage magnetic spectrometer located at the M2 beam line of the Super Proton Synchrotron at CERN and uses a polarised muon beam on a nuclear fixed targ...
Properties of hadronic final states in diffractive deep inelastic ep scattering at HERA
Chekanov, S; Krakauer, D A; Magill, S; Musgrave, B; Pellegrino, A; Repond, J; Yoshida, R; Mattingly, M C K; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cara Romeo, G; Cifarelli, Luisa; Cindolo, F; Contin, A; Corradi, M; De Pasquale, S; Giusti, P; Iacobucci, G; Levi, G; Margotti, A; Massam, Thomas; Nania, R; Palmonari, F; Pesci, A; Sar--, G; Zichichi, A; Aghuzumtsyan, G; Brock, I; Goers, S; Hartmann, H; Hilger, E; Irrgang, P; Jakob, H P; Kappes, A; Katz, U F; Kerger, R; Kind, O; Paul, E; Rautenberg, J; Schnurbusch, H; Stifutkin, A; Tandler, J; Voss, K C; Weber, A; Wieber, H; Bailey, D S; Brook, N H; Cole, J E; Heath, B; Foster G P; Heath, H F; Robins, S; Rodrigues, E; Scott, J; Tapper, R J; Wing, M; Capua, M; Mastroberardino, A; Schioppa, M; Susinno, G; Jeoung, H Y; Kim, J Y; Lee, J H; Lim, I T; Ma, K J; Pac, M Y; Caldwell, A; Helbich, M; Liu, W; Liu, X; Mellado, B; Paganis, S; Sampson, S; Schmidke, W B; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Klimek, K; Olkiewicz, K; Przybycien, M B; Stopa, P; Zawiejski, L; Bednarek, B; Grabowska-Bold, I; Jelen, K; Kisielewska, D; Kowal, A M; Kowal, M; Kowalski, T; Mindur, B; Rulikowska-Zarebska, E; Suszycki, L; Szuba, D; Szuba, J; Kotanski, Andrzej; Bauerdick, L A T; Behrens, U; Borras, K; Chiochia, V; Crittenden, James Arthur; Dannheim, D; Desler, K; Drews, G; Fox-Murphy, A; Fricke, U; Geiser, A; Göbel, F; Göttlicher, P; Graciani, R; Haas, T; Hain, W; Hartner, G F; Hebbel, K; Hillert, S; Koch, W; Kötz, U; Kowalski, H; Labes, H; Löhr, B; Mankel, R; Martens, J; Martínez, M; Milite, M; Moritz, M; Notz, D; Petrucci, M C; Polini, A; Schneekloth, U; Selonke, F; Stonjek, S; Wolf, G; Wollmer, U; Whitmore, J J; Wichmann, R; Youngman, C; Zeuner, W; Coldewey, C; López-Duran-Viani, A; Meyer, A; Schlenstedt, S; Barbagli, G; Gallo, E; Pelfer, P G; Bamberger, Andreas; Benen, A; Coppola, N; Markun, P; Raach, H; Wölfle, S; Bell, M; Bussey, Peter J; Doyle, A T; Glasman, C; Lee, S W; Lupi, A; McCance, G J; Saxon, D H; Skillicorn, Ian O; Bodmann, B; Gendner, N; Holm, U; Salehi, H; Wick, K; Yildirim, A; Ziegler, A; Carli, T; Garfagnini, A; Gialas, I; Lohrmann, E; Foudas, C; Goncalo, R; Long, K R; Metlica, F; Miller, D B; Tapper, A D; Walker, R; Cloth, P; Filges, D; Kuze, M; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Barakbaev, A N; Boos, E G; Pokrovskiy, N S; Zhautykov, B O; Ahn, S H; Lee, S B; Park, S K; Lim, H; Son, D; Barreiro, F; García, G; González, O; Labarga, L; Del Peso, J; Redondo, I; Terron, J; Vázquez, M; Barbi, M; Bertolin, A; Corriveau, F; Ochs, A; Padhi, S; Stairs, D G; Tsurugai, T; Antonov, A; Bashkirov, V; Danilov, P; Dolgoshein, B A; Gladkov, D; Sosnovtsev, V V; Suchkov, S; Dementiev, R K; Ermolov, P F; Golubkov, Yu A; Katkov, I I; Khein, L A; Korotkova, N A; Korzhavina, I A; Kuzmin, V A; Levchenko, B B; Lukina, O Yu; Proskuryakov, A S; Solomin, A N; Vlasov, N N; Zotkin, S A; Bokel, C; Engelen, J; Grijpink, S; Maddox, E; Koffeman, E; Kooijman, P; Schagen, S; Tassi, E; Tiecke, H G; Tuning, N; Velthuis, J J; Wiggers, L; De Wolf, E; Brümmer, N; Bylsma, B; Durkin, L S; Gilmore, J; Ginsburg, C M; Kim, C L; Ling, T Y; Boogert, S; Cooper-Sarkar, A M; Devenish, R C E; Ferrando, J; Grosse-Knetter, J; Matsushita, T; Rigby, M; Ruske, O; Sutton, M R; Walczak, R; Brugnera, R; Carlin, R; Dal Corso, F; Dusini, S; Limentani, S; Longhin, A; Parenti, A; Posocco, M; Stanco, L; Turcato, M; Adamczyk, L; Iannotti, L; Oh, B Y; Saull, P R B; Toothacker, W S; Iga, Y; D'Agostini, Giulio; Marini, G; Nigro, A; Cormack, C; Hart, J C; McCubbin, N A; Heusch, C A; Park, I H; Pavel, N; Abramowicz, H; Dagan, S; Gabareen, A; Kananov, S; Kreisel, A; Levy, A; Abe, T; Fusayasu, T; Kohno, T; Umemori, K; Yamashita, T; Hamatsu, R; Hirose, T; Inuzuka, M; Kitamura, S; Matsuzawa, K; Nishimura, T; Arneodo, M; Cartiglia, N; Cirio, R; Costa, M; Ferrero, M I; Maselli, S; Monaco, V; Peroni, C; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Bailey, D C; Fagerstroem, C P; Galea, R; Koop, T; Levman, G M; Martin, J F; Mirea, A; Sabetfakhri, A; Butterworth, J M; Gwenlan, C; Hall-Wilton, R; Hayes, M E; Heaphy, E A; Jones, T W; Lane, J B; Lightwood, M S; West, B J; Ciborowski, J; Ciesielski, R; Grzelak, G; Nowak, R J; Pawlak, J M; Smalska, B; Tymieniecka, T; Ukleja, J; Zakrzewski, J A; Adamus, M; Plucinsky, P P; Sztuk, J; Eisenberg, Y; Gladilin, L K; Hochman, D; Karshon, U; Breitweg, J; Chapin, D; Cross, R; Kcira, D; Lammers, S; Reeder, D D; Savin, A A; Smith, W H; Deshpande, A A; Dhawan, S; Straub, V W; Hughes P B; Bhadra, S; Catterall, C D; Frisken, W R; Khakzad, M; Menary, S R
2001-01-01
Characteristics of the hadronic final state of diffractive deep inelastic scattering events, ep -> eXp, were studied in the kinematic range 4 < M_X < 35 GeV, 4 < Q^2 < 150 GeV^2, 70 < W < 250 GeV and 0.0003 < x_pom < 0.03 with the ZEUS detector at HERA using an integrated luminosity of 13.8 pb^{-1}. The events were tagged by identifying the diffractively scattered proton using the leading proton spectrometer. The properties of the hadronic final state, X, were studied in its center-of-mass frame using thrust, thrust angle, sphericity, energy flow, transverse energy flow and ``seagull'' distributions. As the invariant mass of the system increases, the final state becomes more collimated, more aligned and more asymmetric in the average transverse momentum with respect to the direction of the virtual photon. Comparisons of the properties of the hadronic final state with predictions from various Monte Carlo model generators suggest that the final state is dominated by qqg states at the par...
Palm, M.; Benedikt, M.; Dorda, U.
2013-01-01
The field of hadron therapy is growing rapidly with several facilities currently being planned, under construction or in commissioning worldwide. In the “active scanning” irradiation technique, the target is irradiated using a narrow pencil beam that is scanned transversally over the target while the penetration depth is altered with the beam energy. Together, the target dose can thereby be conformed in all three dimensions to the shape of the tumor. For applications where a sharp lateral beam penumbra is required in order to spare critical organs from unwanted dose, beam size blowup due to scattering in on-line beam diagnostic monitors, air gaps and passive elements like the ripple filter must be minimized. This paper presents a model for transverse scattering of therapeutic hadron beams along arbitrary multislab geometries. The conventional scattering formulation, which is only applicable to a drift space, is extended to not only take beam optics into account, but also non-Gaussian transverse beam profiles which are typically obtained from the slow resonant extraction from a synchrotron. This work has been carried out during the design phase of the beam delivery system for MedAustron, an Austrian hadron therapy facility with first patient treatment planned for the end of 2015. Irradiation will be performed using active scanning with proton and carbon ion beams. As a direct application of the scattering model, design choices for the MedAustron proton gantry and treatment nozzles are evaluated with respect to the transverse beam profile at the focal point; in air and at the Bragg peak.
Beggio, P C; Valin, P
2000-01-01
Starting from a short range expansion of the inelastic overlap function, capable of describing quite well the elastic pp and $\\bar{p}p$ scattering data, we obtain extensions to the inelastic channel, through unitarity and an impact parameter approach. Based on geometrical arguments we infer some characteristics of the elementary hadronic process and this allows an excellent description of the inclusive multiplicity distributions in $pp$ and $\\bar{p}p$ collisions. With this approach we quantitatively correlate the violations of both geometrical and KNO scaling in an analytical way. The physical picture from both channels is that the geometrical evolution of the hadronic constituents is principally reponsible for the energy dependence of the physical quantities rather than the dynamical (elementary) interaction itself.
Hadron Transverse Momentum Distributions in Muon Deep Inelastic Scattering at 160 GeV/$c$
Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Andrieux, V; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Buchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthorl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Hoppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kuchinski, N; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Morreale, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W D; Nunes, A.S; Olshevsky, A G; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J F; Ramos, S; Reicherz, G; Rocco, E; Rodionov, V; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmiden, H; Schonning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M
2013-01-01
Multiplicities of charged hadrons produced in deep inelastic muon scattering off a $^6$LiD target have been measured as a function of the DIS variables $x_{Bj}$, $Q^2$, $W^2$ and the final state hadron variables $p_T$ and $z$. The $p_T^2$ distributions are fitted with a single exponential function at low values of $p_T^2$ to determine the dependence of $\\langle p_T^2 \\rangle$ on $x_{Bj}$, $Q^2$, $W^2$ and $z$. The $z$-dependence of $\\langle p_T^2 \\rangle$ is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, $\\langle k_{\\perp}^2 \\rangle$, as a function of $x_{Bj}$ and $Q^2$ in a leading order QCD parton model.
Adolph, C.; Alekseev, M.G.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger jr, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grube, B.; Guskov, A.; Guthorl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Hoppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kral, Z.; Kramer, M.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nunes, A.S.; Orlov, I.; Olshevsky, A.G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rychter, A.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, A.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Schott, M.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabeleski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.
2014-01-01
Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS muon beam at $160$ GeV/c and a $^6$LiD target. The amplitudes of the three azimuthal modulations $\\cos\\phi_h$, $\\cos2\\phi_h$ and $\\sin\\phi_h$ were obtained binning the data separately in each of the relevant kinematic variables $x$, $z$ or $p_T^{\\,h}$ and binning in a three-dimensional grid of these three variables. The amplitudes of the $\\cos \\phi_h$ and $\\cos 2\\phi_h$ modulations show strong kinematic dependencies both for positive and negative hadrons.
C. Adolph
2014-09-01
Full Text Available Spin-averaged asymmetries in the azimuthal distributions of positive and negative hadrons produced in deep inelastic scattering were measured using the CERN SPS longitudinally polarised muon beam at 160 GeV/c and a 6LiD target. The amplitudes of the three azimuthal modulations cosϕh, cos2ϕh and sinϕh were obtained binning the data separately in each of the relevant kinematic variables x, z or pTh and binning in a three-dimensional grid of these three variables. The amplitudes of the cosϕh and cos2ϕh modulations show strong kinematic dependencies both for positive and negative hadrons.
QED radiative corrections for elastic e(mu)p scattering in hadronic variables
Akhundov, A A; Alhendi, H A
2004-01-01
A numerical analysis of QED radiative corrections for elastic e(mu)p cattering in hadronic variables at energies of the current experiment at JLab is performed. The explicit formulas from the review of Akhundov et al. resulting from the integration over the phase space of leptonic variables plus photon are used to obtain the values of the cross sections and the radiative correction factor for unpolarized lepton-proton scattering. Our numerical results agree with the corresponding results arising from the formulas of Afanasev et al.
Improved input for multi-reaction hadronic analyses from elastic pion-nucleon scattering
Revier, Joseph; Roenchen, Deborah; Doering, Michael; Workman`, Ronald
2017-01-01
In the search for missing baryonic resonances, many analyses include data from a variety of pion and photon induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to non-linear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. The compilation of the necessary data to improve hadronic analyses is presented in detail. Supported by the U.S. Department of Energy Grant DE-SC0014133, contract DE-AC05-06OR23177, and by the National Science Foundation (CAREER grant No. 1452055, PIF Grant No. 1415459).
Hadron transverse momentum distributions in muon deep inelastic scattering at 160 GeV/c
Adolph, C.; Braun, C.; Eyrich, W.; Lehmann, A.; Schmidt, A. [Universitaet Erlangen-Nuernberg, Physikalisches Institut, Erlangen (Germany); Alekseev, M.G.; Birsa, R.; Bravar, A.; Dalla Torre, S.; Dasgupta, S.S.; Gobbo, B.; Sozzi, F.; Steiger, L.; Tessaro, S.; Tessarotto, F. [Trieste Section of INFN, Trieste (Italy); Alexakhin, V.Yu.; Alexeev, G.D.; Efremov, A.; Gavrichtchouk, O.P.; Gushterski, R.; Guskov, A.; Ivanshin, Yu.; Kroumchtein, Z.V.; Kuchinski, N.; Meshcheryakov, G.; Nagaytsev, A.; Olshevsky, A.G.; Rodionov, V.; Rossiyskaya, N.S.; Sapozhnikov, M.G.; Savin, I.A.; Shevchenko, O.Yu.; Zemlyanichkina, E.; Zhuravlev, N. [Joint Institute for Nuclear Research, Dubna, Moscow region (Russian Federation); Alexandrov, Yu.; Zavertyaev, M. [Lebedev Physical Institute, Moscow (Russian Federation); Amoroso, A.; Balestra, F.; Bertini, R.; Chiosso, M.; Garfagnini, R.; Gnesi, I.; Grasso, A.; Kotzinian, A.M.; Parsamyan, B.; Piragino, G.; Sosio, S. [University of Turin, Department of Physics (Italy); Torino Section of INFN, Turin (Italy); Andrieux, V.; Bedfer, Y.; Boer, M.; Burtin, E.; Capozza, L.; Ferrero, A.; Hose, N. d'
2013-08-15
Multiplicities of charged hadrons produced in deep inelastic muon scattering off a {sup 6}LiD target have been measured as a function of the DIS variables x{sub Bj}, Q{sup 2}, W{sup 2} and the final state hadron variables p{sub T} and z. The p{sub T}{sup 2} distributions are fitted with a single exponential function at low values of p{sub T}{sup 2} to determine the dependence of left angle p{sub T}{sup 2} right angle on x{sub Bj}, Q{sup 2}, W{sup 2} and z. The z-dependence of left angle p{sub T}{sup 2} right angle is shown to be a potential tool to extract the average intrinsic transverse momentum squared of partons, left angle k {sub perpendicular} {sub to} {sup 2} right angle, as a function of x{sub Bj} and Q{sup 2} in a leading order QCD parton model. (orig.)
Hadronic Energy Distributions in Deep-Inelastic Electron-Proton Scattering.
Crombie, Michael Byrne
An outline of QCD, the theory of string interactions, is given and several QCD Monte Carlo models are described in detail. Energy distributions of the hadronic system produced in neutral current electron-proton deep-inelastic scattering at a centre of mass energy of 296 GeV are presented. Comparisons of the results with the models show that QCD radiation has a strong influence on the characteristics of the hadronic final state. The data is reasonably well produced by the Lund model based on a matrix element calculation in first order of the strong coupling, followed by appropriate parton showers. The colour dipole model also gives a reasonable representation of the data. Neither the first order matrix elements alone nor the Lund parton shower model, without the matrix element calculation, reproduce the data. The HERWIG parton shower model is also deficient. The data was taken with the ZEUS detector at the HERA accelerator in Hamburg, Germany. A general description of the detector design and principles of operation is provided. A three level trigger system is required to handle the high luminosity delivered by HERA. The first two levels involve the local processing of component data. The third level makes a decision based on the global information from an event. It accepts events at 100 Hz, or 20 MBytes/sec, at the design luminosity and reduces this to around 5 Hz. The architecture and implementation of the third level trigger system is discussed.
Hadron production from $\\mu-Deuteron$ scattering at $\\sqrt{s}=17 GeV$ at COMPASS
Morreale, Astrid
2011-01-01
Hadrons proceeding from quasi-real photo-production are one of the many probes accesible at the Common Muon Proton Apparatus for Structure and Spectroscopy (COMPASS) at CERN. These hadrons provide information on the scattering between photon and partons through $\\gamma$-gluon($g$) direct channels as well as $q-g$ resolved processes. Comparisons of unpolarized differential cross section measurements to next-to-leading order (NLO) pQCD calculations are essential to develop our understanding of proton-proton and lepton-nucleon scattering at varying center of mass energies. These measurements are important to asses the applicability of NLO pQCD in interpreting polarized processes. In this talk we will present the unidentified charged separated hadron cross-sections measured by the COMPASS experiment at center of mass energy of $\\sqrt{s}$ = 17 $GeV$, low $Q^{2}$ (Q$^{2}$ 1.0 $GeV/c$.)
Two-photon-exchange effects in the unpolarized $\\mu p$ scattering within the hadronic model
Zhou, Hai-Qing
2016-01-01
In this work, the two-photon-exchange (TPE) effects in the unpolarized $\\mu p$ scattering are discussed within the hadronic model where the intermediate states $N,\\Delta$ and $\\sigma$ are considered. The contribution from the $N$ intermediate is close to the results given by Ref. \\cite{Tomalak2014} at the small $Q$ and there is a sizeable difference when $Q>0.25$GeV (where $Q^2$ is the four momentum transfer). The contributions from the $\\Delta$ and the $\\sigma$ intermediate states are much smaller than that from the $N$ intermediate at the small $Q$. In the kinematic region with $k_i\\subseteq [0.01,0.3]$ GeV and $Q \\leq0.4$GeV (where $k_i$ is the three momentum of initial muon at Lab frame), a naive expression for the TPE contributions is given, which can be used directly for other analysis.
Carloni Calame, C. [Southampton Univ. (United Kingdom). School of Physics; Czyz, H.; Gluza, J.; Gunia, M. [Silesia Univ., Katowice (Poland). Dept. of Field Theory and Particle Physics; Montagna, G. [Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; INFN, Sezione di Pavia (Italy); Nicrosini, O.; Piccinini, F. [INFN, Sezione di Pavia (Italy); Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Worek, M. [Wuppertal Univ. (Germany). Fachbereich C Physik
2011-07-15
Virtual fermionic N{sub f}=1 and N{sub f}=2 contributions to Bhabha scattering are combined with realistic real corrections at next-to-next-to-leading order in QED. The virtual corrections are determined by the package BHANNLOHF, and real corrections with the Monte Carlo generators BHAGEN-1PH, HELAC-PHEGAS and EKHARA. Numerical results are discussed at the energies of and with realistic cuts used at the {phi} factory DA{phi}NE, at the B factories PEP-II and KEK, and at the charm/{tau} factory BEPC II. We compare these complete calculations with the approximate ones realized in the generator BABAYAGA rate at NLO used at meson factories to evaluate their luminosities. For realistic reference event selections we find agreement for the NNLO leptonic and hadronic corrections within 0.07% or better and conclude that they are well accounted for in the generator by comparison with the present experimental accuracy. (orig.)
Measuring the leading hadronic contribution to the muon g-2 via μe scattering
Abbiendi, G.; Marconi, U. [INFN Bologna, Bologna (Italy); Calame, C.M.C.; Nicrosini, O.; Piccinini, F. [INFN Pavia, Pavia (Italy); Matteuzzi, C. [INFN Milano Bicocca, Milan (Italy); Montagna, G. [INFN Pavia, Pavia (Italy); Universita di Pavia, Dipartimento di Fisica, Pavia (Italy); Passera, M. [INFN Padova, Padua (Italy); Tenchini, R. [INFN Pisa, Pisa (Italy); Trentadue, L. [INFN Milano Bicocca, Milan (Italy); Dipartimento di Fisica e Scienze della Terra ' ' M. Melloni' ' , Parma (Italy); Venanzoni, G. [INFN, Laboratori Nazionali di Frascati, Frascati, RM (Italy)
2017-03-15
We propose a new experiment to measure the running of the electromagnetic coupling constant in the space-like region by scattering high-energy muons on atomic electrons of a low-Z target through the elastic process μe → μe. The differential cross section of this process, measured as a function of the squared momentum transfer t = q{sup 2} < 0, provides direct sensitivity to the leading-order hadronic contribution to the muon anomaly a{sub μ}{sup HLO}. By using a muon beam of 150 GeV, with an average rate of ∝1.3 x 10{sup 7} muon/s, currently available at the CERN North Area, a statistical uncertainty of ∝0.3% can be achieved on a{sub μ}{sup HLO} after two years of data taking. The direct measurement of a{sub μ}{sup HLO} via μe scattering will provide an independent determination, competitive with the time-like dispersive approach, and consolidate the theoretical prediction for the muon g-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon g-2 experiments at Fermilab and J-PARC. (orig.)
Sharf, I V; Sokhrannyi, G O; Yatkin, K V; Rusov, V D
2009-01-01
The method for taking into account the interference contributions to hadron inelastic scattering cross-section is developed within the framework of the simplest multiperipheral model. This method is based on the self-acting scalar fi^3 field theory and the Laplace method using. It was shown that the considered in [1] mechanism of virtuality diminishing at the energy sqrt(s) growth with consideration of all considerable interference contributions into account can be responsible for the total hadron scattering cross-section growth which is experimentally observed. The offered model reproduces well at qualitative level the experimental dependence of total scattering cross-section on energy sqrt(s) with a characteristic minimum in the range sqrt(s) around 10 GeV.
Aaron, F.D.; Alexa, C.; Alimujiang, K.; Andreev, V.; Antunovic, B.; Asmone, A.; Backovic, S.; Baghdasaryan, A.; Barrelet, E.; Bartel, W.; Begzsuren, K.; Belousov, A.; Bizot, J.C.; Boudry, V.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Bruncko, D.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cantun Avila, K.B.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Cholewa, A.; Contreras, J.G.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Daum, K.; Deak, M.; de Boer, Y.; Delcourt, B.; Del Degan, M.; Delvax, J.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dossanov, A.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eliseev, A.; Elsen, E.; Falkiewicz, A.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Fischer, D.-J.; Fleischer, M.; Fomenko, A.; Gabathuler, E.; Gayler, J.; Ghazaryan, Samvel; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Gouzevitch, M.; Grab, C.; Greenshaw, T.; Grell, B.R.; Grindhammer, G.; Habib, S.; Haidt, D.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hreus, T.; Jacquet, M.; Janssen, M.E.; Janssen, X.; Jonsson, L.; Jung, Andreas Werner; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Kogler, R.; Kostka, P.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kutak, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Li, G.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lytkin, L.; Makankine, A.; Malinovski, E.; Marage, P.; Marti, Ll.; Martyn, H.-U.; Maxfield, S.J.; Mehta, A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, Matthias Ulrich; Mudrinic, M.; Muller, K.; Murin, P.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Pascaud, C.; Patel, G.D.; Pejchal, O.; Perez, E.; Petrukhin, A.; Picuric, I.; Piec, S.; Pitzl, D.; Placakyte, R.; Pokorny, B.; Polifka, R.; Povh, B.; Preda, T.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Ruiz Tabasco, J.E.; Rurikova, Z.; Rusakov, S.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R.N.; Shtarkov, L.N.; Shushkevich, S.; Sloan, T.; Smiljanic, Ivan; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, Arnd E.; Staykova, Z.; Steder, M.; Stella, B.; Stoicea, G.; Straumann, U.; Sunar, D.; Sykora, T.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Turnau, J.; Urban, K.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vinokurova, S.; Volchinski, V.; von den Driesch, M.; Wegener, D.; Wissing, Ch.; Wunsch, E.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.; Zus, R.
2009-01-01
A first measurement is presented of the charge asymmetry in the hadronic final state from the hard interaction in deep-inelastic ep neutral current scattering at HERA. The measurement is performed in the range of negative squared four momentum transfer 100hadron and parton level.
Aaron, F.D. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Aldaya Martin, M. [DESY, Hamburg (Germany); Alexa, C. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (RO)] (and others)
2009-06-15
A first measurement is presented of the charge asymmetry in the hadronic final state from the hard interaction in deep-inelastic ep neutral current scattering at HERA. The measurement is performed in the range of negative squared four momentum transfer 100hadron and parton level. (orig.)
Light-by-light contributions of axion-like particles to lepton dipole moments
Marciano, W J; Paradisi, P; Passera, M
2016-01-01
Contributions of a spin 0 axion-like particle (ALP) to lepton dipole moments, g-2 and EDMs, are examined. Light-by-light loop effects from a light pseudoscalar ALP are found to be capable of resolving the long-standing muon g-2 discrepancy at the expense of relatively large ALP- gamma gamma couplings. The compatibility of such large couplings with direct experimental constraints and perturbative unitarity bounds is discussed. Future tests of such a scenario are described. For CP violating ALP couplings, the electron EDM is found to probe much smaller, theoretically more easily accommodated ALP interactions for mass and coupling parameters that could also be studied by the SHiP (Search for Hidden Particles) proposal at CERN.
Savin, Igor A
2010-01-01
Azimuthal asymmetries in semi-inclusive production of charged hadrons by muons scattered off longitudinally polarised deuterons have been searched for in the COMPASS experiment at CERN. The asymmetries are parameterised taking into account possible contributions from different nucleon parton distribution functions and parton fragmentation functions depending on the transverse or longitudinal components of the quark spin. They can be modulated with sin ($\\phi$), sin (2$\\phi$), sin (3$\\phi$) and cos ($\\phi$). The parameterisation includes also a $\\phi$- independent term. The amplitudes of all $\\phi$-modulation terms for hadrons integrated over kinematic variables are found to be consistent with zero, while the $\\phi$-independent terms are non zero and about equal for positive and negative hadrons. The dependence of the parameterization parameters on the kinematic variables $x$, $z$ and $p^{T}_{h}$ is also studied. The x-dependence of the $\\phi$- independent term is found to be in agreement with the COMPASS data...
Aghasyan, M.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Antoshkin, A.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Ball, M.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bodlak, M.; Bordalo, P.; Bradamante, F.; Bressan, A.; Buechele, M.; Burtsev, V.E.; Capozza, L.; Chang, W. -C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chumakov, A.G.; Chung, S. -U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Dreisbach, Ch.; Duennweber, W.; Dusaev, R.R.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Faessler, M.; Ferrero, A.; Finger, M.; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giarra, J.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grasso, A.; Gridin, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Hahne, D.; Hamar, G.; von Harrach, D.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Horikawa, N.; d'Hose, N.; Hsieh, C. -Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jary, V.; Joosten, R.; Joerg, P.; Kabuss, E.; Kerbizi, A.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Koenigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kral, Z.; Kraemer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Kuznetsov, I.I.; Kveton, A.; Lednev, A.A.; Levchenko, E.A.; Levillain, M.; Levorato, S.; Lian, Y. -S.; Lichtenstadt, J.; Longo, R.; Lyubovitskij, V.E.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Mamon, S.A.; Marianski, B.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Moretti, A.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Novy, J.; Nowak, W. -D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J. -C.; Pereira, F.; Pesek, M.; Peskova, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rogacheva, N.S.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schoenning, K.; Seder, E.; Selyunin, A.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Srnka, A.; Steffen, D.; Stolarski, M.; Subrt, O.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thiel, A.; Tomsa, J.; Tosello, F.; Tskhay, V.; Uhl, S.; Vasilishin, B.I.; Vauth, A.; Veloso, J.; Vidon, A.; Virius, M.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
A semi-inclusive measurement of charged hadron multiplicities in deep inelastic muon scattering off an isoscalar target was performed using data collected by the COMPASS Collaboration at CERN. The following kinematic domain is covered by the data: photon virtuality $Q^{2}>1$ (GeV/$c$)$^2$, invariant mass of the hadronic system $W > 5$ GeV/$c^2$, Bjorken scaling variable in the range $0.003 < x < 0.4$, fraction of the virtual photon energy carried by the hadron in the range $0.2 < z < 0.8$, square of the hadron transverse momentum with respect to the virtual photon direction in the range 0.02 (GeV/$c)^2 < P_{\\rm{hT}}^{2} < 3$ (GeV/$c$)$^2$. The multiplicities are presented as a function of $P_{\\rm{hT}}^{2}$ in three-dimensional bins of $x$, $Q^2$, $z$ and compared to previous semi-inclusive measurements. We explore the small-$P_{\\rm{hT}}^{2}$ region, i.e. $P_{\\rm{hT}}^{2} < 1$ (GeV/$c$)$^2$, where hadron transverse momenta are expected to arise from non-perturbative effects, and also the d...
Distributions of charged hadrons observed in deep-inelastic muon-deuterium scattering at 490 GeV
Adams, M.R.; Aid, S.; Anthony, P.L.; Baker, M.D.; Bartlett, J.; Bhatti, A.A.; Braun, H.M.; Busza, W.; Conrad, J.M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S.K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H.J.; Geesaman, D.F.; Gilman, R.; Green, M.C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V.W.; Jackson, H.E.; Jaffe, D.E.; Jancso, G.; Jansen, D.M.; Kaufman, S.; Kennedy, R.D.; Kirk, T.; Kobrak, H.G.E.; Krzywdzinski, S.; Kunori, S.; Lord, J.J.; Lubatti, H.J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D.G.; Mohr, W.; Montgomery, H.E.; Morfin, J.G.; Nickerson, R.B.; O' Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F.M.; Ramberg, E.J.; Roeser, A.; Ryan, J.J.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schueler, K.P.; Seyerlein, H.J.; Skuja, A.; Snow, G.A.; Soeldner-Rembold, S.; Steinberg, P.H.; Stier, H.E.; Stopa, P.; Swans; FERMILAB E665 Collaboration
1991-11-28
Longitudinal and transverse momentum spectra of final state hadrons produced in deep-inelastic muon-deuterium scattering at incident muon energy of 490 GeV have been measured up to a hadronic center of mass energy of 30 GeV. The longitudinal distributions agree well with data from earlier muon-nucleon scattering experiments; these distributions tend to increase in steepness as the center of mass energy increases. Comparisons with e{sup +}e{sup -} data at comparable center of mass energies indicate slight differences. The transverse momentum distributions show an increase in mean p{sub T}{sup 2} with an increase in the center of mass energy. (orig.).
Calame, C. Carloni; Czyż, H.; Gluza, J.; Gunia, M.; Montagna, G.; Nicrosini, O.; Piccinini, F.; Riemann, T.; Worek, M.
2011-07-01
Virtual fermionic N f = 1 and N f = 2 contributions to Bhabha scattering are combined with realistic real corrections at next-to-next-to-leading order in QED. The virtual corrections are determined by the package bha_nnlo_hf, and real corrections with the Monte Carlo generators B hagen-1P h, H elac-P hegas and E khara. Numerical results are discussed at the energies of and with realistic cuts used at the Φ factory DANE, at the B factories PEP-II and KEK, and at the charm/τ factory BEPC II. We compare these complete calculations with the approximate ones realized in the generator B abaY aga@NLO used at meson factories to evaluate their luminosities. For realistic reference event selections we find agreement for the NNLO leptonic and hadronic corrections within 0.07% or better and conclude that they are well accounted for in the generator by comparison with the present experimental accuracy.
Measuring the leading hadronic contribution to the muon g-2 via $\\mu\\,e$ scattering
Abbiendi, G; Marconi, U; Matteuzzi, C; Montagna, G; Nicrosini, O; Passera, M; Piccinini, F; Tenchini, R; Trentadue, L; Venanzoni, G
2016-01-01
We propose a new experiment to measure the running of the fine-structure constant in the space-like region by scattering high-energy muons on atomic electrons of a low-Z target through the process $\\mu e \\to \\mu e$. The differential cross section of this process, measured as a function of the squared momentum transfer $t=q^2<0$, provides direct sensitivity to the leading-order hadronic contribution to the muon anomaly $a^{\\rm{HLO}}_{\\mu}$. By using a muon beam of 150 GeV, with an average rate of $\\sim1.3\\times 10^7$ muon/s, currently available at the CERN North Area, a statistical uncertainty of $\\sim 0.3\\%$ can be achieved on $a^{\\rm{HLO}}_{\\mu}$ after two years of data taking. This direct measurement of $a^{\\rm{HLO}}_{\\mu}$ will provide an independent determination, competitive with the time-like dispersive approach, and consolidate the theoretical prediction for the muon $g$-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon $g$-2 experiments ...
Two-photon-exchange effects in the unpolarized μ p scattering within a hadronic model
Zhou, Hai-Qing
2017-02-01
In this work, the two-photon-exchange (TPE) effects in the unpolarized μ p scattering are discussed within the hadronic model where the intermediate states N ,Δ , and σ are considered. The contribution from the N intermediate is close to the results given by Tomalak and Vanderhaeghen [Phys. Rev. D 90, 013006 (2014)], 10.1103/PhysRevD.90.013006 at small Q , and there is a sizable difference when Q >0.25 GeV (where Q2 is the four-momentum transfer). The contributions from the Δ and the σ intermediate states are much smaller than that from the N intermediate at small Q . In the kinematic region with ki⊆[0.01 ,0.3 ] GeV and Q ≤0.4 GeV (where ki is the three-momentum of initial muon in the laboratory frame), a naive expression for the TPE contributions is given, which can be used directly for other analysis.
Probing Electroweak Gauge Boson Scattering with the ATLAS Detector at the Large Hadron Collider
Anger, Philipp; Lammers, Sabine
Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of $20.3\\;\\mathrm{fb}^{-1}$ at a center-of-mass e...
Nicolescu, Basarab [LPNHE, Unite de Recherche des Universites Paris 6 et Paris 7, associee au CNRS, Theory Group, Universite Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris Cedex 05 (France)
2004-07-01
We consider several classes of analytic parametrizations of hadronic scattering amplitudes (the COMPETE analysis), and compare their predictions to all available forward data (pp, {pi}p, Kp, {gamma}p, {gamma}{gamma}, {sigma}p). Although these parametrizations are very close for {radical}s {>=} 9 GeV, it turns out that they differ markedly at low energy, where a universal Pomeron term {approx} ln{sup 2} s enables one to extend the fit down to {radical}s = 4 GeV. We present predictions on the total cross sections and on the ratio of the real part to the imaginary part of the elastic amplitude ({rho} parameter) for present and future pp colliders, and on total cross sections for {gamma}p {yields} hadrons at cosmic-ray energies and for it{gamma}{gamma} {yields} hadrons up to {radical}s = 1 TeV. The ln{sup 2} s behaviour of total cross sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. We present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-sections data, in agreement with the COMPETE analysis.
Probing electroweak gauge boson scattering with the ATLAS detector at the large hadron collider
Anger, Philipp
2014-09-01
Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of 20.3 fb{sup -1} at a center-of-mass energy of √(s)=8 TeV with the ATLAS detector, first-ever evidence for this process could be achieved in the context of this work. A study of leptonically decaying W{sup ±}W{sup ±}jj, same-electric-charge diboson production in association with two jets resulted in an observation of the electroweak W{sup ±}W{sup ±}jj production with same electric charge of the W bosons, inseparably comprising W{sup ±}W{sup ±}→W{sup ±}W{sup ±} electroweak gauge boson scattering contributions, with a significance of 3.6 standard deviations. The measured production cross section is in agreement with the Standard Model prediction. In the course of a study for leptonically decaying WZ productions, methods for background estimation, the extraction of systematic uncertainties and cross section measurements were developed. They were extended and applied to the WZjj final state whereof the purely electroweakly mediated contribution is intrinsically tied to the scattering of all Standard
C. Adolph
2017-01-01
Full Text Available Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y and the relative hadron energy z. Data were obtained by the COMPASS Collaboration using a 160GeV muon beam and an isoscalar target (6LiD. They cover the kinematic domain in the photon virtuality Q2>1(GeV/c2, 0.004
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buechele, M.; Capozza, L.; Chang, W. -C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S. -U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Duennweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmueller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; dHose, N.; Hsieh, C. -Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Joerg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Koenigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kuhn, R.; Kraemer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W. -D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J. -C.; Pereira, F.; Pesek, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schoenning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Steffen, D.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Windmolders, R.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2017-01-01
Multiplicities of charged pions and unidentified hadrons produced in deep-inelastic scattering were measured in bins of the Bjorken scaling variable $x$, the relative virtual-photon energy $y$ and the relative hadron energy $z$. Data were obtained by the COMPASS Collaboration using a 160 GeV muon beam and an isoscalar target ($^6$LiD). They cover the kinematic domain in the photon virtuality $Q^2$ > 1(GeV/c$)^2$, $0.004 < x < 0.4$, $0.2 < z < 0.85$ and $0.1 < y < 0.7$. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, G. D.; Alexeev, M. G.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augsten, K.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Capozza, L.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kuhn, R.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Steffen, D.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Weisrock, T.; Wilfert, M.; Windmolders, R.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.; Zink, A.
2017-01-01
Multiplicities of charged pions and charged hadrons produced in deep-inelastic scattering were measured in three-dimensional bins of the Bjorken scaling variable x, the relative virtual-photon energy y and the relative hadron energy z. Data were obtained by the COMPASS Collaboration using a 160GeV muon beam and an isoscalar target (6LiD). They cover the kinematic domain in the photon virtuality Q2 > 1(GeV / c) 2, 0.004 < x < 0.4, 0.2 < z < 0.85 and 0.1 < y < 0.7. In addition, a leading-order pQCD analysis was performed using the pion multiplicity results to extract quark fragmentation functions.
Yamazaki, Takeshi
2015-01-01
Understanding hadronic interactions is crucial for investigating the properties of unstable hadrons, since measuring physical quantities for unstable hadrons including the resonance mass and decay width requires simultaneous calculations of final scattering states. Recent studies of hadronic scatterings and decays are reviewed from this point of view. The nuceon-nucleon and multi-nucleon interactions are very important to understand the formation of nucleus from the first principle of QCD. These interactions have been studied mainly by two methods, due originally to L\\"uscher and to HALQCD. The results obtained from the two methods are compared in three channels, $I=2$ two-pion, H-dibaryon, and two-nucleon channels. So far the results from the two methods for the two-nucleon channels are different even at the level of the presence or absence of bound states. We then discuss possible uncertainties in each method. Recent results on the binding energy for helium nuclei are also reviewed.
K. Orginos
2011-12-01
In this talk I am reviewing recent calculations of properties of multi-hadron systems in lattice QCD. In particular, I am reviewing results of elastic scattering phase shifts in meson-meson, meson-baryon and baryon-baryon systems, as well as discussing results indicating possible existence of bound states in two baryon systems. Finally, calculations of properties of systems with more than two hadrons are presented.
Quark–hadron duality constraints on γZ box corrections to parity-violating elastic scattering
N.L. Hall
2016-02-01
Full Text Available We examine the interference γZ box corrections to parity-violating elastic electron–proton scattering in the light of the recent observation of quark–hadron duality in parity-violating deep-inelastic scattering from the deuteron, and the approximate isospin independence of duality in the electromagnetic nucleon structure functions down to Q2≈1 GeV2. Assuming that a similar behavior also holds for the γZ proton structure functions, we find that duality constrains the γZ box correction to the proton's weak charge to be ℜe□γZV=(5.4±0.4×10−3 at the kinematics of the Qweak experiment. Within the same model we also provide estimates of the γZ corrections for future parity-violating experiments, such as MOLLER at Jefferson Lab and MESA at Mainz.
Transverse spin observables in hard-scattering hadronic processes within collinear factorization
Pitonyak, D
2016-01-01
We review what is currently known about the transverse spin structure of hadrons, in particular from observables that can be analyzed within a collinear framework. These effects have been around for 40 years and represent a critical test of perturbative QCD. We look at both proton-proton and lepton-nucleon collisions for various final states. While the main focus is on transverse single-spin asymmetries, we also discuss how longitudinal-transverse spin asymmetries offer a complimentary, yet equally important, source of information on the quark-gluon content of hadrons. We also summarize some recent progress in solidifying the theoretical formalism behind these observables and give an outlook on future directions of research.
Nicolescu, B
2004-01-01
The ln**2 behaviour of total cross sections, first obtained by Heisenberg 50 years ago, receives now increased interest both on phenomenological and theoretical levels. We present a modification of the Heisenberg's model in connection with the presence of glueballs and we show that it leads to a realistic description of all existing hadron total cross-section data, in agreement with the COMPETE analysis.
Experimental study of single-particle inclusive hadron scattering and associated multiplicities
Brenner, A.E.; Carey, D.C.; Elias, J.E.; Garbincius, P.H.; Mikenberg, G.; Polychronakos, V.A.; Aitkenhead, W.; Barton, D.S.; Brandenburg, G.W.; Busza, W.; Dobrowolski, T.; Friedman, J.I.; Kendall, H.W.; Lyons, T.; Nelson, B.; Rosenson, L.; Toy, W.; Verdier, R.; Votta, L.; Chiaradia, M.T.; DeMarzo, C.; Favuzzi, C.; Germinario, G.; Guerriero, L.; LaVopa, P.; Maggi, G.; Posa, F.; Selvaggi, G.; Spinelli, P.; Waldner, F.; Meunier, R.; Cutts, D.; Dulude, R.S.; Lanou, R.E. Jr.; Massimo, J.T.
1982-10-01
An experiment using the Fermilab single arm spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p..-->..c+X where a and c were ..pi../sup + -/, K/sup + -/, p, or p-bar. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12
Double heavy meson production through double parton scattering in hadronic collisions
Baranov, S.P. [P.N. Lebedev Institute of Physics, 119991 Moscow (Russian Federation); Snigirev, A.M., E-mail: snigirev@lav01.sinp.msu.ru [D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation); Zotov, N.P. [D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, 119991 Moscow (Russian Federation)
2011-11-03
It is shown that the contribution from double parton scattering to the inclusive double heavy meson yield is quite comparable with the usually considered mechanism of their production at the LHC energy. For some pairs of heavy flavored quarks in the final state the double parton scattering will be a dominant mode of their production.
Double heavy meson production through double parton scattering in hadronic collisions
Baranov, S P; Zotov, N P
2011-01-01
It is shown that the contribution from double parton scattering to the inclusive double heavy meson yield is quite comparable with the usually considered mechanism of their production at the LHC energy. For some pairs of heavy flavored quarks in the final state the double parton scattering will be a dominant mode of their production.
Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order
Kurz, Alexander [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Liu, Tao; Steinhauser, Matthias [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. fuer Theoretische Teilchenphysik; Marquard, Peter [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Smirnov, Alexander V. [Moscow State Univ. (Russian Federation). Scientific Research Computing Center; Smirnov, Vladimir A. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics
2015-08-15
The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.
Light-by-light-type corrections to the muon anomalous magnetic moment at four-loop order
Kurz, Alexander; Marquard, Peter; Smirnov, Alexander V; Smirnov, Vladimir A; Steinhauser, Matthias
2015-01-01
The numerically dominant QED contributions to the anomalous magnetic moment of the muon stem from Feynman diagrams with internal electron loops. We consider such corrections and present a calculation of the four-loop light-by-light-type corrections where the external photon couples to a closed electron or muon loop. We perform an asymptotic expansion in the ratio of electron and muon mass and reduce the resulting integrals to master integrals which we evaluate using analytical and numerical methods. We confirm the results present in the literature which are based on different computational methods.
Anghinolfi, F; Barrillon, P; Blanchot, G; Blin, S; Braem, André; de La Taille, C; Di Girolamo, B; Efthymiopoulos, I; Faustino, J; Fournier, D; Franz, S; Grafström, P; Gurriana, L; Haguenauer, M; Hedberg, V; Heller, M; Hoffmann, S; Iwanski, W; Joram, C; Kocnár, A; Lavigne, B; Lundberg, B; Maio, A; Maneira, M J P; Mapelli, A; Marques, C; Mjörnmark, U; Conde-Muíño, P; Puzo, P; Rijssenbeek, M; Saraiva, J G; Seguin-Moreau, N; Soares, S; Stenzel, H; Thioye, M; Varouchas, D; Vorobel, V
2007-01-01
A scintillating fibre tracker is proposed to measure elastic proton scattering at very small angles in the ATLAS experiment at CERN. The tracker will be located in so-called Roman Pot units at a distance of 240 m on each side of the ATLAS interaction point. An initial validation of the design choices was achieved in a beam test at DESY in a relatively low energy electron beam and using slow off-the-shelf electronics. Here we report on the results from a second beam test experiment carried out at CERN, where new detector prototypes were tested in a high energy hadron beam, using the first version of the custom designed front-end electronics. The results show an adequate tracking performance under conditions which are similar to the situation at the LHC. In addition, the alignment method using so-called overlap detectors was studied and shown to have the expected precision.
Crivellin, Andreas; Procura, Massimiliano
2013-01-01
We show how to avoid unnecessary and uncontrolled assumptions usually made in the literature about soft SU(3) flavor symmetry breaking in determining the two-flavor nucleon matrix elements relevant for direct detection of WIMPs. Based on SU(2) Chiral Perturbation Theory, we provide expressions for the proton and neutron scalar couplings $f_u^{p,n}$ and $f_d^{p,n}$ with the pion-nucleon sigma-term as the only free parameter, which should be used in the analysis of direct detection experiments. This approach for the first time allows for an accurate assessment of hadronic uncertainties in spin-independent WIMP-nucleon scattering and for a reliable calculation of isospin-violating effects. We find that the traditional determinations of $f_u^p-f_u^n$ and $f_d^p-f_d^n$ are off by a factor of 2.
Fagundes, D A; Silva, P V R G
2012-01-01
We show that the proton-proton elastic differential cross section data at intermediate and large values of the momentum transfer squared (dip position and beyond) can be quite well described by a parametrization based on the Tsallis distribution, with only five free fit parameters. By adding two exponential contributions for the diffraction peak region (four free parameters) a global empirical description of all the experimental data at 19.4 - 62.5 GeV and also the experimental information available at 7 TeV (LHC) is obtained. Extrapolation of the results suggests that hadrons may not behave as a black-disk at the asymptotic limit.
Measurement of the Hadronic Cross-Section for the Scattering of Two Virtual Photons at LEP
Abbiendi, G.; Akesson, P.F.; Alexander, G.; Allison, John; Anagnostou, G.; Anderson, K.J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Bailey, I.; Barberio, E.; Barlow, R.J.; Batley, R.J.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Bethke, S.; Biebel, O.; Bloodworth, I.J.; Boeriu, O.; Bock, P.; Bohme, J.; Bonacorsi, D.; Boutemeur, M.; Braibant, S.; Brigliadori, L.; Brown, Robert M.; Burckhart, H.J.; Cammin, J.; Carnegie, R.K.; Caron, B.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, David G.; Clarke, P.E.L.; Clay, E.; Cohen, I.; Couchman, J.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.Marco; Dallison, S.; De Roeck, A.; De Wolf, E.A.; Dervan, P.; Desch, K.; Dienes, B.; Dixit, M.S.; Donkers, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Feld, L.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Furtjes, A.; Futyan, D.I.; Gagnon, P.; Gary, J.W.; Gaycken, G.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Glenzinski, D.; Goldberg, J.; Graham, K.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harder, K.; Harel, A.; Harin-Dirac, M.; Hauschild, M.; Hauschildt, J.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Hensel, C.; Herten, G.; Heuer, R.D.; Hill, J.C.; Hoffman, Kara Dion; Homer, R.J.; Horvath, D.; Hossain, K.R.; Howard, R.; Huntemeyer, P.; Igo-Kemenes, P.; Ishii, K.; Jawahery, A.; Jeremie, H.; Jones, C.R.; Jovanovic, P.; Junk, T.R.; Kanaya, N.; Kanzaki, J.; Karapetian, G.; Karlen, D.; Kartvelishvili, V.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kim, D.H.; Klein, K.; Klier, A.; Kluth, S.; Kobayashi, T.; Kobel, M.; Kokott, T.P.; Komamiya, S.; Kowalewski, Robert V.; Kramer, T.; Kress, T.; Krieger, P.; von Krogh, J.; Krop, D.; Kuhl, T.; Kupper, M.; Kyberd, P.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lawson, I.; Layter, J.G.; Leins, A.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Littlewood, C.; Lloyd, S.L.; Loebinger, F.K.; Long, G.D.; Losty, M.J.; Lu, J.; Ludwig, J.; Macchiolo, A.; Macpherson, A.; Mader, W.; Marcellini, S.; Marchant, T.E.; Martin, A.J.; Martin, J.P.; Martinez, G.; Masetti, G.; Mashimo, T.; Mattig, Peter; McDonald, W.John; McKenna, J.; McMahon, T.J.; McPherson, R.A.; Meijers, F.; Mendez-Lorenzo, P.; Menges, W.; Merritt, F.S.; Mes, H.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Moed, S.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Okpara, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Patrick, G.N.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Poli, B.; Polok, J.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Rick, H.; Rodning, N.; Roney, J.M.; Rosati, S.; Roscoe, K.; Rozen, Y.; Runge, K.; Rust, D.R.; Sachs, K.; Saeki, T.; Sahr, O.; Sarkisyan, E.K.G.; Sbarra, C.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schroder, Matthias; Schumacher, M.; Schwick, C.; Scott, W.G.; Seuster, R.; Shears, T.G.; Shen, B.C.; Shepherd-Themistocleous, C.H.; Sherwood, P.; Skuja, A.; Smith, A.M.; Snow, G.A.; Sobie, R.; Soldner-Rembold, S.; Spagnolo, S.; Spano, F.; Sproston, M.; Stahl, A.; Stephens, K.; Strom, David M.; Strohmer, R.; Stumpf, L.; Surrow, B.; Tarem, S.; Tasevsky, M.; Taylor, R.J.; Teuscher, R.; Thomas, J.; Thomson, M.A.; Torrence, E.; Toya, D.; Trefzger, T.; Tricoli, A.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vachon, B.; Vollmer, C.F.; Vannerem, P.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Waller, D.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wetterling, D.; Wilson, G.W.; Wilson, J.A.; Wyatt, T.R.; Yamashita, S.; Zacek, V.; Zer-Zion, D.
2001-01-01
The interaction of virtual photons is investigated using the reaction e+e- -> e+e- hadrons based on data taken by the OPAL experiment at e+e- centre-of-mass energies sqrt(s_ee)=189-209 GeV, for W>5 GeV and at an average Q^2 of 17.9 GeV^2. The measured cross-sections are compared to predictions of the Quark Parton Model (QPM), to the Leading Order QCD Monte Carlo model PHOJET to the NLO prediction for the reaction e+e- -> e+e-qqbar, and to BFKL calculations. PHOJET, NLO e+e- -> e+e-qqbar, and QPM describe the data reasonably well, whereas the cross-section predicted by a Leading Order BFKL calculation is too large.
Yan, Yu-Liang; Li, Xiao-Mei; Zhou, Dai-Mei; Cheng, Yun; Dong, Bao-Guo; Cai, Xu; Sa, Ben-Hao
2015-01-01
We employed the PYTHIA 6.4 model and the extended parton and hadron cascade model PACIAE 2.2 to comparatively investigate the DIS normalized specific charged hadron multiplicity in the 27.6 GeV electron semi-inclusive deep-inelastic scattering off proton and deuteron. The PYTHIA and PACIAE results calculated with default model parameters not well and fairly well reproduce the corresponding HERMES data, respectively. In addition, we have discussed the effects of the differences between the PYTHIA and PACIAE models.
Large electroweak corrections to vector-boson scattering at the Large Hadron Collider
Biedermann, Benedikt; Pellen, Mathieu
2016-01-01
For the first time full next-to-leading-order electroweak corrections to off-shell vector-boson scattering are presented. The computation features the complete matrix elements, including all non-resonant and off-shell contributions, to the electroweak process $\\mathrm{p} \\mathrm{p} \\to \\mu^+ \
Measuring the leading hadronic contribution to the muon g-2 via μ e scattering
Abbiendi, G.; Calame, C. M. Carloni; Marconi, U.; Matteuzzi, C.; Montagna, G.; Nicrosini, O.; Passera, M.; Piccinini, F.; Tenchini, R.; Trentadue, L.; Venanzoni, G.
2017-03-01
We propose a new experiment to measure the running of the electromagnetic coupling constant in the space-like region by scattering high-energy muons on atomic electrons of a low- Z target through the elastic process μ e → μ e. The differential cross section of this process, measured as a function of the squared momentum transfer t=q^2Area, a statistical uncertainty of ˜ 0.3% can be achieved on a^{HLO}_{μ } after two years of data taking. The direct measurement of a^{HLO}_{μ } via μ e scattering will provide an independent determination, competitive with the time-like dispersive approach, and consolidate the theoretical prediction for the muon g-2 in the Standard Model. It will allow therefore a firmer interpretation of the measurements of the future muon g-2 experiments at Fermilab and J-PARC.
Andreopoulos, C; Bordoni, S; Boyd, S; Brailsford, D; Brice, S; Catanesi, G; Chen-Wishart, Z; Denner, P; Dunne, P; Giganti, C; Gonzalez Diaz, D; Haigh, J; Hamacher-Baumann, P; Hallsjo, S; Hayato, Y; Irastorza, I; Jamieson, B; Kaboth, A; Korzenev, A; Kudenko, Y; Leyton, M; Luk, K-B; Ma, W; Mahn, K; Martini, M; McCauley, N; Mermod, P; Monroe, J; Mosel, U; Nichol, R; Nieves, J; Nonnenmacher, T; Nowak, J; Parker, W; Raaf, J; Rademacker, J; Radermacher, T; Radicioni, E; Roth, S; Saakyan, R; Sanchez, F; Sgalaberna, D; Shitov, Y; Sobczyk, J; Soler, F; Touramanis, C; Valder, S; Walding, J; Ward, M; Wascko, M; Weber, A; Yokoyama, M; Zalewska, A; Ziembicki, M
2017-01-01
We propose to perform new measurements of proton and pion scattering on argon using a prototype High Pressure gas Time Projection Chamber (HPTPC) detector, and by doing so to develop the physics case for, and the technological readiness of, an HPTPC as a neutrino detector for accelerator neutrino oscillation searches. The motivation for this work is to improve knowledge of final state interactions, in order to ultimately achieve 1-2% systematic error on neutrino-nucleus scattering for oscillation measurements at 0.6 GeV and 2.5 GeV neutrino energy, as required for the Charge-Parity (CP) violation sensitivity projections by the Hyper-Kamiokande experiment (Hyper-K) and the Deep Underground Neutrino Experiment (DUNE). The final state interaction uncertainties in neutrino-nucleus interactions dominate cross-section systematic errors, currently 5–10% at these energies, and therefore R&D is needed to explore new approaches to achieve this substantial improvement.
Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institute for High Energy Physics, Protvino (Russian Federation); Bluemlein, J.; Klein, S.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2009-08-15
We determine the parton distribution functions (PDFs) in a next-to-next-to-leading order (NNLO) QCD-analysis of the inclusive neutral-current deep-inelastic-scattering (DIS) world data combined with the neutrino-nucleon DIS di-muon data and the fixed-target Drell-Yan data. The PDF-evolution is performed in the N{sub f} = 3 fixed-flavor scheme and supplementary sets of PDFs in the 4- and 5-flavor schemes are derived from the results in the 3-flavor scheme using matching conditions. The charm-quark DIS contribution is calculated in a general-mass variable-flavor-number (GMVFN) scheme interpolating between the zero mass 4-flavor scheme at asymptotically large values of momentum transfer Q{sup 2} and the 3-flavor scheme prescription of Buza-Matiounine-Smith-van Neerven (BMSN) at the value of Q{sup 2} = m{sub c}{sup 2}. The results in the GMVFN scheme are compared with those of the fixed-flavor scheme and other prescriptions used in global fits of PDFs. The strong coupling constant is measured at an accuracy of {approx} 1.5%. We obtain at NNLO {alpha}{sub s}(M{sub Z}{sup 2})=0.1135{+-}0.0014 in the fixed-flavor scheme and {alpha}{sub s}(M{sub Z}{sup 2})=0.1129{+-}0.0014 applying the BMSN-prescription. The implications for important standard candle and hard scattering processes at hadron colliders are illustrated. Predictions for cross sections of W{sup {+-}}- and Z-boson, the top-quark pair- and Higgs-boson production at the Tevatron and the LHC based on the 5-flavor PDFs of the present analysis are provided. (orig.)
Gumpert, Christian; Heinemann, Beate; Klein, Uta
Particle physics deals with the elementary constituents of our universe and their interactions. The electroweak symmetry breaking mechanism in the Standard Model of Particle Physics is of paramount importance and it plays a central role in the physics programmes of current high-energy physics experiments at the Large Hadron Collider. The study of scattering processes of massive electroweak gauge bosons provides an approach complementary to the precise measurement of the properties of the recently discovered Higgs boson. Owing to the unprecedented energies achieved in proton-proton collisions at the Large Hadron Collider and the large amount of data collected, experimental studies of these processes become feasible for the first time. Especially the scattering of two $W^{\\pm}$ bosons of identical electric charge is considered a promising process for an initial study due to its distinct experimental signature. In the course of this work, $20.3 \\, \\mathrm{fb}^{−1}$ of proton-proton collision data recorded by t...
Matsufuji, N; Tomura, H; Futami, Y; Yamashita, H; Higashi, A; Minohara, S; Endo, M; Kanai, T
1998-11-01
The precise conversion of CT numbers to their electron densities is essential in treatment planning for hadron therapy. Although some conversion methods have already been proposed, it is hard to check the conversion accuracy during practical therapy. We have estimated the CT numbers of real tissues by a calculational method established by Mustafa and Jackson. The relationship between the CT numbers and the electron densities was investigated for various body tissues as well as some tissue-equivalent materials used for a conversion to check the accuracy of the current conversion methods. The result indicates a slight disagreement at the high-CT-number region. A precise estimation of the multiple scattering, nuclear reaction and range straggling of incident particles has been considered as being important to realize higher-level conformal therapy in the future. The relationship between these parameters and the CT numbers was also investigated for tissues and water. The result shows that it is sufficiently practical to replace these parameters for real tissues with those for water by adjusting the density.
Hadron-pair production on transversely polarized targets in semi-inclusive deep inelastic scattering
Braun, Christopher
Nucleons such as protons and neutrons are composite objects made of quarks, which are bound together by the strong force via the exchange of gluons. The probability of finding a quark of flavor q carrying the momentum fraction x of the fast moving parent nucleon is described by a parton distribution function (PDF) f q 1 ( x ) , the number density. The spin, an intrinsic angular momentum of elementary particles such as quarks but also of composite objects like nucleons, couples with magnetic fields, which allows one to align it. Taking into account this additional parameter, the spin, the scheme of PDFs in leading twist is expanded by the helicity distribution g q 1 ( x ) and the transversity distribution h q 1 ( x ) . The first distribution covers the case where the nucleon and the quark are longitudinally polarized, while a transverse polarization is taken into account by the latter. A tool for the investigation of the PDFs is inclusive deep inelastic scattering (DIS) of electro- magnetic probes off (un)pola...
Fragmentation and Hadronization
Webber, B. R.
1999-01-01
Experimental data, theoretical ideas and models concerning jet fragmentation and the hadronization process are reviewed, concentrating on the following topics: factorization and small-x resummation of fragmentation functions, hadronization models, single-particle yields and spectra in Z decay, comparisons between quark and gluon jets, current and target fragmentation in deep inelastic scattering, heavy quark fragmentation, Bose-Einstein correlations and WW fragmentation.
Adams, M.R.; Aied, S.; Anthony, P.L.; Baker, M.D.; Bartlett, J.; Bhatti, A.A.; Braun, H.M.; Busza, W.; Carroll, T.; Conrad, J.M.; Coutrakon, G.; Davisson, R.; Derado, I.; Dhawan, S.K.; Dougherty, W.; Dreyer, T.; Dziunikowska, K.; Eckardt, V.; Ecker, U.; Erdmann, M.; Eskreys, A.; Figiel, J.; Gebauer, H.J.; Geesaman, D.F.; Gilman, R.; Green, M.C.; Haas, J.; Halliwell, C.; Hanlon, J.; Hantke, D.; Hughes, V.W.; Jackson, H.E.; Jaffe, D.E.; Jancso, G.; Jansen, D.M.; Kaufman, S.; Kennedy, R.D.; Kirk, T.; Kobrak, H.G.E.; Krzywdzinski, S.; Kunori, S.; Lord, J.J.; Lubatti, H.J.; McLeod, D.; Magill, S.; Malecki, P.; Manz, A.; Melanson, H.; Michael, D.G.; Mohr, W.; Montgomery, H.E.; Morfin, J.G.; Nickerson, R.B.; O' Day, S.; Olkiewicz, K.; Osborne, L.; Papavassiliou, V.; Pawlik, B.; Pipkin, F.M.; Ramberg, E.J.; Roeser, A.; Ryan, J.J.; Salvarani, A.; Schellman, H.; Schmitt, M.; Schmitz, N.; Schueler, K.P.; Seyerlein, H.J.; Skuja, A.; Snow, G.A.; Soeldner-Rembold, S.; Steinberg, P.H.; Stier, H.E.; St
1994-08-01
Fermilab Experiment-665 measured deep-inelastic scattering of 490 GeV muons off deuterium and xenon targets. Events were selected with a range of energy exchange [nu] from 100 GeV to 500 GeV and with large ranges of [ital Q][sup 2] and [ital x][sub Bj]: 0.1 GeV[sup 2]/[ital c][sup 2][lt][ital Q][sup 2][lt]150 GeV[sup 2]/[ital c][sup 2] and 0.001[lt][ital x][sub Bj][lt]0.5. The fractional energy ([ital z]) distributions of forward-produced hadrons from the two targets have been compared as a function of the kinematics of the scattering; specifically, the kinematic region of shadowing'' has been compared to that of nonshadowing. The dependence of the distributions upon the [ital order] of the hadrons, determined by the fractional energies, has been examined as well; a strong degree of similarity has been observed in the shapes of the distributions of the different order hadrons. These [ital z] distributions, however, show no nuclear dependence, even in the kinematic region of shadowing.
Heltsley, B.K.
1976-04-01
In hadron-proton collisions at high energies, the impact profile function measures the range and strength of the strong interaction. It determines the effective size and shape of the hadrons involved, for purposes of both elastic scattering and particle production, but depends solely upon the behavior in t of the elastic differential cross-section. Such an analysis of the reactions ..pi.. +- p, K +- p, and p +- p at incident momenta from 50 to 175 GeV/c is presented using the elastic scattering data recently taken. Two derivations of the profile function are given: the classic optical model and the partial wave treatment. The first stresses the ''grey disc'' interpretations of hadrons; both allow the decomposition of the profile into the elastic and inelastic overlap functions, which represent the probabilities of each of the two processes. A more rigorous procedure yielding essentially the same result involves the imposition of unitarity on the relativistic S-matrix and then requiring angular momentum conservation. Cross section measurements extend to t = -0.8 (GeV/c)/sup 2/; this calculation assumes pure exponential behavior thereafter, and accounts for the possibility of a sharp decrease in its slope at larger t. The real part of the scattering amplitude is neglected. The results display good qualitative agreement with the shadow-diffraction scattering model, and with previous analyses. They indicate distinct differences between meson-baryon and baryon-baryon interactions, and imply that dependence of the cross section on energy derives primarily from a net change in peripheral processes. A test of the quark model and the Lipkin sum rules shows substantial deviation from theoretical expectations.
Recent results on hadron physics at KLOE
Babusci, D; Balwierz-Pytko, I; Bencivenni, G; Bini, C; Bloise, C; Bossi, F; Branchini, P; Budano, A; Balkest, L Caldeira; Capon, G; Ceradini, F; Ciambrone, P; Curciarello, F; Czerwinski, E; Dane, E; De Leo, V; De Lucia, E; De Robertis, G; De Santis, A; Di Domenico, A; Di Donato, C; Di Salvo, R; Domenici, D; Erriquez, O; Fanizzi, G; Fantini, A; Felici, G; Fiore, S; Franzini, P; Gajos, A; Gauzzi, P; Giardina, G; Giovannella, S; Graziani, E; Happacher, F; Heijkenskjold, L; Hoistad, B; Iafolla, L; Jacewicz, M; Johansson, T; Kacprzak, K; Kupsc, A; Lee-Franzini, J; Leverington, B; Loddo, F; Loffredo, S; Mandaglio, G; Martemianov, M; Martini, M; Mascolo, M; Messi, R; Miscetti, S; Morello, G; Moricciani, D; Moskal, P; Nguyen, F; Palladino, A; Passeri, A; Patera, V; Longhi, I Prado; Ranieri, A; Redmer, C F; Santangelo, P; Sarra, I; Schioppa, M; Sciascia, B; Silarski, M; Taccini, C; Tortora, L; Venanzoni, G; Wislicki, W; Wolke, M; Zdebik, J
2013-01-01
One of the basic motivations of the KLOE and KLOE-2 collaborations is the test of fundamental symmetries and the search for phenomena beyond the Standard Model via the hadronic and leptonic decays of ground-state mesons and via their production in the fusion of virtual gamma quanta exchanged between colliding electrons and positrons. This contribution includes brief description of results of recent analysis of the KLOE data aimed at (i) the search for the dark matter boson, (ii) determination of the hadronic and light-by-light contributions to the g-2 muon anomaly and (iii) tests of QCD anomalies.
Aaij, Roel; Adeva, Bernardo; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassi, Guido; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; d'Argent, Philippe; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Bel, Lennaert; Bellee, Violaine; Belloli, Nicoletta; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Billoir, Pierre; Bird, Thomas; Birnkraut, Alex; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borisyak, Maxim; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Buchanan, Emma; Burr, Christopher; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dall'Occo, Elena; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Aguiar Francisco, Oscar; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Demmer, Moritz; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferrari, Fabio; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fohl, Klaus; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forshaw, Dean Charles; Forty, Roger; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Gerick, David; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianì, Sebastiana; Gibson, Valerie; Girard, Olivier Göran; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc
2016-01-01
Associated production of bottomonia and open charm hadrons in $pp$ collisions at $\\sqrt{s}=7$ and $8$TeV is observed using data corresponding to an integrated luminosity of 3$fb^{-1}$ accumulated with the LHCb detector. The observation of five combinations, $\\Upsilon(1S)D^0$, $\\Upsilon(2S)D^0$, $\\Upsilon(1S)D^+$, $\\Upsilon(2S)D^+$ and $\\Upsilon(1S)D^+_{s}$, is reported. Production cross-sections are measured for $\\Upsilon(1S)D^0$ and $\\Upsilon(1S)D^+$ pairs in the forward region. The measured cross-sections and the differential distributions indicate the dominance of double parton scattering as the main production mechanism. This allows a precise measurement of the effective cross-section for double parton scattering.
Hadron-Hadron Interactions from $N_f=2+1+1$ Lattice QCD: isospin-2 $\\pi\\pi$ scattering length
Helmes, C; Knippschild, B; Liu, C; Liu, J; Liu, L; Urbach, C; Ueding, M; Wang, Z; Werner, M
2015-01-01
We present results for the $I=2$ $\\pi\\pi$ scattering length using $N_f=2+1+1$ twisted mass lattice QCD for three values of the lattice spacing and a range of pion mass values. Due to the use of Laplacian Heaviside smearing our statistical errors are reduced compared to previous lattice studies. A detailed investigation of systematic effects such as discretisation effects, volume effects, and pollution of excited and thermal states is performed. After extrapolation to the physical point using chiral perturbation theory at NLO we obtain $M_\\pi a_0=-0.0442(2)_\\mathrm{stat}(^{+4}_{-0})_\\mathrm{sys}$.
Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Hadron-hadron interactions from N{sub f}=2+1+1 lattice QCD: isospin-2 ππ scattering length
Helmes, C.; Jost, C.; Knippschild, B.; Liu, L.; Urbach, C.; Ueding, M.; Werner, M. [Helmholtz Institut für Strahlen- und Kernphysik, University of Bonn,Nussallee 14-16, Bonn (Germany); Liu, C. [Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Haidian, Beijing (China); Collaborative Innovation Center of Quantum Matter,Beijing (China); School of Physics, Peking University,209 Chengfu Rd, Haidian, Beijing (China); Liu, J.; Wang, Z. [School of Physics, Peking University,209 Chengfu Rd, Haidian, Beijing (China); Collaboration: The ETM collaboration
2015-09-16
We present results for the I=2ππ scattering length using N{sub f}=2+1+1 twisted mass lattice QCD for three values of the lattice spacing and a range of pion mass values. Due to the use of Laplacian Heaviside smearing our statistical errors are reduced compared to previous lattice studies. A detailed investigation of systematic effects such as discretisation effects, volume effects, and pollution of excited and thermal states is performed. After extrapolation to the physical point using chiral perturbation theory at NLO we obtain M{sub π}a{sub 0}=−0.0442(2){sub stat}({sub −0}{sup +4}){sub sys}.
Anomalous decay and scattering processes of the eta meson
Kubis, Bastian
2015-01-01
We amend a recent dispersive analysis of the anomalous $\\eta$ decay process $\\eta\\to\\pi^+\\pi^-\\gamma$ by the effects of the $a_2$ tensor meson, the lowest-lying resonance that can contribute in the $\\pi\\eta$ system. While the net effects on the measured decay spectrum are small, they may be more pronounced for the analogous $\\eta'$ decay. There are nonnegligible consequences for the $\\eta$ transition form factor, which is an important quantity for the hadronic light-by-light scattering contribution to the muon's anomalous magnetic moment. We predict total and differential cross sections, as well as a marked forward-backward asymmetry, for the crossed process $\\gamma\\pi^-\\to\\pi^-\\eta$ that could be measured in Primakoff reactions in the future.
Allada, K; Aniol, K; Annand, J R M; Averett, T; Benmokhtar, F; Bertozzi, W; Bradshaw, P C; Bosted, P; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Chen, W; Chirapatpimol, K; Chudakov, E; Cisbani, E; Cornejo, J C; Cusanno, F; Dalton, M; Deconinck, W; de Jager, C W; De Leo, R; Deng, X; Deur, A; Ding, H; Dolph, P A M; Dutta, C; Dutta, D; Fassi, L El; Frullani, S; Gao, H; Garibaldi, F; Gaskell, D; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Guo, L; Hamilton, D; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Huang, M; Ibrahim, H F; Iodice, M; Jiang, X; Jin, G; Jones, M K; Katich, J; Kelleher, A; Kim, W; Kolarkar, A; Korsch, W; LeRose, J J; Li, X; Li, Y; Lindgren, R; Liyanage, N; Long, E; Lu, H -J; Margaziotis, D J; Markowitz, P; Marrone, S; McNulty, D; Meziani, Z -E; Michaels, R; Moffit, B; Camacho, C Munoz; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Oh, Y; Osipenko, M; Parno, D; Peng, J -C; Phillips, S K; Posik, M; Puckett, A J R; Qian, X; Qiang, Y; Rakhman, A; Ransome, R; Riordan, S; Saha, A; Sawatzky, B; Schulte, E; Shahinyan, A; Shabestari, M H; Sirca, S; Stepanyan, S; Subedi, R; Sulkosky, V; Tang, L -G; Tobias, A; Urciuoli, G M; Vilardi, I; Wang, K; Wang, Y; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X; Zhu, L; Zhu, X; Zong, X
2013-01-01
We report the first measurement of target single-spin asymmetries (A$_N$) in the inclusive hadron production reaction, $e $+$ ^3\\text{He}^{\\uparrow}\\rightarrow h+X$, using a transversely polarized $^3$He target at an electron-nucleon center-of-mass energy $\\sqrt{s}$=3.45 GeV. The experiment was conducted at Jefferson Lab in Hall A using a 5.9-GeV electron beam. Three types of hadrons ($\\pi^{\\pm}$, $\\text{K}^{\\pm}$ and proton) were detected with an average momentum $$=2.35 GeV/c, and an average transverse momentum $$=0.64 GeV/c. The observed asymmetry strongly depends on the type of hadron. A positive asymmetry is observed for $\\pi^+$ and $\\text{K}^+$. A negative asymmetry is observed for $\\pi^{-}$. The magnitudes of the asymmetries follow $|A^{\\pi^-}| < |A^{\\pi^+}| < |A^{K^+}|$. The K$^{-}$ and proton asymmetries are consistent with zero within the experimental uncertainties. The $\\pi^{+}$ and $\\pi^{-}$ asymmetries measured for the $^3$He target and extracted for neutrons are opposite in sign with a sma...
Month, M.; Weng, W.T.
1983-06-21
The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.
Hadron multiplicities at COMPASS
Du Fresne Von Hohenesche, Nicolas
2014-01-01
Quark fragmentation functions (FF) D h q ( z ; Q 2 ) describe final-state hadronisation of quarks q into hadrons h . The FFs can be extracted from hadron multiplicities produced in semi-inclusive deep inelastic scattering. The COMPASS collaboration has recently measured charged hadron multiplicities for identified pions and kaons using a 160 GeV/c muon beam impinging on an isoscalar LiD target. The data cover a large kinematical range and provide an important input for global QCD analyses of world data at NLO, aiming at the determination of FFs. The latest results from COMPASS on pion multiplicities and pion fragmentation functions will be discussed.
Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hoheneschedu, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmüller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d'Hose, N; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuhn, R; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Liska, T; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Negrini, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W -D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Rajotte, J -F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, K; Schmitt, L; Schönning, K; Schopferer, S; Schott, M; Schröder, W; Shevchenko, O Yu; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Wang, L; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A
2013-01-01
The cross section for production of charged hadrons with high transverse momenta in scattering of 160 GeV/c muons off nucleons at low photon virtualities has been measured at the COMPASS experiment at CERN. The results, which cover transverse momenta from 1.1 to 3.6 GeV/c, are compared to a next-to-leading order perturbative Quantum Chromodynamics (NLO pQCD) calculation in order to evaluate the applicability of pQCD to this process in the kinematic domain of the experiment. The shape of the calculated differential cross section as a function of transverse momentum is found to be in good agreement with the experimental data, but the normalization is underestimated by NLO pQCD. This discrepancy may point towards the relevance of terms beyond NLO in the pQCD framework. The dependence of the cross section on the pseudo-rapidity and on the charge of the hadrons is also discussed.
Leading-order hadronic contribution to the electron and muon g-2
Jegerlehner, Fred
2015-01-01
I present a new data driven update of the hadronic vacuum polarization effects for the muon and the electron g-2. For the leading order contributions I find a_mu[LO VP]=(688.57 +/-4.28)[688.91+/-3.52] 10^{-10} based on e+e- data [incl. tau data], a_mu[VP NLO]= (-9.92+/- 0.10) 10^{-10} and a_mu[VP NNLO]= (1.23+/- 0.01) 10^{-10} for the muon, and a_e[VP LO]=(185.11+/- 1.24) 10^{-14}, a_e[VP NLO]=(-22.15+/- 0.16) 10^{-14} and a_e[VP NNLO]=(2.80+/- 0.02) 10^{-14} for the electron. A problem with vacuum polarization undressing of cross-sections (time-like region) is addressed. I also add a comment on properly including axial mesons in the hadronic light-by-light scattering contribution. My estimate here reads a_mu[a_1,f_1',f_1] = ({ 7.51 +/- 2.71}) 10^{-11}. With these updates a_mu [exp]-a_mu [the]=(31.0+/- 8.2) 10^{-10} a 3.8 sigma deviation, while a_e [exp]-a_e [the]=(-1.14+/- 0.82) 10^{-12} shows no significant deviation.
Hadron Structure and Spectrum from the Lattice
Lang, C B
2015-01-01
Lattice calculations for hadrons are now entering the domain of resonances and scattering, necessitating a better understanding of the observed discrete energy spectrum. This is a reviewing survey about recent lattice QCD results, with some emphasis on spectrum and scattering.
Quigg, C.
1982-11-01
The subject of hadron jet studies, to judge by the work presented at this workshop, is a maturing field which is still gathering steam. The very detailed work being done in lepton-lepton and lepton-hadron collisions, the second-generation measurements being carried out at Fermilab, the CERN SPS, and the ISR, and the very high energy hard scatterings being observed at the CERN Collider all show enormous promise for increased understanding. Perhaps we shall yet reach that long-sought nirvana in which high-p/sub perpendicular/ collisions become truly simple.
Double hadron leptoproduction in the nuclear medium
Airapetian, A; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetisian, A; Avetissian, E; Bailey, P; Belostotskii, S; Bianchi, N; Blok, H P; Böttcher, Helmut B; Borisov, A; Borysenko, A; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E G; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Karibian, V; Giordano, F; Grebenyuk, O; Gregor, I M; Griffioen, K; Guler, H; Hadjidakis, C; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H A; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kiselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhizhin, V G; Lagamba, L; Lapikas, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lü, J; Lu, S; Ma, B Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Miklukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Yu; Negodaev, M; Nowak, Wolf-Dieter; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Reolon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Tanaka, H; Taroian, S P; Tchuiko, B; Terkulov, A R; Trzcinski, A; Tytgat, M; Vandenbroucke, A; Van der Nat, P B; van der Steenhoven, G; Van Haarlem, Y; Veretennikov, D; Vikhrov, V; Vogel, C; Wang, S; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P
2006-01-01
First measurement of double-hadron production in deep-inelastic scattering has been measured with the HERMES spectrometer at HERA using a 27.6 GeV positron beam with deuterium, nitrogen, krypton and xenon targets. The influence of the nuclear medium on the ratio of double-hadron to single-hadron yields has been investigated. Nuclear effects are clearly observed but with substantially smaller magnitude and reduced $A$-dependence compared to previously measured single-hadron multiplicity ratios. The data are in fair agreement with models based on partonic or pre-hadronic energy loss, while they seem to rule out a pure absorptive treatment of the final state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter.
Asymmetric azimuthal distribution of hadrons inside a jet from hadron-hadron collisions.
Yuan, Feng
2008-01-25
We study the azimuthal asymmetric distribution of hadrons inside a high energy jet in the single-transverse polarized nucleon-nucleon scattering, coming from the Collins effect multiplied by the quark transversity distribution. We argue that the Collins function in this process is the same as that in the semi-inclusive deep inelastic scattering. The experimental study of this process will provide us with important information on the quark transversity distribution and test the universality of the fragmentation functions.
Hadron muoproduction at the COMPASS experiment
Rajotte, J F
The COMPASS Collaboration has two main fields of interest: to improve our knowledge of the nucleon spin structure and to study hadrons through spectroscopy. These goals require a multipurpose universal spectrometer such as the COmmon Muon and Proton Apparatus for Structure and Spectroscopy, COMPASS. In its first years of data taking (2002-2007), the nucleon spin structure was studied with a polarized muon beam scattering off a polarized target. These studies resumed in 2010 and will continue until at least 2011. The years 2008 and 2009 were dedicated to hadron spectroscopy using hadron beams. In the case of the nucleon structure studies, it is crucial to detect with high precision the incoming beam muon (160 GeV), the scattered muon and the produced hadrons. The large amount of high quality data accumulated provides access to the unpolarized and polarized parton distributions of the nucleon and the hadronization process. Subtle differences (asymmetries) between polarized cross sections have been predicted for...
Liu, Chuan
2016-01-01
I review some of the lattice results on spectroscopy and resonances in the past years. For the conventional hadron spectrum computations, focus has been put on the isospin breaking effects, QED effects, and simulations near the physical pion mass point. I then go through several single-channel scattering studies within L\\"uscher formalism, a method that has matured over the past few years. The topics cover light mesons and also the charmed mesons, with the latter case intimately related to the recently discovered exotic $XYZ$ particles. Other possible related formalisms that are available on the market are also discussed.
Gutsche, Thomas; Faessler, Amand; Lee, Ian Woo; Lyubovitskij, Valery E
2010-01-01
We discuss a possible interpretation of the open charm mesons $D_{s0}^*(2317)$, $D_{s1}(2460)$ and the hidden charm mesons X(3872), Y(3940) and Y(4140) as hadron molecules. Using a phenomenological Lagrangian approach we review the strong and radiative decays of the $D_{s0}^* (2317)$ and $D_{s1}(2460)$ states. The X(3872) is assumed to consist dominantly of molecular hadronic components with an additional small admixture of a charmonium configuration. Determing the radiative ($\\gamma J/\\psi$ and $\\gamma \\psi(2s)$) and strong ($J/\\psi 2\\pi $ and $ J/\\psi 3\\pi$) decay modes we show that present experimental observation is consistent with the molecular structure assumption of the X(3872). Finally we give evidence for molecular interpretations of the Y(3940) and Y(4140) related to the observed strong decay modes $J/\\psi + \\omega$ or $J/\\psi + \\phi$, respectively.
Medium Modification of Hadronic Interactions from Low Energy Experiments
Friedman, E.
Medium-modification of hadronic interactions is defined as the differences between hadron-hadron interaction in the nuclear medium and the corresponding interaction in free space. Deeply penetrating hadrons provide such information and we discuss here pionic atoms and scattering by nuclei of 21.5 MeV pions. Brief mention is made also of the interaction of 500-700 MeV/c K+ with nuclei.
Aaij, R.; Beteta, C. Abellan; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M. -O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borisyak, M.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Gomez, M. Calvo; Campana, P.; Perez, D. Campora; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Garcia, L. Castillo; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Cheung, S. -F.; Chiapolini, N.; Chrzaszcz, M.; Vidal, X. Cid; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Torres, M. Cruz; Cunliff, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C. -T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Deleage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suarez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Albor, V. Fernandez; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Frei, C.; Frosini, M.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Garcia Pardinas, J.; Tico, J. Garra; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Giani, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Gobel, C.; Golubkov, D.; Golutvin, A.; Gotti, C.; Gandara, M. Grabalosa; Graciani Diaz, R.; Cardoso, L. A. Granado; Grauges, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Gruenberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Hess, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J. -P.; Lefevre, R.; Leflat, A.; Lefrancois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; Mcnab, A.; McNulty, R.; Meadows, B.; Meier, F.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M. -N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Morda, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mueller, J.; Mueller, K.; Mueller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Altarelli, M. Pepe; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pila, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Casasus, M. Plo; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Navarro, A. Puig; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Molina, V. Rives; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M. -H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Coutinho, R. Silva; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, I. T.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Gomez, R. Vazquez; Vazquez Regueiro, P.; Vazquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Volkov, V.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voss, C.; Waldi, R.; Wallace, C.; Wallace, R.; Wandernoth, S.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zucchelli, S.
2016-01-01
Associated production of bottomonia and open charm hadrons in pp collisions at root s = 7 and 8 TeV is observed using data corresponding to an integrated luminosity of 3 fb(-1) accumulated with the LHCb detector. The observation of five combinations, Y(1S)D-0, Y(2S)D-0, Y(1S)D+, Y(2S)D+ and Y(1S)D
Cooper, S.
1985-10-01
Heavy quark systems and glueball candidates, the particles which are relevant to testing QCD, are discussed. The review begins with the heaviest spectroscopically observed quarks, the b anti-b bound states, including the chi state masses, spins, and hadronic widths and the non-relativistic potential models. Also, P states of c anti-c are mentioned. Other heavy states are also discussed in which heavy quarks combine with lighter ones. The gluonium candidates iota(1460), theta(1700), and g/sub T/(2200) are then covered. The very lightest mesons, pi-neutral and eta, are discussed. 133 refs., 24 figs., 16 tabs. (LEW)
Double-hadron leptoproduction in the nuclear medium.
Airapetian, A; Akopov, N; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetissian, E; Bailey, P; Belostotski, S; Bianchi, N; Blok, H P; Böttcher, H; Borissov, A; Borysenko, A; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Gharibyan, V; Giordano, F; Grebeniouk, O; Gregor, I M; Griffioen, K; Guler, H; Hadjidakis, C; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kisselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lu, J; Lu, S; Ma, B-Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Mikloukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Y; Negodaev, M; Nowak, W-D; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Roelon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T-A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Tanaka, H; Taroian, S; Tchuiko, B; Terkulov, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; van der Nat, P B; van der Steenhoven, G; van Haarlem, Y; Veretennikov, D; Vikhrov, V; Vogel, C; Wang, S; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P
2006-04-28
The first measurements of double-hadron production in deep-inelastic scattering within the nuclear medium were made with the HERMES spectrometer at DESY HERA using a 27.6 GeV positron beam. By comparing data for deuterium, nitrogen, krypton, and xenon nuclei, the influence of the nuclear medium on the ratio of double-hadron to single-hadron yields was investigated. Nuclear effects on the additional hadron are clearly observed, but with little or no difference among nitrogen, krypton, or xenon, and with smaller magnitude than effects seen on previously measured single-hadron multiplicities. The data are compared with models based on partonic energy loss or prehadronic scattering and with a model based on a purely absorptive treatment of the final-state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter.
The Emergence of Hadrons from QCD Color
Brooks, William; Color Dynamics in Cold Matter (CDCM) Collaboration
2015-10-01
The formation of hadrons from energetic quarks, the dynamical enforcement of QCD confinement, is not well understood at a fundamental level. In Deep Inelastic Scattering, modifications of the distributions of identified hadrons emerging from nuclei of different sizes reveal a rich variety of spatial and temporal characteristics of the hadronization process, including its dependence on spin, flavor, energy, and hadron mass and structure. The EIC will feature a wide range of kinematics, allowing a complete investigation of medium-induced gluon bremsstrahlung by the propagating quarks, leading to partonic energy loss. This fundamental process, which is also at the heart of jet quenching in heavy ion collisions, can be studied for light and heavy quarks at the EIC through observables quantifying hadron ``attenuation'' for a variety of hadron species. Transverse momentum broadening of hadrons, which is sensitive to the nuclear gluonic field, will also be accessible, and can be used to test our understanding from pQCD of how this quantity evolves with pathlength, as well as its connection to partonic energy loss. The evolution of the forming hadrons in the medium will shed new light on the dynamical origins of the forces between hadrons, and thus ultimately on the nuclear force. Supported by the Comision Nacional de Investigacion Cientifica y Tecnologica (CONICYT) of Chile.
Interplay among transversity induced asymmetries in hadron leptoproduction
Adolph, C.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buchele, M.; Burtin, E.; Chang, W.C.; Chiosso, M.; Choi, I.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; d'Hose, N.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Ferrero, A.; Finger, M.; M. Finger jr; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmuller, S.; Grasso, A.; Grosse-Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; Hsieh, C.Yu; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jorg, P.; Joosten, R.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.C.; Pereira, F.; Pesaro, G.; Pesek, M.; Peshekhonov, D.V.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Rychter, A.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schonning, K.; Schopferer, S.; Selyunin, A.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sozzi, F.; Srnka, A.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Wolbeek, J. ter; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Weisrock, T.; Wilfert, M.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2016-01-01
In the fragmentation of a transversely polarized quark several left-right asymmetries are possible for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation known as Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we have investigated for the first time the dependence of these three asymmetries on the difference of the azimuthal angles of the two hadrons. The similarity of transversity induced single and di-hadron asymmetries is discussed. A phenomenological analysis of the data allows to establish quantitative relationships among them, providing strong indication that the underlying fragmentation mechanisms are all driven ...
Quark Hadron Duality - Recent Jefferson Lab Results
Niculescu, Maria Ioana [James Madison Univ., Harrisonburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-08-01
The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.
Quark Hadron Duality - Recent Jefferson Lab Results
Niculescu, Ioana
2015-01-01
The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.
Di-hadron production at Jefferson Lab
Anefalos Pereira, Sergio [Lab. Naz. Frascati, Frascati, Italy; et. al.,
2014-10-01
Semi-inclusive deep inelastic scattering (SIDIS) has been used extensively in recent years as an important testing ground for QCD. Studies so far have concentrated on better determination of parton distribution functions, distinguishing between the quark and antiquark contributions, and understanding the fragmentation of quarks into hadrons. Hadron pair (di-hadron) SIDIS provides information on the nucleon structure and hadronization dynamics that complement single hadron SIDIS. Di-hadrons allow the study of low- and high-twist distribution functions and Dihadron Fragmentation Functions (DiFF). Together with the twist-2 PDFs ( f1, g1, h1), the Higher Twist (HT) e and hL functions are very interesting because they offer insights into the physics of the largely unexplored quark-gluon correlations, which provide access into the dynamics inside hadrons. The CLAS spectrometer, installed in Hall-B at Jefferson Lab, has collected data using the CEBAF 6 GeV longitudinally polarized electron beam on longitudinally polarized solid NH3 targets. Preliminary results on di-hadron beam-, target- and double-spin asymmetries will be presented.
Olsen, Stephen Lars
2016-01-01
A number of candidate multiquark hadrons, i.e., particle resonances with substructures that are more complex than the quark-antiquark mesons and three-quark baryons that are prescribed in the textbooks, have recently been observed. In this talk I present: some recent preliminary BESIII results on the near-threshold behavior of sigma(e+e- --> Lambda Lambda-bar) that may or may not be related to multiquark mesons in the light- and strange-quark sectors; results from Belle and LHCb on the electrically charged, charmoniumlike Z(4430)^+ --> pi^+ psi ' resonance that necessarily has a four-quark substructure; and the recent LHCb discovery of the P_c(4380) and P_c(4450) hidden-charm resonances seen as a complex structure in the J/psi p invariant mass distribution for Lambda_b --> K^-J/psi p decays and necessarily have a five-quark substructure and are, therefore, prominent candidates for pentaquark baryons.
QCD in hadron-hadron collisions
Albrow, M.
1997-03-01
Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.
General characteristics of hadron-hadron collisions
Kittel, E W
2004-01-01
Soft multiparticle production in hadron-hadron collisions is reviewed with particular emphasis on its role as a standard for heavy-ion collisions at SPS and RHIC energies and as a bridge interpolating between the most simple e **+e**- and the most complex AA collisions.
Multidimensional study of hadronization in nuclei
Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)
2011-07-15
Hadron multiplicities in semi-inclusive deep-inelastic scattering were measured on neon, krypton and xenon targets relative to deuterium at an electron(positron)-beam energy of 27.6 GeV at HERMES. These ratios were determined as a function of the virtual-photon energy {nu}, its virtuality Q{sup 2}, the fractional hadron energy z and the transverse hadron momentum with respect to the virtual-photon direction p{sub t}. Dependences were analysed separately for positively and negatively charged pions and kaons as well as protons and antiprotons in a two-dimensional representation. Compared to the one-dimensional dependences, some new features were observed. In particular, when z>0:4 positive kaons do not show the strong monotonic rise of the multiplicity ratio with {nu} as exhibited by pions and K{sup -}. Protons were found to behave very differently from the other hadrons. (orig.)
Strong Van der Waals force in the hadron physics
Sawada, T
2000-01-01
Possible strong Van der Waals interaction between hadrons is searched in the P-wave amplitude of the pi-pi scattering by removing the cut of the two-pion exchange spectrum as well as the unitarity cut.
CMS Central Hadron Calorimeter
Budd, Howard S.
2001-01-01
We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.
2003-01-01
Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)
Strong interaction of hadrons in quark cluster model
Arezu Jahanshir
2015-09-01
Full Text Available The theoretical information on the hadrons interactions according to the basis investigation of the multiple scattering process theory is described. As we know multi-particle reactions on the hadrons targets are attracting a great attention nowadays. To survey strong interaction of jet particles with quarks that are inside hadrons (Baryons,mesons, exotic baryons(Penta-quarks, exotic mesons(Tetra-quarks, we can use the estimate called high energy approximation (Eikonal or Glauber approximation theory that known very well in nuclear physics. This estimate describes collision and interactions of jet particles with quarks and scattering from multi-focus hadrons like diffraction phenomenon in optics. Glauber multiple scattering process theory may apply in analyzing elastic and inelastic collision of hadrons in a range of high energy levels. In elastic collision, scattering amplitude is equal to total ranges of multiple collisions inside the hadrons. It’s possible to express Glauber multiple scattering factor in a form of mathematic series. So that each elements shows the number of occurred scattering inside the hadrons. Determination of scattering amplitude by the high energy approximation depends on elected primary coming wave function of the shot particle and function of out coming wave from the target nucleus. Therefore it’s not so hard to determine scattering amplitude. The main purpose of this paper is to show how to determine mathematical formula for differential cross section of jet particles in high energy levels with a hadrons in cluster model (qq, qq (Quarkonium-Quarkonium cluster.
Introduction to quantum chromodynamics at hadron colliders
William B Kilgore
2011-05-01
A basic introduction to the application of QCD at hadron colliders is presented. I brieﬂy review the phenomenological and theoretical origins of QCD, and then discuss factorization and infrared safety, parton distributions, the computation of hard scattering amplitudes and applications of perturbative QCD.
Phi meson propagation in a hot hadronic gas
Alvarez-Ruso, Luis; Koch, Volker
2002-02-20
The Hidden Local Symmetry Lagrangian is used to study the interactions of phi mesons with other pseudoscalar and vector mesons in a hadronic gas at finite temperature. We have found a significantly small phi mean free path (less than 2.4 fm at T > 170 MeV) due to large collision rates with rho mesons, kaons and predominantly K* in spite of their heavy mass. This implies that phi mesons produced after hadronization in relativistic heavy ion collisions will not leave the hadronic system without scattering. The effect of these interactions on the time evolution of the phi density in the expanding hadronic fireball is investigated.
Phi meson propagation in a hot hadronic gas
Alvarez-Ruso, L
2002-01-01
The Hidden Local Symmetry Lagrangian is used to study the interactions of phi mesons with other pseudoscalar and vector mesons in a hadronic gas at finite temperature. We have found a significantly small phi mean free path (less than 2.4 fm at T > 170 MeV) due to large collision rates with rho mesons, kaons and predominantly K* in spite of their heavy mass. This implies that phi mesons produced after hadronization in relativistic heavy ion collisions will not leave the hadronic system without scattering. The effect of these interactions on the time evolution of the phi density in the expanding hadronic fireball is investigated.
Phi meson propagation in a hot hadronic gas
Alvarez-Ruso, Luis; Koch, Volker
2002-02-20
The Hidden Local Symmetry Lagrangian is used to study the interactions of phi mesons with other pseudoscalar and vector mesons in a hadronic gas at finite temperature. We have found a significantly small phi mean free path (less than 2.4 fm at T > 170 MeV) due to large collision rates with rho mesons, kaons and predominantly K* in spite of their heavy mass. This implies that phi mesons produced after hadronization in relativistic heavy ion collisions will not leave the hadronic system without scattering. The effect of these interactions on the time evolution of the phi density in the expanding hadronic fireball is investigated.
Hadron Colliders and Hadron Collider Physics Symposium
Denisov D.
2013-05-01
Full Text Available This article summarizes main developments of the hadron colliders and physics results obtained since their inception around forty years ago. The increase in the collision energy of over two orders of magnitude and even larger increases in luminosity provided experiments with unique data samples. Developments of full acceptance detectors, particle identification and analysis methods provided fundamental discoveries and ultra-precise measurements which culminated in the completion and in depth verification of the Standard Model. Hadron Collider Physics symposium provided opportunities for those working at hadron colliders to share results of their research since 1979 and helped greatly to develop the field of particle physics.
Factorization model for distributions of quarks in hadrons
Ermolaev, B I; Troyan, S I
2015-01-01
We consider distributions of unpolarized (polarized) quarks in unpolarized (polarized) hadrons. Our approach is based on QCD factorization. We begin with study of Basic factorization for the parton-hadron scattering amplitudes in the forward kinematics and suggest a model for non-perturbative contributions to such amplitudes. This model is based on the simple observation: after emitting an active quark by the initial hadron, the remaining set quarks and gluons becomes unstable, so description of this colored state can approximately be done in terms of resonances, which leads to expressions of the Breit-Wigner type. for non-perturbative contributions to the distributions of unpolarized and polarized quarks in the hadrons. Then we reduce these formulae to obtain explicit expressions for the quark-hadron scattering amplitudes and quark distributions in K_T- and Collinear factorizations.
Charm-Hadron Production at Hadron Colliders
Watson, Miriam; The ATLAS collaboration
2016-01-01
Recent results on charm hadron production are presented, using data recorded in proton-proton collisions at the Large Hadron Collider and in proton-antiproton collisions at the Tevatron. These results include the production of charmonium and of open charm mesons, and their comparison with theoretical predictions. Measurements of the associated production of hidden or open charm mesons with additional quarkonium states are also presented.
Hard processes in hadronic interactions
Satz, H. [CERN, Geneva (Switzerland)]|[Universitat Bielefeld (Germany); Wang, X.N. [Lawrence Berkeley Lab., CA (United States)
1995-07-01
Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.
U Mosel
2006-04-01
In these lectures I first give the motivation for investigations of in-medium properties of hadrons. I discuss the relevant symmetries of QCD and how they might affect the observed hadron properties. I then discuss at length the observable consequences of in-medium changes of hadronic properties in reactions with elementary probes, and in particular photons, on nuclei. Here I put an emphasis on new experiments on changes of the - and -mesons in medium.
Euclidean formulation of diffractive scattering
Meggiolaro, E
2005-01-01
After a brief review (in the first part) of some relevant properties of the high-energy parton-parton scattering amplitudes, in the second part we shall discuss the infrared finiteness and some analyticity properties of the loop-loop scattering amplitudes in gauge theories, when going from Minkowskian to Euclidean theory, and we shall see how they can be related to the still unsolved problem of the s-dependence of the hadron-hadron total cross-sections.
Hadronization in polarized deep inelastic scattering
Florian, D. de; Garcia Canal, C.A. [La Plata Univ. Nacional (Argentina). Dept. de Fisica; Joffily, S. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sassot, R. [Buenos Aires Univ. (Argentina). Dept. de Fisica
1997-12-31
We have computed semi-inclusive spin asymmetries for proton and deuteron targets including next to leading order QCD correlations and contributions coming from the target fragmentation region. (author) 7 refs., 3 figs.
Statistical Hadronization and Holography
Bechi, Jacopo
2009-01-01
In this paper we consider some issues about the statistical model of the hadronization in a holographic approach. We introduce a Rindler like horizon in the bulk and we understand the string breaking as a tunneling event under this horizon. We calculate the hadron spectrum and we get a thermal......, and so statistical, shape for it....
Toponium at hadronic colliders
Finjord, J. (Bern Univ. (Switzerland)); Girardi, G.; Sorba, P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules); Mery, P. (European Organization for Nuclear Research, Geneva (Switzerland))
1982-05-27
We calculate hadronic toponium production by specific diagrams obeying colour conservation and charge conjugation. The resulting rates, though lower than those calculated using semi-local duality arguments are encouraging and may allow for toponium discovery at hadronic colliders currently in development.
Evaporation/Hadronization Correspondence
Allahbakhshi, Davood
2016-01-01
A holographic duality is proposed between black hole evaporation in the bulk and hadronization (confinement) in dual field theory. Information paradox is discussed in this duality. We also propose that the recently introduced semi black brane solution is holographically dual to a mixed plasma of quarks, gluons and hadrons in global equilibrium.
Inelastic hadron reactions using a streamer chamber triggered by a single-arm spectrometer
2002-01-01
This experiment will investigate hard hadron-hadron collisions where a large fraction of the total energy is carried off at large angles with respect to the incident beam direction. The measurements will be done in the energy range of 200-400 GeV and with various hadrons ($\\pi^{\\pm}, K^{\\pm}, p, \\bar{p}$) incident on a liquid-hydrogen target. \\\\ \\\\The following questions will be investigated: \\\\ \\\\i) Is there a scaling law in hard hadron-hadron collisions which is similar to the scaling laws observed in lepton-hadron and $e^{+}e^{-}$ collisions? \\\\ ii) What do the multiparticle final states look like? Are there jets and if so do they reflect the parton structure of hadrons? Do the final states produced in deep inelastic hadron-hadron scattering look similar to those produced in deep inelastic lepton-hadron scattering? \\\\ iii) Are heavy objects and/or new quantum numbers produced in hard hadron-hadron collisions? \\\\ \\\\The apparatus comprises a vertex magnet (1 m gap, 2 m diameter, 15 kG) with a 30 cm long hyd...
Sivers Effect in Two Hadron Electroproduction
Kotzinian, Aram; Thomas, Anthony W
2014-01-01
The Sivers effect in single hadron semi-inclusive deep inelastic scattering (DIS) on a transversely polarized nucleon describes the modulation of the cross-section with the sine of the azimuthal angle between the produced hadron's transverse momentum and the nucleon spin ($\\boldsymbol{P}_h$ and $\\varphi_S$ respectively). This effect is attributed to the so-called Sivers parton distribution function of the nucleon. We employ a simple phenomenological parton model to derive the relevant cross-section for two hadron production in semi-inclusive deep inelastic scattering including the Sivers effect. We show that Sivers effect can be observed in such process as sine modulations involving the azimuthal angles $\\varphi_T$ and $\\varphi_R$ of both the total and the relative transverse momenta of the hadron pair. The existence of the modulation with respect to $\\varphi_R$ is new. Finally, we employ a modified version of the $\\tt{LEPTO}$ Monte Carlo event generator that includes the Sivers effect to estimate the size of...
Cao, Shanshan; Bass, Steffen A
2015-01-01
We construct a theoretical framework to describe the evolution of heavy flavors produced in relativistic heavy-ion collisions. The in-medium energy loss of heavy quarks is described using our modified Langevin equation that incorporates both quasi-elastic scatterings and the medium-induced gluon radiation. The space-time profiles of the fireball is described by a (2+1)-dimensional hydrodynamics simulation. A hybrid model of fragmentation and coalescence is utilized for heavy quark hadronization, after which the produced heavy mesons together with the soft hadrons produced from the bulk QGP are fed into the hadron cascade UrQMD model to simulate the subsequent hadronic interactions. We find that the medium-induced gluon radiation contributes significantly to heavy quark energy loss at high $p_\\mathrm{T}$; heavy-light quark coalescence enhances heavy meson production at intermediate $p_\\mathrm{T}$; and scatterings inside the hadron gas further suppress the $D$ meson $R_\\mathrm{AA}$ at large $p_\\mathrm{T}$ and e...
Emergence of hadrons from color charge in QCD
Brooks, W K; Arratia, M; Peña, C
2014-01-01
The propagation of colored quarks through strongly interacting systems, and their subsequent evolution into color-singlet hadrons, are phenomena that showcase unique facets of Quantum Chromodynamics (QCD). Medium-stimulated gluon bremsstrahlung, a fundamental QCD process, induces broadening of the transverse momentum of the parton, and creates partonic energy loss manifesting itself in experimental observables that are accessible in high energy interactions in hot and cold systems. The formation of hadrons, which is the dynamical enforcement of the QCD confinement principle, is very poorly understood on the basis of fundamental theory, although detailed models such as the Lund string model or cluster hadronization models can generally be tuned to capture the main features of hadronic final states. With the advent of the technical capability to study hadronic final states from lepton scattering with good particle identification and at high luminosity, a new opportunity has appeared. Study of the characteristic...
Factorization model for distributions of quarks in hadrons
Ermolaev, B.I. [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Greco, M. [University Roma Tre, Department of Mathematics and Physics, Rome (Italy); INFN, Rome (Italy); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)
2015-07-15
We consider distributions of unpolarized (polarized) quarks in unpolarized (polarized) hadrons. Our approach is based on QCD factorization. We begin with a study of the basic factorization for the parton-hadron scattering amplitudes in the forward kinematics and suggest a model for non-perturbative contributions to such amplitudes. This model is based on this simple observation: after emitting an active quark by the initial hadron, the remaining set of quarks and gluons becomes unstable, so a description of this colored state can approximately be done in terms of resonances, which leads to expressions of the Breit-Wigner type. Then we reduce these formulas to obtain explicit expressions for the quark-hadron scattering amplitudes and quark distributions in K{sub T}- and collinear factorizations. (orig.)
Exotic Hadron Bound State Production at Hadronic Colliders
Jin, Yi; Liu, Yan-Rui; Meng, Lu; Si, Zon-Guo; Zhang, Xiao-Feng
2016-01-01
The non-relativistic wave function framework is applied to study the production and decay of the exotic hadrons which can be effectively described as bound states of other hadrons. The ingredient hadron production can be calculated by event generators. We investigate the production of exotic hadrons in the multiproduction processes at high energy hadronic colliders with the help of the event generators. We illustrate the crucial information such as their momentum distributions and production rate for the measurements at the large hadron collider. This study provides crucial information for the measurements of the relevant exotic hadrons.
Deppman, Airton
2016-01-01
The non extensive aspects of $p_T$ distributions obtained in high energy collisions are discussed in relation to possible fractal structure in hadrons, in the sense of the thermofractal structure recently introduced. The evidences of self-similarity in both theoretical and experimental works in High Energy and in Hadron Physics are discussed, to show that the idea of fractal structure of hadrons and fireballs have being under discussion for decades. The non extensive self-consistent thermodynamics and the thermofractal structure allow one to connect non extensivity to intermittence and possibly to parton distribution functions in a single theoretical framework.
The Onset of Quark-Hadron Duality in Pion Electroproduction
Navasardyan, T; Ahmidouch, A; Angelescu, T; Arrington, J; Asaturyan, R; Baker, O K; Benmouna, N; Bertoncini, C; Blok, H P; Bosted, P E; Breuer, H; Böglin, W; Christy, M E; Connell, S H; Cui, Y; Dalton, M M; Danagulyan, S; Day, D; Dodario, T; Dunne, J A; Dutta, D; Ent, R; Fenker, H C; Frolov, V V; Gan, L; Gaskell, D; Hafidi, K; Hinton, W; Holt, R J; Horn, T; Huber, G M; Hungerford, E; Jiang, X; Jones, M; Joo, K; Kalantarians, N; Kelly, J J; Keppel, C E; Khayari, N E; Kinney, E R; Kubarovski, V; Li, Y; Liang, Y; Malace, S; Markowitz, P; McGrath, E; McKee, P; Meekins, D G; Mkrtchyan, H; Moziak, B; Niculescu, G; Niculescu, I; Opper, A K; Ostapenko, T; Reimer, P; Reinhold, J; Roche, J; Rock, S E; Schulte, E; Segbefia, E; Smith, C; Smith, G R; Stoler, P; Tadevosyan, V; Tang, L; Ungaro, M; Uzzle, A; Vidakovic, S; Villano, A; Vulcan, W F; Wang, M; Warren, G; Wesselmann, F; Wojtsekhowski, B; Wood, S A; Xu, C; Yuan, L; Zheng, X; Zhu, H
2007-01-01
A large data set of charged-pion electroproduction from both hydrogen and deuterium targets has been obtained spanning the low-energy residual-mass region. These data conclusively show the onset of the quark-hadron duality phenomenon, as predicted for high-energy hadron electroproduction. We construct several ratios from these data to exhibit the relation of this phenomenon to the high-energy factorization ansatz of electron-quark scattering and subsequent quark-to- pion production mechanisms.
Weibull model of Multiplicity Distribution in hadron-hadron collisions
Dash, Sadhana
2014-01-01
We introduce the Weibull distribution as a simple parametrization of charged particle multiplicities in hadron-hadron collisions at all available energies, ranging from ISR energies to the most recent LHC energies. In statistics, the Weibull distribution has wide applicability in natural processes involving fragmentation processes. This gives a natural connection to the available state-of-the-art models for multi-particle production in hadron hadron collisions involving QCD parton fragmentation and hadronization.
Gauron, Pierre; Basarab Nicolescu [Theoretical Physics Division, Inst. de Physique Nucleaire, Paris-11 Univ., 91 - Orsay (France); Selyugin, O.V. [Lab. of Theoretical Physics, Joint Inst. for Nuclear Research, Dubna (Russian Federation)
1999-10-01
It is shown that the measurement of the polarization together with the hadron elastic dN/dt distribution of the Coulomb nuclei interference region allows to extract directly from the data both the real and imaginary parts of the spin-non-flip nuclear amplitude independently of each other and without any arbitrary theoretical assumption. The crucial parameter {rho} = ReF/ImF will be therefore known as a function of t at fixed s and will allow us to detect new phenomena in hadron physics. (authors)
Moreau, Pierre; Palmese, Alessia; Bratkovskaya, Elena
2016-01-01
We study the production of hadrons in nucleus-nucleus collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. Our studies provide a microscopic explanation for the maximum in the $K^+/\\pi^+$ ratio at about 30 A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.
Melting Hadrons, Boiling Quarks
Rafelski, Johann
2015-01-01
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. Finally in two appendices I present previously unpublished reports describing the early prediction of the different forms of hadron matter and of the formation of QGP in relativistic heavy ion collisions, including the initial prediction of strangeness and in particular strange antibaryon signature of QGP.
Melting hadrons, boiling quarks
Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)
2015-09-15
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP. (orig.)
Swanson, E S
2009-01-01
A brief review of theoretical progress in hadron spectroscopy and nonperturbative QCD is presented. Attention is focussed on recent lattice gauge theory, the Dyson-Schwinger formalism, unquenching constituent models, and some beyond the Standard Model physics.
Tang, Alfred [Univ. of Wiscon, Milwaukee, WI (United States)
2002-08-01
Hadron production cross sections are calculated in the perturbative QCD frame work. Parton distribution functions are obtained from a strip-soliton model. The fragmentation functions are derived from the Lund model of string breaking.
Melting Hadrons, Boiling Quarks
Rafelski, Johann
2015-01-01
In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustra...
Leading Hadron Production at HERA
Buniatyan Armen
2013-06-01
Full Text Available Data from the recent measurements of very forward baryon and photon production with the H1 and ZEUS detectors at electron-proton collider HERA are presented and compared to the theoretical calculations and Monte Carlo models. Results are presented of the production of leading protons, neutrons and photons in deep inelastic scattering (ep → e' pX, ep → e'nX, ep → e'γX as well as the leading neutron production in the photoproduction of dijets (ep → ejjXn. The forward baryon and photon results from the H1 and ZEUS Experiments are compared also with the models of the hadronic interactions of high energy Cosmic Rays. The sensitivity of the HERA data to the differences between the models is demonstrated.
Interplay among transversity induced asymmetries in hadron leptoproduction
C. Adolph
2016-02-01
Full Text Available In the fragmentation of a transversely polarized quark several left–right asymmetries are possible for the hadrons in the jet. When only one unpolarized hadron is selected, it exhibits an azimuthal modulation known as the Collins effect. When a pair of oppositely charged hadrons is observed, three asymmetries can be considered, a di-hadron asymmetry and two single hadron asymmetries. In lepton deep inelastic scattering on transversely polarized nucleons all these asymmetries are coupled with the transversity distribution. From the high statistics COMPASS data on oppositely charged hadron-pair production we have investigated for the first time the dependence of these three asymmetries on the difference of the azimuthal angles of the two hadrons. The similarity of transversity induced single and di-hadron asymmetries is discussed. A new analysis of the data allows quantitative relationships to be established among them, providing for the first time strong experimental indication that the underlying fragmentation mechanisms are all driven by a common physical process.
Di-hadron fragmentation and mapping of the nucleon structure
Pisano, Silvia
2015-01-01
The fragmentation of a colored parton directly into a pair of colorless hadrons is a non-perturbative mechanism that offers important insights into the nucleon structure. Di-hadron fragmentation functions can be extracted from semi-inclusive electron-positron annihilation data. They also appear in observables describing the semi-inclusive production of two hadrons in deep-inelastic scattering of leptons off nucleons or in hadron-hadron collisions. When a target nucleon is transversely polarized, a specific chiral-odd di-hadron fragmentation function can be used as the analyzer of the net density of transversely polarized quarks in a transversely polarized nucleon, the so-called transversity distribution. The latter can be extracted through suitable single-spin asymmetries in the framework of collinear factorization, thus in a much simpler framework with respect to the traditional one in single-hadron fragmentation. At subleading twist, the same chiral-odd di-hadron fragmentation function provides the cleanest...
Holography inspired stringy hadrons
Sonnenschein, Jacob
2017-01-01
Holography inspired stringy hadrons (HISH) is a set of models that describe hadrons: mesons, baryons and glueballs as strings in flat four dimensional space-time. The models are based on a "map" from stringy hadrons of holographic confining backgrounds. In this note we review the "derivation" of the models. We start with a brief reminder of the passage from the AdS5 ×S5 string theory to certain flavored confining holographic models. We then describe the string configurations in holographic backgrounds that correspond to a Wilson line, a meson, a baryon and a glueball. The key ingredients of the four dimensional picture of hadrons are the "string endpoint mass" and the "baryonic string vertex". We determine the classical trajectories of the HISH. We review the current understanding of the quantization of the hadronic strings. We end with a summary of the comparison of the outcome of the HISH models with the PDG data about mesons and baryons. We extract the values of the tension, masses and intercepts from best fits, write down certain predictions for higher excited hadrons and present attempts to identify glueballs.
Hadron Spectroscopy with COMPASS – Newest Results
Nerling Frank
2012-12-01
Full Text Available The COMPASS experiment at the CERN SPS investigates the structure and spectrum of hadrons by scattering high energetic hadrons and polarised muons off various fixed targets. During the years 2002–2007, COMPASS focused on nucleon spin physics using 160 GeV/c polarised µ+ beams on polarised deuteron and proton targets, including measurements of the gluon contribution to the nucleon spin using longitudinal target polarisation as well as studies of transverse spin effects in the nucleon on a transversely polarised target. One major goal of the physics programme using hadron beams is the search for new states, in particular the search for JPC exotic states and glue-balls. COMPASS measures not only charged but also neutral final-state particles, allowing for investigation of new objects in different reactions and decay channels. In addition COMPASS can measure low-energy QCD constants like, e.g. the electromagnetic polarisability of the pion. Apart from a few days pilot run data taken in 2004 with a 190 GeV/c π− beam on a Pb target, showing a significant spin-exotic JPC = 1−+ resonance at around 1660 MeV/c2, COMPASS collected high statistics with negative and positive 190 GeV/c hadron beams on a proton (H2 and nuclear (Ni, Pb targets in 2008 and 2009. We give a selected overview of the newest results and discuss the status of various ongoing analyses.
2009-01-01
The CERN Dragon Boat team – the Hadron Dragons – achieved a fantastic result at the "Paddle for Cancer" Dragon Boat Festival at Lac de Joux on 6 September. CERN Hadron Dragons heading for the start line.Under blue skies and on a clear lake, the Hadron Dragons won 2nd place in a hard-fought final, following top times in the previous heats. In a close and dramatic race – neck-and-neck until the final 50 metres – the local Lac-de-Joux team managed to inch ahead at the last moment. The Hadron Dragons were delighted to take part in this festival. No one would turn down a day out in such a friendly and fun atmosphere, but the Dragons were also giving their support to cancer awareness and fund-raising in association with ESCA (English-Speaking Cancer Association of Geneva). Riding on their great success in recent competitions, the Hadron Dragons plan to enter the last Dragon Boat festival of 2009 in Annecy on 17-18 October. This will coincide with t...
Generalized parton distributions and wide-angle exclusive scattering
Kroll, P
2004-01-01
The handbag mechanism for wide-angle exlusive scattering reactions is discussed and compared with other theoretical approaches. Its application to Compton scattering, meson photoproduction and two-photon annihilations into pairs of hadrons is reviewed.
Mallik, Samirnath
2016-01-01
High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...
The hadronic standard model for strong and electroweak interactions
Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)
1993-12-31
We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.
,
2011-01-01
I review here the most recent results about the observation and the study of hadronic bound states that do not fit well in the standard quarkonium picture. Several new states have been observed in the last few years, at B-, tau-Factories and hadron colliders. For most of them, quantum number determinations are available and allow to develop the basis of a new spectroscopy based on exotic compounds like tetraquarks or meson molecules. Nonetheless, there is still a lot of work to do to complete the picture.
Pennington, Michael R
2000-01-01
Ask a group of particle theorists about low energy hadron physics and they will say that this is a subject that belongs to the age of the dinosaurs. However, it is GeV physics that controls the outcome of every hadronic interaction at almost every energy. Confinement of quarks and gluons (and any other super-constituents) means that it is the femto-universe that determines what experiments detect. What we have to learn at the start of the 21st century is discussed.
Bottomonium production in hadron colliders
Brenner Mariotto, C. [Universidade de Caxias do Sul, RS (Brazil). Centro de Ciencias Exatas e Tecnologia]. E-mail: mariotto@if.ufrgs.br; Gay Ducati, M.B. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas em Altas Energias; Ingelman, G. [Uppsala Univ. (Sweden). High Energy Physics
2004-07-01
Production of bottomonium in hadronic collisions is studied in the framework of the soft colour approach. We report some results for production of {upsilon} in the Tevatron and predictions for the future Large Hadron Collider (LHC). (author)
Correlations in back-to-back hadron production in SIDIS
Avakian, Harut [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pisano, Silvia [National Inst. of Nuclear Physics (INFN), Frascati (Italy). National Lab. of Frascati (INFN-LNF)
2016-08-01
The Deep Inelastic Scattering (DIS) proved to be a great tool in testing of the theory of strong in- teractions. Semi-Inclusive DIS (SIDIS), with detection of an additional hadron allowed first stud- ies of 3D structure of the nucleon, moving the main focus from testing the QCD to understanding of strong interactions and quark gluon dynamics to address a number of puzzles accumulated in recent years. Detection of two hadrons in SIDIS, which is even more complicated, provides ac- cess to details of quark gluon interactions inaccessible in single-hadron SIDIS, providing a new avenue to study the complex nucleon structure. Large acceptance of the CLAS detector at Jef- ferson Lab, allowing detection of two hadrons, produced back-to-back (b2b) in the current and target fragmentation regions, provides a unique possibility to study the nucleon structure in target fragmentation region, and correlations of target and current fragmentation regions
Transversity Signal in two Hadron Pair Production in COMPASS
Wollny, H
2009-01-01
Measuring single spin asymmetries in semi-inclusive deep-inelastic scattering (SIDIS) on a transversely polarized target gives a handle to investigate the transversity distribution and transverse momentum dependent distribution functions. In the years 2002, 2003 and 2004 COMPASS took data with a transversely polarized deuteron target and in the year 2007 with a proton target. Three channels for accessing transversity have been analysed. Azimuthal asymmetries in the production of hadron pairs, involving the polarized two hadron interference fragmentation function, azimuthal asymmetries in the production of single hadrons, involving the Collins fragmentation function and polarization measurements of spin-${1/2} \\hbar$ particles like $\\Lambda$-Hyperons via their self analyzing weak decay. In the following we will focus on new preliminary results from the analysis of two hadron pair asymmetries measured with the proton target.
Softer Hard Scattering and Noncommutative Gauge-String Duality
Rey, S J; Rey, Soo-Jong; Yee, Jung-Tay
2003-01-01
We study exclusive scattering of `hadrons' at high energy and fixed angle in (nonconformal) noncommutative gauge theories. Via gauge-string duality, we show that the noncommutativity renders the scattering soft, leading to exponential suppression. The result fits with the picture that, in noncommutative gauge theory, fundamental parton contents constitute wee-partons only and `hadrons' are made out of open Wilson lines.
Strangeness in QGP: Hadronization Pressure
Rafelski, Jan; Petran, Michal
2014-01-01
We review strangeness as signature of quark gluon plasma (QGP) and the hadronization process of a QGP fireball formed in relativistic heavy-ion collisions in the entire range of today accessible reaction energies. We discuss energy dependence of the statistical hadronization parameters within the context of fast QGP hadronization. We find that QGP breakup occurs for all energies at the universal hadronization pressure $P = 80\\pm 3\\,\\mathrm{MeV/fm}^3 $.
Probing leptophilic dark sectors with hadronic processes
D'Eramo, Francesco; Kavanagh, Bradley J.; Panci, Paolo
2017-08-01
We study vector portal dark matter models where the mediator couples only to leptons. In spite of the lack of tree-level couplings to colored states, radiative effects generate interactions with quark fields that could give rise to a signal in current and future experiments. We identify such experimental signatures: scattering of nuclei in dark matter direct detection; resonant production of lepton-antilepton pairs at the Large Hadron Collider; and hadronic final states in dark matter indirect searches. Furthermore, radiative effects also generate an irreducible mass mixing between the vector mediator and the Z boson, severely bounded by ElectroWeak Precision Tests. We use current experimental results to put bounds on this class of models, accounting for both radiatively induced and tree-level processes. Remarkably, the former often overwhelm the latter.
Theory of hadronic production of heavy quarks
Peterson, C.
1981-07-01
Conventional theoretical predictions for hadronic production of heavy quarks (Q anti Q) are reviewed and confronted with data. Perturbative hard scattering predictions agree qualitatively well with hidden Q anti Q production (e.g., psi, chi, T) whereas for open Q anti Q-production (e.g., pp ..-->.. ..lambda../sub c//sup +/X) additional mechanisms or inputs are needed to explain the forwardly produced ..lambda../sub c//sup +/ at ISR. It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data. The theoretical foundations of the intrinsic charm hypotheses together with its consequences for lepton-induced reactions is discussed in some detail.
Two-Photon Physics in Hadronic Processes
Carl Carlson; Marc Vanderhaeghen
2007-11-01
Two-photon exchange contributions to elastic electron-scattering are reviewed. The apparent discrepancy in the extraction of elastic nucleon form factors between unpolarized Rosenbluth and polarization transfer experiments is discussed, as well as the understanding of this puzzle in terms of two-photon exchange corrections. Calculations of such corrections both within partonic and hadronic frameworks are reviewed. In view of recent spin-dependent electron scattering data, the relation of the two-photon exchange process to the hyperfine splitting in hydrogen is critically examined. The imaginary part of the two-photon exchange amplitude as can be accessed from the beam normal spin asymmetry in elastic electron-nucleon scattering is reviewed. Further extensions and open issues in this field are outlined.
Twist-3 spin observables for single-hadron production in DIS
Gamberg, Leonard P. [Pennsylvania State University, State College, PA; Kanazawa, Koichi [Temple University, Phialdelphia, PA; Kang, Zhong-Bo [Los Alamos National Laboratory, Los Alamos, NM 87545; Metz, Andreas [Temple University, Philadelphia, PA; Pitonyak, Daniel A. [Temple University, Philadelphia, PA; Prokudin, Alexei [Jefferson Lab, Newport News, VA; Schlegel, Marc [Tübingen University, Tübingen, Germany
2015-09-01
Recently, three twist-3 spin asymmetries for single-inclusive hadron production in deep-inelastic lepton-nucleon scattering have been computed using collinear factorization and the leading order approximation. Here we summarize the main findings of these studies.
Weibull model of multiplicity distribution in hadron-hadron collisions
Dash, Sadhana; Nandi, Basanta K.; Sett, Priyanka
2016-06-01
We introduce the use of the Weibull distribution as a simple parametrization of charged particle multiplicities in hadron-hadron collisions at all available energies, ranging from ISR energies to the most recent LHC energies. In statistics, the Weibull distribution has wide applicability in natural processes that involve fragmentation processes. This provides a natural connection to the available state-of-the-art models for multiparticle production in hadron-hadron collisions, which involve QCD parton fragmentation and hadronization. The Weibull distribution describes the multiplicity data at the most recent LHC energies better than the single negative binomial distribution.
Weidinger Matthias
2013-12-01
Full Text Available The ongoing systematic search for sources of extragalactic gamma rays has now revealed many blazars in which the very high energy output can not consistently be described as synchrotron self-Compton radiation. In this paper a self consistent hybrid model is described, explaining the very high energy radiation of those blazars as proton synchrotron radiation accompanied by photo-hadronic cascades. As the model includes all relevant radiative processes it naturally includes the synchrotron self-Compton case as well, depending on the chosen parameters. This paper focuses on rather high magnetic fields to be present within the jet, hence the hadronically dominated case. To discriminate the hadronic scenario against external photon fields being upscattered within the jet to produce the dominating gamma-ray output, the temporal behavior of blazars may be exploited with the presented model. Variability reveals both, the highly non-linear nature caused by the photohadronic cascades and typical timescales as well as fingerprints in the inter-band lightcurves of the involved hadrons. The modeling of two individual sources is shown : 1 ES 1011+496, a high frequency peaked blazar at redshift z = 0.212, which is well described within the hybrid scenario using physically reasonable parameters. The short term variability of the second example, namely 3C 454.3, a Flat Spectrum Radio Quasar at z = 0.859, reveals the limitations of the gamma-rays being highly dominated by proton synchrotron radiation.
Pondrom, L.
1991-10-03
An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.
Wright, Alison
2007-01-01
"We are on the threshold of a new era in particle-physics research. In 2008, the Large Hadron Collider (LHC) - the hightest-energy accelerator ever built - will come into operation at CERN, the European labortory that straddles the French-Swiss border near Geneva." (1/2 page)
Hirstius, Andreas
2008-01-01
Plans for dealing with the torrent of data from the Large Hadron Collider's detectors have made the CERN particle-phycis lab, yet again, a pioneer in computing as well as physics. The author describes the challenges of processing and storing data in the age of petabyt science. (4 pages)
Speculations in hadron spectroscopy
Richard, J M
2005-01-01
A selected survey is presented of the recent progress in hadron spectroscopy. This includes spin-singlet charmonium states, excitations of charmonium and open-charm mesons, double-charm baryons, and pentaquark candidates. Models proposing exotic bound states or resonances are reviewed. The sector of exotic mesons with two heavy quarks appears as particularly promising.
Hayano, R S
1999-01-01
Japan Hadron Facility (JHF) is a high-intensity proton accelerator complex consisting of a 200 MeV linac, a 3 GeV booster and a 50 GeV main ring. Its status and future possibilities of realizing a versatile antiproton facility at JHF are presented.
Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, L M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
From 64492 selected \\tau-pair events, produced at the Z^0 resonance, the measurement of the tau decays into hadrons from a global analysis using 1991, 1992 and 1993 ALEPH data is presented. Special emphasis is given to the reconstruction of photons and \\pi^0's, and the removal of fake photons. A detailed study of the systematics entering the \\pi^0 reconstruction is also given. A complete and consistent set of tau hadronic branching ratios is presented for 18 exclusive modes. Most measurements are more precise than the present world average. The new level of precision reached allows a stringent test of \\tau-\\mu universality in hadronic decays, g_\\tau/g_\\mu \\ = \\ 1.0013 \\ \\pm \\ 0.0095, and the first measurement of the vector and axial-vector contributions to the non-strange hadronic \\tau decay width: R_{\\tau ,V} \\ = \\ 1.788 \\ \\pm \\ 0.025 and R_{\\tau ,A} \\ = \\ 1.694 \\ \\pm \\ 0.027. The ratio (R_{\\tau ,V} - R_{\\tau ,A}) / (R_{\\tau ,V} + R_{\\tau ,A}), equal to (2.7 \\pm 1.3) \\ \\%, is a measure of the importance of Q...
Eytier, Jean-Louis
2009-01-01
Qu'aurait-il proposé comme solutions face aux déboires du LHC, le grand collisionneur du hadrons du CERN, arrêté peu après son démarrage à l'automne 2008? Lucien Edmond André Montanet était un des grands de la physique des particules. (2 pages)
Multiple scattering and energy loss in semi-inclusive deeply inelastic eA scattering
Guo, Xiaofeng
2007-01-01
We calculate the multiple scattering effect on single hadron production in semi-inclusive lepton-nucleus deeply inelastic scattering. We show that the quantum interference of multiple scattering amplitudes leads to suppression in hadron productions. At the leading power in medium length, the suppression can be approximately expressed in terms of a shift in $z$ of the fragmentation function $D(z)$, and could be therefore interpreted as the collisional energy loss. We compare our calculation with existing experimental data. We also discuss the effect of quark mass on the suppression. Our approach can be extended to other observables in hadronic collisions.
Hadron Fragmentation Inside Jets in Hadronic Collisions
Kaufmann, Tom; Vogelsang, Werner
2015-01-01
We present an analytical next-to-leading order QCD calculation of the partonic cross sections for the process $pp\\rightarrow ({\\text{jet}} \\,h)X$, for which a specific hadron is observed inside a fully reconstructed jet. In order to obtain the analytical results, we assume the jet to be relatively narrow. We show that the results can be cast into a simple and systematic form based on suitable universal jet functions for the process. We confirm the validity of our calculation by comparing to previous results in the literature for which the next-to-leading order cross section was treated entirely numerically by Monte-Carlo integration techniques. We present phenomenological results for experiments at the LHC and at RHIC. These suggest that $pp\\rightarrow ({\\text{jet}} \\,h)X$ should enable very sensitive probes of fragmentation functions, especially of the one for gluons.
High-pT hadron production and triggered particle correlations
Mischke, A.
2006-01-01
The STAR experiment at the Relativistic Heavy-Ion Collider has performed measurements of high transverse momentum particle production in ultra-relativistic heavy-ion collisions. High-pT hadrons are generated from hard parton scatterings early in the collision. The outgoing partons probe the surround
Hadron multiplicity in pp and AA collisions at LHC from the color glass condensate
Levin, Eugene; Rezaeian, Amir H.
2010-09-01
We provide quantitative predictions for the rapidity, centrality and energy dependencies of inclusive charged-hadron productions for the forthcoming LHC measurements in nucleus-nucleus collisions based on the idea of gluon saturation in the color-glass condensate framework. Our formulation gives very good descriptions of the first data from the LHC for the inclusive charged-hadron production in proton-proton collisions, the deep inelastic scattering at the Hadron-Elektron-Ring-Anlage at small Bjorken x, and the hadron multiplicities in nucleus-nucleus collisions at the Relativistic Heavy Ion Collider.
XIONG Wen-Yuan; HU Zhao-Hui; WANG Xin-Wen; ZHOU Li-Juan; XIA Li-Xin; MA Wei-Xing
2008-01-01
Based on analysis of scattering matrix S, and its properties such as analyticity, unitarity, Lorentz invariance, and crossing symmetry relation, the Regge theory was proposed to describe hadron-hadron scattering at high energies before the advent of QCD, and correspondingly a Reggeon concept was born as a mediator of strongly interaction. This theory serves as a successful approach and has explained a great number of experimental data successfully, which proves that the Regge theory can be regarded as a basic theory of hadron interaction at high energies and its validity in many applications. However, as new experimental data come out, we have some difficulties in explaining the data. The new experimental total cross section violates the predictions of Regge theory, which shows that Regge formalism is limited in its applications to high energy data. To understand new experimental measurements, a new exchange theory was consequently born and its mediator is called Pomeron, which has vacuum quantum numbers. The new theory named as Pomeron exchange theory which reproduces the new experimental data of diffractive processes successfully. There are two exchange mediators: Reggeon and Pomeron. Reggeon exchange theory can only produce data at the relatively lower energy region, while Pomeron exchange theory fits the data only at higher-energy region, separately. In order to explain the data in the whole energy region, we propose a Reggeon-Pomeron model to describe high-energy hadron-hadron scattering and other diffractive processes. Although the Reggeon-Pomeron model is successful in describing high-energy hadron-hadron interaction in the whole energy region, it is a phenomenological model After the advent of QCD, people try to reveal the mystery of the phenomenological theory from QCD since hadron-hadron processes is a strong interaction, which is believed to be described by QCD. According to this point of view, we study the QCD nature of Reggeon and Pomeron. We claim
Resonance model for non-perturbative inputs to gluon distributions in the hadrons
Ermolaev, B I; Troyan, S I
2015-01-01
We construct non-perturbative inputs for the elastic gluon-hadron scattering amplitudes in the forward kinematic region for both polarized and non-polarized hadrons. We use the optical theorem to relate invariant scattering amplitudes to the gluon distributions in the hadrons. By analyzing the structure of the UV and IR divergences, we can determine theoretical conditions on the non-perturbative inputs, and use these to construct the results in a generalized Basic Factorization framework using a simple Resonance Model. These results can then be related to the K_T and Collinear Factorization expressions, and the corresponding constrains can be extracted.
Hadronic production of high p$_{T}$ leptons and hadrons
2002-01-01
This experiment measures the production of direct real photons with large transverse momentum in pion-nucleon collisions at the SPS (H8 beam) using the NA3 spectrometer with an upgraded e-$\\gamma$ calorimeter. The experiment proceeds in steps of increasing complexity: \\item a) measurement of the direct $\\gamma$ cross-section in $\\pi^{\\pm}$C $\\rightarrow \\gamma +$ X and search for the annihilation process $q\\bar{q} \\rightarrow \\gamma$g by measuring the charge asymmetry at 200 GeV/c; \\item b) determination of the gluon structure function of the pion and the nucleon; \\item c) use of the $\\pi^{-}-\\pi^{+}$ difference on carbon, if found experimentally, to extract the gluon fragmentation from the $\\gamma$ hadron correlations. \\end{enumerate}\\\\ \\\\ For comparison, the quark fragmentation functions can, in principle, be extracted from processes where the Compton scattering qg $\\rightarrow$ q$\\gamma$ dominates and compared with data from D.I.S. as a test of the method. \\\\ \\\\ The existing standard NA3 spectrometer is we...
Juettner Fernandes, Bonnie
2014-01-01
What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.
Mosel Ulrich
2017-01-01
Full Text Available We review the achievements of the project B.5, that deals with the calculation of in-medium properties of vector mesons and an analysis of their experimental signals, with a particular emphasis on the ω photoproduction data from CBELSA/TAPS. Other topics addressed include color transparency, pion electroproduction on nucleons, the Primakoff effect for nuclear targets and studies of hadronization at the EIC.
Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.
2015-02-26
This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.
Non-perturbative inputs for gluon distributions in the hadrons
Ermolaev, B. I.; Troyan, S. I.
2017-03-01
Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations.
The role of hadron resonances in hot hadronic matter
Goity, Jose [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hampton Univ., Hampton, VA (United States)
2017-02-01
Hadron resonances can play a significant role in hot hadronic matter. Of particular interest for this workshop are the contributions of hyperon resonances. The question about how to quantify the effects of resonances is here addressed. In the framework of the hadron resonance gas, the chemically equilibrated case, relevant in the context of lattice QCD calculations, and the chemically frozen case relevant in heavy ion collisions are discussed.
Hadron spectrum and hadrons in the nuclear medium
Vacas, M J V
2006-01-01
Some recent developments in chiral dynamics of hadrons and hadrons in a medium are presented. Unitary schemes based on chiral Lagrangians describe some hadronic states as being dynamically generated resonances. We discuss how standard quantum many body techniques can be used to calculate the properties of these dynamically generated and other hadrons in the nuclear medium. We present some results for vector mesons ($\\rho$ and $\\phi$), scalar mesons ($\\sigma$, $\\kappa$, $a_0(980)$, $f_0(980)$), the $\\Lambda(1520)$ and for the in-medium baryon-baryon interaction.
Hadron muoproduction at the COMPASS experiment
Rajotte, Jean-Francois
2010-09-30
The COMPASS Collaboration has two main fields of interest: to improve our knowledge of the nucleon spin structure and to study hadrons through spectroscopy. These goals require a multipurpose universal spectrometer such as the COmmon Muon and Proton Apparatus for Structure and Spectroscopy, COMPASS. In its first years of data taking (2002-2007), the nucleon spin structure was studied with a polarized muon beam scattering off a polarized target. These studies resumed in 2010 and will continue until at least 2011. The years 2008 and 2009 were dedicated to hadron spectroscopy using hadron beams. In the case of the nucleon structure studies, it is crucial to detect with high precision the incoming beam muon (160 GeV), the scattered muon and the produced hadrons. The large amount of high quality data accumulated provides access to the unpolarized and polarized parton distributions of the nucleon and the hadronization process. Subtle differences (asymmetries) between polarized cross sections have been predicted for hadron production from polarized muon-nucleon interaction for COMPASS. It is based on these differences that the polarized parton distributions can be measured. In this context, it is important to first compare predictions with the gross features of the measured unpolarized semi-inclusive differential cross sections or the closely related differential multiplicities. In order to determine cross sections, the data has to be corrected for the acceptance of the spectrometer. In this thesis, a multidimensional acceptance correction method, based on Monte Carlo simulation, is developed and applied to the data measured in 2004. The method is first used to determine the inclusive muon-nucleon cross section which is compared with a global fit to world data. This serves as a test of the acceptance correction method and to verify if the results from previous experiments can be reproduced. Then, unpolarized differential multiplicities as a function of transverse momentum
XXth international workshop on deep-inelastic scattering and related topics. DIS 2012. Proceedings
Brock, Ian C. (ed.)
2013-03-15
The following topics were dealt with: Structure functions, diffraction and vector mesons, electroweak interactions, hadronic final states, heavy flavours, spin physics, future of deep inelastic scattering. (HSI)
Hadron structure beyond collinear level and precision DIS measurements
Hautmann F
2015-01-01
Full Text Available General formulations of QCD factorization for hadronic collisions extend the notion of ordinary parton distributions to transverse-momentum dependent (TMD parton density and parton decay functions. We discuss the use of the recent high-precision deep-inelastic scattering (DIS measurements for determination of TMD distributions. These are relevant for both low-pT and high-pT physics in hadron collisions. We comment on applications to multi-jet final states associated with electroweak gauge boson production at the LHC.
Progress in Hadronic Physics Modelling in Geant4
Apostolakis, John; /CERN; Folger, Gunter; /CERN; Grichine, Vladimir; /CERN; Heikkinen, Aatos; /Helsinki Inst. of Phys.; Howard, Alexander; /CERN; Ivanchenko, Vladimir; /CERN; Kaitaniemi, Pekka; /Helsinki Inst. of Phys.; Koi, Tatsumi; /SLAC; Kosov, Mikhail; /CERN /Moscow, ITEP; Quesada, Jose Manuel; /Seville U.; Ribon, Alberto; /CERN; Uzhinsky, Vladimir; /CERN; Wright, Dennis; /SLAC
2011-11-28
Geant4 offers a set of models to simulate hadronic showers in calorimeters. Recent improvements to several models relevant to the modelling of hadronic showers are discussed. These include improved cross sections, a revision of the FTF model, the addition of quasi-elastic scattering to the QGS model, and enhancements in the nuclear precompound and de-excitation models. The validation of physics models against thin target experiments has been extended especially in the energy region 10 GeV and below. Examples of new validation results are shown.
Production of b and c hadrons with the ATLAS detector
Chen, Jing; The ATLAS collaboration
2017-01-01
A wide program of studies on heavy flavours is performed with the ATLAS detector. Production cross sections have been measured for hadrons with b and c quark, for quarkonia states, and for associated production J/psi+J/psi, J/psi+muon, J/psi+W and J/psi+Z. The talk will discuss recent results, including the prompt production of J/psi+J/psi pair (with the separation of single and double parton scattering components) and the kinematical correlation in B hadron pair production, studied through their inclusive decays to non-prompt J/psi and muons, respectively.
Production of b and c hadrons with the ATLAS detector
Korn, Andreas; The ATLAS collaboration
2017-01-01
A wide program on heavy flavour production is performed with the ATLAS detector. Studies have been completed for hadrons with b and c quark, for quarkonia states, and for associated production J/psi+J/psi, J/psi+muon, J/psi+W and J/psi+Z. The talk will discuss recent results, including the prompt production of J/psi+J/psi pairs (with the separation of single and double parton scattering components) and the kinematical correlations in B hadron pair production, studied through their inclusive decays to non-prompt J/psi and muons, respectively.
Intermediate energy semileptonic probes of the hadronic neutral current
Musolf, M.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States)]|[Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics]|[CEBAF Theory Group, Newport News, VA (United States); Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Dubach, J. [Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astronomy; Pollock, S.J. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie K; Kowalski, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Beise, E.J. [California Inst. of Tech., Pasadena, CA (United States). W.K. Kellogg Radiation Lab.]|[Maryland Univ., College Park, MD (United States). Dept. of Physics
1993-06-01
The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed.
Formation time of hadronic resonances
Vitev Ivan
2012-11-01
Full Text Available In heavy-ion collisions, formation time of hadrons of high transverse momentum can play a pivotal role in determining the perturbative dynamics of the final-state parton and particle system. We present methods to evaluate the formation times of light hadrons, hadronic resonances, open heavy flavor and quarkonia. Experimental implications of the short formation times of heavy particles are discussed in light of recent RHIC and LHC data.
Chen, Wei; Steele, T G; Kleiv, R T; Bulthuis, B; Harnett, D; Richards, T; Zhu, Shi-Lin
2014-01-01
Many charmonium-like and bottomonium-like $XYZ$ resonances have been observed by the Belle, Babar, CLEO and BESIII collaborations in the past decade. They are difficult to fit in the conventional quark model and thus are considered as candidates of exotic hadrons, such as multi-quark states, meson molecules, and hybrids. In this talk, we first briefly introduce the method of QCD sum rules and then provide a short review of the mass spectra of the quarkonium-like tetraquark states and the heavy quarkonium hybrids in the QCD sum rules approach. Possible interpretations of the $XYZ$ resonances are briefly discussed.
Stenson, K
2002-01-01
Recent hadronic charm decay results from fixed-target experiments are presented. New measurements of the D0 to K-K+K-pi+ branching ratio are shown as are recent results from Dalitz plot fits to D+ to K-K+pi+, pi+pi-pi+, K-pi+pi+, K+pi-pi+ and D_s+ to pi+pi-pi+, K+pi-pi+. These fits include measurements of the masses and widths of several light resonances as well as strong evidence for the existence of two light scalar particles, the pipi resonance sigma and the Kpi resonance kappa.
Wada Masayuki
2012-11-01
Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.
Hirstius, Andreas
2008-11-01
In the mid-1990s, when CERN physicists made their first cautious estimates of the amount of data that experiments at the Large Hadron Collider (LHC) would produce, the microcomputer component manufacturer Intel had just released the Pentium Pro processor. Windows was the dominant operating system, although Linux was gaining momentum. CERN had recently made the World Wide Web public, but the system was still a long way from the all-encompassing network it is today. And a single gigabyte (109 bytes) of disk space cost several hundred dollars.
Hadron Spectroscopy in COMPASS
Grube, Boris
2012-01-01
The COmmon Muon and Proton Apparatus for Structure and Spectroscopy (COMPASS) is a multi-purpose fixed-target experiment at the CERN Super Proton Synchrotron (SPS) aimed at studying the structure and spectrum of hadrons. In the naive Constituent Quark Model (CQM) mesons are bound states of quarks and antiquarks. QCD, however, predict the existence of hadrons beyond the CQM with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). One main goal of COMPASS is to search for these states. Particularly interesting are so called spin-exotic mesons which have J^{PC} quantum numbers forbidden for ordinary q\\bar{q} states. Its large acceptance, high resolution, and high-rate capability make the COMPASS experiment an excellent device to study the spectrum of light-quark mesons in diffractive and central production reactions up to masses of about 2.5 GeV. COMPASS is able to measure final states with charged as well as neutral particles, so that resonances can be studied ...
Olsen, Stephen Lars
2014-01-01
QCD-motivated models for hadrons predict an assortment of "exotic" hadrons that have structures that are more complex than the quark-antiquark mesons and three-quark baryons of the original quark-parton model. These include pentaquark baryons, the six-quark H-dibaryon, and tetraquark, hybrid and glueball mesons. Despite extensive experimental searches, no unambiguous candidates for any of these exotic configurations have been identified. On the other hand, a number of meson states, one that seems to be a proton-antiproton bound state, and others that contain either charmed-anticharmed quark pairs or bottom-antibottom quark pairs, have been recently discovered that neither fit into the quark-antiquark meson picture nor match the expected properties of the QCD-inspired exotics. Here I briefly review results from a recent search for the H-dibaryon, and discuss some properties of the newly discovered states --the proton-antiproton state and the so-called XYZ mesons-- and compare them with expectations for convent...
Heavy flavor dynamics in QGP and hadron gas
Cao, Shanshan [Department of Physics, Duke University, Durham, NC 27708 (United States); Qin, Guang-You [Institute of Particle Physics and Key Laboratory of Quark and Lepton Physics (MOE), Central China Normal University, Wuhan, 430079 (China); Bass, Steffen A. [Department of Physics, Duke University, Durham, NC 27708 (United States)
2014-11-15
We study heavy flavor evolution in the quark–gluon plasma matter and the subsequent hadron gas created in ultrarelativistic heavy-ion collisions. The motion of heavy quarks inside the QGP is described using our modified Langevin framework that incorporates both collisional and radiative energy loss mechanisms; and the scatterings between heavy mesons and the hadron gas are simulated with the UrQMD model. We find that the hadronic interaction further suppresses the D meson R{sub AA} at high p{sub T} and enhances its v{sub 2}. And our calculations provide good descriptions of experimental data from both RHIC and LHC. In addition, we explore the heavy-flavor-tagged angular correlation functions and find them to be a potential candidate for distinguishing different energy loss mechanisms of heavy quarks inside the QGP.
Heavy hadrons in nuclear matter
Hosaka, Atsushi; Hyodo, Tetsuo; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro
2017-09-01
Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia (J / ψ, ϒ), heavy-light mesons (D/ D ¯ , B ¯ / B) and heavy baryons (Λc, Λb). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in infinite nuclear matter, but also in finite-size atomic nuclei with finite baryon numbers, to serve future experiments.
Heavy Hadrons in Nuclear Matter
Hosaka, Atsushi; Sudoh, Kazutaka; Yamaguchi, Yasuhiro; Yasui, Shigehiro
2016-01-01
Current studies on heavy hadrons in nuclear medium are reviewed with a summary of the basic theoretical concepts of QCD, namely chiral symmetry, heavy quark spin symmetry, and the effective Lagrangian approach. The nuclear matter is an interesting place to study the properties of heavy hadrons from many different points of view. We emphasize the importance of the following topics: (i) charm/bottom hadron-nucleon interaction, (ii) structure of charm/bottom nuclei, and (iii) QCD vacuum properties and hadron modifications in nuclear medium. We pick up three different groups of heavy hadrons, quarkonia ($J/\\psi$, $\\Upsilon$), heavy-light mesons ($D$/$\\bar{D}$, $\\bar{B}$/$B$) and heavy baryons ($\\Lambda_{c}$, $\\Lambda_{b}$). The modifications of those hadrons in nuclear matter provide us with important information to investigate the essential properties of heavy hadrons. We also give the discussions about the heavy hadrons, not only in nuclear matter with infinite volume, but also in atomic nuclei with finite bary...
Dijet imbalance in hadronic collisions
Boer, Daniel; Mulders, Piet J.; Pisano, Cristian
2009-01-01
The imbalance of dijets produced in hadronic collisions has been used to extract the average transverse momentum of partons inside the hadrons. In this paper we discuss new contributions to the dijet imbalance that could complicate or even hamper this extraction. They are due to polarization of init
Hadron star models. [neutron stars
Cohen, J. M.; Boerner, G.
1974-01-01
The properties of fully relativistic rotating hadron star models are discussed using models based on recently developed equations of state. All of these stable neutron star models are bound with binding energies as high as about 25%. During hadron star formation, much of this energy will be released. The consequences, resulting from the release of this energy, are examined.
Quarkonium production in hadronic collisions
Gavai, R. [Tata Institute for Fundamental Research, Bombay (India); Schuler, G.A.; Sridhar, K. [CERN, Geneva (Switzerland)] [and others
1995-07-01
We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.
Workshop on heavy hadron spectroscopy
2017-01-01
The recent developments in heavy hadron spectroscopy at LHCb have shown that LHCb has a unique potential in the field, combining hadronic production mechanisms to a powerful identification system. In this short workshop we focus on the recent results from LHCb and theoretical developments with attention to the future perspectives, in the context of the potential of current and future experiments.
Krein, Gastão [Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271 - Bloco II, 01140-070 São Paulo, SP (Brazil)
2016-01-22
I review the present status in the theoretical and phenomenological understanding of hadron properties in strongly interacting matter. The topics covered are the EMC effect, nucleon structure functions in cold nuclear matter, spectral properties of light vector mesons in hot and cold nuclear matter, and in-medium properties of heavy flavored hadrons.
Marquet, C
2006-09-15
When probing small distances inside a hadron, one can resolve its partonic constituents: quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This substructure reveals itself in hadronic collisions characterized by a large momentum transfer: in such collisions, a hadron acts like a collection of partons whose interactions can be described in QCD. In a collision at moderate energy, a hadron looks dilute and the partons interact incoherently. As the collision energy increases, the parton density inside the hadron grows. Eventually, at some energy much bigger than the momentum transfer, one enters the saturation regime of QCD: the gluon density has become so large that collective effects are important. We introduce a formalism suitable to study hadronic collisions in the high-energy limit in QCD, and the transition to the saturation regime. In this framework, we derive known results that are needed to present our personal contributions and we compute different cross-sections in the context of hard diffraction and particle production. We study the transition to the saturation regime as given by the Balitsky-Kovchegov equation. In particular we derive properties of its solutions.We apply our results to deep inelastic scattering and show that, in the energy range of the HERA collider, the predictions of high-energy QCD are in good agreement with the data. We also consider jet production in hadronic collisions and discuss the possibility to test saturation at the Large Hadron Collider. (author)
Radiative corrections to electron-proton scattering
Maximon, LC; Tjon, JA
2000-01-01
The radiative corrections to elastic electron-proton scattering are analyzed in a hadronic model including the finite size of the nucleon. For initial electron energies above 8 GeV and large scattering angles, the proton vertex correction in this model increases by at least 2% of the overall factor
Hadron blind detector. Final report, FY1994 and 1995
Chen, M.
1997-10-25
The authors have been developing a novel threshold Cherenkov detector, consisting of a gas radiator followed by a UV photosensitive wire chamber using CsI photocathodes. The photo-detector lies directly in the particle path and is thus required to have single photo-electron sensitivity and yet to be insensitive to the passage of a charged particle. In addition, the detector should be made of low mass material to minimize the effect of multiple scatterings. The proposed threshold Cherenkov counters are called Hadron Blind Detectors (HBDs) because they are blind to low energy hadrons which have lower speed {beta} for given momentum p than that of electrons. HBDs can be used in colliders, especially heavy ion hadron colliders (RHIC, LHC), which have huge {number_sign} of hadrons produced per event, to select electrons by being blind to low-momentum hadrons. The authors have studied two different methods to build HBDs described as follows: (1) windowless configuration; (2) thin window configuration. The authors describe herewith their recent experimental results on HBD research obtained with CsI photo-cathodes and HBD prototype beam testing in 1995.
Hadronic resonance production measured with the ALICE detector
Dash, Ajay
2015-01-01
Hadronic resonances serve as a unique tool to study the properties of hot and dense matter pro- duced in heavy-ion collisions. These properties can be studied by measuring the ratios of hadronic resonance yields to the yields of longer-lived hadrons which can be used to investigate the re- scattering effects and the chemical freeze-out temperature. Resonance measurements in pp and p–Pb collisions provide a necessary baseline for heavy-ion data and help to disentangle the initial- state effects from medium-induced effects. The ALICE Collaboration has measured resonances such as, K ∗ (892) 0 and φ (1020) in pp, p–Pb, and Pb–Pb collisions at the LHC energies. These resonances are reconstructed via their hadronic decay channel in a wide momentum range at midrapidity. In this work, we present recent results on the transverse momentum spectra, mean transverse momentum, ratios of resonance production relative to that of long-lived hadrons.
Measurement of Azimuthal Asymmetries in Deep Inelastic Scattering
Breitweg, J; Derrick, Malcolm; Krakauer, D A; Magill, S; Musgrave, B; Pellegrino, A; Repond, J; Stanek, R; Yoshida, R; Mattingly, M C K; Abbiendi, G; Anselmo, F; Antonioli, P; Bari, G; Basile, M; Bellagamba, L; Boscherini, D; Bruni, A; Bruni, G; Cara Romeo, G; Castellini, G; Cifarelli, Luisa; Cindolo, F; Contin, A; Coppola, N; Corradi, M; De Pasquale, S; Giusti, P; Iacobucci, G; Laurenti, G; Levi, G; Margotti, A; Massam, Thomas; Nania, R; Palmonari, F; Pesci, A; Polini, A; Sartorelli, G; Zamora-Garcia, Yu E; Zichichi, A; Amelung, C; Bornheim, A; Brock, I; Coboken, K; Crittenden, James Arthur; Deffner, R; Hartmann, H; Heinloth, K; Hilger, E; Irrgang, P; Jakob, H P; Kappes, A; Katz, U F; Kerger, R; Paul, E; Schnurbusch, H; Stifutkin, A; Tandler, J; Voss, K C; Weber, A; Wieber, H; Bailey, D S; Barret, O; Brook, N H; Foster, B; Heath, G P; Heath, H F; McFall, J D; Piccioni, D; Rodrigues, E; Scott, J; Tapper, R J; Capua, M; Mastroberardino, A; Schioppa, M; Susinno, G; Jeoung, H Y; Kim, J Y; Lee, J H; Lim, I T; Ma, K J; Pac, M Y; Caldwell, A; Liu, W; Liu, X; Mellado, B; Paganis, S; Sampson, S; Schmidke, W B; Sciulli, F; Chwastowski, J; Eskreys, Andrzej; Figiel, J; Klimek, K H; Olkiewicz, K; Piotrzkowski, K; Przybycien, M B; Stopa, P; Zawiejski, L; Bednarek, B; Jelen, K; Kisielewska, D; Kowal, A M; Kowalski, T; Rulikowska-Zarebska, E; Suszycki, L; Szuba, D; Kotanski, Andrzej; Bauerdick, L A T; Behrens, U; Bienlein, J K; Burgard, C; Dannheim, D; Desler, K; Drews, G; Fox-Murphy, A; Fricke, U; Göbel, F; Göttlicher, P; Graciani, R; Haas, T; Hain, W; Hartner, G F; Hasell, D; Hebbel, K; Johnson, K F; Kasemann, M; Koch, W; Kötz, U; Kowalski, H; Lindemann, L; Löhr, B; Martínez, M; Milite, M; Monteiro, T; Moritz, M; Notz, D; Pelucchi, F; Petrucci, M C; Rohde, M; Saull, P R B; Savin, A A; Schneekloth, U; Selonke, F; Sievers, M; Stonjek, S; Tassi, E; Wolf, G; Wollmer, U; Youngman, C; Zeuner, W; Coldewey, C; López-Duran-Viani, A; Meyer, A; Schlenstedt, S; Straub, P B; Barbagli, G; Gallo, E; Pelfer, P G; Maccarrone, G D; Votano, L; Bamberger, Andreas; Benen, A; Eisenhardt, S; Markun, P; Raach, H; Wölfle, S; Bussey, Peter J; Doyle, A T; Lee, S W; MacDonald, N; McCance, G J; Saxon, D H; Sinclair, L E; Skillicorn, Ian O; Waugh, R; Bohnet, I; Gendner, N; Holm, U; Meyer-Larsen, A; Salehi, H; Wick, K; Garfagnini, A; Gialas, I; Gladilin, L K; Kcira, D; Klanner, Robert; Lohrmann, E; Poelz, G; Zetsche, F; Goncalo, R; Long, K R; Miller, D B; Tapper, A D; Walker, R; Mallik, U; Cloth, P; Filges, D; Ishii, T; Kuze, M; Nagano, K; Tokushuku, K; Yamada, S; Yamazaki, Y; Ahn, S H; Lee, S B; Park, S K; Lim, H; Park, I H; Son, D; Barreiro, F; García, G; Glasman, C; González, O; Labarga, L; Del Peso, J; Redondo, I; Terron, J; Barbi, M S; Corriveau, F; Hanna, D S; Ochs, A; Padhi, S; Riveline, M; Stairs, D G; Wing, M; Tsurugai, T; Bashkirov, V; Dolgoshein, B A; Dementev, R K; Ermolov, P F; Golubkov, Yu A; Katkov, I I; Khein, L A; Korotkova, N A; Korzhavina, I A; Kuzmin, V A; Lukina, O Yu; Proskuryakov, A S; Shcheglova, L M; Solomin, A N; Vlasov, N N; Zotkin, S A; Bokel, C; Botje, M; Brümmer, N; Engelen, J; Grijpink, S; Koffeman, E; Kooijman, P M; Schagen, S; Van Sighem, A; Tiecke, H G; Tuning, N; Velthuis, J J; Vossebeld, Joost Herman; Wiggers, L; De Wolf, E; Acosta, D; Bylsma, B; Durkin, L S; Gilmore, J; Ginsburg, C M; Kim, C L; Ling, T Y; Boogert, S; Cooper-Sarkar, A M; Devenish, R C E; Grosse-Knetter, J; Matsushita, T; Ruske, O; Sutton, M R; Walczak, R; Bertolin, A; Brugnera, R; Carlin, R; Dal Corso, F; Dosselli, U; Dusini, S; Limentani, S; Morandin, M; Posocco, M; Stanco, L; Stroili, R; Voci, C; Adamczyk, L; Iannotti, L; Oh, B Y; Okrasinski, J R; Toothacker, W S; Whitmore, J J; Iga, Y; D'Agostini, Giulio; Marini, G; Nigro, A; Cormack, C; Hart, J C; McCubbin, N A; Shah, T P; Epperson, D E; Heusch, C A; Sadrozinski, H F W; Seiden, A; Wichmann, R; Williams, D C; Pavel, N; Abramowicz, H; Dagan, S; Kananov, S; Kreisel, A; Levy, A; Abe, T; Fusayasu, T; Umemori, K; Yamashita, T; Hamatsu, R; Hirose, T; Inuzuka, M; Kitamura, S; Nishimura, T; Arneodo, M; Cartiglia, N; Cirio, R; Costa, M; Ferrero, M I; Maselli, S; Monaco, V; Peroni, C; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Dardo, M; Bailey, D C; Fagerstroem, C P; Galea, R; Koop, T; Levman, G M; Martin, J F; Orr, R S; Polenz, S; Sabetfakhri, A; Simmons, D; Butterworth, J M; Catterall, C D; Hayes, M E; Heaphy, E A; Jones, T W; Lane, J B; West, B J; Ciborowski, J; Ciesielski, R; Grzelak, G; Nowak, R J; Pawlak, J M; Pawlak, R; Smalska, B; Tymieniecka, T; Wróblewski, A K; Zakrzewski, J A; Adamus, M; Gadaj, T; Deppe, O; Eisenberg, Y; Hochman, D; Karshon, U; Badgett, W F; Chapin, D; Cross, R; Foudas, C; Mattingly, S E K; Reeder, D D; Smith, W H; Vaiciulis, A W; Wildschek, T; Wodarczyk, M; Deshpande, A A; Dhawan, S K; Hughes, V W; Bhadra, S; Cole, J E; Frisken, W R; Hall-Wilton, R; Khakzad, M; Menary, S R
2000-01-01
The distribution of the azimuthal angle for the charged hadrons has been studied in the hadronic centre-of-mass system for neutral current deep inelastic positron-proton scattering with the ZEUS detector at HERA. Measurements of the dependence of the moments of this distribution on the transverse momenta of the charged hadrons are presented. Asymmetries that can be unambiguously attributed to perturbative QCD processes have been observed for the first time.
Kaplan, Alexander; Schultz-Coulon, Hans-Christian; Dubbers, Dirk
This thesis focuses on a prototype of a highly granular hadronic calorimeter at the planned International Linear Collider optimized for the Particle Flow Approach. The 5.3 nuclear interaction lengths deep sandwich calorimeter was built by the CALICE collaboration and consists of 38 active plastic scintillator layers. Steel is used as absorber material and the active layers are subdivided into small tiles. In total 7608 tiles are read out individually via embedded Silicon Photomultipliers (SiPM). The prototype is one of the first large scale applications of these novel and very promising miniature photodetectors. The work described in this thesis comprises the commissioning of the detector and the data acquisition with test beam particles over several months at CERN and Fermilab. The calibration of the calorimeter and the analysis of the recorded data is presented. A method to correct for the temperature dependent response of the SiPM has been developed and implemented. Its successful application shows that it...
Ostroumov, Peter
2013-01-01
This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...
Fioravanti, Elisa
2012-01-01
FAIR a new International Facility for Antiproton and Ion Reaserach, is under construction at Darmstadt, in Germany. This will provide scientists in the world with outstanding beams and experimental conditions for studying matter at the level of atoms, nuclei, and other subnuclear constituents. An antiproton beam with intensity up to 2x10$^7$ $\\bar{p}/s$ and high momentum resolution will be available at the High Energy Storage Ring (HESR) where the $\\bar{P}$ANDA (Antiproton Annihilation At Darmstadt) detector will be installed. In this paper we will illustrate the details of the $\\bar{P}$ANDA scientific program related to hadron spectroscopy, after a brief introduction about the FAIR facility and the $\\bar{P}$ANDA detector.
[Hadron therapy in carcinoma].
Vobornik, Slavenka; Dalagija, Faruk
2002-01-01
According to some statistics, in the developed countries of west Europe, one in three of population will have an encounter with cancer and, only one in eight of this will have treated by use a linear accelerator. Conventional accelerator-based treatments use photon or electron or proton beams collimated to the tumour place. However, some tumors are resistant on this therapy, while others have complex shapes or are located around vital radiosensitive organs. In those cases it is necessary higher radiobiological efficiency and higher precision. New generation of hadron therapy accelerators are arming with light ions. This therapy is characterized with high precision, in millimeter range over complex volumes. That is also good example how particle physics can benefit medical treatments.
Hadron accelerators for radiotherapy
Owen, Hywel; MacKay, Ranald; Peach, Ken; Smith, Susan
2014-04-01
Over the last twenty years the treatment of cancer with protons and light nuclei such as carbon ions has moved from being the preserve of research laboratories into widespread clinical use. A number of choices now exist for the creation and delivery of these particles, key amongst these being the adoption of pencil beam scanning using a rotating gantry; attention is now being given to what technologies will enable cheaper and more effective treatment in the future. In this article the physics and engineering used in these hadron therapy facilities is presented, and the research areas likely to lead to substantive improvements. The wider use of superconducting magnets is an emerging trend, whilst further ahead novel high-gradient acceleration techniques may enable much smaller treatment systems. Imaging techniques to improve the accuracy of treatment plans must also be developed hand-in-hand with future sources of particles, a notable example of which is proton computed tomography.
Non-perturbative gluon-hadron inputs for all available forms of QCD factorization
Ermolaev, B I
2016-01-01
Description of hadronic reactions at high energies is conventionally done on basis of QCD factoriza- tion so that factorization convolutions involve non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct the inputs for the gluon- hadron scattering amplitudes in the forward kinematics and, using the Optical theorem, convert them into inputs for gluon distributions in the both polarized and unpolarized hadrons. Firstly, we derive general mathematical criteria which any model for the inputs should obey and then suggest a Resonance Model satisfying those criteria. This model is inspired by a simple observation: after emitting an active parton off the hadron, the remaining ensemble of spectators becomes unstable and therefore it can be described through factors of the resonance type. Exploiting Resonance Model, we obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available forms of QCD factorization...
Strangeness and Hadron Structure
Ellis, Jonathan Richard
2001-01-01
The nucleon wave function may contain a significant component of ssbar pairs, according to several measurements including the pi-nucleon sigma term, charm production and polarization effects in deep-inelastic scattering. In addition, there are excesses of phi production in LEAR and other experiments, above predictions based the naive Okubo-Zweig-Iizuka rule, that may be explained if the nucleon wave function contains a polarized ssbar component. This model also reproduces qualitatively data on Lambda polarization in deep-inelastic neutrino scattering. The strange component of the proton is potentially important for other physics, such as the search for astrophysical dark matter.
Hadron production near threshold
B K Jain; N G Kelkar; K P Khmemchandani
2006-04-01
Final state interaction effects in → + and → 3He reactions are explored near threshold to study the sensitivity of the cross-sections to the potential and the scattering matrix. The final state scattering wave functions between and and and 3He are described rigorously. The production is described by the exchange of one pion and a -meson between two protons in the incident channel. The production is described by a two-step model, where in the first step a pion is produced. This pion then produces an by interacting with another nucleon.
Experimental techniques in hadron spectroscopy
Gianotti P.
2015-01-01
Full Text Available Quantum Chromodynamics (QCD is the theory of the strong interaction, but the properties of the hadrons cannot be directly calculated from the QCD Lagrangian and alternative approaches are then used. In order to test the different models, precise measurements of hadron properties are of extreme importance. This is the main motivation for the hadron spectroscopy experimental program carried out since many years with different probes and different detectors. A survey of some recent results in the field is here presented and commented, together with the opportunities offered by the forthcoming experimental programs.
Physics at Future Hadron Colliders
Rizzo, Thomas G.
2002-08-07
We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.
Hadron collider physics at UCR
Kernan, A.; Shen, B.C.
1997-07-01
This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.
Heredia De La Cruz, Ivan
2016-01-01
Precise measurements of B hadron properties are crucial to improve or constrain models based on non-perturbative quantum chromodynamics, which provide predictions of mass, lifetime, cross section, polarization, and branching ratios (among several other properties) of B hadrons. Measurements of CP violation in $B^0_s$ and properties of rare B decays also provide many opportunities to search for new physics. This article presents some B hadron property results obtained by CMS using Run~I (2011-2012) data, and prospects for the Run~II (2015-2017) data taking period.
Physics at future hadron colliders
U. Baur et al.
2002-12-23
We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.
Single meson contributions to the muon's anomalous magnetic moment
Pauk, Vladyslav [Johannes Gutenberg-Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany); Taras Shevchenko National University of Kyiv, Department of Physics, Kyiv (Ukraine); Vanderhaeghen, Marc [Johannes Gutenberg-Universitaet, Institut fuer Kernphysik, Mainz (Germany); Johannes Gutenberg-Universitaet, PRISMA Cluster of Excellence, Mainz (Germany)
2014-08-15
We develop the formalism to provide an improved estimate for the hadronic light-by-light correction to the muon's anomalous magnetic moment a{sub μ}, by considering single meson contributions beyond the leading pseudoscalar mesons. We incorporate available experimental input as well as constraints from light-by-light scattering sum rules to estimate the effects of axial-vector, scalar, and tensor mesons. We give numerical evaluations for the hadronic light-by-light contribution of these states to a{sub μ}. The presented formalism allows one to further improve on these estimates, once new data for such meson states will become available. (orig.)
Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.
Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N
2002-08-19
Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.
Unified description of hadrons and heavy hadron decays
Kitazawa, N
1993-01-01
We construct an effective Lagrangian which describes interactions of heavy and light hadrons utilizing the chiral flavor symmetry for light quarks and heavy quark symmetry. For both light and heavy sector we include pseudo scalars, vectors and baryons in the Lagrangian. Heavy hadron decays are discussed as application of our formalism. The $D_s$ decay constant and the coupling constant among heavy meson, heavy vector meson and light meson are fitted from the experimental data of $D^0 \\rightarrow K^- e^+\
Relativistic Few-Body Hadronic Physics Calculations
Polyzou, Wayne [Univ. of Iowa, Iowa City, IA (United States)
2016-06-20
The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In
A Hadron Radiation Installation and Verification Method
Beekman, F.J.; Bom, V.R.
2013-01-01
A hadron radiation installation adapted to subject a target to irradiation by a hadron radiation beam, said installation comprising: - a target support configured to support, preferably immobilize, a target: - a hadron radiation apparatus adapted to emit a hadron radiation beam along a beam axis to
COMPASS results on transverse spin asymmetries in two-hadron production in SIDIS
Braun, Christopher
2012-01-01
COMPASS is a fixed target experiment at CERN where nucleon spin structure and hadron spectroscopy are investigated. An important part of its physics program are the measurements of single spin asymmetries in semi-inclusive deep inelastic scattering on transversely polarized targets. Data on a deuteron target were taken in 2002-2004. After taking the first data on a transversely polarized proton target in 2007, a full year of data taking followed in 2010 to increase precision. In this contribution we present the latest results for the azimuthal asymmetries in two-hadron production which allow to investigate the transversity distribution function coupled to the two-hadron interference fragmentation function.
Energy flow in a hadronic cascade: Application to hadron calorimetry
Groom, D E
1994-01-01
The hadronic cascade description developed in an earlier paper is extended to the response of an idealized fine-sampling hadron calorimeter. Calorimeter response is largely determined by the transfer of energy $E_e$ from the hadronic to the electromagnetic sector via $\\pi^0$ production. Fluctuations in this quantity produce the "constant term" in hadron calorimeter resolution. The increase of its fractional mean, $f_{\\rm em}^0 = \\vev{E_e}/E$, with increasing incident energy $E$ causes the energy dependence of the $\\pi/e$ ratio in a noncompensating calorimeter. The mean hadronic energy fraction, $f_h^0 = 1-f_{\\rm em}^0$, was shown to scale very nearly as a power law in $E$: $f_h^0 = (E/E_0)^{m-1}$, where $E_0\\approx1$~GeV for pions, and $m\\approx0.83$. It follows that $\\pi/e=1-(1-h/e)(E/E_0)^{m-1}$, where electromagnetic and hadronic energy deposits are detected with efficiencies $e$ and $h$, respectively. Fluctuations in these quantities, along with sampling fluctuations, are incorporated to give an overall u...
Exotic hadrons in s-wave chiral dynamics.
Hyodo, Tetsuo; Jido, Daisuke; Hosaka, Atsushi
2006-11-10
We study s-wave scattering of a hadron and a Nambu-Goldstone boson induced by the model-independent low energy interaction in the flavor SU(3) symmetric limit. Establishing the general structure of the interaction based on group theoretical arguments, we find that the interaction in the exotic channels are in most cases repulsive, and that for possible attractive channels the coupling strengths are weak and uniquely given independent of channel. Solving the scattering problem, we show that the attraction in the exotic channels is not strong enough to generate a bound state.
Legendre Analysis of Hadronic Reactions
Azimov, Ya I
2016-01-01
Expansions over Legendre functions are suggested as a model-independent way of compact presentation of modern precise and high-statistics data for two-hadron reactions. Some properties of the expansions are described.
Large Hadron Collider nears completion
2008-01-01
Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.
Forward physics of hadronic colliders
Ivanov, I. P.
2013-12-01
These lectures were given at the Baikal Summer School on Physics of Elementary Particles and Astrophysics in July 2012. They can be viewed as a concise introduction to hadronic diffraction, to the physics of the Pomeron and related topics.
The CMS Outer Hadron Calorimeter
Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush
2006-01-01
The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.
Czerwinski, Eryk; Babusci, D; Badoni, D; Bencivenni, G; Bini, C; Bloise, C; Bocci, V; Bossi, F; Branchini, P; Budano, A; Bulychjev, S A; Campana, P; Capon, G; Ceradini, F; Ciambrone, P; Czerwinski, E; Dane, E; De Lucia, E; De Robertis, G; De Santis, A; De Zorzi, G; Di Domenico, A; Di Donato, C; Di Micco, B; Domenici, D; Erriquez, O; Felici, G; Fiore, S; Franzini, P; Gauzzi, P; Giovannella, S; Gonnella, F; Graziani, E; Happacher, F; Hoistad, B; Iarocci, E; Jacewicz, M; Johansson, T; Kulikov, V V; Kupsc, A; Lee-Franzini, J; Loddo, F; Martemianov, M A; Martini, M; Matsyuk, M A; Messi, R; Miscetti, S; Moricciani, D; Morello, G; Moskal, P; Nguyen, F; Passeri, A; Patera, V; Ranieri, A; Santangelo, P; Sarra, I; Schioppa, M; Sciascia, B; Sciubba, A; Silarski, M; Taccini, C; Tortora, L; Venanzoni, G; Versaci, R; Wislicki, W; Wolke, M; Zdebik, J
2010-01-01
In the upcoming month the KLOE-2 data taking campaign will start at the upgraded DAFNE phi-factory of INFN Laboratori Nazionali di Frascati. The main goal is to collect an integrated luminosity of about 20 fb^(-1) in 3-4 years in order to refine and extend the KLOE program on both kaon physics and hadron spectroscopy. Here the expected improvements on the results of hadron spectroscopy are presented and briefly discussed.
Hadron therapy information sharing prototype
Roman, Faustin Laurentiu; Abler, Daniel; Kanellopoulos, Vassiliki; Amorós Vicente, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt Cairols, José
2013-01-01
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form desig...
A Large Hadron Electron Collider at CERN
Abelleira Fernandez, J L; Adzic, P; Akay, A N; Aksakal, H; Albacete, J L; Allanach, B; Alekhin, S; Allport, P; Andreev, V; Appleby, R B; Arikan, E; Armesto, N; Azuelos, G; Bai, M; Barber, D; Bartels, J; Behnke, O; Behr, J; Belyaev, A S; Ben-Zvi, I; Bernard, N; Bertolucci, S; Bettoni, S; Biswal, S; Blumlein, J; Bottcher, H; Bogacz, A; Bracco, C; Bracinik, J; Brandt, G; Braun, H; Brodsky, S; Bruning, O; Bulyak, E; Buniatyan, A; Burkhardt, H; Cakir, I T; Cakir, O; Calaga, R; Caldwell, A; Cetinkaya, V; Chekelian, V; Ciapala, E; Ciftci, R; Ciftci, A K; Cole, B A; Collins, J C; Dadoun, O; Dainton, J; Roeck, A.De; d'Enterria, D; DiNezza, P; Dudarev, A; Eide, A; Enberg, R; Eroglu, E; Eskola, K J; Favart, L; Fitterer, M; Forte, S; Gaddi, A; Gambino, P; Garcia Morales, H; Gehrmann, T; Gladkikh, P; Glasman, C; Glazov, A; Godbole, R; Goddard, B; Greenshaw, T; Guffanti, A; Guzey, V; Gwenlan, C; Han, T; Hao, Y; Haug, F; Herr, W; Herve, A; Holzer, B J; Ishitsuka, M; Jacquet, M; Jeanneret, B; Jensen, E; Jimenez, J M; Jowett, J M; Jung, H; Karadeniz, H; Kayran, D; Kilic, A; Kimura, K; Klees, R; Klein, M; Klein, U; Kluge, T; Kocak, F; Korostelev, M; Kosmicki, A; Kostka, P; Kowalski, H; Kraemer, M; Kramer, G; Kuchler, D; Kuze, M; Lappi, T; Laycock, P; Levichev, E; Levonian, S; Litvinenko, V N; Lombardi, A; Maeda, J; Marquet, C; Mellado, B; Mess, K H; Milanese, A; Milhano, J G; Moch, S; Morozov, I I; Muttoni, Y; Myers, S; Nandi, S; Nergiz, Z; Newman, P R; Omori, T; Osborne, J; Paoloni, E; Papaphilippou, Y; Pascaud, C; Paukkunen, H; Perez, E; Pieloni, T; Pilicer, E; Pire, B; Placakyte, R; Polini, A; Ptitsyn, V; Pupkov, Y; Radescu, V; Raychaudhuri, S; Rinolfi, L; Rizvi, E; Rohini, R; Rojo, J; Russenschuck, S; Sahin, M; Salgado, C A; Sampei, K; Sassot, R; Sauvan, E; Schaefer, M; Schneekloth, U; Schorner-Sadenius, T; Schulte, D; Senol, A; Seryi, A; Sievers, P; Skrinsky, A N; Smith, W; South, D; Spiesberger, H; Stasto, A M; Strikman, M; Sullivan, M; Sultansoy, S; Sun, Y P; Surrow, B; Szymanowski, L; Taels, P; Tapan, I; Tasci, T; Tassi, E; Kate, H.Ten; Terron, J; Thiesen, H; Thompson, L; Thompson, P; Tokushuku, K; Tomas Garcia, R; Tommasini, D; Trbojevic, D; Tsoupas, N; Tuckmantel, J; Turkoz, S; Trinh, T N; Tywoniuk, K; Unel, G; Ullrich, T; Urakawa, J; VanMechelen, P; Variola, A; Veness, R; Vivoli, A; Vobly, P; Wagner, J; Wallny, R; Wallon, S; Watt, G; Weiss, C; Wiedemann, U A; Wienands, U; Willeke, F; Xiao, B W; Yakimenko, V; Zarnecki, A F; Zhang, Z; Zimmermann, F; Zlebcik, R; Zomer, F; CERN. Geneva. LHeC Department
2012-01-01
This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.
Hadronic Transport Coefficients from Effective Field Theories
Torres-Rincon, Juan M
2012-01-01
This dissertation focuses on the calculation of transport coefficients in the matter created in a relativistic heavy-ion collision after the chemical freeze-out. This matter can be well approximated by a pion gas out of equilibrium. We describe the theoretical framework to obtain the shear and bulk viscosities, the thermal and electrical conductivities and the flavor diffusion coefficients of a meson gas at low temperatures. To describe the interactions of the degrees of freedom, we use effective field theories with chiral and heavy quark symmetries. We introduce the unitarization methods in order to obtain a scattering amplitude that satisfies the unitarity condition exactly. We perform the calculation of the transport properties of the low temperature phase of quantum chromodynamics -the hadronic medium- that can be used in the hydrodynamic simulations of a relativistic heavy-ion collision and its subsequent evolution. We show that the shear viscosity over entropy density exhibits a minimum in a phase trans...
Late effects from hadron therapy
Blakely, Eleanor A.; Chang, Polly Y.
2004-06-01
Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.
Late effects from hadron therapy.
Blakely, Eleanor A; Chang, Polly Y
2004-12-01
Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.
A. Skuja
Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...
Amaldi, U; Arduini, G; Cambria, R; Canzi, C; Furetta, C; Leone, R; Rossi, S; Silari, M; Tosi, G; Vecchi, L
1993-11-01
The neologism "hadrontherapy" means radiotherapy with hadrons, which are the particles constituted by quarks, such as protons, neutrons and ions. The theoretical considerations about the clinical advantages this treatment modality can yield and the results obtained at the centers where it has already been used justify the proposal to project a center of this kind also in our Country. To this purpose, two of the authors of this paper (U. Amaldi, G. Tosi) founded the TERA Group formed by physicists, engineers and radiotherapists who work in close collaboration on a feasibility study for a hadrontherapy facility. The first aim of the Hadrontherapy Project is to design a center equipped with a synchrotron which, at the beginning, will accelerate negative hydrogen ions (H-) which will first produce 70-250 MeV proton beams and, then accelerate light ions (up to 16O) to 430 MeV/amu. This accelerator will serve four or five treatment rooms where patients can be irradiated simultaneously. Two rooms will be equipped with a fixed horizontal beam for the treatment of eye, head and neck tumors; the others will be equipped with rotating gantries to administer, in any clinical situation, really adequate treatment. Such a unit, when enough experience is fained, will allow at least 1000 patients to be treated yearly. The synchrotron injector will be designed so as to allow, parallel to the radiotherapy activities, other applications of medical and biological interest such as: the production of radioisotopes for diagnostic use (especially positron emitters), the analysis of trace elements through the PIXE technique and the production of thermal and epithermal neutrons for boron neutron capture therapy.
Identifying multiquark hadrons from heavy ion collisions.
Cho, Sungtae; Furumoto, Takenori; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Yasui, Shigehiro; Yazaki, Koichi
2011-05-27
Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.
A phenomenological $\\pi^{-}p$ scattering length from pionic hydrogen
Ericson, Torleif Eric Oskar; Wycech, S
2004-01-01
We derive a closed, model independent, expression for the electromagnetic correction factor to a phenomenological hadronic scattering length a/sup h/ extracted from a hydrogenic atom. It is obtained in a non-relativistic approach and in the limit of a short ranged hadronic interaction to terms of order alpha /sup 2/ log alpha using an extended charge distribution. A hadronic pi N scattering length a/sub pi -p//sup h/ = 0.0870(5)m/sub pi //sup -1/ is deduced leading to a pi NN coupling constant from the GMO relation g/sub c //sup 2//(4 pi ) = 14.04(17). (28 refs).
The theory of deeply inelastic scattering
Bluemlein, J.
2012-08-31
The nucleon structure functions probed in deep-inelastic scattering at large virtualities form an important tool to test Quantum Chromdynamics (QCD) through precision measurements of the strong coupling constant {alpha}{sub s}(M{sub Z}{sup 2}) and the different parton distribution functions. The exact knowledge of these quantities is also of importance for all precision measurements at hadron colliders. During the last two decades very significant progress has been made in performing precision calculations. We review the theoretical status reached for both unpolarized and polarized lepton-hadron scattering based on perturbative QCD. (orig.)
Finite volume corrections to pi pi scattering
Sato, Ikuro; Bedaque, Paulo F.; Walker-Loud, Andre
2006-01-13
Lattice QCD studies of hadron-hadron interactions are performed by computing the energy levels of the system in a finite box. The shifts in energy levels proportional to inverse powers of the volume are related to scattering parameters in a model independent way. In addition, there are non-universal exponentially suppressed corrections that distort this relation. These terms are proportional to e-m{sub pi} L and become relevant as the chiral limit is approached. In this paper we report on a one-loop chiral perturbation theory calculation of the leading exponential corrections in the case of I=2 pi pi scattering near threshold.
Quantum Chromodynamics and Deep Inelastic Scattering
Ellis, R. Keith
2016-10-01
This article first describes the parton model which was the precursor of the QCD description of hard scattering processes. After the discovery of QCD and asymptotic freedom, the first successful applications were to Deep Inelastic lepton-hadron scattering. The subsequent application of QCD to processes with two initial state hadrons required the understanding and proof of factorization. To take the fledgling theory and turn it into the robust calculational engine it has become today, required a number of technical and conceptual developments which will be described. Prospects for higher loop calculations are also reviewed.
Quantum Chromodynamics and Deep Inelastic Scattering
Keith Ellis, R
2016-01-01
This article first describes the parton model which was the precursor of the QCD description of hard scattering processes. After the discovery of QCD and asymptotic freedom, the first successful applications were to Deep Inelastic lepton-hadron scattering. The subsequent application of QCD to processes with two initial state hadrons required the understanding and proof of factorization. To take the fledgling theory and turn it into the robust calculational engine it has become today, required a number of technical and conceptual developments which will be described. Prospects for higher loop calculations are also reviewed.
Compton scattering and nonforward parton distributions
Radyushkin, A V
1998-01-01
The hard exclusive electroproduction processes provide new information about hadronic structure accumulated in nonforward parton distributions. The NFPD's are universal hybrid functions having the properties of parton densities, hadronic form factors and distribution amplitudes. They give a unified description of various hard exclusive and inclusive reactions. The basic supplier of information about nonforward parton distributions is deeply virtual Compton scattering which offers a remarkable example of Bjorken scaling phenomena in exclusive processes. Wide-angle real Compton scattering is an ideal tool to test angle-dependent scaling laws characteristic for soft overlap mechanism. Hard meson electroproduction is the best candidate to see pQCD hard gluon exchange in exclusive reactions.
Hermann, Roman
2009-09-05
The spin structure of the nucleon is investigated at the COMPASS experiment at the CERN SPS using polarized muons scattering off polarized nucleons. The contribution of the quarks to nucleon spin, as measured in the inclusive deep-inelastic scattering, is not sufficient to explain the spin of the nucleon. Thus it has to be clarified how the gluon polarization and the angular momenta of quarks and gluons contribute to the spin of the nucleon. Since the gluon polarization can only be estimated from the Q{sup 2}-dependence of inclusive deep inelastic asymmetries, a direct measurement of the gluon polarization is mandatory. The COMPASS collaboration determines the gluon polarization from cross section asymmetries in photon-gluon fusion processes using open charm production or the production of hadron pairs with large transverse momenta. This thesis presents a measurement of the gluon polarization using the COMPASS data of the years 2003 and 2004. The events with large virtuality, Q{sup 2}>1 GeV{sup 2}/c{sup 2}, and hadron pairs with large transverse momenta, p perpendicular to > 0.7 GeV/c have been used in the analysis. The photon-nucleon asymmetry was determined by using a weighted double ratio method of the selected events. The cut on p perpendicular to > 0.7 GeV/c suppresses leading order processes, so that the obtained asymmetry can be directly linked to the gluon polarization, if the analyzing power and the photon-gluon fusion fraction is known. The measured value is very small and compatible with a vanishing gluon polarization. To avoid false asymmetries, which could be caused by a change of the detector acceptances double ratios were analyzed, where the cross section cancels, and only detector asymmetries remain. It is shown that the COMPASS spectrometer was stable during the time of data taking. For the computation of the analyzing power Monte Carlo events were generated using the LEPTO and the COMGeant software packages. In this context a good MC description
Hadronic Light-Front Wavefunctions and QCD Phenomenology
Brodsky, Stanley J.
2001-02-02
A fundamental goal in QCD is to understand the non-perturbative structure of hadrons at the amplitude level--not just the single-particle flavor, momentum, and helicity distributions of the quark constituents, but also the multi-quark, gluonic, and hidden-color correlations intrinsic to hadronic and nuclear wavefunctions. A natural calculus for describing the bound-state structure of relativistic composite systems in quantum field theory is the light-front Fock expansion which encodes the properties of a hadrons in terms of a set of frame-independent n-particle wavefunctions. Light-front quantization in the doubly-transverse light-cone gauge has a number of remarkable advantages, including explicit unitarity, a physical Fock expansion, the absence of ghost degrees of freedom, and the decoupling properties needed to prove factorization theorems in high momentum transfer inclusive and exclusive reactions. A number of applications are discussed in these lectures, including semileptonic B decays, two-photon exclusive reactions, and deeply virtual Compton scattering. The relation of the intrinsic sea to the light-front wavefunctions is discussed. A new type of jet production reaction, ''self-resolving diffractive interactions'' can provide direct information on the light-front wavefunctions of hadrons in terms of their quark and gluon degrees of freedom as well as the composition of nuclei in terms of their nucleon and mesonic degrees of freedom.
A New Era of Symmetries in the Hadronic Interaction
Crawford, Christopher
2016-09-01
The search for a weak component of the nuclear force began in 1957, shortly after the proposal of parity violation. While it has been observed in compound nuclei with large nuclear enhancements, a systematic characterization of the hadronic weak interaction is still forthcoming almost sixty years later. New experimental facilities and technology have rejuvenated efforts to map out this ``complexity frontier'' within the Standard Model, and we will soon have precision data from multiple few-body experiments. In parallel, modern effective field theories have provided a systematic model independent description of the hadronic interaction with estimates of higher-order effects. The characterization of discrete symmetries in hadronic systems has recently become important for the design and analysis of other precision symmetries measurements, for example, electron PV scattering and time-reversal violation experiments. These new developments in experiment, theory, and application have ushered in a new era in hadronic parity violation. We acknowledge support from DOE-NP under Contract DE-SC0008107.
CALICE Digital Hadron Calorimeter: Calibration and Response to Hadrons
Bilki, Burak
2014-01-01
The large CALICE Digital Hadron Calorimeter prototype (DHCAL) was built in 2009 - 2010. The DHCAL uses Resistive Plate Chambers (RPCs) as active media and is read out with 1 x 1 cm2 pads and digital (1 - bit) resolution. With a world record of about 0.5M readout channels, the DHCAL offers the possibility to study hadronic interactions with unprecedented spatial resolution. This talk reports on the results from the analysis of pion events of momenta between 2 to 60 GeV/c collected in the Fermilab test beam with an emphasis on the intricate calibration procedures.
A Large Hadron Electron Collider at CERN, Physics, Machine, Detector
Adolphson, C
2011-01-01
The physics programme and the design are described of a new electron-hadron collider, the LHeC, in which electrons of $60$ to possibly $140$\\,GeV collide with LHC protons of $7000$\\,GeV. With an $ep$ design luminosity of about $10^{33}$\\,cm$^{-2}$s$^{-1}$, the Large Hadron Electron Collider exceeds the integrated luminosity collected at HERA by two orders of magnitude and the kinematic range by a factor of twenty in the four-momentum squared, $Q^2$, and in the inverse Bjorken $x$. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering (DIS) measurements. These are projected to solve a variety of fundamental questions in strong and electroweak interactions. The LHeC thus becomes the world's cleanest high resolution microscope, designed to continue the path of deep inelastic lepton-hadron scattering into unknown areas of physics and kinematics. The physics ...
Three Lectures on Hadron Physics
Roberts, Craig D
2015-01-01
These lectures explain that comparisons between experiment and theory can expose the impact of running couplings and masses on hadron observables and thereby aid materially in charting the momentum dependence of the interaction that underlies strong-interaction dynamics. The series begins with a primer on continuum QCD, which introduces some of the basic ideas necessary in order to understand the use of Schwinger functions as a nonperturbative tool in hadron physics. It continues with a discussion of confinement and dynamical symmetry breaking (DCSB) in the Standard Model, and the impact of these phenomena on our understanding of condensates, the parton structure of hadrons, and the pion electromagnetic form factor. The final lecture treats the problem of grand unification; namely, the contemporary use of Schwinger functions as a symmetry-preserving tool for the unified explanation and prediction of the properties of both mesons and baryons. It reveals that DCSB drives the formation of diquark clusters in bar...
Hadron Contribution to Vacuum Polarisation
Davier, M.; Hoecker, A.; Malaescu, B.; Zhang, Z.
2016-10-01
Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle-antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e- annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingredients to high precision tests of the Standard Theory.
The Nonperturbative Structure of Hadrons
Hobbs, T J
2014-01-01
In this thesis we explore a diverse array of issues that strike at the inherently nonperturbative structure of hadrons at momenta below the QCD confinement scale. In so doing, we mainly seek a better control over the partonic substructure of strongly-interacting matter, especially as this relates to the nonperturbative effects that both motivate and complicate experiments --- particularly DIS; among others, such considerations entail sub-leading corrections in $Q^2$, dynamical higher twist effects, and hadron mass corrections. We also present novel calculations of several examples of flavor symmetry violation, which also originates in the long-distance properties of QCD at low energy. Moreover, we outline a recently developed model, framed as a hadronic effective theory amenable to QCD global analysis, which provides new insights into the possibility of nonperturbative heavy quarks in the nucleon. This model can be extended to the scale of the lighter mesons, and we assess the accessibility of the structure f...
Hadron Contribution to Vacuum Polarisation
Davier, M; Malaescu, B; Zhang, Z
2016-01-01
Precision tests of the Standard Theory require theoretical predictions taking into account higher-order quantum corrections. Among these vacuum polarisation plays a predominant role. Vacuum polarisation originates from creation and annihilation of virtual particle–antiparticle states. Leptonic vacuum polarisation can be computed from quantum electrodynamics. Hadronic vacuum polarisation cannot because of the non-perturbative nature of QCD at low energy. The problem is remedied by establishing dispersion relations involving experimental data on the cross section for e+ e− annihilation into hadrons. This chapter sets the theoretical and experimental scene and reviews the progress achieved in the last decades thanks to more precise and complete data sets. Among the various applications of hadronic vacuum polarisation calculations, two are emphasised: the contribution to the anomalous magnetic moment of the muon, and the running of the fine structure constant α to the Z mass scale. They are fundamental ingre...
History of hadron therapy accelerators.
Degiovanni, Alberto; Amaldi, Ugo
2015-06-01
In the last 60 years, hadron therapy has made great advances passing from a stage of pure research to a well-established treatment modality for solid tumours. In this paper the history of hadron therapy accelerators is reviewed, starting from the first cyclotrons used in the thirties for neutron therapy and passing to more modern and flexible machines used nowadays. The technical developments have been accompanied by clinical studies that allowed the selection of the tumours which are more sensitive to this type of radiotherapy. This paper aims at giving a review of the origin and the present status of hadron therapy accelerators, describing the technological basis and the continuous development of this application to medicine of instruments developed for fundamental science. At the end the present challenges are reviewed.
The COMPASS Hadron Spectroscopy Programme
Austregesilo, A
2011-01-01
COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...
Heavy hadron spectrum and interactions
Ebert, D
1996-01-01
Starting from the approximate symmetries of QCD, namely chiral symmetry for light quarks and spin and flavor symmetry for heavy quarks, we investigate the low-energy properties of heavy hadrons. For this purpose we construct a consistent picture of quark-antiquark and quark-diquark interactions as a low-energy approximation to the flavor dynamics in heavy mesons and heavy baryons, respectively. Using standard functional integration tools, we derive an effective Lagrangian in terms of heavy hadron fields and discuss several properties, like the mass spectrum, coupling and decay constants, Isgur-Wise form factors.
Hadron rich and Centauro events
Barroso, S.L.C. [Centro Brasileiro de Pesquisas Fisicas, 22290-180 Rio de Janeiro, RJ (Brazil); Beggio, P.C. [Laboratorio de Ciencias Matematicas, UENF, Campos de Goytacazes, RJ (Brazil); Carvalho, A.O. de; Chinellato, J.A.; Mariano, A.; Oliveira, R. de; Shibuya, E.H. [Instituto de Fisica ' Gleb Wataghin' /UNICAMP, 13083-970 Campinas, SP (Brazil)
2008-01-15
An exploratory statistical analysis of the event C16S086I037 was possible to do using two simulations. A {gamma} and hadron induced showers recognition done on this event through a best fitting procedure shows identification of 25 and 37 for {gamma} and hadron induced showers, respectively. Assuming that the most energetic shower is the surviving particle of an interaction and the tertiary produced particles are from normal multiple pion production, the characteristics of the interaction are: Energy of primary particle E{sub 0}=1,061 TeV, Inelasticity of collision K=0.81, Mean inelasticity of {gamma}-ray =(1.2{+-}0.2) GeV/c, Upper bound of partial cross section {sigma}{<=}(15-39){mu}barn and life time {tau}{<=}10{sup -16} s. Without the surviving particle assumption, the values are: E{sub 0}=873 TeV, K=1.0, =(1.0{+-}0.16) GeV/c. Using another simulation for energy determination with {chi}{sup 2}>3.16 for best fitting results 22 and 40 for {gamma} and hadron induced showers, respectively. Under the surviving particle assumption, the figures are: Energy of primary particle E{sub 0}=1,047 TeV, Inelasticity of collision K=0.80, Mean inelasticity of {gamma}-ray =(1.0{+-}0.2) GeV/c. That is, we get almost similar figures independently of simulation and a mean transverse momentum for this hadron-rich event similar to the Centauro events.
Belle II and Hadron spectroscopy
Križan, Peter, E-mail: peter.krizan@ijs.si [J. Stefan Institute and University of Ljubljana (Slovenia)
2015-08-15
Asymmetric B factories, PEP-II with BaBar and KEKB with Belle, made a decisive contribution to flavour physics. In addition, they also observed a long list of new hadrons, some of which do not fit into the standard meson and baryon schemes. The next generation of B factories, the so called Super B factory will search for departures from the Standard model. For this task, a 50 times larger data sample is needed, corresponding to an integrated luminosity of 50 ab{sup −1}. With such a large data sample there are many more topics to explore, including searches for new and exotic hadrons, and investigation of their properties.
Velocity of sound in hadron matter
Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Roulet, E.
1987-09-01
The velocity of sound in hadron matter, in both the confined and deconfined phases, is studied. This velocity of sound appears to be an important tool to distinguish among different bag-model-based thermodynamical descriptions of hadronic matter.
Hadi, Miftachul
2010-01-01
The SU(2) Skyrme model is reviewed. The model, which considers hadron as soliton (Skyrmion), is used for investigating the nucleon mass and delta mass. Keywords: Skyrme model, soliton, hadron, nucleon mass, delta mass.
Deep-inelastic final states in a space-time description of shower development and hadronization
Ellis, John R.; Kowalski, H.; Ellis, John; Geiger, Klaus; Kowalski, Henryk
1996-01-01
We extend a quantum kinetic approach to the description of hadronic showers in space, time and momentum space to deep-inelastic ep collisions, with particular reference to experiments at HERA. We follow the history of hard scattering events back to the initial hadronic state and forward to the formation of colour-singlet pre-hadronic clusters and their decays into hadrons. The time evolution of the space-like initial-state shower and the time-like secondary partons are treated similarly, and cluster formation is treated using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. We calculate the time evolution of particle distributions in rapidity, transverse and longitudinal space. We also compare the transverse hadronic energy flow and the distribution of observed hadronic masses with experimental data from HERA, and find encouraging results. The techniques developed in this paper may be applied in the future to more complicated processes such as eA, pp, pA and AA coll...
Heavy Flavor Hadrons in Statistical Hadronization of Strangeness-rich QGP
Kuznetsova, Inga; Rafelski, Johann
2006-01-01
We study b, c quark hadronization from QGP. We obtain the yields of charm and bottom flavored hadrons within the statistical hadronization model. The important novel feature of this study is that we take into account the high strangeness and entropy content of QGP, conserving strangeness and entropy yields at hadronization.
Recent Developments And Validations in Geant4 Hadronic Physics
Wright, D.H.; Koi, T.; Folger, G.; Ivanchenko, V.; Kossov, M.; Starkov, N.; Heikkinen, A.; Wellisch, H.P.; /SLAC /CERN /Helsinki Inst. of Phys.
2007-02-12
The Geant4 hadronic models cover the entire range of energies required by calorimeters in new and planned experiments. The extension and improvement of the elastic, cascade, parameterized and quark-gluon string models will be discussed. Such improvements include the extension to more particle types, a review and correction of cross sections, and a better treatment of energy and momentum conservation. Concurrent with this development has been a validation program which includes comparisons with double differential cross sections. An ongoing hadronic shower validation will also be discussed which includes the examination of longitudinal shower shapes and the performance of the above models as well as their interaction with electromagnetic processes such as multiple scattering.
Rapidity dependence of the average transverse momentum in hadronic collisions
Durães, F. O.; Giannini, A. V.; Gonçalves, V. P.; Navarra, F. S.
2016-08-01
The energy and rapidity dependence of the average transverse momentum in p p and p A collisions at energies currently available at the BNL Relativistic Heavy Ion Collider (RHIC) and CERN Large Hadron Collider (LHC) are estimated using the color glass condensate (CGC) formalism. We update previous predictions for the pT spectra using the hybrid formalism of the CGC approach and two phenomenological models for the dipole-target scattering amplitude. We demonstrate that these models are able to describe the RHIC and LHC data for hadron production in p p , d Au , and p Pb collisions at pT≤20 GeV. Moreover, we present our predictions for and demonstrate that the ratio / decreases with the rapidity and has a behavior similar to that predicted by hydrodynamical calculations.
Assembly of the CMS hadronic calorimeter
Maximilien Brice
2004-01-01
The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.
Free quarks and antiquarks versus hadronic matter
XU Xiao-Ming; PENG Ru
2009-01-01
Meson-meson reactions A(q1q1) + B(q2q2) → q1+q1+ q2+q2 in high-temperature hadronic matter are found to produce an appreciable amount of quarks and antiquarks freely moving in hadronic matter and to establish a new mechanism for deconfinement of quarks and antiquarks in hadronic matter.
Hadronic interactions and nuclear physics
Beane, S R
2008-01-01
I give an overview of efforts in the last year to calculate interactions among hadrons using lattice QCD. Results discussed include the extraction of low-energy phase shifts and three-body interactions, and the study of pion and kaon condensation. A critical appraisal is offered of recent attempts to calculate nucleon-nucleon and nucleon-hyperon potentials on the lattice.
Koppenburg, Patrick; Smizanska, Maria
2016-01-01
Rare decays of b hadrons provide a powerful way of identifying contributions from physics beyond the Standard Model, in particular from new hypothetical particles too heavy to be produced at colliders. The most relevant experimental measurements are reviewed and possible interpretations are briefly discussed.
Butler, J.N.; /Fermilab
2005-09-01
This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.
Charmed hadrons in nuclear medium
Tolos, L.; Gamermann, D.; Garcia-Recio, C.; Molina, R.; Nieves, J.; Oset, E.; Ramos, A.
2010-01-01
We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the op
Mishima, S
2006-01-01
I review recent progress on exclusive hadronic B meson decays in the perturbative QCD approach, with focus on puzzles in the branching ratios and the CP asymmetries of the B -> pi K and B -> pi pi modes, and polarization fractions in B -> VV modes.
A PARTNERship for hadron therapy
2008-01-01
PARTNER, the Particle Training Network for European Radiotherapy, has recently been awarded 5.6 million euros by the European Commission. The project, which is coordinated by CERN, has been set up to train researchers of the future in hadron therapy and in doing so aid the battle against cancer.
Electroweak results from hadron colliders
Marcel Demarteau
1999-09-02
A very brief summary of recent electroweak results from hadron colliders is given. The emphasis is placed on inclusive W{sup {+-}} and Z{sup 0} production, the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings.
Moch, S.
2008-02-15
We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)
Hadron production simulation by FLUKA
Battistoni, G; Ferrari, A; Ranft, J; Roesler, S; Sala, P R
2013-01-01
For the purposes of accelerator based neutrino experiments, the simulation of parent hadron production plays a key role. In this paper a quick overview of the main ingredients of the PEANUT event generator implemented in the FLUKA Monte Carlo code is given, together with some benchmarking examples.
Wilkinson, III, Richard Paul [Univ. of Pennsylvania, Philadelphia, PA (United States)
1997-01-01
We present evidence for hadronic W decays in t$\\bar{t}$ → lepton + neutrino + ≥ 4 jet events using a 109 pb ^{-1} data sample of p$\\bar{p}$ collisions at √s = 1.8 TeV collected with the Collider Detector at Fermilab (CDF).
Salazar De Paula, Leandro
2015-01-01
The latest years have seen a resurrection of interest in searches for exotic states motivated by tantalising observations by Belle and CDF. Using the data collected at pp collisions at 7 and 8 TeV by the LHCb experiment we present the unambiguous new observation of exotic charmonia hadrons produced in B decays.
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without...... Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized...
Resonances in Coupled-Channel Scattering
Wilson, David J
2016-01-01
Excited hadrons are seen as resonances in the scattering of lighter stable hadrons like $\\pi$, $K$ and $\\eta$. Many decay into multiple final states necessitating coupled-channel analyses. Recently it has become possible to obtain coupled-channel scattering amplitudes from lattice QCD. Using large diverse bases of operators it is possible to obtain reliable finite volume spectra at energies where multiple channels are open. Utilising the finite volume formalism proposed by L\\"uscher and extended by several others, scattering amplitudes can be extracted from the finite volume spectra. Recent applications will be discussed where the energy dependence of scattering amplitudes is mapped out in several quantum numbers. These are then continued to complex energies to extract resonance poles and couplings.
Hadronic deuteron polarizability contribution to the Lamb shift in muonic deuterium
Eskin, A. V.; Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.
2016-06-01
Hadronic deuteron polarizability correction to the Lamb shift of muonic deuterium is calculated on the basis of unitary isobar model and modern experimental data on the structure functions of deep inelastic lepton-deuteron scattering and their parametrizations in the resonance and nonresonance regions.
Hadronic deuteron polarizability contribution to the Lamb shift in muonic deuterium
Eskin, A V; Martynenko, A P; Martynenko, F A
2015-01-01
Hadronic deuteron polarizability correction to the Lamb shift of muonic deuterium is calculated on the basis of unitary isobar model and modern experimental data on the structure functions of deep inelastic lepton-deuteron scattering and their parameterizations in the resonance and nonresonance regions.
HERWIRI2.1: Electroweak Corrections for Hadron Scattering
Yost, Scott
2016-01-01
We describe the program HERWIRI2.1, which implements order alpha-squared photonic radiative corrections exponentiated at the amplitude level (initial state, final state, and initial-final interference) and electroweak corrections to the matrix element by generating events using the KK Monte Carlo to generate the hard process, with quark initial states generated according to PDFs via an LHAPDF interface. The events can be showered internally using HERWIG6.5 or exported and showered using any desired external showering program. Some early results are shown, including comparisons to HERWIG6.5 and HORACE 3.1.
Thermalization of Hadrons via Hagedorn States
Beitel, M; Greiner, C
2014-01-01
Hagedorn states are characterized by being very massive hadron-like resonances and by not being limited to quantum numbers of known hadrons. To generate such a zoo of different Hagedorn states, a covariantly formulated bootstrap equation is solved by ensuring energy conservation and conservation of baryon number $B$, strangeness $S$ and electric charge $Q$. The numerical solution of this equation provides Hagedorn spectra, which enable to obtain the decay width for Hagedorn states needed in cascading decay simulations. A single (heavy) Hagedorn state cascades by various two-body decay channels subsequently into final stable hadrons. All final hadronic observables like masses, spectral functions and decay branching ratios for hadronic feed down are taken from the hadronic transport model UrQMD. Strikingly, the final energy spectra of resulting hadrons are exponential showing a thermal-like distribution with the characteristic Hagedorn temperature.
Issues of Reggeization in $qq'$ Back-Angle Scattering
Bondarenco, M V
2008-01-01
The Kirschner-Lipatov result for the DLLA of high-energy $qq'$ backward scattering is re-derived without the use of integral equations. It is shown that part of the inequalities between the variables in the logarithmically-divergent integrals is inconsequential. The light-cone wave-function interpretation under the conditions of backward scattering is discussed. It is argued that for hadron-hadron scattering in the valence-quark model the reggeization should manifest itself at full strength starting from $s_{hh}=50 GeV^2$.
Hadronic correction to Coulomb potential between quarks and diquark structure
Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Xue-Qian, Li; Peng-Nian, Shen [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang [Nankai Univ., TJ (China). Dept. of Physics
1997-07-01
We have studied the hadronic correction from the background pion fields due to the chiral symmetry breaking to the Coulomb potential that governs the short-distance behavior of the interactions between the bound quarks. The background fields are associated with the constituent quark mass. We find a modified form which favors the diquark structure. We also roughly estimate an influence of this correction on the phase shifts in nucleon scattering and find that it may cause an extra middle range attraction between nucleons which is expected. (author) 17 refs., 4 figs.
Hadronic and elementary multiplicity distributions in a geometrical approach
Valin, P; Menon, M J
2000-01-01
We construct the hadronic multiplicity distribution in terms of an elementary distribution (at given impact parameter) and the inelastic overlap function characterized by the observed BEL (Blacker-Edgier-Larger) behaviour. With suitable parametrizations for the elementary quantities, based on some geometrical arguments and the most recent data on e+e- annihilation, an excellent description of pp and p(bar)p inelastic multiplicity distributions at the highest energies is obtained. With this approach, we quantitatively correlate the violations of scalings in multiplicity distributions (Koba-Nielsen-Olesen) and elastic scattering (Geometrical) at high energies.
A ring-shaped recombination chamber for hadron therapy dosimetry.
Jakubowska, E; Zielczyński, M; Golnik, N; Gryziński, M A; Krzemiński, Ł
2014-10-01
An innovative recombination chamber has been designed for estimation of stray radiation doses and quality factors in hadron therapy. The chamber allows for determination of absorbed dose and recombination index of radiation quality in phantoms at small distances from simulated organs. The chamber body and electrodes are ring shaped, so the beam may be directed through the empty centre of the ring. The ionisation of the filling gas is caused by secondary or scattered radiation and can be related to the dose absorbed in the tissues close to the irradiated target volume.
Hadron therapy information sharing prototype
Roman, Faustin Laurentiu; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose
2013-01-01
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.
Hadron therapy physics and simulations
d’Ávila Nunes, Marcos
2014-01-01
This brief provides an in-depth overview of the physics of hadron therapy, ranging from the history to the latest contributions to the subject. It covers the mechanisms of protons and carbon ions at the molecular level (DNA breaks and proteins 53BP1 and RPA), the physics and mathematics of accelerators (Cyclotron and Synchrotron), microdosimetry measurements (with new results so far achieved), and Monte Carlo simulations in hadron therapy using FLUKA (CERN) and MCHIT (FIAS) software. The text also includes information about proton therapy centers and carbon ion centers (PTCOG), as well as a comparison and discussion of both techniques in treatment planning and radiation monitoring. This brief is suitable for newcomers to medical physics as well as seasoned specialists in radiation oncology.
Hadron Structure on the Lattice
Can, K. U.; Kusno, A.; Mastropas, E. V.; Zanotti, J. M.
The aim of these lectures will be to provide an introduction to some of the concepts needed to study the structure of hadrons on the lattice. Topics covered include the electromagnetic form factors of the nucleon and pion, the nucleon's axial charge and moments of parton and generalised parton distribution functions. These are placed in a phenomenological context by describing how they can lead to insights into the distribution of charge, spin and momentum amongst a hadron's partonic constituents. We discuss the techniques required for extracting the relevant matrix elements from lattice simulations and draw attention to potential sources of systematic error. Examples of recent lattice results are presented and are compared with results from both experiment and theoretical models.
Exotic Hadrons from B Factories
Fulsom, Bryan
2017-01-01
The first generation of B-Factories, BaBar and Belle, operated over the previous decade and produced many world-leading measurements related to flavor physics. One of the most important discoveries was that of an apparent four-quark particle, named X(3872). It was the first of a growing X, Y, Z alphabet of exotic hadrons, now numbering more than a dozen, found by the e + e - collider experiments. These multi-quark states represent an unusual departure from the standard description that hadronic matter consists of only two or three quarks. These discoveries have led to the emergence of a new category of physics within heavy meson spectroscopy. This talk will review some of these key experimental results, and highlight the potential of the next generation B-Factory, Belle II, as it begins operation in the coming year.
Hadron therapy information sharing prototype.
Roman, Faustin Laurentiu; Abler, Daniel; Kanellopoulos, Vassiliki; Amoros, Gabriel; Davies, Jim; Dosanjh, Manjit; Jena, Raj; Kirkby, Norman; Peach, Ken; Salt, Jose
2013-07-01
The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.
Geometrical Models and Hadronic Radii
Zahra, Sarwat; Fazal-e-Aleem,; Hussain, Talib; Zafar, Abrar Ahmad; Tahir, Sohail Afzal
2015-01-01
By using electromagnetic form factors predicted by Generalized Chou Yang model (GCYM), we compute rms radii of several hadrons with varying strangeness content such as (Pion, Proton, Phi, Lambda0, Sigma+, Sigma- and Omega-). The computed radii are found quite consistent with the results of other models and experiments, indicating excellent predicting power of GCYM. The results indicate that rms radii decrease with increase in strangeness content, separately for mesons and baryons.
Hadron Properties with FLIC Fermions
James Zanotti; Wolodymyr Melnitchouk; Anthony Williams; J Zhang
2003-07-01
The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a)-improvement in lattice fermion actions offering near continuum results at finite lattice spacing. It provides computationally inexpensive access to the light quark mass regime of QCD where chiral nonanalytic behavior associated with Goldstone bosons is revealed. The motivation and formulation of FLIC fermions, its excellent scaling properties and its low-lying hadron mass phenomenology are presented.
Cosmic rays and hadronic interactions
Lipari Paolo
2015-01-01
Full Text Available The study of cosmic rays, and more in general of the “high energy universe” is at the moment a vibrant field that, thanks to the observations by several innovative detectors for relativistic charged particles, gamma–rays, and neutrinos continue to generate surprising and exciting results. The progress in the field is rapid but many fundamental problems remain open. There is an intimate relation between the study of the high energy universe and the study of the properties of hadronic interactions. High energy cosmic rays can only be studied detecting the showers they generate in the atmosphere, and for the interpretation of the data one needs an accurate modeling of the collisions between hadrons. Also the study of cosmic rays inside their sources and in the Galaxy requires a precise description of hadronic interactions. A program of experimental studies at the LHC and at lower energy, designed to address the most pressing problems, could significantly reduce the existing uncertainties and is very desirable. Such an experimental program would also have a strong intrinsic scientific interest, allowing the broadening and deepening of our understanding of Quantum Chromo Dynamics in the non–perturbative regime, the least understood sector of the Standard Model of particle physics. It should also be noted that the cosmic ray spectrum extends to particles with energy E ∼ 1020 eV, or a nucleon–nucleon c.m. energy √s ≃ 430 TeV, 30 times higher than the current LHC energy. Cosmic ray experiments therefore offer the possibility to perform studies on the properties of hadronic interactions that are impossible at accelerators.
Hadron Physics from Lattice QCD
2016-01-01
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.
Compensation effects in hadron calorimeters
Gabriel, T.A.; Bishop, B.L.; Brau, J.; Di Ciaccio, A.; Goodman, M.; Wilson, R.
1984-01-01
The pros and cons of utilizing a fissionable material such as /sup 238/U to compensate for the nuclear binding energy losses in a hadron calorimeter are discussed. Fissionable material can return some lost energy to the particle cascade in terms of low-energy neutrons and gamma rays, but electromagnetic sampling inefficiencies (often called transition effects) and the detection medium which tries to convert this energy to a useable signal are just as important. 12 references.
Three Lectures on Hadron Physics
Roberts, Craig D.
2016-04-01
These lectures explain that comparisons between experiment and theory can expose the impact of running couplings and masses on hadron observables and thereby aid materially in charting the momentum dependence of the interaction that underlies strong-interaction dynamics. The series begins with a primer on continuum QCD, which introduces some of the basic ideas necessary in order to understand the use of Schwinger functions as a nonperturbative tool in hadron physics. It continues with a discussion of confinement and dynamical symmetry breaking (DCSB) in the Standard Model, and the impact of these phenomena on our understanding of condensates, the parton structure of hadrons, and the pion electromagnetic form factor. The final lecture treats the problem of grand unification; namely, the contemporary use of Schwinger functions as a symmetry-preserving tool for the unified explanation and prediction of the properties of both mesons and baryons. It reveals that DCSB drives the formation of diquark clusters in baryons and sketches a picture of baryons as bound-states with Borromean character. Planned experiments are capable of validating the perspectives outlined in these lectures.
Di-hadron SIDIS measurements at CLAS
Pisano Silvia
2014-06-01
Full Text Available Semi-inclusive deep-inelastic scattering (SIDIS is an essential tool to probe nucleon internal structure. Through single hadron SIDIS processes, indeed, it is possible to access the TMDs, containing information on both the longitudinal and transverse motion of the partons. In recent years, moreover, an increasing attention has been devoted to dihadron SIDIS. It constitutes the golden channel to access the higher-twist collinear Parton Distribution Functions e(x and hL(x, so far only marginally known, whose extraction will complete the collinear description of the nucleon at the twist-3 level. The CLAS detector in the Hall-B at JLab, thanks to its large acceptance, is particularly suited for such measurements. Analyses aiming at the extraction of dihadron SIDIS Beam and Target-Spin Asymmetries are presently in progress. In these proceedings, preliminary results for the Beam-Spin Asymmetry are reported, together with a summary of the dihadron SIDIS experimental program at JLab.
Lattice operators for scattering of particles with spin
Prelovsek, S; Lang, C B
2016-01-01
We construct operators for simulating the scattering of two hadrons with spin on the lattice. Three methods are shown to give the consistent operators for PN, PV, VN and NN scattering, where P, V and N denote pseudoscalar, vector and nucleon. Explicit expressions for operators are given for all irreducible representations at lowest two relative momenta. Each hadron has a good helicity in the first method. The hadrons are in a certain partial wave L with total spin S in the second method. These enable the physics interpretations of the operators obtained from the general projection method. The correct transformation properties of the operators in all three methods are proven. The total momentum of two hadrons is restricted to zero since parity is a good quantum number in this case.
Heavy flavour hadron spectroscopy: An overview
P C Vinodkumar
2014-11-01
A comprehensive overview and some of the theoretical attempts towards understanding heavy flavour hadron spectroscopy are presented. Apart from the conventional quark structure (quark, antiquarks structure for the mesons and three-quarks structure of baryons) of hadrons, multiquark hadrons the hadron molecular states etc., also will be reviewed. Various issues and challenges in understanding the physics and dynamics of the quarks at the hadronic dimensions are highlighted. Looking into the present and future experimental prospects at different heavy flavour laboratories like BES-III, CLEO-c, BaBar, Belle, LHC etc., the scope for theoretical extensions of the present knowledge of heavy flavour physics would be very demanding. In this context, many relevant contributions from the forthcoming PANDA Facility are expected. Scopes and outlook of the hadron physics at the heavy flavour sector in view of the future experimental facilities are highlighted.
Lambda Hypernuclei in a Chiral Hadronic Model
LIANG Yin-Hua; GUO Hua
2005-01-01
@@ Nuclear matter calculations in a chiral hadronic model have been performed. It has been found that the scalar and the vector potentials and binding energies per nucleon in the chiral hadronic model are very close to those of the microscopic relativistic Brueckner-Hartree-Fock calculations. The good results for finite nuclei can be obtained in the mean field approximation only if scalar mass ms and coupling constant gs have been improved with the fixed values of cs2 ≡ g2s(M/ms)2 as those given by the original parameter sets of the chiral hadronic model. Then the chiral hadronic model is extended to lambda hypernuclei. Our results predicted by the chiral hadronic model are compared with those by the nonlinear Walecka model. It has been shown that the hadronic model can also be used to describe lambda hypernuclei successfully.
Hadron Structure in Holographic Quantum Chromodynamics
Lyubovitskij, V. E.; Gutsche, T.; Schmidt, I.
2017-08-01
Hadrons and multiquark states are discussed within the context of holographic quantum chromodynamics. This approach is based on an action that describes the hadron structure with breaking of conformal and chiral symmetry and includes confinement through the presence of a background dilaton field. According to gauge/gravity duality, five-dimensional boson and fermion fields, moving in AdS space, are dual to the four-dimensional fields on the surface of the AdS sphere, which correspond to hadrons. In this framework, the hadron wave functions - the building blocks of the hadron properties - are dual to the profiles of the AdS fields in the fifth (holographic) dimension, which is identified with a scale. As applications, we consider the properties of hadrons and multiquark states.
Observation of charmless hadronic B decays
Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Nief, J Y; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Juste, A; Martínez, M; Orteu, S; Padilla, C; Park, I C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bonvicini, G; Bright-Thomas, P G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Moneta, L; Oest, T; Pacheco, A; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rizzo, G; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schmitt, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Henrard, P; Jousset, J; Michel, B; Monteil, S; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rosnet, P; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Rougé, A; Rumpf, M; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Teixeira-Dias, P; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Schmidt, M; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Giehl, I; Greene, A M; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Trabelsi, K; Aleppo, M; Ragusa, F; Bauer, C; Berlich, R; Blum, Walter; Büscher, V; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Stenzel, H; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Choi, Y; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacholkowska, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Grupen, Claus; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, A M; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
Four candidates for charmless hadronic B decay are observed in a data sample of four million hadronic Z decays recorded by the {\\sc aleph} detector at {\\sc lep} . The probability that these events come from background sources is estimated to b e less than $10^{-6}$. The average branching ratio of weakly decaying B hadrons (a mixture of $\\bd$, $\\bs$ and $\\lb$ weighted by their production cross sections and lifetimes , here denoted B) into two long-lived charged hadrons (pions, kaons or protons) is measured to be $\\Br(\\btohh) = \\resultBR$. The relative branching fraction $\\rratio$, where $\\rs$ is the ratio of $\\bs$ to $\\bd$ decays in the sample, is measured to be $\\resultR$. %Branching ratio upper limits are also obtained for a variety In addition, branching ratio upper limits are obtained for a variety of exclusive charmless hadronic two-body decays of B hadrons.
Meggiolaro, E
2005-01-01
We shall discuss about the infrared finitness and some analyticity properties of the loop-loop scattering amplitudes in gauge theories, when going from Minkowskian to Euclidean theory, and we shall see how they can be related to the still unsolved problem of the s-dependence of the hadron-hadron total cross-sections.
A Novel Collimation Method for Large Hadron Colliders
Zou, Ye; Tang, Jingyu
2016-01-01
This paper proposes a novel collimation method for large hadron colliders by arranging betatron and momentum collimation systems in the same insertion to improve the overall cleaning efficiency. The method has the potential of avoiding beam losses at the downstream dispersion suppression section following the conventional betatron collimation section, which is caused by those particles with single diffractive scattering at the collimators. Evident beam loss in arc sections should be avoided to protect the superconducting magnets from quenching, especially when the stored beam energy is up to hundreds of MJ level or even higher in modern proton-proton collider. Our studies show that it is beneficial to arrange the momentum collimation system just after the betatron collimation system so that it can clean the particles with lower momentum due to the single diffractive scattering in the betatron collimators. This method is being applied to the future proton-proton collider SPPC. Preliminary multi-particle simula...
Latest results from EPOS3 on the production of stable and unstable hadrons
Werner K.
2015-01-01
Full Text Available Evidence for hydrodynamical flow in AA or in pA collisons is to a large extent obtained from the observation of identified hadrons, such as pions, kaons, and protons. But much more information in particular about the late stage can be obtained by also considering unstable particles, which decay during the lifetime of the expanding hadronic matter. We therefore started to use EPOS3, a unified approach for pp, pA, and AA scattering, to investigate the production of stable and unstable particles.
Hadron Correlations from Recombination and Fragmentation
Fries, R J
2005-01-01
We review the formalism of quark recombination applied to the hadronization of a quark gluon plasma. Evidence in favor of the quark recombination model is outlined. Recent work on parton correlations, leading to detectable correlations between hadrons, is discussed. Hot spots from completely quenched jets are a likely source of such correlations which appear to be jet-like. It will be discussed how such a picture compares with measurement of associated hadron yields at RHIC.
Validation of Hadronic Models in GEANT4
Koi, Tatsumi; Wright, Dennis H.; /SLAC; Folger, Gunter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; /CERN; Heikkinen, Aatos; /Helsinki Inst. of Phys.; Truscott,; Lei, Fan; /QinetiQ; Wellisch, Hans-Peter
2007-09-26
Geant4 is a software toolkit for the simulation of the passage of particles through matter. It has abundant hadronic models from thermal neutron interactions to ultra relativistic hadrons. An overview of validations in Geant4 hadronic physics is presented based on thin target measurements. In most cases, good agreement is available between Monte Carlo prediction and experimental data; however, several problems have been detected which require some improvement in the models.
Validation of hadronic models in GEANT4
Koi, Tatsumi; Folger, Günter; Ivanchenko, Vladimir; Kossov, Mikhail; Starkov, Nikolai; Heikkinen, Aatos; Truscott, Pete; Lei, Fan; Wellisch, Hans-Peter
2007-01-01
Geant4 is a software toolkit for the simulation of the passage of particles through matter. It has abundant hadronic models from thermal neutron interactions to ultra relativistic hadrons. An overview of validations in Geant4 hadronic physics is presented based on thin-target measurements. In most cases, good agreement is available between Monte Carlo prediction and experimental data; however, several problems have been detected which require some improvement in the models.
Measurements of hadron production at CMS
Siklér F.
2011-04-01
Full Text Available First results on hadron production using the 0.9, 2.36 and 7 TeV data are presented. The topics covered include spectra and multiplicity distributions of charged hadrons, spectra of strange hadrons, angular and Bose-Einstein correlations of charged particles. This is just the beginning of a successful physics program at the LHC, with possible future discoveries.
Hadron physics from lattice QCD
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter
2013-01-01
High energy hadron colliders have been the tools for discovery at the highest mass scales of the energy frontier from the SppS, to the Tevatron and now the LHC. This report reviews future hadron collider projects from the high luminosity LHC upgrade to a 100 TeV hadron collider in a large tunnel, the underlying technology challenges and R&D directions and presents a series of recommendations for the future development of hadron collider research and technology.
Exotic hadrons from heavy ion collisions
Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi
2017-07-01
High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally
Hadronic molecules with hidden charm and bottom
Guo Feng-Kun
2016-01-01
Full Text Available Many of the new structures observed since 2003 in experiments in the heavy quarkonium mass region, such as the X(3872 and Zc (3900, are rather close to certain thresholds, and thus can be good candidates of hadronic molecules, which are loose bound systems of hadrons. We will discuss the consequences of heavy quark symmetry for hadronic molecules with heavy quarks. We will also emphasize that the hadronic molecular component of a given structure can be directly probed in long-distance processes, while the short-distance processes are not sensitive to it.
Hadronization systematics and top mass reconstruction
Corcella Gennaro
2014-01-01
Full Text Available I discuss a few issues related to the systematic error on the top mass mea- surement at hadron colliders, due to hadronization effects. Special care is taken about the impact of bottom-quark fragmentation in top decays, especially on the reconstruction relying on final states with leptons and J/Ψ in the dilepton channel. I also debate the relation between the measured mass and its theoretical definition, and report on work in progress, based on the Monte Carlo simulation of fictitious top-flavoured hadrons, which may shed light on this issue and on the hadronization systematics.
Hadronization measurements in cold nuclear matter
Dupre, Raphael [Inst. de Physique Nucleaire (IPN), Orsay (France). et al.
2015-05-01
Hadronization is the non-perturbative process of QCD by which partons become hadrons. It has been studied at high energies through various processes, we focus here on the experiments of lepto-production of hadrons in cold nuclear matter. By studying the dependence of observables to the atomic number of the target, these experimentscan give information on the dynamic of the hadronization at the femtometer scale. In particular, we will present preliminary results from JLab Hall B (CLAS collaboration), which give unprecedented statistical precision. Then, we will present results of a phenomenological study showing how HERMES data can be described with pure energyloss models.
Charged Particle Multiplicities in Deep Inelastic Scattering at HERA
Aïd, S; Andreev, V; Andrieu, B; Appuhn, R D; Babaev, A; Ban, Y; Baranov, P S; Barrelet, E; Barschke, R; Bartel, Wulfrin; Barth, Monique; Bassler, U; Beck, H P; Behrend, H J; Belousov, A; Berger, C; Bernardi, G; Bertrand-Coremans, G H; Besançon, M; Beyer, R; Biddulph, P; Bispham, P; Bizot, J C; Blobel, Volker; Borras, K; Botterweck, F; Boudry, V; Braemer, A; Braunschweig, W; Brisson, V; Bruel, P; Bruncko, Dusan; Brune, C R; Buchholz, R; Buniatian, A Yu; Burke, S; Burton, M; Bähr, J; Büngener, L; Bürger, J; Büsser, F W; Calvet, D; Campbell, A J; Carli, T; Charlet, M; Chechelnitskii, S; Chernyshov, V; Clarke, D; Clegg, A B; Clerbaux, B; Cocks, S P; Contreras, J G; Cormack, C; Coughlan, J A; Courau, A; Cousinou, M C; Cozzika, G; Criegee, L; Cussans, D G; Cvach, J; Dagoret, S; Dainton, J B; Dau, W D; Daum, K; David, M; Davis, C L; De Wolf, E A; Delcourt, B; Di Nezza, P; Dirkmann, M; Dixon, P; Dlugosz, W; Dollfus, C; Dowell, John D; Dreis, H B; Droutskoi, A; Duhm, H; Dünger, O; Ebert, J; Ebert, T R; Eckerlin, G; Efremenko, V; Egli, S; Eichler, R; Eisele, Franz; Eisenhandler, Eric F; Ellison, R J; Elsen, E E; Erdmann, M; Erdmann, W; Evrard, E; Fahr, A B; Favart, L; Fedotov, A; Feeken, D; Felst, R; Feltesse, Joel; Ferencei, J; Ferrarotto, F; Flamm, K; Fleischer, M; Flieser, M; Flügge, G; Fomenko, A; Fominykh, B A; Formánek, J; Foster, J M; Franke, G; Fretwurst, E; Gabathuler, Erwin; Gabathuler, K; Gaede, F; Garvey, J; Gayler, J; Gebauer, M; Genzel, H; Gerhards, R; Glazov, A; Goerlach, U; Gogitidze, N; Goldberg, M; Goldner, D; Golec-Biernat, Krzysztof J; González-Pineiro, B; Gorelov, I V; Grab, C; Greenshaw, T J; Griffiths, R K; Grindhammer, G; Gruber, A; Gruber, C; Grässler, Herbert; Grässler, R; Görlich, L; Haack, J; Hadig, T; Haidt, Dieter; Hajduk, L; Hampel, M; Haynes, W J; Heinzelmann, G; Henderson, R C W; Henschel, H; Herynek, I; Hess, M F; Hewitt, K; Hildesheim, W; Hiller, K H; Hilton, C D; Hladky, J; Hoeger, K C; Hoffmann, D; Holtom, T; Hoppner, M; Horisberger, R P; Hudgson, V L; Hufnagel, H; Hütte, M; Ibbotson, M; Itterbeck, H; Jacholkowska, A; Jacobsson, C; Jaffré, M; Janoth, J; Jansen, T; Johnson, D P; Jung, H; Jönsson, L B; Kalmus, Peter I P; Kander, M; Kant, D; Kaschowitz, R; Kathage, U; Katzy, J M; Kaufmann, H H; Kaufmann, O; Kazarian, S; Kenyon, Ian Richard; Kermiche, S; Keuker, C; Kiesling, C; Klein, M; Kleinwort, C; Knies, G; Kolanski, H; Kole, F; Kolya, S D; Korbel, V; Korn, M; Kostka, P; Kotelnikov, S K; Krasny, M W; Krehbiel, H; Krämerkämper, T; Krücker, D; Kuhlen, M; Kurca, T; Kurzhofer, J; Köhler, T; Köhne, J H; Küster, H; Lacour, D; Laforge, B; Lander, R; Landon, M P J; Lange, W; Langenegger, U; Laporte, J F; Lebedev, A; Lehner, F; Levonian, S; Lindström, G; Lindstrøm, M; Link, J; Linsel, F; Lipinski, J; List, B; Lobo, G; Loch, P; Lomas, J W; Lubimov, V; Lüke, D; López, G C; Magnussen, N; Malinovskii, E I; Mani, S; Maracek, R; Marage, P; Marks, J; Marshall, R; Martens, J; Martin, G; Martin, R D; Martyn, H U; Martyniak, J; Mavroidis, A; Maxfield, S J; McMahon, S J; Mehta, A; Meier, K; Meyer, A; Meyer, H; Meyer, J; Meyer, P O; Migliori, A; Mikocki, S; Milstead, D; Moeck, J; Moreau, F; Morris, J V; Mroczko, E; Murín, P; Müller, G; Müller, K; Nagovitsin, V; Nahnhauer, R; Naroska, Beate; Naumann, T; Negri, I; Newman, P R; Newton, D; Neyret, D; Nguyen, H K; Nicholls, T C; Niebergall, F; Niebuhr, C B; Niedzballa, C; Niggli, H; Nisius, R; Nowak, G; Noyes, G W; Nyberg-Werther, M; Oakden, M N; Oberlack, H; Olsson, J E; Ozerov, D; Palmen, P; Panaro, E; Panitch, A; Pascaud, C; Patel, G D; Pawletta, H; Peppel, E; Phillips, J P; Pieuchot, A; Pitzl, D; Pope, G; Prell, S; Pérez, E; Rabbertz, K; Reimer, P; Reinshagen, S; Rick, Hartmut; Riech, V; Riedlberger, J; Riepenhausen, F; Riess, S; Rizvi, E; Robertson, S M; Robmann, P; Roloff, H E; Roosen, R; Rosenbauer, K; Rostovtsev, A A; Rouse, F; Royon, C; Rusakov, S V; Rybicki, K; Rädel, G; Rüter, K; Sankey, D P C; Schacht, P; Schiek, S; Schleif, S; Schleper, P; Schmidt, D; Schmidt, G; Schröder, V; Schuhmann, E; Schwab, B; Schöning, A; Sefkow, F; Seidel, M; Sell, R; Semenov, A A; Shekelian, V I; Shevyakov, I; Shtarkov, L N; Siegmon, G; Siewert, U; Sirois, Y; Skillicorn, Ian O; Smirnov, P; Smith, J R; Solochenko, V; Soloviev, Yu V; Specka, A E; Spiekermann, J; Spielman, S; Spitzer, H; Squinabol, F; Starosta, R; Steenbock, M; Steffen, P; Steinberg, R; Steiner, H; Steinhart, J; Stella, B; Stellberger, A; Stier, J; Stiewe, J; Stolze, K; Straumann, U; Struczinski, W; Stösslein, U; Sutton, J P; Tapprogge, Stefan; Tasevsky, M; Theissen, J; Thiebaux, C; Thompson, G; Truöl, P; Tsipolitis, G; Turnau, J; Tutas, J; Uelkes, P; Usik, A; Valkár, S; Valkárová, A; Vallée, C; Van Esch, P; Van Mechelen, P; Van den Plas, D; Vazdik, Ya A; Verrecchia, P; Villet, G; Wacker, K; Wagener, A; Wagener, M; Walther, A; Waugh, B; Weber, G; Weber, M; Wegener, D; Wegner, A; Wengler, T; Werner, M; West, L R; Wiesand, S; Wilksen, T; Willard, S; Winde, M; Winter, G G; Wittek, C; Wobisch, M; Wünsch, E; Zarbock, D; Zhang, Z; Zhokin, A S; Zini, P; Zomer, F; Zsembery, J; Zuber, K; Zur Nedden, M; Zácek, J; de Roeck, A; von Schlippe, W
1996-01-01
Using the H1 detector at HERA, charged particle multiplicity distributions in deep inelastic ep scattering have been measured over a large kinematical region. The evolution with $W$ and $Q^2$ of the multiplicity distribution and of the multiplicity moments in pseudorapidity domains of varying size is studied in the current fragmentation region of the hadronic centre-of-mass frame. The results are compared with data from fixed target lepton-nucleon interactions, $e^+e^-$ annihilations and hadron-hadron collisions as well as with expectations from QCD based parton models. Fits to the Negative Binomial and Lognormal distributions are presented.
Compton scattering in the Endpoint Model
Dagaonkar, Sumeet
2016-01-01
We use the Endpoint model for exclusive hadronic processes to study Compton scattering of the proton. The parameters of the Endpoint model are fixed using the data for $F_1$ and the ratio of Pauli and Dirac form factors ($F_2/F_1$) and then used to get numerical predictions for the differential scattering cross section. We studied the Compton scattering at fixed $\\theta_{CM}$ in the $s \\sim t \\gg \\Lambda_{QCD}$ limit and at fixed $s$ much larger than $t$ limit. We observed that the calculations in the Endpoint Model give a good fit with experimental data in both regions.
Bessel-weighted asymmetries in semi-inclusive deep inelastic scattering
Boer, D.; Gamberg, L.; Musch, B. U.; Prokudin, A.
2011-01-01
The concept of weighted asymmetries is revisited for semi-inclusive deep inelastic scattering. We consider the cross section in Fourier space, conjugate to the outgoing hadron's transverse momentum, where convolutions of transverse momentum dependent parton distribution functions and fragmentation
Diffractive Bremsstrahlung in Hadronic Collisions
Roman Pasechnik
2015-01-01
Full Text Available Production of heavy photons (Drell-Yan, gauge bosons, Higgs bosons, and heavy flavors, which is treated within the QCD parton model as a result of hard parton-parton collision, can be considered a bremsstrahlung process in the target rest frame. In this review, we discuss the basic features of the diffractive channels of these processes in the framework of color dipole approach. The main observation is a dramatic breakdown of diffractive QCD factorisation due to the interplay between soft and hard interactions, which dominates these processes. This observation is crucial for phenomenological studies of diffractive reactions in high energy hadronic collisions.
Quark forces from hadronic spectroscopy.
Pirjol, Dan; Schat, Carlos
2009-04-17
We consider the implications of the most general two-body quark-quark interaction Hamiltonian for the spin-flavor structure of the negative parity L = 1 excited baryons. Assuming the most general two-body quark interaction Hamiltonian, we derive two correlations among the masses and mixing angles of these states, which constrain the mixing angles, and can be used to test for the presence of three-body quark interactions. We find that the pure gluon-exchange model is disfavored by data, independently of any assumptions about hadronic wave functions.
The magnehydrogen in hadronic chemistry
Zodape, Sangesh P.; Bhalekar, Anil A.
2013-10-01
In this paper we have described in brief one of the great achievements accomplished by the Italian-American scientist Ruggero Maria Santilli [1], namely the isochemical model and magnehydrogen that form the subject matter of the hadronic Chemistry. This new chemical species of magnehydrogen consist of individual hydrogen atom bonded together and form stable clusters under a new internal attractive forces originating from the toroidal polarization of orbitals of atomic electrons when placed in strong magnetic fields. These magnecules are used as pollution free fuel and for other applications because there is no cracking involved while using the stored magnetic energy.
Testing Saturation at Hadron Colliders
Marquet, C
2003-01-01
We extend the saturation models a la Golec-Biernat and Wusthoff to cross-sections of hard processes initiated by virtual-gluon probes separated by large rapidity intervals at hadron colliders. We derive their analytic expressions and apply them to physical examples, such as saturation effects for Mueller-Navelet jets. By comparison to gamma*-gamma* cross-sections we find a more abrupt transition to saturation. We propose to study observables with a potentially clear saturation signal and to use heavy vector and flavored mesons as alternative virtual-gluon probes.
Scalar strong interaction hadron theory
Hoh, Fang Chao
2015-01-01
The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.
Top production at hadron colliders
Albert De Roeck
2012-10-01
New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including top quarks. The results are based on data samples of up to 5.4 fb-1 for the Tevatron experiments and 1.1 fb−1 for the LHC experiments.
Deuteron-deuteron elastic scattering at high energies
Fazal-e-Aleem; Ali, S. (Univ. of the Punjab, Lahore (Pakistan))
1991-04-01
The eikonal picture which has theoretical foundations in some areas of physics has been successful in explaining various aspects of elastic scattering at high energies. Chou and Yang first proposed a preliminary version of the eikonal model for hadron-hadron elastic scattering. The model is based on geometrical considerations in which hadrons are treated as extended objects. Elastic scattering then results from the propagation of attenuated wave function. By assuming that at high energies the scattering amplitude is purely imaginary and that the hadronic matter distribution is proportional to the charge distribution on protons, Durand and Lipes studied high energy pp scattering on the basis of this prestine model. Later on, the model was extended to other elastic reactions. However, a survey of literature shows that it has been successful only in the diffraction peak region. It has been shown that the pristine Chou-Yange model can explain the differential cross section for deuteron-deuteron elastic scattering at {radical}s = 53 GeV in the diffraction peak region. In order to fit the large momentum transfer data, the generalized Chou-Yang model is used.
Novel Perspectives for Hadron Physics
Brodsky, Stanley J.; /SLAC
2012-03-09
I discuss several novel and unexpected aspects of quantum chromodynamics. These include: (a) the nonperturbative origin of intrinsic strange, charm and bottom quarks in the nucleon at large x; the breakdown of pQCD factorization theorems due to the lensing effects of initial- and final-state interactions; (b) important corrections to pQCD scaling for inclusive reactions due to processes in which hadrons are created at high transverse momentum directly in the hard processes and their relation to the baryon anomaly in high-centrality heavy-ion collisions; and (c) the nonuniversality of quark distributions in nuclei. I also discuss some novel theoretical perspectives in QCD: (a) light-front holography - a relativistic color-confining first approximation to QCD based on the AdS/CFT correspondence principle; (b) the principle of maximum conformality - a method which determines the renormalization scale at finite order in perturbation theory yielding scheme independent results; (c) the replacement of quark and gluon vacuum condensates by 'in-hadron condensates' and how this helps to resolve the conflict between QCD vacuum and the cosmological constant.
Dynamical generation of hadronic resonances
Wolkanowski, Thomas
2014-01-01
One type of dynamical generation consists in the formation of multiple hadronic resonances from single seed states by incorporating hadronic loop contributions on the level of $s$-wave propagators. Along this line, we study the propagator poles within two models of scalar resonances and report on the status of our work: (i) Using a simple quantum field theory describing the decay of $f_{0}(500)$ into two pions, we may obtain a second, additional pole on the first Riemann sheet below the pion-pion threshold (i.e., a stable state can emerge). (ii) We perform a numerical study of the pole(s) of $a_{0}(1450)$ by using as an input the results obtained in the extended Linear Sigma Model (eLSM). Here, we do not find any additional pole besides the original one, thus we cannot obtain $a_{0}(980)$ as an emerging state. (iii) We finally demonstrate that, although the coupling constants in typical effective models might be large, the next-to-leading-order contribution to the decay amplitude is usually small and can be n...
Better Hadronic Top Quark Polarimetry
Tweedie, Brock
2014-01-01
Observables sensitive to top quark polarization are important for characterizing or even discovering new physics. The most powerful spin analyzer in top decay is the down-type fermion from the W, which in the case of leptonic decay allows for very clean measurements. However, in many applications it is useful to measure the polarization of hadronically decaying top quarks. Usually it is assumed that at most 50% of the spin analyzing power can be recovered in this case. This paper introduces a simple and truly optimal hadronic spin analyzer, with a power of 64% at leading-order. The improvement is demonstrated to be robust in a handful of simulated measurements, including the spins and spin correlations of boosted top quarks from multi-TeV top-antitop resonances, the spins of semi-boosted tops from chiral stop decays, and the potentially CP-violating spin correlations induced in continuum top pairs by color dipole operators. For the boosted studies, we explore jet substructure techniques that exhibit improved ...
Highlights from the COMPASS experiment at CERN -- Hadron spectroscopy and excitations
Nerling, Frank
2016-01-01
The COMPASS experiment at the CERN-SPS studies the spectrum and the structure of hadrons by scattering high energy hadrons and polarised muons off various fixed targets. Recent results for the hadron programme comprise highlights from different topics. A selective overview is given and, among others, the following results are discussed. The precise determination of the pion polarisability, a long standing puzzle that has been solved now, is presented as well as measurements of radiative widths. The observation of a new narrow axial-vector state, the $a_1(1420)$, as well as deeper insights into the exotic $1^{-+}$-wave, which is under study since decades by several experiments, are discussed and further, the search for the charmonium-like exotic $Z_c(3900)$ state in the COMPASS data is covered.
Revealing Partons in Hadrons: From the ISR to the SPS Collider
Darriulat, Pierre
2015-01-01
Our understanding of the structure of hadrons has developed during the seventies and early eighties from a few vague ideas to a precise theory, Quantum Chromodynamics, that describes hadrons as made of elementary partons (quarks and gluons). Deep inelastic scattering of electrons and neutrinos on nucleons and electron–positron collisions have played a major role in this development. Less well known is the role played by hadron collisions in revealing the parton structure, studying the dynamic of interactions between partons and offering an exclusive laboratory for the direct study of gluon interactions. The present article recalls the decisive contributions made by the CERN Intersecting Storage Rings and, later, the proton–antiproton SPS Collider to this chapter of physics.
Pluto{sup ++} - A Monte Carlo simulation tool for hadronic physics
Kagarlis, M.A.
2000-07-01
A versatile package for Monte Carlo simulations of hadronic interactions in C++ is presented, designed for compatibility with the ROOT analysis environment. Realistic models of resonance production, hadronic, and electromagnetic decays are implemented, motivated by the physics program of HADES. Empirical angular-distribution parametrizations for selected processes are utilized as well, such as resonance excitation in hadronic interactions, and nucleon-nucleon elastic scattering. The code comprises a self-contained framework for stand-alone principle simulations, including an extensive database of elementary particles and properties with support for additional user-input data, as well as utilities for the implementation of elementary detector setups and acceptance cuts. A standard interface for further on- and off-line processing of generated events with GEANT is also supplied. User-defined tasks via macros and derived classes are facilitated by the flexible design of the code, which in analysis mode may be employed for on-line fitting of experimental spectra. (orig.)
Bulk viscosity for pion and nucleon thermal fluctuation in the hadron resonance gas model
Ghosh, Sabyasachi; Mohanty, Bedangdas
2016-01-01
We have calculated microscopically bulk viscosity of hadronic matter, where equilibrium thermodynamics for all hadrons in medium are described by Hadron Resonance Gas (HRG) model. Considering pions and nucleons as abundant medium constituents, we have calculated their thermal widths, which inversely control the strength of bulk viscosities for respective components and represent their in-medium scattering probabilities with other mesonic and baryonic resonances, present in the medium. Our calculations show that bulk viscosity increases with both temperature and baryon chemical potential, whereas viscosity to entropy density ratio decreases with temperature and with baryon chemical potential, the ratio increases first and then decreases. The decreasing nature of the ratio with temperature is observed in most of the earlier investigations with few exceptions. We find that the temperature dependence of bulk viscosity crucially depends on the structure of the relaxation time. Along the chemical freeze-out line in...
Highlights from the COMPASS experiment at CERN. Hadron spectroscopy and excitations
Nerling, Frank
2016-11-01
The COMPASS experiment at the CERN-SPS studies the spectrum and the structure of hadrons by scattering high energy hadrons and polarised muons off various fixed targets. Recent results for the hadron programme comprise highlights from different topics. A selective overview is given and, among others, the following results are discussed. The precise determination of the pion polarisability, a long standing puzzle that has been solved now, is presented as well as measurements of radiative widths. The observation of a new narrow axial-vector state, the a1(1420), as well as deeper insights into the exotic 1-+-wave, which is under study since decades by several experiments, are discussed and further, the search for the charmonium-like exotic Zc(3900) state in the COMPASS data is covered.
Transport Coefficients of Interacting Hadrons
Wiranata, Anton
A detailed quantitative comparison between the results of shear viscosities from the Chapman-Enskog and Relaxation Time methods is performed for the following test cases with specified elastic differential cross sections between interacting hadrons: (1) The non-relativistic, relativistic and ultra-relativistic hard sphere gas with angle and energy independent differential cross section sigma = a2/4, where a is the hard sphere radius, (2) The Maxwell gas with sigma(g, theta) = mGamma(theta)/2g, where m is the mass of the heat bath particles, Gamma(theta) is an arbitrary function of theta, and g is the relative velocity, (3) Chiral pions for which the t-averaged cross section sigma = s/(64pi2 f4p ) x (1 + 1/3 x cos2 theta), where s and t are the usual Mandelstam variables and fpi is the pion-decay constant, and (4) Massive pions for which the differential elastic cross section is taken from experiments. Quantitative results of the comparative study conducted revealed that • the extent of agreement (or disagreement) depends very sensitively on the energy dependence of the differential cross sections employed, stressing the need to combine all available experimental knowledge concerning differential cross sections for low mass hadrons and to supplement it with theoretical guidance for the as yet unknown cross sections so that the temperature dependent shear viscosity to entropy ratio can be established for use in viscous hydordynamics. • The result found for the ultra-relativistic hard sphere gas for which the shear viscosity etas = 1.2676 k BT c--1/(pia 2) offers the opportunity to validate ultra-relativistic quantum molecular dynamical (URQMD) codes that employ Green-Kubo techniques. • shear viscosity receives only small contributions from number changing inelastic processes. The dependence of the bulk viscosity on the adiabatic speed of sound is studied in depth highlighting why only hadrons in the intermediate relativistic regime contribute the most to the
In-Medium Modifications of Hadron Properties
Tawfik, A
2006-01-01
The in-medium modifications of hadron properties are briefly discussed. We restrict the discussion to the lattice QCD calculations for the hadron masses, screening masses, decay constants and wave functions. We review the progress made so far and describe how to broaden its horizon.
Mounting LHCb hadron calorimeter scintillating tiles
Maximilien Brice
2004-01-01
Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.
Lattice Studies for hadron spectroscopy and interactions
Aoki, Sinya
2014-01-01
Recent progresses of lattice QCD studies for hadron spectroscopy and interactions are briefly reviewed. Some emphasis are given on a new proposal for a method, which enable us to calculate potentials between hadrons. As an example of the method, the extraction of nuclear potential in lattice QCD is discussed in detail.
A Survey of Hadron Therapy Accelerator Technologies.
PEGGS,S.; SATOGATA, T.; FLANZ, J.
2007-06-25
Hadron therapy has entered a new age [1]. The number of facilities grows steadily, and 'consumer' interest is high. Some groups are working on new accelerator technology, while others optimize existing designs by reducing capital and operating costs, and improving performance. This paper surveys the current requirements and directions in accelerator technology for hadron therapy.
Recent hadronic resonance measurements at ALICE
Knospe, A.G.
2016-01-01
In heavy-ion physics, measurements of short-lived hadronic resonances allow the properties of the hadronic phase of the collision to be studied. In addition, resonances can be used along with stable hadrons to study parton energy loss in the quark-gluon plasma and the mechanisms that shape hadron pT spectra at intermediate transverse momenta. Resonance measurements in small systems serve as a reference for heavy-ion collisions and contribute to searches for collective effects. An overview of recent results on hadronic resonance production measured in ALICE is presented. These results include the pT spectra and yields of the rho(770)0, K*(892)0, and phi(1020) mesons in pp, p-Pb, and Pb-Pb collisions at different energies as well as the Sigma(1385)+/- and Xi(1530)0 baryons in pp and p-Pb collisions.
Monte Carlo Implementation of Polarized Hadronization
Matevosyan, Hrayr H; Thomas, Anthony W
2016-01-01
We study the polarized quark hadronization in a Monte Carlo (MC) framework based on the recent extension of the quark-jet framework, where a self-consistent treatment of the quark polarization transfer in a sequential hadronization picture has been presented. Here, we first adopt this approach for MC simulations of hadronization process with finite number of produced hadrons, expressing the relevant probabilities in terms of the eight leading twist quark-to-quark transverse momentum dependent (TMD) splitting functions (SFs) for elementary $q \\to q'+h$ transition. We present explicit expressions for the unpolarized and Collins fragmentation functions (FFs) of unpolarized hadrons emitted at rank two. Further, we demonstrate that all the current spectator-type model calculations of the leading twist quark-to-quark TMD SFs violate the positivity constraints, and propose quark model based ansatz for these input functions that circumvents the problem. We validate our MC framework by explicitly proving the absence o...
Production and Hadronization of Heavy Quarks
Norrbin, E
2000-01-01
Heavy long-lived quarks, i.e. charm and bottom, are frequently studied both as tests of QCD and as probes for other physics aspects within and beyond the standard model. The long life-time implies that charm and bottom hadrons are formed and observed. This hadronization process cannot be studied in isolation, but depends on the production environment. Within the framework of the string model, a major effect is the drag from the other end of the string that the c/b quark belongs to. In extreme cases, a small-mass string can collapse to a single hadron, thereby giving a non-universal flavour composition to the produced hadrons. We here develop and present a detailed model for the charm/bottom hadronization process, involving the various aspects of string fragmentation and collapse, and put it in the context of several heavy-flavour production sources. Applications are presented from fixed-target to LHC energies.
Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)
1996-12-31
While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.
Determination of the negatively charged pion-proton scattering length from pionic hydrogen
Ericson, Torleif Eric Oskar; Wycech, S
2003-01-01
We derive a closed, model independent, expression for the electromagnetic correction factor to the hadronic scattering length extracted from a hydrogenic atom with an extended charge and in the limit of a short ranged hadronic interaction to terms of order ((alpha)**2)(log(alpha)) in the limit of a non-relativistic approach. A hadronic negatively charged pion-proton scattering length of 0.0870(5), in units of inverse charged pion-mass, is deduced, leading to a pion-nucleon coupling constant from the GMO relation equals to 14.00(19).
Perspective on the Origin of Hadron Masses
Roberts, Craig D.
2017-01-01
The energy-momentum tensor in chiral QCD, T_{μ ν }, exhibits an anomaly, viz. \\varTheta _0 := T_{μ μ } ne 0. Measured in the proton, this anomaly yields m_p^2, where m_p is the proton's mass; but, at the same time, when computed in the pion, the answer is m_π ^2=0. Any attempt to understand the origin and nature of mass, and identify observable expressions thereof, must explain and unify these two apparently contradictory results, which are fundamental to the nature of our Universe. Given the importance of Poincaré-invariance in modern physics, the utility of a frame-dependent approach to this problem seems limited. That is especially true of any approach tied to a rest-frame decomposition of T_{μ ν } because a massless particle does not possess a rest-frame. On the other hand, the dynamical chiral symmetry breaking paradigm, connected with a Poincaré-covariant treatment of the continuum bound-state problem, provides a straightforward, simultaneous explanation of both these identities, and also a diverse array of predictions, testable at existing and proposed facilities. From this perspective, < π | \\varTheta _0 |π rangle =0 owing to exact, symmetry-driven cancellations which occur between one-body dressing effects and two-body-irreducible binding interactions in any well-defined computation of the forward scattering amplitude that defines this expectation value in the pseudoscalar meson. The cancellation is incomplete in any other hadronic bound state, with a remainder whose scale is set by the size of one-body dressing effects.
Charm production in Pb+Pb collisions at the Large Hadron Collider energy
Song, Taesoo; Cabrera, Daniel; Cassing, Wolfgang; Bratkovskaya, Elena
2015-01-01
We study charm production in Pb+Pb collisions at $\\sqrt{s_{\\rm NN}}=$2.76 TeV in the Parton-Hadron-String-Dynamics transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucleon-nucleon collisions by using the PYTHIA event generator taking into account the (anti-)shadowing incorporated in the EPS09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into $D$ mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable $R_{\\rm AA}$ and elliptic flow of $D$ mesons in comparison to the experimental data for Pb+Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm q...
Measurement of q ˆ in Relativistic Heavy Ion Collisions using di-hadron correlations
Tannenbaum, M. J.
2017-08-01
The propagation of partons from hard scattering through the Quark Gluon Plasma produced in A+A collisions at RHIC and the LHC is represented in theoretical analyses by the transport coefficient q ˆ and predicted to cause both energy loss of the outgoing partons, observed as suppression of particles or jets with large transverse momentum pT, and broadening of the azimuthal correlations of the outgoing di-jets or di-hadrons from the outgoing parton-pair, which has not been observed. The widths of azimuthal correlations of di-hadrons with the same trigger particle pTt and associated pTa transverse momenta in p+p and Au+Au are so-far statistically indistinguishable as shown in recent as well as older di-hadron measurements and also with jet-hadron and hadron-jet measurements. The azimuthal width of the di-hadron correlations in p+p collisions, beyond the fragmentation transverse momentum, jT, is dominated by kT, the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The broadening should produce a larger kT in A+A than in p+p collisions. The present work introduces the observation that the kT measured in p+p collisions for di-hadrons with pTt and pTa must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the kT measured with the same di-hadron pTt and pTa in Au+Au collisions. This idea is applied to a recent STAR di-hadron measurement, with result = 2.1 ± 0.6 GeV2. This is more precise but in agreement with a theoretical calculation of =14-14+42 GeV2 using the same data. Assuming a length ≈ 7 fm for central Au+Au collisions the present result gives q ˆ ≈ 0.30 ± 0.09 GeV2/fm, in fair agreement with the JET collaboration result from single hadron suppression of q ˆ ≈ 1.2 ± 0.3 GeV2/fm at an initial time τ0 = 0.6 fm/c in Au+Au collisions at √{sNN} = 200 GeV.
Micromegas for imaging hadronic calorimetry
Adloff, C; Cap, S; Chefdeville, M; Dalmaz, A; Drancourt, C; Espargiliere, A; Gaglione, R; Gallet, R; Geffroy, N; Jacquemier, J; Karyotakis, Y; Peltier, F; Prast, J; Vouters, G
2011-01-01
The recent progress in R&D of the Micromegas detectors for hadronic calorimetry including new engineering-technical solutions, electronics development, and accompanying simulation studies with emphasis on the comparison of the physics performance of the analog and digital readout is described. The developed prototypes are with 2 bit digital readout to exploit the Micromegas proportional mode and thus improve the calorimeter linearity. In addition, measurements of detection efficiency, hit multiplicity, and energy shower profiles obtained during the exposure of small size prototypes to radioactive source quanta, cosmic particles and accelerator beams are reported. Eventually, the status of a large scale chamber (1{\\times}1 m2) are also presented with prospective towards the construction of a 1 m3 digital calorimeter consisting of 40 such chambers.
Hadronic Screening in Improved Taste
Gupta, Sourendu
2013-01-01
We present our results on meson and nucleon screening masses in finite temperature two flavour QCD using smeared staggered valence quarks and staggered thin-link sea quarks with different lattice spacings and quark masses. We investigate optimization of smearing by observing its effects on the infrared (IR) and ultraviolet (UV) components of gluon and quark fields. The application of smearing to screening at finite temperature also provides a transparent window into the mechanism of the interplay of smearing and chiral symmetry. The improved hadronic operators show that above the finite temperature cross over, T_c, screening masses are consistent with weak-coupling predictions. There is also evidence for a rapid opening up of a spectral gap of the Dirac operator immediately above T_c.
Charmed hadron photoproduction at COMPASS
Wang, Xiao-Yun
2016-01-01
Photoproduction of the charmonium-like state $Z_{c}(4200)$ and the charmed baryon $\\Lambda_{c}^{\\ast }(2940)$ is investigated with an effective Lagrangian approach and the Regge trajectories applying to the COMPASS experiment. Combining the experimental data from COMPASS and our theoretical model we estimate the upper limit of $\\Gamma_{Z_{c}(4200)\\rightarrow J/\\psi \\pi }$ to be of about 37 MeV. Moreover, the possibility to produce $\\Lambda_{c}^{\\ast }(2940)$ at COMPASS is discussed. It seems one can try to search for this hadron in the missing mass spectrum since the $t$-channel is dominating for the $\\Lambda_{c}^{\\ast }(2940)$ photoproduction.
Hadron therapy: history, status, prospects
Klenov, G. I.; Khoroshkov, V. S.
2016-08-01
A brief historical review is given of external radiation therapy (RT), one of the main cancer treatment methods along with surgery and chemotherapy. Cellular mechanisms of radiation damage are described. Special attention is paid to hadron (proton and ion) therapy, its history, results, problems, challenges, current trends, and prospects. Undeniably great contributions to proton therapy have been made by Russian researchers, notably at the experimental centers that have operated since the mid-20th century at the Joint Institute for Nuclear Research, the A I Alikhanov Institute for Theoretical and Experimental Physics (ITEP), and the B P Konstantinov Petersburg Institute of Nuclear Physics. A quarter of the global clinical experience was accumulated by 1990 at the world's largest ITEP-hosted multicabin proton therapy center.
Towards a realistic description of hadron resonances
Schmidt, R. A.; Canton, L.; Schweiger, W.; Plessas, W.
2016-08-01
We report on our attempts of treating excited hadron states as true quantum resonances. Hitherto the spectroscopy of mesons, usually considered as quark-antiquark systems, and of baryons, usually considered as three-quark systems, has been treated through excitation spectra of bound states (namely, confined few-quark systems), corresponding to poles of the quantum-mechanical resolvent at real negative values in the complex energy plane. As a result the wave functions, i.e. the residua of the resolvent, have not exhibited the behaviour as required for hadron resonances with their multiple decay modes. This has led to disturbing shortcomings in the description of hadronic resonance phenomena. We have aimed at a more realistic description of hadron resonances within relativistic constituent-quark models taking into account explicitly meson-decay channels. The corresponding coupled-channels theory is based on a relativistically invariant mass operator capable of producing hadron ground states with real energies and hadron resonances with complex energies, the latter corresponding to poles in the lower half-plane of the unphysical sheet of the complex energy plane. So far we have demonstrated the feasibility of the coupled-channels approach to hadron resonances along model calculations producing indeed the desired properties. The corresponding spectral properties will be discussed in this contribution. More refined studies are under way towards constructing a coupled-channels relativistic constituent-quark model for meson and baryon resonances.
Analysis of one hadron rich event
Barroso, S L C; Chinellato, J A; Mariano, A; Manganote, E J T; Vicente, E C F P; Shibuya, E H
2010-01-01
In this report arguments are presented to classify this hadron rich event as an interaction event and the consequences of this statement. For instance the total invariant mass would be estimated as ~ 61 GeV/c^2 and the pair of hadrons used for height estimation have invariant mass = 2.2 GeV/c^2. Besides, tables showing the parametric and non-parametric analysis resulting in a criteria table and the resulting tables for the discrimination of $\\gamma$ or hadron induced showers were presented at the 16th ISVHECRI, held at Batavia, USA. The main point of hadron rich and Centauro events is the identification of the nature of the observed showers. The identification and energy determination of $\\gamma$ or hadron induced showers was made using 2 simulations. Complemented with the observation of photosensitive material under microscope it was determined that the event C16S086I037 could be classified as a hadron rich event. We used 10 reasonable scenarios for $\\gamma$/hadron discrimination and obtained that the event ...
Production of heavy hadrons in hard processes
Azimov, Ya.I.; Dokshitser, Yu.L.; Troyan, S.I.; Khoze, V.A. (AN SSSR, Leningrad. Inst. Yadernoj Fiziki)
1984-09-01
Spectra of heavy hadrons and of leptons produced via decays of the hadrons are treated in the framework of QCD. The distribution of heavy quarks Dsub(Q)(xsub(Q)) is discussed and a single approximation formula for its description is given. The relationship between the spectra of quarks and those of heavy hadrons produced by quarks is considered. The spectra of inclusive leptons resulting from the heavy quarks decay are considered. Possible ways are discussed which allow to compare the data and the theory in such a manner that the phenomenological assumptions do not strongly affect the result.
Non-perturbative QCD and hadron physics
Cobos-Martínez, J. J.
2016-10-01
A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented.
Constraints on hadronically decaying dark matter
Garny, Mathias [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Tran, David [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Minnesota Univ., Minneapolis, MN (United States). School of Physics and Astronomy
2012-05-15
We present general constraints on dark matter stability in hadronic decay channels derived from measurements of cosmic-ray antiprotons.We analyze various hadronic decay modes in a model-independent manner by examining the lowest-order decays allowed by gauge and Lorentz invariance for scalar and fermionic dark matter particles and present the corresponding lower bounds on the partial decay lifetimes in those channels. We also investigate the complementarity between hadronic and gamma-ray constraints derived from searches for monochromatic lines in the sky, which can be produced at the quantum level if the dark matter decays into quark-antiquark pairs at leading order.
Strange Hadronic Matter in a Chiral Model
ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng
2000-01-01
The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -～ (-26.0MeV, 1.23).
From hadron gas to quark matter, 1
Hagedorn, Rolf
1981-01-01
An analytical, non-perturbative description of a strongly interacting hadron gas is presented. Its main features are: the formulation is relativistically covariant, hadrons have finite extensions which are treated a la Van der Waals and their strong interactions are simulated by a hadronic mass spectrum generated by a bootstrap equation under the constraints of baryon number conservation. The system exhibits a singularity, which has the typical features of a phase transition gas to liquid, but which the authors interpret here as the transition into a quark-gluon plasma phase, which, however, cannot be described by this model. (16 refs).
Measurement of the hadronic photon structure function at LEP 1 for values between 9.9 and 284 GeV2
ALEPH Collaboration; Barate, R.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Alemany, R.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Pacheco, A.; Park, I. C.; Riu, I.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Tournefier, E.; Wright, A. E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.-C.; Rougé, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Cavanaugh, R.; Corden, M.; Georgiopoulos, C.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A. S.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Buck, P. G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Williams, M. I.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; Wachsmuth, H.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Etienne, F.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Büscher, V.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; dell'Orso, R.; Ferrante, I.; Foà, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Cowan, G.; Green, M. G.; Medcalf, T.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Prange, G.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.
1999-07-01
Inclusive γ*γ interactions to hadronic final states where one scattered electron or positron is detected in the electromagnetic calorimeters have been studied in the LEP 1 data taken by ALEPH from 1991 to 1995. The event sample has been used to measure the hadronic structure function of the photon F2γ in three bins with of 9.9, 20.7 and 284 GeV2.
Barate, R; Ghez, P; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Pacheco, A; Park, I C; Riu, I; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Boix, G; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Leroy, O; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Rousseau, D; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Teixeira-Dias, P; Thompson, A S; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Williams, M I; Giehl, I; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Motsch, F; Payre, P; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Kelly, M S; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Prange, G; Giannini, G; Gobbo, B; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Charles, E; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Greening, T C; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nachtman, J M; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G
1999-01-01
Inclusive gamma * gamma interactions to hadronic final states where one scattered electron or positron is detected in the electromagnetic calorimeters have been studied in the LEP 1 data taken by ALEPH from 1991 to 1995. The event sample has been used to measure the hadronic structure function of the photon F/sub 2//sup gamma / in three bins with of 9.9, 20.7 and 284 GeV/sup 2/. (31 refs).
Local Quark-Hadron Duality and Magnetic Form Factors of Bound Proton
WANG Hong-Min; ZHANG Ben-Ai
2005-01-01
We discuss the consequence of local duality for elastic scattering, and derive a model-independent equation between structure functions at x ～ 1 and elastic electromagnetic form factors. Then the electromagnetic form factors of proton are discussed using the quark-hadron duality theory. We also debate the form factor of proton in a bound state.It may be an effective approach to study the form factor of proton in media.
A new approach to evaluate the leading hadronic corrections to the muon g-2
C.M. Carloni Calame
2015-06-01
Full Text Available We propose a novel approach to determine the leading hadronic corrections to the muon g-2. It consists in a measurement of the effective electromagnetic coupling in the space-like region extracted from Bhabha scattering data. We argue that this new method may become feasible at flavor factories, resulting in an alternative determination potentially competitive with the accuracy of the present results obtained with the dispersive approach via time-like data.
EPOS LHC : test of collective hadronization with LHC data
Pierog, T; Katzy, J M; Yatsenko, E; Werner, K
2013-01-01
EPOS is a Monte-Carlo event generator for minimum bias hadronic interactions, used for both heavy ion interactions and cosmic ray air shower simulations. Since the last public release in 2009, the LHC experiments have provided a number of very interesting data sets comprising minimum bias p-p, p-Pb and Pb-Pb interactions. We describe the changes required to the model to reproduce in detail the new data available from LHC and the consequences in the interpretation of these data. In particular we discuss the effect of the collective hadronization in p-p scattering. A different parametrization of flow has been introduced in the case of a small volume with high density of thermalized matter (core) reached in p-p compared to large volume produced in heavy ion collisions. Both parametrizations depend only on the geometry and the amount of secondary particles entering in the core and not on the beam mass or energy. The transition between the two flow regimes can be tested with p-Pb data. EPOS LHC is able to reproduc...
EPOS LHC. Test of collective hadronization with LHC data
Pierog, T. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Karpenko, I. [Bogolyubov Institute for Theoretical Physics, Kiev (Ukraine); Katzy, J.M.; Yatsenko, E. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Werner, K. [Nantes Univ. (France). SUBATECH, IN2P3/CNRS
2013-06-15
EPOS is a Monte-Carlo event generator for minimum bias hadronic interactions, used for both heavy ion interactions and cosmic ray air shower simulations. Since the last public release in 2009, the LHC experiments have provided a number of very interesting data sets comprising minimum bias p-p, p-Pb and Pb-Pb interactions. We describe the changes required to the model to reproduce in detail the new data available from LHC and the consequences in the interpretation of these data. In particular we discuss the effect of the collective hadronization in p-p scattering. A different parametrization of flow has been introduced in the case of a small volume with high density of thermalized matter (core) reached in p-p compared to largest volume produced in heavy ion collisions. Both parametrizations depend only on the geometry and the amount of secondary particles entering in the core and not on the beam mass or energy. The transition between the two flow regimes can be tested with p-Pb data. EPOS LHC is able to reproduce all minimum bias results for all particles with transverse momentum from p{sub t}=0 to a few GeV/c.
Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter
Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dannheim, D.; Dotti, A.; Folger, G.; Ivantchenko, V.; Klempt, W.; Kraaij, E.van der; Lucaci-Timoce, A.-I; Ribon, A.; Schlatter, D.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.-Y; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Feege, N.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Magnan, A.-M; Bartsch, V.; Wing, M.; Salvatore, F.; Gil, E.Cortina; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Negra, R.Della; Grenier, G.; Han, R.; Ianigro, J-C; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Donckt, M.Vander; Zoccarato, Y.; Alamillo, E.Calvo; Fouz, M.-C; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Lorenzo, S.Conforti di; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; der Kolk, N.van; Li, H.; Martin-Chassard, G.; Richard, F.; Taille, Ch de la; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Takeshita, T.; Uozumi, S.; Jeans, D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.
2013-01-01
We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.
Scattering amplitudes in gauge theories
Henn, Johannes M
2014-01-01
At the fundamental level, the interactions of elementary particles are described by quantum gauge field theory. The quantitative implications of these interactions are captured by scattering amplitudes, traditionally computed using Feynman diagrams. In the past decade tremendous progress has been made in our understanding of and computational abilities with regard to scattering amplitudes in gauge theories, going beyond the traditional textbook approach. These advances build upon on-shell methods that focus on the analytic structure of the amplitudes, as well as on their recently discovered hidden symmetries. In fact, when expressed in suitable variables the amplitudes are much simpler than anticipated and hidden patterns emerge. These modern methods are of increasing importance in phenomenological applications arising from the need for high-precision predictions for the experiments carried out at the Large Hadron Collider, as well as in foundational mathematical physics studies on the S-matrix in quantum ...
Thermal analysis of hadron multiplicities from RQMD
Sollfrank, J; Sorge, H; Xu, N
1999-01-01
Some questions arising in the application of the thermal model to hadron production in heavy ion collisions are studied. We do so by applying the thermal model of hadron production to particle yields calculated by the microscopic transport model RQMD(v2.3). We study the bias of incomplete information about the final hadronic state on the extraction of thermal parameters.It is found that the subset of particles measured typically in the experiments looks more thermal than the complete set of stable particles. The hadrons which show the largest deviations from thermal behaviour in RQMD(v2.3) are the multi-strange baryons and anti-baryons. We also looked on the influence of rapidity cuts on the extraction of thermal parameters and found that they lead to different thermal parameters and larger disagreement between the RQMD yields and the thermal model.
Hadron Physics at the COMPASS Experiment
Krinner, Fabian
2015-01-01
Quantum Chromodynamics (QCD), the theory of strong interactions, in principle describes the interaction of quark and gluon fields. However, due to the self-coupling of the gluons, quarks and gluons are confined into hadrons and cannot exist as free particles. The quantitative understanding of this confinement phenomenon, which is responsible for about 98\\% of the mass of the visible universe, is one of the major open questions in particle physics. The measurement of the excitation spectrum of hadrons and of their properties gives valuable input to theory and phenomenology. In the Constituent Quark Model (CQM) two types of hadrons exist: mesons, made out of a quark and an antiquark, and baryons, which consist of three quarks. But more advanced QCD-inspired models and Lattice QCD calculations predict the existence of hadrons with exotic properties interpreted as excited glue (hybrids) or even pure gluonic bound states (glueballs). The COMPASS experiment at the CERN Super Proton Synchrotron has acquired large da...
Physics projects of COMPASS with hadron beams
Faessler, M A
1999-01-01
COMPASS, a new state-of-the-art spectrometer to be installed at the CERN Super Proton Synchrotron for experiments with muon and hadron beams, will be exposed to hadron beams with intensities up to 10/sup 8//sec and energies up to 280 GeV. The physics goals are to study the rare production of charmed hadrons, including doubly charmed baryons, in inelastic interactions, with particular interest in their semileptonic decays; to search for glueballs and hybrids in central and diffractive production. Predictions of chiral perturbation theory will be tested in Primakoff reactions. The spectrometer shall be equipped with excellent particle identification and tracking, with calorimetry, dedicated triggers and fast read-out. A significant improvement of light hadron spectroscopy - compared to previous measurements -can be achieved already in the initial phase of the experiment. (4 refs).
ENLIGHT: Hadron-therapy in Europe
CERN BULLETIN; Nathalie Hospital; Manuela Cirilli
2011-01-01
ENLIGHT was established in 2002 to coordinate the European efforts in hadron therapy. The ENLIGHT network is formed by the European hadrontherapy Community, with more than 300 participants from twenty European countries.
Hadronic and nuclear phenomena in quantum chromodynamics
Brodsky, S.J.
1987-06-01
Many of the key issues in understanding quantum chromodynamics involves processes at intermediate energies. We discuss a range of hadronic and nuclear phenomena - exclusive processes, color transparency, hidden color degrees of freedom in nuclei, reduced nuclear amplitudes, jet coalescence, formation zone effects, hadron helicity selection rules, spin correlations, higher twist effects, and nuclear diffraction - as tools for probing hadron structure and the propagation of quark and gluon jets in nuclei. Many of these processes can be studied in electroproduction, utilizing internal targets in storage rings. We also review several areas where there has been significant theoretical progress in determining the form of hadron and nuclear wavefunctions, including QCD sum rules, lattice gauge theory, and discretized light-cone quantization. 98 refs., 40 figs., 2 tabs.
Exotic hadron spectroscopy at the LHCb experiment
Cowan, G A
2016-01-01
The LHCb experiment is designed to study the decays and properties of heavy flavoured hadrons produced in the forward region from proton-proton collisions at the CERN Large Hadron Collider. During Run 1, it has recorded the world's largest data sample of beauty and charm hadrons, enabling precise studies into the spectroscopy of such particles, including discoveries of new states and measurements of their masses, widths and quantum numbers. An overview of recent LHCb results in the area of exotic hadron spectroscopy is presented, focussing on the discovery of the first pentaquark states in the $\\Lambda_b^0 \\to J/\\psi p K^-$ channel and a search for them in the related $\\Lambda_b^0 \\to J/\\psi p\\pi^-$ mode. The LHCb non-confirmation of the D0 tetraquark candidate in the $B_s^0\\pi^+$ invariant mass spectrum is presented.
The Compact Pulsed Hadron Source Construction Status
Wei, Jie; Cai, Jinchi; Chen, Huaibi; Cheng, Cheng; Du, Qiang; Du, Taibin; Feng, Qixi; Feng, Zhe; Gong, Hui; Guan, Xialing; Han, Xiaoxue; Huang, Tuchen; Huang, Zhifeng; Li, Renkai; Li, Wenqian; Loong, Chun-Keung; Tang, Chuanxiang; Tian, Yang; Wang, Xuewu; Xie, Xiaofeng; Xing, Qingzi; Xiong, Zhengfeng; Xu, Dong; Yang, Yigang; Zeng, Zhi; Zhang, Huayi; Zhang, Xiaozhang; Zheng, Shu-xin; Zheng, Zhihong; Zhong, Bin; Billen, James; Young, Lloyd; Fu, Shinian; Tao, Juzhou; Zhao, Yaliang; Guan, Weiqiang; He, Yu; Li, Guohua; Li, Jian; Zhang, Dong-sheng; Li, Jinghai; Liang, Tianjiao; Liu, Zhanwen; Sun, Liangting; Zhao, Hongwei; Shao, Beibei; Stovall, James
2010-01-01
This paper reports the design and construction status, technical challenges, and future perspectives of the proton-linac based Compact Pulsed Hadron Source (CPHS) at the Tsinghua University, Beijing, China
Hadron Spectroscopy with COMPASS at CERN
Schönning, Karin
2012-01-01
The aim of the COMPASS hadron programme is to study the light-quark hadron spectrum, and in particular, to search for evidence of hybrids and glueballs. COMPASS is a fixed-target experiment at the CERN SPS and features a two-stage spectrometer with high momentum resolution, large acceptance, particle identification and calorimetry. A short pilot run in 2004 resulted in the observation of a spin-exotic state with $J^{PC} =$ 1${−+}$ consistent with the debated /4\\pi_{1}$(1600). In addition, Coulomb production at low momentum transfer data provide a test of Chiral Perturbation Theory. During 2008 and 2009, a world leading data set was collected with hadron beam which is currently being analysed. The large statistics allows for a thorough decomposition of the data into partial waves. The COMPASS hadron data span over a broad range of channels and shed light on several different aspects of QCD.
Hadron Spectroscopy with COMPASS at CERN
Schönning, Karin
2012-01-01
The aim of the COMPASS hadron programme is to study the light-quark hadron spectrum, and in particular, to search for evidence of hybrids and glueballs. COMPASS is a fixed-target experiment at the CERN SPS and features a two-stage spectrometer with high momentum resolution, large acceptance, particle identification and calorimetry. A short pilot run in 2004 resulted in the observation of a spin-exotic state with $J^{PC} = 1^{-+}$ consistent with the debated $\\pi1(1600)$. In addition, Coulomb production at low momentum transfer data provide a test of Chiral Perturbation Theory. During 2008 and 2009, a world leading data set was collected with hadron beam which is currently being analysed. The large statistics allows for a thorough decomposition of the data into partial waves. The COMPASS hadron data span over a broad range of channels and shed light on several different aspects of QCD.
Anlauf, Harald; Dahmen, Hans D.; Manakos, Panagiotis; Mannel, Thomas; Ohl, Thorsten
1992-05-01
We present the Monte Carlo even generator KRONOS for deep inelastic lepton-hadron scattering at HERA. KRONOS focusses on the description of electromagnetic corrections beyond the existing fixed order calculations.
Modelling hadronic interactions in HEP MC generators
Skands, Peter
2015-01-01
HEP event generators aim to describe high-energy collisions in full exclusive detail. They combine perturbative matrix elements and parton showers with dynamical models of less well-understood phenomena such as hadronization, diffraction, and the so-called underlying event. We briefly summarise some of the main concepts relevant to the modelling of soft/inclusive hadron interactions in MC generators, in particular PYTHIA, with emphasis on questions recently highlighted by LHC data.
LHC suppliers win Golden Hadron awards
Maximilien Brice
2004-01-01
In a ceremony on 30 July, three of the 200 suppliers for the Large Hadron Collider (LHC) were presented with Golden Hadron awards. It is the third year that the awards have been presented to suppliers, not only for their technical and financial achievements but also for their compliance with contractual deadlines. This year the three companies are all involved in the supplies for the LHC's main magnet system.
Academic Training Lecture: Jets at Hadron Colliders
PH Department
2011-01-01
Regular Programme 30, 31 March and 1 April 2011 from 11:00 to 12:00 - Bldg. 40-S2-A01 - Salle Andersson Jets at Hadron Colliders by Gavin Salam These three lectures will discuss how jets are defined at hadron colliders, the physics that is responsible for the internal structure of jets and the ways in which an understanding of jets may help in searches for new particles at the LHC.
Hadron thermodynamics in relativistic nuclear collisions
Ammiraju, P.
1985-01-01
Various phenomenological models based on statistical thermodynamical considerations were used to fit the experimental data at high P sub T to a two temperature distribution. Whether this implies that the two temperatures belong to two different reaction mechanisms, or consequences of Lorentz-contraction factor, or related in a fundamental way to the intrinsic thermodynamics of Space-Time can only be revealed by further theoretical and experimental investigations of high P sub T phenomena in extremely energetic hadron-hadron collisions.
Hadrons and Quark-Gluon Plasma
Letessier, Jean; Rafelski, Johann
2002-06-01
Before matter as we know it emerged, the universe was filled with the primordial state of hadronic matter called quark gluon plasma. This hot soup of quarks and gluon is effectively an inescapable consequence of our current knowledge about the fundamental hadronic interactions, quantum chromodynamics. This book covers the ongoing search to verify this prediction experimentally and discusses the physical properties of this novel form of matter.
Gluonic Hadrons and Charmless B Decays
Close, Francis Edwin; Page, P R; Veseli, S; Yamamoto, H
1998-01-01
Hybrid charmonium with mass ~4 GeV could be produced via a c c.bar color-octet component in b->c c.bar s. These states could be narrow and could have a significant branching ratio to light hadrons, perhaps enhanced by glueballs. Decays to gluonic hadrons could make a sizable contribution to B->no charm decays. Experimental signatures and search strategies are discussed.
Hadron spectroscopy from strangeness to charm and beauty
Zou, B.S., E-mail: zoubs@ihep.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)
2013-09-20
Quarks of different flavors have different masses, which will cause breaking of flavor symmetries of QCD. Flavor symmetries and their breaking in hadron spectroscopy play important role for understanding the internal structures of hadrons. Hadron spectroscopy with strangeness reveals the importance of unquenched quark dynamics. Systematic study of hadron spectroscopy with strange, charm and beauty quarks would be very revealing and essential for understanding the internal structure of hadrons and its underlying quark dynamics.
Hadron spectroscopy with the crystal ball at the AGS
Tippens, B.
1998-05-01
The recent installation of the Crystal Ball (CB) on the C6 beamline at the AGS marks the beginning of a new diverse program in hadron spectroscopy at BNL. Some of its goals are to improve the determination of the masses, widths and decay modes of several baryon resonances, to search for possible exotic states such as pentaquarks and hybrids, to determine the η-n scattering length, and to measure photoproduction of K- mesons from Λ and Σ hyperons using the technique of detailed balance. In the spring of 1997, we conducted a two week engineering run and a two week data run looking at all neutral final states from π-p interactions. A description of the experimental setup and performance of the detector is given along with some preliminary results from π-p→ηn.
Pseudospin Symmetry as a Bridge between Hadrons and Nuclei
Joseph N. Ginocchio
2016-03-01
Full Text Available Atomic nuclei exhibit approximate pseudospin symmetry. We review the arguments that this symmetry is a relativistic symmetry. The condition for this symmetry is that the sum of the vector and scalar potentials in the Dirac Hamiltonian is a constant. We give the generators of pseudospin symmetry. We review some of the predictions that follow from the insight that pseudospin symmetry has relativistic origins . We show that approximate pseudospin symmetry in nuclei predicts approximate spin symmetry in anti-nucleon scattering from nuclei. Since QCD sum rules predict that the sum of the scalar and vector potentials is small, we discuss the quark origins of pseudospin symmetry in nuclei and spin symmetry in hadrons.
Scheme variations of the QCD coupling and hadronic $\\tau$ decays
Boito, Diogo; Miravitllas, Ramon
2016-01-01
The Quantum Chromodynamics (QCD) coupling, $\\alpha_s$, is not a physical observable of the theory since it depends on conventions related to the renormalization procedure. We introduce a definition of the QCD coupling, denoted by $\\widehat\\alpha_s$, whose running is explicitly renormalization scheme invariant. The scheme dependence of the new coupling $\\widehat\\alpha_s$ is parameterized by a single parameter $C$, related to transformations of the QCD scale $\\Lambda$. It is demonstrated that appropriate choices of $C$ can lead to substantial improvements in the perturbative prediction of physical observables. As phenomenological applications, we study $e^+e^-$ scattering and decays of the $\\tau$ lepton into hadrons, both being governed by the QCD Adler function.
Exclusive photon-induced hadronic reactions at large momentum transfers
Schweiger, W
1995-01-01
It is generally assumed that due to factorization of long- and short-distance dynamics perturbative QCD can be applied to exclusive hadronic reactions at large momentum transfers. Within such a perturbative approach diquarks turn out to be a useful phenomenological device to model non-perturbative effects still observable in the kinematic range accessible by present-days experiments. The basic ingredients of the perturbative formalism with diquarks, i.e. Feynman rules for diquarks and quark-diquark wave functions of baryons, are briefly summarized. Applications of the diquark model to the electromagnetic form factors of the proton in the space- as well as time-like region, Compton-scattering off protons, gamma-gamma -> p-pbar, and photoproduction of Kaons are discussed.
Na Liu
2015-10-01
Full Text Available Hadron production in semi-inclusive deep-inelastic scattering of leptons from nuclei is an ideal tool to determine and constrain the transport coefficient in cold nuclear matter. The leading-order computations for hadron multiplicity ratios are performed by means of the SW quenching weights and the analytic parameterizations of quenching weights based on BDMPS formalism. The theoretical results are compared to the HERMES positively charged pions production data with the quarks hadronization occurring outside the nucleus. With considering the nuclear geometry effect on hadron production, our predictions are in good agreement with the experimental measurements. The extracted transport parameter from the global fit is shown to be qˆ=0.74±0.03 GeV2/fm for the SW quenching weight without the finite energy corrections. As for the analytic parameterization of BDMPS quenching weight without the quark energy E dependence, the computed transport coefficient is qˆ=0.20±0.02 GeV2/fm. It is found that the nuclear geometry effect has a significant impact on the transport coefficient in cold nuclear matter. It is necessary to consider the detailed nuclear geometry in studying the semi-inclusive hadron production in deep inelastic scattering on nuclear targets.
SPIN DEPENDENCE IN ELASTIC SCATTERING IN THE CNI REGION.
BRAVAR, A.; MAKDISI, Y.; ET AL.
2004-10-10
The interference of the electromagnetic spin-flip amplitude with a hadronic spin-nonflip amplitude in the elastic scattering of hadrons leads to significant spin dependencies at very low 4-momentum transfer t (0.001 < |t| < 0.01 (GeV/c){sup 2}). This kinematical region is known as the Coulomb Nuclear Interference (CNI) region. First results on spin effects in polarized proton-proton elastic scattering in the CNI region at 100 GeV from the 2004 polarized proton run at RHIC are presented. Preliminary results on A{sub N} in the elastic scattering of polarized protons off a carbon target over a wide energy range from 4 GeV to 100 GeV from AGS and RHIC are presented as well. These results allow us to further investigate the spin dependence in elastic scattering and the mechanisms at work.
Evidences for two scales in hadrons
Kopeliovich, B Z; Povh, B; Schmidt, Ivan
2007-01-01
Some unusual features observed in hadronic collisions at high energies can be understood assuming that gluons in hadrons are located within small spots occupying only about 10% of the hadron's area. Such a conjecture about the presence of two scales in hadrons helps to explain: why diffractive gluon radiation so much suppressed; why the triple-Pomeron coupling shows no t-dependence; why total hadronic cross sections rise with energy so slowly; why diffraction cone shrinks so slowly, and why $\\alpha^\\prime_P\\ll\\alpha^\\prime_R$; why the transition from hard to soft regimes in the structure functions occurs at rather large $Q^2$; why the observed Cronin effect at collider energies is so weak; why hard reactions sensitive to primordial parton motion (direct photon, Drell-Yan dileptons, heavy flavors, back-to-back di-hadrons, seagull effect, etc.) demand such a large transverse momenta of the projectile partons, which is not explained by NLO calculations; why the onset of nuclear shadowing for gluons is so much de...
Hadronic Transport Effects on Elliptic Flow
李娜; 施梳苏
2011-01-01
Elliptic flow v2 is considered as a probe to study partonic collectivity,and the measurement v2/e can be used to describe the hydro behavior of the colliding system.We study the the effect of the hadronic process on the momentum anisotropy parameter v2 in a multiphase transport model.It is found that hadronic rescattering will depress the v2 signal built up at the partonic phase.A similar mass hierarchy is observed in the model as in the experiment at RHIC.We find that different particle species will approach the same ideal hydro limit if the hadronic process is excluded.%Elliptic Bow V2 is considered as a probe to study partonic collectivity, and the measurement V2/S can be used to describe the hydro behavior of the colliding system. We study the the effect of the hadronic process on the momentum anisotropy parameter vi in a multiphase transport model. It is found that hadronic rescattering will depress the V2 signal built up at the partonic phase. A similar mass hierarchy is observed in the model as in the experiment at RHIC. We find that different particle species will approach the same ideal hydro limit if the hadronic process is excluded.
Decaying hadrons within constituent-quark models
Kleinhappel, Regina
2012-01-01
Within conventional constituent-quark models hadrons come out as stable bound states of the valence (anti)quarks. Thereby the resonance character of hadronic excitations is completely ignored. A more realistic description of hadron spectra can be achieved by including explicit mesonic degrees of freedom, which couple directly to the constituent quarks. We will present a coupled-channel formalism that describes such hybrid systems in a relativistically invariant way and allows for the decay of excited hadrons. The formalism is based on the point-form of relativistic quantum mechanics. If the confining forces between the (anti)quarks are described by instantaneous interactions it can be formally shown that the mass-eigenvalue problem for a system that consists of dynamical (anti)quarks and mesons reduces to a hadronic eigenvalue problem in which the eigenstates of the pure confinement problem (bare hadrons) are coupled via meson loops. The only point where the quark substructure enters are form factors at the m...
Identification of hadrons in Centauro events
Augusto, C.R.A.; Barroso, S.L.C.; Beggio, P.C.; Carvalho, A.O. de; Menon, M.J.; Navia, C.E.; Oliveira, R. de; Shibuya, E.H
2003-07-01
Since the observation of a remarkable cosmic ray induced event, in experiments with emulsion chambers, a search for similar events was started. In spite of no observation of events showing the unusual aspect of Centauro I, another remarkable event with a high content of hadrons was observed. Moreover, this Centauro V has a hadron that interacts twice at deeper layers of the detector and has energy between (16-20)% of the total energy of the main interaction, the former figure for all showers and the last only for hadron-induced showers. Therefore, to classify it as a Centauro type event it is crucial to look for reasonable criterion to identify hadronic particles. Previous analysis adopted only one criterion for each shower observed in the films. Nowadays, an improved re-analysis uses at least two criteria for each shower. The main purpose of this paper is to show that the showers observed are properly identified as of hadronic origin and so we conclude that is an authentic Centauro event produced by the interaction of a hadron 500 m above the detector and interacting twice in the lower part of the chamber.
The ATLAS Hadronic Tau Trigger
Brost, E; The ATLAS collaboration
2014-01-01
As proton-proton collisions at the LHC reach luminosities close to 10$^{\\mathrm{34}}$ cm$^{\\mathrm{-2}}$ s $^{\\mathrm{-1}}$, the strategies for triggering have become more important than ever for physics analyses. Simplistic single tau lepton triggers suffer from severe rate limitation, despite the sophisticated algorithms used in the tau identification. The development of further fast algorithms and the design of topological selections are the main challenges to allow a large program of physics analysis. The tau triggers provide many opportunities to study new physics beyond the Standard Model, and to get precise measurements of the properties of the Higgs boson decaying to tau-leptons. We present the performance of the hadronic tau trigger taken in Run 1 data with the ATLAS detector at $\\sqrt{s}$ = 8 TeV pp collision. One of the major challenges is to sustain high efficiencies in events with multiple interactions. To do this we introduced faster tracking methods, multivariate selection techniques, and new t...
Very large hadron collider (VLHC)
NONE
1998-09-01
A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.
Strong evidence for hadron acceleration in Tycho's supernova remnant
Morlino, G.; Caprioli, D.
2012-02-01
Context. Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS have provided new fundamental pieces of information for understanding particle acceleration and nonthermal emission in SNRs. Aims: We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics, and multiwavelength emission by accounting for particle acceleration at the forward shock via first-order Fermi mechanism. Methods: We adopt here a quick and reliable semi-analytical approach to nonlinear diffusive shock acceleration. It includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. Results: We find that Tycho's forward shock accelerates protons up to at least 500 TeV, channelling into CRs about 10% of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidence of very efficient magnetic field amplification (up to ~300 μG). In such a strong magnetic field, the velocity of the Alfvén waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction ∝ E-2. This effect is crucial for explaining GeV-to-TeV gamma-ray spectrum as the result of neutral pions decay produced in nuclear collisions between accelerated nuclei and the background gas. Conclusions: The self-consistency of such hadronic scenario, along with the inability of the concurrent leptonic mechanism (inverse Compton scattering of relativistic electrons on several photon backgrounds) to reproduce both the shape and the normalization of the detected gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.
Working group report on hadrons in the nuclear medium
Ent, R. [CEBAF, Newport News, VA (United States); Milner, R.G. [Masachusetts Inst. of Technology, Cambridge, MA (United States)
1994-04-01
This working group focussed on the subject of hadrons in the nuclear medium. It encompassed both the understanding of the nucleus itself in terms of its binding and its structure, and the use of the nucleus as a medium to probe QCD and the structure of hadrons. Both aspects were addressed during the workshop, though the emphasis tended towards the latter. Almost inescapably this working group had some overlap with the other working groups, as the nucleus can also be used as a medium to probe the production and structure of vector mesons. Also, inclusive and semi-inclusive processes can be used as a probe of nuclear effects, for instance in the case of deep-inelastic scattering for x > 1. In this summary report the authors will try to restrict themselves to only those issues where the nuclear medium is important. To increase their understanding of the nucleus in terms of its binding and structure, they would like to know the effect of a dense nuclear medium on a nucleon, to know the non-nucleonic degrees of freedom needed to describe a nuclear system, and to understand the implications of the fact that a bound nucleon is necessarily off its mass-shell. The results of many lepton scattering experiments during the last two decades have raised these questions, but at this moment there are no definitive answers. The hope is that the well-known electron probe, with sufficient energy to probe the short-range properties of nuclei, can provide insight. Especially, the authors would like a conclusive answer to the question if, and to what extent, quark degrees of freedom are necessary to describe a nuclear system.
Neutrino-antineutrino pair production by hadronic bremsstrahlung
Bacca, Sonia
2016-09-01
I will report on recent calculations of neutrino-antineutrino pair production from bremsstrahlung processes in hadronic collisions and consider temperature conditions relevant for core collapse supernovae. Earlier studies on bremsstrahlung from neutron-neutron collisions showed that the approximation used in typical supernova simulation to model this process differs by about a factor of 2 from predictions based on chiral effective field theory, where the chiral expansion of two-body forces is considered up to the next-to-next-to-next-to-leading order. When the density of neutrons is large enough this process may compete with other non-hadronic reactions in the production of neutrinos, in particular in the case of μ and τ neutrinos, which are not generated by charged-current reactions. A natural question to ask is then: what is the effect of neutrino pair production from collisions of neutrons with finite nuclei? To tackle this question, we recently have addressed the case of neutron- α collisions, given that in the P-wave channels the neutron- α scattering features a resonance near 1 MeV. We find that the resonance leads to an enhanced contribution in the neutron spin structure function at temperatures in the range of 0 . 1 - 4 MeV. For significant density fractions of α in this temperature range, this process is competitive with contributions from neutron-neutron scattering. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. This work was supported in parts by the Natural Sciences and Engineering Research Council (Grant Number SAPIN-2015-0003).
Scattering Amplitudes via Algebraic Geometry Methods
Søgaard, Mads; Damgaard, Poul Henrik
This thesis describes recent progress in the understanding of the mathematical structure of scattering amplitudes in quantum field theory. The primary purpose is to develop an enhanced analytic framework for computing multiloop scattering amplitudes in generic gauge theories including QCD without Feynman diagrams. The study of multiloop scattering amplitudes is crucial for the new era of precision phenomenology at the Large Hadron Collider (LHC) at CERN. Loop-level scattering amplitudes can be reduced to a basis of linearly independent integrals whose coefficients are extracted from generalized unitarity cuts. We take advantage of principles from algebraic geometry in order to extend the notion of maximal cuts to a large class of two- and three-loop integrals. This allows us to derive unique and surprisingly compact formulae for the coefficients of the basis integrals. Our results are expressed in terms of certain linear combinations of multivariate residues and elliptic integrals computed from products of ...
Review of recent results in deep inelastic scattering
D Indumathi
2000-04-01
This talk gives a summary of recent results in deep inelastic lepton hadron scattering. This includes structure functions from inclusive measurements as well as fragmentation in semiinclusive processes, mainly with respect to data from colliders such as HERA at DESY, and their associated phenomenology.
A correlated-cluster model and the ridge phenomenon in hadron-hadron collisions
Sanchis-Lozano, Miguel-Angel
2017-01-01
A study of the near-side ridge phenomenon in hadron-hadron collisions based on a cluster picture of multiparticle production is presented. The near-side ridge effect is shown to have a natural explanation in this context provided that clusters are produced in a correlated manner in the collision transverse plane.
A correlated-cluster model and the ridge phenomenon in hadron-hadron collisions
Sanchis-Lozano, Miguel-Angel; Sarkisyan-Grinbaum, Edward
2017-03-01
A study of the near-side ridge phenomenon in hadron-hadron collisions based on a cluster picture of multiparticle production is presented. The near-side ridge effect is shown to have a natural explanation in this context provided that clusters are produced in a correlated manner in the collision transverse plane.
Jet analysis by neural networks in high energy hadron-hadron collisions
De Felice, P; Pasquariello, G; De Felice, P; Nardulli, G; Pasquariello, G
1995-01-01
We study the possibility to employ neural networks to simulate jet clustering procedures in high energy hadron-hadron collisions. We concentrate our analysis on the Fermilab Tevatron energy and on the k_\\bot algorithm. We consider both supervised multilayer feed-forward network trained by the backpropagation algorithm and unsupervised learning, where the neural network autonomously organizes the events in clusters.
Recent developments in chiral dynamics of hadrons and hadrons in nuclei
Oset, E; Kaskulov, M; Roca, L; Sarkar, S; Strottman, D D; Vacas, M J V; Magas, V K; Ramos, A; Hernández, E
2007-01-01
In this talk I present recent developments in the field of hadronic physics and hadrons in the nuclear medium. I review the unitary chiral approach to meson baryon interaction and address the topics of the two dynamically generated $\\Lambda(1405)$ resonances, with experiments testing it, the $\\Lambda(1520)$ and $\\Delta(1700)$ resonances, plus the $\\Lambda(1520)$, $\\Sigma(1385)$ and $\\omega$ in the nuclear medium.
Mtingwa, Sekazi K.
2017-01-01
We discuss our entree into accelerator physics and the problem of intrabeam scattering in particular. We focus on the historical importance of understanding intrabeam scattering for the successful operation of Fermilab's Accumulator and Tevatron and the subsequent hunt for the top quark, and its importance for successful operation of CERN's Large Hadron Collider that discovered the Higgs boson. We provide details on intrabeam scattering formalisms for hadron and electron beams at high energies, concluding with an Ansatz by Karl Bane that has applications to electron damping rings and synchrotron light sources.
Hadronic interactions in the MINOS detectors
Kordosky, Michael Alan [Univ. of Texas, Austin, TX (United States)
2004-08-01
MINOS, the Main Injector Neutrino Oscillation Search, will study neutrino flavor transformations using a Near detector at the Fermi National Accelerator Laboratory and a Far detector located in the Soudan Underground Laboratory in northern Minnesota. The MINOS collaboration also constructed the CalDet (calibration detector), a smaller version of the Near and Far detectors, to determine the topological and signal response to hadrons, electrons and muons. The detector was exposed to test-beams in the CERN Proton Synchrotron East Hall during 2001-2003, where it collected events at momentum settings between 200 MeV/c and 10 GeV/c. In this dissertation we present results of the CalDet experiment, focusing on the topological and signal response to hadrons. We briefly describe the MINOS experiment and its iron-scintillator tracking-sampling calorimters as a motivation for the CalDet experiment. We discuss the operation of the CalDet in the beamlines as well as the trigger and particle identification systems used to isolate the hadron sample. The method used to calibrate the MINOS detector is described and validated with test-beam data. The test-beams were simulated to model the muon flux, energy loss upstream of the detector and the kaon background. We describe the procedure used to discriminate between pions and muons on the basis of the event topology. The hadron samples were used to benchmark the existing GEANT3 based hadronic shower codes and determine the detector response and resolution for pions and protons. We conclude with comments on the response to single hadrons and to neutrino induced hadronic showers.
Stirling, W.G. [Liverpool Univ., Dep. of Physics, Liverpool (United Kingdom); Perry, S.C. [Keele Univ. (United Kingdom). Dept. of Physics
1996-12-31
We outline the theoretical and experimental background to neutron scattering studies of critical phenomena at magnetic and structural phase transitions. The displacive phase transition of SrTiO{sub 3} is discussed, along with examples from recent work on magnetic materials from the rare-earth (Ho, Dy) and actinide (NpAs, NpSb, USb) classes. The impact of synchrotron X-ray scattering is discussed in conclusion. (author) 13 figs., 18 refs.
Highlights from COMPASS in hadron spectroscopy
Krinner, Fabian
2015-01-01
Since Quantum Choromdynamics allows for gluon self-coupling, quarks and gluons cannot be observed as free particles, but only their bound states, the hadrons. This so-called confinement phenomenon is responsible for $98\\%$ of the mass in the visible universe. The measurement of the hadron excitation spectra therefore gives valuable input for theory and phenomenology to quantitatively understand this phenomenon. One simple model to describe hadrons is the Constituent Quark Model (CQM), which knows two types of hadrons: mesons, consisting of a quark and an antiquark, and baryons, which are made out of three quarks. More advanced models, which are inspired by QCD as well as calculations within Lattice QCD predict the existence of other types of hadrons, which may be e.g. described solely by gluonic excitations (glueballs) or mixed quark and gluon excitations (hybrids). In order to search for such states, the COMPASS experiment at the Super Proton Synchrotron at CERN has collected large data sets, which allow to ...
First Results on Hadron Spectroscopy at COMPASS
Nerling, Frank
2010-01-01
The COMPASS fixed-target experiment at the CERN SPS is dedicated to the study of hadron structure and dynamics. One goal of the physics programme using hadron beams is the search for new states, in particular the search for $J^{PC}$ exotic states and glueballs. After a short pilot run in 2004 (190 GeV/c $\\pi^{-}$ beam, lead target), we started our hadron spectroscopy programme in 2008 by collecting unprecedented statistics using 190 GeV/c negative hadron beams on a liquid hydrogen target. A similar amount of data with 190 GeV/c positive hadron beams has been taken in 2009, as well as some data (negative beam) on nuclear targets. As a first result the observation of a significant $J^{PC}$ spin-exotic signal in the 2004 data -- consistent with the disputed $\\pi_1(1600)$ -- was recently published. Our spectrometer features good coverage by electromagnetic calorimetry, crucial for the detection of final states involving $\\pi^0$, $\\eta$ or $\\eta'$, and the 2008/09 data provide an excellent opportunity for the simu...
Distinguishing B and $\\overline{B}$ hadrons
Dunietz, Isard
1994-01-01
Distinguishing the flavor of B and \\overline B hadrons is critical in studies of CP-violation, B^0 -\\overline{B^0} mixing, and the underlying b-decay mechanisms. Methods of b ``flavor tagging" are broadly divided into ``opposite b" tagging and self-tagging of the signal b hadron. The former, while understood, has the perceived drawback of low efficiency. The latter, while having the potential for an order of magnitude higher efficiency, has yet to be demonstrated for neutral B hadrons. In this article we review opposite b tagging in light of methods whose efficacy has only recently been demonstrated or suggested. In addition, we recommend a number of tagging methods for the opposite b including: K^{*0} and K^{*\\pm} with large inclusive yields of 15\\% and 18\\%; \\overline \\Lambda and \\overline {\\Lambda}p ; partially reconstructed charmed hadrons; sophisticated jet charge techniques, etc. We also recommend the use of self-tagging for the opposite b hadron. Such an inversion of self-tagging could conceivably incr...
Universal effective hadron dynamics from superconformal algebra
Brodsky, Stanley J.; de Téramond, Guy F.; Dosch, Hans Günter; Lorcé, Cédric
2016-08-01
An effective supersymmetric QCD light-front Hamiltonian for hadrons composed of light quarks, which includes a spin-spin interaction between the hadronic constituents, is constructed by embedding superconformal quantum mechanics into AdS space. A specific breaking of conformal symmetry inside the graded algebra determines a unique effective quark-confining potential for light hadrons, as well as remarkable connections between the meson and baryon spectra. The results are consistent with the empirical features of the light-quark hadron spectra, including a universal mass scale for the slopes of the meson and baryon Regge trajectories and a zero-mass pion in the limit of massless quarks. Our analysis is consistently applied to the excitation spectra of the π, ρ, K, K* and ϕ meson families as well as to the N, Δ, Λ, Σ, Σ*, Ξ and Ξ* in the baryon sector. We also predict the existence of tetraquarks which are degenerate in mass with baryons with the same angular momentum. The mass of light hadrons is expressed in a universal and frame-independent decomposition in the semiclassical approximation described here.
Medium-induced color flow softens hadronization
Beraudo, A; Wiedemann, U A
2012-01-01
Medium-induced parton energy loss, resulting from gluon exchanges between the QCD matter and partonic projectiles, is expected to underly the strong suppression of jets and high-$p_T$ hadron spectra observed in ultra-relativistic heavy ion collisions. Here, we present the first color-differential calculation of parton energy loss. We find that color exchange between medium and projectile enhances the invariant mass of energetic color singlet clusters in the parton shower by a parametrically large factor proportional to the square root of the projectile energy. This effect is seen in more than half of the most energetic color-singlet fragments of medium-modified parton branchings. Applying a standard cluster hadronization model, we find that it leads to a characteristic additional softening of hadronic spectra. A fair description of the nuclear modification factor measured at the LHC may then be obtained for relatively low momentum transfers from the medium.
Boosting low-mass hadronic resonances
Shimmin, Chase; Whiteson, Daniel
2016-09-01
Searches for new hadronic resonances typically focus on high-mass spectra due to overwhelming QCD backgrounds and detector trigger rates. We present a study of searches for relatively low-mass hadronic resonances at the LHC in the case that the resonance is boosted by recoiling against a well-measured high-pT probe such as a muon, photon or jet. The hadronic decay of the resonance is then reconstructed either as a single large-radius jet or as a resolved pair of standard narrow-radius jets, balanced in transverse momentum to the probe. We show that the existing 2015 LHC data set of p p collisions with ∫L d t =4 fb-1 should already have powerful sensitivity to a generic Z' model which couples only to quarks, for Z' masses ranging from 20 - 500 GeV /c2 .
Dense hadronic matter in neutron stars
Pagliara, Giuseppe; Lavagno, Andrea; Pigato, Daniele
2014-01-01
The existence of stars with masses up to $2 M_{\\odot}$ and the hints of the existence of stars with radii smaller than $\\sim 11$ km seem to require, at the same time, a stiff and a soft hadronic equation of state at large densities. We argue that these two apparently contradicting constraints are actually an indication of the existence of two families of compact stars: hadronic stars which could be very compact and quark stars which could be very massive. In this respect, a crucial role is played, in the hadronic equation of state, by the delta isobars whose early appearance shifts to large densities the formation of hyperons. We also discuss how recent experimental information on the symmetry energy of nuclear matter at saturation indicate, indirectly, an early appearance of delta isobars in neutron star matter.
Physics at Hadronic Colliders (4/4)
CERN. Geneva
2008-01-01
Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)
Physics at Hadronic Colliders (3/4)
CERN. Geneva
2008-01-01
Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)
Physics at Hadronic Colliders (2/4)
CERN. Geneva
2008-01-01
Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)
Physics at Hadronic Colliders (1/4)
CERN. Geneva
2008-01-01
Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)
Basics of particle therapy: introduction to hadrons.
Welsh, James S
2008-10-01
With the arrival of 3-dimensional conformal radiation therapy and intensity modulated radiation therapy, radiation dose distributions in radiation oncology have improved dramatically over the past couple of decades. As part of a natural progression there recently has been a resurgence of interest in hadron therapy, specifically charged particle therapy, because of the even better dose distributions potentially achievable. In principle, using charged particle beams, radiation dose distributions can be achieved that surpass those possible with even the most sophisticated photon radiation delivery techniques. Certain charged particle beams might possess some biologic advantages in terms of tumor kill potential as well as this dosimetric advantage. The particles under consideration for such clinical applications all belong to the category of particles known as hadrons. This review introduces some of the elementary physics of the various hadron species previously used, currently used or being considered for future use in radiation oncology.
A new slant on hadron structure
W Detmold; D B Leinweber; W Melnitchouk; A W Thomas; S V Wright
2001-08-01
Rather than regarding the restriction of current lattice QCD simulations to quark masses that are 5–10 times larger than those observed as a problem, we note that this presents a wonderful opportunity to deepen our understanding of QCD. Just as it has been possible to learn a great deal about QCD by treating c as a variable, so the study of hadron properties as a function of quark mass is leading us to a deeper appreciation of hadron structure. As examples we cite progress in using the chiral properties of QCD to connect hadron masses, magnetic moments, charge radii and structure functions calculated at large quark masses within lattice QCD with the values observed physically.
Lifetime of B hadrons from CDF
Miao, Ting; CDF Collaboration
1996-08-01
A review of the lifetimes of {ital B} hadrons measured by the CDF collaboration at Fermilab is presented. The data corresponds to 110 pb{sup -1} of {ital p}{ital {anti p}} collisions at {radical}s = 1.8 TeV. The inclusive {ital B} hadron lifetime is measured using a high statistics sample of {ital B} {r_arrow} {ital J}/{Psi}{Chi} decays. Species specific lifetimes of the {ital B}{sup +}, {ital B}{sup 0}, {ital B}{sup 0}{sub s}, and {Lambda}{sup 0}{sub b} are determined using both fully reconstructed decays and partially reconstructed decays consisting of a lepton associated with a charm hadron.
Thermal and chemical equilibration of hadronic matter
Bratkovskaya, E L; Greiner, C; Effenberger, M; Mosel, U; Sibirtsev, A A
2001-01-01
We study thermal and chemical equilibration in 'infinite' hadron matter as well as in finite size relativistic nucleus-nucleus collisions using a BUU cascade transport model with resonance and string degrees-of-freedom. The 'infinite' hadron matter is simulated within a cubic box employing periodic boundary conditions. The various equilibration times depend on baryon density and energy density and are much shorter for particles consisting of light quarks then for particles including strangeness. For kaons and antikaons the chemical equilibration time is found to be larger than $\\simeq$ 40 fm/c for all baryon and energy densities considered. The inclusion of continuum excitations, i.e. hadron 'strings', leads to a limiting temperature of $T_s\\simeq$ 150 MeV.