WorldWideScience

Sample records for hadronic energy spectra

  1. Measurement of Neutron Energy Spectra behind Shielding of a 120 GeV/c Hadron Facility

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, N.; Rokni, S.H.; Vincke, H.; Khater, Hesham; Prinz, A.A.; /SLAC; Taniguchi, S.; /JAERI-RIKEN, Hyogo; Roesler, S.; Brugger, M.; /CERN; Hagiwara, Masayuki; /Tohoku U.

    2005-12-14

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (mainly a mixture of protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. Neutron energy spectra in the energy range between 12 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been experimentally verified in the neutron energy range up to 380 MeV in separate experiments. The corresponding MARS15 Monte Carlo simulations generally gave good agreements with the experimental energy spectra.

  2. Measurement of neutron energy spectra behind shielding of a 120 GeV/c hadron beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Noriaki [Stanford Linear Accelerator Center (SLAC), Menlo Park, CA 94022 (United States)]. E-mail: nakao@slac.stanford.edu; Taniguchi, Shingo [Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198 (Japan); Rokni, Sayed H. [Stanford Linear Accelerator Center (SLAC), Menlo Park, CA 94022 (United States); Roesler, Stefan [CERN, CH-1211, Geneva 23 (Switzerland); Brugger, Markus [CERN, CH-1211, Geneva 23 (Switzerland); Hagiwara, Masayuki [Cyclotron Radioisotope Center (CYRIC), Tohoku University, Sendai, 980-8579 (Japan); Vincke, Heinz [Stanford Linear Accelerator Center (SLAC), Menlo Park, CA 94022 (United States); Khater, Hesham [Stanford Linear Accelerator Center (SLAC), Menlo Park, CA 94022 (United States); Prinz, Alyssa A. [Stanford Linear Accelerator Center (SLAC), Menlo Park, CA 94022 (United States)

    2006-06-23

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (mainly a mixture of protons and pions) on a cylindrical copper target (7-cm diameterx50-cm long). NE213 organic liquid scintillator (12.7-cm diameterx12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. Neutron energy spectra in the energy range between 12 and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been experimentally verified in the neutron energy range up to 380 MeV in separate experiments. The corresponding MARS15 Monte Carlo simulations generally gave good agreements with the experimental energy spectra.

  3. Systematic study of high $p_{T}$ hadron spectra in pp, pA, and AA collisions at ultrarelativistic energies

    CERN Document Server

    Wang Xin Nian

    2000-01-01

    High-p/sub T/ particle spectra in p+p (p+p), p+A, and A+B collisions are calculated in a parton model with QCD-inspired hard scattering and evolution in which intrinsic transverse momentum, its broadening due to initial multiple parton scattering, and jet quenching due to parton energy loss inside a dense medium are included phenomenologically. The intrinsic k/sub T/ and its broadening in p+A and A+B collisions due to initial multiple parton scattering are found to be very important at low energies ( square root s1 GeV/c) in A+B collisions scale very well with the number of binary nucleon-nucleon collisions (modulo effects of multiple initial scattering). This suggests that hard parton scattering is the dominant particle production mechanism underlying the hadron spectra at p/sub T/~2-10 GeV/c. However, there is no evidence of jet quenching or parton energy loss. Assuming this model of parton scattering, nuclear broadening and parton energy loss, one can exclude an effective parton energy loss dE/sub q//dx>0....

  4. Measurement of very forward neutron energy spectra for 7 TeV proton–proton collisions at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    O. Adriani

    2015-11-01

    Full Text Available The Large Hadron Collider forward (LHCf experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC s=7 TeV proton–proton collisions with the pseudo-rapidity η ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results, and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However, no model perfectly explains the experimental results over the entire pseudo-rapidity range. The experimental data indicate a more abundant neutron production rate relative to the photon production than any model predictions studied here.

  5. Measurement of very forward neutron energy spectra for 7 TeV proton--proton collisions at the Large Hadron Collider

    CERN Document Server

    Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Del Prete, M.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Kawade, K.; Makino, Y.; Masuda, K.; Matsubayashi, E.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Okuno, Y.; Papini, P.; Perrot, A-L.; Ricciarini, S.; Sako, T.; Sakurai, N.; Sugiura, Y.; Suzuki, T.; Tamura, T.; Tiberio, A.; Torii, S.; Tricomi, A.; Turner, W.C.; Zhou, Q.D.

    2015-01-01

    The Large Hadron Collider forward (LHCf) experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC $\\sqrt{s}$ = 7 TeV proton--proton collisions with the pseudo-rapidity $\\eta$ ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the difference in the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results and the DPMJET 3.04 model describes our results well at the lower pseudo-...

  6. Measurement and calculation of high-energy neutron spectra behind shielding at the CERF 120 GeV/c hadron beam facility

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, N. [Stanford Linear Accelerator Center (SLAC), Stanford, CA 94309 (United States)], E-mail: nakao@fnal.gov; Taniguchi, S. [Japan Synchrotron Radiation Research Institute (JASRI), Hyogo 679-5198 (Japan); Roesler, S.; Brugger, M. [CERN, CH-1211 Geneva 23 (Switzerland); Hagiwara, M. [Cyclotron Radioisotope Center (CYRIC), Tohoku University, Sendai 980-8579 (Japan); Vincke, H. [Stanford Linear Accelerator Center (SLAC), Stanford, CA 94309 (United States); CERN, CH-1211 Geneva 23 (Switzerland); Khater, H.; Prinz, A.A.; Rokni, S.H. [Stanford Linear Accelerator Center (SLAC), Stanford, CA 94309 (United States); Kosako, K. [Shimizu Corporation, Tokyo (Japan)

    2008-01-15

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133{sup o}. Neutron energy spectra in the energy range between 32 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.

  7. Measurement and calculation of high-energy neutron spectra behind shielding at the CERF 120 GeV/c hadron beam facility

    Science.gov (United States)

    Nakao, N.; Taniguchi, S.; Roesler, S.; Brugger, M.; Hagiwara, M.; Vincke, H.; Khater, H.; Prinz, A. A.; Rokni, S. H.; Kosako, K.

    2008-01-01

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133°. Neutron energy spectra in the energy range between 32 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple and results are given in the form of energy spectra, these experimental results are very useful as benchmark data to check the accuracies of simulation codes and nuclear data. Monte Carlo simulations of the experimental set up were performed with the FLUKA, MARS and PHITS codes. Simulated spectra for the 80-cm thick concrete often agree within the experimental uncertainties. On the other hand, for the 160-cm thick concrete and iron shield differences are generally larger than the experimental uncertainties, yet within a factor of 2. Based on source term simulations, observed discrepancies among simulations of spectra outside the shield can be partially explained by differences in the high-energy hadron production in the copper target.

  8. Measurement and Calculation of High-Energy Neutron Spectra behind Shielding at the CERF 120 GeV/c Hadron Beam Facility

    CERN Document Server

    Nakao, N; Roesler, S; Brugger, M; Hagiwara, M; Vincke, H; Khater, H; Prinz, A A; Rokni, S H; Kosako, K

    2008-01-01

    Neutron energy spectra were measured behind the lateral shield of the CERF (CERN-EU High Energy Reference Field) facility at CERN with a 120 GeV/c positive hadron beam (a mixture of mainly protons and pions) on a cylindrical copper target (7-cm diameter by 50-cm long). An NE213 organic liquid scintillator (12.7-cm diameter by 12.7-cm long) was located at various longitudinal positions behind shields of 80- and 160-cm thick concrete and 40-cm thick iron. The measurement locations cover an angular range with respect to the beam axis between 13 and 133 degrees. Neutron energy spectra in the energy range between 32 MeV and 380 MeV were obtained by unfolding the measured pulse height spectra with the detector response functions which have been verified in the neutron energy range up to 380 MeV in separate experiments. Since the source term and experimental geometry in this experiment are well characterized and simple, and results are given in the form of energy spectra, these experimental results are very useful a...

  9. Energy dependence of identified hadron spectra and event-by-event fluctuations in p+p interactions from NA61/SHINE at the CERN SPS

    CERN Document Server

    Rybczynski, Maciej; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Argyriades, J.; Baatar, B.; Blondel, A.; Blumer, J.; Bogomilov, M.; Bravar, A.; Brooks, W.; Brzychczyk, J.; Bubak, A.; Bunyatov, S.A.; Busygina, O.; Christakoglou, P.; Czopowicz, T.; Davis, N.; Debieux, S.; Dembinski, H.; Diakonos, F.; Di Luise, S.; Dominik, W.; Drozhzhova, T.; Dumarchez, J.; Dynowski, K.; Engel, R.; Ereditato, A.; Esposito, L.S.; Feofilov, G.A.; Fodor, Z.; Ferrero, A.; Fulop, A.; Gazdzicki, M.; Golubeva, M.; Grabez, B.; Grebieszkow, K.; Grzeszczuk, A.; Guber, F.; Hakobyan, H.; Hasegawa, T.; Hierholzer, M.; Idczak, R.; Igolkin, S.; Ivanov, Y.; Ivashkin, A.; Jakovic, D.; Kadija, K.; Kapoyannis, A.; Katrynska, N.; Kaptur, E.; Kielczewska, D.; Kikola, D.; Kirejczyk, M.; Kisiel, J.; Kiss, T.; Kleinfelder, S.; Kobayashi, T.; Kolesnikov, V.I.; Kolev, D.; Kondratiev, V.P.; Korzenev, A.; Kowalski, S.; Krasnoperov, A.; Kuleshov, S.; Kurepin, A.; Larsen, D.; Laszlo, A.; Lyubushkin, V.V.; Mackowiak-Pawlowska, M.; Majka, Z.; Maksiak, B.; Malakhov, A.I.; Maletic, D.; Marchionni, A.; Marcinek, A.; Marin, V.; Marton, K.; Mathes, H.J.; Matulewicz, T.; Matveev, V.; Melkumov, G.L.; Mrowczynski, St.; Murphy, S.; Nakadaira, T.; Nirkko, M.; Nishikawa, K.; Palczewski, T.; Palla, G.; Panagiotou, A.D.; Paul, T.; Pistillo, C.; Redij, A.; Peryt, W.; Petukhov, O.; Planeta, R.; Pluta, J.; Popov, B.A.; Posiadala, M.; Pulawski, S.; Puzovic, J.; Rauch, W.; Ravonel, M.; Renfordt, R.; Robert, A.; Röhrich, D.; Rondio, E.; Roth, M.; Rubbia, A.; Rustamov, A.; Rybczynski, M.; Sadovsky, A.; Sakashita, K.; Savic, M.; Sekiguchi, T.; Seyboth, P.; Shibata, M.; Sipos, M.; Skrzypczak, E.; Slodkowski, M.; Staszel, P.; Stefanek, G.; Stepaniak, J.; Stroebele, H.; Susa, T.; Szuba, M.; Tada, M.; Tereshchenko, V.; Tolyhi, T.; Tsenov, R.; Turko, L.; Ulrich, R.; Unger, M.; Vassiliou, M.; Veberic, D.; Vechernin, V.V.; Vesztergombi, G.; Vinogradov, L.; Wilczek, A.; Wlodarczyk, Z.; Wojtaszek, A.; Wyszynski, O.; Zambelli, L.; Zipper, W.

    2013-01-01

    NA61/SHINE at the CERN SPS is a fixed-target experiment pursuing a rich physics program including measurements for heavy ion, neutrino and cosmic ray physics. The main goal of the ion program is to explore the most interesting $T, mu_{B}$ region of the phase diagram of strongly interacting matter. We plan to study the properties of the onset of deconfinement and to search for the signatures of the critical point. The search is performed by varying collision energy (13A-158A GeV/c) and system size (p+p, Be+Be, Ar+Ca, Xe+La). Thanks to its large acceptance and excellent particle identification capability NA61/SHINE is well suited for performing high-precision particle production measurements as well as for studying event-by-event fluctuations in p+p, p+nucleus and nucleus+nucleus collisions. Preliminary results on p+p interactions at 20, 31, 40, 80 and 158 GeV/c are presented. They include inclusive spectra of pi+, pi-, K- and protons as a function of transverse momentum/mass and rapidity as well as event-by-ev...

  10. Asymmetric dark matter and the hadronic spectra of hidden QCD

    Science.gov (United States)

    Lonsdale, Stephen J.; Schroor, Martine; Volkas, Raymond R.

    2017-09-01

    The idea that dark matter may be a composite state of a hidden non-Abelian gauge sector has received great attention in recent years. Frameworks such as asymmetric dark matter motivate the idea that dark matter may have similar mass to the proton, while mirror matter and G ×G grand unified theories provide rationales for additional gauge sectors which may have minimal interactions with standard model particles. In this work we explore the hadronic spectra that these dark QCD models can allow. The effects of the number of light colored particles and the value of the confinement scale on the lightest stable state, the dark matter candidate, are examined in the hyperspherical constituent quark model for baryonic and mesonic states.

  11. Hadron-hadron total cross sections and soft high-energy scattering on the lattice

    OpenAIRE

    Giordano, M.; Meggiolaro, E.

    2011-01-01

    The nonperturbative approach to soft high-energy hadron-hadron scattering, based on the analytic continuation of Euclidean Wilson-loop correlation functions, makes possible the investigation of the problem of the asymptotic energy dependence of hadron-hadron total cross sections by means of lattice calculations. In this contribution we compare the lattice numerical results to analytic results obtained with various nonperturbative techniques. We also discuss the possibility to obtain indicatio...

  12. Measurement of identified charged hadron spectra with the ALICE experiment at the LHC

    CERN Document Server

    Milano, L

    2011-01-01

    The ALICE experiment features multiple particle identification systems. The measurement of the identified charged hadron $p_{t}$ spectra in proton-proton collisions at $\\sqrt{s}=900$ GeV will be discussed. In the central rapidity region ($|\\eta|<0.9$) particle identification and tracking are performed using the Inner Tracking System (ITS), which is the closest detector to the beam axis, the Time Projection Chamber (TPC) and a dedicated time-of-flight system (TOF). Particles are mainly identified using the energy loss signal in the ITS and TPC. In addition, the information from TOF is used to identify hadrons at higher momenta. Finally, the kink topology of the weak decay of charged kaons provides an alternative method to extract the transverse momentum spectra of charged kaons. This combination allows to track and identify charged hadrons in the transverse momentum ($p_{t}$) range from 100 MeV/c up to 2.5 GeV/$c$. Mesons containing strange quarks (\\kos, $\\phi$) and both singly and doubly strange baryons (\\...

  13. Hadron collisions at TEV energies

    Energy Technology Data Exchange (ETDEWEB)

    Cahn, R.N.

    1988-05-10

    This paper discusses the need for higher energy accelerators to probe the mysteries of the subatomic universe. Intermediate vector bosons are discussed as well as symmetry breaking and the standard model. (LSP)

  14. High $p_{T}$ inclusive hadron and photon spectra in pp and PbPb collisions

    CERN Document Server

    Salur, Sevil

    2012-01-01

    In this article, we report the inclusive charged hadron and isolated photon spectra at $\\sqrt{s_{NN}}=2.76$ TeV PbPb collisions measured with the CMS detector at LHC. Charged particle momentum spectra are compared to a constructed reference measurement of proton-proton collisions at $\\sqrt{s}=2.76$ TeV by using a combination of $x_T$ scaling and direct interpolation at fixed $p_{T}$. Photon results are compared to next to leading order calculations at the same center of mass energy. Nuclear modification factors ($R_{AA}$) are calculated to study the properties of the medium. While a large suppression is observed in the charged particle $R_{AA}$ at high transverse momentum, isolated photons show no modifications, revealing that PbPb collisions at $\\sqrt{s_{NN}}=2.76$ TeV produce a strongly interacting colored medium.

  15. Nuclear modification of jet and hadron spectra with CMS

    CERN Document Server

    AUTHOR|(CDS)2071524

    2016-01-01

    The Compact Muon Solenoid (CMS) experiment measures various stages of nuclear collisions utilizing the different types of beams from the Large Hadron Collider (LHC). PbPb collisions can provide remarkable insight into the final state effects, such as jet quenching. However, recent studies of pPb collisions shed light on initial state effects and complement a chronological picture of the nuclear interaction. CMS results of jet and hadron measurements in such collisions are presented.

  16. Transverse momentum spectra of the produced hadrons at SPS ...

    Indian Academy of Sciences (India)

    walk pattern. The average transverse rapidity shift per collision is determined from the nucleon– nucleus collision data. Using this information, we obtain parameter-free result for the transverse momentum distribution of produced hadrons in nucleus–nucleus collisions. It is observed that such a model is able to explain the ...

  17. Interpretation of wave energy spectra

    National Research Council Canada - National Science Library

    Thompson, E.F

    1980-01-01

    Guidelines for interpreting nondirectional wave energy spectra and presented. A simple method is given for using the spectrum to estimate a significant height and period for each major wave train in most sea states...

  18. Energy-range relations for hadrons in nuclear matter

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  19. Tomography of high-energy nuclear collisions with photon-hadron correlations.

    Science.gov (United States)

    Zhang, Hanzhong; Owens, J F; Wang, Enke; Wang, Xin-Nian

    2009-07-17

    Within the next-to-leading order (NLO) perturbative QCD (PQCD) parton model, suppression of away-side hadron spectra associated with a high pT photon due to parton energy loss is studied in high-energy heavy-ion collisions. Because of the sharp falloff of the gamma-jet spectrum in momentum imbalance pTjet-pTgamma>0 in NLO PQCD, hadron spectra at large zT=pTh/pTgamma greater than approximately 1 are more susceptible to parton energy loss and therefore are dominated by surface emission of gamma-associated jets with almost no energy loss, whereas small zT hadrons mainly come from the volume emission of jets with reduced energy. These lead to different centrality dependence of the gamma-hadron suppression for different values of zT. Therefore, a complete measurement of the suppression of gamma-triggered hadron spectra allows a true tomographic study of the quark-gluon plasma in high-energy heavy-ion collisions.

  20. Confronting current NLO parton fragmentation functions with inclusive charged-particle spectra at hadron colliders

    CERN Document Server

    d'Enterria, David; Helenius, Ilkka; Paukkunen, Hannu

    2014-01-01

    The inclusive spectra of charged particles measured at high transverse momenta ($p_T\\gtrsim$2GeV/c) in proton-proton and proton-antiproton collisions in the range of center-of-mass energies $\\sqrt{s}=200-7000$GeV are compared with next-to-leading order perturbative QCD calculations using seven recent sets of parton-to-hadron fragmentation functions (FFs). Accounting for the uncertainties in the scale choices and in the parton distribution functions, we find that most of the theoretical predictions tend to overpredict the measured LHC and Tevatron cross sections by up to a factor of two. We identify the currently too-hard gluon-to-hadron FFs as the probable source of the problem, and justify the need to refit the FFs using the available LHC and Tevatron data in a region of transverse momenta, $p_T\\gtrsim$10GeV/c, which is supposedly free from additional non-perturbative contributions and where the scale uncertainty is only modest.

  1. Workshop on Hadron-Hadron & Cosmic-Ray Interactions at multi-TeV Energies

    CERN Document Server

    Alessandro, B; Bergman, D; Bongi, M; Bunyatyan, A; Cazon, L; d'Enterria, D; de Mitri, I; Doll, P; Engel, R; Eggert, K; Garzelli, M; Gerhardt, L; Gieseke, S; Godbole, R; Grosse-Oetringhaus, J F; Gustafson, G; Hebbeker, T; Kheyn, L; Kiryluk, J; Lipari, P; Ostapchenko, S; Pierog, T; Piskounova, O; Ranft, J; Rezaeian, A; Rostovtsev, A; Sakurai, N; Sapeta, S; Schleich, S; Schulz, H; Sjostrand, T; Sonnenschein, L; Sutton, M; Ulrich, R; Werner, K; Zapp, K; CRLHC10; CRLHC 10

    2011-01-01

    The workshop on "Hadron-Hadron and Cosmic-Ray Interactions at multi-TeV Energies" held at the ECT* centre (Trento) in Nov.-Dec. 2010 gathered together both theorists and experimentalists to discuss issues of the physics of high-energy hadronic interactions of common interest for the particle, nuclear and cosmic-ray communities. QCD results from collider experiments -- mostly from the LHC but also from the Tevatron, RHIC and HERA -- were discussed and compared to various hadronic Monte Carlo generators, aiming at an improvement of our theoretical understanding of soft, semi-hard and hard parton dynamics. The latest cosmic-ray results from various ground-based observatories were also presented with an emphasis on the phenomenological modeling of the first hadronic interactions of the extended air-showers generated in the Earth atmosphere. These mini-proceedings consist of an introduction and short summaries of the talks presented at the meeting.

  2. Hadron intensity and energy spectrum at 4380 m above level

    Science.gov (United States)

    Cananov, S. D.; Chadranyan, E. K.; Khizanishvili, L. A.; Ladaria, N. K.; Roinishvili, N. N.

    1985-01-01

    The flux value of hadrons with E (sup gamma) h or = 5 TeV, where E (sup gamma) h or = is the energy transferred into electromagnetic component is presented. It is shown that the energy spectrum slope beta of hadrons with E h or = 20 TeV is equal to 1.9.

  3. Microbunched electron cooling for high-energy hadron beams.

    Science.gov (United States)

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  4. Energy Dependence of Inclusive Spectra in $e^{+} e^{-}$ Annihilation

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Belous, K S; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brenke, T; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Fenyuk, A; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grimm, H J; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krstic, P S; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Langefeld, P; Laugier, J P; Lauhakangas, R; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nikolenko, M; Nomokonov, V P; Normand, Ainsley; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwering, B; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Sponholz, P; Squarcia, S; Stanescu, C; Stanic, S; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Chikilev, O G; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; van Apeldoorn, G W; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vollmer, C F; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1999-01-01

    Inclusive charged hadron distributions as obtaind from the DELPHI measurements at 130, 136, 161, 172 and 183 GeV are presented as a function of the variables rapidity, $\\xi_p$, $p$ and transversal momenta. Data are compared with event generators and with MLLA calculations, in order to examine the hypothesis of local parton hadron duality. The differential momentum spectra show an indication for coherence effects in the production of soft particles. The relation between the energy dependence of the charged multiplicity and the rapidity distribution is examined.

  5. The Fragility of High-pT Hadron Spectra as a Hard Probe

    CERN Document Server

    Eskola, Kari J; Salgado, C A; Wiedemann, Urs Achim

    2005-01-01

    We study the suppression of high-pT hadron spectra in nuclear collisions, supplementing the perturbative QCD factorized formalism with radiative parton energy loss. We find that the nuclear modification factor which quantifies the degree of suppression, is almost pT-independent both for RHIC (in agreement with data) and for the LHC. This is a consequence of the shape of the partonic pT-spectrum in elementary collisions which implies that for the same value of the nuclear modification factor at higher pT, an increasingly smaller fraction of parton energy loss is needed. When the values of the time-averaged transport coefficient exceed 5 GeV^2/fm, the nuclear modification factor gradually loses its sensitivity to the corresponding produced energy density. This is due to particle production in the outer corona of the medium, which remains almost unsuppressed even for extreme densities. Thus, even for the highest experimentally accessible transverse momentum at the LHC and in contrast to jets, the measurement of ...

  6. Measurement of charged hadron spectra at the Z{sup 0} with Cherenkov ring imaging

    Energy Technology Data Exchange (ETDEWEB)

    Pavel, Tomas Josef [Stanford Univ., CA (United States)

    1997-08-01

    This dissertation attempts to probe hadronization, the process by which the fundamental quarks described by quantum chromodynamics produce the jets of hadrons that the author observed in experiments. The measurements are made using e+e- collisions at the SLAC Linear Collider (SLC), operating at the Z0 resonance with the SLC Large Detector (SLD), and the unique capabilities of the SLC/SLD facility are exploited. First, the spectra of charged hadrons±, K±, and p/$\\bar{p}$) are measured. This is accomplished with the SLD Cherenkov Ring Imaging Detector (CRID), one of a first generation of devices that have been developed for efficient particle identification over a wide momentum range. The use of the CRID is central to this dissertation, and its design and performance are described in detail here. The measured spectra agree with other measurements at the Z0 and extend the momentum coverage. Next, the excellent spatial resolution of the SLD tracking systems, along with the small and stable beam spots of the SLC, is employed to identify jets produced from heavy b or c quarks and to separate them from the remaining light-quark (uds) jets. This removes the effects of heavy quark fragmentation and decays of heavy-quark hadrons from the study of hadronization. The first measurements of particle spectra in light-quark jets are then presented. Finally, the highly-polarized incident electron beam of the SLC, together with the electroweak asymmetries of the quarks, is exploited to separate quark and antiquark jets. Significant differences in quark-antiquark production of protons and of kaons are observed at high momenta. This signal suggests a leading particle effect, where the particles containing the primary quark of a jet are more likely to populate the high-momentum phase space than are other hadrons.

  7. Electron clouds in high energy hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor

    2013-08-29

    The formation of electron clouds in accelerators operating with positrons and positively charge ions is a well-known problem. Depending on the parameters of the beam the electron cloud manifests itself differently. In this thesis the electron cloud phenomenon is studied for the CERN Super Proton Synchrotron (SPS) and Large Hadron Collider (LHC) conditions, and for the heavy-ion synchrotron SIS-100 as a part of the FAIR complex in Darmstadt, Germany. Under the FAIR conditions the extensive use of slow extraction will be made. After the acceleration the beam will be debunched and continuously extracted to the experimental area. During this process, residual gas electrons can accumulate in the electric field of the beam. If this accumulation is not prevented, then at some point the beam can become unstable. Under the SPS and LHC conditions the beam is always bunched. The accumulation of electron cloud happens due to secondary electron emission. At the time when this thesis was being written the electron cloud was known to limit the maximum intensity of the two machines. During the operation with 25 ns bunch spacing, the electron cloud was causing significant beam quality deterioration. At moderate intensities below the instability threshold the electron cloud was responsible for the bunch energy loss. In the framework of this thesis it was found that the instability thresholds of the coasting beams with similar space charge tune shifts, emittances and energies are identical. First of their kind simulations of the effect of Coulomb collisions on electron cloud density in coasting beams were performed. It was found that for any hadron coasting beam one can choose vacuum conditions that will limit the accumulation of the electron cloud below the instability threshold. We call such conditions the ''good'' vacuum regime. In application to SIS-100 the design pressure 10{sup -12} mbar corresponds to the good vacuum regime. The transition to the bad vacuum

  8. Re-hardening of hadron transverse mass spectra in relativistic ...

    Indian Academy of Sciences (India)

    Author Affiliations. P K Sahu1 N Otuka2 3 M Isse2 Y Nara4 A Ohnishi2. Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005, India; Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan; Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, ...

  9. Transverse momentum spectra of hadrons identified with the ALICE Inner Tracking System

    CERN Document Server

    Milano, L.

    2013-01-01

    The Inner Tracking System is the ALICE detector closest to the beam axis. It is composed of six layers of silicon detectors: two innermost layers of Silicon Pixel Detectors (SPD), two intermediate layers of Silicon Drift Detectors (SDD) and two outermost layers of Silicon Strip Detectors (SSD). The ITS can be used as a standalone tracker in order to recover tracks that are not reconstructed by the Time Projection Chamber (TPC) and to reconstruct low momentum particles with $p_{t}$ down to 100 MeV/c. Particle identification in the ITS is performed by measuring the energy loss signal in the SDD and SSD layers. The ITS allows to extend the charged particle identification capability in the ALICE central rapidity region at low $p_{t}$: it is possible to separate $\\pi/K$ in the range 100 MeV/c $< p_{t} <$ 500 MeV/c and $K/p$ in the range 200 MeV/c $ < p_{t} <$ 800 MeV/c. The identification of hadron in the ITS will be discussed in detail, different methods used to extract the $p_{t}$ spectra of $\\pi, K$...

  10. Hadron spectra from a non-relativistic model with confining harmonic potential

    Directory of Open Access Journals (Sweden)

    Cuervo-Reyes Eduardo

    2003-01-01

    Full Text Available Hadron spectra and other properties of quark systems are studied in the framework of a non-relativistic spinindependent phenomenological model. The chosen confining potential is harmonic, which allowed us to obtain analytical solutions for both meson and baryon (of equal constituent quarks spectra. The introduced parameters are fixed from the low-lying levels of heavy quark mesons. The requirement of flavor independence is imposed, and it restricts the possible choices of inter-quark potentials. The hyper-spherical coordinates are considered for the solution of the three-body problem.

  11. Hadron interactions in cosmic rays at superaccelerator energies

    Energy Technology Data Exchange (ETDEWEB)

    Nikol' skij, S.I. (AN SSSR, Moscow. Fizicheskij Inst.)

    1981-12-01

    The experimental data on inelastic collisions of nucleons, pions and nuclei in the energy range 1-10/sup 6/ TeV have been used to analyze the incident hadron enegry dependence of the multiple hadron production process. A general picture of inelastic hadron collisions is characterized by an approximate scaling at energies 1-100 TeV and by a significant difference between the multiple production process and that observed at an accelerator energies in some main parameters, such as a multiplicity and composition of secondary particles and their transverse momenta. Effective cross section for inelastic nucleon collisions with air atom nulei grows with increasing the energy of incident nucleons. The multiplicity of secondary hadrons produced in inelastic hadron collisions at energies E> or approximately 10/sup 3/ GeV increases as nsub(s)=2lnE+ 0.05Esup(0.5)-3. Secondary hadron energy spectrum in acts of multiple generation doesn't contradict the Bose-Planck distribution, if it is added with diffraction processes not diminishing with the energy increase. Distributions of transverse momenta of a larger part of secondary pions in the multiple generation acts don't change practically in the energy range of incident particles below 100 TeV and slightly increase at higher energies. In the energy range of incident hadrons above 100 TeV the probability of production of particles and jets with large (>1 GeV/c) transverse momenta increases significantly. May be it must be related to the processes of generation and decay of new particles of a large mass.

  12. Transverse energy distribution and hard constituent scattering in hadronic collisions

    Directory of Open Access Journals (Sweden)

    Torsten Åkesson

    1983-01-01

    Full Text Available We estimate the contributions to the total transverse energy spectrum from hard constituent scattering and the soft hadronic spectrum in hadron collisions. The transverse energy at which jet production starts to dominate is found to be essentially independent of the cms-energy (for large enough s and roughly a linear function of rapidity and azimuthal angle interval included. Calculations are presented for pp collisions at s= 25and60GeV, andp¯p interactions at s= 540GeV.

  13. z-Scaling and Jet Production in Hadron-Hadron Collisions at High Energies

    Science.gov (United States)

    Tokarev, M. V.; Dedovich, T. G.

    Inclusive jet production in ¯ pp and pp collisions at high energies in the framework of the concept of z-scaling is studied. The available experimental data on the cross-section of jet production obtained by the UA1, UA2, CDF and D0 Collaborations are used for analysis. The scaling function ψ(z) is expressed via inclusive cross-section Ed3σ/dq3 and jet multiplicity density ρ(s,η). The properties of z-scaling, the energy and angular independence of ψ(z) and the power behavior, ψ(z) z-α, of jet and dijet production were found. Based on the properties of z-scaling, the dependence of the cross-section of jets produced in ¯ pp and pp collisions on transverse momentum q⊥ over the central range is predicted. The obtained results can be of interest for future experiments planned at RHIC, LHC, HERA and Tevatron to search for new phenomena in hadron-hadron, hadron-nucleus and nucleus-nucleus collisions.

  14. Energy spectra of geomagnetically trapped oxygen ions

    CERN Document Server

    Leicher, M; Enge, W

    1999-01-01

    In a series of COSMOS satellite flights plastic nuclear track detectors have been exposed in low-earth orbits to monitor anomalous cosmic rays (ACR) at energies below 25 MeV/nuc. The analysis of energy spectra has now been extended to energies up to 40 MeV/nuc for two exposures aboard COSMOS 2260 in 1993 and COSMOS 2311 in 1995. Our data on trapped ACR (TACR) oxygen energy spectra might indicate the influence of energy-dependent stripping probabilities and the presence of multiply charged ACR oxygen at high energies as reported by latest SAMPEX observations.

  15. Energy flow in a hadronic cascade: Application to hadroncalorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Groom, Donald E.

    2006-05-17

    The hadronic cascade description developed in an earlierpaper is extended to the response of an idealized fine-sampling hadroncalorimeter. Calorimeter response is largely determined by the transferof energy E_e from the hadronic to the electromagnetic sector via \\pi0production. Fluctuations in this quantity produce the "constant term" inhadron calorimeter resolution. The increase of its fractional mean, f_\\rmem^0= \\vevE_e/E, with increasing incident energy E causes the energydependence of the \\pi/e ratio in a noncompensating calorimeter. The meanhadronic energy fraction, f_h0 = 1-f_\\rm em0, was shown to scaleverynearly as a power law in E: f_h0 = (E/E_0)m-1, where E_0\\approx1~;GeV forpions, and m\\approx0.83. It follows that \\pi/e=1-(1-h/e)(E/E_0)m-1, whereelectromagnetic and hadronic energy deposits are detected withefficiencies e and h, respectively. Fluctuations in these quantities,along with sampling fluctuations, are in corporated to give an overallunderstanding of resolution, which is different from the usual treatmentsin interesting ways. The conceptual framework is also extended to theresponse to jets and the difference between pi and presponse.

  16. Aircraft Measurements of Atmospheric Kinetic Energy Spectra

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Lilly, D. K.

    1983-01-01

    Wind velocity data obtained from a jet airliner are used to construct kinetic energy spectra over the range of wavelengths from 2.5 to 2500 km. The spectra exhibit an approximate -5/3 slope for wavelengths of less than about 150 km, steepening to about -2.2 at larger scales. These results support...

  17. Low energy hadronic contribution to the QED vacuum polarization

    CERN Document Server

    Burkhardt, H

    2005-01-01

    Recent improvements in the low energy e+e- annihilation data and their influence on the determination of the hadronic contribution to the running of the QED fine structure constant at m_Z are discussed. Using CMD-2 and KLOE measurements in the rho region we obtain Delta alpha(5)_had(s) = 0.02758 +/- 0.00035 at s = m_Z^2.

  18. Energy Measurement of Hadrons with the CERN ATLAS Calorimeter

    CERN Document Server

    Speckmayer, Peter; Fabjan, Christian Wolfgang

    2008-01-01

    The ATLAS detector is a multi-purpose detector measuring the energy and direction of particles produced in proton-proton collisions at a center of mass energy of 14 TeV provided by the Large Hadron Collider at the European center of particle physics, CERN. The main aim of this thesis is to assess the precision of the present understanding of the interactions of hadrons with matter (as implemented in Monte Carlo (MC) simulations) to describe the response of the ATLAS calorimeter and to predict the correction necessary to measure the full energy of pions. The simulations are compared to testbeam data. The present description of the response of the ATLAS central calorimeter is able to predict the energy corrections, as verified by using testbeam data. For the Combined Testbeam 2004 (CTB) a full slice of the central region of the ATLAS detector including all sub-detectors has been installed in the H8 beam line of the CERN SPS accelerator. Pions and electrons with the energies ranging from 1 to 350 GeV have been m...

  19. Quantum chromodynamics at high energy, theory and phenomenology at hadron colliders; Chromodynamique quantique a haute energie, theorie et phenomenologie appliquee aux collisions de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, C

    2006-09-15

    When probing small distances inside a hadron, one can resolve its partonic constituents: quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This substructure reveals itself in hadronic collisions characterized by a large momentum transfer: in such collisions, a hadron acts like a collection of partons whose interactions can be described in QCD. In a collision at moderate energy, a hadron looks dilute and the partons interact incoherently. As the collision energy increases, the parton density inside the hadron grows. Eventually, at some energy much bigger than the momentum transfer, one enters the saturation regime of QCD: the gluon density has become so large that collective effects are important. We introduce a formalism suitable to study hadronic collisions in the high-energy limit in QCD, and the transition to the saturation regime. In this framework, we derive known results that are needed to present our personal contributions and we compute different cross-sections in the context of hard diffraction and particle production. We study the transition to the saturation regime as given by the Balitsky-Kovchegov equation. In particular we derive properties of its solutions.We apply our results to deep inelastic scattering and show that, in the energy range of the HERA collider, the predictions of high-energy QCD are in good agreement with the data. We also consider jet production in hadronic collisions and discuss the possibility to test saturation at the Large Hadron Collider. (author)

  20. Forward jets and energy flow in hadronic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Deak, M. [Universidad Autonoma de Madrid (Spain). IFT-UAM/CSIC; Universidad de Santiago de Compostela (Spain). Dept. de Fisica de Particulas; Hautmann, F. [Oxford Univ. (United Kingdom). Dept. of Theoretical Physics; Jung, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); CERN, Geneva (Switzerland). Physics Dept.; Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysica; Kutak, K. [Instytut Fizyki Jadrowei, Krakow (Poland)

    2011-12-15

    We observe that at the Large Hadron Collider, using forward+central detectors, it becomes possible for the first time to carry out calorimetric measurements of the transverse energy flow due to ''minijets'' accompanying production of two jets separated by a large rapidity interval. We present parton-shower calculations of energy flow observables in a high-energy factorized Monte Carlo framework, designed to take into account QCD logarithmic corrections both in the large rapidity interval and in the hard transverse momentum. Considering events with a forward and a central jet, we examine the energy flow in the interjet region and in the region away from the jets. We discuss the role of these observables to analyze multiple parton collision effects.

  1. Intermediate energy semileptonic probes of the hadronic neutral current

    Energy Technology Data Exchange (ETDEWEB)

    Musolf, M.J. [Massachusetts Inst. of Tech., Cambridge, MA (United States)]|[Old Dominion Univ., Norfolk, VA (United States). Dept. of Physics]|[CEBAF Theory Group, Newport News, VA (United States); Donnelly, T.W. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Dubach, J. [Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astronomy; Pollock, S.J. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie K; Kowalski, S. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Beise, E.J. [California Inst. of Tech., Pasadena, CA (United States). W.K. Kellogg Radiation Lab.]|[Maryland Univ., College Park, MD (United States). Dept. of Physics

    1993-06-01

    The present status and future prospects of intermediate-energy semileptonic neutral current studies are reviewed. Possibilities for using parity-violating electron scattering from nucleons and nuclei to study hadron structure and nuclear dynamics are emphasized, with particular attention paid to probes of strangeness content in the nucleon. Connections are drawn between such studies and tests of the electroweak gauge theory using electron or neutrino scattering. Outstanding theoretical issues in the interpretation of semileptonic neutral current measurements are highlighted and the prospects for undertaking parity-violating electron or neutrino scattering experiments in the near future are surveyed.

  2. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    Energy Technology Data Exchange (ETDEWEB)

    Agashe, Kaustubh [University of Maryland, Department of Physics, Maryland Center for Fundamental Physics, College Park, MD (United States); Franceschini, Roberto; Schulze, Markus [CERN, Theoretical Physics Department, Geneva (Switzerland); Kim, Doojin [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Florida, Department of Physics, Gainesville, FL (United States)

    2016-11-15

    We analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the ''energy peak'' as an observable to determine the top quark mass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or new physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ± (1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass. (orig.)

  3. Investigation of the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data

    Science.gov (United States)

    Giordano, M.; Meggiolaro, E.; Silva, P. V. R. G.

    2017-08-01

    In the present investigation we study the leading and subleading high-energy behavior of hadron-hadron total cross sections using a best-fit analysis of hadronic scattering data. The parametrization used for the hadron-hadron total cross sections at high energy is inspired by recent results obtained by Giordano and Meggiolaro [J. High Energy Phys. 03 (2014) 002, 10.1007/JHEP03(2014)002] using a nonperturbative approach in the framework of QCD, and it reads σtot˜B ln2s +C ln s ln ln s . We critically investigate if B and C can be obtained by means of best-fits to data for proton-proton and antiproton-proton scattering, including recent data obtained at the LHC, and also to data for other meson-baryon and baryon-baryon scattering processes. In particular, following the above-mentioned nonperturbative QCD approach, we also consider fits where the parameters B and C are set to B =κ Bth and C =κ Cth, where Bth and Cth are universal quantities related to the QCD stable spectrum, while κ (treated as an extra free parameter) is related to the asymptotic value of the ratio σel/σtot. Different possible scenarios are then considered and compared.

  4. Hadronic τ and e+e- Spectra, Contribution to (g-2)μ and QCD Studies

    Science.gov (United States)

    Malaescu, Bogdan

    2013-08-01

    The dominant contribution to the uncertainty of the theoretical prediction of the (g-2) of the muon comes from the leading order hadronic vacuum polarization part. This contribution is evaluated using either tau or e+e- experimental data. The same experimental data are exploited for QCD studies. We present an update of the ALEPH hadronic spectral functions. This update induces only small changes for the hadronic contribution to the (g-2) of the muon and for the QCD fits. We also present updates of the contributions to g-2 for several channels of e+e- into hadrons.

  5. Quenching of Hadron Spectra in Heavy Ion Collisions at the LHC.

    Science.gov (United States)

    Arleo, François

    2017-08-11

    The p_{⊥} dependence of the nuclear modification factor R_{AA} measured in PbPb collisions at the LHC exhibits a universal shape, which can be very well reproduced in a simple energy loss model based on the Baier-Dokshitzer-Mueller-Peigné-Schiff medium-induced gluon spectrum. The scaling is observed for various hadron species (h^{±}, D, J/ψ) in different centrality classes and at both colliding energies, sqrt[s]=2.76 and sqrt[s]=5.02  TeV. Results indicate a 10%-20% increase of the transport coefficient from sqrt[s]=2.76 to sqrt[s]=5.02  TeV, consistent with that of particle multiplicity. Based on this model, a data-driven procedure is suggested, which allows for the determination of the first and second moments of the quenching weight without any prior knowledge of the latter.

  6. Hadron cross sections at ultra high energies and unitarity bounds on diffraction dissociation

    Science.gov (United States)

    Yodh, G. B.; Gaisser, T. K.

    1985-01-01

    It was shown that if unitarity bounds on diffractive cross sections are valid at ultra high energies then diffractive dominance models which ascribe the increase in total hadron-hadron cross sections to diffractive processes only are ruled out. Calculations also show that cosmic ray cross sections derived from air shower experiments at ultra high energies clearly rule out models for hadron-hadron cross sections with nat.log ns energy dependence and favor those with nat.log n(2)s variation.

  7. Influence of hadronic interaction models on characteristics of the high-energy atmospheric neutrino flux

    Science.gov (United States)

    Morozova, A. D.; Kochanov, A. A.; Sinegovskaya, T. S.; Sinegovsky, S. I.

    2017-12-01

    The high-energy conventional atmospheric neutrino fluxes are calculated with the hadronic interaction models: Kimel & Mokhov, QGSJET II-03(04), SIBYL 2.1(2.3), EPOS LHC. The influence of hadron-nuclear interactions on the neutrino flux ratios, v/\\bar{v},({v}μ +{\\bar{v}}μ )/({v}e+{\\bar{v}}e), is studied. A comparison of calculations obtained with use of two different approaches, {\\mathscr{Z}}(E,h) -functions method and the Matrix Cascade Equations (MCEQ), demonstrates close agreement in whole but some of partial contrubutions. The comparison of calculated muon neutrino spectra with the latest experimental data justifies reliability of performed computation which describes correctly the atmospheric neutrino production. The calculation made with the model EPOS LHC, combined with Hillas & Gaisser parametrization of the cosmic ray spectrum, is in close agreement with the best fit of IceCube for energy spetrum of atmospheric muon neutrinos in the energy range 1–500 TeV.

  8. Probing squeezed bino-slepton spectra with the Large Hadron Collider

    Science.gov (United States)

    Dutta, Bhaskar; Fantahun, Kebur; Fernando, Ashen; Ghosh, Tathagata; Kumar, Jason; Sandick, Pearl; Stengel, Patrick; Walker, Joel W.

    2017-10-01

    We consider a minimal supersymmetric Standard Model scenario in which the only light superparticles are a binolike dark matter candidate and a nearly degenerate slepton. It is notoriously difficult to probe this scenario at the Large Hadron Collider (LHC), because the slepton pair-production process yields a final state with soft leptons and small missing transverse energy. We study this scenario in the region of parameter space where the mass difference between the lightest neutralino and the lightest slepton (Δ m ) is ≲60 GeV , focusing on the process in which an additional radiated jet provides a transverse boost to the slepton pair. We then utilize the angular separation of the leptons from each other and from the missing transverse energy, as well as the angular separation between the jet and the missing transverse energy, to distinguish signal from background events. We also use the reconstructed ditau mass, the cos θℓ1ℓ2& variable, and for larger Δ m , a lower bound on the lepton pT. These cuts can dramatically improve both signal sensitivity and the signal-to-background ratio, permitting discovery at the LHC with reasonable integrated luminosity over the interesting region of parameter space. Using our search strategy the LHC will be able to exclude mμ ˜≈200 GeV for Δ m ≲60 GeV at 1.5 - 3 σ with 1000 fb-1 of integrated luminosity. Although we focus on a particular model, the results generalize to a variety of scenarios in which the dark matter and a leptonic partner are nearly degenerate in mass, and especially to scenarios featuring a scalar mediator.

  9. Spectral Decomposition of Missing Transverse Energy at Hadron Colliders

    Science.gov (United States)

    Bae, Kyu Jung; Jung, Tae Hyun; Park, Myeonghun

    2017-12-01

    We propose a spectral decomposition to systematically extract information of dark matter at hadron colliders. The differential cross section of events with missing transverse energy (ET) can be expressed by a linear combination of basis functions. In the case of s -channel mediator models for dark matter particle production, basis functions are identified with the differential cross sections of subprocesses of virtual mediator and visible particle production while the coefficients of basis functions correspond to dark matter invariant mass distribution in the manner of the Källén-Lehmann spectral decomposition. For a given ET data set and mediator model, we show that one can differentiate a certain dark matter-mediator interaction from another through spectral decomposition.

  10. Jet and Leading Hadron Production in High-energy Heavy-ionCollisions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xin-Nian

    2005-11-01

    Jet tomography has become a powerful tool for the study ofproperties of dense matter in high-energy heavy-ion collisions. I willdiscuss recent progresses in the phenomenological study of jet quenching,including momentum, colliding energy and nuclear size dependence ofsingle hadron suppression, modification of dihadron correlations and thesoft hadron distribution associatedwith a quenched jet.

  11. Time-evolution of dense hadronic matter in high energy heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Otuka, Naohiko; Ohnishi, Akira [Hokkaido Univ., Sapporo (Japan). Dept. of Physics; Nara, Yasushi; Maruyama, Tomoyuki; Niita, Koji

    1997-05-01

    Time evolution of hadronic resonance matter in ultrarelativistic nucleus-nucleus collisions are studied in the framework of cascade models. We investigate the role of higher baryonic resonances during the time evolution of hot and dense hadronic matter at AGS energies. Although final hadronic spectrum can reproduced well with and without higher baryonic resonances, the inclusion of higher resonances is shown to prevent the temperature from going beyond 200 MeV. (author)

  12. Forward hard scattering in hadron-hadron collisions in the energy region approximately 10/sup 14/ eV

    CERN Document Server

    Shibata, T

    1980-01-01

    On the basis of the quark-parton picture, the author derives analytically the cross sections for production of hadrons and gamma rays through forward hard scattering in hadron-hadron collisions in the energy region approximately 10/sup 14/ eV. The author takes account of transverse motions both of partons inside proton (p/sub T/) /sub p to q/, and of hadrons fragmented from quark (gluon) (k/sub T/) /sub 1 to h/. In addition, the effects of scale violation are taken into account. The numerical results thus obtained are compared with cosmic-ray data in the energy region approximately 10/sup 14/ eV, observed at Mt. Chacaltaya by Japan-Brazil emulsion-chamber collaboration. After eliminating carefully the bias effect inherent there, it was found that the theoretical calculations reproduced surprisingly well the cosmic-ray data on large p/sub T gamma / not only in the shape, but also in the absolute value. The production cross sections of pi /sup +/ and K/sup +/ expected from the forthcoming p-p colliding beams wi...

  13. Applicability of transverse mass scaling in hadronic collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Altenkämper, Lucas; Bock, Friederike; Loizides, Constantin; Schmidt, Nicolas

    2017-12-01

    We present a study on the applicability of transverse mass scaling for identified particle spectra in proton-proton collisions at √{s }=7 TeV based on data taken by the ALICE experiment at the LHC. The measured yields are parametrized and compared to estimates obtained from a generalized transverse mass scaling approach applied to different reference particle spectra. It is found that generalized transverse mass scaling is not able to describe the measured spectra over the full range in transverse momentum. At low pT, deviations of 20 % or more are obtained, in particular, if pions are used as reference particles. A better scaling performance is obtained when kaons are used as reference particles. At high pT all tested spectra with the possible exception of the charged kaons exhibit a scaling behavior. Investigating the feed-down contributions from resonance decays to the charged pion yields reveals, that using them as reference a general scaling may not be achievable. Our findings imply that for precision measurements of direct photon and di-electron spectra at low transverse momentum one should measure the relevant hadronic background, instead of relying on mT scaling for its estimate.

  14. DELAYED ONSET OF HIGH-ENERGY EMISSIONS IN LEPTONIC AND HADRONIC MODELS OF GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Asano, Katsuaki [Interactive Research Center of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Meszaros, Peter, E-mail: asano@phys.titech.ac.jp, E-mail: nnp@astro.psu.edu [Department of Astronomy and Astrophysics, Department of Physics, Center for Particle and Gravitational Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-10-01

    The temporal-spectral evolution of the prompt emission of gamma-ray bursts is simulated numerically for both leptonic and hadronic models. For weak enough magnetic fields, leptonic models can reproduce the few seconds delay of the onset of GeV photon emission observed by Fermi-LAT, due to the slow growth of the target photon field for inverse Compton scattering. For stronger magnetic fields, the GeV delay can be explained with hadronic models, due to the long acceleration timescale of protons and the continuous photopion production after the end of the particle injection. While the FWHMs of the MeV and GeV light curves are almost the same in one-zone leptonic models, the FWHMs of the 1-30 GeV light curves in hadronic models are significantly wider than those of the 0.1-1 MeV light curves. The amount of the GeV delay depends on the importance of the Klein-Nishina effect in both the leptonic and hadronic models. In our examples of hadronic models the energies of the escaped neutrons are comparable to the gamma-ray energy, although their contribution to the ultra high-energy cosmic rays is still subdominant. The resulting neutrino spectra are hard enough to avoid the flux limit constraint from IceCube. The delay of the neutrino emission onset is up to several times longer than the corresponding delay of the GeV photon emission onset. The quantitative differences in the light curves for various models may be further tested with future atmospheric Cerenkov telescopes whose effective area is larger than that of Fermi-LAT, such as CTA.

  15. Test of hadronic interaction models in GEANT4 at low energy using the BESIII data

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G.F. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)], E-mail: caogf@mail.ihep.ac.cn; He, M.; Liu, H.M.; Deng, Z.Y.; Yuan, Y. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Liang, Y.T. [Peking University, Beijing 100871 (China); Fu, C.D. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Liu, Y.; Zhu, C. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Li, W.D.; Mao, Z.P.; He, K.L. [Institute of High Energy Physics, CAS, Beijing 100049 (China)

    2009-07-21

    Using the experimental data recently collected at BESIII, we compare hadronic shower energy, profile and fake photons in the electromagnetic calorimeter with several hadronic models in GEANT4. We find that for pions and protons at low energy (<0.7GeV) the Bertini model with high precision neutron tracking (QGSP{sub B}ERT{sub H}P) is the best among the hadronic models compared, though it takes more simulation time. For anti-proton, the GEANT4 simulation generates more annihilation than experimental data.

  16. Predictions on the transverse momentum spectra for charged particle production at LHC-energies from a two component model

    Energy Technology Data Exchange (ETDEWEB)

    Bylinkin, A.A. [Moscow Institute of Physics and Technology, MIPT, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Chernyavskaya, N.S. [Moscow Institute of Physics and Technology, MIPT, Moscow (Russian Federation); National Research Nuclear University MEPhI, Moscow (Russian Federation); Institute for Theoretical and Experimental Physics, ITEP, Moscow (Russian Federation); Rostovtsev, A.A. [Institute for Information Transmission Problems, IITP, Moscow (Russian Federation)

    2015-04-01

    Transversemomentum spectra, d{sup 2}σ/(dηdp{sub T}{sup 2}), of charged hadron production in pp-collisions are considered in terms of a recently introduced two component model. The shapes of the particle distributions vary as a function of the c.m.s. energy in the collision and the measured pseudorapidity interval. As a result the pseudorapidity of a secondary hadron in the moving proton rest frame is shown to be a universal parameter describing the shape of the spectra in pp-collisions. In order to extract predictions on the doubledifferential cross sections d{sup 2}σ/(dηdp{sub T}{sup 2}) of hadron production for future LHC-measurements the different sets of available experimental data have been used in this study. (orig.)

  17. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

    CERN Document Server

    Aab, A; Aglietta, M; Ahn, E J; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Allen, J; Allison, P; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Anastasi, G A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Biteau, J; Blaess, S G; Blanco, A; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Cancio, A; Canfora, F; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Cronin, J; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; D'Olivo, J C; Dorofeev, A; Anjos, R C dos; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Hulsman, J; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A Kuotb; LaHurd, D; Latronico, L; Lauscher, M; Lautridou, P; Lebrun, P; Legumina, R; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Mockler, D; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Naranjo, I; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pedreira, F; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Pereira, L A S; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Rojo, J Rodriguez; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Strafella, F; Stutz, A; Suarez, F; Durán, M Suarez; Sudholz, T; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Tomankova, L; Tomé, B; Tonachini, A; Elipe, G Torralba; Machado, D Torres; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valbuena-Delgado, A; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yelos, D; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-01-01

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_CM = 110-170 TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33 +- 0.16 (1.61 +- 0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  18. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J. D.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J. C.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G. R.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Pereira, L. A. S.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Strafella, F.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yelos, D.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2016-11-01

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110 - 170 TeV ), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33 ±0.16 (1.61 ±0.21 ) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  19. Statistical hadronization model analysis of hadron yields in p + Nb and Ar + KCl at SIS18 energies

    Science.gov (United States)

    Agakishiev, G.; Arnold, O.; Balanda, A.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; Boyard, J. L.; Cabanelas, P.; Castro, E.; Chernenko, S.; Destefanis, M.; Dohrmann, F.; Dybczak, A.; Epple, E.; Fabbietti, L.; Fateev, O.; Finocchiaro, P.; Fonte, P.; Friese, J.; Fröhlich, I.; Galatyuk, T.; Garzón, J. A.; Gernhäuser, R.; Gilardi, C.; Göbel, K.; Golubeva, M.; González-Díaz, D.; Guber, F.; Gumberidze, M.; Heinz, T.; Hennino, T.; Holzmann, R.; Ierusalimov, A.; Iori, I.; Ivashkin, A.; Jurkovic, M.; Kämpfer, B.; Karavicheva, T.; Koenig, I.; Koenig, W.; Kolb, B. W.; Kornakov, G.; Kotte, R.; Krása, A.; Krizek, F.; Krücken, R.; Kuc, H.; Kühn, W.; Kugler, A.; Kurepin, A.; Ladygin, V.; Lalik, R.; Lange, J. S.; Lang, S.; Lapidus, K.; Lebedev, A.; Liu, T.; Lopes, L.; Lorenz, M.; Maier, L.; Mangiarotti, A.; Markert, J.; Metag, V.; Michalska, B.; Mihaylov, D.; Michel, J.; Morinière, E.; Mousa, J.; Müntz, C.; Münzer, R.; Naumann, L.; Pachmayer, Y. C.; Palka, M.; Parpottas, Y.; Pechenov, V.; Pechenova, O.; Pietraszko, J.; Przygoda, W.; Ramstein, B.; Rehnisch, L.; Reshetin, A.; Rustamov, A.; Sadovsky, A.; Salabura, P.; Scheib, T.; Schmah, A.; Schuldes, H.; Schwab, E.; Siebenson, J.; Sobolev, Yu. G.; Spataro, S.; Spruck, B.; Ströbele, H.; Stroth, J.; Sturm, C.; Tarantola, A.; Teilab, K.; Tlusty, P.; Traxler, M.; Trebacz, R.; Tsertos, H.; Vasiliev, T.; Wagner, V.; Weber, M.; Wendisch, C.; Wirth, J.; Wisniowski, M.; Wüstenfeld, J.; Yurevich, S.; Zanevsky, Y.

    2016-06-01

    The HADES data from p + Nb collisions at a center-of-mass energy of √{s_{NN}} = 3.2 GeV are analyzed employing a statistical hadronization model. The model can successfully describe the production yields of the identified hadrons π0, η, Λ, K 0 s, ω with parameters T_{chem} = (99± 11) MeV and μb = (619± 34) MeV, which fit well into the chemical freeze-out systematics found in heavy-ion collisions. In addition, we reanalyze our previous HADES data from Ar + KCl collisions at √{s_{NN}} = 2.6 GeV with an updated version of the model. We address equilibration in heavy-ion collisions by testing two aspects: the description of yields and the regularity of freeze-out parameters from a statistical model fit as a function of colliding energy and system size. Despite its success, the model fails to describe the observed Ξ- yields in both, p + Nb and Ar + KCl . Special emphasis is put on feed-down contributions from higher-lying resonance states as a possible explanation for the observed excess.

  20. Estimation of sea level muon energy spectrum at high latitude from the latest primary nucleon spectra near the top of the atmosphere

    CERN Document Server

    Haldar, T K; Bhattacharya, D P; 10.1023/A:1024822518795

    2003-01-01

    Vertical muon energy spectra at sea level have been estimated from a directly measured primary cosmic-ray nucleon spectrum. The hadronic energy moments have been calculated from the CERN LEBC EHS data on the Lorentz invariant cross-section results on pp to pi /sup +or-/X and pp to K/sup +or-/X inclusive reactions and are duly corrected for A-A collisions. Finally, the sea level muon energy spectra have been calculated from the decay of conventional mesons, using standard formulation. The estimated muon spectra are found to be in good agreement with the directly measured muon spectra obtained from different experiments. (32 refs).

  1. Low-energy hadronic cross sections measurements at BABAR and g-2 of the muon

    CERN Document Server

    Bernard, Denis

    2016-01-01

    The LO hadronic vacuum polarization (VP) contribution to the muon anomalous magnetic moment $a_\\mu$ is obtained as the integral as a function of energy of an expression that involves the ratio of the $e^+e^- \\rightarrow \\mathrm{hadron}$ cross section to the pointlike muon pair cross section. The former is extracted from experimental data for individual hadronic final states at low energies, and from perturbative QCD at high energies. The BaBar experiment at SLAC has a programme of systematic measurement of the production of the lowest-rest-mass hadronic final states, those that contribute most significantly to the integral. To that purpose, we use a method in which, while the PEP-II storage ring is operated at a constant energy in the center of mass system, $\\sqrt{s}$, of about 10.6 GeV, events are reconstructed and selected which have been produced with a hadronic final state together with a high-energy photon which may (photon tagging) or may not (no tagging) be observed. In our kinematic configuration the ...

  2. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    CERN Document Server

    Agashe, Kaustubh; Kim, Doojin; Schulze, Markus

    2016-01-01

    We analyze the energy spectra of $single$ b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the "energy-peak" as an observable to determine the top quark mass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it is higher-order QCD effects or new physics contributions. As part of the NLO improvement over the original proposal, we assess the residual sensitivity of the extracted top quark mass to perturbative effects both in top quark production and decay. For a 1% jet energy scale uncertainty (and assuming negligible statistical error), the top quark mass can then be extracted using the energy-peak of b-jets with an error +- (1.2 (exp) + 0.6(th)) GeV. We note that recently the CMS collaboration r...

  3. Possible Implication of a Single Nonextensive p(T) Distribution for Hadron Production in High-Energy pp Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Cheuk-Yin [ORNL; Wilk, Grzegorz [National Centre for Nuclear Research, Warsaw, Poland; Cirto, Leonardo J. L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Brazil; Tsallis, Constantino [Centro Brasileiro de Pesquisas Fisicas (CBPF), Brazil

    2015-01-01

    Multiparticle production processes in pp collisions at the central rapidity region are usually considered to be divided into independent "soft" and "hard" components. The first is described by exponential (thermal-like) transverse momentum spectra in the low-p(T) region with a scale parameter T associated with the temperature of the hadronizing system. The second is governed by a power-like distributions of transverse momenta with power index n at high-p(T) associated with the hard scattering between partons. We show that the hard-scattering integral can be approximated as a nonextensive distribution of a quasi-power-law containing a scale parameter T and a power index n =1/(q-1), where q is the nonextensivity parameter. We demonstrate that the whole region of transverse momenta presently measurable at LHC experiments at central rapidity (in which the observed cross sections varies by 14 orders of magnitude down to the low p(T) region) can be adequately described by a single nonextensive distribution. These results suggest the dominance of the hard-scattering hadron-production process and the approximate validity of a "no-hair" statistical-mechanical description of the p(T) spectra for the whole p(T) region at central rapidity for pp collisions at high-energies.

  4. Azimuthal asymmetries of charged hadrons produced in high-energy muon scattering off longitudinally polarised deuterons

    CERN Document Server

    Adolph, C; Akhunzyanov, R; Alexeev, M G; Alexeev, G D; Amoroso, A; Andrieux, V; Anfimov, N V; Anosov, V; Augsten, K; Augustyniak, W; Austregesilo, A; Azevedo, C D R; Badełek, B; Balestra, F; Ball, M; Barth, J; Beck, R; Bedfer, Y; Bernhard, J; Bicker, K; Bielert, E R; Birsa, R; Bodlak, M; Bordalo, P; Bradamante, F; Braun, C; Bressan, A; Buchele, M; Chang, W-C; Chatterjee, C; Chiosso, M; Choi, I; Chung, S-U; Cicuttin, A; Crespo, M L; Curiel, Q; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Dreisbach, Ch; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Finger, M; Finger jr, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Fuchey, E; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Giarra, J; Giordano, F; Gnesi, I; Gorzellik, M; Grabmuller, S; Grasso, A; Grosse Perdekamp, M; Grube, B; Grussenmeyer, T; Guskov, A; Haas, F; Hahne, D; Hamar, G; von Harrach, D; Heinsius, F H; Heitz, R; Herrmann, F; Horikawa, N; d’Hose, N; Hsieh, C-Y; Huber, S; Ishimoto, S; Ivanov, A; Ivanshin, Yu; Iwata, T; Jary, V; Joosten, R; Jorg, P; Kabuß, E; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O M; Kramer, M; Kremser, P; Krinner, F; Kroumchtein, Z V; Kulinich, Y; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levillain, M; Levorato, S; Lian, Y-S; Lichtenstadt, J; Longo, R; Maggiora, A; Magnon, A; Makins, N; Makke, N; Mallot, G K; Marianski, B; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G V; Meyer, M; Meyer, W; Mikhailov, Yu V; Mikhasenko, M; Mitrofanov, E; Mitrofanov, N; Miyachi, Y; Nagaytsev, A; Nerling, F; Neyret, D; Novy, J; Nowak, W-D; Nukazuka, G; Nunes, A S; Olshevsky, A G; Orlov, I; Ostrick, M; Panzieri, D; Parsamyan, B; Paul, S; Peng, J-C; Pereira, F; Pesek, M; Peshekhonov, D V; Pierre, N; Platchkov, S; Pochodzalla, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Regali, C; Reicherz, G; Riedl, C; Roskot, M; Rossiyskaya, N S; Ryabchikov, D I; Rybnikov, A; Rychter, A; Salac, R; Samoylenko, V D; Sandacz, A; Santos, C; Sarkar, S; Savin, I A; Sawada, T; Sbrizzai, G; Schiavon, P; Schmidt, K; Schmieden, H; Schonning, K; Seder, E; Selyunin, A; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Smolik, J; Srnka, A; Steffen, D; Stolarski, M; Subrt, O; Sulc, M; Suzuki, H; Szabelski, A; Szameitat, T; Sznajder, P; Takekawa, S; Tasevsky, M; Tessaro, S; Tessarotto, F; Thibaud, F; Thiel, A; Tosello, F; Tskhay, V; Uhl, S; Veloso, J; Virius, M; Vondra, J; Wallner, S; Weisrock, T; Wilfert, M; ter Wolbeek, J; Zaremba, K; Zavada, P; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M; Zink, A

    2016-01-01

    Single hadron azimuthal asymmetries in the cross sections of positive and negative hadron production in muon semi-inclusive deep inelastic scattering off longitudinally polarised deuterons are determined using the 2006 COMPASS data and also all deuteron COMPASS data. For each hadron charge, the dependence of the azimuthal asymmetry on the hadron azimuthal angle $\\phi$ is obtained by means of a five-parameter fitting function that besides a $\\phi$-independent term includes four modulations predicted by theory: $\\sin\\phi$, $\\sin 2 \\phi$, $\\sin 3\\phi$ and $\\cos\\phi$. The amplitudes of the five terms have been first extracted for the data integrated over all kinematic variables. In further fits, the $\\phi$-dependence is determined as a function of one of three kinematic variables (Bjorken-$x$, fractional energy of virtual photon taken by the outgoing hadron and hadron transverse momentum), while disregarding the other two. Except the $\\phi$-independent term, all the modulation amplitudes are very small, and no cl...

  5. Energy Reconstruction in the Hadronic Tile Calorimeter and Early SUSY Fully Hadronic Searches in ATLAS

    CERN Document Server

    Poveda, Joaquín; Ferrer, A

    2009-01-01

    The work presented in this thesis is framed in the pre-operation phase of the ATLAS experiment at LHC. Its first part is devoted to the energy reconstruction in the ATLAS Tile Calorimeter. In particular, the Optimal Filtering energy reconstruction algorithm implementation for offline uses and its validation studies with Monte Carlo and real data are presented. This algorithm combines a simple formulation with robustness in the reconstruction of signal amplitude and timing for data affected by electronics noise. Furthermore, the performance under a minimum bias pileup environment and the impact of this kind of physics noise are also shown. The second part of the thesis contains a contribution to the ATLAS Jet/Missing Transverse Energy (MET) and SUSY groups. Cleaning methods for events with large fake MET are proposed. These methods are based on one hand in the jet energy deposition in selected parts of the calorimeter system which are related with jet leakage or dead material effects and, on the other hand, in...

  6. Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Actis, S. [Paul-Scherrer-Institute Wuerenlingen and Villigen, Villigen (Switzerland); Arbuzov, A. [Joint Institute for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Balossini, G. [Pavia Univ. (Italy). Dipt. di Fisica Nucleare e Teorica; INFN, Pavia (IT)] (and others)

    2009-12-15

    We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low energy e{sup +}e{sup -} colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on {tau} decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and {tau} decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed. (orig.)

  7. Development of the Baldin approach to analysis of hadronic and nuclear processes at high energies

    Science.gov (United States)

    Malakhov, A.; Artemenkov, D.; Lykasov, G.

    2017-11-01

    This article presents the development of the A.M. Baldin approach using a description relativistic nuclear interactions in the four velocity space. This approach allows one to perform calculations of pion yields in hadron-hadron interactions in the central rapidity region depending on the transverse momentum. Results of our calculations have coincided with experimental data in a wide energy range with high precision. This approach gives a good description of the experimental results at high (LHC) and at lower energies (the Nuclotron).

  8. Fixed target hadron production measurements

    CERN Document Server

    Panman, J

    2009-01-01

    The knowledge of light hadron production cross-sections in proton-nucleus interactions is an important prerequisite to the analysis of a wide variety of experiments. One of the important limiting factors for the precision of accelerator based and atmospheric neutrino oscillation experiments is the uncertainty in the composition and spectrum of the neutrino flux. Cosmic-ray experiments detecting extensive air-showers can greatly improve their ability to interpret the data when precise hadron production spectra are available over a large range of energies. Dedicated hadron production experiments have been taking data recently and are now publishing their results. Other experiments have just started their data-taking and plan to supply measurements which can significantly extend the kinematic range in which data will be available. Early measurements at the LHC can extend this range to much higher energies than available up to now. Recent results will be shown and compared with hadronic production models. An outl...

  9. CEBAF at higher energies: Working group report on hadron spectroscopy and production

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, T. [Oak Ridge National Laboratory, TN (United States)]| [Univ. of Tennessee, Knoxville (United States); Napolitano, J. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    This report summarizes topics in hadron spectroscopy and production which could be addressed at CEBAF with an energy upgrade to E{sub {gamma}} = 8 GeV and beyond. The topics discussed include conventional meson and baryon spectrocopy, spectroscopy of exotica (especially molecules and hybrids), CP and CPT tests using {phi} mesons, and new detector and accelerator options.

  10. Electromagnetic corrections to the hadronic phase shifts in low energy {pi}{sup +}p elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Gashi, A.; Matsinos, E.; Oades, G.C. E-mail: gco@ifa.au.dk; Rasche, G.; Woolcock, W.S

    2001-04-09

    We calculate for the s-, p{sub 1/2}- and p{sub 3/2}-waves the electromagnetic corrections which must be subtracted from the nuclear phase shifts obtained from the analysis of low-energy {pi}{sup +}p elastic scattering data, in order to obtain hadronic phase shifts. The calculation uses relativised Schroedinger equations containing the sum of an electromagnetic potential and an effective hadronic potential. We compare our results with those of previous calculations and estimate the uncertainties in the corrections.

  11. Electromagnetic corrections to the hadronic phase shifts in low energy pi sup + p elastic scattering

    CERN Document Server

    Gashi, A; Oades, G C; Rasche, G; Woolcock, W S

    2001-01-01

    We calculate for the s-, p sub 1 sub / sub 2 - and p sub 3 sub / sub 2 -waves the electromagnetic corrections which must be subtracted from the nuclear phase shifts obtained from the analysis of low-energy pi sup + p elastic scattering data, in order to obtain hadronic phase shifts. The calculation uses relativised Schroedinger equations containing the sum of an electromagnetic potential and an effective hadronic potential. We compare our results with those of previous calculations and estimate the uncertainties in the corrections.

  12. Lepton energy asymmetry and precision supersymmetry study at hadron colliders

    CERN Document Server

    Nojiri, M M; Kobayashi, T

    2000-01-01

    We study the distribution of lepton pairs from the second lightest neutralino decay chi /sub 2//sup 0/ to ll followed by l to chi /sub 1 //sup 0/l. The distribution of the ratio of lepton transverse momenta A/sub T/ shows a peak structure if m/sub ll/Hadron Collider experiments. For some cases the gaugino and slepton masses may be determined within 10% by the lepton distribution only independent of model assumptions. Correct combinations of A/sub T //sup peak/ an...

  13. A pomeron approach to hadron-nucleus and nucleus-nucleus 'soft' interaction at high energy

    CERN Document Server

    Bondarenko, S; Levin, E; Maor, U

    2001-01-01

    We formulate a generalization of the Glauber formalism for hadron-nucleus and nucleus-nucleus collisions based on the pomeron approach to high-energy interaction. Our treatment is based on two physical assumptions (i.e. two small parameters): (i) that only sufficiently small distances contribute to the pomeron structure; and (ii) the triple-pomeron vertex G sub 3 sub P /g sub P sub N <<1 (where g sub P sub N is the pomeron-nucleon vertex) is small. A systematic method is developed for calculating the total, elastic and diffractive dissociation cross sections as well as the survival probability of large rapidity gap processes and inclusive observables, both for hadron-nucleus and nucleus-nucleus collisions. Our approach suggests saturation of the density of the produced hadrons in nucleus-nucleus collisions, the value of the saturation density turns out to be large.

  14. Interplay of soft and hard processes and hadron $p_{T}$ spectra in p A and AA collisions

    CERN Document Server

    Enke, Wang; 10.1103/PhysRevC.64.034901

    2001-01-01

    Motivated by a schematic model of multiple parton scattering within the Glauber formalism, the transverse momentum spectra in pA and AA collisions are analyzed in terms of a nuclear modification factor with respect to pp collisions. The existing data at the CERN Super Proton Synchrotron energies are shown to be consistent with the picture of Glauber multiple scattering in which the interplay between soft and hard processes and the effect of absorptive processes lead to nontrivial nuclear modification of the particle spectra. Relative to the additive model of incoherent hard scattering, the spectra are enhanced at large p/sub T/ (hard) by multiple scattering while suppressed at low p/sub T/ (soft) by absorptive correction with the transition occurring at around a scale p/sub 0/~1-2 GeV/c that separates soft and hard processes. Around the same scale, the p/sub T / spectra in pp collisions also change from an exponential form at low p/sub T/ to a power-law behavior at high p/sub T/. At very large p/sub T/>>p/sub...

  15. Energy spectra of cosmic rays in the knee region

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, H. E-mail: Holger.Ulrich@ik.fzk.de; Antonia, T.; Apel, W.D.; Badea, F.; Bekk, K.; Bercuci, A.; Bluemer, H.; Bozdog, H.; Brancus, I.M.; Buettner, C.; Chilingarian, A.; Daumiller, K.; Doll, P.; Engler, J.; Fessler, F.; Gils, H.J.; Glasstetter, R.; Haeusler, R.; Haungs, A.; Heck, D.; Hoerandel, J.R.; Iwan, A.; Kampert, K.-H.; Klages, H.O.; Maier, G.; Mathes, H.J.; Mayer, H.J.; Milke, J.; Mueller, M.; Obenland, R.; Oehlschlaeger, J.; Ostapchenko, S.; Petcu, M.; Rebel, H.; Risse, M.; Roth, M.; Schatz, G.; Schieler, H.; Scholz, J.; Thouw, T.; Weber, J.H.; Weindl, A.; Wentz, J.; Wochele, J.; Zabierowski, J

    2003-07-01

    The key observables of the KASCADE field array are the electron and muon number of extensive air showers. Using the size spectra of these measured quantities and their correlations with energy and primary mass it is possible to reconstruct the energy spectra of individual mass groups. The analysis relies on the application of unfolding methods. The resulting spectra of the light components show a knee-like feature. The positions of the individual knees suggest a dependence on the primary charge even if the statistical and systematical significance has to be improved.

  16. Machine Protection and High Energy Density States in Matter for High Energy Hadron Accelerators

    CERN Document Server

    Blanco Sancho, Juan; Schmidt, R

    The Large Hadron Collider (LHC) is the largest accelerator in the world. It is designed to collide two proton beams with unprecedented particle energy of 7TeV. The energy stored in each beam is 362MJ, sufficient to melt 500kg of copper. An accidental release of even a small fraction of the beam energy can result in severe damage to the equipment. Machine protection systems are essential to safely operate the accelerator and handle all possible accidents. This thesis deals with the study of different failure scenarios and its possible consequences. It addresses failure scenarios ranging from low intensity losses on high-Z materials and superconductors to high intensity losses on carbon and copper collimators. Low beam losses are sufficient to quench the superconducting magnets and the stabilized superconducting cables (bus-bars) that connects the main magnets. If this occurs and the energy from the bus-bar is not extracted fast enough it can lead to a situation similar to the accident in 2008 at LHC during pow...

  17. From QCD-based hard-scattering to nonextensive statistical mechanical descriptions of transverse momentum spectra in high-energy p p and p p ¯ collisions

    Science.gov (United States)

    Wong, Cheuk-Yin; Wilk, Grzegorz; Cirto, Leonardo J. L.; Tsallis, Constantino

    2015-06-01

    Transverse spectra of both jets and hadrons obtained in high-energy p p and p p ¯ collisions at central rapidity exhibit power-law behavior of 1 /pTn at high pT . The power index n is 4-5 for jet production and is 6-10 for hadron production. Furthermore, the hadron spectra spanning over 14 orders of magnitude down to the lowest pT region in p p collisions at the LHC can be adequately described by a single nonextensive statistical mechanical distribution that is widely used in other branches of science. This suggests indirectly the possible dominance of the hard-scattering process over essentially the whole pT region at central rapidity in high-energy p p and p p ¯ collisions. We show here direct evidences of such a dominance of the hard-scattering process by investigating the power indices of UA1 and ATLAS jet spectra over an extended pT region and the two-particle correlation data of the STAR and PHENIX collaborations in high-energy p p and p p ¯ collisions at central rapidity. We then study how the showering of the hard-scattering product partons alters the power index of the hadron spectra and leads to a hadron distribution that may be cast into a single-particle nonextensive statistical mechanical distribution. Because of such a connection, the nonextensive statistical mechanical distribution may be considered as a lowest-order approximation of the hard-scattering of partons followed by the subsequent process of parton showering that turns the jets into hadrons, in high-energy p p and p p ¯ collisions.

  18. Optimization of Energy Resolution in the Digital Hadron Calorimeter using Longitudinal Weights

    Science.gov (United States)

    Smith, J. R.; Bilki, B.; Francis, K.; Repond, J.; Schlereth, J.; Xia, L.

    2013-04-01

    Physics at a future lepton collider requires unprecedented jet energy and dijet mass resolutions. Particle Flow Algorithms (PFAs) have been proposed to achieve these. PFAs measure particles in a jet individually with the detector subsystem providing the best resolution. For this to work a calorimeter system with very high granularity is required. A prototype Digital Hadron Calorimeter (the DHCAL) based on the Resistive Plate Chamber (RPC) technology with a record count of readout channels has been developed, constructed, and exposed to particle beams. In this context, we report on a technique to improve the single hadron energy resolution by applying a set of calibration weights to the individual layers of the calorimeter. This weighting procedure was applied to approximately 1 million events in the energy range up to 60 GeV and shows an improvement in the pion energy resolution. Simulated data is used to verify particle identification techniques and to compare with the data.

  19. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory.

    Science.gov (United States)

    Aab, A; Abreu, P; Aglietta, M; Ahn, E J; Al Samarai, I; Albuquerque, I F M; Allekotte, I; Allen, J D; Allison, P; Almela, A; Alvarez Castillo, J; Alvarez-Muñiz, J; Ambrosio, M; Anastasi, G A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Badescu, A M; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Biteau, J; Blaess, S G; Blanco, A; Blazek, J; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, B; Caccianiga, L; Cancio, A; Canfora, F; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chiavassa, A; Chinellato, J A; Chirinos Diaz, J C; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Cronin, J; Dallier, R; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; de Mello Neto, J R T; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; Del Peral, L; Deligny, O; Dhital, N; Di Giulio, C; Di Matteo, A; Díaz Castro, M L; Diogo, F; Dobrigkeit, C; D'Olivo, J C; Dorofeev, A; Dos Anjos, R C; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G R; Fauth, A C; Fazzini, N; Ferguson, A P; Fick, B; Figueira, J M; Filevich, A; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gallo, F; García, B; Garcia-Pinto, D; Gate, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Gómez Berisso, M; Gómez Vitale, P F; González, N; Gookin, B; Gordon, J; Gorgi, A; Gorham, P; Gouffon, P; Griffith, N; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Hollon, N; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Hulsman, J; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Jarne, C; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Kukec Mezek, G; Kunka, N; Kuotb Awad, A; LaHurd, D; Latronico, L; Lauscher, M; Lautridou, P; Lebrun, P; Legumina, R; Leigui de Oliveira, M A; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; López Casado, A; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Marin, V; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Martínez Bravo, O; Masías Meza, J J; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Mello, V B B; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Moura, C A; Müller, G; Muller, M A; Müller, S; Naranjo, I; Navas, S; Necesal, P; Nellen, L; Nelles, A; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Pakk Selmi-Dei, D; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pedreira, F; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pepe, I M; Pereira, L A S; Perrone, L; Petermann, E; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Rautenberg, J; Ravel, O; Ravignani, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; Rodrigues de Carvalho, W; Rodriguez Rojo, J; Rodríguez-Frías, M D; Rogozin, D; Rosado, J; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salazar, H; Saleh, A; Salesa Greus, F; Salina, G; Sanabria Gomez, J D; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento-Cano, C; Sato, R; Scarso, C; Schauer, M; Scherini, V; Schieler, H; Schmidt, D; Scholten, O; Schoorlemmer, H; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stapleton, J; Stasielak, J; Strafella, F; Stutz, A; Suarez, F; Suarez Durán, M; Sudholz, T; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Taborda, O A; Tapia, A; Tepe, A; Theodoro, V M; Timmermans, C; Todero Peixoto, C J; Tomankova, L; Tomé, B; Tonachini, A; Torralba Elipe, G; Torres Machado, D; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Valbuena-Delgado, A; Valdés Galicia, J F; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; van den Berg, A M; van Vliet, A; Varela, E; Vargas Cárdenas, B; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Verzi, V; Vicha, J; Videla, M; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yapici, T; Yelos, D; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-11-04

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (E_{CM}=110-170  TeV), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33±0.16 (1.61±0.21) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  20. Narrow beam dosimetry for high-energy hadrons and electrons

    CERN Document Server

    Pelliccioni, M; Ulrici, Luisa

    2001-01-01

    Organ doses and effective dose were calculated with the latest version of the Monte Carlo transport code FLUKA in the case of an anthropomorphic mathematical model exposed to monoenergetic narrow beams of protons, pions and electrons in the energy range 10°— 400 GeV. The target organs considered were right eye, thyroid, thymus, lung and breast. Simple scaling laws to the calculated values are given. The present data and formula should prove useful for dosimetric estimations in case of accidental exposures to high-energy beams.

  1. Energy helps accuracy: Electroweak precision tests at hadron colliders

    Directory of Open Access Journals (Sweden)

    Marco Farina

    2017-09-01

    Full Text Available We show that high energy measurements of Drell–Yan at the LHC can serve as electroweak precision tests. Dimension-6 operators, from the Standard Model Effective Field Theory, modify the high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton invariant mass spectrum, from neutral current Drell–Yan at 8 TeV, have comparable sensitivity to LEP. We propose measuring the transverse mass spectrum of charged current Drell–Yan, which can surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new precision frontier.

  2. Energy helps accuracy: electroweak precision tests at hadron colliders

    CERN Document Server

    Farina, Marco

    2017-09-10

    We show that high energy measurements of Drell-Yan at the LHC can serve as electroweak precision tests. Dimension-6 operators, from the Standard Model Effective Field Theory, modify the high energy behavior of electroweak gauge boson propagators. Existing measurements of the dilepton invariant mass spectrum, from neutral current Drell-Yan at 8 TeV, have comparable sensitivity to LEP. We propose measuring the transverse mass spectrum of charged current Drell-Yan, which can surpass LEP already with 8 TeV data. The 13 TeV LHC will elevate electroweak tests to a new precision frontier.

  3. Exclusive ϒ photoproduction in hadronic collisions at CERN LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Gonçalves, V.P., E-mail: barros@ufpel.edu.br [High and Medium Energy Group, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Moreira, B.D.; Navarra, F.S. [Instituto de Física, Universidade de São Paulo, C.P. 66318, 05315-970 São Paulo, SP (Brazil)

    2015-03-06

    The exclusive ϒ photoproduction in proton–proton and proton–nucleus collisions at LHC energies is investigated using the color dipole formalism and considering different models for the ϒ wave function and forward dipole–target scattering amplitude. Our goal is to update the color dipole predictions and estimate the theoretical uncertainty present in these predictions. We present predictions for the kinematical ranges probed by the ALICE, CMS and LHCb Collaborations.

  4. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Kee [State University of New York at Stony Brook; Douglas, Michaek [State University of New York at Stony Brook; Hobbs, John [State University of New York at Stony Brook; McGrew, Clark [State University of New York at Stony Brook; Rijssenbeek, Michael [State University of New York at Stony Brook

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  5. Physics at the high-energy frontier - the Large Hadron Collider project

    CERN Document Server

    Brown, Robert; Evans, David; Gibson, Valerie; Nickerson, Richard; The Royal Society Discussion meeting

    2012-01-01

    The Large Hadron Collider (LHC), achieved its first particle collisions in late 2009 and is now running at 7 TeV, the highest energy ever attained in the laboratory, thereby opening the way for the search for many new phenomena. The aim of the meeting is to discuss the scientific, technical, sociological, political and financial challenges of bringing this huge international project to fruition.

  6. Strings, pomerons and the VENUS model of hadronic interactions at ultrarelativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Werner, K. (Inst. fuer Theoretische Physik, Univ. Heidelberg (Germany))

    1993-09-01

    In the following, we are going to discuss the structure of this report. In order to do so, we first need to explain the structure of the model. The basis is Gribov-Regge theory. GRT considers Pomeron exchange as the basic process in high energy hadron-hadron scattering, where a Pomeron is an object with well defined properties, whose precise nature in terms of quarks and gluons is not yet completely understood. In GRT, one calculates an elastic amplitude A[sub 2[yields]2] as a sum of multiple Pomeron exchange amplitudes. Unitarity relates discontinuities of elastic amplitudes with inelastic scattering. In particular, one can expand to total cross section as [sigma]=[Sigma][sigma][sub m], where [sigma][sub m] is the cross section related to m cut Pomerons. We consider, as everyone else, [sigma][sub m] to be the cross section related to a specific class of inelastic processes, the precise formulation of this vague statement defining the different models. In VENUS, [sigma][sub m] is related to a certain string configuration. To be more precise, we replace some squared inelastic amplitudes by distributions of particles obtained from string fragmentation. Strings are not basic objects in our model: This is not a classical string model. We simply use a parametrization of the string fragmentation to replace squared inelastic amplitudes by assuming that outgoing particles in certain squared amplitudes have similar momentum distributions as particles from string fragmentation. Although they are not basic, strings nevertheless play a crucial role in our model, and therefore we present in part I of this report a general discussion of strings. In part II we discuss hadron-hadron scattering, in part III hadron-nucleus and nucleus-nucleus interactions. In both part II and part III we first introduce Gribov-Regge theory, before we explain the VENUS approach by discussing how we marry GRT and string fragmentation. (orig.)

  7. Accelerator physics and technology challenges of very high energy hadron colliders

    Science.gov (United States)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  8. Model for Cumulative Solar Heavy Ion Energy and LET Spectra

    Science.gov (United States)

    Xapsos, Mike; Barth, Janet; Stauffer, Craig; Jordan, Tom; Mewaldt, Richard

    2007-01-01

    A probabilistic model of cumulative solar heavy ion energy and lineary energy transfer (LET) spectra is developed for spacecraft design applications. Spectra are given as a function of confidence level, mission time period during solar maximum and shielding thickness. It is shown that long-term solar heavy ion fluxes exceed galactic cosmic ray fluxes during solar maximum for shielding levels of interest. Cumulative solar heavy ion fluences should therefore be accounted for in single event effects rate calculations and in the planning of space missions.

  9. Identification of Swell in Nearshore Surface Wave Energy Spectra

    Directory of Open Access Journals (Sweden)

    Paul A. Work

    2010-06-01

    Full Text Available An approach for routine identification of swell and sea in nominally fully developed, omnidirectional, surface water wave energy spectra measured in arbitrary water depth is developed, applied, and discussed. The methodology is an extension of earlier work with deepwater spectra and involves identifying the frequency at which wave steepness is maximized and relating this to the swell separation frequency. The TMA parameterized spectrum is employed to establish a relationship between the two frequencies so that the methodology can be used when wind data are unavailable. The methodology is developed for finite water depth and tested using a dataset that includes both acoustic Doppler current profiler and wave buoy data, recorded simultaneously at the same location. For cases where the sea and swell are clearly, visually distinguishable in the omnidirectional spectra, the new method accurately distinguishes between the two, but it can also be used to identify sea and swell in unimodal spectra.

  10. Bottomonium production with statistical hadronization in heavy-ion collisions at collider energies

    CERN Document Server

    Byungsik, Hong

    2004-01-01

    We present the bottomonium production estimated by using the hybrid model that combines direct bb pair creation in hard scattering and a statistical hadronization of the deconfined quark-gluon plasma. Complete color screening and full equilibration of the deconfined quark matter is assumed in the quark-gluon plasma phase. An enhanced production of the Upsilon (1S) state is predicted at collider energies. However, a significant, difference between the RHIC (Relativistic Heavy Ion Collider) and the LHC (Large Hadron Collider) is expected in the centrality dependence of the Upsilon (1S) production. Normalizing the Upsilon (1S) production by the average number of binary collisions, we expect about a factor of five decrease from half-overlap to central collisions at the RHIC, but almost no change at the LHC. Plans for measuring the bottomonium production cross-sections in future collider experiments are summarized. (28 refs).

  11. Probing gauge-phobic heavy Higgs bosons at high energy hadron colliders

    Directory of Open Access Journals (Sweden)

    Yu-Ping Kuang

    2015-07-01

    Full Text Available We study the probe of the gauge-phobic (or nearly gauge-phobic heavy Higgs bosons (GPHB at high energy hadron colliders including the 14 TeV LHC and the 50 TeV Super Proton–Proton Collider (SppC. We take the process pp→tt¯tt¯, and study it at the hadron level including simulating the jet formation and top quark tagging (with jet substructure. We show that, for a GPHB with MH<800 GeV, MH can be determined by adjusting the value of MH in the theoretical pT(b1 distribution to fit the observed pT(b1 distribution, and the resonance peak can be seen at the SppC for MH=800 GeV and 1 TeV.

  12. Monte-Carlo approach to multiparticle production in a quark-parton model II Transverse momenta, energy dependence of average multiplicities, and inclusive spectra

    CERN Document Server

    Cerny, V; Pisút, J

    1978-01-01

    For pt.I see ibid., vol.16, p.2822 (1978). The authors extend their Monte-Carlo quark-parton model by introducing explicitly the transverse momenta of partons in the compound state formed by two colliding hadrons. Calculated energy dependence of the average multiplicities of stable hadrons produced in pp collisions and the p /sub T/ and y inclusive spectra are in good qualitative agreement with the data. Their results on resonance production at square root s=53 Ge V coincide with recent CERN ISR data. (20 refs).

  13. High-energy X-ray spectra of five sources.

    Science.gov (United States)

    Ricker, G. R.; Mcclintock, J. E.; Gerassimenko, M.; Lewin , W. H. G.

    1973-01-01

    On October 15-16, 1970, we carried out balloon X-ray observations from Australia at energies above 15 keV. We present the high-energy X-ray spectra of three sources discovered by us, GX 301-2, GX 304-1, and GX 1 + 4. The data suggest that these high-energy sources correspond to the sources 2U 1223-62, 2U 1258-61, and 2U 1728-24 respectively. We also present the spectra for two additional sources, GX 5-1 (2U 1757-25) and GX 3 + 1 (2U 1744-26). The average intensity of the highly variable source GX 301-2 was observed to be as great as Tau X-1 in the energy range 15-50 keV.

  14. Analysis of electron energy-loss spectra and images

    NARCIS (Netherlands)

    C.W.J. Sorber (Lianne)

    1993-01-01

    textabstractSeveral methods are proposed for the elemental analysis of biological material with the use of electron energy-loss spectroscopy (EELS) and electron spectroscopic imaging (ESI) in a Zeiss EM902. For spectra, the Simplex-method was tested and compared to Egerton's 2- area method, the

  15. Pion Energy Reconstruction by the Local Hadronic Calibration Method with ATLAS Combined Test Beam 2004 data

    CERN Document Server

    Kulchitsky, Y; Khubua, J; Russakovich, N; Shigaev, V; Vinogradov, V

    2008-01-01

    The pion energy reconstruction by the local hadronic calibration method on the basis of the 2004 combined test beam data in the energy range 10 -- 350 GeV and $\\eta = 0.25$ is performed. In this method energies deposited in each cell are weighted. The weights are determined by the Monte Carlo simulation using Calibration Hits software. We have modified this method by applying cuts in weights. The obtained fractional energy resolution with the conventional method of determination of the energy deposit in the dead material between LAr and Tile calorimeters is $\\sigma/E = (67\\pm2)\\%/\\sqrt{E} \\oplus (3.9\\pm0.2)\\% \\oplus (95\\pm22)\\%/E$. This is about 1.5 times better than the results for the hadronic calibration method obtained by the Oxford-Stockholm group and slightly better than the H1 method results for CTB04 obtained by Pisa group. The energy linearity is within $\\pm$1\\%. We have determined the general normalization constant of 0.91 for which the mean value linearity for the weight cut of 1.05 is about 1. At ...

  16. Lectures on hadron-nucleus collisions at high energies. [Above 200 GeV, cross sections, Glauber and Regge-pole expansions, lectures

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, A.H.

    1976-01-01

    Hadron-nucleus collisions are discussed. It is assumed that the hadron energy is greater than or equal to 200 GeV and that large nuclei like lead or uranium constitute the nuclear targets. It is argued that a relatively large amount of blackness in hadron-nucleus cross sections puts strong constraints on the inclusive spectrum. Reasons are given why the spectrum of fast particles in a hadron-nucleus collision must be very different than such a spectrum in a hadron-hadron collision. A possible reconciliation of an approximate Glauber expansion with the Regge pole expansion in a soft field theory is suggested.

  17. A study of the energy deposition profile of proton beams in materials of hadron therapeutic interest.

    Science.gov (United States)

    Garcia-Molina, Rafael; Abril, Isabel; de Vera, Pablo; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2014-01-01

    The energy delivered by a swift proton beam in materials of interest to hadron therapy (liquid water, polymethylmethacrylate or polystyrene) is investigated. An explicit condensed-state description of the target excitation spectrum based on the dielectric formalism is used to calculate the energy-loss rate of the beam in the irradiated materials. This magnitude is the main input in the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids) used to evaluate the dose as a function of the penetration depth and radial distance from the beam axis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Multihadron production dynamics exploring energy balance in hadronic to nuclear collisions

    CERN Document Server

    Sarkisyan, Edward K.G.; Sahoo, Raghunath; Sakharov, Alexander S.

    2016-03-30

    The multihadron production in nucleus-nucleus collisions and its interrelation with that in (anti)proton-proton interactions are studied by exploring the charged particle mean multiplicity collision-energy and centrality dependencies in the measurements to date. The study is performed in the framework of the recently proposed effective-energy approach which, under the proper scaling of the collision energy, combines the constituent quark picture with Landau relativistic hydrodynamics counting for the centrality-defined effective energy of participants and relating different types of collisions. Within this approach, the multiplicity energy dependence and the pseudorapidity spectra from the most central nuclear collisions are well reproduced. The study of the multiplicity centrality dependence reveals a new scaling between the measured pseudorapidity spectra and the calculations. By means of this scaling, called the energy balanced limiting fragmentation scaling, one reproduces the pseudorapidity spectra for a...

  19. Threshold energies and poles for hadron physical problems by a model-independent universal algorithm

    Science.gov (United States)

    Tripolt, R.-A.; Haritan, I.; Wambach, J.; Moiseyev, N.

    2017-11-01

    In this work we show how by using a Padé type analytical continuation scheme, based on the Schlessinger point method, it is possible to find higher production thresholds in hadron physical problems. Recently, an extension of this numerical approach to the complex energy plane enabled the calculations of auto-ionization decay resonance poles in atomic and molecular systems. Here we use this so-called Resonances via Padé (RVP) method, to show its convergence beyond the singular point in hadron physical problems. In order to demonstrate the capabilities of the RVP method, two illustrations for the ability to identify singularities and branch points are given. In addition, two applications for hadron physical problems are given. In the first one, we identify the decay thresholds from a numerically calculated spectral function. In the second one, we use experimental data. First, we calculate the resonance pole of the f0 (500) or σ meson using the S0 partial wave amplitude for ππ scattering in very good agreement with the literature. Second, we use data on the cross section ratio R (s) for e+e- collisions and discuss the prediction of decay thresholds which proves to be difficult if the data is noisy.

  20. The longitudinal development of showers induced by high-energy hadrons in an iron-sampling calorimeter

    CERN Document Server

    Milke, J; Apel, W D; Badea, F; Bekk, K; Bercuci, A; Bertaina, M; Blümer, H; Bozdog, H; Büttner, C; Chiavassa, A; Daumiller, K; Di Pierro, F; Dolla, P; Engel, R; Engler, J; Fessler, F; Ghia, P L; Gils, H J; Glasstetter, R; Haungs, A; Heck, D; Hörandel, J R; Kampert, K H; Klages, H O; Kolotaev, Yu; Maier, G; Mathes, H J; Mayer, H J; Mitrica, B; Morello, C; Müller, M; Navarra, G; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Scholz, J; Stümpert, M; Thouw, T; Toma, G; Trinchero, G C; Ulrich, H; Valchierotti, S; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zagromski, S; Zimmermann, D

    2005-01-01

    Occasionally cosmic-ray induced air showers result in single, unaccompanied hadrons at ground level. Such events are investigated with the 300 m2 hadron calorimeter of the KASCADE-Grande experiment. It is an iron sampling calorimeter with a depth of 11 hadronic interaction lengths read out by warm-liquid ionization chambers. The longitudinal shower development is discussed as function of energy up to 30 TeV and the results are compared with simulations using the GEANT/FLUKA code. In addition, results of test measurements at a secondary particle beam of the Super Proton Synchrotron at CERN up to 350 GeV are discussed.

  1. Medium-induced color flow softens hadronization

    CERN Document Server

    Beraudo, A; Wiedemann, U A

    2012-01-01

    Medium-induced parton energy loss, resulting from gluon exchanges between the QCD matter and partonic projectiles, is expected to underly the strong suppression of jets and high-$p_T$ hadron spectra observed in ultra-relativistic heavy ion collisions. Here, we present the first color-differential calculation of parton energy loss. We find that color exchange between medium and projectile enhances the invariant mass of energetic color singlet clusters in the parton shower by a parametrically large factor proportional to the square root of the projectile energy. This effect is seen in more than half of the most energetic color-singlet fragments of medium-modified parton branchings. Applying a standard cluster hadronization model, we find that it leads to a characteristic additional softening of hadronic spectra. A fair description of the nuclear modification factor measured at the LHC may then be obtained for relatively low momentum transfers from the medium.

  2. Identification and analysis of charged hadrons in p+p interactions from NA61/SHINE experiment at CERN SPS energies

    CERN Document Server

    Pulawski, Szymon

    The phase-transition of strongly interacting matter is a very interesting phenom- ena, which still is not fully understood. Signi cant contribution to improving knowledge about properties of the onset of decon nement of strongly interact- ing matter might come from the NA61/SHINE experiment at CERN. The main goal of this xed-target experiment is to discover the critical point and study the properties of the onset of decon nement. This goal has been reached by the pre- cise measurement of the hadron production in proton-proton, proton-nucleus and nucleus-nucleus interactions in a wide range of system sizes and collision energies. The main goal of this thesis was to obtained two-dimensional spectra of positively and negatively charged pions, kaons and protons produced in p + p interactions at SPS energy range (20 ; 30 : 9 ; 40 ; 80 ; 158 GeV=c ). This studies are necessary for understanding of the onset of decon nement. For this purpose, identi cation and correction techniques dedicated...

  3. Identified charged hadron production in pp, p-Pb and Pb-Pb collisions at LHC energies with ALICE

    Science.gov (United States)

    Volpe, Giacomo

    2015-05-01

    The ALICE detector is dedicated to the study of strongly interacting matter in the extremely high temperature and energy density conditions reached in relativistic heavy-ions collisions at the LHC. ALICE has unique particle identification (PID) capabilities among the LHC experiments thanks to the use of the combination of different PID techniques, i.e. energy loss and time of flight measurements, Cherenkov and transition radiation detection, calorimetry and topological ID. The latest results on charged pions, kaons and (anti)protons transverse momentum (pT) spectra, ratios and integrated yields, measured in pp collisions at √s = 7 TeV and √s = 2.76 TeV, Pb-Pb collisions at √sNN = 2.76 TeV and p-Pb collisions at √sNN = 5.02 TeV, will be presented. The nuclear modification factors as a function of pT, for Pb-Pb and p-Pb interactions, will be shown. The results from different colliding systems will be compared. These will also be compared with calculations from hydrodynamical and statistical hadronization models.

  4. Multiplicity dependence of light flavour hadron production at LHC energies in the strangeness canonical suppression picture

    CERN Document Server

    Vislavicius, Vytautas

    2016-01-01

    We present an analysis of data on light flavour hadron production as function of event multiplicity at LHC energies measured by the ALICE collaboration. The strangeness-canonical approach within the framework of the THERMUS statistical hadronisation model is used for a simultaneous description of pp, p-Pb, and Pb-Pb collisions. The rapidity window dependence of the strangeness correlation volume is addressed and a value of $\\Delta y = 1.43 \\pm 0.13$ is found. With the exception of the $\\phi$-meson, an excellent description of the experimental data is found.

  5. Energy spectra of electrons and positrons produced in supernova remnants

    Science.gov (United States)

    Berezhko, E. G.; Ksenofontov, L. T.

    2013-02-01

    We study the production of cosmic rays (CRs) in supernova remnants (SNRs), including the production of electron and positron CR components. This combines for the first time nuclear collisions inside CR sources and in the diffuse interstellar medium leading to the creation of electrons and positrons, as well as their reacceleration, with the injection and subsequent acceleration of suprathermal protons and electrons from the postshock thermal pool. Selfconsistent CR spectra are calculated on the basis of the nonlinear kinetic model. It is shown that reacceleration of positrons created in SNR and ISM produces a considerable effect at energies above 10 GeV, making its energy spectrum substantially flatter than the spectrum created in ISM. Calculated electron and positron spectra are in the satisfactory agreement with the existing measurements.

  6. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-03-02

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.

  7. CrossRef Energy Reconstruction in a High Granularity Semi-Digital Hadronic Calorimeter for ILC Experiments

    CERN Document Server

    Mannai, S; Cortina, E; Laktineh, I

    2016-01-01

    Abstract: The Semi-Digital Hadronic CALorimeter (SDHCAL) is one of the two hadronic calorimeter options proposed by the International Large Detector (ILD) project for the future International Linear Collider (ILC) experiments. It is a sampling calorimeter with 48 active layers made of Glass Resistive Plate Chambers (GRPCs) and their embedded electronics. A fine lateral segmentation is obtained thanks to pickup pads of 1 cm2. This ensures the high granularity required for the application of the Particle Flow Algorithm (PFA) in order to improve the jet energy resolution in the ILC experiments. The performance of the SDHCAL technological prototype was tested successfully in several beam tests at CERN. The main point to be discussed here concerns the energy reconstruction in SDHCAL. Based on Monte Carlo simulation of the SDHCAL prototype using the GEANT4 package, we present different energy reconstruction methods to study the energy linearity and resolution of the detector response to single hadrons. In particula...

  8. Characterizing new physics with polarized beams at high-energy hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Benjamin [Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques,Université de Strasbourg/CNRS-IN2P3, 23 rue du Loess, F-67037 Strasbourg (France); Proudom, Josselin [Laboratoire de Physique Subatomique et de Cosmologie,Université Grenoble-Alpes, CNRS/IN2P3, 53 avenue des Martyrs, 38026 Grenoble (France); Rojo, Juan [Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); Schienbein, Ingo [Laboratoire de Physique Subatomique et de Cosmologie,Université Grenoble-Alpes, CNRS/IN2P3, 53 avenue des Martyrs, 38026 Grenoble (France)

    2014-05-12

    The TeV energy region is currently being explored by both the ATLAS and CMS experiments of the Large Hadron Collider and phenomena beyond the Standard Model are extensively searched for. Large fractions of the parameter space of many models have already been excluded, and the ranges covered by the searches will certainly be increased by the upcoming energy and luminosity upgrades. If new physics has to be discovered in the forthcoming years, the ultimate goal of the high-energy physics program will consist of fully characterizing the newly-discovered degrees of freedom in terms of properties such as their masses, spins and couplings. The scope of this paper is to show how the availability of polarized beams at high-energy proton-proton colliders could yield a unique discriminating power between different beyond the Standard Model scenarios. We first discuss in a model-independent way how this discriminating power arises from the differences between polarized and unpolarized parton distribution functions. We then demonstrate how polarized beams allow one not only to disentangle different production mechanisms giving the same final-state signature, but also to obtain information on the parameters of the hypothetical new physics sector of the theory. This is illustrated in the case of a particular class of scenarios leading to monotop production. We consider three specific models that could produce a monotop signature in unpolarized proton collisions, and show how they could be distinguished by means of single- and double-spin asymmetries in polarized collisions. Our results are presented for both the Large Hadron Collider operating at a center-of-mass energy of 14 TeV and a recently proposed Future Circular Collider assumed to collide protons at a center-of-mass energy of 100 TeV.

  9. A hadron-nucleus collision event generator for simulations at intermediate energies

    Science.gov (United States)

    Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Eisenhardt, S.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Sterzenbach, G.; Theis, D.; Weber, J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA-Collaboration

    2002-10-01

    Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the Δ33-resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular distributions based on phase shift analysis are used for elastic nucleon-nucleon as well as elastic and charge exchange pion-nucleon scattering. Also kaons and antinucleons can be treated as projectiles. Good agreement with experimental data is found predominantly for lower projectile energies, i.e. in the regime of the Bertini code. The original as well as the extended Bertini model have been implemented as shower codes into the high energy detector simulation package GEANT-3.14, allowing now its use also in full Monte Carlo studies of detector systems at intermediate energies. The GEANT-3.14 here have been used mainly for its powerful geometry and analysing packages due to the complex EDDA detector system.

  10. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    Science.gov (United States)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  11. Fragmentation and Hadronization

    OpenAIRE

    Webber, B.R.

    1999-01-01

    Experimental data, theoretical ideas and models concerning jet fragmentation and the hadronization process are reviewed, concentrating on the following topics: factorization and small-x resummation of fragmentation functions, hadronization models, single-particle yields and spectra in Z decay, comparisons between quark and gluon jets, current and target fragmentation in deep inelastic scattering, heavy quark fragmentation, Bose-Einstein correlations and WW fragmentation.

  12. Fragmentation and Hadronization

    OpenAIRE

    Webber, B.R.

    2000-01-01

    Experimental data, theoretical ideas and models concerning jet fragmentation and the hadronization process are reviewed, concentrating on the following topics: factorization and small-x resummation of fragmentation functions, hadronization models, single-particle yields and spectra in Z decay, comparisons between quark and gluon jets, current and target fragmentation in deep inelastic scattering, heavy quark fragmentation, Bose-Einstein correlations and WW fragmentation.

  13. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Miller, D W; Schwartzman, Ariel

    2011-01-01

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of $sqrt{s}=7$ TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include t...

  14. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  15. Energy spectra of He + ions penetrating thick biological targets

    Science.gov (United States)

    Xia, Yueyuan; Tan, Chunyu; Mu, Yuguang; Wang, Ruijin; Zhang, Jianhua; Liu, Xiangdong; Liu, Jitian; Yu, Zhengliang

    1999-05-01

    Energy spectra of 500 keV-1MeV He + ion penetrating 50 μ m- 100 μ m thick seed coat of maize, fruit peel of grape and of tomato, are measured. The results indicate that these thick biological targets, as seen by the penetrating ions, are inhomogeneous, and there are open paths, along which the incident ions can penetrate the targets easily. While most of the incident ions are stopped in the targets, some of the penetrating ions only lose a small fraction of their initial incident energy. The penetration energy spectra show a pure electronic stopping feature. Transmission electron microscope (TEM) micrographs taken from these samples with thickness of 30 μ m indicate that 150 keV electron beam from the TEM can penetrate the thick samples to give very good images with clear contrast. The electronic structures of β-1,4 glucosan molecular chains, which is deemed as the most important constituent of the cell walls of seed coats and peels of fruits, are calculated to show the possible open-path directions which exist in biological samples.

  16. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    Energy Technology Data Exchange (ETDEWEB)

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Antonsson, E. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Physikalische und Theoretische Chemie Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin (Germany); Neville, J. J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 6E2 (Canada); Miron, C., E-mail: Catalin.Miron@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure - Nuclear Physics (ELI-NP), ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  17. Hadron Spectroscopy in Double Pomeron Exchange Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, Michael [Fermilab

    2016-11-15

    Central exclusive production in hadron-hadron collisions at high energies, for example p + p -> p + X + p, where the "+" represents a large rapidity gap, is a valuable process for spectroscopy of mesonic states X. At collider energies the gaps can be large enough to be dominated by pomeron exchange, and then the quantum numbers of the state X are restricted. Isoscalar JPC = 0++ and 2++ mesons are selected, and our understanding of these spectra is incomplete. In particular, soft pomeron exchanges favor gluon-dominated states such as glueballs, which are expected in QCD but not yet well established. I will review some published data.

  18. Hadron spectroscopy in double pomeron exchange experiments

    Science.gov (United States)

    Albrow, Michael G.

    2017-03-01

    Central exclusive production in hadron-hadron collisions at high energies, for example p + p → p + X + p, where the + represents a large rapidity gap, is a valuable process for spectroscopy of mesonic states X. At collider energies the gaps can be large enough to be dominated by pomeron exchange, and then the quantum numbers of the state X are restricted. Isoscalar JPC = 0++ and 2++ mesons are selected, and our understanding of these spectra is incomplete. In particular, soft pomeron exchanges favor gluon-dominated states such as glueballs, which are expected in QCD but not yet well established. I will review some published data.

  19. Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies

    Science.gov (United States)

    Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.

    1992-01-01

    The Heliosphere Instrument for Spectra, Composition, and Anisotropy at Low Energies (HI-SCALE) is designed to make measurements of interplanetary ions and electrons throughout the entire Ulysses mission. The ions (E(i) greater than about 50 keV) and electrons (E(e) greater than about 30 keV) are identified uniquely and detected by five separate solid-state detector telescopes that are oriented to give nearly complete pitch-angle coverage from the spinning spacecraft. Ion elemental abundances are determined by Delta E vs E telescope using a thin (5 microns) front solid state detector element in a three-element telescope. Experimental operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on telescope covers which can be closed for calibration purposes and for radiation protection during the course of the mission. Ion and electron spectral information is determined using both broad-energy-range rate channels and a 32 channel pulse-height analyzer for more detailed spectra. Some initial in-ecliptic measurements are presented which demonstrate the features of the instrument.

  20. Dark energy, colored anti de Sitter vacuum, and the CERN Large Hadron Collider phenomenology

    Science.gov (United States)

    Stojkovic, Dejan; Starkman, Glenn D.; Matsuo, Reijiro

    2008-03-01

    We study the possibility that the current accelerated expansion of the universe is driven by the vacuum energy density of a colored scalar field which is responsible for a phase transition in which the gauge SU(3)c symmetry breaks. We show that if we are stuck in a SU(3)c-preserving false vacuum, then SU(3)c symmetry breaking can be accommodated without violating any experimental QCD bounds or bounds from cosmological observations. Moreover, unless there is an unnatural fine-tuning beyond the usual cosmological constant fine-tuning, the true vacuum state of the universe is anti-de Sitter. The model can likely be tested at the LHC. A possible (though not necessary) consequence of the model is the existence of fractionally charged massive hadrons. The model can be embedded in supersymmetric theories where massive colored scalar fields appear naturally.

  1. Faster ramp of LHC for use as an FCC High Energy hadron Booster

    CERN Document Server

    Milanese, A; Solfaroli Camillocci, Matteo

    2015-01-01

    This note examines the feasibility of ramping the LHC magnets faster than the present operation, in view of a reuse of LHC as a High Energy hadron Booster. Such a synchrotron would inject 3.3 TeV beams into a larger Future Circular Collider. The main constraints are examined. The conclusion is that the ramp up could be shortened by a factor of 4, with the main dipoles ramping up at 50 A/s instead of 10 A/s and a modified formulation of the ramp function. On the hardware side this would require a voltage upgrade of the dipole power converters and a possible further splitting of the dipole circuits in halves. To make similar gains for the ramp down time, modifications to some of the one-quadrant power converters, would also be needed, including the main quadrupoles.

  2. Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-01-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...

  3. High-pT Jet Energy Scale Uncertainty from single hadron response with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00534683; The ATLAS collaboration

    2016-01-01

    The jet energy scale (JES) uncertainty is estimated using different methods at different p$_\\text{T}$ ranges. In-situ techniques exploiting the p$_\\text{T}$ balance between a jet and a reference object (e.g. Z or gamma) are used at lower p$_\\text{T}$, but at very high p$_\\text{T}$ (> 2.5 TeV) there is not enough statistics for such in-situ techniques. A low JES uncertainty at high-p$_\\text{T}$ is important in several searches for new phenomena, e.g. the dijet resonance and angular searches. In the highest p$_\\text{T}$ range, the JES uncertainty is estimated using the calorimeter response to single hadrons. In this method, jets are treated as a superposition of energy depositions of single particles. An uncertainty is applied to each energy deposition belonging to the particles within the jet, and propagated to the final jet energy scale. This poster presents the JES uncertainty found with this method at sqrt(s) = 8 TeV and its developments.

  4. SEE Measurements and Simulations Using Mono-Energetic GeV-Energy Hadron Beams

    CERN Document Server

    Alia, Ruben Garcia; Brugger, Markus; Roed, Ketil; Uznanski, Slawosz; Wrobel, Frederic; Ferlet-Cavrois, Veronique; Danzeca, Salvatore; Saigne, Frederic; Spiezia, Giovanni

    2013-01-01

    Single Event Upset (SEU) measurements were performed on the ESA SEU Monitor using mono-energetic GeV-energy hadron beams available in the North Experimental Area at CERN. A 400 GeV proton beam in the H4IRRAD test area and a 120 GeV mixed pion and proton beam at the CERN-EU high Energy Reference Field facility (CERF) were used for this purpose. The resulting cross section values are presented and discussed as well as compared to the several hundred MeV case (typical for standard test facilities) from a physical interaction perspective with the intention of providing a more general understanding of the behavior. Moreover, the implications of the cross section dependence with energy above the several hundred MeV range are analyzed for different environments. In addition, analogous measurements are proposed for Single Event Latchup (SEL), motivated by discussed simulation results. Finally, a brief introduction of the future CHARM (CERN High-energy AcceleratoR Mixed facility) test installation is included.

  5. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

  6. QCD in hadron-hadron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.

  7. Energy spectra of cosmic gamma-ray bursts

    Science.gov (United States)

    Cline, T. L.; Desai, U. D.; Klebesadel, R. W.; Strong, I. B.

    1973-01-01

    Spectral measurements of six cosmic gamma-ray bursts in the energy region of 0.1 to 1.2 MeV, made using a semi-omnidirectional X-ray detector on IMP-6 are reported. These measurements confirm the hard X-ray or gamma-ray nature of the bursts, as inferred from the original observations by Klebesadel et al., (1973), and show that their maximum energy release is in this several hundred keV region. Each burst consists of several 1 or 2-second pulses each with the characteristic spectrum of approximately 150-keV exponential, followed by a softer decay. There is no evidence of line structure in this energy region, or for a marked change in the energy spectrum within a given pulse. Event size spectra are estimated for galactic and extragalactic models; the total emission is consistent with present measurements of the diffuse background, and unlikely to account for any spectral feature in the few-MeV region.

  8. The energy dependence of $\\sigma(e^{+}e^{-} \\to hadrons)$ in the total centre-of-mass energy 1.2 to 3.0 GeV

    CERN Document Server

    Bernadini, M; Brunini, P L; Fiorentino, E; Massam, Thomas; Monari, L; Palmonari, F; Rimondi, F; Zichichi, A

    1974-01-01

    Reports observations of 1085 events of the type e/sup +/e/sup -/ to hadrons, in the total centre-of-mass energy range square root s=1.2 to 3.0 GeV. The energy dependence of the total annihilation cross- section, parametrized in the form sigma (e/sup +/e/sup -/ to hadrons) =A.s/sup n/, is measured to be n=-(1.54/sub -0.29//sup +0.17/) in the above energy range. (11 refs).

  9. Compact hadron driver for cancer therapies using continuous energy sweep scanning

    Directory of Open Access Journals (Sweden)

    Leo Kwee Wah

    2016-04-01

    Full Text Available A design of a compact hadron driver for future cancer therapies based on the induction synchrotron concept is presented. To realize a slow extraction technique in a fast-cycling synchrotron, which allows energy sweep beam scanning, a zero momentum-dispersion D(s region and a high flat D(s region are necessary. The proposed design meets both requirements. The lattice has two-fold symmetry with a circumference of 52.8 m, a 2-m dispersion-free straight section, and a 3-m-long large flat dispersion straight section. Assuming a 1.5-T bending magnet, the ring can deliver heavy ions (200  MeV/u at 10 Hz. A beam fraction is dropped from the barrier bucket at the desired timing, and the increasing negative momentum deviation of this beam fraction becomes large enough for the fraction to fall in the electrostatic septum extraction gap, which is placed at the large D(s region. The programmed energy sweep extraction enables scanning beam irradiation on a cancer site in depth without an energy degrader, avoiding the production of secondary particles and the degradation of emittance. Details of the lattice parameters and computer simulations for slow extraction are discussed. An example extraction scenario is presented. Qualities of the spilled beam such as emittance and momentum spread are discussed, as well as necessary functions and parameters required for the extraction system.

  10. The CERN Large Hadron Collider as a tool to study high-energy density matter

    CERN Document Server

    Tahir, N A; Gryaznov, V; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M

    2005-01-01

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15*10/sup 11/ protons so that the total number of protons in one beam will be about 3*10/sup 14/ and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma =0.2 mm. The total duration of the beam will be about 89 mu s. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  11. Energy Spectra, Altitude Profiles and Charge Ratios of Atmospheric Muons

    CERN Document Server

    Coutu, S; Duvernois, M A; Barwick, S W; Schneider, E; Bhattacharya, A; Bower, C; Musser, J A; Labrador, A W; Müller, D; Swordy, S P; Torbet, E; Chaput, C; McKee, S; Tarle, G; Tomasch, A D; Nutter, S L; De Nolfo, G A

    2000-01-01

    We present a new measurement of air shower muons made during atmospheric ascent of the High Energy Antimatter Telescope balloon experiment. The muon charge ratio mu+ / mu- is presented as a function of atmospheric depth in the momentum interval 0.3-0.9 GeV/c. The differential mu- momentum spectra are presented between 0.3 and about 50 GeV/c at atmospheric depths between 13 and 960 g/cm^2. We compare our measurements with other recent data and with Monte Carlo calculations of the same type as those used in predicting atmospheric neutrino fluxes. We find that our measured mu- fluxes are smaller than the predictions by as much as 70% at shallow atmospheric depths, by about 20% at the depth of shower maximum, and are in good agreement with the predictions at greater depths. We explore the consequences of this on the question of atmospheric neutrino production.

  12. Spin-dependent energy distribution of B-hadrons from polarized top decays considering the azimuthal correlation rate

    Directory of Open Access Journals (Sweden)

    S.M. Moosavi Nejad

    2016-04-01

    Full Text Available Basically, the energy distribution of bottom-flavored hadrons produced through polarized top quark decays t(↑→W++b(→Xb, is governed by the unpolarized rate and the polar and the azimuthal correlation functions which are related to the density matrix elements of the decay t(↑→bW+. Here we present, for the first time, the analytical expressions for the O(αs radiative corrections to the differential azimuthal decay rates of the partonic process t(↑→b+W+ in two helicity systems, which are needed to study the azimuthal distribution of the energy spectrum of the hadrons produced in polarized top decays. These spin-momentum correlations between the top quark spin and its decay product momenta will allow the detailed studies of the top decay mechanism. Our predictions of the hadron energy distributions also enable us to deepen our knowledge of the hadronization process and to test the universality and scaling violations of the bottom-flavored meson fragmentation functions.

  13. Energy-Frontier Lepton-Hadron Collisions at CERN: the LHeC and the FCC-eh arXiv

    CERN Document Server

    Kuze, Masahiro

    Lepton-hadron colliders that use a proton or nucleus beam of current and future hadron colliders and let it collide with an electron beam from a newly built electron accelerator bring attractive physics programs which are strong and complementary to the hadron collider physics. Machine development for Energy Recovery LINAC and physics performance studies of such electron-hadron colliders, specifically the LHeC that uses the existing LHC beam and FCC-eh that is an option of Future Circular Collider program, are ongoing and reviewed in this article.

  14. Scaling violation in fragmentation region at energies above 10-15 eV based on the data on cosmic ray hadron component

    Science.gov (United States)

    1985-01-01

    The ratio of intensity of energetic hadrons, having no visible accompaniment, to the total flux of hadrons of the same energy at 4380m above sea level is given. The ratio is much more than expected for scaling model with proton primaries. This result could not be explained by complex chemical composition of primary cosmic ray and indicates the scaling violation in fragmentation region.

  15. Bunch merging and splitting techniques in the injectors for high energy hadron colliders

    CERN Document Server

    Garoby, R

    1998-01-01

    One problem in the design of TeV hadron colliders arises from the choice of the radio frequency. To produce economically the short bunches needed during collision, a high frequency (400 MHz or more) is essential. On the other hand, in the injector chain at lower energies, lower frequencies are generally preferred to alleviate space charge and instability problems and, partially also, for historical reasons. The classical solution is to transform the bunch structure by passing via a debunched beam state, during which the whole machine circumference becomes filled with particles and the beam is subjected to induced parasitic fields and is often prone to microwave instabilities. Bunch merging and bunch splitting have therefore been developed as alternative methods that allow the number of bunches to be changed without passing via that state. Bunch merging has been used in the CERN-PS since 1989 for the anti-proton production beam. The reverse process of bunch splitting was first proposed in the frame of the CERN...

  16. Head-On Beam-Beam Interactions in High-Energy Hadron Colliders. GPU-Powered Modelling of Nonlinear Effects

    CERN Document Server

    AUTHOR|(CDS)2160109; Støvneng, Jon Andreas

    2017-08-15

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strength of the beam-beam interactions will be higher after the upgrade to the High-Luminosity Large Hadron Collider, and also in the next generation of machines, as the Future Circular Hadron Collider. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and drives resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. For this thesis, a new code named CABIN (Cuda-Accelerated Beam-beam Interaction) has been developed to study the limitations caused by the impact of strong beam-beam interactions. In particular, the evolution of the beam emittance and beam intensity has been monitored to study the impact quantitatively...

  17. Measurement of b-hadron production fractions in 7 TeV centre-of-mass energy pp collisions

    CERN Document Server

    The LHCb Collaboration

    2011-01-01

    This report describes the determination of $b$ quark fragmentation into bottom hadrons in proton-proton collisions at a centre-of-mass energy of 7 TeV. We study the ratios of strange $B$ meson to light $B$ meson production [$f_s/(f_u+f_d)$] and $\\Lambda_b$ baryon to light $B$ meson production [$f_{\\Lambda_b}/(f_u+f_d)$] as a function of the charmed hadron-muon system transverse momentum $p_t$ and of the $b$-hadron pseudo-rapidity $\\eta$, for $p_t$ between 0 and 14 GeV and $\\eta$ between 2 and 5. We find that [$f_s/(f_u+f_d)$] is independent of $p_t$ and $\\eta$, and we determine [$f_s/(f_u+f_d)$] = 0.134$\\pm$0.004$^{+0.011}_{-0.010}$, where the first error is statistical and the second systematic. The corresponding ratio [$f_{\\Lambda_b}/(f_u+f_d)$] is found to be dependent upon the transverse momentum of the charm hadron-$\\mu$ pair. Thus we quote $[f_{\\Lambda_b}/(f_u+f_d)]=(0.404\\pm 0.017 (stat) \\pm 0.027 (sys) \\pm 0.105 (Br) )\\times[1 -(0.031 \\pm 0.004\\pm 0.003)\\times p_t {\\rm (GeV)}]$, where t...

  18. Comparison of Energy Reconstruction Schemes and Different Granularities in the CALICE Scintillator-Steel Analogue Hadron Calorimeter

    Science.gov (United States)

    Neubüser, Coralie

    2017-11-01

    The CALICE collaboration develops different high-granularity hadronic calorimeter technologies for a future linear collider. These technologies differ in active material, granularity and their readout and thus their energy reconstruction schemes. The Analogue Hadron Calorimeter (AHCAL), based on scintillator tiles with Silicon Photomultiplier readout, measures the signal amplitude of the energy deposition in cells of at most 3 × 3 cm2 size. The Digital, Resistive Plate Chamber (RPC) based, HCAL (DHCAL) detects hits above a certain threshold by firing pad sensors of 1 × 1 cm2. A 2 bit readout is provided by the, also RPC based, Semi-Digital HCAL (SDHCAL), which counts hits above three different thresholds per 1 × 1 cm2 cell. All three calorimeter concepts have been realised in a 1m3 prototype with interleaved Steel absorber and tested at various test beams. This study investigates the impact of the readout, granularity and active medium on the energy resolution individually by applying the reconstruction procedures on AHCAL data, that can also be processed in a way which emulates a (semi-) digital readout system. The difference in granularity is studied via simulations of an AHCAL with 1 × 1 cm2 cell sizes. Additionally, a so-called Software Compensation algorithm is developed to weight hits dependent on their energy content and correct for the difference in the response to the electromagnetic and hadronic sub-showers (\\displaystyle \\frac{e}{h}\

  19. 78 FR 35658 - Spectra Energy Corp., Application for a New or Amended Presidential Permit

    Science.gov (United States)

    2013-06-13

    ... Energy Corp., Application for a New or Amended Presidential Permit June 7, 2013. AGENCY: Department of State. ACTION: Notice of Receipt of Spectra Energy Corp., Application for a New or Amended Presidential..., which is permitted under a 2004 Presidential Permit issued to Express. Spectra Energy requests a new or...

  20. Hysteresis and Soil Site Dependent Input and Hysteretic Energy Spectra for Far-Source Ground Motions

    Directory of Open Access Journals (Sweden)

    Mebrahtom Gebrekirstos Mezgebo

    2016-01-01

    Full Text Available Earthquake input energy spectra for four soil site classes, four hysteresis models, and five ductility levels are developed for far-source ground motion effect. These energy spectra are normalized by a quantity called velocity index (VI. The use of VI allows for the creation of dimensionless spectra and results in smaller coefficients of variation. Hysteretic energy spectra are then developed to address the demand aspect of an energy-based seismic design of structures with 5% critical damping and ductility that ranges from 2 to 5. The proposed input and hysteretic energy spectra are then compared with response spectra generated using nonlinear time history analyses of real ground motions and are found to produce reasonably good results over a relatively large period range.

  1. Low-energy constants and condensates from ALEPH hadronic τ decay data

    Science.gov (United States)

    Boito, Diogo; Francis, Anthony; Golterman, Maarten; Hudspith, Renwick; Lewis, Randy; Maltman, Kim; Peris, Santiago

    2015-12-01

    We determine the next-to-leading order chiral low-energy constant L10r , and combinations C12r±C61r+C80r , C13r-C62r+C81r , C61r , and C87r , of the next-to-next-to-leading order (NNLO) chiral low-energy constants incorporating recently revised ALEPH results for the nonstrange vector (V ) and axial-vector (A ) hadronic τ decay distributions and recently updated RBC/UKQCD lattice data for the nonstrange V -A two-point function. In the MS ¯ scheme, at renormalization scale μ =770 MeV , we find L10r=-0.00350 (17 ) , C12r+C61r+C80r=0.00237 (16 ) GeV-2 , C12r-C61r+C80r=-0.00056 (15 ) GeV-2 , C13r-C62r+C81r=0.00046 (9 ) GeV-2 , C61r=0.00146 (15 ) GeV-2 , and C87r=0.00510 (22 ) GeV-2 . With errors here at or below the level expected for contributions of yet higher order in the chiral expansion, the analysis exhausts the possibilities of what can be meaningfully achieved in an NNLO analysis. We also consider the dimension-six and dimension-eight coefficients in the operator product expansion in the V -A channel.

  2. GEANT4 hadronic cascade models analysis of proton and charged pion transverse momentum spectra from p plus Cu and Pb collisions at 3, 8, and 15 GeV/c

    CERN Document Server

    Abdel-Waged, Khaled; Uzhinskii, V V

    2011-01-01

    We describe how various hadronic cascade models, which are implemented in the GEANT4 toolkit, describe proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c, recently measured in the hadron production (HARP) experiment at CERN. The Binary, ultrarelativistic quantum molecular dynamics (UrQMD) and modified FRITIOF (FTF) hadronic cascade models are chosen for investigation. The first two models are based on limited (Binary) and branched (UrQMD) binary scattering between cascade particles which can be either a baryon or meson, in the three-dimensional space of the nucleus, while the latter (FTF) considers collective interactions between nucleons only, on the plane of impact parameter. It is found that the slow (p(T) 0.3 GeV/c) proton spectra are not strongly affected by the differences between the FTF and UrQMD models. It is also shown that the UrQMD and FTF combined with Binary (FTFB) models could reproduce both proton and charged pion spectra from p + Cu and Pb...

  3. The JLab 12 GeV Energy Upgrade of CEBAF for QCD and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Cardman, Lawrence; Harwood, Leigh

    2007-06-25

    CEBAF at Jefferson Lab is a 5-pass, recirculating cw electron linac operating at ~6 GeV and devoted to basic research in nuclear physics. The 12 GeV Upgrade is a major project, sponsored by the DOE Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. We anticipate that the project will receive Critical Decision 2 approval this year and begin construction in 2008. The research program motivating the Upgrade includes: the study of hybrid mesons, which involve excited states of the glue, to explore the nature of quark confinement; dramatic improvements in our understanding of the QCD structure of the hadrons through the extension of our knowledge of their parton distribution functions to high xBjorken, where they are dominated by underlying valence quark structure, and a program of nucleon “tomography” via measurements of the Generalized Parton Distributions (GPDs), a broad program of experiments in the physics of nuclei that aims to understand the QCD basis for the nucleon-nucleon force and how nucleons and mesons arise as an approximation to the underlying quark-gluon structure; and precision tests of the Standard Model through parity violating deep inelastic and Møller scattering. The Upgrade includes: doubling the accelerating voltages of the linacs by adding 10 new high-performance cryomodules; the requisite expansion of the 2K cryogenics plant and rf power systems to support these cryomodules; upgrading the beam transport system from 6 to 12 GeV through extensive re-use and/or modification of existing hardware; and the addition of one recirculation arc, a new experimental area, and the beamline to it; and the construction of major new experimental equipment for the GPD, high-xBjorken, and hybrid meson programs. The presentation will describe the science briefly and provide some details about the accelerator plans.

  4. Probabilistic seismic hazard assessment in Greece – Part 2: Acceleration response spectra and elastic input energy spectra

    Directory of Open Access Journals (Sweden)

    G-A. Tselentis

    2010-01-01

    Full Text Available This second part of the study, deals with the evaluation of the earthquake hazard in Greece in terms of the response spectral acceleration and the elastic input energy equivalent velocity. Four sets of predictive equations were selected, two for each type of spectra. Probabilistic hazard maps were created by determining the seismic hazard at grid points covering the region of interest. The maps are presented for the dominant periods of 0.2 s and 1.0 s for each spectrum. Uniform hazard response spectra (UHRS for six cities located in the regions of highest estimated hazard are also presented. The comparison with elastic design spectra proposed by the latest national building code, has shown that the UHRS values exceed the design values at almost all periods.

  5. Measurement of zero degree inclusive photon energy spectra for $\\sqrt{s}$= 900 GeV proton-proton collisions at LHC

    CERN Document Server

    Adriani, O.; Bongi, M.; Castellini, G.; DʼAlessandro, R.; Fukatsu, K.; Haguenauer, M.; Iso, T.; Itow, Y.; Kasahara, K.; Kawade, K.; Mase, T.; Masuda, K.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Noda, K.; Papini, P.; Perrot, A.-L.; Ricciarini, S.; Sako, T.; Suzuki, K.; Suzuki, T.; Taki, K.; Tamura, T.; Torii, S.; Tricomi, A.; Turner, W.C.

    2012-01-01

    The inclusive photon energy spectra measured by the Large Hadron Collider forward (LHCf) experiment in the very forward region of LHC proton-proton collisions at $\\sqrt{s}=$ 900 GeV are reported. The results from the analysis of 0.30 $\\mathrm{nb^{-1}}$ of data collected in May 2010 in the two pseudorapidity regions of $\\eta > 10.15$ and $8.77 < \\eta < 9.46$ are compared with the predictions of the hadronic interaction models DPMJET 3.04, EPOS 1.99, PYTHIA 8.145, QGSJET I -.1em I-03 and SIBYLL 2.1, which are widely used in ultra-high-energy cosmic-ray experiments. EPOS 1.99 and SYBILL 2.1 show a reasonable agreement with the spectral shape of the experimental data, whereas they predict lower cross-sections than the data. The other models, DPMJET 3.04, QGSJET I -.1em I-03 and PYTHIA 8.145, are in good agreement with the data below 300 GeV but predict harder energy spectra than the data above 300 GeV. The results of these comparisons exhibited features similar to those for the previously reported data for ...

  6. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    Science.gov (United States)

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  7. The uniform description of high energy hadron production mechanisms in the new venus model

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Hladik, M.; Ostapchenko, S.; Werner, K

    1999-03-01

    We apply Regge and QCD techniques to develop a unified description of soft and hard processes in hadronic and heavy ion collisions as well as in electron-positron annihilation and deep inelastic scattering. The universality of the model allows to test its main algorithms versus the data on different reactions and to fix the corresponding uncertainties in a unique way.

  8. Fractal aspects of hadrons

    Directory of Open Access Journals (Sweden)

    Deppman Airton

    2017-01-01

    Full Text Available The non extensive aspects of pT distributions obtained in high energy collisions are discussed in relation to possible fractal structure in hadrons, in the sense of the thermofractal structure recently introduced. The evidences of self-similarity in both theoretical and experimental works in High Energy and in Hadron Physics are discussed, to show that the idea of fractal structure of hadrons and fireballs have being under discussion for decades. The non extensive self-consistent thermodynamics and the thermofractal structure allow one to connect non extensivity to intermittence and possibly to parton distribution functions in a single theoretical framework.

  9. Measurement of hadron and lepton-pair production from e+e- annihilation at centre-of-mass energies of 130 and 136 GeV

    CERN Document Server

    Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Casado, M P; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Bright-Thomas, P G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Lutters, G; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Aleppo, M; Ragusa, F; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Lehto, M H; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1996-01-01

    Hadronic and leptonic cross-sections and forward-backward asymmetries are measured using 5.7~pb$^{-1}$ of data taken with the ALEPH detector at LEP at $\\cms$ energies of 130 and 136~GeV. The results agree with Standard Model expectations. The measurement of hadronic cross-sections far away from the Z resonance improves the determination of the interference between photon and Z exchange. Constraints on models with extra Z bosons are presented.

  10. Impact of Fission Neutron Energies on Reactor Antineutrino Spectra

    Science.gov (United States)

    Hermanek, Keith; Littlejohn, Bryce; Gustafson, Ian

    2017-09-01

    Recent measurements of the reactor antineutrino spectra (Double Chooz, Reno, and Daya Bay) have shown a discrepancy in the 5-7 MeV region when compared to current theoretical models (Vogel and Huber-Mueller). There are numerous theories pertaining to this antineutrino anomaly, including theories that point to new physics beyond the standard model. In the paper ``Possible Origins and Implications of the Shoulder in Reactor Neutrino Spectra'' by A. Hayes et al., explanations for this anomaly are suggested. One theory is that there are interactions from fast and epithermal incident neutrons which are significant enough to create more events in the 5-7 MeV by a noticeable amount. In our research, we used the Oklo software network created by Dan Dwyer. This generates ab initio antineutrino and beta decay spectra based on standard fission yield databases ENDF, JENDL, JEFF, and the beta decay transition database ENSDF-6. Utilizing these databases as inputs, we show with reasonable assumptions one can prove contributions of fast and epithermal neutrons is less than 3% in the 5-7 MeV region. We also discovered rare isotopes are present in beta decay chains but not well measured and have no corresponding database information, and studied its effect onto the spectrum.

  11. Measurements of energy flow distributions of 10 GeV/c hadronic showers in iron and in aluminium

    CERN Document Server

    Friend, B; Kiss, D; Niebergall, F; Schmidt-Parzefall, W; Wilmsen, W; Winter, Klaus

    1976-01-01

    The lateral distribution of the energy of hadron showers initiated by 10 GeV/c pi /sup -/ and protons has been measured at various depths in Fe and Al absorbers. It is found to scale with the density of the absorber. The energy flow is characterized by a cone of +or-65 mrad opening angle. The direction of the energy flow can be determined by two points, the vertex of the primary interaction and the centre of gravity of the energy deposited by the shower. The fluctuation of the centre of gravity has been measured using a fine-grained calorimeter and is found to give the shower direction with an r.m.s. spread of 60 mrad. (9 refs).

  12. Elliptic flow due to charged hadrons for Au+Au collisions at RHIC energy 62.4 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Somani Ajit, E-mail: ajit.somani@gmail.com [Department of Physics, Suresh Gyan Vihar University, Jaipur, Rajasthan, INDIA (Presently working at Govt. Polytechnic College, Hanumangarh, Rajasthan, INDIA) (India); Sudhir, Bhardwaj [Govt. College of Engineering & Technology, Bikaner, Rajasthan (India); Ashish, Agnihotri [Department of Physics, SBCET, Jaipur, Rajasthan (India)

    2016-05-06

    Elliptic flow is an important observable in search of Quark Gluon Plasma. The elliptic flow parameter dependence on centrality due to charged hadrons were studied using events generated by event generator AMPT at center of mass energy of 62.4 GeV per nucleon pair for Au+Au collisions. This study performed for pseudorapidity range from −0.35 to 0.35 and transverse momentum bins p{sub t} = 0.2 to 1 GeV/c and 1 to 2 GeV/c. We compared the results obtained from simulated data and RHIC-PHENIX data.

  13. Photon-hadron discrimination with improved clustering for a preshower detector in high energy heavy ion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Susanta Kumar, E-mail: sushant@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Chattopadhyay, Subhasis; Viyogi, Y.P. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India)

    2012-11-21

    The fuzzy c-mean clustering algorithm has been applied to the data set consisting of hits in a highly granular photon multiplicity detector installed in the ALICE experiment at the LHC. The clusters obtained using a modification of the algorithm based on the intensity of cells (called weighted fuzzy c-mean algorithm) are used as input in an artificial neural network formalism for photon-hadron discrimination. Results are discussed in terms of the photon reconstruction efficiency and the purity of photon sample and their centrality and pseudorapidity dependence at the LHC energy.

  14. Hawking-Unruh hadronization and strangeness production in high energy collisions

    Directory of Open Access Journals (Sweden)

    Castorina Paolo

    2015-01-01

    Full Text Available The interpretation of quark (q- antiquark (q̄ pairs production and the sequential string breaking as tunneling through the event horizon of colour confinement leads to a thermal hadronic spectrum with a universal Unruh temperature, T ≃ 165 Mev, related to the quark acceleration, a, by T = a/2π. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilibrium and hence a suppression of strange particle production in elementary collisions. In nucleus-nucleus collisions, where the quark density is much bigger, one has to introduce an average temperature (acceleration which dilutes the quark mass effect and the strangeness suppression almost disappears.

  15. Azimuthal asymmetries in production of charged hadrons by high energy muons on polarized deuterium targets

    CERN Document Server

    Savin, Igor A.

    2010-01-01

    Search for azimuthal asymmetries in semi-inclusive production of charged hadrons by 160 GeV muons on the longitudinally polarized deuterium target, has been performed using the 2002- 2004 COMPASS data. The observed asymmetries integrated over the kinematical variables do not depend on the azimuthal angle of produced hadrons and are consistent with the ratio $g_1^d(x)/f_1^d(x)$. The asymmetries are parameterized taking into account possible contributions from different parton distribution functions and parton fragmentation functions depending on the transverse spin of quarks.They can be modulated (either/or/and) with $\\sin(\\phi), \\sin(2\\phi), \\sin(3\\phi)$ and $\\cos(\\phi)$. The $x$-, $z$- and $p_h^T$-dependencies of these amplitudes are studied.

  16. The energy spectra of anomalous oxygen at the time of two successive solar minima

    CERN Document Server

    Kondratyeva, M A; Tretyakova, S P; Zhuravlev, D A

    1999-01-01

    The energy spectra of anomalous oxygen have been determined from nuclear track detectors exposed aboard the Earth-orbiting satellites at altitudes ranging from approx 250-400 km in two consecutive solar minimum periods of 1986-1987 and 1994-1995 with opposite polarity of the solar magnetic field. A comparison of the spectra shows no contradiction to current drift models.

  17. Unusual features of proton and α-spectra from low-energy heavy-ion ...

    Indian Academy of Sciences (India)

    2015-11-27

    induced reactions on Nb and Y targets with the primary aim of measuring the excitation energy and angular momentum dependence of nuclear level density. In the -multiplicity gated spectra, an unusual feature of a broad ...

  18. Evaluation of the effective energy of primary and transmmitted workload weighted X-ray spectra

    Science.gov (United States)

    Santos, J. C.; Costa, P. R.

    2014-02-01

    Current methods for X-ray shielding evaluation for imaging facilities do not take into account the effective energy of the radiation impinging on primary barrier. In addition, the X-ray beam attenuation through the patient is not considered in radiation shielding. The proposed models do not deal with the hardening of the spectra between the primary and transmitted beams. Therefore, the present work proposes the evaluation of X-ray spectra transmitted by an adult patient (anthropomorphic phantom) and a shielding barrier weighted by typical workload distributions. A set of primary spectra produced by a voltage range from 60 to 140 kV was measured with a CdTe spectrometer system. A second set of X-ray spectra transmitted through a 15 mm thickness barite mortar plate was also measured employing the same beam quality and voltage range. The air-kerma was simultaneously measured using an ionization chamber. The primary and transmitted experimental X-ray spectra were weighted by a typical chest examination workload distribution. The resulting weighted spectra represent the superposition of the radiation beams typically used in chest examinations. The effective energy of primary weighted spectra was estimated in 42.4 keV and the effective energy of the corresponding transmitted spectra was estimated in 64.7 keV.

  19. Hadron production in high energy muon scattering. [Quark-parton model, 225 GeV, structure functions, particle ratios

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10/sup 10/ muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s//sup 0/ and ..lambda../sup 0/ decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references.

  20. Statistical simulation of the energy spectra of field-emission electrons

    Science.gov (United States)

    Egorov, N. V.; Antonov, A. Yu.; Demchenko, N. S.

    2017-02-01

    Random energies of electrons that escape from the source in the course of field emission are simulated using energy spectra. A relationship of the random values of total energy and the energy related to the normal (with respect to surface) component of momentum is established. A family of quadrature formulas needed for the integration of the distribution density of particles is analyzed. A hypothesis on the compliance of selected random energies with desired distribution laws is statistically tested.

  1. Study of Shadowing and Hadron Production in High Energy $\\mu$ Scattering Using Nuclear Targets

    CERN Multimedia

    2002-01-01

    The experiment is based on the full EMC apparatus (Expts. NA2/NA9) and will in addition use a system of fine hodoscopes to trigger on scattered muons at very small angle. The trajectory of these scattered muons will be measured in proportional wire chambers which are live also in the beam region. \\\\ \\\\ The basic aim of the experiment are twofold: \\item a) Study of the components, point-like and hadron-like of the photon through a study of shadowing. This involves the measurement of the total virtual photon cross section as a function of its total mass squared (Q$^{2}$) and the Bjorken invariant x$_{bj}$ on a series of nuclear targets. Since two essential nuclei are H$^{2}$ and D$^{2}$, information will also be obtained on the proton and deuteron structure functions for very low x$_{bj}$ values. \\end{enumerate} \\item b) By examining the change of the distribution of hadrons produced by muon scattering on nuclei, information can be obtained on the evolution of the elementary quark system into the observed hadro...

  2. Energy fluxes and spectra for turbulent and laminar flows

    KAUST Repository

    Verma, Mahendra K.

    2017-05-14

    Two well-known turbulence models to describe the inertial and dissipative ranges simultaneously are by Pao~[Phys. Fluids {\\\\bf 8}, 1063 (1965)] and Pope~[{\\\\em Turbulent Flows.} Cambridge University Press, 2000]. In this paper, we compute energy spectrum $E(k)$ and energy flux $\\\\Pi(k)$ using spectral simulations on grids up to $4096^3$, and show consistency between the numerical results and predictions by the aforementioned models. We also construct a model for laminar flows that predicts $E(k)$ and $\\\\Pi(k)$ to be of the form $\\\\exp(-k)$, and verify the model predictions using numerical simulations. The shell-to-shell energy transfers for the turbulent flows are {\\\\em forward and local} for both inertial and dissipative range, but those for the laminar flows are {\\\\em forward and nonlocal}.

  3. Computation of electron energy loss spectra by an iterative method

    Energy Technology Data Exchange (ETDEWEB)

    Koval, Peter [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Centro de Física de Materiales CFM-MPC, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián (Spain); Ljungberg, Mathias Per [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Foerster, Dietrich [LOMA, Université de Bordeaux 1, 351 Cours de la Liberation, 33405 Talence (France); Sánchez-Portal, Daniel [Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, E-20018 San Sebastián (Spain); Centro de Física de Materiales CFM-MPC, Centro Mixto CSIC-UPV/EHU, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián (Spain)

    2015-07-01

    A method is presented to compute the dielectric function for extended systems using linear response time-dependent density functional theory. Localized basis functions with finite support are used to expand both eigenstates and response functions. The electron-energy loss function is directly obtained by an iterative Krylov-subspace method. We apply our method to graphene and silicon and compare it to plane-wave based approaches. Finally, we compute electron-energy loss spectrum of C{sub 60} crystal to demonstrate the merits of the method for molecular crystals, where it will be most competitive.

  4. Comparing Erlang Distribution and Schwinger Mechanism on Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Li-Na Gao

    2016-01-01

    Full Text Available We study the transverse momentum spectra of J/ψ and Υ mesons by using two methods: the two-component Erlang distribution and the two-component Schwinger mechanism. The results obtained by the two methods are compared and found to be in agreement with the experimental data of proton-proton (pp, proton-lead (p-Pb, and lead-lead (Pb-Pb collisions measured by the LHCb and ALICE Collaborations at the large hadron collider (LHC. The related parameters such as the mean transverse momentum contributed by each parton in the first (second component in the two-component Erlang distribution and the string tension between two partons in the first (second component in the two-component Schwinger mechanism are extracted.

  5. Low-energy Spectra of Gamma-Ray Bursts from Cooling Electrons

    Science.gov (United States)

    Geng, Jin-Jun; Huang, Yong-Feng; Wu, Xue-Feng; Zhang, Bing; Zong, Hong-Shi

    2018-01-01

    The low-energy spectra of gamma-ray bursts’ (GRBs) prompt emission are closely related to the energy distribution of electrons, which is further regulated by their cooling processes. We develop a numerical code to calculate the evolution of the electron distribution with given initial parameters, in which three cooling processes (i.e., adiabatic, synchrotron, and inverse Compton cooling) and the effect of a decaying magnetic field are coherently considered. A sequence of results is presented by exploring the plausible parameter space for both the fireball and the Poynting flux–dominated regime. Different cooling patterns for the electrons can be identified, and they are featured by a specific dominant cooling mechanism. Our results show that the hardening of the low-energy spectra can be attributed to the dominance of synchrotron self-Compton cooling within the internal shock model or to decaying synchrotron cooling within the Poynting flux–dominated jet scenario. These two mechanisms can be distinguished by observing the hard low-energy spectra of isolated short pulses in some GRBs. The dominance of adiabatic cooling can also lead to hard low-energy spectra when the ejecta is moving at an extreme relativistic speed. The information from the time-resolved low-energy spectra can help to probe the physical characteristics of the GRB ejecta via our numerical results.

  6. Overview of ALICE results on hadronic resonance production

    Science.gov (United States)

    Badalà, Angela

    2017-04-01

    The measurement of hadronic resonance production in heavy-ion collisions is a valuable tool to study the properties of the hadronic phase. In addition, these measurements contribute to the study of particle production mechanisms, such as recombination and statistical hadronization, and can give information on the parton energy loss in the hot QCD medium. Measurement of a wide set of resonances with different lifetimes is useful to better characterize the hadronic phase and the time span between chemical and thermal freezeout. Proton-proton (pp) collisions have been used extensively as a reference for the study of larger colliding systems, but recent measurements performed in high-multiplicity pp and proton-lead (p-Pb) collisions at the LHC have shown features that are reminiscent of those observed in lead-lead (Pb-Pb) collisions. Resonance measurements in small systems serve as a reference for heavy-ion collisions and contribute to searches for collective effects. An overview of recent results on hadronic resonance production measured in ALICE will be presented. Transverse momentum (pT) spectra, ratios of yield to that of long-lived hadrons of the K*(892)0 and ϕ(1020) mesons in pp, p-Pb, and Pb-Pb collisions at LHC energies will be discussed. The most recent results include the measurement of resonance production in pp collisions at 7 TeV as a function of the charged-particle multiplicity, that will be compared to the results for other light hadrons as pions, kaons, protons, KS0, Λ, Ξ-, Ω-. In addition, the pT spectra and yields of the ρ(770)0 meson in pp and Pb-Pb collisions at √sNN = 2.76 TeV and of Σ(1385)± and Ξ(1530)0 baryons in p-Pb collisions at √sNN = 5.02 TeV will be presented.

  7. Testing of the VENUS 4.12, DPMJET 2.55, QGSJET II-03 and SIBYLL 2.3 hadronic interaction models via help of the atmospheric vertical muon spectra

    Science.gov (United States)

    Dedenko, L. G.; Lukyashin, A. V.; Roganova, T. M.; Fedorova, G. F.

    2017-10-01

    Uncertainties of the model energy spectra of the most energetic secondary π± -mesons (and K± -mesons) are discussed. Computer simulations of the partial energy spectra of the atmospheric vertical muons induced by primary cosmic particles with various fixed energies in interval 102 -107 GeV in terms of the VENUS 4.12, DPMJET 2.55, QGSJET II-03 and SIBYLL 2.3 models had been carried out with help of CORSIKA package. These partial spectra should be convoluted with the contemporary spectra of the primary cosmic particles. Results of simulations are compared with the contemporary atmospheric vertical muon flux data. Comparison shows that all models underestimate production of secondary π± -mesons (and K± -mesons) by factor of ˜ 2 at the most high energies. This underestimation induces more rapid development of extensive air showers in the atmosphere and results in uncertainties in estimates of energy and composition of the primary cosmic particles.

  8. Industrial Technology for Unprecented Energy and Luminosity The Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2004-01-01

    With over 3 billion Swiss francs procurement contracts under execution in industry and the installation of major technical systems in its first 3.3 km sector, the Large Hadron Collider (LHC) construction is now in full swing at CERN, the European Organization for Nuclear Research. The LHC is not only the most challenging particle accelerator, it is also the largest global project ever for a scientific instrument based on advanced technology. Starting from accelerator performance requirements, we recall how these can be met by an appropriate combination of technologies, such as high-field superconducting magnets, superfluid helium cryogenics, power electronics, with particular emphasis on developments required to meet demanding specifications, and industrialization issues which had to be solved for achieving series production of precision components under tight quality assurance and within limited resources. This provides the opportunity for reviewing the production status of the main systems and the progress ...

  9. Yield spectra and the continuous-slowing-down approximation. [electron energy model

    Science.gov (United States)

    Jackman, C. H.; Garvey, R. H.; Green, A. E. S.

    1977-01-01

    The continuous-slowing-down approximation (CSDA) and the modified discrete-energy-bin (MDEB) method are used to calculate a yield spectra U(E, E sub 0) of electrons with energy E resulting from a primary of energy E sub 0. The results of the two calculations are then compared. The MDEB method is found to produce consistently more ions per energy loss while at the same time producing less excitations of some of the low-lying states when compared with the CSDA. These discrepancies can be explained by studying the contributions from the individual generations of electrons to the yield spectra. An integral equation for the solution of the yield spectra is also presented.

  10. High energy spectra on Fe-based unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Nag, Pranab Kumar; Baumann, Danny; Schlegel, Ronny; Beck, Robert; Hess, Christian [Leibniz-Institute for Solid State and Materials Research, IFW-Dresden, 01171 Dresden (Germany); Wurmehl, Sabine; Buechner, Bernd [Leibniz-Institute for Solid State and Materials Research, IFW-Dresden, 01171 Dresden (Germany); Institut fuer Festkoerperphysik, TU Dresden, D-01062 Dresden (Germany); Wolf, Thomas [Karlsruher Institut fuer Technologie, Institut fuer Festkoerperphysik, Postfach 3640, D-76021 Karlsruhe (Germany)

    2015-07-01

    We have performed low-temperature scanning tunneling microscopy and spectroscopy on LiFeAs, Co doped NaFeAs and FeSe superconductors. The spectroscopy data routinely reveal important aspects of the electronic structure both very close to the Fermi level, i.e. the superconducting gap, and distinct features at higher energies. The latter appear in occupied states roughly between -0.3 eV and -0.5 eV in these materials, and allow specific comparison with ARPES band structure data.

  11. Abundances, charge states, and energy spectra of helium and heavy ions during solar particle events

    Science.gov (United States)

    Gloeckler, G.; Sciambi, R.; Fan, C. Y.; Hovestadt, D.

    1975-01-01

    Carbon and oxygen energy spectra observed during several solar events indicate a systematic deviation of these spectra from a simple power law: the spectra bend down below about 100 keV/nuc and the amount of this bending is highly correlated with the size of the flare, as measured by the 'event averaged' flux of 130-220 keV protons. The energy spectra of helium computed for the same time periods do not show a similar feature. A large variability of the alpha/CNO ratio is found from event to event (from 2 to about 20 at 40 keV/nuc), and in all cases examined the carbon and oxygen nuclei are nearly fully stripped. These results are interpreted as evidence for storage of energetic ions in hot coronal regions, followed by strong adiabatic deceleration.

  12. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  13. Hadronization via coalescence at RHIC and LHC

    Directory of Open Access Journals (Sweden)

    Minissale V.

    2016-01-01

    Full Text Available An hadronization model that includes coalescence and fragmentation is used in this work to obtain predictions at both RHIC and LHC energy for light and strange hadrons transverse momentum spectra (π, p, k, Λ and baryon to meson ratios (p/π, Λ/k in a wide range of pT. This is accomplished without changing coalescence parameters. The ratios p/π and Λ/K shows the right behaviour except for some lack of baryon yield in a limited pT range around 6 GeV. This would indicate that the AKK fragmentation functions is too flat at pT < 8 GeV.

  14. Estimation of high-pT Jet Energy Scale Uncertainty from single hadron response with the ATLAS detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00534683; The ATLAS collaboration

    2016-01-01

    The jet energy scale (JES) uncertainty is estimated using different methods at different pT ranges. In situ techniques exploiting the pT balance between a jet and a reference object (e.g. Z or gamma) are used at lower pT, but at very high pT (> 2.5 TeV) there is not enough statistics for in-situ techniques. The JES uncertainty at high-pT is important in several searches for new phenomena, e.g. the dijet resonance and angular searches. In the highest pT range, the JES uncertainty is estimated using the calorimeter response to single hadrons. In this method, jets are treated as a superposition of energy depositions of single particles. An uncertainty is applied to each energy depositions belonging to the particles within the jet, and propagated to the final jet energy scale. This poster presents the JES uncertainty found with this method at sqrt(s) = 8 TeV and its developments.

  15. Effective field theory approach to parton-hadron conversion in high energy QCD processes

    CERN Document Server

    Kinder-Geiger, Klaus

    1995-01-01

    A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...

  16. Calculated and experimental low-loss electron energy loss spectra of dislocations in diamond and GaN

    CERN Document Server

    Jones, R; Gutiérrez-Sosa, A; Bangert, U; Heggie, M I; Blumenau, A T; Frauenheim, T; Briddon, P R

    2002-01-01

    First-principles calculations of electron energy loss (EEL) spectra for bulk GaN and diamond are compared with experimental spectra acquired with a scanning tunnelling electron microscope offering ultra-high-energy resolution in low-loss energy spectroscopy. The theoretical bulk low-loss EEL spectra, in the E sub g to 10 eV range, are in good agreement with experimental data. Spatially resolved spectra from dislocated regions in both materials are distinct from bulk spectra. The main effects are, however, confined to energy losses lying above the band edge. The calculated spectra for low-energy dislocations in diamond are consistent with the experimental observations, but difficulties remain in understanding the spectra of threading dislocations in GaN.

  17. Unfolding linac photon spectra and incident electron energies from experimental transmission data, with direct independent validation.

    Science.gov (United States)

    Ali, E S M; McEwen, M R; Rogers, D W O

    2012-11-01

    In a recent computational study, an improved physics-based approach was proposed for unfolding linac photon spectra and incident electron energies from transmission data. In this approach, energy differentiation is improved by simultaneously using transmission data for multiple attenuators and detectors, and the unfolding robustness is improved by using a four-parameter functional form to describe the photon spectrum. The purpose of the current study is to validate this approach experimentally, and to demonstrate its application on a typical clinical linac. The validation makes use of the recent transmission measurements performed on the Vickers research linac of National Research Council Canada. For this linac, the photon spectra were previously measured using a NaI detector, and the incident electron parameters are independently known. The transmission data are for eight beams in the range 10-30 MV using thick Be, Al and Pb bremsstrahlung targets. To demonstrate the approach on a typical clinical linac, new measurements are performed on an Elekta Precise linac for 6, 10 and 25 MV beams. The different experimental setups are modeled using EGSnrc, with the newly added photonuclear attenuation included. For the validation on the research linac, the 95% confidence bounds of the unfolded spectra fall within the noise of the NaI data. The unfolded spectra agree with the EGSnrc spectra (calculated using independently known electron parameters) with RMS energy fluence deviations of 4.5%. The accuracy of unfolding the incident electron energy is shown to be ∼3%. A transmission cutoff of only 10% is suitable for accurate unfolding, provided that the other components of the proposed approach are implemented. For the demonstration on a clinical linac, the unfolded incident electron energies and their 68% confidence bounds for the 6, 10 and 25 MV beams are 6.1 ± 0.1, 9.3 ± 0.1, and 19.3 ± 0.2 MeV, respectively. The unfolded spectra for the clinical linac agree with the

  18. Pulse-by-pulse variation of energy spectra on the LNS linac

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, A.; Oyamada, M.; Kurihara, A.; Shinto, K.; Mutoh, M. [Tohoku Univ., Sendai (Japan). Lab. of Nuclear Science

    2000-07-01

    The 300MeV Linac at LNS is driven with a maximum repetition rate of 300 Hz generated horn the six harmonics of the 50Hz electricity power line. We have constructed a new system that measures respective beam energy spectra by dividing pulses into 6 periodic groups. Results suggest differences in 6 energy spectra, are caused by periodic variation of klystron RF power. We tried to stabilize it by applying an external reference voltage for the de'Qing circuits in the klystron pulser. (author)

  19. A study of the hadron component behavior of cosmic radiation in atmosphere at high energies; Um estudo do comportamento das componentes hadronicas da radiacao cosmica na atmosfera em altas energias

    Energy Technology Data Exchange (ETDEWEB)

    Brunetto, Sergio Querino

    1990-12-31

    We analyse the behavior of the hadronic cosmic-ray components in the atmosphere, assuming that the inelastic hadron-air cross section depends on the interaction energy. We solve the one dimensional diffusion equations using the leading particle model and a Feynman-like procedure of ordered exponential operators. We compare our solutions with experimental data for hadronic flux at different atmospheric depths. (author). 79 refs., 16 figs.

  20. Quarkonium production in hadronic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gavai, R. [Tata Institute for Fundamental Research, Bombay (India); Schuler, G.A.; Sridhar, K. [CERN, Geneva (Switzerland)] [and others

    1995-07-01

    We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies.

  1. Dynamics and energy spectra of aperiodic discrete-time quantum walks

    Science.gov (United States)

    Lo Gullo, N.; Ambarish, C. V.; Busch, Th.; Dell'Anna, L.; Chandrashekar, C. M.

    2017-07-01

    We investigate the role of different aperiodic sequences in the dynamics of single quantum particles in discrete space and time. For this we consider three aperiodic sequences, namely, the Fibonacci, Thue-Morse, and Rudin-Shapiro sequences, as examples of tilings the diffraction spectra of which have pure point, singular continuous, and absolutely continuous support, respectively. Our interest is to understand how the order, intrinsically introduced by the deterministic rule used to generate the aperiodic sequences, is reflected in the dynamical properties of the quantum system. For this system we consider a single particle undergoing a discrete-time quantum walk (DTQW), where the aperiodic sequences are used to distribute the coin operations at different lattice positions (inhomogeneous DTQW) or by applying the same coin operation at all lattice sites at a given time but choosing different coin operation at each time step according to the chosen aperiodic sequence (time dependent DTQW). We study the energy spectra and the spreading of an initially localized wave packet for different cases, finding that in the case of Fibonacci and Thue-Morse tilings the system is superdiffusive, whereas in the Rudin-Shapiro case it is strongly subdiffusive. Trying to understand this behavior in terms of the energy spectra, we look at the survival amplitude as a function of time. By means of the echo we present strong evidence that, although the three orderings are very different as evidenced by their diffraction spectra, the energy spectra are all singular continuous except for the inhomogeneous DTQW with the Rudin-Shapiro sequence where it is discrete. This is in agreement with the observed strong localization both in real space and in the Hilbert space. Our paper is particularly interesting because quantum walks can be engineered in laboratories by means of ultracold gases or in optical waveguides, and therefore would be a perfect playground to study singular continuous energy

  2. Measurement of the azimuthal ordering of charged hadrons with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    This paper presents a measurement of the ordering of charged hadrons in the azimuthal angle relative to the beam axis in high-energy proton-proton collisions at the Large Hadron Collider (LHC). A spectral analysis of correlations between longitudinal and transverse components of the momentum of the charged hadrons, driven by the search for phenomena related to the structure of the QCD field, is performed. Data were recorded with the ATLAS detector at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and $\\sqrt{s}$ = 7 TeV. The correlations measured in a phase space region dominated by low-pT particles are not well described by conventional models of hadron production. The measured spectra show features consistent with the fragmentation of a QCD string represented by a helix-like ordered gluon chain.

  3. Similarity between turbulent kinetic energy and temperature spectra in the near-wall region

    Science.gov (United States)

    Antonia, R. A.; Kim, J.

    1991-01-01

    The similarity between turbulent kinetic energy and temperature spectra, previously confirmed using experimental data in various turbulent shear flows, is validated in the near-wall region using direct numerical simulation data in a fully developed turbulent channel flow. The dependence of this similarity on the molecular Prandtl number is also examined.

  4. The two classes of low-energy spectra in finite carbon nanotubes

    NARCIS (Netherlands)

    Marganska, Magdalena; Chudzinski, Piotr; Grifoni, Milena

    2015-01-01

    We study the spectra of finite-length carbon nanotubes (CNTs) of arbitrary chirality. They divide into two classes, which arise because of different rotational symmetries of the low-energy eigenstates. In one of them (the zigzag class), the spinless spectrum is doubly degenerate and the two states

  5. Elliptic flow in a hadron-string cascade model at 130 GeV energy

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005, India; Division of Physics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan; Nuclear Data Center, Department of Nuclear Energy System, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan ...

  6. Measurement of energy-energy correlations in e/sup +/e/sup -/. -->. hadrons at. sqrt. s = 29 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E.; Ford, W.T.; Qi, N.; Read A.L. Jr.; Smith, J.G.; Camporesi, T.; De Sangro, R.; Marini, A.; Peruzzi, I.; Piccolo, M.; Ronga, F.; Blume, H.T.; Hurst, R.B.; Sleeman, J.C.; Venuti, J.P.; Wald, H.B.; Weinstein, R.; Band, H.R.; Gettner, M.W.; Goderre, G.P.; Meyer, O.A.; Moromisato, J.H.; Shambroom, W.D.; von Goeler, E.; Ash, W.W.; Chadwick, G.B.; Clearwater, S.H.; Coombes, R.W.; Kaye, H.S.; Lau, K.H.; Leedy, R.E.; Lynch, H.L.; Messner, R.L.; Moss, L.J.; Muller, F.; Nelson, H.N.; Ritson, D.M.; Rosenberg, L.J.; Wiser, D.E.; Zdarko, R.W.; Groom, D.E.; Lee, H.; Delfino, M.C.; Heltsley, B.K.; Johnson, J.R.; Lavine, T.L.; Maruyama, T.; Prepost, R.

    1985-06-01

    The energy-energy correlation cross section for hadrons produced in electron-positron annihilation at a center-of-mass energy of 29 GeV has been measured with the MAC detector at SLAC. The result is corrected for the effects of detector resolution, acceptance, and initial-state radiation. The correlation is measured in two independent ways on the same data sample: the energy weights and angles are obtained either from the energy flow in the finely segmented total absorption calorimeters or from the momenta of charged tracks in the central drift chamber. This procedure helps reduce systematic errors by cross-checking the effects of the detector on the measurement, particularly important because the corrections depend on complex Monte Carlo simulations. The results are compared with the predictions of Monte Carlo models of complete second-order perturbative quantum chromodynamics and fragmentation, with the following conclusions: (1) fitting the asymmetry for large correlation angles gives values for ..cap alpha../sub S/ of 0.120 +- 0.006 in perturbation theory, 0.185 +- 0.013 in the Lund string model, and values which vary from 0.105 to 0.140 ( +- 0.01) in the incoherent jet models, depending on the gluon fragmentation scheme and the algorithm used for momentum conservation; and (2) the string fragmentation model provides a satisfactory description of the measured energy-energy correlation cross section, whereas incoherent jet formation does not.

  7. Energy Extraction in the CERN Large Hadron Collider a Project Overview

    CERN Document Server

    Dahlerup-Petersen, K; Kazmine, B; Medvedko, A S; Sytchev, V V; Vasilev, L B

    2001-01-01

    In case of a resistive transition (quench), fast and reliable extraction of the magnetic energy, stored in the superconducting coils of the electromagnets of a particle collider, represents an important part of its magnet protection system. In general, the quench detectors, the quench heaters and the cold by-pass diodes across each magnet, together with the energy extraction facilities provide the required protection of the quenching superconductors against damage due to local energy dissipation. In CERN's LHC machine the energy stored in each of its eight superconducting dipole chains exceeds 1300 MJ. Following an opening of the extraction switches this energy will be absorbed in large extraction resistors located in the underground collider tunnel or adjacent galleries, during the exponential current decay. Also the sixteen, 13 kA quadrupole chains (QF, QD) and more than one hundred and fifty, 600 A circuits of the corrector magnets will be equipped with extraction systems. The extraction switch-gear is bas...

  8. The Large Hadron Collider

    CERN Multimedia

    Wright, Alison

    2007-01-01

    "We are on the threshold of a new era in particle-physics research. In 2008, the Large Hadron Collider (LHC) - the hightest-energy accelerator ever built - will come into operation at CERN, the European labortory that straddles the French-Swiss border near Geneva." (1/2 page)

  9. Energy spectra of sputtered positive ions under Cs{sup +} bombardment

    Energy Technology Data Exchange (ETDEWEB)

    Gnaser, Hubert, E-mail: gnaser@rhrk.uni-kl.d [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, D-67663 Kaiserslautern (Germany); Institute for Surface and Thin-Film Analysis IFOS, Trippstadter Str. 120, D-67663 Kaiserslautern (Germany)

    2011-05-01

    The emission-energy spectra of atomic and molecular secondary ions sputtered from various metals and semiconductors (Al, Cu, In, Si, InP, and InSb) under 5.5-keV Cs{sup +} irradiation were investigated. The emitted ions were detected in a high-sensitivity double-focusing secondary-ion mass spectrometer. Specifically, the energy distributions of Cs{sup +}, Cs{sub 2}{sup +}, MCs{sup +}, and M{sup +} ions (where M designates one of the target elements) were recorded for emission energies E {<=} 125 eV. All ion species exhibit a peak at low energy (E < 5 eV), but differ significantly in the respective fall-off to high emission energies. The influence of the oxygen partial pressure in the vicinity of the sputtered surface on the energy spectra was examined for Cs{sup +} ions emitted from Si. With an increase of the ratio r of the O{sub 2} flux to the Cs{sup +} flux, the spectra shift to higher emission-energy values, with the total shift amounting to {approx}0.45 eV at a value of r {approx} 3.3. Concurrently, the intensity of Cs{sup +} increases by {approx}30%. The measured emission distributions of Cs{sup +} ions from different samples were compared with the predictions of the electron-tunneling model of secondary-ion formation. It is found that the experimental spectra can be reproduced quite well when employing specific sets of parameters in that theoretical concept. The possible limitations of such a comparison are discussed.

  10. Local Hadronic Calibration

    CERN Document Server

    Barillari, T; Carli, T; Erdmann, J; Giovannini, P; Grahn, K J; Issever, C; Jantsch, A; Kiryunin, A; Lohwasser, K; Maslennikov, A; Menke, S; Oberlack, H; Pospelov, G; Rauter, E; Schacht, P; Spanó, F; Speckmayer, P; Stavina, P; Strízenec, P

    2008-01-01

    The scheme of the hadronic calibration is discussed. Based on the cluster reconstruction an effective noise suppression is achieved. In a first step clusters are classified as electromagnetic or hadronic clusters. The weighting scheme to correct for the different e/pion response in the ATLAS calorimeter is presented. Dead material corrections and out of cluster corrections yield finally a signal which is rather close to the energy deposited by the final state particles in the ATLAS calorimeter. The constants and algorithms are derived from single pion MC studies and tested with jets. The validation of the scheme using testbeam data is presented as well.

  11. Dynamic molecular structure retrieval from low-energy laser-induced electron diffraction spectra

    Science.gov (United States)

    Vu, Dinh-Duy T.; Phan, Ngoc-Loan T.; Hoang, Van-Hung; Le, Van-Hoang

    2017-12-01

    A recently developed quantitative rescattering theory showed that a laser-free elastic cross section can be separated from laser-induced electron diffraction (LIED) spectra. Based upon this idea, Blaga et al investigated the possibility of reconstructing molecular structure from LIED spectra (2012 Nature 483 7388). In the above study, an independent atoms model (IAM) was used to interpret high-energy electron–molecule collisions induced by a mid-infrared laser. Our research aims to extend the application range of this structural retrieval method to low-energy spectra induced by more common near-infrared laser sources. The IAM is insufficient in this case, so we switch to a more comprehensive model—the multiple scattering (MS) theory. From the original version concerning only neutral targets, we upgrade the model so that it is compatible with electron–ion collisions at low energy. With available LIED experiment data of CO2 and O2, the upgraded MS is shown to be greatly effective as a tool for molecular imaging from spectra induced by a near-infrared laser. The captured image is at about 2 fs after the ionization, shorter than the period 4–6 fs by using the mid-infrared laser in Blaga’s experiment.

  12. Energy spectra of massive two-body decay products and mass measurement

    CERN Document Server

    Agashe, Kaustubh; Hong, Sungwoo; Kim, Doojin

    2016-01-01

    We have recently established a new method for measuring the mass of unstable particles produced at hadron colliders based on the analysis of the energy distribution of a massless product from their two-body decays. The central ingredient of our proposal is the remarkable result that, for an unpolarized decaying particle, the location of the peak in the energy distribution of the observed decay product is identical to the (fixed) value of the energy that this particle would have in the rest-frame of the decaying particle, which, in turn, is a simple function of the involved masses. In addition, we utilized the property that this energy distribution is symmetric around the location of peak when energy is plotted on a logarithmic scale. The general strategy was demonstrated in several specific cases, including both beyond the SM particles, as well as for the top quark. In the present work, we generalize this method to the case of a massive decay product from a two-body decay; this procedure is far from trivial b...

  13. Identification and energy calibration of hadronically decaying tau leptons with the ATLAS experiment in $pp$ collisions at $\\sqrt{s}$=8 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffmann, Dirk; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2015-07-02

    This paper describes the trigger and offline reconstruction, identification and energy calibration algorithms for hadronic decays of tau leptons employed for the data collected from $pp$ collisions in 2012 with the ATLAS detector at the LHC center-of-mass energy $\\sqrt{s}$ = 8 TeV. The performance of these algorithms is measured in most cases with Z decays to tau leptons using the full 2012 dataset, corresponding to an integrated luminosity of 20.3 fb$^{-1}$. An uncertainty on the offline reconstructed tau energy scale of 2% to 4%, depending on transverse energy and pseudorapidity, is achieved using two independent methods. The offline tau identification efficiency is measured with a precision of 2.5% for hadronically decaying tau leptons with one associated track, and of 4% for the case of three associated tracks, inclusive in pseudorapidity and for a visible transverse energy greater than $20$ GeV. For hadronic tau lepton decays selected by offline algorithms, the tau trigger identification efficiency is me...

  14. Proton Transmitting Energy Spectra and Transmission Electron Microscope Examinations of Biological Samples

    Science.gov (United States)

    Tan, Chun-yu; Xia, Yue-yuan; Zhang, Jian-hua; Mu, Yu-guang; Wang, Rui-jin; Liu, Ji-tian; Liu, Xiang-dong; Yu, Zeng-liang

    1999-02-01

    Transmission energy spectra of 530 keV H+ ion penetrating 140 μm thick seed coat of maize and fruit peel of grape with thickness of 100 μm were measured. The result indicates that these thick biological targets, as seen by the penetrating ions, are inhomogeneous, and there are open "channel like" paths along which the incident ions can transmit the targets easily. While most of the incident ions are stopped in the targets, some of the transmitting ions only lose a small fraction of their initial incident energy. The transmission energy spectra show a pure electronic stopping feature. Transmission electron microscope (TEM) micrographes taken from the samples of seed coat of maize and fruit peel of tomato with thickness of 60 μm indicate that 150 keV electron beam from the TEM can penetrate the thick samples to give very good images with clear contrasts.

  15. Study of optical and electronic properties of nickel from reflection electron energy loss spectra

    Science.gov (United States)

    Xu, H.; Yang, L. H.; Da, B.; Tóth, J.; Tőkési, K.; Ding, Z. J.

    2017-09-01

    We use the classical Monte Carlo transport model of electrons moving near the surface and inside solids to reproduce the measured reflection electron energy-loss spectroscopy (REELS) spectra. With the combination of the classical transport model and the Markov chain Monte Carlo (MCMC) sampling of oscillator parameters the so-called reverse Monte Carlo (RMC) method was developed, and used to obtain optical constants of Ni in this work. A systematic study of the electronic and optical properties of Ni has been performed in an energy loss range of 0-200 eV from the measured REELS spectra at primary energies of 1000 eV, 2000 eV and 3000 eV. The reliability of our method was tested by comparing our results with the previous data. Moreover, the accuracy of our optical data has been confirmed by applying oscillator strength-sum rule and perfect-screening-sum rule.

  16. Hadrons at finite temperature

    CERN Document Server

    Mallik, Samirnath

    2016-01-01

    High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...

  17. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2012-05-01

    Full Text Available The Large Hadron Collider (LHC is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%–20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect. It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials at CERN using the proton beam from the Super Proton Synchrotron (SPS, to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle

  18. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    Science.gov (United States)

    Tahir, N. A.; Sancho, J. Blanco; Shutov, A.; Schmidt, R.; Piriz, A. R.

    2012-05-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding thermodynamic and the hydrodynamic response of the target that leads to a reduction in the density. The modified density distribution is used in FLUKA to calculate new energy loss distribution and the two codes are thus run iteratively. A suitable iteration step is considered to be the time interval during which the target density along the axis decreases by 15%-20%. Our simulations suggest that the full LHC proton beam penetrates up to 25 m in solid carbon whereas the range of the shower from a single proton in solid carbon is just about 3 m (hydrodynamic tunneling effect). It is planned to perform experiments at the experimental facility HiRadMat (High Radiation Materials) at CERN using the proton beam from the Super Proton Synchrotron (SPS), to compare experimental results with the theoretical predictions. Therefore simulations of the response of a solid copper cylindrical target hit by the SPS beam were performed. The particle energy in the SPS beam is 440

  19. High transverse momentum Hadron spectra at VSnn=17.3 GeV, in Pb+Pb and p+p collisions

    NARCIS (Netherlands)

    Alt, C.; Botje, M.A.J.|info:eu-repo/dai/nl/070139032; van Leeuwen, M.A.; Mischke, A.|info:eu-repo/dai/nl/325781435

    2008-01-01

    Transverse momentum spectra up to 4.5 GeV/c around midrapidity of pi^{+/-}, p, pbar, K^{+/-} in Pb+Pb reactions were measured at sqrt{s_{NN}}=17.3 GeV by the CERN-NA49 experiment. The nuclear modification factors R_{AA} for pi^{+/-} and R_{CP} for pi^{+/-},p,pbar,K^{+/-} were extracted and are

  20. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  1. Dynamical dark energy simulations: high accuracy power spectra at high redshift

    Energy Technology Data Exchange (ETDEWEB)

    Casarini, Luciano; Bonometto, Silvio A. [Department of Physics G. Occhialini-Milano-Bicocca University, Piazza della Scienza 3, 20126 Milano (Italy); Maccio, Andrea V., E-mail: luciano.casarini@mib.infn.it, E-mail: maccio@mpia.de, E-mail: silvio.bonometto@mib.infn.it [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, 69117 Heidelberg (Germany)

    2009-03-15

    Accurate predictions on non-linear power spectra, at various redshift z, will be a basic tool to interpret cosmological data from next generation mass probes, so obtaining key information on Dark Energy nature. This calls for high precision simulations, covering the whole functional space of w(z) state equations and taking also into account the admitted ranges of other cosmological parameters; surely a difficult task. A procedure was however suggested, able to match the spectra at z = 0, up to k {approx} 3 hMpc{sup -1}, in cosmologies with an (almost) arbitrary w(z), by making recourse to the results of N-body simulations with w = const. In this paper we extend such procedure to high redshift and test our approach through a series of N-body gravitational simulations of various models, including a model closely fitting WMAP5 and complementary data. Our approach detects w = const. models, whose spectra meet the requirement within 1% at z = 0 and perform even better at higher redshift, where they are close to a permil precision. Available Halofit expressions, extended to (constant) w{ne}-1 are unfortunately unsuitable to fit the spectra of the physical models considered here. Their extension to cover the desired range should be however feasible, and this will enable us to match spectra from any DE state equation.

  2. Displacement cross sections and PKA spectra: tables and applications. [Neutron damage energy cross sections to 20 MeV, primary knockon atom spectra to 15 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Doran, D G; Graves, N J

    1976-12-01

    Damage energy cross sections to 20 MeV are given for aluminum, vanadium, chromium, iron, nickel, copper, zirconium, niobium, molybdenum, tantalum, tungsten, lead, and 18Cr10Ni stainless steel. They are based on ENDF/B-IV nuclear data and the Lindhard energy partition model. Primary knockon atom (PKA) spectra are given for aluminum, iron, niobium, tantalum, and lead for neutron energies up to 15 MeV at approximately one-quarter lethargy intervals. The contributions of various reactions to both the displacement cross sections (taken to be proportional to the damage energy cross sections) and the PKA spectra are presented graphically. Spectral-averaged values of the displacement cross sections are given for several spectra, including approximate maps for the Experimental Breeder Reactor-II (EBR-II) and several positions in the Fast Test Reactor (FTR). Flux values are included to permit estimation of displacement rates. Graphs show integral PKA spectra for the five metals listed above for neutron spectra corresponding to locations in the EBR-II, the High Flux Isotope Reactor (HFIR), and a conceptual fusion reactor (UWMAK-I). Detailed calculations are given only for cases not previously documented. Uncertainty estimates are included.

  3. Physics at Future Hadron Colliders

    CERN Document Server

    Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.

    2001-01-01

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  4. Combined energy ramp and beta star squeeze at the Large Hadron Collider

    CERN Document Server

    Ryckx, Nick; Redaelli, Stefano

    2012-01-01

    In 2011, the LHC has exceeded expectations by producing a massive amount of data for the experiments. The turnaround time being a bottleneck in terms of operational efficiency, its duration has to be minimized. This is done by combining two already optimized steps, the energy ramp and the betatron squeeze. The aim of this feasibility study will be to generate a set of power converter settings combining both steps and validate them using dry-runs and beam tests.

  5. Next steps in the Energy Frontier - Hadron colliders workshop at LPC@FNAL

    CERN Document Server

    2014-01-01

    With the observation of the Standard Model Higgs boson, the high energy physics community is investigating possible next steps for entering into a new era in particle physics. The aim of this workshop is to bring together physics, instrumentation/detector and accelerator experts to present, outline and discuss all aspects needed for the next steps in the energy frontier. The workshop will focus on the lessons learned with 7 and 8 TeV LHC, physics requirements and subsequent detector technologies for HL-LHC, as well as development needs for future 100 TeV proton collider. The goal is to identify synergies and common approaches where further collaboration between various initiatives could be fruitful. The discovery potential for a future 100 TeV proton collider will depend on the detector / instrumentation capabilities in order to explore the highest energy and phenomena. Many of these detection capabilities will need further studies such as muon detection at several 10s of TeV range, calorimeters capable of me...

  6. High energy hadron dynamics based on a Stochastic-field multi-eikonal theory

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, R.C.

    1977-06-01

    Multi-eikonal theory, using a stoichastic-field representation for collective long range rapidity correlations, is developed and applied to the calculation of Regge pole parameters, high transverse momentum enhancements, and fluctuation patterns in rapidity densities. If a short-range-order model, such as the one-dimensional planar bootstrap, with only leading t-channel meson poles, is utilized as input to the multi-eikonal method, the pole spectrum is modified in three ways; promotion and renormalization of leading trajectories (suggesting an effective pomeron above unity at intermediate energies), and a proliferation of dynamical secondary trajectories, reminiscent of dual models. When transverse dimensions are included, the collective effects produce a growth with energy of large-P/sub tau/ inclusive cross-sections. Typical-event rapidity distributions, at energies of a few TeV, can be estimated by suitable approximations; the fluctuations give rise to ''domain'' patterns, which have the appearance of clusters separated by rapidity gaps. The relations between this approach to strong-interaction dynamics and a possible unification of weak, electromagnetic, and strong interactions are outlined.

  7. Hadronic resonance production measured with the ALICE detector

    CERN Document Server

    Dash, Ajay

    2015-01-01

    Hadronic resonances serve as a unique tool to study the properties of hot and dense matter pro- duced in heavy-ion collisions. These properties can be studied by measuring the ratios of hadronic resonance yields to the yields of longer-lived hadrons which can be used to investigate the re- scattering effects and the chemical freeze-out temperature. Resonance measurements in pp and p–Pb collisions provide a necessary baseline for heavy-ion data and help to disentangle the initial- state effects from medium-induced effects. The ALICE Collaboration has measured resonances such as, K ∗ (892) 0 and φ (1020) in pp, p–Pb, and Pb–Pb collisions at the LHC energies. These resonances are reconstructed via their hadronic decay channel in a wide momentum range at midrapidity. In this work, we present recent results on the transverse momentum spectra, mean transverse momentum, ratios of resonance production relative to that of long-lived hadrons.

  8. How sensitive are high-pt electron spectra at RHIC to heavy quark energy loss?

    CERN Document Server

    Armesto, N; Dainese, A; Salgado, C A; Wiedemann, Urs Achim

    2006-01-01

    In nucleus-nucleus collisions, high-pt electron spectra depend on the medium modified fragmentation of their massive quark parents, thus giving novel access to the predicted mass hierarchy of parton energy loss. Here we calculate these spectra in a model, which supplements the perturbative QCD factorization formalism with parton energy loss. In general, we find - within large errors - rough agreement between theory and data on the single inclusive electron spectrum in pp, its nuclear modification factor, and its azimuthal anisotropy. However, the nuclear modification factor depends on the relative contribution of charm and bottom production, which we find to be affected by large perturbative uncertainties. In order for electron measurements to provide a significantly more stringent test of the expected mass hierarchy, one must then disentangle the b- and c-decay contributions, for instance by reconstructing the displaced decay vertices.

  9. Energy Harvest Predictions for a Spectrally Tuned Multiple Quantum Well Device Utilising Measured and Modelled Solar Spectra

    Science.gov (United States)

    Dobbin, Alison; Norton, Matthew; Georghiou, George E.; Lumb, Matthew; Tibbits, Tom N. D.

    2011-12-01

    We present a comparison between modelled and measured solar spectra in Nicosia, Cyprus. The modelled spectra were generated using the SMARTS model, driven by various sources of measured atmospheric data, updated every 30 minutes or less. A comparison with measured spectra reveals the most reliable source of data for that location and period. The spectral simulations demonstrate that both aerosol optical depth and precipitable water content must be accurately known at the location of interest in order to realistically recreate the shape and power of measured spectra accurately. Energy harvest calculations of four triple junction (3J) solar cell designs were performed using the simulated spectra. The model predicts a 5.7% increase in energy harvest when multiple quantum wells are included in a standard 3J device. Simple modifications made to the quantum well device to `tune' the cell to the incident spectra result in a 6.3% increase in predicted energy production over the standard 3J device.

  10. FINITE PARTICLE NUMBER EFFECTS IN HIGH-ENERGY NUCLEAR COLLISIONS: IMPLICATIONS ON PION SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Bohrmann, Steffen; Knoll, Jorn

    1980-05-01

    We study pion production from high energy nuclear collisions by means of a simple statistical model. The shapes of the observed spectra exclude that all pions result from freely decaying delta resonances. Rather, they have to participate in kinetic equilibration processes. Finite particle number effects are found to be very important: equilibration does not occur globally but rather in groups of only a few particles. The pion production rates cannot be explained in terms of a chemical equilibrium.

  11. Hadronic Modeling of Blazars

    Directory of Open Access Journals (Sweden)

    Weidinger Matthias

    2013-12-01

    Full Text Available The ongoing systematic search for sources of extragalactic gamma rays has now revealed many blazars in which the very high energy output can not consistently be described as synchrotron self-Compton radiation. In this paper a self consistent hybrid model is described, explaining the very high energy radiation of those blazars as proton synchrotron radiation accompanied by photo-hadronic cascades. As the model includes all relevant radiative processes it naturally includes the synchrotron self-Compton case as well, depending on the chosen parameters. This paper focuses on rather high magnetic fields to be present within the jet, hence the hadronically dominated case. To discriminate the hadronic scenario against external photon fields being upscattered within the jet to produce the dominating gamma-ray output, the temporal behavior of blazars may be exploited with the presented model. Variability reveals both, the highly non-linear nature caused by the photohadronic cascades and typical timescales as well as fingerprints in the inter-band lightcurves of the involved hadrons. The modeling of two individual sources is shown : 1 ES 1011+496, a high frequency peaked blazar at redshift z = 0.212, which is well described within the hybrid scenario using physically reasonable parameters. The short term variability of the second example, namely 3C 454.3, a Flat Spectrum Radio Quasar at z = 0.859, reveals the limitations of the gamma-rays being highly dominated by proton synchrotron radiation.

  12. Contribution of Recently Measured Nuclear Data to Reactor Antineutrino Energy Spectra Predictions

    Energy Technology Data Exchange (ETDEWEB)

    Estienne, M., E-mail: magali.estienne@subatech.in2p3.fr [SUBATECH, CNRS/IN2P3, Université de Nantes, Ecole des Mines de Nantes, F-44307 Nantes (France); Fallot, M.; Cormon, S. [SUBATECH, CNRS/IN2P3, Université de Nantes, Ecole des Mines de Nantes, F-44307 Nantes (France); Algora, A. [IFIC (CSIC-Univ. Valencia), Valencia (Spain); Institute of Nuclear Research, Debrecen (Hungary); Bui, V.M.; Cucoanes, A.; Elnimr, M.; Giot, L. [SUBATECH, CNRS/IN2P3, Université de Nantes, Ecole des Mines de Nantes, F-44307 Nantes (France); Jordan, D. [IFIC (CSIC-Univ. Valencia), Valencia (Spain); Martino, J.; Onillon, A.; Porta, A.; Pronost, G.; Remoto, A. [SUBATECH, CNRS/IN2P3, Université de Nantes, Ecole des Mines de Nantes, F-44307 Nantes (France); Taín, J.L. [IFIC (CSIC-Univ. Valencia), Valencia (Spain); Yermia, F.; Zakari-Issoufou, A.-A. [SUBATECH, CNRS/IN2P3, Université de Nantes, Ecole des Mines de Nantes, F-44307 Nantes (France)

    2014-06-15

    The aim of this work is to study the impact of the inclusion of the recently measured β decay properties of the {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei in the calculation of the antineutrino (anti-ν) energy spectra arising after the fissions of the four main fissile isotopes {sup 235,238}U, and {sup 239,241}Pu in PWRs. These β feeding probabilities, measured using the Total Absorption Technique (TAS) at the JYFL facility of Jyväskylä, have been found to play a major role in the γ component of the decay heat for {sup 239}Pu in the 4-3000 s range. Following the fission product summation method, the calculation was performed using the MCNP Utility Reactor Evolution code (MURE) coupled to the experimental spectra built from β decay properties of the fission products taken from evaluated databases. These latest TAS data are found to have a significant effect on the Pu isotope energy spectra and on the spectrum of {sup 238}U showing the importance of their measurement for a better assessment of the reactor anti-ν energy spectrum, as well as importance for fundamental neutrino physics experiments and neutrino applied physics.

  13. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    Energy Technology Data Exchange (ETDEWEB)

    Aloisio, R.; Blasi, P. [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5—50125 Firenze (Italy); Berezinsky, V., E-mail: aloisio@arcetri.astro.it, E-mail: berezinsky@lngs.infn.it, E-mail: blasi@arcetri.astro.it [Gran Sasso Science Institute (INFN), viale F. Crispi 7, 67100 L' Aquila (Italy)

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion σ(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ∼ E{sup -γ} with γ∼ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ∼ 5Z× 10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ∼ E{sup -2.7}). In this sense, at the ankle E{sub A}≈ 5× 10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  14. Origins of plateau formation in ion energy spectra under target normal sheath acceleration

    Science.gov (United States)

    DuBois, Timothy C.; Siminos, Evangelos; Ferri, Julien; Gremillet, Laurent; Fülöp, Tünde

    2017-12-01

    Target normal sheath acceleration (TNSA) is a method employed in laser-matter interaction experiments to accelerate light ions (usually protons). Laser setups with durations of a few 10 fs and relatively low intensity contrasts observe plateau regions in their ion energy spectra when shooting on thin foil targets with thicknesses of the order of 10 μm. In this paper, we identify a mechanism which explains this phenomenon using one-dimensional particle-in-cell simulations. Fast electrons generated from the laser interaction recirculate back and forth through the target, giving rise to time-oscillating charge and current densities at the target backside. Periodic decreases in the electron density lead to transient disruptions of the TNSA sheath field: peaks in the ion spectra form as a result, which are then spread in energy from a modified potential driven by further electron recirculation. The ratio between the laser pulse duration and the recirculation period (dependent on the target thickness, including the portion of the pre-plasma which is denser than the critical density) determines if a plateau forms in the energy spectra.

  15. Measurement and Interpretation of Moments of the Combined Hadronic Mass and Energy Spectrum in Inclusive Semileptonic B-Meson Decays

    Energy Technology Data Exchange (ETDEWEB)

    Klose, Verena [Dresden Univ. of Technology (Germany)

    2011-08-12

    This thesis presents first measurements of moments of the hadronic nX2 distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B → Xcℓν. The variable nX2 is a combination of the invariant mass of the charmed meson mX, its energy in the B-meson rest-frame EX;BRF, and a constant ~Λ = 0.65 GeV, nX2 = mX2c4-2~ΛEX,BRF + ~Λ2. The moments Xk> with k = 2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e+e- → Υ(4S) {yields} B$\\bar{B}$ events recorded with the BABAR experiment at the PEP-II e+e--storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the nX2 distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments Xk> up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B → Xcℓν and moments of the photon-energy spectrum in decays B → Xsγ, we determine the quark-mixing parameter |Vcb|, the bottom and charm quark masses, the semileptonic branching fraction β(B → Xcℓν), and four non-perturbative heavy quark

  16. Measurement and interpretation of moments of the combined hadronic mass and energy spectrum in inclusive semileptonic B-meson decays

    Energy Technology Data Exchange (ETDEWEB)

    Klose, V.

    2007-11-29

    This thesis presents first measurements of moments of the hadronic n{sub X}{sup 2} distribution measured in inclusive semileptonic decays of B mesons to final states containing a charm quark, B{yields}X{sub c}l{sub {nu}}. The variable n{sub X}{sup 2} is a combination of the invariant mass of the charmed meson m{sub X}, its energy in the B-meson rest-frame E{sub X,BRF}, and a constant {lambda}=0.65 GeV, n{sub X}{sup 2}=m{sub X}{sup 2}c{sup 4}-2{lambda}E{sub X,BRF}+{lambda}{sup 2}. The moments left angle n{sub X}{sup k} right angle with k=2,4,6 are measured as proposed by theory to constrain assumptions made in the theoretical description of inclusive observables in semileptonic B-meson decays. This description uses Heavy Quark Expansion (HQE), an effective QCD combined with an Operator Product Expansion. The measurement is based on a sample of 231.6 million e{sup +}e{sup -} {yields} {upsilon}(4S) {yields} B anti B events recorded with the BABAR experiment at the PEP-II e{sup +}e{sup -}-storage rings at SLAC. We reconstruct the semileptonic decay by identifying a charged lepton in events tagged by a fully reconstructed hadronic decay of the second B meson. Correction procedures are derived from Monte Carlo simulations to ensure an unbiased measurement of the moments of the n{sub X}{sup 2} distribution. All moments are measured requiring minimum lepton momenta between 0.8 GeV/c and 1.9 GeV/c in the rest frame of the B meson. Performing a simultaneous fit to the measured moments left angle n{sub X}{sup k} right angle up to order k = 6 combined with other measurements of moments of the lepton-energy spectrum in decays B{yields}X{sub c}l{sub {nu}} and moments of the photon-energy spectrum in decays B{yields} X{sub s}{gamma}, we determine the quark-mixing parameter vertical stroke V{sub cb} vertical stroke, the bottom and charm quark masses, the semileptonic branching fraction B(B{yields}X{sub c}l{sub {nu}}), and four non-perturbative heavy quark parameters. Using HQE

  17. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  18. The first potential energy surface and microwave spectra of the Hg-CO2 complex

    Science.gov (United States)

    Wang, Zhongquan; Feng, Eryin; Zhang, Chunzao; Sun, Chunyan

    2017-12-01

    The first ab initio potential energy surface of the Hg-CO2 complex was calculated using the single- and double-excitation coupled-cluster theory with a noniterative perturbation treatment of triple ex-citations [CCSD(T)]. The potential had a global minimum with energy -284.48 cm-1 for a T-shaped geometry with R = 6.90a0 . Using the potential, the bound states for five isotopomers of Hg-CO2 complexes were calculated. The theoretical rotational spectra and molecular constants are all in good agreement with the experimental counterparts.

  19. Real Time Energy Reconstruction in the ATLAS Hadronic Calorimeter and ATLAS sensitivity to Extra Dimension Models

    CERN Document Server

    Salvachua, Belen; Ros, Eduardo

    This work has been fulfilled within the ATLAS collaboration. I present here two studies, both related with the ATLAS detector and its operation. The ATLAS detector is described in chapter 1 whereas chapter 2 shows an introduction to the ATLAS tile calorimeter and the TileCal Read-Out Drivers (ROD) where the first part of the thesis is developed. In chapter 3 I present the study and the implementation of the Optimal Filtering algorithm in the TileCal Read-Out Drivers. The ROD provides the energy and the arrival time of the digital signal that is generated in the tile calorimeter. These parameters are reconstructed online using the Optimal Filtering algorithm, the RODs also provide a quality factor of the reconstruction. This information is sent to the standard ATLAS acquisition data flow with a specific data format defined in this thesis. Chapter 4 contains a short introduction to the Standard Model, presents its problems and describes other theories like Supersymmetry, Little Higgs or Extra Dimension models t...

  20. Energy deposition studies for the high-luminosity Large Hadron Collider inner triplet magnets

    Directory of Open Access Journals (Sweden)

    N. V. Mokhov

    2015-05-01

    Full Text Available A detailed model of the high-luminosity LHC inner triplet region with new large-aperture Nb_{3}Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the fluka and mars15 codes. Detailed simulations have been performed coherently with the codes on the impact of particle debris from the 14-TeV center-of-mass pp-collisions on the short- and long-term stability of the inner triplet magnets. After optimizing the absorber configuration, the peak power density averaged over the magnet inner cable width is found to be safely below the quench limit at the luminosity of 5×10^{34}  cm^{−2} s^{−1}. For the anticipated lifetime integrated luminosity of 3000  fb^{−1}, the peak dose calculated for the innermost magnet insulator ranges from 20 to 35 MGy, a figure close to the commonly accepted limit. Dynamic heat loads to the triplet magnet cold mass are calculated to evaluate the cryogenic capability. fluka and mars results on energy deposition are in very good agreement.

  1. Inclusive hadron production and two particle correlations in e/sup +/e/sup -/ annihilation at 29 GeV center-of-mass energy

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, M.

    1984-12-01

    We have studied hadron production in e/sup +/e/sup -/ annihilation at 29 GeV center-of-mass energy using the PEP-4 Time Projection Chamber Detector. The inclusive cross sections and mean multiplicities for ..pi../sup + -/, K/sup + -/ and (p + anti p) production have been measured using ionization energy loss to separate particle species. We find on average 10.7 +- 0.6 ..pi../sup + -/, 1.35 +- .13 K/sup + -/ and 0.60 +- 0.08 (p + anti p) per multihadron event. The differential cross section is well described by a number of Monte Carlo hadronization models. In addition, we have observed correlations in rapidity space for identified pions and kaons. Short-range KK correlations provide evidence for local flavor compensation during hadronization. Long-range ..pi pi.. and KK correlations indicate that the initial partons carry flavor. We also observe significant long-range ..pi..K correlations as a result of heavy quark decays. 85 references, 67 figures, 11 tables.

  2. Precision measurement of the total cross section for e/sup +/e/sup -/. -->. hadrons at a center-of-mass energy of 29 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, E.; Ford, W.T.; Qi, N.; Read A.L. Jr.; Smith, J.G.; Camporesi, T.; De Sangro, R.; Marini, A.; Peruzzi, I.; Piccolo, M.; Ronga, F.; Blume, H.T.; Hurst, R.B.; Sleeman, J.C.; Venuti, J.P.; Wald, H.B.; Weinstein, R.; Band, H.R.; Gettner, M.W.; Goderre, G.P.; Gottschalk, B.; Meyer, O.A.; Moromisato, J.H.; Shambroom, W.D.; von Goeler, E.; Ash, W.W.; Chadwick, G.B.; Clearwater, S.H.; Coombes, R.W.; Kaye, H.S.; Lau, K.H.; Leedy, R.E.; Lynch, H.L.; Messner, R.L.; Michalowski, S.J.; Muller, F.; Moss, L.J.; Nelson, H.N.; Rich, K.; Ritson, D.M.; Rosenberg, L.J.; Wiser, D.E.; Zdarko, R.W.; Groom, D.E.; Lee, H.; Loh, E.C.; Delfino, M.C.; Heltsley, B.K.; Johnson, J.R.; Lavine, T.L.; Maruyama, T.; Prepost, R.

    1985-04-01

    We report a high-precision measurement of the ratio R of the total cross section for e/sup +/e/sup -/..-->..hadrons to that for e/sup +/e/sup -/..--> mu../sup +/..mu../sup -/, at a center-of-mass energy of 29.0 GeV using the MAC detector. The result is R = 3.96 +- 0.09. This value of R is used to determine a value of the strong coupling constant ..cap alpha../sub s/ of 0.23 +- 0.06, nearly independent of fragmentation models. Two different analysis methods having quite different event-selection criteria have been used and the results are in agreement. Particular attention has been given to the study of systematic errors. New higher-order QED calculations are used for the luminosity determination and the acceptance for hadrons.

  3. PLASMA EFFECTS ON EXTRAGALACTIC ULTRAHIGH-ENERGY COSMIC-RAY HADRON BEAMS IN COSMIC VOIDS. II. KINETIC INSTABILITY OF PARALLEL ELECTROSTATIC WAVES

    Energy Technology Data Exchange (ETDEWEB)

    Krakau, S.; Schlickeiser, R., E-mail: steffen.krakau@rub.de, E-mail: rsch@tp4.rub.de [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2016-02-20

    The linear instability of an ultrarelativistic hadron beam in the unmagnetized intergalactic medium (IGM) is investigated with respect to the excitation of parallel electrostatic and electromagnetic fluctuations. This analysis is important for the propagation of extragalactic ultrarelativistic cosmic rays from their distant sources to Earth. As opposed to the previous paper, we calculate the minimum instability growth time for Lorentz-distributed cosmic rays which traverse the hot IGM. The growth times are orders of magnitude higher than the cosmic-ray propagation time in the IGM. Since the backreaction of the generated plasma fluctuations (plateauing) lasts longer than the propagation time, the cosmic-ray hadron beam can propagate to the Earth without losing a significant amount of energy to electrostatic turbulence.

  4. New antineutrino energy spectra predictions from the summation of beta decay branches of the fission products.

    Science.gov (United States)

    Fallot, M; Cormon, S; Estienne, M; Algora, A; Bui, V M; Cucoanes, A; Elnimr, M; Giot, L; Jordan, D; Martino, J; Onillon, A; Porta, A; Pronost, G; Remoto, A; Taín, J L; Yermia, F; Zakari-Issoufou, A-A

    2012-11-16

    In this Letter, we study the impact of the inclusion of the recently measured beta decay properties of the (102;104;105;106;107)Tc, (105)Mo, and (101)Nb nuclei in an updated calculation of the antineutrino energy spectra of the four fissible isotopes (235,238)U and (239,241)Pu. These actinides are the main contributors to the fission processes in pressurized water reactors. The beta feeding probabilities of the above-mentioned Tc, Mo, and Nb isotopes have been found to play a major role in the γ component of the decay heat of (239)Pu, solving a large part of the γ discrepancy in the 4-3000 s range. They have been measured by using the total absorption technique, insensitive to the pandemonium effect. The calculations are performed by using the information available nowadays in the nuclear databases, summing all the contributions of the beta decay branches of the fission products. Our results provide a new prediction of the antineutrino energy spectra of (235)U, (239,241)Pu, and, in particular, (238)U for which no measurement has been published yet. We conclude that new total absorption technique measurements are mandatory to improve the reliability of the predicted spectra.

  5. A visualization of the damage in Lead Tungstate calorimeter crystals after exposure to high-energy hadrons

    CERN Document Server

    Dissertori, G.; Nessi-Tedaldi, F.; Pauss, F.; Wallny, R.; Spikings, R.; Van der Lelij, R.; Arnau Izquierdo, G.

    2012-01-01

    The anticipated performance of calorimeter crystals in the environment expected after the planned High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN has to be well understood, before informed decisions can be made on the need for detector upgrades. Throughout the years of running at the HL-LHC, the detectors will be exposed to considerable fluences of fast hadrons that have been shown to cause cumulative transparency losses in Lead Tungstate scintillating crystals. In this study, we present direct evidence of the main underlying damage mechanism. Results are shown from a test that yields a direct insight into the nature of the hadron-specific damage in Lead Tungstate calorimeter crystals exposed to 24 GeV/c protons.

  6. A visualization of the damage in Lead Tungstate calorimeter crystals after exposure to high-energy hadrons

    CERN Document Server

    Dissertori, G; Nessi-Tedaldi, F; Pauss, F; Wallny, R; Spikings, R; Van der Lelij, R; Izquierdo, G Arnau

    2012-01-01

    The anticipated performance of calorimeter crystals in the environment expected after the planned High-Luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN has to be well understood, before informed decisions can be made on the need for detector upgrades. Throughout the years of running at the HL-LHC, the detectors will be exposed to considerable fluences of fast hadrons, that have been shown to cause cumulative transparency losses in Lead Tungstate scintillating crystals. In this study, we present direct evidence of the main underlying damage mechanism. Results are shown from a test that yields a direct insight into the nature of the hadron-specific damage in Lead Tungstate calorimeter crystals exposed to 24 GeV/c protons.

  7. R\\'enyi statistics in high energy particle production

    OpenAIRE

    Kropivnitskaya, A.; Rostovtsev, A.

    2003-01-01

    It is shown that R\\'enyi statistics provides a plausible basis to describe the hadron distributions measured in high energy particle interactions. Generalized Boltzmann and gamma distributions obtained by maximization of R\\'enyi entropy under constraints on Kolmogorov-Nagumo averages are used to describe the hadron transverse momentum and multiplicity spectra correspondingly.

  8. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  9. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    DEFF Research Database (Denmark)

    Aatrokoski, J.; Lähteenmäki, A.; Lavonen, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz......, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase...... of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data...

  10. THE ENERGY SPECTRA OF RANDOM PROCESSES OF TRACTION VOLTAGES AND CURRENTS OF ELECTRIC TRANSPORT

    Directory of Open Access Journals (Sweden)

    M. O. Kostin

    2015-12-01

    Full Text Available Spectral analysis of traction voltages and currents are the basis for assessing energy electromagnetic processes in systems of electric traction, in particular, DC. The latter is due to the fact that the DC system is not in consequence of nonstationary random character of change of traction voltage and current. Nonperiodic stochastic nature of the change of voltage and current calls for study of their spectral composition using probabilistic methods based on spectral correlation theory of random processes. The theoretical assumptions and the relations of connection of the energy spectrum of a random process with his correlating function are set out. The results of the numerical calculations of the spectra of traction voltages and currents actually operating electrical subsystems transport are given; they are: feeder voltage at the traction substation; currents in modes of traction and recuperation of electric locomotives in accordance with DE 1 and VL 8; the voltage on the current collector of the city tram. It is established that energy spectra of random processes traction and recuperative voltages and currents are probabilistic in nature, depending on technological factors of the system, and the energy of the random process is numerically greater in traction mode than in the regenerative braking modes

  11. Low-energy photons in high-energy photon fields--Monte Carlo generated spectra and a new descriptive parameter.

    Science.gov (United States)

    Chofor, Ndimofor; Harder, Dietrich; Willborn, Kay; Rühmann, Antje; Poppe, Björn

    2011-09-01

    The varying low-energy contribution to the photon spectra at points within and around radiotherapy photon fields is associated with variations in the responses of non-water equivalent dosimeters and in the water-to-material dose conversion factors for tissues such as the red bone marrow. In addition, the presence of low-energy photons in the photon spectrum enhances the RBE in general and in particular for the induction of second malignancies. The present study discusses the general rules valid for the low-energy spectral component of radiotherapeutic photon beams at points within and in the periphery of the treatment field, taking as an example the Siemens Primus linear accelerator at 6 MV and 15 MV. The photon spectra at these points and their typical variations due to the target system, attenuation, single and multiple Compton scattering, are described by the Monte Carlo method, using the code BEAMnrc/EGSnrc. A survey of the role of low energy photons in the spectra within and around radiotherapy fields is presented. In addition to the spectra, some data compression has proven useful to support the overview of the behaviour of the low-energy component. A characteristic indicator of the presence of low-energy photons is the dose fraction attributable to photons with energies not exceeding 200 keV, termed P(D)(200 keV). Its values are calculated for different depths and lateral positions within a water phantom. For a pencil beam of 6 or 15 MV primary photons in water, the radial distribution of P(D)(200 keV) is bellshaped, with a wide-ranging exponential tail of half value 6 to 7 cm. The P(D)(200 keV) value obtained on the central axis of a photon field shows an approximately proportional increase with field size. Out-of-field P(D)(200 keV) values are up to an order of magnitude higher than on the central axis for the same irradiation depth. The 2D pattern of P(D)(200 keV) for a radiotherapy field visualizes the regions, e.g. at the field margin, where changes of

  12. LHC RadMon SRAM Detectors Used at Different Voltages to Determine the Thermal Neutron to High Energy Hadron Fluence Ratio

    CERN Document Server

    Kramer, D; Pignard, C; Brugger, M; Spiezia, G; Roeed, K; Klupak, V; Wijnands, T

    2011-01-01

    The thermal neutron SEU cross-section of the Toshiba SRAM memory used in the LHC RadMon system was measured at different voltages. A method using the difference in its response compared to mixed particle energy field is proposed to be used as a discriminator between thermal neutron and high-energy hadron fluences. For test purposes, the proposed method was used at the CNGS and CERF facilities to estimate the field composition by counting SEUs at two different voltages and the results were compared to simulations.

  13. Orbital momentum profiles and binding energy spectra for the complete valence shell of molecular fluorine

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.; Brion, C.E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemistry; Brunger, M.J.; Zhao, K.; Grisogono, A.M.; Braidwood, S.; Weigold, E. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Chakravorty, S.J.; Davidson, E.R. [Indiana Univ., Bloomington, IN (United States). Dept. of Chemistry; Sgamellotti, A. [Univ di Perugia (Italy). Dipartimento di Chimica; von Niessen, W. [Technische Univ. Braunschweig (Germany). Inst fuer Physikalische

    1996-01-01

    The first electronic structural study of the complete valence shell binding energy spectrum of molecular fluorine, encompassing both the outer and inner valence regions, is reported. These binding energy spectra as well as the individual orbital momentum profiles have been measured using an energy dispersive multichannel electron momentum spectrometer at a total energy of 1500 eV, with an energy resolution of 1.5 eV and a momentum resolution of 0.1 a.u. The measured binding energy spectra in the energy range of 14-60 eV are compared with the results of ADC(4) many-body Green`s function and also direct-Configuration Interaction (CI) and MRSD-CI calculations. The experimental orbital electron momentum profiles are compared with SCF theoretical profiles calculated using the target Hartree-Fock approximation with a range of basis sets and with Density Functional Theory predictions in the target Kohn-Sham approximation with non-local potentials. The truncated (aug-cc-pv5z) Dunning basis sets were used for the Density Functional Theory calculations which also include some treatment of correlation via the exchange and correlation potentials. Comparisons are also made with the full ion-neutral overlap amplitude calculated with MRSD-CI wave functions. Large, saturated basis sets (199-GTO) were employed for both the high level SCF near Hartree-Fock limit and MRSD-CI calculations to investigate the effects of electron correlation and relaxation. 66 refs., 9 tabs., 9 figs.

  14. Effects of jet-induced medium excitation in γ-hadron correlation in A+A collisions

    Science.gov (United States)

    Chen, Wei; Cao, Shanshan; Luo, Tan; Pang, Long-Gang; Wang, Xin-Nian

    2018-02-01

    Coupled Linear Boltzmann Transport and hydrodynamics (CoLBT-hydro) is developed for co-current and event-by-event simulations of jet transport and jet-induced medium excitation (j.i.m.e.) in high-energy heavy-ion collisions. This is made possible by a GPU parallelized (3 + 1)D hydrodynamics that has a source term from the energy-momentum deposition by propagating jet shower partons and provides real time update of the bulk medium evolution for subsequent jet transport. Hadron spectra in γ-jet events of A+A collisions at RHIC and LHC are calculated for the first time that include hadrons from both the modified jet and j.i.m.e. CoLBT-hydro describes well experimental data at RHIC on the suppression of leading hadrons due to parton energy loss. It also predicts the enhancement of soft hadrons from j.i.m.e. The onset of soft hadron enhancement occurs at a constant transverse momentum due to the thermal nature of soft hadrons from j.i.m.e. which also have a significantly broadened azimuthal distribution relative to the jet direction. Soft hadrons in the γ direction are, on the other hand, depleted due to a diffusion wake behind the jet.

  15. Hadron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, S.

    1985-10-01

    Heavy quark systems and glueball candidates, the particles which are relevant to testing QCD, are discussed. The review begins with the heaviest spectroscopically observed quarks, the b anti-b bound states, including the chi state masses, spins, and hadronic widths and the non-relativistic potential models. Also, P states of c anti-c are mentioned. Other heavy states are also discussed in which heavy quarks combine with lighter ones. The gluonium candidates iota(1460), theta(1700), and g/sub T/(2200) are then covered. The very lightest mesons, pi-neutral and eta, are discussed. 133 refs., 24 figs., 16 tabs. (LEW)

  16. Hadronic {tau} decays and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Davier, M

    1999-12-01

    Hadronic decays of the {tau} lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)

  17. Fusion neutron energy spectra measured by time-of-flight spectrometers

    CERN Document Server

    Elevant, T

    2002-01-01

    Evaluation of measured neutron energy spectra provides information on the central ion velocity distribution; e.g. ion temperature and fast ions induced by NBI- or ICR-heating and on impurity content in fusion grade plasmas. Two self-contained high-energy resolution time-of-flight neutron spectrometers have been used at the JET- and JT-60U tokamaks during DD-operation. In the spectrometers, each neutron undergoes (n, p) elastic scattering in two sets of hydrogen based scintillators. Elapsed time between the two scatter events is measured and the energy of the neutron is evaluated. Interpretation of acquired data together with results obtained from other diagnostics yields information on central plasma parameters. Deduced ion temperatures, fast ion fractional contributions during auxiliary NBI- and ICR-heating and impurity content is presented. In general, good agreement is obtained between neutron data and data from other diagnostics.

  18. Kinetic energy spectra in thermionic emission from small tungsten cluster anions: evidence for nonclassical electron capture.

    Science.gov (United States)

    Concina, Bruno; Baguenard, Bruno; Calvo, Florent; Bordas, Christian

    2010-03-14

    The delayed electron emission from small mass-selected anionic tungsten clusters W(n)(-) has been studied for sizes in the range 9 < or = n < or = 21. Kinetic energy spectra have been measured for delays of about 100 ns after laser excitation by a velocity-map imaging spectrometer. They are analyzed in the framework of microreversible statistical theories. The low-energy behavior shows some significant deviations with respect to the classical Langevin capture model, which we interpret as possibly due to the influence of quantum dynamical effects such as tunneling through the centrifugal barrier, rather than shape effects. The cluster temperature has been extracted from both the experimental kinetic energy spectrum and the absolute decay rate. Discrepancies between the two approaches suggest that the sticking probability can be as low as a few percent for the smallest clusters.

  19. Energy evolution of the moments of the hadron distribution in QCD jets including NNLL resummation and NLO running-coupling corrections

    CERN Document Server

    Perez-Ramos, Redamy

    2014-01-01

    The moments of the single inclusive momentum distribution of hadrons in QCD jets, are studied in the next-to-modified-leading-log approximation (NMLLA) including next-to-leading-order (NLO) corrections to the alpha_s strong coupling. The evolution equations are solved using a distorted Gaussian parametrisation, which successfully reproduces the spectrum of charged hadrons of jets measured in e+e- collisions. The energy dependencies of the maximum peak, multiplicity, width, kurtosis and skewness of the jet hadron distribution are computed analytically. Comparisons of all the existing jet data measured in e+e- collisions in the range sqrt(s)~2-200 GeV to the NMLLA+NLO* predictions allow one to extract a value of the QCD parameter Lambda_QCD, and associated two-loop coupling constant at the Z resonance alpha_s(m_Z^2)= 0.1195 +/- 0.0022, in excellent numerical agreement with the current world average obtained using other methods.

  20. Galactic Cosmic-Ray Energy Spectra and Composition during the 2009-2010 Solar Minimum Period

    Science.gov (United States)

    Lave, K. A.; Wiedenbeck, Mark E.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; deNolfo, G. A.; Israel, M. H..; Leske, R. A.; Mewaldt, R. A.; hide

    2013-01-01

    We report new measurements of the elemental energy spectra and composition of galactic cosmic rays during the 2009-2010 solar minimum period using observations from the Cosmic Ray Isotope Spectrometer (CRIS) onboard the Advanced Composition Explorer. This period of time exhibited record-setting cosmic-ray intensities and very low levels of solar activity. Results are given for particles with nuclear charge 5 energy range approx. 50-550 MeV / nucleon. Several recent improvements have been made to the earlier CRIS data analysis, and therefore updates of our previous observations for the 1997-1998 solar minimum and 2001-2003 solar maximum are also given here. For most species, the reported intensities changed by less than approx. 7%, and the relative abundances changed by less than approx. 4%. Compared with the 1997-1998 solar minimum relative abundances, the 2009-2010 abundances differ by less than 2sigma, with a trend of fewer secondary species observed in the more recent time period. The new 2009-2010 data are also compared with results of a simple "leaky-box" galactic transport model combined with a spherically symmetric solar modulation model. We demonstrate that this model is able to give reasonable fits to the energy spectra and the secondary-to-primary ratios B/C and (Sc+Ti+V)/Fe. These results are also shown to be comparable to a GALPROP numerical model that includes the effects of diffusive reacceleration in the interstellar medium.

  1. Final Report, CONTRIBUTIONS TO STUDIES OF CP VIOLATION AND HADRONIC PHYSICS WITH THE BABAR COLLABORATION

    Energy Technology Data Exchange (ETDEWEB)

    Brown, David Norvil [University of Louisville

    2013-07-25

    The University of Louisville High Energy Physics group has undertaken a long-term effort in understanding baryon production in elementary particle processes in the 10 GeV energy region. We have contributed significantly to the broad program of the BaBar Collaboration, particularly in support of computing, data visualization, and simulation. We report here on progress in the areas of service to the Collaboration and understanding of baryon production via measurement of inclusive hadronic particle spectra.

  2. Construction of Multichromophoric Spectra from Monomer Data: Applications to Resonant Energy Transfer.

    Science.gov (United States)

    Chenu, Aurélia; Cao, Jianshu

    2017-01-06

    We develop a model that establishes a quantitative link between the physical properties of molecular aggregates and their constituent building blocks. The relation is built on the coherent potential approximation, calibrated against exact results, and proven reliable for a wide range of parameters. It provides a practical method to compute spectra and transfer rates in multichromophoric systems from experimentally accessible monomer data. Applications to Förster energy transfer reveal optimal transfer rates as functions of both the system-bath coupling and intra-aggregate coherence.

  3. Plasma scale-length effects on electron energy spectra in high-irradiance laser plasmas.

    Science.gov (United States)

    Culfa, O; Tallents, G J; Rossall, A K; Wagenaars, E; Ridgers, C P; Murphy, C D; Dance, R J; Gray, R J; McKenna, P; Brown, C D R; James, S F; Hoarty, D J; Booth, N; Robinson, A P L; Lancaster, K L; Pikuz, S A; Faenov, A Ya; Kampfer, T; Schulze, K S; Uschmann, I; Woolsey, N C

    2016-04-01

    An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (10^{20}Wcm^{-2}) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 μm).

  4. Measurement of discrete energy-level spectra in individual chemically synthesized gold nanoparticles

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Bolotin, Kirill I; Shi, Su-Fei

    2008-01-01

    We form single-electron transistors from individual chemically synthesized gold nanoparticles, 5-15 nm in diameter, with monolayers of organic molecules serving as tunnel barriers. These devices allow us to measure the discrete electronic energy levels of individual gold nanoparticles that are......, by virtue of chemical synthesis, well-defined in their composition, size and shape. We show that the nanoparticles are nonmagnetic and have spectra in good accord with random-matrix-theory predictions taking into account strong spin-orbit coupling....

  5. The Flux and Energy Spectra of the Protons in the Inner Van Allen Belt

    Science.gov (United States)

    Naugle, John E.; Kniffen, Donald A.

    1961-01-01

    A cylindrical stack of G-5 nuclear emulsions housed in the payload section of a four-stage research rocket was flown into the northern edge of the inner Van Allen belt on September 19, 1960. The experimental design permitted, for the first time, measurements of the particle fluxes and energy spectra as functions of position along the rocket trajectory. Eight points along the trajectory have been selected for analysis. Results are presented herein for three of these points, and they are discussed in the light of various theories on the trapped radiation.

  6. Measurement of anisotropic angular distributions of photon energy spectra for I-125 brachytherapy sources.

    Science.gov (United States)

    Unno, Yasuhiro; Yunoki, Akira; Kurosawa, Tadahiro; Yamada, Takahiro; Sato, Yasushi; Hino, Yoshio

    2012-09-01

    The angular distribution of photon energy spectra emitted from an I-125 brachytherapy source was measured using a specially designed jig in the range of ±70° in the plane of the long axis of the source. It is important to investigate the angular dependence of photon emissions from these sources for the calibration of the air kerma rate. The results show that the influence of the distributions between 0° and ±8° is small enough to allow a calibration using current primary instruments which have a large entrance window. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Hadronic tau decays and QCD

    CERN Document Server

    Hocker, Andreas

    1997-01-01

    We present new results for the r hadronic spectral functions analysis using data accumulated by the ALEPH detector at LEP during the years 1991-94. The vector and the axial-vector spectral functions are determined from their respective unfolded, i.e., physical invariant mass spectra. The r vector and axial-vector hadronic widths and certain spectral moments are exploited to measure a, and nonperturbative contributions at the r mass scale. The best, and experimentally and theoretically most robust, determination of a,(Mr) is obtained from the inclusive (V + A) fit that yields a,(Mr) = 0.349 ± 0.018 giving a,(Mz) = 0.1 212 ± 0.0022 after the evolution to the mass of the Z boson. The approach of the Operator Product Expansion (OPE) is tested experimentally by means of an evolution of the r hadronic width to masses smaller than the r mass.

  8. Measurement of forward neutral pion transverse momentum spectra for $\\sqrt{s}$ = 7TeV proton-proton collisions at LHC

    CERN Document Server

    Adriani, O.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Fukatsu, K.; Haguenauer, M.; Iso, T.; Itow, Y.; Kasahara, K.; Kawade, K.; Mase, T.; Masuda, K.; Menjo, H.; Mitsuka, G.; Muraki, Y.; Noda, K.; Papini, P.; Perrot, A.-L.; Ricciarini, S.; Sako, T.; Shimizu, Y.; Suzuki, K.; Suzuki, T.; Taki, K.; Tamura, T.; Torii, S.; Tricomi, A.; Turner, W.C.

    2012-01-01

    The inclusive production rate of neutral pions in the rapidity range greater than $y=8.9$ has been measured by the Large Hadron Collider forward (LHCf) experiment during LHC $\\sqrt{s}=7$\\,TeV proton-proton collision operation in early 2010. This paper presents the transverse momentum spectra of the neutral pions. The spectra from two independent LHCf detectors are consistent with each other and serve as a cross check of the data. The transverse momentum spectra are also compared with the predictions of several hadronic interaction models that are often used for high energy particle physics and for modeling ultra-high-energy cosmic-ray showers.

  9. Future Hadron Colliders

    CERN Document Server

    Keil, Eberhard

    1998-01-01

    Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...

  10. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    Science.gov (United States)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; hide

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  11. Study of the temporal evolution of energy spectra during SEP and CIR events

    Science.gov (United States)

    Laurenza, Monica; Consolini, Giuseppe; Storini, Marisa; Damiani, Alessandro

    Various highly dynamic processes in the magnetized coronal and interplanetary plasmas can produce major acceleration of charged particles. Flare sites and CME driven shock waves in the corona and in interplanetary space are thought to be the main locations for the acceleration of the solar energetic particles (SEPs). Moreover, the interaction between high and slow speed streams leads to the formation of the compression regions, called corotating interaction regions (CIRs), and a pair of forward and reverse shocks, which presumably accelerate ionized particles to considerable non-thermal energies, similarly to transient-related interplanetary shock waves. The kinetic energy spectra of several SEP and CIR events have been investigated through the Shannon’s differential entropy as proposed by Laurenza et al., 2012*. Results suggest that the Weibull type functional form can explain the observed spectra, both for SEP and CIR events. Implications for the shock acceleration mechanisms are discussed. *Laurenza M., Consolini G., Storini M. and Damiani A., Astrophysics and Space Sciences Transactions, 8, 19-24, 2012. Work supported by the Italian Space Agency under the contract n° .I/022/10/0.

  12. Synthesis of electron energy loss spectra for the quantification of detection limits.

    Science.gov (United States)

    Menon, Nanda K; Krivanek, Ondrej L

    2002-06-01

    We describe a method for predicting detection limits of minority elements in electron energy loss spectroscopy (EELS), and its implementation as a software package that gives quantitative predictions for user-specified materials and experimental conditions. The method is based on modeling entire energy loss spectra, including shot noise as well as instrumental noise, and taking into account all the relevant experimental parameters. We describe the steps involved in modeling the entire spectrum, from the zero loss up to inner shell edges, and pay particular attention to the contributions to the pre-edge background. The predicted spectra are used to evaluate the signal-to-noise ratios (SNRs) for inner shell edges from user-specified minority elements. The software also predicts the minimum detectable mass (MDM) and minimum mass fraction (MMF). It can be used to ascertain whether an element present at a particular concentration should be detectable for given experimental conditions, and also to quickly and quantitatively explore ways of optimizing the experimental conditions for a particular EELS analytical task. We demonstrate the usefulness of the software by confirming the recent empirical observation of single atom detection using EELS of phosphorus in thin carbon films, and show the effect on the SNR of varying the acquisition parameters. The case of delta-doped semiconductors is also considered as an important example from materials science where low detection limits and high spatial resolution are essential, and the feasibility of such characterization using EELS is assessed.

  13. Local Hadron Calibration in Atlas.

    CERN Document Server

    Giovannini, P; The ATLAS collaboration

    2010-01-01

    The method of Local Hadron Calibration is used in Atlas as one of two major calibration schemes for hadronic signals like jets and missing transverse energy. Starting from noise suppressed energy clusters a modular chain of classification and corrections steps are applied to distinguish electro-magnetic from hadronic deposits and to compensate invisible energy losses, deposits in dead material and noise threshold related losses. Finally jet-level corrections take care of missing energy due to particles never reaching the calorimeter. The method and its application to single charged and neutral pion simulations as well as di-jet simulations are presented. First comparisons of MinBias simulations and real Atlas data at sqrt(s)=900 GeV are shown.

  14. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector.

    Science.gov (United States)

    Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Ali, B; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antel, C; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barisits, M-S; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska-Blenessy, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Billoud, T R V; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Burr, J T P; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Callea, G; Caloba, L P; Lopez, S Calvente; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; Moursli, R Cherkaoui El; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocca, C; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Cueto, A; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; De Sousa, M J Da Cunha Sargedas; Via, C Da; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Regie, J B De Vivie; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duffield, E M; Duflot, L; Dührssen, M; Dumancic, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; Kacimi, M El; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farina, E M; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gasnikova, K; Gatti, C; Gaudiello, A; Gaudio, G; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; Gentsos, C; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Costa, J Goncalves Pinto Firmino Da; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, R; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayakawa, D; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Hu, S; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishijima, N; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Javurkova, M; Jeanneau, F; Jeanty, L; Jeng, G-Y; Jennens, D; Jenni, P; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kaji, T; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawade, K; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khader, M; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kilby, C R; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Köhler, N M; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lanfermann, M C; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, B; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E M; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Outschoorn, V I Martinez; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Morgenstern, S; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palazzo, S; Palestini, S; Palka, M; Pallin, D; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sánchez, J; Martinez, V Sanchez; Pineda, A Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Savic, N; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schulte, A; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Stark, S H; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, M; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tu, Y; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veeraraghavan, V; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wolf, T M H; Wolter, M W; Wolters, H; Worm, S D; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zwalinski, L

    2017-01-01

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb[Formula: see text] of proton-proton collision data at [Formula: see text] [Formula: see text] from 2010 and 0.1 nb[Formula: see text] of data at [Formula: see text] [Formula: see text] from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 [Formula: see text], where this method provides the jet energy scale uncertainty for ATLAS.

  15. Direct photon elliptic flow at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    Science.gov (United States)

    Kim, Young-Min; Lee, Chang-Hwan; Teaney, Derek; Zahed, Ismail

    2017-07-01

    We use an event-by-event hydrodynamical description of the heavy-ion collision process with Glauber initial conditions to calculate the thermal emission of photons. The photon rates in the hadronic phase follow from a spectral function approach and a density expansion, while in the partonic phase they follow from the Arnold-Moore-Yaffe (AMY) perturbative rates. The calculated photon elliptic flows are lower than those reported recently by both the ALICE and PHENIX collaborations.

  16. Recognizing Critical Behavior amidst Minijets at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Rudolph C. Hwa

    2015-01-01

    Full Text Available The transition from quarks to hadrons in a heavy-ion collision at high energy is usually studied in two different contexts that involve very different transverse scales: local and nonlocal. Models that are concerned with the pT spectra and azimuthal anisotropy belong to the former, that is, hadronization at a local point in (η,ϕ space, such as the recombination model. The nonlocal problem has to do with quark-hadron phase transition where collective behavior through near-neighbor interaction can generate patterns of varying sizes in the (η,ϕ space. The two types of problems are put together in this paper both as brief reviews separately and to discuss how they are related to each other. In particular, we ask how minijets produced at LHC can affect the investigation of multiplicity fluctuations as signals of critical behavior. It is suggested that the existing data from LHC have sufficient multiplicities in small pT intervals to make the observation of distinctive features of clustering of soft particles, as well as voids, feasible that characterize the critical behavior at phase transition from quarks to hadrons, without any ambiguity posed by the clustering of jet particles.

  17. Hadron calorimetry in the L3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Civinini, C.; D' Alessandro, R.; Gallo, E.; Marchionni, A.; Meschini, M.; Pieri, M.; Wang, Y.F. (Istituto Nazionale di Fisica Nucleare, Florence (Italy) Florence Univ. (Italy)); Arefiev, A.; Galaktionov, Yu.; Gordeev, A.; Gorodkov, Yu.; Kamyshkov, Y.U.; Klimentov, A.; Koutsenko, V.; Malinin, A.; Morgunov, V.; Plyaskin, V.; Pojidaev, V.; Savin, A.; Shevchenko, S.; Shevchenko, V.; Shmakov, K.; Shoumilov, E.; Shoutko, V.; Tarkovsky, E.; Vetlitsky, I.; Vorobiev, I. (Institut Teoreticheskoj i Ehksperimental' noj Fiziki, Moscow (USSR)); An, Q.; Blomeke, P.; Cai, X.; Cui, X.; Gong, Z.F.; Ilyas, M.M.; Khan, R.; Kumar, V.; Kunin, A.; Lin, Y.B.; Qureshi, K.; Siedling, R.; Wadhawa, M.; Wu, R.J.; Wu, S.W.; Wu, Y.G.; Zichichi, A. (World Lab., Geneva (Switzerland). FBLJA Project); Azemoon, T.; Ball, R.C.; Capell, M.; Chen, M.L.; Goldfarb, S.; Jones, L.W.; Mills, G.B.; Roe, B.P. (Michigan Univ., Ann Arbor (USA)); Aziz, T.; Banerjee, S.; Chendvankar, S.R.; Ganguli, S.N.; Gurtu, A.; Malh

    1991-04-01

    The characteristics of the L3 hadron calorimeter as realized in the observation of hadronic jets and other events from e{sup +}e{sup -} c collisions at LEP are presented and discussed. The pattern-recognition algorithm utilizing the fine granularity of the calorimeter is described, and the observed overall resolution of 10.2% for hadron jets from Z decay is reported. The use of the calorimeter in providing information on muon energy losses is also noted. (orig.).

  18. Impact of low-energy photons on the characteristics of prompt fission γ -ray spectra

    Science.gov (United States)

    Oberstedt, A.; Billnert, R.; Hambsch, F.-J.; Oberstedt, S.

    2015-07-01

    In this paper we report on a new study of prompt γ -rays from the spontaneous fission of 252Cf . Photons were measured in coincidence with fission fragments by employing four different lanthanide halide scintillation detectors. Together with results from a previous work of ours, we determined characteristic parameters with high precision, such as the average γ -ray multiplicity ν¯γ=(8.29 ±0.13 ), the average energy per photon ɛγ=(0.80 ±0.02 ) MeV, and the total γ -ray energy release per fission Eγ ,tot=(6.65 ±0.10 ) MeV. The excellent agreement between the individual results obtained in all six measurements proves the good repeatability of the applied experimental technique. The impact of low-energy photons, i.e., below 500 keV, on prompt fission γ -ray spectra characteristics has been investigated as well by comparing our results with those taken with the DANCE detector system, which appears to suffer from absorption effects in the low-energy region. Correction factors for this effect were estimated, giving results comparable to ours as well as to historical ones. From this we demonstrate that the different techniques of determining the average γ -ray multiplicity, either from a properly measured and normalized spectrum or a measured multiplicity distribution, give equivalent and consistent results.

  19. Energy calibration procedure for γ-radiation and conversion electron spectra using level scheme a priori information

    Science.gov (United States)

    Kabina, L. P.; Kondurov, I. A.; Sushkov, P. A.

    1996-02-01

    A procedure for energy calibration of gamma- and electron-line spectra using a priori information about the relationships between gamma-ray and conversion electron energies and their corresponding peak positions in the spectrum has been developed in the GTLM computer program. The transition energy estimations and the excited states' energies of the nucleus under investigation are calculated using all the experimental data available from different experiments and the relationships deduced from the level scheme. The minimised function consists of five terms having as parameters the coefficients of the energy calibration curves (polynomials) and the level energies of the nucleus under investigation. The procedure was tested with two γ-spectra, in the energy range 1.5-8 MeV, measured with the pair spectrometer at the High Flux Reactor of the Institute Laue Langevin (ILL), Grenoble and allowed us to estimate transition energies with uncertainties of 10 eV.

  20. Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, Serguei [Yerevan Physics Inst. (Armenia); et al.

    2011-08-01

    A measurement is presented of the charged hadron multiplicity in hadronic PbPb collisions, as a function of pseudorapidity and centrality, at a collision energy of 2.76 TeV per nucleon pair. The data sample is collected using the CMS detector and a minimum-bias trigger, with the CMS solenoid off. The number of charged hadrons is measured both by counting the number of reconstructed particle hits and by forming hit doublets of pairs of layers in the pixel detector. The two methods give consistent results. The charged hadron multiplicity density dN(ch)/d eta, evaluated at eta=0 for head-on collisions, is found to be 1612 +/- 55, where the uncertainty is dominated by systematic effects. Comparisons of these results to previous measurements and to various models are also presented.

  1. CODA-DERIVED SOURCE SPECTRA, MOMENT MAGNITUDES, AND ENERGY-MOMENT SCALING IN THE WESTERN ALPS

    Energy Technology Data Exchange (ETDEWEB)

    Morasca, P; Mayeda, K; Malagnini, L; Walter, W

    2004-02-03

    A stable estimate of the earthquake source spectra in the western Alps is obtained using an empirical method based on coda envelope amplitude measurements described by Mayeda et al. (2003) for events ranging between M{sub W} {approx} 1.0 to {approx}5.0. We calibrated path corrections for consecutive narrow frequency bands ranging between 0.2 and 25.0-Hz using a simple 1-D model for 5 three-component stations of the Regional Seismic network of Northwestern Italy (RSNI). The 1-D assumption performs well, even though the region is characterized by a complex structural setting involving strong lateral variations in the Moho depth. For frequencies less than 1.0-Hz, we tied our dimensionless, distance-corrected coda amplitudes to an absolute scale in units of dyne-cm by using independent moment magnitudes from long-period waveform modeling for 3 moderate magnitude events in the region. For the higher frequencies, we used small events as empirical Green's functions, with corner frequencies above 25.0-Hz. For each station, the procedure yields frequency-dependent corrections that account for site effects, including those related to f{sub max}, as well as those related to S-to-coda transfer function effects. After the calibration was completed, the corrections were applied to the entire data-set composed of 957 events. Our findings using the coda-derived source spectra are summarized as follows: (1) We derived stable estimates of seismic moment, M{sub 0}, (and hence M{sub W}) as well as radiated S-wave energy, (E{sub S}), from waveforms recorded by as few as one station, for events that were too small to be waveform modeled (i.e., events less than M{sub W} {approx}3.5); (2) The source spectra were used to derive an equivalent local magnitude, M{sub L(coda)}, that is in excellent agreement with the network averaged values using direct S-waves; (3) Scaled energy, {tilde e} = E{sub R}/M{sub 0}, where E{sub R}, the radiated seismic energy, is comparable to results from

  2. Relation between fine structure of energy spectra for pulsating aurora electrons and frequency spectra of whistler mode chorus waves

    Science.gov (United States)

    Miyoshi, Y.; Saito, S.; Seki, K.; Nishiyama, T.; Kataoka, R.; Asamura, K.; Katoh, Y.; Ebihara, Y.; Sakanoi, T.; Hirahara, M.; Oyama, S.; Kurita, S.; Santolik, O.

    2015-09-01

    We investigate the origin of the fine structure of the energy spectrum of precipitating electrons for the pulsating aurora (PsA) observed by the low-altitude Reimei satellite. The Reimei satellite achieved simultaneous observations of the optical images and precipitating electrons of the PsA from satellite altitude (~620 km) with resolution of 40 ms. The main modulation of precipitation, with a few seconds, and the internal modulations, with a few hertz, that are embedded inside the main modulations are identified above ~3 keV. Moreover, stable precipitations at ~1 keV are found for the PsA. A "precipitation gap" is discovered between two energy bands. We identify the origin of the fine structure of the energy spectrum for the precipitating electrons using the computer simulation on the wave-particle interaction between electrons and chorus waves. The lower band chorus (LBC) bursts cause the main modulation of energetic electrons, and the generation and collapse of the LBC bursts determines on-off switching of the PsA. A train of rising tone elements embedded in the LBC bursts drives the internal modulations. A close set of upper band chorus (UBC) waves causes the stable precipitations at ~1 keV. We show that a wave power gap around the half gyrofrequency at the equatorial plane in the magnetosphere between LBC and UBC reduces the loss rate of electrons at the intermediate energy range, forming a gap of precipitating electrons in the ionosphere.

  3. Large-scale kinetic energy spectra from Eulerian analysis of EOLE wind data

    Science.gov (United States)

    Desbois, M.

    1975-01-01

    A data set of 56,000 winds determined from the horizontal displacements of EOLE balloons at the 200 mb level in the Southern Hemisphere during the period October 1971-February 1972 is utilized for the computation of planetary- and synoptic-scale kinetic energy space spectra. However, the random distribution of measurements in space and time presents some problems for the spectral analysis. Two different approaches are used, i.e., a harmonic analysis of daily wind values at equi-distant points obtained by space-time interpolation of the data, and a correlation method using the direct measurements. Both methods give similar results for small wavenumbers, but the second is more accurate for higher wavenumbers (k above or equal to 10). The spectra show a maximum at wavenumbers 5 and 6 due to baroclinic instability and then decrease for high wavenumbers up to wavenumber 35 (which is the limit of the analysis), according to the inverse power law k to the negative p, with p close to 3.

  4. Energy spectra of protons in diffraction break-up of deuterons on 12C and 40Ca at intermediate energies

    Directory of Open Access Journals (Sweden)

    V. V. Davydovskyy

    2016-08-01

    Full Text Available In the diffraction approximation generalized to the case of inelastic processes with longitudinal momentum transfer, the reaction of the deuteron break-up on nuclei at medium energies is studied, taking into account the Coulomb and nuclear interactions. The formulas for the calculation of the energy spectra of the emerging protons are obtained up to the second order with respect to the ratio of the deuteron radius to the nucleus radius. Three types of model wave functions of the deuteron were used in the calculations: Yukawa, exponential and Gaussian. The wave function of np-pair in continuum is built orthogonal to the wave function of deuteron. This allows one to take into account qualitatively the interaction in the final state and avoid false contributions to the cross section at near zero momentum transfer. A comparison with experimental data on the break-up of deuterons with energy of 56 MeV on carbon and calcium with the registration of the emitted neutrons and protons at zero angles is carried out. It is shown that the contribution of the Coulomb mechanism dominates in the cross section. The best description of the spectra of protons is achieved by using the Yukawa form of the wave function of the deuteron. It is also shown that taking into account the transfer of longitudinal momentum to the deuteron nucleons improves the experimental data description. In the case of non-zero nucleon escape angles, the effect of taking into account longitudinal momentum can reach several hundred percent.

  5. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate

    Science.gov (United States)

    Ordon, Piotr; Komorowski, Ludwik; Jedrzejewski, Mateusz

    2017-10-01

    Theoretical justification has been provided to the method for monitoring the sequence of chemical bonds' rearrangement along a reaction path, by tracing the evolution of the diagonal elements of the Hessian matrix. Relations between the divergences of Hellman-Feynman forces and the energy and electron density derivatives have been demonstrated. By the proof presented on the grounds of the conceptual density functional theory formalism, the spectral amplitude observed on the atomic fragility spectra [L. Komorowski et al., Phys. Chem. Chem. Phys. 18, 32658 (2016)] reflects selectively the electron density modifications in bonds of an atom. In fact the spectral peaks for an atom reveal changes of the electron density occurring with bonds creation, breaking, or varying with the reaction progress.

  6. Measurements of the atmospheric neutrino flux by Super-Kamiokande: energy spectra, geomagnetic effects, and solar modulation

    CERN Document Server

    Richard, E; Abe, K; Haga, Y; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kishimoto, Y; Miura, M; Moriyama, S; Nakahata, M; Nakajima, T; Nakano, Y; Nakayama, S; Orii, A; Sekiya, H; Shiozawa, M; Takeda, A; Tanaka, H; Tomura, T; Wendell, R A; Akutsu, R; Irvine, T; Kajita, T; Kaneyuki, K; Nishimura, Y; Labarga, L; Fernandez, P; Gustafson, J; Kachulis, C; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Nantais, C M; Tanaka, H A; Tobayama, S; Goldhaber, M; Kropp, W R; Mine, S; Weatherly, P; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hartfiel, B L; Hill, J; Hong, N; Kim, J Y; Lim, I T; Park, R G; Himmel, A; Li, Z; OSullivan, E; Scholberg, K; Walter, C W; Wongjirad, T; Ishizuka, T; Tasaka, S; Jang, J S; Learned, J G; Matsuno, S; Smith, S N; Friend, M; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Takeuchi, Y; Yano, T; Cao, S V; Hiraki, T; Hirota, S; Huang, K; Kikawa, T; Minamino, A; Nakaya, T; Suzuki, K; Fukuda, Y; Choi, K; Itow, Y; Suzuki, T; Mijakowski, P; Frankiewicz, K; Hignight, J; Imber, J; Jung, C K; Li, X; Palomino, J L; Wilking, M J; Yanagisawa, C; Fukuda, D; Ishino, H; Kayano, T; Kibayashi, A; Koshio, Y; Mori, T; Sakuda, M; Xu, C; Kuno, Y; Tacik, R; Kim, S B; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Totsuka, Y; Suda, Y; Yokoyama, M; Bronner, C; Hartz, M; Martens, K; Marti, Ll; Suzuki, Y; Vagins, M R; Martin, J F; Konaka, A; Chen, S; Zhang, Y; Wilkes, R J

    2015-01-01

    A comprehensive study on the atmospheric neutrino flux in the energy region from sub-GeV up to several TeV using the Super-Kamiokande water Cherenkov detector is presented in this paper. The energy and azimuthal spectra of the atmospheric ${\

  7. Planck early results. XV. Spectral energy distributions and radio continuum spectra of northern extragalactic radio sources

    Science.gov (United States)

    Planck Collaboration; Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Berdyugin, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Burrows, D. N.; Cabella, P.; Capalbi, M.; Cappellini, B.; Cardoso, J.-F.; Catalano, A.; Cavazzuti, E.; Cayón, L.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Couchot, F.; Coulais, A.; Cutini, S.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dickinson, C.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fuhrmann, L.; Galeotta, S.; Ganga, K.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giard, M.; Giardino, G.; Giglietto, N.; Giommi, P.; Giordano, F.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Juvela, M.; Keihänen, E.; Keskitalo, R.; King, O.; Kisner, T. S.; Kneissl, R.; Knox, L.; Krichbaum, T. P.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lavonen, N.; Lawrence, C. R.; Leach, S.; Leonardi, R.; León-Tavares, J.; Linden-Vørnle, M.; Lindfors, E.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Max-Moerbeck, W.; Mazziotta, M. N.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Michelson, P. F.; Mingaliev, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Monte, C.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Nestoras, I.; Netterfield, C. B.; Nieppola, E.; Nilsson, K.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Partridge, B.; Pasian, F.; Patanchon, G.; Pavlidou, V.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perri, M.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Procopio, P.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rainò, S.; Reach, W. T.; Readhead, A.; Rebolo, R.; Reeves, R.; Reinecke, M.; Reinthal, R.; Renault, C.; Ricciardi, S.; Richards, J.; Riller, T.; Riquelme, D.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Saarinen, J.; Sandri, M.; Savolainen, P.; Scott, D.; Seiffert, M. D.; Sievers, A.; Sillanpää, A.; Smoot, G. F.; Sotnikova, Y.; Starck, J.-L.; Stevenson, M.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Takalo, L.; Tammi, J.; Tauber, J. A.; Terenzi, L.; Thompson, D. J.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Torre, J.-P.; Tosti, G.; Tramacere, A.; Tristram, M.; Tuovinen, J.; Türler, M.; Turunen, M.; Umana, G.; Ungerechts, H.; Valenziano, L.; Valtaoja, E.; Varis, J.; Verrecchia, F.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Wu, J.; Yvon, D.; Zacchei, A.; Zensus, J. A.; Zhou, X.; Zonca, A.

    2011-12-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources, based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multifrequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper, physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law indexaround 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shocks. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission. Tables 1 and 4, Figs. 18-121 are available in electronic form at http://www.aanda.org

  8. DLTS spectra of silicon diodes with p+-n-junction irradiated with high energy krypton ions

    Directory of Open Access Journals (Sweden)

    Nikolai A. Poklonski

    2016-06-01

    Full Text Available p+-n-Diodes have been studied. The diodes were manufactured on wafers (thickness 460 μm, (111 plane of uniformly phosphorus doped float-zone-grown single-crystal silicon. The resistivity of silicon was 90 Ω cm and the phosphorus concentration was 5×1013 cm−3. The diodes were irradiated with 250 MeV krypton ions. The irradiation fluence was 108 cm−2. Deep-level transient spectroscopy (DLTS was used to examine the defects induced by high energy krypton ion implantation. The DLTS spectra were recorded at a frequency of 1 MHz in the 78–290 K temperature range. The capacity-voltage characteristics have been measured at a reverse bias voltage from 0 to −19 V at a frequency of 1 MHz. We show that the main irradiation-induced defects are A-centers and divacancies. The behavior of DLTS spectra in the 150–260 K temperature range depends essentially on the emission voltage Ue. The variation of Ue allows us to separate the contributions of different defects into the DLTS spectrum in the 150–260 K temperature range. We show that, in addition to A-centers and divacancies, irradiation produces multivacancy complexes with the energy level Et = Ec−(0.5±0.02 eV and an electron capture cross section of ~4×10–13 cm2.

  9. Search for squark production in events with jets, hadronically decaying tau leptons and missing transverse energy at s**(1/2) = 1.96-TeV

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; /Dubna, JINR; Abbott, B.; /Oklahoma U.; Abolins, M.; /Michigan State U.; Acharya, B.S.; /Tata Inst.; Adams, M.; /Illinois U., Chicago; Adams, T.; /Florida State U.; Aguilo, E.; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, M.; /Kansas State U.; Alexeev, G.D.; /Dubna, JINR; Alkhazov, G.; /St. Petersburg, INP; Alton, A.; /Michigan U. /Northeastern U.

    2009-05-01

    A search for supersymmetric partners of quarks is performed in the topology of multijet events accompanied by at least one tau lepton decaying hadronically and large missing transverse energy. Approximately 1 fb-1 of ppbar collision data from the Fermilab Tevatron Collider at a center of mass energy of 1.96 TeV recorded by the D0 detector is analyzed. Results are combined with the previously published D0 inclusive search for squarks and gluinos. No evidence of physics beyond the standard model is found and lower limits on the squark mass up to 410 GeV are derived in the framework of minimal supergravity with tan(beta)=15, A{sub 0}=-2m{sub 0} and mu<0, in the region where decays to tau leptons dominate. Gaugino masses m{sub 1/2} are excluded up to 172 GeV.

  10. Search for squark production in events with jets, hadronically decaying tau leptons and missing transverse energy at {radical}(s)=1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Abbott, B. [University of Oklahoma, Norman, OK 73019 (United States); Abolins, M. [Michigan State University, East Lansing, MI 48824 (United States); Acharya, B.S. [Tata Institute of Fundamental Research, Mumbai (India); Adams, M. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Adams, T. [Florida State University, Tallahassee, FL 32306 (United States); Aguilo, E. [University of Alberta, Edmonton, Alberta, and Simon Fraser University, Burnaby, British Columbia, and York University, Toronto, Ontario, and McGill University, Montreal, Quebec (Canada); Ahsan, M. [Kansas State University, Manhattan, KS 66506 (United States); Alexeev, G.D. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Alkhazov, G. [Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation); Alton, A. [University of Michigan, Ann Arbor, MI 48109 (United States); Alverson, G. [Northeastern University, Boston, MA 02115 (United States); Alves, G.A. [LAFEX, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro (Brazil); Ancu, L.S. [Radboud University Nijmegen/NIKHEF, Nijmegen (Netherlands); Andeen, T.; Anzelc, M.S. [Northwestern University, Evanston, IL 60208 (United States); Aoki, M. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Arnoud, Y. [LPSC, Universite Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, Grenoble (France); Arov, M. [Louisiana Tech University, Ruston, LA 71272 (United States); Arthaud, M. [CEA, Irfu, SPP, Saclay (France)] (and others)

    2009-09-14

    A search for supersymmetric partners of quarks is performed in the topology of multijet events accompanied by at least one tau lepton decaying hadronically and large missing transverse energy. Approximately 1 fb{sup -1} of pp-bar collision data from the Fermilab Tevatron Collider at a center of mass energy of 1.96 TeV recorded by the DO detector is analyzed. Results are combined with the previously published DO inclusive search for squarks and gluinos. No evidence of physics beyond the Standard Model is found and lower limits on the squark mass up to 410 GeV are derived in the framework of minimal supergravity with tan{beta}=15, A{sub 0}=-2m{sub 0} and {mu}<0, in the region where decays to tau leptons dominate. Gaugino masses m{sub 1/2} are excluded up to 172 GeV.

  11. Extracting the differential inverse inelastic mean free path and differential surface excitation probability of Tungsten from X-ray photoelectron spectra and electron energy loss spectra

    Science.gov (United States)

    Afanas’ev, V. P.; Gryazev, A. S.; Efremenko, D. S.; Kaplya, P. S.; Kuznetcova, A. V.

    2017-12-01

    Precise knowledge of the differential inverse inelastic mean free path (DIIMFP) and differential surface excitation probability (DSEP) of Tungsten is essential for many fields of material science. In this paper, a fitting algorithm is applied for extracting DIIMFP and DSEP from X-ray photoelectron spectra and electron energy loss spectra. The algorithm uses the partial intensity approach as a forward model, in which a spectrum is given as a weighted sum of cross-convolved DIIMFPs and DSEPs. The weights are obtained as solutions of the Riccati and Lyapunov equations derived from the invariant imbedding principle. The inversion algorithm utilizes the parametrization of DIIMFPs and DSEPs on the base of a classical Lorentz oscillator. Unknown parameters of the model are found by using the fitting procedure, which minimizes the residual between measured spectra and forward simulations. It is found that the surface layer of Tungsten contains several sublayers with corresponding Langmuir resonances. The thicknesses of these sublayers are proportional to the periods of corresponding Langmuir oscillations, as predicted by the theory of R.H. Ritchie.

  12. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  13. FITPULS: a code for obtaining analytic fits to aggregate fission-product decay-energy spectra. [In FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    LaBauve, R.J.; George, D.C.; England, T.R.

    1980-03-01

    The operation and input to the FITPULS code, recently updated to utilize interactive graphics, are described. The code is designed to retrieve data from a library containing aggregate fine-group spectra (150 energy groups) from fission products, collapse the data to few groups (up to 25), and fit the resulting spectra along the cooling time axis with a linear combination of exponential functions. Also given in this report are useful results for aggregate gamma and beta spectra from the decay of fission products released from /sup 235/U irradiated with a pulse (10/sup -4/ s irradiation time) of thermal neutrons. These fits are given in 22 energy groups that are the first 22 groups of the LASL 25-group decay-energy group structure, and the data are expressed both as MeV per fission second and particles per fission second; these pulse functions are readily folded into finite fission histories. 65 figures, 11 tables.

  14. GPU-Powered Modelling of Nonlinear Effects due to Head-On Beam-Beam Interactions in High-Energy Hadron Colliders.

    CERN Document Server

    Furuseth, Sondre

    2017-01-01

    The performance of high-energy circular hadron colliders, as the Large Hadron Collider, is limited by beam-beam interactions. The strongly nonlinear force between the two opposing beams causes diverging Hamiltonians and resonances, which can lead to a reduction of the lifetime of the beams. The nonlinearity makes the effect of the force difficult to study analytically, even at first order. Numerical models are therefore needed to evaluate the overall effect of different configurations of the machines. This report discusses results from an implementation of the weak-strong model, studying the effects of head-on beam-beam interactions. The assumptions has been shown to be valid for configurations where the growth and losses of the beam are small. The tracking has been done using an original code which applies graphic cards to reduce the computation time. The bunches in the beams have been modelled cylindrically symmetrical, based on a Gaussian distribution in three dimensions. This choice fits well with bunches...

  15. Thickness dependence of Electron Energy Loss Spectra (EELS) of MoS2 films

    Science.gov (United States)

    Xue, Feng; Yan, Xinxu; Wang, Zhe; Wang, Hui; Pan, Xiaoqing; Wu, Ruqian

    Band structures and optical properties of monolayer, bilayer, and bulk MoS2 are studied using the GW approximation in conjunction with the Bethe-Salpeter equation (BSE). The calculated electron energy loss spectra (EELS) of these systems show peak structures that depend on the thickness. In particular, the pronounced peak near 3 eV moves to lower energy with the increasing of film thickness. Through analysis of transition matrices and density of states, we attribute this peak shift to modifications of the band structures through the weak interlayer van der Waals interaction. Comparison between theory and experiment are made to reveal the physical insights and to provide guidance for the utilization of novel two-dimensional materials. Work at Fudan was supported by the Chinese National Science Foundation (Grant No. 11474056) and National Basic Research Program of China (Grant No. 2015CB921400). Work at UCI was supported by DOE-BES (Grant No. DE-FG02-05ER46237).

  16. Nuclear composition and energy spectra in the 1969 April 12 solar-particle event.

    Science.gov (United States)

    Bertsch, D. L.; Fichtel, C. E.; Reames, D. V.

    1972-01-01

    Measurement of the charge composition for several of the multicharged nuclei and the energy spectra for hydrogen, helium, and medium (6 less than or equal to Z less than or equal to 9) nuclei in the Apr. 12, 1969, solar-particle event. The energy/nucleon spectral shape of the medium nuclei was again the same as that of the helium nuclei, and the ratio of these two species was consistent with the present best average of 58 plus or minus 5. By combining the results obtained here with previous work, improved estimates of the Ne/O and Mg/O values of 0.16 plus or minus 0.03 and 0.056 plus or minus 0.014, respectively, were obtained. Silicon and sulfur abundances relative to O were determined to be 0.208 plus or minus 0.008 plus or minus 0.006, respectively, and 85% confidence upper limits for Ar and Ca relative to O of 0.017 and 0.010 were obtained. Previously, these last four nuclei had only been listed as a group.

  17. Chiral low-energy constants L{sub 10} and C{sub 87} from hadronic {tau} decays

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Alonso, Martin [Departament de Fisica Teorica and IFIC, Universitat de Valencia-CSIC, Apt. Correus 22085, E-46071 Valencia (Spain)], E-mail: Martin.Gonzalez@ific.uv.es; Pich, Antonio [Departament de Fisica Teorica and IFIC, Universitat de Valencia-CSIC, Apt. Correus 22085, E-46071 Valencia (Spain); Prades, Joaquim [CAFPE and Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, Campus de Fuente Nueva, E-18002 Granada (Spain)

    2009-01-15

    Using recent precise hadronic {tau}-decay data on the V - A spectral function and general properties of QCD such as analyticity, the operator product expansion (OPE) and chiral perturbation theory ({chi}PT), we get accurate values for the QCD chiral order parameters L{sub 10}{sup r} and C{sub 87}{sup r}. At order p{sup 4} we obtain L{sub 10}{sup r}(M{sub {rho}})=-(5.22{+-}0.06).10{sup -3}, whereas at order p{sup 6} we get L{sub 10}{sup r}(M{sub {rho}})=-(4.06{+-}0.39).10{sup -3} and C{sub 87}{sup r}(M{sub {rho}})=(4.89{+-}0.19).10{sup -3}GeV{sup -2}.

  18. Multivariate Methods For Hadronic Final States In Electron-positron Collisions At Center Of Mass Energy = 500 Gev

    CERN Document Server

    Pathak, S

    2005-01-01

    We approach the hadronic final state events in a future linear collider at s = 500 GeV from the knowledge discovery (data mining) point of view. We present FastCal, a fast configurable calorimeter Monte Carlo simulator for linear collider detector simulations that produces data at a rate that is 3000 times that of full simulation. Neural networks based on earlystopping are designed for the jet- combinatorial problem. CJNN, a neural network package is presented for use in the linear collider analysis environment. Neural network performances are optimized by implementing an ensemble of neural networks. A binary tree is used to obtain novel automatic cuts on physics variables. Data visualization is introduced as a crucial component of data analysis, and principal component analysis is used to understand data distributions and structures in multiple dimensions. Finally, cluster analyses with fuzzy c-means and demographic clustering are used to partition data automatically in an unsupervised regime, and we sho...

  19. Inclusive Production of $\\pi^{0}$, $\\eta$, $\\eta$'(958), $K^0_s$ and $\\Lambda$ in Two- and Three-Jet Events from Hadronic Z Decays

    CERN Document Server

    Barate, R; Ghez, P; Goy, C; Lees, J P; Merle, E; Minard, M N; Pietrzyk, B; Alemany, R; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Pacheco, A; Park, I C; Riu, I; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Boix, G; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Leroy, O; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Blondel, A; Bonneaud, G R; Brient, J C; Rougé, A; Rumpf, M; Swynghedauw, M; Verderi, M; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Lynch, J G; Negus, P; O'Shea, V; Raine, C; Teixeira-Dias, P; Thompson, A S; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Martin, E B; Marinelli, N; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Williams, M I; Giehl, I; Jakobs, K; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Wachsmuth, H W; Zeitnitz, C; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Etienne, F; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Le Diberder, F R; Lefrançois, J; Lutz, A M; Schune, M H; Veillet, J J; Videau, I; Zerwas, D; Bagliesi, G; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Foà, L; Giassi, A; Gregorio, A; Ligabue, F; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Venturi, A; Verdini, P G; Blair, G A; Cowan, G D; Green, M G; Medcalf, T; Strong, J A; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Koob, C; Misiejuk, A; Prange, G; Sieler, U; Giannini, G; Gobbo, B; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; Kile, J; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Von Wimmersperg-Töller, J H; Wu Sau Lan; Wu, X; Zobernig, G; CERN. Geneva

    2001-01-01

    The production rates and the inclusive cross sections of the isovector meson $\\pi^0$, the isoscalar mesons $\\eta$ and $\\eta^\\prime(958)$, the strange meson $\\mathrm{K^0_S}$ and the $\\Lambda$ baryon have been measured as functions of scaled energy in hadronic events two-jet events and each jet of three-jet events from hadronic Z decays and compared to Monte Carlo models. The analysis is based on 3.7~million hadronic events collected with the ALEPH detector at LEP at a centre-of-mass energy of $\\sqrt{s}=91.2$~GeV. The JETSET modelling of the gluon fragmentation into isoscalar mesons is found to be in agreement with the experimental results. HERWIG fails to describe the $\\mathrm{K^0_S}$ spectra in gluon-enriched jets and the $\\Lambda$ spectra in quark jets.

  20. $b$-hadron production at ATLAS and CMS experiments

    CERN Document Server

    De La Cruz Burelo, Eduard

    2016-01-01

    We report on a selected number of studies performed by the ATLAS and the CMS collaborations on b -hadron production. Both experiments have a rich program on b -hadron physics exploiting the large cross section of b -hadrons at the high energies of the LHC.

  1. Charmed hadrons in nuclear medium

    NARCIS (Netherlands)

    Tolos, L.; Gamermann, D.; Garcia-Recio, C.; Molina, R.; Nieves, J.; Oset, E.; Ramos, A.

    We study the properties of charmed hadrons in dense matter within a coupled-channel approach which accounts for Pauli blocking effects and meson self-energies in a self-consistent manner We analyze the behaviour in this dense environment of dynamically-generated baryonic resonances as well as the

  2. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 $pp$-collision data with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2017-01-13

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb$^{-1}$ of proton--proton collision data at $\\sqrt{s}=7$ TeV from 2010 and 0.1 nb$^{-1}$ of data at $\\sqrt{s}=8$ TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5\\% discrepancy in the modelling, using Geant4 physics lists, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta are derived based on these studies. The uncer...

  3. Preliminary investigations of Monte Carlo Simulations of neutron energy and LET spectra for fast neutron therapy facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kroc, T.K.; /Fermilab

    2009-10-01

    No fast neutron therapy facility has been built with optimized beam quality based on a thorough understanding of the neutron spectrum and its resulting biological effectiveness. A study has been initiated to provide the information necessary for such an optimization. Monte Carlo studies will be used to simulate neutron energy spectra and LET spectra. These studies will be bench-marked with data taken at existing fast neutron therapy facilities. Results will also be compared with radiobiological studies to further support beam quality ptimization. These simulations, anchored by this data, will then be used to determine what parameters might be optimized to take full advantage of the unique LET properties of fast neutron beams. This paper will present preliminary work in generating energy and LET spectra for the Fermilab fast neutron therapy facility.

  4. PHOTONS AND NEUTRAL MESONS FROM HOT HADRONIC MATTER

    NARCIS (Netherlands)

    LOHNER, H; ALBRECHT, R; AWES, TC; BARLAG, C; BERGER, F; BLOOMER, M; BLUME, C; BOCK, D; BOCK, R; BUCHER, D; CLAESSON, G; CLEWING, G; DEBBE, R; DRAGON, L; EKLUND, A; FOKIN, S; GARPMAN, S; GLASOW, R; GUSTAFSSON, HA; GUTBROD, HH; HANSEN, O; HOELKER, G; IDH, J; IPPOLITOV, M; JACOBS, P; KAMPERT, KH; KARADJEV, K; KOLB, BW; LEBEDEV, A; LUND, [No Value; MANKO, [No Value; MOSKOWITZ, B; OBENSHAIN, FE; OSKARSSON, A; OTTERLUND, [No Value; PEITZMANN, T; PLASIL, F; POSKANZER, AM; PURSCHKE, M; ROTERS, B; SAINI, S; SANTO, R; SCHMIDT, HR; SODERSTROM, K; SORENSEN, SP; STEFFENS, K; STEINHAUSER, P; STENLUND, E; STUKEN, D; VINOGRADOV, A; WEGNER, H; YOUNG, GR

    1994-01-01

    Results from the experimental program with light ion beams and heavy target nuclei at the CERN SPS could demonstrate the occurrence of an unprecedented state of high density in hadronic matter. The thermal nature of the hadronic system has been investigated by analyzing spectra and production ratios

  5. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-07-01

    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  6. QCD Test in Three-Jet Z0 Decays at SLD and Detector Development for H0 --> Gamma Gamma Searches in High-Energy Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, H

    2004-01-06

    Polarized Z{sup 0} decays into three jets have been detected and measured in the SLD (SLAC Large Detector) experiment at the Stanford Linear Accelerator Center (SLAC). The hadrons from the jets were detected in the SLD liquid argon calorimeter, providing a sensitivity over 98% of the solid angle. The spin of the gluon was tested by studying the scaled jet energies (x{sub 1}, x{sub 2}, x{sub 3}) the Ellis-Karliner angle (cos{theta}{sub EK}) and the parameters of event plane orientation ({alpha}, {alpha}{sub N} {chi}). These measured variables are compared with quantum chromodynamics (QCD) and a scalar gluon model. Good agreement is found between data and the vector QCD model for the distributions of x{sub 1}, x{sub 2}, x{sub 3} and cos{theta}{sub EK}.

  7. Energy spectra unfolding of fast neutron sources using the group method of data handling and decision tree algorithms

    Science.gov (United States)

    Hosseini, Seyed Abolfazl; Afrakoti, Iman Esmaili Paeen

    2017-04-01

    Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The 241Am-9Be and 252Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions.

  8. Charmonium and light hadron spectroscopy

    CERN Document Server

    Shen, Chengping

    2014-01-01

    In this report I review some results on the charmonium and light hadron spectroscopy mainly from BESIII and Belle experiments. For the charmonium, the contents include the observation of $\\psi(4040)/\\psi(4160) \\to \\eta \\jpsi$, the measurements of the $\\eta_c/\\eta_c(2S)$ resonance parameters and their decays, the evidence of the $\\psi_2(1^3D_2)$ state in the $\\chi_{c1}\\gamma$ mass spectrum. For the light hadron spectroscopy, the contents include the $X(1835)$ research in $e^+e^- \\to \\jpsi + X(1835)$ and $\\gamma \\gamma \\to \\eta' \\pi^+ \\pi^-$ processes, and the analysis of the $\\eta \\eta$, $\\omega \\phi$, $\\phi\\phi$ and $\\omega \\omega$ mass spectra in low mass region.

  9. PHENIX plans for RHIC low energy run

    CERN Document Server

    Sakaguchi, Takao

    2009-01-01

    PHENIX plans for low energy running are presented. Current detector setting makes it possible to measure dielectron spectra down to sqrt(s_NN)=39GeV, and photon/high pT hadron spectra down to below sub-injection energy (sqrt(s_NN)=5-10GeV). The upgrade of the trigger scheme after the installation of VTX detector will enable PHENIX to fully explore the sub-injection energy regime, starting 2011.

  10. Exotic hadrons from heavy ion collisions

    Science.gov (United States)

    Cho, Sungtae; Hyodo, Tetsuo; Jido, Daisuke; Ko, Che Ming; Lee, Su Houng; Maeda, Saori; Miyahara, Kenta; Morita, Kenji; Nielsen, Marina; Ohnishi, Akira; Sekihara, Takayasu; Song, Taesoo; Yasui, Shigehiro; Yazaki, Koichi

    2017-07-01

    High energy heavy ion collisions are excellent ways for producing heavy hadrons and composite particles, including the light (anti)nuclei. With upgraded detectors at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC), it has become possible to measure hadrons beyond their ground states. Therefore, heavy ion collisions provide a new method for studying exotic hadrons that are either molecular states made of various hadrons or compact system consisting of multiquarks. Because their structures are related to the fundamental properties of Quantum Chromodynamics (QCD), studying exotic hadrons is currently one of the most active areas of research in hadron physics. Experiments carried out at various accelerator facilities have indicated that some exotic hadrons may have already been produced. The present review is a summary of the current understanding of a selected set of exotic particle candidates that can be potentially measured in heavy ion collisions. It also includes discussions on the production of resonances, exotics and hadronic molecular states in these collisions based on the coalescence model and the statistical model. A more detailed discussion is given on the results from these models, leading to the conclusion that the yield of a hadron that is a compact multiquark state is typically an order of magnitude smaller than if it is an excited hadronic state with normal quark numbers or a loosely bound hadronic molecule. Attention is also given to some of the proposed heavy exotic hadrons that could be produced with sufficient abundance in heavy ion collisions because of the significant numbers of charm and bottom quarks that are produced at RHIC and even larger numbers at LHC, making it possible to study them in these experiments. Further included in the discussion are the general formalism for the coalescence model that involves resonance particles and its implication on the present estimated yield for resonance production. Finally

  11. Hadrons in medium

    Indian Academy of Sciences (India)

    medium properties of hadrons. I discuss the relevant symmetries of QCD and how they might affect the observed hadron properties. I then discuss at length the observable consequences of in-medium changes of hadronic properties in reactions with ...

  12. ATLAS-Hadronic Calorimeter

    CERN Multimedia

    2003-01-01

    Hall 180 work on Hadronic Calorimeter The ATLAS hadronic tile calorimeter The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. (IEEE Trans. Nucl. Sci. 53 (2006) 1275-81)

  13. Simulated vibrational spectra of aflatoxins and their demethylated products and the estimation of the energies of the demethylation reactions

    Science.gov (United States)

    Billes, Ferenc; Móricz, Ágnes M.; Tyihák, Ernő; Mikosch, Hans

    2006-06-01

    The structure of four natural mycotoxins, the aflatoxin B 1, B 2, G 1 and G 2 and their demethylated products were optimized with quantum chemical method. The energies and the thermodynamic functions of the molecules were calculated and applied to calculation of the reaction energies of the demethylations. Further results of the calculations are the vibrational force constants, the infrared spectra of the molecules and the assignments of the spectral bands.

  14. Moments, magnitudes, and radiated energies of non-volcanic tremor near Cholame, CA, from ground motion spectra at UPSAR

    Science.gov (United States)

    Fletcher, Joe B.; McGarr, A.

    2011-01-01

    By averaging the spectra of events within two episodes of tremor (on Jan. 21 and 24, 2005) across the 12 stations of UPSAR, we improved the S/N sufficiently to define source spectra. Analysis of eleven impulsive events revealed attenuation-corrected spectra of displacement similar to those of earthquakes, with a low-frequency plateau, a corner frequency, and a high frequency decay proportional to f−2. Seismic moments, M0, estimated from these spectra range from about 3 to 10 × 1011 N-m or moment magnitudes in the range 1.6 to 1.9. The corner frequencies range from 2.6 to 7.2 Hz and, if interpreted in the same way as for earthquakes, indicate low stress drops that vary from 0.001 to 0.04 MPa. Seismic energies, estimated from the ground motion spectra, vary from 0.2 × 105 to 4.4 × 105 J, or apparent stresses in the range 0.002 to 0.02 MPa. The low stress parameters are consistent with a weak fault zone in the lower crust at the depth of tremor. In contrast, the same analysis on a micro-earthquake, located near Cholame (depth = 10.3 km), revealed a stress drop of 0.5 MPa and an apparent stress of 0.02 MPa. Residual spectra from ω−2 model fits to the displacement spectra of the non-volcanic tremor events show peaks near 4 Hz that are not apparent in the spectra for the microearthquake nor for the spectrum of earth noise. These spectral peaks may indicate that tremor entails more than shear failure reminiscent of mechanisms, possibly entailing fluid flow, associated with volcanic tremor or deep volcanic earthquakes.

  15. Measurement of inclusive particle spectra and test of MLLA prediction in e+e- annihilation at \\Sqrt s = 58 GeV

    CERN Document Server

    Itoh, R; Yamaguchi, A; Abe, K; Abe, T; Adachi, I; Adachi, K; Aoki, M; Awa, S; Emi, K; Enomoto, R; Fujii, H; Fujii, K; Fujii, T; Fujimoto, J; Fujita, K; Fujiwara, N; Hayashii, H; Howell, B; Iida, N; Inoue, Y; Iwasaki, H; Iwasaki, M; Kaneyuki, K; Kajikawa, R; Kato, S; Kawabata, S; Kichimi, H; Kobayashi, M; Koltick, D S; Levine, I; Minami, S; Miyabayashi, K; Miyamoto, A; Muramatsu, K; Nagai, K; Nakabayashi, K; Nakano, E; Nitoh, O; Noguchi, S; Ochi, A; Ochiai, F; Ohishi, N; Ohnishi, Y; Ohshima, Y; Okuno, H; Okusawa, T; Shinohara, T; Sugiyama, A; Suzuki, S; Takahashi, K; Takahashi, T; Tanimori, T; Tauchi, T; Teramoto, Y; Toomi, N; Tsukamoto, T; Tsumura, O; Uno, S; Watanabe, T; Watanabe, Y; Yamamoto, A

    1994-01-01

    Inclusive momentum spectra are measured for all charged particles and for each of \\pi^{\\pm}, K^{\\pm}, K^0/\\overline{K^0}, and p/\\overline{p} in hadronic events produced via e^+e^- annihilation at \\sqrt{s}=58GeV . The measured spectra are compared with QCD predictions based on the modified leading log approximation(MLLA). The MLLA model reproduces the measured spectra well. The energy dependence of the peak positions of the spectra is studied by comparing the measurements with those at other energies. The energy dependence is also well described by the MLLA model.

  16. Quark Hadron Duality - Recent Jefferson Lab Results

    Energy Technology Data Exchange (ETDEWEB)

    Niculescu, Maria Ioana [James Madison Univ., Harrisonburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-08-01

    The duality between the partonic and hadronic descriptions of electron--nucleon scattering is a remarkable feature of nuclear interactions. When averaged over appropriate energy intervals the cross section at low energy which is dominated by nucleon resonances resembles the smooth behavior expected from perturbative QCD. Recent Jefferson Lab results indicate that quark-hadron duality is present in a variety of observables, not just the proton F2 structure function. An overview of recent results, especially local quark-hadron duality on the neutron, are presented here.

  17. Hadronic shift in pionic hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hennebach, M.; Gotta, D. [Forschungszentrum Juelich, Institut fuer Kernphysik, Juelich (Germany); Anagnostopoulos, D.F. [University of Ioannina, Department of Materials Science and Engineering, Ioannina (Greece); Dax, A.; Liu, Y.W.; Markushin, V.E.; Simons, L.M. [Paul Scherrer Institut, Laboratory for Particle Physics, Villigen (Switzerland); Fuhrmann, H.; Gruber, A.; Hirtl, A.; Zmeskal, J. [Austrian Academy of Sciences, Stefan Meyer Institute for Subatomic Physics, Vienna (Austria); Indelicato, P. [UPMC Univ. Paris 06, Laboratoire Kastler Brossel, Sorbonne Universites, Paris (France); CNRS, Laboratoire Kastler Brossel, Paris (France); Departement de Physique de l' Ecole Normale Superieure, Laboratoire Kastler Brossel, Paris (France); Manil, B. [UPMC Univ. Paris 06, Laboratoire Kastler Brossel, Sorbonne Universites, Paris (France); Rusi el Hassani, A.J. [Universite Abdelmalek Essaadi, Faculte des Sciences et Techniques, Tanger (Morocco); Trassinelli, M. [Sorbonne Universites, Institut des NanoSciences de Paris, Paris (France); CNRS, Institut des NanoSciences de Paris, Paris (France)

    2014-12-01

    The hadronic shift in pionic hydrogen has been redetermined to be ε {sub 1s} = 7.086 ± 0.007(stat) ± 0.006(sys) eV by X-ray spectroscopy of ground-state transitions applying various energy calibration schemes. The experiment was performed at the high-intensity low-energy pion beam of the Paul Scherrer Institut by using the cyclotron trap and an ultimate-resolution Bragg spectrometer with bent crystals. (orig.)

  18. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    CERN Document Server

    Baryshevsky, V G

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.

  19. On hadronic shower simulation

    CERN Document Server

    Wellisch, J P

    1999-01-01

    The exploitation of hadronic final states played a key role in the successes of all recent HEP collider experiments, and the ability to use the hadronic final state will continue to be one of the decisive issues during the LHC era. Monte Carlo techniques to make efficient use of hadronic final states have been developed for many years, and have a technological culmination in object oriented tool-kits for hadronic shower simulation that now are becoming available. In the present paper we give a brief overview on the physics modeling underlying hadronic shower simulation, and report on advanced techniques used and developed for simulation of hadronic showers in HEP experiments. We will discuss the three basic types of modelling - data driven, parametrisation driven, and theory driven modelling - and demonstrate ways to combine them in a flexible manner for concrete applications. We will confront the different types of modelling with the stringent requirements on hadronic shower simulation posed by LHC, and inve...

  20. Next-to-leading order corrections to the spin-dependent energy spectrum of hadrons from polarized top quark decay in the general two Higgs doublet model

    Directory of Open Access Journals (Sweden)

    S. Mohammad Moosavi Nejad

    2017-08-01

    Full Text Available In recent years, searches for the light and heavy charged Higgs bosons have been done by the ATLAS and the CMS collaborations at the Large Hadron Collider (LHC in proton–proton collision. Nevertheless, a definitive search is a program that still has to be carried out at the LHC. The experimental observation of charged Higgs bosons would indicate physics beyond the Standard Model. In the present work, we study the scaled-energy distribution of bottom-flavored mesons (B inclusively produced in polarized top quark decays into a light charged Higgs boson and a massless bottom quark at next-to-leading order in the two-Higgs-doublet model; t(↑→bH+→BH++X. This spin-dependent energy distribution is studied in a specific helicity coordinate system where the polarization vector of the top quark is measured with respect to the direction of the Higgs momentum. The study of these energy distributions could be considered as a new channel to search for the charged Higgs bosons at the LHC. For our numerical analysis and phenomenological predictions, we restrict ourselves to the unexcluded regions of the MSSM mH+−tan⁡β parameter space determined by the recent results of the CMS [13] and ATLAS [14] collaborations.

  1. Energy spectra unfolding of fast neutron sources using the group method of data handling and decision tree algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Seyed Abolfazl, E-mail: sahosseini@sharif.edu [Department of Energy Engineering, Sharif University of Technology, Tehran 8639-11365 (Iran, Islamic Republic of); Afrakoti, Iman Esmaili Paeen [Faculty of Engineering & Technology, University of Mazandaran, Pasdaran Street, P.O. Box: 416, Babolsar 47415 (Iran, Islamic Republic of)

    2017-04-11

    Accurate unfolding of the energy spectrum of a neutron source gives important information about unknown neutron sources. The obtained information is useful in many areas like nuclear safeguards, nuclear nonproliferation, and homeland security. In the present study, the energy spectrum of a poly-energetic fast neutron source is reconstructed using the developed computational codes based on the Group Method of Data Handling (GMDH) and Decision Tree (DT) algorithms. The neutron pulse height distribution (neutron response function) in the considered NE-213 liquid organic scintillator has been simulated using the developed MCNPX-ESUT computational code (MCNPX-Energy engineering of Sharif University of Technology). The developed computational codes based on the GMDH and DT algorithms use some data for training, testing and validation steps. In order to prepare the required data, 4000 randomly generated energy spectra distributed over 52 bins are used. The randomly generated energy spectra and the simulated neutron pulse height distributions by MCNPX-ESUT for each energy spectrum are used as the output and input data. Since there is no need to solve the inverse problem with an ill-conditioned response matrix, the unfolded energy spectrum has the highest accuracy. The {sup 241}Am-{sup 9}Be and {sup 252}Cf neutron sources are used in the validation step of the calculation. The unfolded energy spectra for the used fast neutron sources have an excellent agreement with the reference ones. Also, the accuracy of the unfolded energy spectra obtained using the GMDH is slightly better than those obtained from the DT. The results obtained in the present study have good accuracy in comparison with the previously published paper based on the logsig and tansig transfer functions. - Highlights: • The neutron pulse height distribution was simulated using MCNPX-ESUT. • The energy spectrum of the neutron source was unfolded using GMDH. • The energy spectrum of the neutron source was

  2. Multidimensional study of hadronization in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Univ. Giessen, Physikalisches Inst., Giessen (Germany); University of Michigan, Randall Lab. of Physics, Ann Arbor, Michigan (United States); Akopov, N.; Avakian, R.; Avetissian, A.; Elbakian, G.; Gharibyan, V.; Grigoryan, L.; Karyan, G.; Marukyan, H.; Movsisyan, A.; Petrosyan, A.; Taroian, S. [Yerevan Physics Institute, Yerevan (Armenia); Akopov, Z.; Avetisyan, E.; Borissov, A.; Deconinck, W.; Hartig, M.; Holler, Y.; Rostomyan, A.; Ye, Z.; Zihlmann, B. [DESY, Hamburg (Germany); Aschenauer, E.C.; Fabbri, R.; Golembiovskaya, M.; Hillenbrand, A.; Hristova, I.; Lu, X.G.; Negodaev, M.; Nowak, W.D.; Riedl, C.; Stewart, J. [DESY, Zeuthen (Germany); Augustyniak, W.; Marianski, B.; Trzcinski, A.; Zupranski, P. [National Centre for Nuclear Research, Warsaw (Poland); Belostotski, S.; Kisselev, A.; Manaenkov, S.I.; Naryshkin, Y.; Veretennikov, D.; Vikhrov, V. [Petersburg Nuclear Physics Inst., Gatchina, Leningrad Region (Russian Federation); Bianchi, N.; Capitani, G.P.; De Sanctis, E.; Di Nezza, P.; Fantoni, A.; Hadjidakis, C.; Hasch, D.; Muccifora, V.; Reolon, A.R. [Ist. Nazionale di Fisica Nucleare, Lab. Nazionali di Frascati, Frascati (Italy); Blok, H.P. [National Institute for Subatomic Physics, Amsterdam (Netherlands); VU Univ., Dept. of Physics and Astronomy, Amsterdam (Netherlands); Bowles, J.; Burns, J.; Hoek, M.; Kaiser, R.; Lehmann, I.; Mahon, D.; Murray, M.; Rosner, G.; Seitz, B. [Univ. of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Brodski, I.; Dueren, M.; Ehrenfried, M.; Perez-Benito, R.; Yu, W. [Univ. Giessen, Physikalisches Inst., Giessen (Germany); Bryzgalov, V.; Gapienko, G.; Gapienko, V.; Ivanilov, A.; Korotkov, V.; Salomatin, Y. [Inst. for High Energy Physics, Protvino, Moscow Region (Russian Federation); Capiluppi, M.; Ciullo, G.; Contalbrigo, M.; Dalpiaz, P.F.; Lenisa, P.; Pappalardo, L.L.; Stancari, M.; Statera, M. [Univ. di Ferrara, Ist. Nazionale di Fisica Nucleare, Ferrara (Italy)] [and others

    2011-09-15

    Hadron multiplicities in semi-inclusive deep-inelastic scattering were measured on neon, krypton, and xenon targets relative to deuterium at an electron(positron)-beam energy of 27.6GeV at HERMES. These ratios were determined as a function of the virtual-photon energy {nu}, its virtuality Q{sup 2}, the fractional hadron energy z and the transverse hadron momentum with respect to the virtual-photon direction p{sub t}. Dependences were analysed separately for positively and negatively charged pions and kaons as well as protons and antiprotons in a two-dimensional representation. Compared to the one-dimensional dependences, some new features were observed. In particular, when z > 0.4 positive kaons do not show the strong monotonic rise of the multiplicity ratio with {nu} as exhibited by pions and negative kaons. Protons were found to behave very differently from the other hadrons. (orig.)

  3. Multidimensional study of hadronization in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Lab. of Physics; Akopov, N. [Yerevan Physics Institute (Armenia); Akopov, Z. [DESY Hamburg (DE)] (and others)

    2011-07-15

    Hadron multiplicities in semi-inclusive deep-inelastic scattering were measured on neon, krypton and xenon targets relative to deuterium at an electron(positron)-beam energy of 27.6 GeV at HERMES. These ratios were determined as a function of the virtual-photon energy {nu}, its virtuality Q{sup 2}, the fractional hadron energy z and the transverse hadron momentum with respect to the virtual-photon direction p{sub t}. Dependences were analysed separately for positively and negatively charged pions and kaons as well as protons and antiprotons in a two-dimensional representation. Compared to the one-dimensional dependences, some new features were observed. In particular, when z>0:4 positive kaons do not show the strong monotonic rise of the multiplicity ratio with {nu} as exhibited by pions and K{sup -}. Protons were found to behave very differently from the other hadrons. (orig.)

  4. Data pre-processing using an FPGA by binning gamma ray energies and forwarding consolidated spectra data

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Ana, E-mail: anaf@ipfn.ist.utl.pt [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Pereira, Rita C. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Neto, André C. [Fusion for Energy, 08019 Barcelona (Spain); Sousa, Jorge; Carvalho, Bernardo B. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Kiptily, Vasily [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Correia, Carlos M.B.A. [Centro de Instrumentação, Dept. de Física, Universidade de Coimbra, 3004-516 Coimbra (Portugal); Gonçalves, Bruno [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal)

    2015-10-15

    Highlights: • JET monitor equipped with a DAQ system to digitize gamma signals from 19 detectors. • DAQ FPGAs used for real-time processing and streaming the gamma-ray energy values. • New algorithm was designed to produce at FPGA real-time spectra from energy values. • Spectra built at FPGA ensures streamed packets not limited by count rate. • New algorithm is relevant for future experiments expecting high event count rates. - Abstract: Gamma-ray diagnostics are considered of crucial importance for understanding the plasma behavior of next fusion devices. Among other physical phenomena, gamma-ray spectra can provide information about the fusion reactions rate and the fast ions temperature and confinement, indicators of how close we are from reaching self-sustained burning plasmas. Accordingly, dedicated gamma-ray diagnostics are currently installed at the Joint European Torus (JET). The 2D gamma-ray profile monitor is one of these diagnostics, equipped with an Advanced Telecommunications Computing Architecture (ATCA) Data Acquisition (DAQ) system, capable of digitizing gamma-ray signals from the 19 photodiode detectors. The DAQ system includes Field Programmable Gate Array (FPGA) devices, with embedded processing algorithms. These algorithms are responsible for processing the gamma-ray signals acquired from each detector in real-time, and for periodically streaming the corresponding energy values to the DAQ host. However, for higher count rates it will be unfeasible to stream periodically all the energy values without loss. Thus, a new algorithm was designed, capable to produce real-time spectra at FPGA from the processed energy values. The spectra should be periodically streamed, delivering binned data rather than a value for each gamma-ray. This allows to reduce the data rate, avoiding data losses. Consequently, the streaming data can be used for control purposes, as demanded by next fusion experiments with long plasma discharges of high energy

  5. VizieR Online Data Catalog: New FeI level energies from stellar spectra (Peterson+, 2015)

    Science.gov (United States)

    Peterson, R. C.; Kurucz, R. L.

    2015-02-01

    The spectrum of the Fe I atom is critical to many areas of astrophysics and beyond. Measurements of the energies of its high-lying levels remain woefully incomplete, however, despite extensive laboratory and solar analysis. In this work, we use high-resolution archival absorption-line ultraviolet and optical spectra of stars whose warm temperatures favor moderate Fe I excitation. We derive the energy for a particular upper level in Kurucz's semiempirical calculations by adopting a trial value that yields the same wavelength for a given line predicted to be about as strong as that of a strong unidentified spectral line observed in the stellar spectra, then checking the new wavelengths of other strong predicted transitions that share the same upper level for coincidence with other strong observed unidentified lines. To date, this analysis has provided the upper energies of 66 Fe I levels. Many new energy levels are higher than those accessible to laboratory experiments; several exceed the Fe I ionization energy. These levels provide new identifications for over 2000 potentially detectable lines. Almost all of the new levels of odd parity include UV lines that were detected but unclassified in laboratory Fe I absorption spectra, providing an external check on the energy values. We motivate and present the procedure, provide the resulting new energy levels and their uncertainties, list all the potentially detectable UV and optical new Fe I line identifications and their gf values, point out new lines of astrophysical interest, and discuss the prospects for additional Fe I energy level determinations. (3 data files).

  6. Hadron melting and QCD thermodynamics

    OpenAIRE

    Jakovac, A.

    2013-01-01

    We study in this paper mechanisms of hadron melting based on the spectral representation of hadronic quantum channels, and examine the hadron width dependence of the pressure. The findings are applied to a statistical hadron model of QCD thermodynamics, where hadron masses are distributed by the Hagedorn model and a uniform mechanism for producing hadron widths is assumed. According to this model the hadron - quark gluon plasma transition occurs at $T\\approx 200$-250 MeV, the numerically obse...

  7. The Large Hadron Collider

    CERN Document Server

    Evans, Lyndon

    2012-01-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavour spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing large electron–positron (LEP) collider tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of a two-in-one magnet, where the two rings are integrated into a single magnetic structure. This compact two-in-one structure was essential for the LHC owing to the limited space available in the existing LEP collider tunnel and the cost. The second was a bold move to the use of superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor.

  8. The Large Hadron Collider

    Science.gov (United States)

    Evans, Lyndon

    2011-11-01

    The Large Hadron Collider (LHC) is the most complex instrument ever built for particle physics research. It will, for the first time, provide access to the TeV-energy scale. Numerous technological innovations are necessary to achieve this goal. For example, two counterrotating proton beams are guided and focused by superconducting magnets whose novel two-in-one structure saves cost and allowed the machine to be installed in an existing tunnel. The very high (>8-T) field in the dipoles can be achieved only by cooling them below the transition temperature of liquid helium to the superfluid state. More than 80 tons of superfluid helium are needed to cool the whole machine. So far, the LHC has behaved reliably and predictably. Single-bunch currents 30% above the design value have been achieved, and the luminosity has increased by five orders of magnitude. In this review, I briefly describe the design principles of the major systems and discuss some initial results.

  9. The Large Hadron Collider.

    Science.gov (United States)

    Evans, Lyndon

    2012-02-28

    The construction of the Large Hadron Collider (LHC) has been a massive endeavour spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing large electron-positron (LEP) collider tunnel of 27 km circumference and with a tunnel diameter of only 3.8 m has required considerable innovation. The first was the development of a two-in-one magnet, where the two rings are integrated into a single magnetic structure. This compact two-in-one structure was essential for the LHC owing to the limited space available in the existing LEP collider tunnel and the cost. The second was a bold move to the use of superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor.

  10. Measurement of the energy dependence of hadronic jet rates and the strong coupling $\\alpha_{s}$ from the four-jet rate with the DELPHI detector at LEP

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, A; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2005-01-01

    Hadronic events from the data collected with the DELPHI detector at LEP within the energy range from 89 GeV to 209 GeV are selected, their jet rates are determined and compared to predictions of four different event generators. One of them is the recently developed APACIC++ generator which performs a massive matrix element calculation matched to a parton shower followed by string fragmentation. The four-jet rate is used to measure alpha_s in the next-to-leading-order approximation yielding alpha_s(M_Z^2) = 0.1175 +/- 0.0030. The running of alpha_s determined by using four-jet events has been tested. The logarithmic energy slope is measured to be d\\alpha_s^{-1} / d\\log E_{cm} = 1.14 +/- 0.36. Since the analysis is based on four-jet final states it represents an alternative approach to previous DELPHI alpha_s measurements using event shape distributions.

  11. Search for Supersymmetry in final states with three leptons and missing transverse energy with the ATLAS detector at the Large Hadron Collider

    CERN Document Server

    Santoyo Castillo, Itzebelt

    The ATLAS experiment at the Large Hadron Collider has collected an unprecedented amount of data in the 3 years of data taking since its start. In this document I will dis- cuss the results of the analysis I performed during my PhD at the university of Sussex for the search of Supersymmetry in events with three leptons (electron/muon/tau) and missing transverse energy in the final state. The search is performed on the full dataset collected by the experiment in 2012, at a centre-of-mass energy of 8 TeV. These results are interpreted in SUSY models with chargino-neutralino pair production via decays involving sleptons, staus, gauge bosons and the newly discovered Higgs boson. These results presen- ted improve on previous searches performed at ATLAS in three lepton final states with only electrons and muons. Special focus will be given to the optimisation process of Su- persymmetry signal with respect to the SM background, and the statistical interpretation of the results obtained with this search.

  12. Hadron structure from lattice QCD

    Science.gov (United States)

    Constantinou, Martha

    2017-09-01

    More than 99 per cent of the mass of the visible world resides in hadrons which are bound states of quarks and gluons, the fundamental constituents of Quantum Chromodynamics (QCD). The proton is at the heart of the hadronic matter and is an ideal laboratory for studying the QCD dynamics. Lattice QCD (LQCD) is a powerful non-perturbative tool for the ab inition calculation of hadron observables that are well determined experimentally, or not easily accessible in experiment. Progress in the simulation of LQCD has been impressive, mainly due to improvements in the algorithms, development of new techniques and increase in computational power, that have enabled simulations to be carried out at parameters very close to their physical values. In this talk I will present recent developments in hadron structure focusing on achievements in the evaluation of nucleon quantities, such as the nucleon charges, form factors, and gluonic contributions, in view of simulations close or at the physical value of the pion mass. I will also discuss the enormous efforts towards a new direct approach to compute quark parton distributions functions on the lattice. Work partly supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the TMD Topical Collaboration.

  13. Precision measurements of {sigma}{sub hadronic} for {alpha}{sub eff}(E) at ILC energies and (g - 2){sub {mu}}

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, F. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2006-08-15

    An optimal exploitation of a future linear collider for precision physics requires an improvement of the precision of {alpha}{sub eff}(E) by something like a factor ten. We discuss a strategy which should be able to reach this goal by appropriate efforts in performing dedicated measurements of {sigma}{sub hadronic} in a wide energy range as well as efforts in theory and in particular improving the precision of the QCD parameters {alpha}{sub s}, m{sub c} and m{sub b} by lattice QCD and/or more precise determinations of them by experiments and perturbative QCD efforts. Using the Adler function as a monitor, one observes that we may obtain the hadronic shift {delta}{alpha}{sup (5)}{sub had}(M{sup 2}{sub Z}) as a sum {delta}{alpha}{sup (5)}{sub had}(-s{sub 0}){sup data} + {delta}{alpha}{sup (5)}{sub had}(s{sub 0}, M{sup 2}{sub Z}){sup pQCD} where the first term includes the full non-perturbative part with the choice s{sub 0}=(2.5 GeV){sup 2} or larger. In such a determination low-energy machines play a particularly important role in the improvement program. We present an up-to-date analysis including the recent data from KLOE, SND, CMD-2 and BABAR. The analysis based on e{sup +}e{sup -}-data yields {delta}{alpha}{sup (5)}{sub had}(M{sup 2}{sub Z})=0.027593{+-}0.000169 [{alpha}{sup -1}(M{sup 2}{sub Z})=128.938 {+-} 0.023] (splitting with s{sub 0}=(10 GeV){sup 2} to reduce dependence on m{sub c}), {delta}{alpha}{sup (5)}{sub had}(M{sup 2}{sub Z})=0.027607{+-}0.000225 [{alpha}{sup -1}(M{sup 2}{sub Z})=128.947{+-}0.035] (standard approach), and a{sup had}{sub {mu}}=(692.1{+-}5.6) x 10{sup -10}. (orig.)

  14. MEASUREMENT OF THE HIGH ENERGY COMPONENT OF THE X-RAY SPECTRA INTHE VENUS ECR ION SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, Daniela; Benitez, Janilee Y.; Lyneis, Claude M.; Todd,Damon S.; Ropponen,Tommi; Ropponen,Janne; Koivisto, Hannu; Gammino, Santo

    2007-11-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for Nuclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental set-up to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular the collimation and background shielding can be problematic. In this paper we will discuss the experimental set-up for such a measurement, the energy calibration and background reduction, the correction for detector efficiency, the shielding of the detector and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power and heating frequency.

  15. Constraining hadronic models of the Fermi bubbles

    Science.gov (United States)

    Razzaque, Soebur

    2018-01-01

    The origin of sub-TeV gamma rays detected by Fermi-LAT from the Fermi bubbles at the Galactic center is unknown. In a hadronic model, acceleration of protons and/or nuclei and their subsequent interactions with gas in the bubble volume can produce observed gamma ray. Such interactions naturally produce high-energy neutrinos, and detection of those can discriminate between a hadronic and a leptonic origin of gamma rays. Additional constraints on the Fermi bubbles gamma-ray flux in the PeV range from recent HAWC observations restrict hadronic model parameters, which in turn disfavor Fermi bubbles as the origin of a large fraction of neutrino events detected by IceCube along the bubble directions. We revisit our hadronic model and discuss future constraints on parameters from observations in very high-energy gamma rays by CTA and in neutrinos.

  16. Unusual features of proton and α-spectra from low-energy heavy-ion ...

    Indian Academy of Sciences (India)

    be expanded with radioactive ion beams. In the case of α-spectra, measurements should be made with 16O and other projectiles covering a wide angular range to shed more light on the possible non-statistical reaction mechanisms. Acknowledgements. The work described in this paper is a team work with the colleagues A ...

  17. Raman spectra of normal and cancerous mouse mammary gland tissue using near infrared excitation energy

    Science.gov (United States)

    Naik, Vaman; Serhatkulu, G. K.; Dai, H.; Shukla, N.; Weber, R.; Thakur, J. S.; Freeman, D. C.; Pandya, A. K.; Auner, G. W.; Naik, R.; Miller, R. F.; Cao, A.; Klein, M. D.; Rabah, R.

    2006-03-01

    Raman spectra of normal mammary gland tissues, malignant mammary gland tumors, and lymph nodes have been recorded using fresh tissue from mice. Tumors were induced in mice by subcutaneously injecting 4T1 BALB/c mammary tumor (a highly malignant) cell line. The Raman spectra were collected using the same tissues that were examined by histopathology for determining the cancerous/normal state of the tissue. Differences in various peak intensities, peak shifts and peak ratios were analyzed to determine the Raman spectral features that differentiate mammary gland tumors from non-tumorous tissue. Tissues that were confirmed by pathology as cancerous (tumors) show several distinctive features in the Raman spectra compared to the spectra of the normal tissues. For example, the cancerous tissues show Raman peaks at 621, 642, 1004, 1032, 1175 and 1208 cm-1 that are assignable to amino acids containing aromatic side-chains such as phenylalanine, tryptophan and tyrosine. Further, the cancerous tissues show a greatly reduced level of phospholipids compared to the normal tissues. The Raman spectral regions that are sensitive to pathologic alteration in the tissue will be discussed.

  18. The role of comptonisation in energy spectra of standard QPO-sources

    NARCIS (Netherlands)

    Schulz, N.S.; Wijers, R.A.M.J.

    1989-01-01

    The spectral variability of Quasi-Periodic Spectral (QPO) sources is analyzed from EXOSAT data. It is found that blackbody comptonized by hot electron plasma fit the EXOSAT spectra of these sources. The fit is as accurate as using two component spectral models. This equivalency is observed within

  19. Modelling hadronic interactions in HEP MC generators

    CERN Document Server

    Skands, Peter

    2015-01-01

    HEP event generators aim to describe high-energy collisions in full exclusive detail. They combine perturbative matrix elements and parton showers with dynamical models of less well-understood phenomena such as hadronization, diffraction, and the so-called underlying event. We briefly summarise some of the main concepts relevant to the modelling of soft/inclusive hadron interactions in MC generators, in particular PYTHIA, with emphasis on questions recently highlighted by LHC data.

  20. Changes in the DRIFT Spectra of Softwood Materials Irradiated by UV-laser as a Function of Energy

    Directory of Open Access Journals (Sweden)

    BARTA, Edit

    2005-01-01

    Full Text Available We investigated energy dependence of the effect of UV-laser irradiation on the DRIFT spectra of softwood samples. Changes in the spectra of softwoods have been studied with 248.5 nm wavelength of UV-laser radiation. To monitor the energy dependence, different number of laser impulses were directed towards the sample’s surface. The dependence on energy of different bands can be listed into four groups. Broad absorption bands, which belong to the same chemical groups located at various positions, do not show consistent changes due to the absorption of different energy dozes. The intensity of OH bands for the treated samples can be higher or lower depending on the amount of radiation energy. In the CHn and in the band of non-conjugated carbonyl groups only absorption increase can be observed. Bands resulting from only one chemical component, and containing no other absorption maxima around them, uniformly decreased. The regions where the band of a chemical component lies next to another one, showed no consistent changes during the irradiation. The initial decrease was followed by increase.

  1. Hydrodynamic radial and elliptic flow in heavy-ion collisions from AGS to LHC energies

    CERN Document Server

    Kestin, Gregory

    2009-01-01

    Using ideal relativistic hydrodynamics in 2+1 dimensions, we study the collision energy dependence of radial and elliptic flow, of the emitted hadron spectra, and of the transverse momentum dependence of several hadronic particle ratios, covering the range from Alternating Gradient Synchrotron (AGS) to Large Hadron Collider (LHC) energies. These calculations establish an ideal fluid dynamic baseline that can be used to assess non-equilibrium features manifest in future LHC heavy-ion experiments. Contrary to earlier suggestions we find that a saturation and even decrease of the differential elliptic flow v_2(p_T) with increasing collision energy cannot be unambiguously associated with the QCD phase transition.

  2. Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Biasotto, Massimo; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-03-06

    Measurements of two-particle angular correlations between an identified strange hadron (${\\rm K}^0_{\\rm S}$ or $\\Lambda$/$\\overline{\\Lambda}$) and a charged particle, emitted in pPb collisions, are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 35 nb$^{-1}$, were collected at a nucleon-nucleon center-of-mass energy ($\\sqrt{s_{NN}}$) of 5.02 TeV with the CMS detector at the LHC. The results are compared to semi-peripheral PbPb collision data at $\\sqrt{s_{NN}}$ = 2.76 TeV, covering similar charged-particle multiplicities in the events. The observed azimuthal correlations at large relative pseudorapidity are used to extract the second-order ($v_2$) and third-order ($v_3$) anisotropy harmonics of ${\\rm K}^0_{\\rm S}$ and $\\Lambda$/$\\overline{\\Lambda}$ particles. These quantities are studied as a function of the charged-particle multiplicity in the event and the transverse momentum of the particles. For high-multiplicity pPb event...

  3. An Instrument to Measure Elemental Energy Spectra of Cosmic Ray Nuclei Up to 10(exp 16) eV

    Science.gov (United States)

    Adams, J.; Bashindzhagyan, G.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov,S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    A longstanding goal of cosmic ray research is to measure the elemental energy spectra of cosmic rays up to and through the "knee" (approx. equal to 3 x 10 (exp 15) eV. It is not currently feasible to achieve this goal with an ionization calorimeter because the mass required to be deployed in Earth orbit is very large (at least 50 tonnes). An alternative method will be presented. This is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer using silicon microstrip detector technology. The proposed technique can be used over a wide range of energies (10 (exp 11)- 10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a design for a new lightweight instrument with a large aperture (KLEM) will be described.

  4. Double-hadron leptoproduction in the nuclear medium.

    Science.gov (United States)

    Airapetian, A; Akopov, N; Akopov, Z; Amarian, M; Andrus, A; Aschenauer, E C; Augustyniak, W; Avakian, R; Avetissian, A; Avetissian, E; Bailey, P; Belostotski, S; Bianchi, N; Blok, H P; Böttcher, H; Borissov, A; Borysenko, A; Brüll, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; Demey, M; De Nardo, L; De Sanctis, E; Devitsin, E; Diefenthaler, M; Di Nezza, P; Dreschler, J; Düren, M; Ehrenfried, M; Elalaoui-Moulay, A; Elbakian, G; Ellinghaus, F; Elschenbroich, U; Fabbri, R; Fantoni, A; Felawka, L; Frullani, S; Funel, A; Gapienko, G; Gapienko, V; Garibaldi, F; Garrow, K; Gavrilov, G; Gharibyan, V; Giordano, F; Grebeniouk, O; Gregor, I M; Griffioen, K; Guler, H; Hadjidakis, C; Hartig, M; Hasch, D; Hasegawa, T; Hesselink, W H; Hillenbrand, A; Hoek, M; Holler, Y; Hommez, B; Hristova, I; Iarygin, G; Ivanilov, A; Izotov, A; Jackson, H E; Jgoun, A; Kaiser, R; Keri, T; Kinney, E; Kisselev, A; Kobayashi, T; Kopytin, M; Korotkov, V; Kozlov, V; Krauss, B; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lenisa, P; Liebing, P; Linden-Levy, L A; Lorenzon, W; Lu, J; Lu, S; Ma, B-Q; Maiheu, B; Makins, N C R; Mao, Y; Marianski, B; Marukyan, H; Masoli, F; Mexner, V; Meyners, N; Michler, T; Mikloukho, O; Miller, C A; Miyachi, Y; Muccifora, V; Murray, M; Nagaitsev, A; Nappi, E; Naryshkin, Y; Negodaev, M; Nowak, W-D; Ohsuga, H; Osborne, A; Perez-Benito, R; Pickert, N; Raithel, M; Reggiani, D; Reimer, P E; Reischl, A; Roelon, A R; Riedl, C; Rith, K; Rosner, G; Rostomyan, A; Rubacek, L; Rubin, J; Ryckbosch, D; Salomatin, Y; Sanjiev, I; Savin, I; Schäfer, A; Schnell, G; Schüler, K P; Seele, J; Seidl, R; Seitz, B; Shearer, C; Shibata, T-A; Shutov, V; Sinram, K; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Stenzel, H; Stewart, J; Stinzing, F; Streit, J; Tait, P; Tanaka, H; Taroian, S; Tchuiko, B; Terkulov, A; Trzcinski, A; Tytgat, M; Vandenbroucke, A; van der Nat, P B; van der Steenhoven, G; van Haarlem, Y; Veretennikov, D; Vikhrov, V; Vogel, C; Wang, S; Ye, Y; Ye, Z; Yen, S; Zihlmann, B; Zupranski, P

    2006-04-28

    The first measurements of double-hadron production in deep-inelastic scattering within the nuclear medium were made with the HERMES spectrometer at DESY HERA using a 27.6 GeV positron beam. By comparing data for deuterium, nitrogen, krypton, and xenon nuclei, the influence of the nuclear medium on the ratio of double-hadron to single-hadron yields was investigated. Nuclear effects on the additional hadron are clearly observed, but with little or no difference among nitrogen, krypton, or xenon, and with smaller magnitude than effects seen on previously measured single-hadron multiplicities. The data are compared with models based on partonic energy loss or prehadronic scattering and with a model based on a purely absorptive treatment of the final-state interactions. Thus, the double-hadron ratio provides an additional tool for studying modifications of hadronization in nuclear matter.

  5. On Descriptions of Particle Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Fu-Hu Liu

    2014-01-01

    is obtained that, at a given set of parameters, the standard distributions show a narrower shape than their Tsallis forms which result in wide and/or multicomponent spectra with the Tsallis distribution in between. A comparison among the temperatures obtained from the distributions is made with a possible relation to the Boltzmann temperature. An example of the angular distributions of projectile fragments in nuclear collisions is given.

  6. Anomalous Line-Shape of Cross Sections for $e^+e^- \\to {\\rm Hadrons}$ in the Center-of-Mass Energy Region between 3.650 and 3.872 GeV

    CERN Document Server

    Ablikim, M.; Ban, Y.; Cai, X.; Chen, H.F.; Chen, H.S.; Chen, H.X.; Chen, J.C.; Chen, Jin; Chen, Y.B.; Chu, Y.P.; Dai, Y.S.; Diao, L.Y.; Deng, Z.Y.; Dong, Q.F.; Du, S.X.; Fang, J.; Fang, S.S.; Fu, C.D.; Gao, C.S.; Gao, Y.N.; Gu, S.D.; Gu, Y.T.; Guo, Y.N.; He, K.L.; He, M.; Heng, Y.K.; Hou, J.; Hu, H.M.; Hu, J.H.; Hu, T.; Huang, G.S.; Huang, X.T.; Ji, X.B.; Jiang, X.S.; Jiang, X.Y.; Jiao, J.B.; Jin, D.P.; Jin, S.; Lai, Y.F.; Li, G.; Li, H.B.; Li, J.; Li, R.Y.; Li, S.M.; Li, W.D.; Li, W.G.; Li, X.L.; Li, X.N.; Li, X.Q.; Liang, Y.F.; Liao, H.B.; Liu, B.J.; Liu, C.X.; Liu, F.; Liu, Fang; Liu, H.H.; Liu, H.M.; Liu, J.; Liu, J.B.; Liu, J.P.; Liu, Jian; Liu, Q.; Liu, R.G.; Liu, Z.A.; Lou, Y.C.; Lu, F.; Lu, G.R.; Lu, J.G.; Luo, C.L.; Ma, F.C.; Ma, H.L.; Ma, L.L.; Ma, Q.M.; Mao, Z.P.; Mo, X.H.; Nie, J.; Ping, R.G.; Qi, N.D.; Qin, H.; Qiu, J.F.; Ren, Z.Y.; Rong, G.; Ruan, X.D.; Shan, L.Y.; Shang, L.; Shen, D.L.; Shen, X.Y.; Sheng, H.Y.; Sun, H.S.; Sun, S.S.; Sun, Y.Z.; Sun, Z.J.; Tang, X.; Tong, G.L.; Wang, D.Y.; Wang, L.; Wang, L.L.; Wang, L.S.; Wang, M.; Wang, P.; Wang, P.L.; Wang, W.F.; Wang, Y.F.; Wang, Z.; Wang, Z.Y.; Wang, Zheng; Wei, C.L.; Wei, D.H.; Weng, Y.; Wu, N.; Xia, X.M.; Xie, X.X.; Xu, G.F.; Xu, X.P.; Xu, Y.; Yan, M.L.; Yang, H.X.; Yang, Y.X.; Ye, M.H.; Ye, Y.X.; Yu, G.W.; Yuan, C.Z.; Yuan, Y.; Zang, S.L.; Zeng, Y.; Zhang, B.X.; Zhang, B.Y.; Zhang, C.C.; Zhang, D.H.; Zhang, H.Q.; Zhang, H.Y.; Zhang, J.W.; Zhang, J.Y.; Zhang, S.H.; Zhang, X.Y.; Zhang, Yiyun; Zhang, Z.X.; Zhang, Z.P.; Zhao, D.X.; Zhao, J.W.; Zhao, M.G.; Zhao, P.P.; Zhao, W.R.; Zhao, Z.G.; Zheng, H.Q.; Zheng, J.P.; Zheng, Z.P.; Zhou, L.; Zhu, K.J.; Zhu, Q.M.; Zhu, Y.C.; Zhu, Y.S.; Zhu, Z.A.; Zhuang, B.A.; Zhuang, X.A.; Zou, B.S.

    2008-01-01

    We observe an obvious anomalous line-shape of the $e^+e^- \\to {\\rm hadrons}$ total cross sections in the energy region between 3.700 and 3.872 GeV from the data samples taken with the BES-II detector at the BEPC Collider. Re-analysis of the data shows that it is inconsistent with the explanation for only one simple $\\psi(3770)$ resonance with a statistical significance of $7\\sigma$. The anomalous line-shape may be explained by two possible enhancements of the inclusive hadron production near the center-of-mass energies of 3.764 GeV and 3.779 GeV, indicating that either there is likely a new structure in addition to the $\\psi(3770)$ resonance around 3.773 GeV, or there are some physics effects reflecting the $D\\bar D$ production dynamics.

  7. Statistical Hadronization and Holography

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    In this paper we consider some issues about the statistical model of the hadronization in a holographic approach. We introduce a Rindler like horizon in the bulk and we understand the string breaking as a tunneling event under this horizon. We calculate the hadron spectrum and we get a thermal...

  8. SINGLE- AND TWO-COMPONENT GAMMA-RAY BURST SPECTRA IN THE FERMI GBM-LAT ENERGY RANGE

    Energy Technology Data Exchange (ETDEWEB)

    Veres, P.; Meszaros, P., E-mail: veresp@psu.edu, E-mail: nnp@astro.psu.edu [Department of Astronomy and Astrophysics, Department of Physics, and Center for Particle Astrophysics, 525 Davey Lab., Pennsylvania State University, University Park, PA 16802 (United States)

    2012-08-10

    Most Fermi gamma-ray burst spectra appear as either a broken power law extending to GeV energies or as a broken power with a separate GeV power-law component. Here we show that such spectra can be understood in terms of magnetically dominated relativistic jets where a dissipative photosphere produces the prompt MeV emission, which is extended into the GeV range by inverse Compton scattering in the external shock, with possible contributions from a reverse shock as well. The bulk Lorentz factors required in these models are in the range of 300-600, and the MeV-GeV time delays arise naturally. In some cases an optical flash and a sub-dominant thermal component are also present.

  9. Some information from nucleon-antinucleon annihilation at rest: e+e- annihilation, hadronic fragmentation, and deep inelastic scattering structure function

    CERN Document Server

    Pelaquier, E

    1974-01-01

    The experimental spectra of charged pions in NN annihilation at rest are described in a model of quasi-two-body decays. The same model predicts the pi /sup 0/, s, rho 's and omega 's spectra. These calculations are used to determine, in the vector dominance model, the pion spectra in the e/sup +/e/sup -/ annihilation at the same energy. The NN system is then used as a heavy hadron in order to describe, in a model-independent way: the projectile fragmentation part in inclusive reactions; the valence part of the deep inelastic structure function. (0 refs).

  10. Anisotropic flow of thermal photons at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Chatterjee, Rupa; Dasgupta, Pingal; Srivastava, Dinesh K.

    2017-07-01

    We calculate elliptic and triangular flow parameters of thermal photons using an event-by-event hydrodynamic model with fluctuating initial conditions at 200 A GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and at 2.76 A TeV Pb+Pb collisions at the Cern Large Hadron Collider (LHC) for three different centrality bins. The photon elliptic flow shows strong centrality dependence where v2(pT) increases towards peripheral collisions both at RHIC and at the LHC energies. However, the triangular flow parameter does not show significant dependence on the collision centrality. The elliptic as well as the triangular flow parameters found to underestimate the PHENIX data at RHIC by a large margin for all three centrality bins. We calculate pT spectrum and anisotropic flow of thermal photons from 200 A GeV Cu+Cu collisions at RHIC for a 0-20% centrality bin and compare with the results with those from Au+Au collisions. The production of thermal photons is found to decrease significantly for Cu+Cu collisions compared to Au+Au collisions. However, the effect of initial state fluctuation is found to be more pronounced for anisotropic flow, resulting in larger v2 and v3 for Cu+Cu collisions. We study the correlation between the anisotropic flow parameters and the corresponding initial spatial anisotropies from their event-by-event distributions at RHIC and at the LHC energies. The linear correlation between v2 and ɛ2 is found be stronger compared to the correlation between v3 and ɛ3. In addition, the correlation coefficient is found to be larger at LHC than at RHIC.

  11. Statistical fluctuations and correlations in hadronic equilibrium systems

    Energy Technology Data Exchange (ETDEWEB)

    Hauer, Michael

    2010-06-17

    This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)

  12. e/sup +/e/sup -/ annihilation into two hadrons in the energy interval 1400-2400 MeV

    CERN Document Server

    Alles-Borelli, V; Bollini, D; Brunini, P L; Fiorentino, E; Massam, Thomas; Monari, L; Palmonari, F; Rimondi, F; Zichichi, A

    1972-01-01

    The proof is given for the existence of the reaction e/sup +/e/sup -/ to /sup +or-/h/sup -or+/ in the energy range 1400-2400 MeV, and its energy dependence is compared with that of e/sup +/e/sup -/ to e/sup +or-/E/sup -or+/, in the same experimental conditions of observation. The exponent of the s-dependence of the ratio alpha =(e/sup +/e/sup -/ to h/sup +or-/h/sup -or+/)/(e/sup +/e/sup -/ to e/sup +or-/e/sup -or+ /) is measured to be n=2.08+or-0.45, in the s-range (1.96-5.76)GeV/sup 2/, on the basis of 51 e/sup +/e/sup -/ to /sup +or-/h/sup -or+/ events and 8918 e/sup +/e/sup -/ to /sup +or-/e/sup -or+/ events observed. (8 refs).

  13. THE ROLE OF STOCHASTIC ACCELERATION IN THE PROMPT EMISSION OF GAMMA-RAY BURSTS: APPLICATION TO HADRONIC INJECTION

    Energy Technology Data Exchange (ETDEWEB)

    Murase, Kohta [Department of Physics, Center for Cosmology and AstroParticle Physics, Ohio State University, 191 West Woodruff Avenue, Columbus, OH 43210 (United States); Asano, Katsuaki; Terasawa, Toshio [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Meszaros, Peter [Department of Astronomy and Astrophysics, Center for Particle Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

    2012-02-20

    We study effects of particle re-acceleration (or heating) in the post-shock region via magnetohydrodynamic/plasma turbulence, in the context of a mixed hadronic-leptonic model for the prompt emission of gamma-ray bursts, using both analytical and numerical methods. We show that stochastically accelerated (or heated) leptons, which are injected via pp and p{gamma} reactions and subsequent pair cascades, are plausibly able to reproduce the Band function spectra with {alpha} {approx} 1 and {beta} {approx} 2-3 in the {approx}MeV range. An additional hard component coming from the proton-induced cascade emission is simultaneously expected, which can be compatible with observed extra power-law spectra far above the MeV range. We also discuss the specific implications of hadronic models for ongoing high-energy neutrino observations.

  14. Investigation on the altitude dependence of the diffuse photon energy spectra initiated by primary nucleon air collisions

    CERN Document Server

    Bhattacharya, D P; Majumdar, R; Mitra, M; Pal, P B

    1999-01-01

    A study has been made on the altitude dependence of the high energy spectra of electromagnetic components like gamma rays initiated by primary cosmic nucleon-air collisions. The primary cosmic nucleon spectrum has been estimated from the directly measured elemental fluxes at high energies obtained from the recent absolute measurements by different groups. Considering the superposition model the estimated all particle primary nucleon spectrum follows the form approximately=2.56 E/sup -2.73/ in the energy range 0.1-100 TeV. Taking this as source of parent neutral mesons along with the spectrum weighted moments for neutral pion production from the CERN accelerator data on the neutral pion production spectrum in the atmosphere has been calculated. (29 refs).

  15. An autonomic approach to configure HEP (High Energy Physics) experiments, applied to LHCb (Large Hadron Collider beauty)

    CERN Document Server

    Abadie, L; Charpentier, P

    2006-01-01

    Properly configuring an HEP (High Energy Phys ics) experiment becomes a more and more complex task as the number of electronics modules grows and technologies evolve quickly. Anticipating a fault in the software or in the hardware during the configuration or the data taking requires an adaptive and modular control system. The introduction of autonomic tools and data bases in the HEP world is quite recent and contributes to implement a more reliable system . The LHCb control system innovates as it has been built using autonomic tools. The main contribution of this PhD is the implementation of an autonomic 3-Tier architectur e to configure the LHCb experiment which is a huge network of devices of different types, and its integrat ion in the control system. This new type of autonomics architecture consists of: • A database layer. A relational Oracle databa se implemented using the Oracle technology contains the information...

  16. Tsallis Statistical Interpretation of Transverse Momentum Spectra in High-Energy pA Collisions

    Directory of Open Access Journals (Sweden)

    Bao-Chun Li

    2015-01-01

    Full Text Available In Tsallis statistics, we investigate charged pion and proton production for pCu and pPb interactions at 3, 8, and 15 GeV/c. Two versions of Tsallis distribution are implemented in a multisource thermal model. A comparison with experimental data of the HARP-CDP group shows that they both can reproduce the transverse momentum spectra, but the improved form gives a better description. It is also found that the difference between q and q′ is small when the temperature T = T′ for the same incident momentum and angular interval, and the value of q is greater than q′ in most cases.

  17. Hard processes in hadronic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Satz, H. [CERN, Geneva (Switzerland)]|[Universitat Bielefeld (Germany); Wang, X.N. [Lawrence Berkeley Lab., CA (United States)

    1995-07-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.

  18. Role of net baryon density on rapidity width of identified particles from the lowest energies available at the CERN Super Proton Synchrotron to those at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Hussain, Nur; Bhattacharjee, Buddhadeb

    2017-08-01

    Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.

  19. Highlights from COMPASS in hadron spectroscopy

    CERN Document Server

    Krinner, Fabian

    2015-01-01

    Since Quantum Choromdynamics allows for gluon self-coupling, quarks and gluons cannot be observed as free particles, but only their bound states, the hadrons. This so-called confinement phenomenon is responsible for $98\\%$ of the mass in the visible universe. The measurement of the hadron excitation spectra therefore gives valuable input for theory and phenomenology to quantitatively understand this phenomenon. One simple model to describe hadrons is the Constituent Quark Model (CQM), which knows two types of hadrons: mesons, consisting of a quark and an antiquark, and baryons, which are made out of three quarks. More advanced models, which are inspired by QCD as well as calculations within Lattice QCD predict the existence of other types of hadrons, which may be e.g. described solely by gluonic excitations (glueballs) or mixed quark and gluon excitations (hybrids). In order to search for such states, the COMPASS experiment at the Super Proton Synchrotron at CERN has collected large data sets, which allow to ...

  20. Identified hadron compositions in p+p and Au+Au collisions at high transverse momenta at √S(NN)=200 GeV.

    Science.gov (United States)

    Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alakhverdyants, A V; Alekseev, I; Alford, J; Anderson, B D; Anson, C D; Arkhipkin, D; Averichev, G S; Balewski, J; Barnby, L S; Beavis, D R; Bellwied, R; Betancourt, M J; Betts, R R; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Borowski, W; Bouchet, J; Braidot, E; Brandin, A V; Brovko, S G; Bruna, E; Bueltmann, S; Bunzarov, I; Burton, T P; Cai, X Z; Caines, H; Sánchez, M Calderón de la Barca; Cebra, D; Cendejas, R; Cervantes, M C; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Chen, L; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Chung, P; Codrington, M J M; Corliss, R; Cramer, J G; Crawford, H J; Cui, X; Leyva, A Davila; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunlop, J C; Efimov, L G; Elnimr, M; Engelage, J; Eppley, G; Estienne, M; Eun, L; Evdokimov, O; Fachini, P; Fatemi, R; Fedorisin, J; Fersch, R G; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gangadharan, D R; Geurts, F; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O G; Grosnick, D; Gupta, A; Gupta, S; Guryn, W; Haag, B; Hajkova, O; Hamed, A; Han, L-X; Harris, J W; Hays-Wehle, J P; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Huang, B; Huang, H Z; Humanic, T J; Huo, L; Igo, G; Jacobs, W W; Jena, C; Joseph, J; Judd, E G; Kabana, S; Kang, K; Kapitan, J; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Kettler, D; Kikola, D P; Kiryluk, J; Kisiel, A; Kizka, V; Klein, S R; Koetke, D D; Kollegger, T; Konzer, J; Koralt, I; Koroleva, L; Korsch, W; Kotchenda, L; Kravtsov, P; Krueger, K; Kumar, L; Lamont, M A C; Landgraf, J M; LaPointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Leight, W; LeVine, M J; Li, C; Li, L; Li, W; Li, X; Li, X; Li, Y; Li, Z M; Lima, L M; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Longacre, R S; Lu, Y; Lukashov, E V; Luo, X; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; McShane, T S; Meschanin, A; Milner, R; Minaev, N G; Mioduszewski, S; Mitrovski, M K; Mohammed, Y; Mohanty, B; Mondal, M M; Morozov, B; Morozov, D A; Munhoz, M G; Mustafa, M K; Naglis, M; Nandi, B K; Nasim, Md; Nayak, T K; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Ohlson, A; Okorokov, V; Oldag, E W; Oliveira, R A N; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Pei, H; Peitzmann, T; Perkins, C; Peryt, W; Pile, P; Planinic, M; Pluta, J; Plyku, D; Poljak, N; Porter, J; Poskanzer, A M; Powell, C B; Prindle, D; Pruneau, C; Pruthi, N K; Pujahari, P R; Putschke, J; Qiu, H; Raniwala, R; Raniwala, S; Ray, R L; Redwine, R; Reed, R; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Ruan, L; Rusnak, J; Sahoo, N R; Sakrejda, I; Salur, S; Sandweiss, J; Sangaline, E; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmitz, N; Schuster, T R; Seele, J; Seger, J; Selyuzhenkov, I; Seyboth, P; Shah, N; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shou, Q Y; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Solanki, D; Sorensen, P; deSouza, U G; Spinka, H M; Srivastava, B; Stanislaus, T D S; Steadman, S G; Stevens, J R; Stock, R; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Svirida, D N; Symons, T J M; de Toledo, A Szanto; Takahashi, J; Tang, A H; Tang, Z; Tarini, L H; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Tlusty, D; Tokarev, M; Trainor, T A; Trentalange, S; Tribble, R E; Tribedy, P; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Van Buren, G; van Nieuwenhuizen, G; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasiliev, A N; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Walker, M; Wang, F; Wang, G; Wang, H; Wang, J S; Wang, Q; Wang, X L; Wang, Y; Webb, G; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Witzke, W; Wu, Y F; Xiao, Z; Xie, W; Xu, H; Xu, N; Xu, Q H; Xu, W; Xu, Y; Xu, Z; Xue, L; Yang, Y; Yang, Y; Yepes, P; Yip, K; Yoo, I-K; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, J B; Zhang, S; Zhang, W M; Zhang, X P; Zhang, Y; Zhang, Z P; Zhao, F; Zhao, J; Zhong, C; Zhu, X; Zhu, Y H; Zoulkarneeva, Y

    2012-02-17

    We report transverse momentum (p(T)≤15  GeV/c) spectra of π(±), K(±), p, p[over ¯], K(S)(0), and ρ(0) at midrapidity in p+p and Au+Au collisions at √S(NN)=200  GeV. Perturbative QCD calculations are consistent with π(±) spectra in p+p collisions but do not reproduce K and p(p[over ¯]) spectra. The observed decreasing antiparticle-to-particle ratios with increasing p(T) provide experimental evidence for varying quark and gluon jet contributions to high-p(T) hadron yields. The relative hadron abundances in Au+Au at p(T)≳8  GeV/c are measured to be similar to the p+p results, despite the expected Casimir effect for parton energy loss.

  1. FAST TRACK COMMUNICATION: Origin of species dependence of high-energy plateau photoelectron spectra

    Science.gov (United States)

    Chen, Zhangjin; Le, Anh-Thu; Morishita, Toru; Lin, C. D.

    2009-03-01

    We analysed the energy and momentum distributions of high-energy 'plateau' photoelectrons. These electrons, with energies above 4Up (Up is the ponderomotive energy), have been understood qualitatively as due to the backscattering of laser-induced returning electrons by the target ion. Here, we establish a quantitative rescattering (QRS) theory to show that the species and laser-intensity dependence of the 'flatness' of the plateau electrons is entirely determined by the energy and angular dependence of the elastic scattering cross sections between target ions with free electrons. This accurate QRS theory can be used to obtain energy and momentum distributions of plateau electrons without the need of solving the time-dependent Schrödinger equation.

  2. Origin of species dependence of high-energy plateau photoelectron spectra

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhangjin; Le, A-T; Lin, C D [J R Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS 66506-2604 (United States); Morishita, Toru [Department of Applied Physics and Chemistry, University of Electro-Communications, 1-5-1 Chofu-ga-oka, Chofu-shi, Tokyo 182-8585 (Japan)

    2009-03-28

    We analysed the energy and momentum distributions of high-energy 'plateau' photoelectrons. These electrons, with energies above 4U{sub p} (U{sub p} is the ponderomotive energy), have been understood qualitatively as due to the backscattering of laser-induced returning electrons by the target ion. Here, we establish a quantitative rescattering (QRS) theory to show that the species and laser-intensity dependence of the 'flatness' of the plateau electrons is entirely determined by the energy and angular dependence of the elastic scattering cross sections between target ions with free electrons. This accurate QRS theory can be used to obtain energy and momentum distributions of plateau electrons without the need of solving the time-dependent Schroedinger equation. (fast track communication)

  3. Study of unfolding methods for X-ray spectra obtained with CDTE detectors in the mammography energy range

    Energy Technology Data Exchange (ETDEWEB)

    Querol, A.; Gallardo, S.; Rodenas, J.; Verdu, G.; Barrachina, T. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Cami de Vera, s/n 46022 Valencia (Spain)

    2010-07-01

    Quality control parameters for an X-ray tube strongly depend on the accurate knowledge of the primary spectrum, but it is difficult to obtain it experimentally by direct measurements. Indirect spectrometry techniques such as Compton scattering can be used in X-ray spectrum assessment avoiding the pile-up effect in detectors. However, an unfolding method is required for this kind of measurements. In previous works, a methodology to assess primary X-ray spectra in the diagnostic energy range by means of the Compton scattering technique has been analysed. This methodology included a Monte Carlo simulation model, using the MCNP5 code, of the actual experimental set-up providing a Pulse Height Distribution (PHD) for a given primary spectrum. It reproduced the interaction of photons and electrons with the Compton spectrometer and with a High Purity Germanium detector. In this work, a CdTe detector is proposed instead of the HP Germanium. CdTe detector does not require a liquid nitrogen cooling system, but its resolution is poor for the same energy range and its efficiency comes down for energies greater than 55 keV being 70% at 90 keV. In despite of these disadvantages, CdTe detector has been considered due to its low cost and easy handling and portability. The model can provide a PHD and a Response Matrix, for different X-ray spectra, taken from the IPEM 78 catalogue. The primary spectrum can be estimated applying the MTSVD (Modified Truncated Singular Value Decomposition) and the Tikhonov unfolding method. Both unfolding methods cause some loss of information on the reconstructed primary spectra. In this paper, a comparison of the ability to obtain primary spectra using both MTSVD and Tikhonov unfolding methods has been done. As well a sensitivity analysis in order to test the proposed unfolding methods when they are applied to PHDs obtained with the MCNP model has been developed. A variation on parameters such as target materials and voltages over the mammography

  4. From the Proton Synchrotron to the Large Hadron Collider: 50 Years of Nobel Memories in High-Energy Physics

    CERN Multimedia

    Directorate Office

    As a new era in particle physics approaches with the start of the LHC, a symposium to commemorate many significant events that have marked high-energy physics in the past 50 years will be held at CERN on 3-4 December 2009. The list of confirmed distinguished speakers reads like the Who’s Who of particle physics of the second half of the 20th Century, including the Nobel Laureates James Cronin, Jerome Friedman, Sheldon Glashow, David Gross, Gerardus ‘t Hooft, Leon Lederman, Burton Richter, Carlo Rubbia, Jack Steinberger, Samuel Ting, Martinus Veltman, Stephen Weinberg and Frank Wilczek. They will share with us memories of several landmark events that, over the past 50 years, have shaped our field of science. These events include the discovery of the J/ψ particle by Richter and Ting in the 1970s; the work of Glashow, Salam and Weinberg on the theory of the unified weak and electromagnetic interactions; the discovery of fundamental asymmetries in the K-meson sector by Cronin and Fitch...

  5. The absorption of gamma, gamma-families and hadrons in the atmosphere - EC data

    Energy Technology Data Exchange (ETDEWEB)

    Shaulov, S.B., E-mail: shaul@sci.lebedev.r [P.N.Lebedev physical Institute, FIAN, Leninsky prospect 53, 119991 Moscow (Russian Federation); Cherdyntceva, K.V. [P.N.Lebedev physical Institute, FIAN, Leninsky prospect 53, 119991 Moscow (Russian Federation); Janceitova, J.K. [Tien-Shan Highmountain Station, Mitina 3, Almaty (Kazakhstan)

    2009-12-15

    The energy spectra SIGMAE{sub g}amma, E{sub g}amma for gamma-families and hadrons at the level of the Pamir (600 g/cm{sup 2}) and Tien-Shan (685 g/cm{sup 2}) mountains are compared. The ratio of event intensities permits to observe the absorption lengths for different types of events in X-ray emulsion chambers: single gamma-quanta, hadrons, gamma-families and super-families with halo. These values of lambda{sub att} are much more than those determined from zenith angle distributions. Data from other EC experiments are used to decrease the errors in lambda{sub att}. The absorption curves in the atmosphere were obtained for gamma-families and gamma-quanta by means of data compiled for different EC experiments at balloon, aeroplane and mountain heights. The absorption curves cannot be described as a simple exponential dependence in both cases.

  6. Radiation Fields in High Energy Accelerators and their impact on Single Event Effects

    CERN Document Server

    García Alía, Rubén; Wrobel, Frédéric; Brugger, Markus

    Including calculation models and measurements for a variety of electronic components and their concerned radiation environments, this thesis describes the complex radiation field present in the surrounding of a high-energy hadron accelerator and assesses the risks related to it in terms of Single Event Effects (SEE). It is shown that this poses not only a serious threat to the respective operation of modern accelerators but also highlights the impact on other high-energy radiation environments such as those for ground and avionics applications. Different LHC-like radiation environments are described in terms of their hadron composition and energy spectra. They are compared with other environments relevant for electronic component operation such as the ground-level, avionics or proton belt. The main characteristic of the high-energy accelerator radiation field is its mixed nature, both in terms of hadron types and energy interval. The threat to electronics ranges from neutrons of thermal energies to GeV hadron...

  7. Simulation of Photon energy Spectra Using MISC, SOURCES, MCNP and GADRAS

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Lucas P. [Los Alamos National Laboratory; Shores, Erik F. [Los Alamos National Laboratory; Myers, Steven C. [Los Alamos National Laboratory; Felsher, Paul D. [Los Alamos National Laboratory; Garner, Scott E. [Los Alamos National Laboratory; Solomon, Clell J. Jr. [Los Alamos National Laboratory

    2012-08-14

    The detector response functions included in the Gamma Detector Response and Analysis Software (GADRAS) are a valuable resource for simulating radioactive source emission spectra. Application of these response functions to the results of three-dimensional transport calculations is a useful modeling capability. Using a 26.2 kg shell of depleted uranium (DU) as a simple test problem, this work illustrates a method for manipulating current tally results from MCNP into the GAM file format necessary for a practical link to GADRAS detector response functions. MISC (MCNP Intrinsic Source Constructor) and SOURCES 4C were used to develop photon and neutron source terms for subsequent MCNP transport, and the resultant spectrum is shown to be in good agreement with that from GADRAS. A 1 kg DU sphere was also modeled with the method described here and showed similarly encouraging results.

  8. The TDF System for Thermonuclear Plasma Reaction Rates, Mean Energies and Two-Body Final State Particle Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Warshaw, S I

    2001-07-11

    The rate of thermonuclear reactions in hot plasmas as a function of local plasma temperature determines the way in which thermonuclear ignition and burning proceeds in the plasma. The conventional model approach to calculating these rates is to assume that the reacting nuclei in the plasma are in Maxwellian equilibrium at some well-defined plasma temperature, over which the statistical average of the reaction rate quantity {sigma}v is calculated, where {sigma} is the cross-section for the reaction to proceed at the relative velocity v between the reacting particles. This approach is well-understood and is the basis for much nuclear fusion and astrophysical nuclear reaction rate data. The Thermonuclear Data File (TDF) system developed at the Lawrence Livermore National Laboratory (Warshaw 1991), which is the topic of this report, contains data on the Maxwellian-averaged thermonuclear reaction rates for various light nuclear reactions and the correspondingly Maxwellian-averaged energy spectra of the particles in the final state of those reactions as well. This spectral information closely models the output particle and energy distributions in a burning plasma, and therefore leads to more accurate computational treatments of thermonuclear burn, output particle energy deposition and diagnostics, in various contexts. In this report we review and derive the theoretical basis for calculating Maxwellian-averaged thermonuclear reaction rates, mean particle energies, and output particle spectral energy distributions for these reactions in the TDF system. The treatment of the kinematics is non-relativistic. The current version of the TDF system provides exit particle energy spectrum distributions for two-body final state reactions only. In a future report we will discuss and describe how output particle energy spectra for three- and four-body final states can be developed for the TDF system. We also include in this report a description of the algorithmic implementation of the

  9. Peak center and area estimation in gamma-ray energy spectra using a Mexican-hat wavelet

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhang-jian; Chen, Chuan; Luo, Jun-song; Xie, Xing-hong; Ge, Liang-quan [School of Information Science & Technology, Chengdu University of Technology, Chengdu (China); Wu, Qi-fan [Department of Engineering Physics, Tsinghua University, Beijing (China)

    2017-06-21

    Wavelet analysis is commonly used to detect and localize peaks within a signal, such as in Gamma-ray energy spectra. This paper presents a peak area estimation method based on a new wavelet analysis. Another Mexican Hat Wavelet Signal (MHWS) named after the new MHWS is obtained with the convolution of a Gaussian signal and a MHWS. During the transform, the overlapping background on the Gaussian signal caused by Compton scattering can be subtracted because the impulse response function MHWS is a second-order smooth function, and the amplitude of the maximum within the new MHWS is the net height corresponding to the Gaussian signal height, which can be used to estimate the Gaussian peak area. Moreover, the zero-crossing points within the new MHWS contain the information of the Gaussian variance whose valve should be obtained when the Gaussian peak area is estimated. Further, the new MHWS center is also the Gaussian peak center. With that distinguishing feature, the channel address of a characteristic peak center can be accurately obtained which is very useful in the stabilization of airborne Gamma energy spectra. In particular, a method for determining the correction coefficient k is given, where the peak area is calculated inaccurately because the value of the scale factor in wavelet transform is too small. The simulation and practical applications show the feasibility of the proposed peak center and area estimation method.

  10. Topics in Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Alfred [Univ. of Wiscon, Milwaukee, WI (United States)

    2002-08-01

    Hadron production cross sections are calculated in the perturbative QCD frame work. Parton distribution functions are obtained from a strip-soliton model. The fragmentation functions are derived from the Lund model of string breaking.

  11. Theoretical photoionization spectra in the UV photon energy range for a Mg-like Al{sup +} ion

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Soung [e-Business Department, Kyonggi Institute of Technology, Siheung, Jungwang-Dong 2121-3, Kyonggi-Do 429-792 (Korea, Republic of); Kim, Young Soon [Department of Physics, Myongji University, San 38-2 Namdong, Cheoin-gu, Yongin, Kyonggi-Do 449-728 (Korea, Republic of)], E-mail: dskim@kinst.ac.kr

    2008-08-28

    In the present work, we report the photoionization cross sections of the Al{sup +} ion calculated for the photon energy range 20-26 eV and 30-50 eV. We have expanded our previous calculation (2007 J. Phys. Soc. Japan 76 014302) with an optimized admixture of the initial ground state 3s{sup 21}S and exited states 3s3p{sup 1,3}P, 3s3d{sup 1,3}D and 3s4s{sup 1,3}S, and obtained significantly improved predictions for the main background and autoionizing resonance structures of the reported experimental spectra. The absolute measurements of the photoionization cross sections of the Al{sup +} ion in these energy ranges have been performed by West et al (2001 Phys. Rev. A 63 052719), and they reported that the prominent peaks around 21 eV were attributed to the effects of the significant influence of the small fraction of the fourth-order radiation with energies around 84 eV from the synchrotron source. In our previous work, the main shape for these cross sections was calculated assuming an admixture of initial 3s{sup 21}S and 3s3p{sup 3}P states, only with a rough overall estimate for the experimental spectra in the photon energy range 20-26 eV, and without these peaks around 21 eV. The report of the experimental assignment attributes these peaks to the excitation of a 2p electron from the core. However, our present results with the new admixture reveal similar peaks without considering the possibility of the core excitation.

  12. PHITS simulations of absorbed dose out-of-field and neutron energy spectra for ELEKTA SL25 medical linear accelerator

    Science.gov (United States)

    Puchalska, Monika; Sihver, Lembit

    2015-06-01

    Monte Carlo (MC) based calculation methods for modeling photon and particle transport, have several potential applications in radiotherapy. An essential requirement for successful radiation therapy is that the discrepancies between dose distributions calculated at the treatment planning stage and those delivered to the patient are minimized. It is also essential to minimize the dose to radiosensitive and critical organs. With MC technique, the dose distributions from both the primary and scattered photons can be calculated. The out-of-field radiation doses are of particular concern when high energy photons are used, since then neutrons are produced both in the accelerator head and inside the patients. Using MC technique, the created photons and particles can be followed and the transport and energy deposition in all the tissues of the patient can be estimated. This is of great importance during pediatric treatments when minimizing the risk for normal healthy tissue, e.g. secondary cancer. The purpose of this work was to evaluate 3D general purpose PHITS MC code efficiency as an alternative approach for photon beam specification. In this study, we developed a model of an ELEKTA SL25 accelerator and used the transport code PHITS for calculating the total absorbed dose and the neutron energy spectra infield and outside the treatment field. This model was validated against measurements performed with bubble detector spectrometers and Boner sphere for 18 MV linacs, including both photons and neutrons. The average absolute difference between the calculated and measured absorbed dose for the out-of-field region was around 11%. Taking into account a simplification for simulated geometry, which does not include any potential scattering materials around, the obtained result is very satisfactorily. A good agreement between the simulated and measured neutron energy spectra was observed while comparing to data found in the literature.

  13. Interpretation of monoclinic hafnia valence electron energy-loss spectra by time-dependent density functional theory

    Science.gov (United States)

    Hung, L.; Guedj, C.; Bernier, N.; Blaise, P.; Olevano, V.; Sottile, F.

    2016-04-01

    We present the valence electron energy-loss spectrum and the dielectric function of monoclinic hafnia (m -HfO2) obtained from time-dependent density-functional theory (TDDFT) predictions and compared to energy-filtered spectroscopic imaging measurements in a high-resolution transmission-electron microscope. Fermi's golden rule density-functional theory (DFT) calculations can capture the qualitative features of the energy-loss spectrum, but we find that TDDFT, which accounts for local-field effects, provides nearly quantitative agreement with experiment. Using the DFT density of states and TDDFT dielectric functions, we characterize the excitations that result in the m -HfO2 energy-loss spectrum. The sole plasmon occurs between 13 and 16 eV, although the peaks ˜28 and above 40 eV are also due to collective excitations. We furthermore elaborate on the first-principles techniques used, their accuracy, and remaining discrepancies among spectra. More specifically, we assess the influence of Hf semicore electrons (5 p and 4 f ) on the energy-loss spectrum, and find that the inclusion of transitions from the 4 f band damps the energy-loss intensity in the region above 13 eV. We study the impact of many-body effects in a DFT framework using the adiabatic local-density approximation (ALDA) exchange-correlation kernel, as well as from a many-body perspective using "scissors operators" matched to an ab initio G W calculation to account for self-energy corrections. These results demonstrate some cancellation of errors between self-energy and excitonic effects, even for excitations from the Hf 4 f shell. We also simulate the dispersion with increasing momentum transfer for plasmon and collective excitation peaks.

  14. Hadron polarizability data analysis: GoAT

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, H., E-mail: hkstegen@mta.ca; Hornidge, D. [Mount Allison University, Sackville (Canada); Collicott, C. [Dalhousie University, Halifax (Canada); Martel, P. [Mount Allison University, Sackville (Canada); Johannes Gutenberg University, Mainz (Germany); Ott, P. [Johannes Gutenberg University, Mainz (Germany)

    2015-12-31

    The A2 Collaboration at the Institute for Nuclear Physics in Mainz, Germany, is working towards determining the polarizabilities of hadrons from nonperturbative quantum chromodynamics through Compton scattering experiments at low energies. The asymmetry observables are directly related to the scalar and spin polarizabilities of the hadrons. Online analysis software, which will give real-time feedback on asymmetries, efficiencies, energies, and angle distributions, has been developed. The new software is a big improvement over the existing online code and will greatly develop the quality of the acquired data.

  15. Time dependence of energy spectra of brachytherapy sources and its impact on the half and the tenth value layers.

    Science.gov (United States)

    Yue, Ning J; Chen, Zhe; Hearn, Robert A; Rodgers, Joseph J; Nath, Ravinder

    2009-11-01

    Several factors including radionuclide purity influence the photon energy spectra from sealed brachytherapy sources. The existence of impurities and trace elements in radioactive materials as well as the substrate and encapsulation may not only alter the spectrum at a given time but also cause change in the spectra as a function of time. The purpose of this study is to utilize a semiempirical formalism, which quantitatively incorporates this time dependence, to calculate and evaluate the shielding requirement impacts introduced by this time dependence for a 103Pd source. The formalism was used to calculate the NthVL thicknesses in lead for a 103Pd model 200 seed. Prior to 2005, the 103Pd in this source was purified to a level better than 0.006% of the total 103Pd activity, the key trace impurity consisting of 65Zn. Because 65Zn emits higher energy photons and has a much longer half-life of 244 days compared to 103Pd, its presence in 103Pd seeds led to a time dependence of the photon spectrum and other related physical quantities. This study focuses on the time dependence of the NthVL and the analysis of the corresponding shielding requirements. The results indicate that the first HVL and the first TVL in lead steadily increased with time for about 200 days and then reached a plateau. The increases at plateau were more than 1000 times compared to the corresponding values on the zeroth day. The second and third TVLs in lead reached their plateaus in about 100 and 60 days, respectively, and the increases were about 19 and 2.33 times the corresponding values on the zeroth day, respectively. All the TVLs demonstrated a similar time dependence pattern, with substantial increases and eventual approach to a plateau. The authors conclude that the time dependence of the emitted photon spectra from brachytherapy sources can introduce substantial variations in the values of the NthVL with time if certain impurities are present. The contribution of 65Zn to the dose rate

  16. Survey of quantitative data on the solar energy and its spectra distribution

    Science.gov (United States)

    Thekaekara, M. P.

    1976-01-01

    This paper presents a survey of available quantitative data on the total and spectral solar irradiance at ground level and outside the atmosphere. Measurements from research aircraft have resulted in the currently accepted NASA/ASTM standards of the solar constant and zero air mass solar spectral irradiance. The intrinsic variability of solar energy output and programs currently under way for more precise measurements from spacecraft are discussed. Instrumentation for solar measurements and their reference radiation scales are examined. Insolation data available from the records of weather stations are reviewed for their applicability to solar energy conversion. Two alternate methods of solarimetry are briefly discussed.

  17. Measurement of neutron energy spectra from 15 to 150 MeV using stacked liquid scintillators

    CERN Document Server

    Buffler, A; Allie, M S; Binns, P J; Dangendorf, V; Langen, K M; Nolte, R; Schuhmacher, H

    2002-01-01

    A multiple liquid scintillator system for measuring the energy spectrum of a neutron beam in the range 15-150 MeV is described. Two or more slabs of NE213 scintillator (13x13x7 cm sup 3) are stacked behind one-another and only events in which a neutron interacts in the upstream scintillator are analysed. The system is designed to minimise the escape of forward recoil protons from the detecting media. Test measurements and Monte Carlo simulations of the detector response to quasi-monoenergetic neutron beams of energies 62.5 and 97.5 MeV are presented.

  18. Energy dependence of isotopic spectra from spallation residues; Dependance en energie des spectres isotopiques de residus de spallation

    Energy Technology Data Exchange (ETDEWEB)

    Audouin, L

    2003-09-01

    Spallation reactions are collisions between heavy nuclei and light particle with an energy of a few hundreds MeV. The y are considered as a suitable way to create high- flux neutrons sources, which may used for example for the transmutation of nuclear wastes (hybrid reactors). The study of the residues from such reactions is both a way to understand the physics of the spallation and to provide information required for the design of industrial targets. The residues from the spallation of lead by proton at 500 MeV have been measured using the inverse kinematics technique in the FRS (fragments recoil separator). spectrometer from GSI (Barmstadt). This low energy required the use of new technique, for the experimental setup as well as during the analysis. The fragments were identified in-flight, prior to {beta} decay. Complete isotopic distributions are obtained with an accuracy ranging between 10 and 30%. Detailed information on the reaction kinematics are also obtained. Data are in excellent agreement with radio-chemical measurements, and bring new insights about the spallation process. The comparison with data measured on the same system with an incident energy of 1 GeV allows to discuss the influence of the projectile energy on the residues formation. It is concluded that the independence of the shape of the isobaric production cross sections regarding mass and energy of the projectile is preserved at low incident energies. The behaviour of Monte-Carlo codes is discussed with respect to those sets of data. The calculations show an improving agreement with decreasing energy, indicating that high-energy phenomena, for which some common assumptions become questionable, are the main reason for the observed discrepancies. (author)

  19. Highlights from Compass in hadron spectroscopy

    Science.gov (United States)

    Krinner, Fabian

    2015-06-01

    Since Quantum Choromdynamics allows for gluon self-coupling, quarks and gluons cannot be observed as free particles, but only their bound states, the hadrons. This so-called confinement phenomenon is responsible for 98% of the mass in the visible universe. Measurement of the hadron excitation spectra therefore gives valuable input for theory and phenomenology to quantitatively understand this phenomenon. One simple model to describe hadrons is the Constituent Quark Model (CQM), which knows two types of hadrons: mesons consisting of a quark and an antiquark and baryons, which are made of three quarks. More advanced models, which are inspired by QCD as well as calculations within Lattice QCD, predict the existence of other types of hadrons, which may be, e.g., described solely by gluonic excitations (glueballs) or mixed quark and gluon excitations (hybrids). In order to search for such states, the Compass experiment at the Super Proton Synchrotron at CERN has collected large data sets, which allow to study the light-quark meson and baryon spectra with unmatched precision. The overview shown here focuses on the light meson sector, presenting a detailed Partial-Wave Analysis of the processes: π- p → π-π+π- p and π- p → π-π0π0 p. A new state, the a1(1420) with JPC = 1++, is observed. Its Breit-Wigner parameters are found to be in the ranges: m = 1412 - 1422MeV/c2 and Γ = 130 - 150MeV/c2. In the same analysis, a signal in a wave with JPC = 1- + is observed. A resonant origin of this signal would not be explicable within the CQM. In addition to this possibility of an exotic state, possible non-resonant origin of this signal is discussed.

  20. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  1. Proton and alpha evaporation spectra in low energy 12C and 16O ...

    Indian Academy of Sciences (India)

    The thickness of the tantalum foil was measured by weighing. The energy loss of protons and ... to the evaporation from angular momentum-driven deformed configurations, formed dynamically during fusion, or ... in the fusion of heavy ions the dynamics of the entrance channel can lead to a distribution of Coulomb barriers.

  2. Dissociation of CO induced by He2+ ions : I. Fragmentation and kinetic energy release spectra

    NARCIS (Netherlands)

    Bliek, FW; de Jong, MC; Hoekstra, R; Morgenstern, R

    1997-01-01

    The dissociation of COq+ ions (q less than or equal to 3) produced in collisions of keV amu(-1) He2+ ions with CO has been studied by time-of-flight measurements. Both singles and coincidence time-of-flight techniques have been used to determine the kinetic energy release of the dissociating CO

  3. The influence of fragmentation models in the production of hadron ...

    Indian Academy of Sciences (India)

    Abstract. The analysis of electron–positron annihilations to hadrons at high energies shows that apart from two-jet events, there are also signs of three-jet events which are interpreted according to the QCD, as a gluon radiated by a quark. In this paper, we investigate the fragmentation of quarks and gluons to hadron jets.

  4. The influence of fragmentation models in the production of hadron ...

    Indian Academy of Sciences (India)

    The analysis of electron–positron annihilations to hadrons at high energies shows that apart from two-jet events, there are also signs of three-jet events which are interpreted according to the QCD, as a gluon radiated by a quark. In this paper, we investigate the fragmentation of quarks and gluons to hadron jets. We show ...

  5. QCD physics at hadron storage rings: From COSY to FAIR

    Indian Academy of Sciences (India)

    QCD physics at hadron storage rings. 3.2 Hadron spectroscopy with antiproton annhilation at PANDA. The PANDA experiment, located at an internal target position of the high energy storage ring for anti-protons is one of the large installations at the future FAIR fa- cility [4]. It is being planned by a multi-national collaboration, ...