WorldWideScience

Sample records for hadron particle theory

  1. Hadron particle theory

    International Nuclear Information System (INIS)

    Alonso, J.R.

    1995-05-01

    Radiation therapy with ''hadrons'' (protons, neutrons, pions, ions) has accrued a 55-year track record, with by now over 30,000 patients having received treatments with one of these particles. Very good, and in some cases spectacular results are leading to growth in the field in specific well-defined directions. The most noted contributor to success has been the ability to better define and control the radiation field produced with these particles, to increase the dose delivered to the treatment volume while achieving a high degree of sparing of normal tissue. An additional benefit is the highly-ionizing, character of certain beams, leading to creater cell-killing potential for tumor lines that have historically been very resistant to radiation treatments. Until recently these treatments have been delivered in laboratories and research centers whose primary, or original mission was physics research. With maturity in the field has come both the desire to provide beam facilities more accessible to the clinical setting, of a hospital, as well as achieving, highly-efficient, reliable and economical accelerator and beam-delivery systems that can make maximum advantage of the physical characteristics of these particle beams. Considerable work in technology development is now leading, to the implementation of many of these ideas, and a new generation of clinically-oriented facilities is beginning to appear. We will discuss both the physical, clinical and technological considerations that are driving these designs, as well as highlighting, specific examples of new facilities that are either now treating, patients or that will be doing so in the near future

  2. Particle theory and intense hadron facilities

    International Nuclear Information System (INIS)

    Ng, J.N.

    1989-05-01

    A brief overview of particle physics that can be done at an intense hadron facility (IHF) is given. The emphasis is placed on testing the standard model, light Higgs boson searches and CP violation, which are areas an IHF can do especially well

  3. A field theory for composite particles (hadrons): Pt. 2

    International Nuclear Information System (INIS)

    Biswas, T.

    1986-01-01

    Interaction between composite units (hadrons) is introduced in a fashion similar to QED. Quark-quark interactions within hadrons are considered to be of direct-interaction nature. This provides a completely relativistic and self-consistent theory for strong interactions that can be used as a tool for phenomenology. Hadron scattering and bound states have a simple description and their computation is expected to be laborious but straightforward

  4. Dynamical theory of hadrons based upon extended particle picture

    International Nuclear Information System (INIS)

    Hara, Osamu

    1980-01-01

    An extended particle model of hadrons is discussed on the basis of the assumption that the hadrons correspond to the respective eigenstates of the internal motion of extended bodies which are considered as deformable spheres for simplicity. Such three-dimensionally extended bodies have several remarkable features. The first point is that it is allowed to make half-integer spin. The internal motion of the bodies can be described in terms of quark-like excitons. But the great difference is that these quark-like excitons obey Bose statistics. Therefore in this model, there is no positive reason to introduce the degree of freedom of color at least from the symmetry reason. The second point is that the triality must be restricted to zero. Therefore, the particles with fractional charge do not appear, and the confinement is automatic. It is assumed that the interaction among hadrons takes place due to the coupling of current carried by excited quark-like excitons. All hadron interactions are described in terms of a single coupling constant characterizing the coupling between current and intermediate field. Once the interaction Hamiltonian is given, it is straight forward to calculate scattering amplitude. High energy charge exchange scattering and the decay width of higher resonances can be understood. (Kako, I.)

  5. Nuclei, hadrons, and elementary particles

    International Nuclear Information System (INIS)

    Bopp, F.W.

    1989-01-01

    This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de

  6. Fundamentals in hadronic atom theory

    CERN Document Server

    Deloff, A

    2003-01-01

    Hadronic atoms provide a unique laboratory for studying hadronic interactions essentially at threshold. This text is the first book-form exposition of hadronic atom theory with emphasis on recent developments, both theoretical and experimental. Since the underlying Hamiltonian is a non-self-adjoined operator, the theory goes beyond traditional quantum mechanics and this book covers topics that are often glossed over in standard texts on nuclear physics. The material contained here is intended for the advanced student and researcher in nuclear, atomic or elementary-particle physics. A good know

  7. Dynamical theory of hadron interactions based upon extended particle picture, 2

    International Nuclear Information System (INIS)

    Hara, Osamu

    1977-01-01

    The interaction of hadron is discussed on the basis of an extended particle model. We assume that the interaction between hadrons is due to the coupling between currents carried by excitons excited in the particles, which is mediated by some intermediate field. This picture enables us to write down all hadron interactions once this original interaction between excitons is given -- thus leading to a more unified and a dynamical understanding of the hadron interactions. As examples π-π, anti K-N and π-N interactions are discussed. As far as the comparison is possible, the resulting meson-meson interactions and the meson-baryon interactions are in agreement with those obtained by SU 6 or its relativistic generalization. But a great advantage of our model is that it gives furthermore new relations between these meson-meson interactions and meson-baryon interactions because of its unified structure. For example, we find that in our model the coupling constant for the rho ππ interaction g sub(rhoππ) is related to the (pseudo-scalar) π-N coupling constant g by g sub(rhoππ)sup(2)/4π = (6/5) 2 (m sub(rho) m sub(π)/M 2 )(G 2 /4π), where m sub(rho), m sub(π) and M denote respectively the mass for rho, π and the nucleon. This relation is satisfied very well experimentally. (auth.)

  8. Hadron physics and transfinite set theory

    International Nuclear Information System (INIS)

    Augenstein, B.W.

    1984-01-01

    Known results in transfinite set theory appear to anticipate many aspects of modern particle physics. Extensive and powerful analogies exist between the very curious theorems on ''paradoxical'' decompositions in transfinite set theory, and hadron physics with its underlying quark theory. The phenomenon of quark confinement is an example of a topic with a natural explanation via the analogies. Further, every observed strong interaction hadron reaction can be envisaged as a paradoxical decomposition or sequence of paradoxical decompositions. The essential role of non-Abelian groups in both hadron physics and paradoxical decompositions is one mathematical link connecting these two areas. The analogies suggest critical roles in physics for transfinite set theory and nonmeasurable sets. (author)

  9. Scalar strong interaction hadron theory

    CERN Document Server

    Hoh, Fang Chao

    2015-01-01

    The scalar strong interaction hadron theory, SSI, is a first principles' and nonlocal theory at quantum mechanical level that provides an alternative to low energy QCD and Higgs related part of the standard model. The quark-quark interaction is scalar rather than color-vectorial. A set of equations of motion for mesons and another set for baryons have been constructed. This book provides an account of the present state of a theory supposedly still at its early stage of development. This work will facilitate researchers interested in entering into this field and serve as a basis for possible future development of this theory.

  10. Story of the string theory. From hadrons to Planck scale

    International Nuclear Information System (INIS)

    Petropoulos, P.M.

    2010-01-01

    Originally the string theory was devised to describe the scattering between hadron particles but was quickly put aside by the success of the quantum chromodynamics. Now string theory appears in the quantum gravity theory and has been involved in almost all attempts to define a physics beyond the standard model and to unify basic interactions. (A.C.)

  11. Production of strange particles in hadronization processes

    International Nuclear Information System (INIS)

    Hofmann, W.

    1987-08-01

    Strange particles provide an important tool for the study of the color confinement mechanisms involved in hadronization processes. We review data on inclusive strange-particle production and on correlations between strange particles in high-energy reactions, and discuss phenomenological models for parton fragmentation. 58 refs., 24 figs

  12. QCD as a Theory of Hadrons

    Science.gov (United States)

    Narison, Stephan

    2007-07-01

    About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD

  13. On the universality class of certain string theory hadrons

    International Nuclear Information System (INIS)

    Bertoldi, G.; Bigazzi, F.; Cotrone, A.L.; Nunez, C.; Pando Zayas, L.A.

    2003-12-01

    Exploiting the gauge/gravity correspondence we d the spectrum of hadronic-like bound states of adjoint particles with a large global charge in several confining theories. In particular, we consider an embedding of four-dimensional N = 1 supersymmetric Yang-Mills into IIA string theory, two classes of three-dimensional gauge theories and the softly broken version of one of them. In all cases we describe the low energy excitations of a heavy hadron with mass proportional to its global charge. These excitations include: the hadron's nonrelativistic motion, its stringy excitations and excitations corresponding to the addition of massive constituents. Our analysis provides ample evidence for the universality of such hadronic states in con ing theories admitting supergravity duals. Besides, we d numerically a new smooth solution that can be thought of as a non-supersymmetric deformation of G 2 holonomy manifolds. (author)

  14. Particles as S-matrix poles: hadron democracy

    International Nuclear Information System (INIS)

    Chew, G.F.

    1989-01-01

    The connection between two theoretical ideas of the 1950s is traced in this article, namely that hadrons are nonfundamental, ''composite'' particles and that all physically observable particles correspond to singularities of an analytic scattering matrix. The S matrix theory developed by Werner Heisenberg in the early forties now incorporated the concepts of unitarity, invariance, analyticity and causality. The meson-exchange force meant that poles must be present in nucleon-nuclear and pion-nucleon scattering as predicted by dispersion relations. Experimental work in accessible regions determined pole residues. Pole residue became associated with force strength and pole position with particle mass. In 1959, the author discovered the so-called ''bootstrap'' theory the rho meson as a force generates a rho particle. By the end of the 1950s it was clear that all hadrons had equal status, each being bound states of other hadrons, sustained by hadron exchange forces and that hadrons are self-generated by an S-matrix bootstrap mechanism that determines all their properties. (UK)

  15. Density dependent hadron field theory

    International Nuclear Information System (INIS)

    Fuchs, C.; Lenske, H.; Wolter, H.H.

    1995-01-01

    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state

  16. Description of hadrons using string theory

    International Nuclear Information System (INIS)

    Sugimoto, Shigeki

    2013-01-01

    We give a brief overview of 'holographic QCD' for JPS members. Applying the idea of gauge/string duality to QCD, We obtain a description of hadrons based on string theory. Using this description, a lot of properties of hadrons can be analyzed and the results are in reasonable agreement with the observations. We try to explain the basic idea and some of the interesting results in a way accessible to non-experts. (author)

  17. Using field theory in hadron physics

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.

    1978-03-01

    Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references

  18. Using field theory in hadron physics

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.

    1979-01-01

    The author gives an introductory review about the development of applications of quantum field theory in hadron physics. Especially he discusses the renormalization group and the use of this group for the selection of a field theory. In this framework he compares quantum chromodynamics with quantum electrodynamics. Finally he discusses dynamic mass generation and quark confinement in the framework of quantum chromodynamics. (HSI) [de

  19. The theory of hadronic systems

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1995-01-01

    This report briefly discusses progress on the following topics: isospin breaking in the pion-nucleon system; subthreshold amplitudes in the πN system; neutron-proton charge-exchange; transparency in pion production; energy dependence of pion DCX; direct capture of pions into deeply bound atomic states; knock out of secondary components in the nucleus; radii of neutron distributions in nuclei; the hadronic double scattering operator; pion scattering and charge exchange from polarized nuclei; pion absorption in nuclei; modification of nucleon structure in nuclei; and antiproton annihilation in nuclei

  20. Strange particles from dense hadronic matter

    International Nuclear Information System (INIS)

    Rafelski, J.; Letessier, J.; Tounsi, A.

    1996-01-01

    After a brief survey of the remarkable accomplishments of the current heavy ion collision experiments up to 200A GeV, we address in depth the role of strange particle production in the search for new phases of matter in these collisions. In particular, we show that the observed enhancement pattern of otherwise rarely produced multistrange antibaryons can be consistently explained assuming color deconfinement in a localized, rapidly disintegrating hadronic source. We develop the theoretical description of this source, and in particular study QCD based processes of strangeness production in the deconfined, thermal quark-gluon plasma phase, allowing for approach to chemical equilibrium and dynamical evolution. We also address thermal charm production. Using a rapid hadronization model we obtain final state particle yields, providing detailed theoretical predictions about strange particle spectra and yields as functions of heavy ion energy. Our presentation is comprehensive and self contained: we introduce the procedures used in data interpretation in considerable detail, discuss the particular importance of selected experimental results, and show how they impact the theoretical developments. (author)

  1. Hadron masses in a gauge theory

    International Nuclear Information System (INIS)

    De Rujula, A.; Georgi, H.; Glashow, S.L.

    1975-01-01

    We explore the implications for hadron spectroscopy of the ''standard'' gauge model of weak, electromagnetic, and strong interactions. The model involves four types of fractionally charged quarks, each in three colors, coupling to massless gauge gluons. The quarks are confined within colorless hadrons by a long-range spin-independent force realizing infrared slavery. We use the asymptotic freedom of the model to argue that for the calculation of hadron masses, the short-range quark-quark interaction may be taken to be Coulomb-like. We rederive many successful quark-model mass relations for the low-lying hadrons. Because a specific interaction and symmetry-breaking mechanism are forced on us by the underlying renormalizable gauge field theory, we also obtain new mass relations. They are well satisfied. We develop a qualitative understanding of many features of the hadron mass spectrum, such as the origin and sign of the Σ-Λ mass splitting. Interpreting the newly discovered narrow boson resonances as states of charmonium, we use the model to predict the masses of charmed mesons and baryons

  2. Anomalous correlation between hadrons and electromagnetic particles in hadron and gamma-ray families

    International Nuclear Information System (INIS)

    Tamada, Masanobu; Funayama, Yoshimi

    1986-01-01

    Correlations in relative (energy-weighted) distance between hadrons and electromagnetic particles are studied in the families observed in Chacaltaya emulsion chamber experiment. It is found that the observed number of hadrons which accompany electromagnetic in very close vicinity, say -5 , and it means there exists anomalous correlation between hadrons and electromagnetic particles in the characteristic spread of atmospheric electromagnetic cascade. The results are also compared with those of Japan-USSR joint chamber exposed at Pamir observatory. (author)

  3. Hadron interactions

    International Nuclear Information System (INIS)

    Fischer, J.; Kolar, P.; Kundrat, V.

    1988-01-01

    The proceedings contain invited lectures and papers presente at the symposium. Attention was devoted to hadron interactions a high energy in QCD, to the structure and decay of hadrons, the production of hadrons and supersymmetric particles in e + e - and ep collisions, to perturbation theory in quantum field theory, and new supersymmetric extensions of relativistic algebra. (Z.J

  4. Elementary particle theory

    International Nuclear Information System (INIS)

    Marciano, W.J.

    1984-12-01

    The present state of the art in elementary particle theory is reviewed. Topics include quantum electrodynamics, weak interactions, electroweak unification, quantum chromodynamics, and grand unified theories. 113 references

  5. Particle theory and cosmology

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.

    1991-01-01

    This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology

  6. On slow particle production in hadron-nucleus interactions

    International Nuclear Information System (INIS)

    Stenlund, E.; Otterlund, I.

    1982-01-01

    A model for slow particle production in hadron-nucleus interactions is presented. The model succesfully predicts correlations between the number of knock-on particles and the number of particles associated with the evaporation process as well as correlations with the number of collisions, ν, between the incident hadron and the nucleons inside the target nucleus. The model provides two independent possibilities to determine the number of primary intranuclear collisions, ν, i.e. by its correlation to the number of knock-on particles or to the number of evaporated particles. The good agreement indicates that the model gives an impact-parameter sensitive description of hardron nucleus reactions. (orig.)

  7. The QCD model of hadron cores of the meson theory

    International Nuclear Information System (INIS)

    Pokrovskii, Y.E.

    1985-01-01

    It was shown that in the previously proposed QCD model of hadron cores the exchange and self-energy contributions of the virtual quark-antiquark-gluon cloud on the outside of a bag which radius coincides with the hardon core radius of the meson theory (∼ 0.4 Fm) have been taken into account at the phenomenological level. Simulation of this cloud by the meson field results in realistic estimations of the nucleon's electroweak properties, moment fractions carried by gluons, quarks, antiquarks and hadron-hadron interaction cross-sections within a wide range of energies. The authors note that the QCD hadron core model proposed earlier not only realistically reflects the hadron masses, but reflects self-consistently main elements of the structure and interaction of hadrons at the quark-gluon bag radius (R - 0.4Fm) being close to the meson theory core radius

  8. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    Energy Technology Data Exchange (ETDEWEB)

    Geesaman, D.F. [Argonne National Lab., IL (United States)] [ed.

    1993-11-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere.

  9. Future directions in particle and nuclear physics at multi-GeV hadron beam facilities

    International Nuclear Information System (INIS)

    Geesaman, D.F.

    1993-01-01

    This report contains papers on the following topics in particle and nuclear physics: hadron dynamics; lepton physics; spin physics; hadron and nuclear spectroscopy; hadronic weak interactions; and Eta physics. These papers have been indexed separately elsewhere

  10. Elementary particle theory

    CERN Document Server

    Stefanovich, Eugene

    2018-01-01

    This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles.

  11. Rapidity distributions of secondary particles in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Alaverdyan, G.B.; Pak, A.S.; Tarasov, A.V.; Tseren, Ch.; Uzhinsky, V.V.

    1979-01-01

    In the framework of the cascade model of a leading particle the rapidity distributions of secondary particles in the hadron-nucleus interactions are considered. The energy loss fluctuations of leading particles in the successive collisions have been taken into account. It is shown that the centre of rapidity distribution is displaced towards small rapidity with target nucleus atomic number A growth. The model well reproduces the energy and A dependences of the rapidity distributions

  12. Twistor theory a particle-physicist attitude

    International Nuclear Information System (INIS)

    Perjes, Z.

    1979-07-01

    Particle models in twistor theory are reviewed, starting with an introduction into the kinematical-twistor formalism which describes massive particles in Minkowski space-time. The internal transformations of constituent twistors are then discussed. The quantization rules available from a study of twistor scattering situations are used to construct quantum models of fundamental particles. The theory allows the introduction of an internal space with a Kaehlerian metric where hadron structure is described by ''spherical'' states of bound constituents. It is conjectured that the spectrum of successive families of hadrons might approach an accumulation point in energy. Above this threshold energy, the Kaehlerian analog of ionization could occur wherein the zero-mass constituents (twistors) of the particle break free. (author)

  13. Measurement of charmed particle production in hadronic reactions

    CERN Multimedia

    2002-01-01

    The aim of the experiment is to measure the production cross-section for charmed particles in hadronic reactions, study their production mechanism, and search for excited charmed hadrons.\\\\ \\\\ Charmed Mesons and Baryons will be measured in $\\pi$ and $p$ interactions on Beryllium between 100 and 200 GeV/c. The trigger will be on an electron from the leptonic decay of one charmed particle by signals from the Cerenkov counter (Ce), the electron trigger calorimeter (eCal), scintillation counters, and proportional wire chambers. The accompanying charmed particle will be measured via its hadronic decay in a two-stage magnetic spectrometer with drift chambers (arms 2, 3a, 3b, 3c), two large-area multicell Cerenkov counters (C2, C3) and a large-area shower counter ($\\gamma$-CAL). The particles which can be measured and identified include $\\gamma, e, \\pi^{\\pm}, \\pi^{0}, K^{\\pm}, p, \\bar{p}$ so that a large number of hadronic decay modes of charmed particles can be studied. \\\\ \\\\ A silicon counter telescope with 5 $\\m...

  14. Resummation for supersymmetric particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Brensing, Silja Christine

    2011-05-10

    The search for supersymmetry is among the most important tasks at current and future colliders. Especially the production of coloured supersymmetric particles would occur copiously in hadronic collisions. Since these production processes are of high relevance for experimental searches accurate theoretical predictions are needed. Higher-order corrections in quantum chromodynamics (QCD) to these processes are dominated by large logarithmic terms due to the emission of soft gluons from initial-state and final-state particles. A systematic treatment of these logarithms to all orders in perturbation theory is provided by resummation methods. We perform the resummation of soft gluons at next-to-leading-logarithmic (NLL) accuracy for all possible production processes in the framework of the Minimal Supersymmetric Standard Model. In particular we consider pair production processes of mass-degenerate light-flavour squarks and gluinos as well as the pair production of top squarks and non-mass-degenerate bottom squarks. We present analytical results for all considered processes including the soft anomalous dimensions. Moreover numerical predictions for total cross sections and transverse-momentum distributions for both the Large Hadron Collider (LHC) and the Tevatron are presented. We provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. The inclusion of NLL corrections leads to a considerable reduction of the theoretical uncertainty due to scale variation and to an enhancement of the next-to-leading order (NLO) cross section predictions. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. At the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV, the corrections due to NLL resummation over and above the NLO predictions can be as high as 35 % in the case of gluino-pair production, whereas at the

  15. Theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1986-01-01

    Development and modern state of the theory of elementary particle interactions is described. The main aim of the paper is to give a picture of quantum field theory development in the form easily available for physicists not occupied in this field of science. Besides the outline of chronological development of main representations, the description of renormalization and renorm-groups, gauge theories, models of electro-weak interactions and quantum chromodynamics, the latest investigations related to joining all interactions and supersymmetries is given

  16. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P; Wijewardhana, L.C.R.

    1991-10-01

    In the test particle approximation, the scattering amplitude for two-particle scattering in (2+1)-dimensional Chern-Simons-Witten gravity and supergravity was computed and compared to the corresponding metric solutions. The formalism was then extended to the exact gauge theoretic treatment of the two-particle scattering problem and compared to 't Hooft's results from the metric approach. We have studied dynamical symmetry breaking in 2+1 dimensional field theories. We have analyzed strong Extended Technicolor (ETC) models where the ETC coupling is close to a critical value. There are effective scalar fields in each of the theories. We have worked our how such scalar particles can be produced and how they decay. The φ 4 field theory was investigated in the Schrodinger representation. The critical behavior was extracted in an arbitrary number of dimensions in second order of a systematic truncation approximation. The correlation exponent agrees with known values within a few percent

  17. Theory of hadronic production of heavy quarks

    International Nuclear Information System (INIS)

    Peterson, C.

    1981-07-01

    Conventional theoretical predictions for hadronic production of heavy quarks (Q anti Q) are reviewed and confronted with data. Perturbative hard scattering predictions agree qualitatively well with hidden Q anti Q production (e.g., psi, chi, T) whereas for open Q anti Q-production (e.g., pp → Λ/sub c/ + X) additional mechanisms or inputs are needed to explain the forwardly produced Λ/sub c/ + at ISR. It is suggested that the presence of c anti c-pairs on the 1 to 2% level in the hadron Fock state decomposition (intrinsic charm) gives a natural description of the ISR data. The theoretical foundations of the intrinsic charm hypotheses together with its consequences for lepton-induced reactions is discussed in some detail

  18. Muon g-2 theory. The hadronic part

    International Nuclear Information System (INIS)

    Jegerlehner, Fred

    2017-04-01

    I present a status report of the hadronic vacuum polarization effects for the muon g-2, to be considered as an update of an earlier paper (F. Jegerlehner, 2016). The update concerns recent new inclusive R measurements from KEDR in the energy range 1.84 to 3.72 GeV. For the leading order contributions I find a had(1) μ =(688.07±4.14)[688.77±3.38] x 10 -10 based on e + e - data [incl. τ data], a had(2) μ =(-9.93±0.07) x 10 -10 (NLO) and a had(3) μ =(1.22±0.01) x 10 -10 (NNLO). Collecting recent progress in the hadronic light-by-light scattering I adopt π 0 ,η,η ' [95±12]+axial-vector[8± 3]+scalar [-6 ±1]+π,K loops[-20±5]+quark loops[22±4]+tensor [1±0]+NLO[3±2] which yields a (6) μ (lbl,had)=(103±29) x 10 -11 . With these updates I find a exp μ -a the μ =(31.3±7.7) x 10 -10 a 4.1σ deviation. Recent lattice QCD results and future prospects to improve hadronic contributions are discussed.

  19. The Least Particle Theory

    Science.gov (United States)

    Hartsock, Robert

    2011-10-01

    The Least Particle Theory states that the universe was cast as a great sea of energy. MaX Planck declared a quantum of energy to be the least value in the universe. We declare the quantum of energy to be the least particle in the universe. Stephen Hawking declared quantum mechanics to be of no value in todays gross mechanics. That's like saying the number 1 has no place in mathematics.

  20. Muon g-2 theory. The hadronic part

    Energy Technology Data Exchange (ETDEWEB)

    Jegerlehner, Fred [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2017-04-15

    I present a status report of the hadronic vacuum polarization effects for the muon g-2, to be considered as an update of an earlier paper (F. Jegerlehner, 2016). The update concerns recent new inclusive R measurements from KEDR in the energy range 1.84 to 3.72 GeV. For the leading order contributions I find a{sup had(1)}{sub μ}=(688.07±4.14)[688.77±3.38] x 10{sup -10} based on e{sup +}e{sup -} data [incl. τ data], a{sup had(2)}{sub μ}=(-9.93±0.07) x 10{sup -10} (NLO) and a{sup had(3)}{sub μ}=(1.22±0.01) x 10{sup -10} (NNLO). Collecting recent progress in the hadronic light-by-light scattering I adopt π{sup 0},η,η{sup '}[95±12]+axial-vector[8± 3]+scalar [-6 ±1]+π,K loops[-20±5]+quark loops[22±4]+tensor [1±0]+NLO[3±2] which yields a{sup (6)}{sub μ}(lbl,had)=(103±29) x 10{sup -11}. With these updates I find a{sup exp}{sub μ}-a{sup the}{sub μ}=(31.3±7.7) x 10{sup -10} a 4.1σ deviation. Recent lattice QCD results and future prospects to improve hadronic contributions are discussed.

  1. Light-front field theory in the description of hadrons

    Science.gov (United States)

    Ji, Chueng-Ryong

    2017-03-01

    We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  2. Charged-particle inclusive distributions from hadronic Z0 decays

    International Nuclear Information System (INIS)

    O'Shaughnessy, K.

    1990-05-01

    We have measured inclusive distributions for charged particles in hadronic decays of the Z boson. The variables chosen for study were the mean charged-particle multiplicity (left-angle n ch right-angle), scaled momentum (x), and momenta transverse to the sphericity axes (p perpendicular in and p perpendicular out ). The distributions have been corrected for detector effects and are compared with data from e + e - annihilation at lower energies and with the predictions of several QCD-based models. The data are in reasonable agreement with expectations. 12 refs., 2 figs

  3. Multi-eikonal theory for high energy hadron production

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1976-08-01

    Earlier work on production amplitudes with pairwise correlations is reviewed and clarified, as an introduction to several recent detailed papers. Mechanisms for development of large Psub(T) enhancements and a rich particle spectrum arise naturally from the attempt to incorporate analyticity, crossing, and unitarity in hadron production amplitudes. (author)

  4. Multiple particles production for hadron-hadron reactions with finite hadronization time

    International Nuclear Information System (INIS)

    Arbex, N.

    1991-01-01

    Experimental data on multiple particle production for proton-proton reaction are analysed in the context of a very simple analytical model. The model exhibits the essential features of hydrodynamical calculations as, e.g., the formation of an intermediate object, which undergoes expansion. The simultaneous analysis of different types of data allows for the conclusion that such data reflect the dynamics of this intermediate object and have a very deem connection to the elementary processes. (author)

  5. Department of Particle Theory - Overview

    International Nuclear Information System (INIS)

    Jezabek, M.

    1999-01-01

    Full text: Research performed at the Department of Particle Theory is devoted to fundamental particles and their interactions. These studies are closely related to the current and future high energy experiments at e + e - and hadron-hadron colliders: LEP, TESLA, Tevatron and LHC. The papers reported below cover a wide range of particle physics from neutrino masses and oscillations to processes involving heavy particles like gauge and Higgs bosons or the top quark. An evidence of neutrino oscillations observed by the SuperKamiokande Collaboration was the most spectacular discovery of the year 1998. In a theoretical investigation performed at our department a relation has been found between the so called see-saw mechanism and the bi-maximal neutrino mixing. Since many years a very important and labour-consuming part of the research activities is related to precision tests of the Standard Model. In the last year successful runs of LEP2 stimulated an impressive progress in theoretical description of processes with two- and four-fermion final states in electron-positron annihilation. It is worth stressing that the results of the calculations have been distributed in the form of the computer programs (Monte Carlo and other types) which serve as an indispensable tool in the analysis of the experimental data. Although the whole scientific program is a natural continuation of the activities started earlier a few results obtained in the last year should be mentioned: Publication of the four-fermion Monte Carlo program KORALW for high energy e + e - colliders; Development of the exponentiation scheme at the spin amplitude level and studies of the anomalous couplings for the e + e - → f (anti)f (nγ) processes; Relation between QCD static potentials in momentum and position spaces, and its consequences for bottom and top quark pair production and spectroscopy; Participation in the preparation of the physics program of the pp experiments on LHC collider particularly for Higgs

  6. Relativistic transport theory for hadronic matter

    International Nuclear Information System (INIS)

    Shun-Jin Wang; Bao-An Li; Bauer, W.; Randrup, J.

    1991-01-01

    We derive coupled equations of motion for the density matrices for nucleons, Δ resonances, and π mesons, as well as for the pion--baryon interaction vertex function for the description of nuclear reactions at intermediate energies. We start from an effective hadronic Lagrangian density with minimal coupling between baryons and mesons. By truncating at the level of three-body correlations and using the G-matrix method to solve the equations of motion for the two-body correlation functions, a closed equation of motion for the one-body density matrices is obtained. A subsequent Wigner transformation then leads to a tractable set of relativistic transport equations for interacting nucleons, deltas, and pions. copyright 1991 Academic Press, Inc

  7. Effect of HZE particles and space hadrons on bacteriophages

    International Nuclear Information System (INIS)

    Iurov, S.S.; Akoev, I.G.; Leonteva, G.A.

    1983-01-01

    The effects of particle radiation of the type encountered in space flight on bacteriophages are investigated. Survival and mutagenesis were followed in dry film cultures or liquid suspensions of T4Br(+) bacteriophage exposed to high-energy (HZE) particles during orbital flight, to alpha particles and accelerator-generated hardrons in the laboratory, and to high-energy cosmic rays at mountain altitudes. The HZE particles and high-energy hadrons are found to have a greater relative biological efficiency than standard gamma radiation, while exhibiting a highly inhomogeneous spatial structure in the observed biological and genetic effects. In addition, the genetic lesions observed are specific to the type of radiation exposure, consisting primarily of deletions and multiple lesions of low revertability, with mode of action depending on the linear energy transfer. 18 references

  8. Heavy quark effective theory and study of heavy hadron spectra

    International Nuclear Information System (INIS)

    Dong Yubing

    1995-01-01

    By employing the heavy quark effective theory, the spectra of heavy hadrons, such as heavy mesons (Q-barq), heavy baryons (QQq and Qqq) and heavy multiquark systems (Q-barQ-barqq) are studied systemically. The results are compared with the predictions for Q-barQ-barqq in potential model

  9. Hadron and photon production of J particles and the origin of J particles

    International Nuclear Information System (INIS)

    Ting, S.C.C.

    1975-01-01

    Discovery of the J particles (psi-3105 and psi-3695) is detailed. A few experiments on the production of J particles are described, emphasizing photoproduction of J's by photons and hadrons. Finally, current theoretical attempts at explaining their origin are outlined. (29 figures) (U.S.)

  10. Proceedings of Summer Institute on particle physics: Lepton-Hadron scattering

    International Nuclear Information System (INIS)

    Hawthorne, J.

    1992-09-01

    The nineteenth annual SLAC Summer Institute on Particle Physics took place from August 5 to 16, 1991, attracting 236 participants from 10 different countries. The theme was lepton-hadron scattering, the subjects ranging from the pioneering SLAC-MIT experiments, through the new era of e-p collisions to be ushered in by HERA. Richard Taylor led off the Institute with a historical review of lepton-proton scattering experiments, from Rutherford to the 1960s, while Sid Drell laid out the theoretical framework, in terms of parton distributions and sum rules. Frank Sciulli picked up where Richard Taylor left off, at the discovery of scaling violation, and brought us up to the present. Joel Feltesse and Roberto Peccei described the physics opportunities at HERA, most notably the investigation of the low x behavior of structure functions. Traudl Hansl-Kozanecka reviewed the current experimental status of QCD, at e + e - and hadron colliders as well as in deep-inelastic lepton-hadron scattering. Bob Hollebeek lectured on techniques for electromagnetic and hadronic calorimetry. Finally, Bob Siemann gave a series of lectures on the many uses of superconductivity in particle accelerators, from bending magnets at FNAL HERA and the SSC to RF cavities at CEBAF and LEP. Following the school, the topical conference provided us with a spectrum of current experimental and theoretical developments. Lepton-hadron scattering experiments at CERN and Fermilab were well represented. The existence of the 17 0 , keV neutrino was debated in two separate talks. We heard the latest results from the CDF and UA2 hadron collider experiments; from the four LEP experiments; and from ARGUS and CLEO. Also presented were overviews of the rare K decay program at BNL, the CP violation experiments at CERN and Fermilab, B physics, neutrino masses and mixings, and precision electroweak theory

  11. Hadron mass spectrum in a lattice gauge theory

    International Nuclear Information System (INIS)

    Seo, Koichi

    1978-01-01

    We perform the strong coupling expansion in a lattice gauge theory and obtain the hadron mass spectrum. We develop a theory in the Hamiltonian formalism following Kogut and Susskind, but our treatment of quark fields is quite different from theirs. Thus our results largely differ from theirs. In our model and approximation, the pseudoscalar mesons have the same mass as the vectors. The baryon decuplet and the octet are also degenerate. The excited meson states are studied in detail. (auth.)

  12. Perspectives of Penrose theory in particle physics

    International Nuclear Information System (INIS)

    Perjes, Z.

    1976-09-01

    Existing results and some conjectures in the flat-space twistor approach to fundamental particles are reviewed. A consice introduction into the twistor description of dynamical systems with rest-mass is given (both classical and quantum). The Hamiltonian structure inherent to the angular momentum twistor is analyzed. The following discussion outlines the properties of n-twistor systems, the Penrose classification of particles, the Isup(10)SU(3) group and the problem of its twistor representations. Finally, speculative arguments are propounded as to the possible bearings of hadronic quark model to twistor theory. (Sz.N.Z.)

  13. Weak hadronic currents in compensation theory

    International Nuclear Information System (INIS)

    Pappas, R.C.

    1975-01-01

    Working within the framework of a compensation theory of strong and weak interactions, it is shown that: (1) an axial vector baryon number current can be included in the weak current algebra if certain restrictions on the K-meson strong couplings are relaxed; (2) the theory does not permit the introduction of strange currents of the chiral form V + A; and (3) the assumption that the superweak currents of the theory cannot contain certain CP conserving terms can be justified on the basis of compensation requirements

  14. Theory and Experiment for Hadrons on the Light-Front

    CERN Document Server

    Salme, Giovanni

    2016-01-01

    LC2015 belongs to a Conference series that started in 1991 under the supervision of the International Light Cone Advisory Committee (ILCAC), with the aim of promoting the research towards a rigorous description of hadrons and nuclei, based on Light-Cone quantization methods. A strong relation with the experimental activity was always pursued and it will be emphasized in the next edition, in order to meet one of the main goals of the whole Light-Cone community "to assist in the development of crucial experimental tests of hadron facilities". The scientific program will feature invited as well as contributed talks, selected in collaboration with the Scientific Advisory Committee and the ILCAC. The main topics to be addressed are: * Hadron physics at present and future facilities; * Nonperturbative methods in quantum field theory * AdS/CFT: theory and applications * Light-front theories in QCD and QED * Relativistic methods for nuclear and hadronic structures * Few-body problems onto the Light cone * Lattice gau...

  15. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P.; Wijewardhana, L.C.R.; Witten, L.

    1990-10-01

    A 2+1 dimensional deSitter Chern-Simons theory has been constructed and shown to be consistent. Wilson loop variables have been computed and shown to close under Poisson bracket operation for N = 2 Poincare supergravity. It has also been shown that there are two equivalent pictures of describing two particle scattering in 2+1 dimensional gravity theory, which are related by multivalued gauge transformations. We have generalized the Jackiw-Johnson sumrule, relating Goldstone boson decay constants to the dynamical masses of fermions, to an arbitrary symmetry group. We have analyzed dynamical parity breaking in 2+1 dimensional 4-fermi theories. Finally, we have found the partition function for a system of free parabosons and parafermions of order two. 53 refs

  16. Searches for hadronically decaying Dark Matter mediator particles at ATLAS

    CERN Document Server

    Nindhito, Herjuno Rah

    2016-01-01

    Searches for hadronic resonances of the Dark Matter (DM) particles in the sub-TeV mass re- gion remain as a viable target at ATLAS. However, due to the bandwidth limitation, the events that available for performing an analysis were statistically limited. Reducing the event size by recording a fraction of the full event information overcomes this limitation. An analysis that is performed on those events is called Trigger-Level Analysis(TLA). This poster highlights the TLA strategy used to search for low-mass dijet resonances. No significant excesses are found in a region between 450 and 950 GeV. As an addition, limits are set on a simplified leptophobic Z’ model of DM mediator with axial coupling to quarks and DM particles as well as on Gaussian resonances.

  17. B production in hadron collisions: Theory

    International Nuclear Information System (INIS)

    Berger, E.L.

    1989-01-01

    A review is presented of heavy quark production in bar pp, π - p, and pp interactions at fixed target and collider energies. Calculations of total cross sections and of single quark inclusive differential cross sections d 2 σ/dk T dy are described including contributions through next-to-leading order in QCD perturbation theory. Comparisons with available data on charm and bottom quark production show good agreement for reasonable values of the charm and bottom quark masses and other parameters. Predictions and open issues in the interpretation of results are summarized. 20 refs., 5 figs

  18. Light-front field theory in the description of hadrons

    Directory of Open Access Journals (Sweden)

    Ji Chueng-Ryong

    2017-01-01

    Full Text Available We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  19. Research in particle theory

    International Nuclear Information System (INIS)

    Mansouri, F.; Suranyi, P.; Wijewardhana, L.C.R.

    1992-10-01

    Dynamics of 2+1 dimensional gravity is analyzed by coupling matter to Chern Simons Witten action in two ways and obtaining the exact gravity Hamiltonian for each case. 't Hoot's Hamiltonian is obtained as an approximation. The notion of space-time emerges in the very end as a broken phase of the gauge theory. We have studied the patterns of discrete and continuous symmetry breaking in 2+1 dimensional field theories. We formulate our analysis in terms of effective composite scalar field theories. Point-like sources in the Chern-Simons theory of gravity in 2+1 dimensions are described by their Poincare' charges. We have obtained exact solutions of the constraints of Chern-Simons theory with an arbitrary number of isolated point sources in relative motion. We then showed how the space-time metric is constructed. A reorganized perturbation expansion with a propagator of soft infrared behavior has been used to study the critical behavior of the mass gap. The condition of relativistic covariance fixes the form of the soft propagator. Approximants to the correlation critical exponent were obtained in two loop order for the two and three dimensional theories. We proposed a new model of QED exhibiting two phases and a Majorana mass spectrum of single particle states. The model has a new source of coupling constant renormalization which opposes screening and suggests the model may confine. Assuming that the bound states of e + e - essentially obey a Majorana spectrum, we obtained a consistent fit of the GSI peaks as well as predicting new peaks and their spin assignments

  20. The large Hadron Collider (LHC) and the search for the divine particle

    International Nuclear Information System (INIS)

    Sanchez, G.

    2008-01-01

    The large Hadron Collider (LHC) is a particle circular accelerator of 27 km of circumference. I t will be used to study the smallest known particles. Two beams of subatomic particles called hadrons either protons or lead ion- will travel in opposite directions inside the circular accelerator gaining energy with every lap. Physicists will use the LHC to recreate the conditions just after the Big Bang, by colliding the two beams had-on at very high energy. There are many theories as to what will result from these collisions, but what's for sure is that a brave new world of physics will emerge from the new accelerator, as knowledge in particle physics goes on to describe the working of the Universe. for decades, the Standard Model of particle physics has served physicists well as a means of understanding the fundamental laws of Nature, but it does not tell the whole story. Only experimental data using the higher energies reached by the LHC can push knowledge forward, challenging those who seek confirmation of established knowledge, and those who dare to dream beyond the paradigm. The Higgs boson, that complete the standard model, is waited to be found. (Author)

  1. Benchmarking the Particle Background in the Large Hadron Collider Experiments

    CERN Document Server

    Gschwendtner, Edda; Fabjan, Christian Wolfgang; Hessey, N P; Otto, Thomas

    2002-01-01

    Background benchmarking measurements have been made to check the low-energy processes which will contribute via nuclear reactions to the radiation background in the LHC experiments at CERN. Previously these processes were only evaluated with Monte Carlo simulations, estimated to be reliable within an uncertainty factor of 2.5. Measurements were carried out in an experimental set-up comparable to the shielding of ATLAS, one of the general-purpose experiments at LHC. The absolute yield and spectral measurements of photons and neutrons emanating from the final stages of the hadronic showers were made with a Bi_4Ge_3O_{12} (BGO) detector. The particle transport code FLUKA was used for detailed simulations. Comparison between measurements and simulations show that they agree within 20% and hence the uncertainty factor resulting from the shower processes can be reduced to a factor of 1.2.

  2. Modern hadron spectroscopy: a bridge between nuclear and particle physics.

    Science.gov (United States)

    Szczepaniak, A. P.

    2018-05-01

    In this talk I discuss aspects of hadron physics, which soon are expected to shed new light on the fundamental QCD phenomena. In the analysis of hadron reactions and their propertieds I emphasize similarities to the nuclear many body problem.

  3. Particle production from nuclear targets and the structure of hadrons

    International Nuclear Information System (INIS)

    Bialas, A.

    Production processes from nuclear targets allow studying interactions of elementary hadronic constituents in nuclear matter. The information thus obtained on the structure of hadrons and on the properties of hadronic constituents is presented. Both soft (low momentum transfer) and hard (high momentum transfer) processes are discussed. (author)

  4. Mean multiplicity of secondary particles in hadron-nuclear interactions

    International Nuclear Information System (INIS)

    Alaverdyan, G.B.; Pak, A.S.

    1980-01-01

    The mean multiplicity of secondary particles in hA interactions is examined in the framework of the multiplex scattering theory. The dependence of the secondary particle multiplicity coefficient Rsub(6)=anti nsub(hA)/anti nsub(hN) (where anti nsub(hA) and anti nsub(hN) are mean multiplicities of secondary relativistic particles in hA and hN interactions, respectively) on the energy and type of incident particles and atomic number of a target nucleus is analysed. It is shown that predictions of the leading particle cascade model are in satisfactory agreement with the experimental data if the uncertainties of the inelasticity in hN interactions are taken into account. The value Rsub(A) weakly depends both on the incident particle energy and the form of parametrization anti nsub(hN)(E). Allowance of energy losses fluctuation of leading particle results in the Rsub(A) value decrease. From the model of leading particles it does not follow that Rsub(a) strictly depends on the type of incident particles at the fixed value of mean number of collisions. But quantitative values of Rsub(A) for different types of particles and at one value of anti ν, (i.e. at properly chosen value) coincide. The value of Rsub(A) is profoundly dependent on the values of inelasticity factor in hN interactions

  5. Task A: Theory of elementary particles

    International Nuclear Information System (INIS)

    Deshpande, N.G.; Soper, D.E.

    1992-01-01

    Brief summaries of work are given in the following areas: grandunification, properties of neutrinos, rare decays of heavy quarks, jet production in hadron collisions (theory, structure, two-jet cross section, null-plane field theory), neutrino physics, and QCD calculations of annihilation of e + e - into hadrons

  6. Analytical theory for the nuclear level shift of hadronic atoms

    International Nuclear Information System (INIS)

    Kudryavtsev, A.E.; Lisin, V.I.; Popov, V.S.

    1982-01-01

    The spectrum problem in the Coulomb potential distorted at small distances is considered. Nuclear shifts of 3-levels in p anti p and Σ - p atoms are calculated. The probabilities of radiative transitions from p-states to the shifted s-states in hadronic atom are also given. It is shown that the reconstruction of atomic levels switches to oscillation regime when absorption increases. The limits of applicability of the perturbation theory in terms of the scattering length for different values of absorption is discussed. An exactly solvable model, Coulomb plus Yamaguchi potential, is considered

  7. Hadronic J/psi and charmed particle production and correlating quark rearrangement model

    International Nuclear Information System (INIS)

    Nishitani, Tadashi

    1979-01-01

    On the basis of the correlating quark rearrangement model, the exclusive and inclusive production cross sections of J/psi and charmed particles in hadron collisions are calculated. It is shown that the inclusive production cross section of charmed particles is several tens of μb at p sub( l) -- 100 GeV/c in hadron collisions. The OZI rule is discussed in connection with the production mechanism of J/psi particles. (author)

  8. Reggeon, Pomeron and Glueball, Odderon-Hadron-Hadron Interaction at High Energies--From Regge Theory to Quantum Chromodynamics

    Institute of Scientific and Technical Information of China (English)

    XIONG Wen-Yuan; HU Zhao-Hui; WANG Xin-Wen; ZHOU Li-Juan; XIA Li-Xin; MA Wei-Xing

    2008-01-01

    Based on analysis of scattering matrix S, and its properties such as analyticity, unitarity, Lorentz invariance, and crossing symmetry relation, the Regge theory was proposed to describe hadron-hadron scattering at high energies before the advent of QCD, and correspondingly a Reggeon concept was born as a mediator of strongly interaction. This theory serves as a successful approach and has explained a great number of experimental data successfully, which proves that the Regge theory can be regarded as a basic theory of hadron interaction at high energies and its validity in many applications. However, as new experimental data come out, we have some difficulties in explaining the data. The new experimental total cross section violates the predictions of Regge theory, which shows that Regge formalism is limited in its applications to high energy data. To understand new experimental measurements, a new exchange theory was consequently born and its mediator is called Pomeron, which has vacuum quantum numbers. The new theory named as Pomeron exchange theory which reproduces the new experimental data of diffractive processes successfully. There are two exchange mediators: Reggeon and Pomeron. Reggeon exchange theory can only produce data at the relatively lower energy region, while Pomeron exchange theory fits the data only at higher-energy region, separately. In order to explain the data in the whole energy region, we propose a Reggeon-Pomeron model to describe high-energy hadron-hadron scattering and other diffractive processes. Although the Reggeon-Pomeron model is successful in describing high-energy hadron-hadron interaction in the whole energy region, it is a phenomenological model After the advent of QCD, people try to reveal the mystery of the phenomenological theory from QCD since hadron-hadron processes is a strong interaction, which is believed to be described by QCD. According to this point of view, we study the QCD nature of Reggeon and Pomeron. We claim

  9. Problems in particle theory

    International Nuclear Information System (INIS)

    Adler, S.L.; Wilczek, F.

    1993-11-01

    Areas of emphasis include acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, quaternionic generalizations of complex quantum mechanics and field theory, application of the renormalization group to the QCD phase transition, the quantum Hall effect, and black holes. Other work involved string theory, statistical properties of energy levels in integrable quantum systems, baryon asymmetry and the electroweak phase transition, anisotropies of the cosmic microwave background, and theory of superconductors

  10. Particle structure of gauge theories

    International Nuclear Information System (INIS)

    Fredenhagen, K.

    1985-11-01

    The implications of the principles of quantum field theory for the particle structure of gauge theories are discussed. The general structure which emerges is compared with that of the Z 2 Higgs model on a lattice. The discussion leads to several confinement criteria for gauge theories with matter fields. (orig.)

  11. Gauge theory and elementary particles

    International Nuclear Information System (INIS)

    Zwirn, H.

    1982-01-01

    The present orientation of particle physics, founded on local gauge invariance theories and spontaneous symmetry breaking is described in a simple formalism. The application of these ideas to the latest theories describing electromagnetic and weak interactions (Glashow, Weinberg, Salam models) and strong interactions, quantum chromodynamics, is presented so as to give a general picture of the mechanisms subtending these theories [fr

  12. NLO corrections to production of heavy particles at hadron colliders

    International Nuclear Information System (INIS)

    Pagani, Davide

    2013-01-01

    In this thesis we study specific aspects of the production of heavy particles at hadron colliders, with emphasis on precision predictions including next-to-leading order (NLO) corrections from the strong and electroweak interactions. In the first part of the thesis we consider the top quark charge asymmetry. In particular, we discuss in detail the calculation of the electroweak contributions from the asymmetric part of the top quark pair production cross section at O(α 2 s α) and O(α 2 ) and their numerical impact on predictions for the asymmetry measurements at the Tevatron. These electroweak contributions provide a non-negligible addition to the QCD-induced asymmetry with the same overall sign and, in general, enlarge the Standard Model predictions by a factor around 1.2, diminishing the deviations from experimental measurements. In the second part of the thesis we consider the production of squarks, the supersymmetric partners of quarks, at the Large Hadron Collider (LHC). We discuss the calculation of the contribution of factorizable NLO QCD corrections to the production of squark-squark pairs combined at fully differential level with squark decays. Combining the production process with two different configurations for the squark decays, our calculation is used to provide precise phenomenological predictions for two different experimental signatures that are important for the search of supersymmetry at the LHC. We focus, for one signature, on the impact of our results on important physical differential distributions and on cut-and-count searches performed by the ATLAS and CMS collaborations. Considering the other signature, we analyze the effects from NLO QCD corrections and from the combination of production and decays on distributions relevant for parameter determination. In general, factorizable NLO QCD corrections have to be taken into account to obtain precise phenomenological predictions for the analyzed distributions and inclusive quantities. Moreover

  13. Structure functions of hadrons in the QCD effective theory

    International Nuclear Information System (INIS)

    Shigetani, Takayuki

    1996-01-01

    We study the structure functions of hadrons with the low energy effective theory of QCD. We try to clarify a link between the low energy effective theory, where non-perturbative dynamics is essential, and the high energy deep inelastic scattering experiment. We calculate the leading twist matrix elements of the structure function at the low energy model scale within the effective theory. Calculated structure functions are evoluted to the high momentum scale with the help of the perturbative QCD, and compared with the experimental data. Through the comparison of the model calculations with the experiment, we discuss how the non-perturbative dynamics of the effective theory is reflected in the deep inelastic phenomena. We first evaluate the structure functions of the pseudoscalar mesons using the NJL model. The resulting structure functions show reasonable agreements with experiments. We study then the quark distribution functions of the nucleon using a covariant quark-diquark model. We calculate three leading twist distribution functions, spin-independent f 1 (x), longitudinal spin distribution g 1 (x), and chiral-odd transversity spin distribution h 1 (x). The results for f 1 (x) and g 1 (x) turn out to be consistent with available experiments because of the strong spin-0 diquark correlation. (author)

  14. Heavy quarks and strong binding: A field theory of hadron structure

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Chanowitz, M.S.; Drell, S.D.; Weinstein, M.; Yan, T.

    1975-01-01

    We investigate in canonical field theory the possibility that quarks may exist in isolation as very heavy particles, M/sub quark/) very-much-greater-than 1 GeV, yet form strongly bound hadronic states, M/sub hadron/) approx. 1 GeV. In a model with spin-1/2 quarks coupled to scalar gluons we find that a mechanism exists for the formation of bound states which are much lighter than the free constituents. Following Nambu, we introduce a color interaction mediated by gauge vector mesons to guarantee that all states with nonvanishing triality have masses much larger than 1 GeV. The possibility of such a solution to a stronly coupled field theory is exhibited by a calculation employing the variational principle in tree approximation. This procedure reduces the field-theoretical problem to a set of coupled differential equations for classical fields which are just the free parameters of the variational state. A striking property of the solution is that the quark wave function is confined to a thin shell at the surface of the hadronic bound state. Though the quantum corrections to this procedure remain to be investigated systematically, we explore some of the phenomenological implications of the trial wave functions so obtained. In particular, we exhibit the low-lying meson and baryon multiplets of SU(6); their magnetic moments, charge radii, and radiative decays, and the axial charge of the baryons. States of nonvanishing momenta are constructed and the softness of the hadron shell to deformations in scattering processes is discussed qualitatively along with the implications for deep-inelastic electron scattering and dual resonance models

  15. Problems in particle theory

    International Nuclear Information System (INIS)

    Adler, S.L.; Wilczek, F.

    1992-11-01

    Members of the Institute have worked on a number of problems including the following: acceleration algorithms for the Monte Carlo analysis of lattice field, and gauge and spin theories, based on changes of variables specific to lattices of dimension 2 ell ; construction of quaternionic generalizations of complex quantum mechanics and field theory; wave functions for paired Hall states; black hole quantum mechanics; generalized target-space duality in curved string backgrounds; gauge symnmetry algebra of the N = 2 string; two-dimensional quantum gravity and associated string theories; organizing principles from which the signal processing of neural networks in the retina and cortex can be deduced; integrable systems of KdV type; and a theory for Kondo insulators

  16. Applications of SCET to the pair production of supersymmetric particles at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Broggio, Alessandro

    2013-02-04

    In this thesis we investigate the phenomenology of supersymmetric particles at hadron colliders beyond next-to-leading order (NLO) in perturbation theory. We discuss the foundations of Soft-Collinear Effective Theory (SCET) and, in particular, we explicitly construct the SCET Lagrangian for QCD. As an example, we discuss factorization and resummation for the Drell-Yan process in SCET. We use techniques from SCET to improve existing calculations of the production cross sections for slepton-pair production and top-squark-pair production at hadron colliders. As a first application, we implement soft-gluon resummation at next-to-next-to-next-to-leading logarithmic order (NNNLL) for slepton-pair production in the minimal supersymmetric extension of the Standard Model (MSSM). This approach resums large logarithmic corrections arising from the dynamical enhancement of the partonic threshold region caused by steeply falling parton luminosities. We evaluate the resummed invariant-mass distribution and total cross section for slepton-pair production at the Tevatron and LHC and we match these results, in the threshold region, onto NLO fixed-order calculations. As a second application we present the most precise predictions available for top-squark-pair production total cross sections at the LHC. These results are based on approximate NNLO formulas in fixed-order perturbation theory, which completely determine the coefficients multiplying the singular plus distributions. The analysis of the threshold region is carried out in pair invariant mass (PIM) kinematics and in single-particle inclusive (1PI) kinematics. We then match our results in the threshold region onto the exact fixed-order NLO results and perform a detailed numerical analysis of the total cross section.

  17. The Particle Theory of Matter

    Science.gov (United States)

    Widick, Paul R.

    1969-01-01

    Described are activities that are designed to help elementary children understand the possibility of the particle theory of matter. Children work with beads, marbles, B-B shot and sand; by mixing these materials and others they are led to see that it is highly possible for the existence of particles which are not visible. (BR)

  18. Measurement of Genuine Three-Particle Bose-Einstein Correlations in Hadronic Z decay

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, Michael; Doria, A; Dova, M T; Duchesneau, D; Echenard, B; Eline, A; El-Mamouni, H; Engler, A; Eppling, F J; Ewers, A; Extermann, Pierre; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, Marta; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krenz, W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S A; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Lübelsmeyer, K; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mangeol, D J J; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Niessen, T; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Palomares, C; Pandoulas, D; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofiev, D O; Prokofev, D; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Roux, B; Rubio, Juan Antonio; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Sanders, M P; Schäfer, C; Shchegelskii, V; Schmidt-Kärst, S; Schmitz, D; Schopper, Herwig Franz; Schotanus, D J; Schwering, G; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Siedenburg, T; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S V; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R P; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wallraff, W; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2002-01-01

    We measure three-particle Bose-Einstein correlations in hadronic Z decay with the L3 detector at LEP. Genuine three-particle Bose-Einstein correlations are observed. By comparing two- and three-particle correlations we find that the data are consistent with fully incoherent pion production.

  19. The theory of particle interactions

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Shirkov, D.V.

    1991-01-01

    The Theory of Particle Interactions introduces students and physicists to the chronological development, concepts, main methods, and results of modern quantum field theory -- the most fundamental, abstract, and mathematical branch of theoretical physics. Belokurov and Shirkov, two prominent Soviet theoretical physicists, carefully describe the many facets of modern quantum theory including: renormalization theory and renormalization group; gauge theories and spontaneous symmetry breaking; the electroweak interaction theory and quantum chromodynamics; the schemes of the unification of the fundamental interactions; and super-symmetry and super-strings. The authors use a minimum of mathematical concepts and equations in describing the historical development, the current status, and the role of quantum field theory in modern theoretical physics. Because readers will be able to comprehend the main concepts of modern quantum theory without having to master its rather difficult apparatus, The Theory of Particle Interactions is ideal for those who seek a conceptual understanding of the subject. Students, physicists, mathematicians, and theoreticians involved in astrophysics, cosmology, and nuclear physics, as well as those interested in the philosophy and history of natural sciences will find The Theory of Particle Interactions invaluable and an important addition to their reading list

  20. Quantum chromodynamics at high energy, theory and phenomenology at hadron colliders; Chromodynamique quantique a haute energie, theorie et phenomenologie appliquee aux collisions de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, C

    2006-09-15

    When probing small distances inside a hadron, one can resolve its partonic constituents: quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This substructure reveals itself in hadronic collisions characterized by a large momentum transfer: in such collisions, a hadron acts like a collection of partons whose interactions can be described in QCD. In a collision at moderate energy, a hadron looks dilute and the partons interact incoherently. As the collision energy increases, the parton density inside the hadron grows. Eventually, at some energy much bigger than the momentum transfer, one enters the saturation regime of QCD: the gluon density has become so large that collective effects are important. We introduce a formalism suitable to study hadronic collisions in the high-energy limit in QCD, and the transition to the saturation regime. In this framework, we derive known results that are needed to present our personal contributions and we compute different cross-sections in the context of hard diffraction and particle production. We study the transition to the saturation regime as given by the Balitsky-Kovchegov equation. In particular we derive properties of its solutions.We apply our results to deep inelastic scattering and show that, in the energy range of the HERA collider, the predictions of high-energy QCD are in good agreement with the data. We also consider jet production in hadronic collisions and discuss the possibility to test saturation at the Large Hadron Collider. (author)

  1. A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gildemeister, Otto; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmid, Peter; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trilling, George; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga–electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.

  2. A particle consistent with the Higgs boson observed with the ATLAS detector at the large hadron collider

    International Nuclear Information System (INIS)

    Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A.I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T.C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J.E.; Temming, K.K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; Radziewski, H. von; Vu Anh, T.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L.A.M.; Winkelmann, S.; Xie, S.; Zimmermann, S.; Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J.B.; Bolnet, N.M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A.I.; Formica, A.; Gauthier, L.; Giraud, P.F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J.F.; Legendre, M.; Maiani, C.; Mal, P.; Manjarres Ramos, J.A.; Mansoulie, B.; Meyer, J.P.; Mijovic, L.; Morange, N.; Nguyen Thi Hong, V.; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C.R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Vranjes, N.; Xiao, M.; Abdel Khalek, S.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Vivie De Regie, J.B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J.F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lorenzo Martinez, N.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J.B.; Schaarschmidt, J.; Schaffer, A.C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J.J.; Wicek, F.; Zerwas, D.; Zhang, Z.; Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V.V.; Kraus, J.K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A.M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A.E.; Pohl, D.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M.J.; Schwindt, T.; Stillings, J.A.; Therhaag, J.; Tsung, J.W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; Toerne, E. von; Wang, T.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.; Abbott, B.; Gutierrez, P.; Jana, D.K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.

    2012-01-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself. (authors)

  3. Lattice gauge calculation in particle theory

    International Nuclear Information System (INIS)

    Barkai, D.; Moriarty, K.J.M.; Rebbi, C.; Brookhaven National Lab., Upton, NY

    1985-01-01

    There are many problems in particle physics which cannot be treated analytically, but are amenable to numcerical solution using today's most powerful computers. Prominent among such problems are those encountered in the theory of strong interactions, where the resolution of fundamental issues such as demonstrating quark confinement or evaluating hadronic structure is rooted in a successful description of the behaviour of a very large number of dynamical variables in non-linear interaction. This paper briefly outlines the mathematical problems met in the formulation of the quantum field theory for strong interactions, the motivation for numerical methods of resolution and the algorithms which are currently being used. Such algorithms require very large amounts of memory and computation and, because of their organized structure, are ideally suited for implementation on mainframes with vectorized architecture. While the details of the actual implementation will be coverd in other contributions to this conference, this paper will present an account of the most important physics results obtained up to now and will conclude with a survey of open problems in particle theory which could be solved numerically in the near future. (orig.)

  4. Lattice gauge calculation in particle theory

    International Nuclear Information System (INIS)

    Barkai, D.; Moriarity, K.J.M.; Rebbi, C.

    1985-01-01

    There are many problems in particle physics which cannot be treated analytically, but are amenable to numerical solution using today's most powerful computers. Prominent among such problems are those encountered in the theory of strong interactions, where the resolution of fundamental issues such as demonstrating quark confinement or evaluating hadronic structure is rooted in a successful description of the behavior of a very large number of dynamical variables in non-linear interaction. This paper briefly outlines the mathematical problems met in the formulation of the quantum field theory for strong interactions, the motivation for numerical methods of resolution and the algorithms which are currently being used. Such algorithms require very large amounts of memory and computation and, because of their organized structure, are ideally suited for implementation on mainframes with vectorized architecture. While the details of the actual implementation will be covered in other contributions to this conference, this paper will present an account of the most important physics results obtained up to now and will conclude with a survey of open problems in particle theory which could be solved numerically in the near future

  5. Lattice gauge calculation in particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Barkai, D [Control Data Corp., Fort Collins, CO (USA); Moriarty, K J.M. [Dalhousie Univ., Halifax, Nova Scotia (Canada). Inst. for Computational Studies; Rebbi, C [European Organization for Nuclear Research, Geneva (Switzerland); Brookhaven National Lab., Upton, NY (USA). Physics Dept.)

    1985-05-01

    There are many problems in particle physics which cannot be treated analytically, but are amenable to numcerical solution using today's most powerful computers. Prominent among such problems are those encountered in the theory of strong interactions, where the resolution of fundamental issues such as demonstrating quark confinement or evaluating hadronic structure is rooted in a successful description of the behaviour of a very large number of dynamical variables in non-linear interaction. This paper briefly outlines the mathematical problems met in the formulation of the quantum field theory for strong interactions, the motivation for numerical methods of resolution and the algorithms which are currently being used. Such algorithms require very large amounts of memory and computation and, because of their organized structure, are ideally suited for implementation on mainframes with vectorized architecture. While the details of the actual implementation will be coverd in other contributions to this conference, this paper will present an account of the most important physics results obtained up to now and will conclude with a survey of open problems in particle theory which could be solved numerically in the near future.

  6. Hadronic decay of late-decaying particles and big-bang nucleosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kawasaki, Masahiro [Research Center for the Early Universe, Graduate School of Science, University of Tokyo, Tokyo 113-0033 (Japan)]. E-mail: masahiro_kawasaki@mac.com; Kohri, Kazunori [Department of Earth and Space Science, Osaka University, Osaka 560-0043 (Japan); Moroi, Takeo [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2005-10-06

    We study the big-bang nucleosynthesis (BBN) scenario with late-decaying exotic particles with lifetime longer than {approx}1 s. With a late-decaying particle in the early universe, predictions of the standard BBN scenario can be significantly altered. Therefore, we derive constraints on its primordial abundance. We pay particular attention to hadronic decay modes of such particles. We see that the non-thermal production process of D, {sup 3}He and {sup 6}Li provides a stringent upper bound on the primordial abundance of late-decaying particles with hadronic branching ratio.

  7. Particle physics and gauge theories

    International Nuclear Information System (INIS)

    Morel, A.

    1985-01-01

    These notes are intended to help readers not familiar with particle physics in entering the domain of gauge field theory applied to the so-called standard model of strong and electroweak interactions. The introduction is considerably enlarged in order to give non specialists a general overview of present days ''elementary'' particle physics. The Glashow-Salam-Weinberg model is then treated, with the details which its unquestioned successes deserve, most probably for a long time. Finally SU(5) is presented as a prototype of these developments of particle physics which aim at a unification of all forces. Although its intrinsic theoretical difficulties and the non-observation of a sizable proton decay rate do not qualify this model as a realistic one, it has many of the properties expected from a ''good'' unified theory. In particular, it allows one to study interesting connections between particle physics and cosmology. 35 refs.

  8. Theory of electron--positron annihilation into hadrons

    International Nuclear Information System (INIS)

    Gilman, F.J.

    1975-01-01

    The total cross section for e + e - → hadrons and R, its ratio to the muon pair cross section, the physics below and above the threshold near 4 GeV cms with particular attention to what is changing there and exactly where it happens, and inclusive distributions and jets of final state hadrons are treated

  9. Finite-width effects in unstable-particle production at hadron colliders

    International Nuclear Information System (INIS)

    Falgari, P.; Signer, A.; Zuerich Univ.

    2013-03-01

    We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of Γ X /m X , with Γ X and m X the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the q anti q partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the naive counting ∝Γ t /m t ∝1%. However, they can be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The dependence of the results on the mass renormalization scheme, and its implication for a precise extraction of the top-quark mass, is also discussed.

  10. Finite-width effects in unstable-particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Falgari, P. [Utrecht Univ. (Netherlands). Inst. for Theoretical Physics; Utrecht Univ. (Netherlands). Spinoza Inst.; Papanastasiou, A.S. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Signer, A. [Paul Scherrer Institut, Villigen (Switzerland); Zuerich Univ. (Switzerland). Inst. for Theoretical Physics

    2013-03-15

    We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of {Gamma}{sub X}/m{sub X}, with {Gamma}{sub X} and m{sub X} the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the q anti q partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the naive counting {proportional_to}{Gamma}{sub t}/m{sub t}{proportional_to}1%. However, they can be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The dependence of the results on the mass renormalization scheme, and its implication for a precise extraction of the top-quark mass, is also discussed.

  11. Experimental study of single-particle inclusive hadron scattering and associated multiplicities

    International Nuclear Information System (INIS)

    Brenner, A.E.; Carey, D.C.; Elias, J.E.; Garbincius, P.H.; Mikenberg, G.; Polychronakos, V.A.; Aitkenhead, W.; Barton, D.S.; Brandenburg, G.W.; Busza, W.; Dobrowolski, T.; Friedman, J.I.; Kendall, H.W.; Lyons, T.; Nelson, B.; Rosenson, L.; Toy, W.; Verdier, R.; Votta, L.; Chiaradia, M.T.; DeMarzo, C.; Favuzzi, C.; Germinario, G.; Guerriero, L.; LaVopa, P.; Maggi, G.; Posa, F.; Selvaggi, G.; Spinelli, P.; Waldner, F.; Meunier, R.; Cutts, D.; Dulude, R.S.; Lanou, R.E. Jr.; Massimo, J.T.

    1982-01-01

    An experiment using the Fermilab single arm spectrometer (SAS) facility and an associated nonmagnetic vertex detector studied the reactions a+p→c+X where a and c were π +- , K +- , p, or p-bar. Extensive measurements were made at 100 and 175 GeV/c beam momenta with the outgoing hadrons detected in the SAS covering a kinematic range 0.12< x<1.0 and p/sub T/<1.25 GeV/c. Additional data covering a more restricted range in x were also gathered at 70 GeV/c incident momentum. In this high-statistics experiment, the identification of both the incoming and outgoing charged hadrons were made with a total of eight Cerenkov counters. New and extensive single-particle inclusive data for charged-particle production in low-p/sub T/ hadronic fragmentation are presented. The average associated charged-particle multiplicity and pseudorapidity distributions are also given

  12. Color models of hadrons

    International Nuclear Information System (INIS)

    Greenberg, O.W.; Nelson, C.A.

    1977-01-01

    The evidence for a three-valued 'color' degree of freedom in hadron physics is reviewed. The structure of color models is discussed. Consequences of color models for elementary particle physics are discussed, including saturation properties of hadronic states, π 0 →2γ and related decays, leptoproduction, and lepton pair annihilation. Signatures are given which distinguish theories with isolated colored particles from those in which color is permanently bound. (Auth.)

  13. Light Cone 2017 : Frontiers in Light Front Hadron Physics : Theory and Experiment.

    CERN Document Server

    2018-01-01

    LC2017 belongs to a series of Light-Cone conferences, which started in 1991. Light Cone conferences are held each year under the auspices of the International Light Cone Advisory Committee (ILCAC) (http://www.ilcacinc.org). The main objective of the Light Cone conference series is to provide a timely update of the progress in light-front theory and its phenomenological applications. Light-front theory provides a suitable framework to calculate observables such as scattering amplitudes, decay rates, spin effects, parton distributions, and other hadronic observables. One of the themes of the conference will be the interface between theory and experiment in hadron physics. The main topics of the program are: o Hadron Physics at present and future colliders o Light Front Field Theory in QED and QCD o AdS/QCD, D Branes and Strings o Hadron Structure : TMDs, GPDs and PDFs o Lattice QCD o QCD at high temperature and density o Higher order QCD corrections

  14. Particle accelerators test cosmological theory

    International Nuclear Information System (INIS)

    Schramm, D.N.; Steigman, G.

    1988-01-01

    Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs

  15. Proceedings of the summer institute on particle physics: The strong interaction, from hadrons to partons

    International Nuclear Information System (INIS)

    Chan, J.; DePorcel, L.; Dixon, L.

    1997-06-01

    This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q 2 . Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database

  16. Particle production at energies available at the CERN Large Hadron Collider within an evolutionary model

    Science.gov (United States)

    Sinyukov, Yu. M.; Shapoval, V. M.

    2018-06-01

    The particle yields and particle number ratios in Pb+Pb collisions at the CERN Large Hadron Collider (LHC) energy √{sN N}=2.76 TeV are described within the integrated hydrokinetic model (iHKM) at two different equations of state (EoS) for quark-gluon matter and the two corresponding hadronization temperatures T =165 MeV and T =156 MeV. The role of particle interactions at the final afterburner stage of the collision in the particle production is investigated by means of comparison of the results of full iHKM simulations with those where the annihilation and other inelastic processes (except for resonance decays) are switched off after hadronization/particlization, similarly as in the thermal models. An analysis supports the picture of continuous chemical freeze-out in the sense that the corrections to the sudden chemical freeze-out results, which arise because of the inelastic reactions at the subsequent evolution times, are noticeable and improve the description of particle number ratios. An important observation is that, although the particle number ratios with switched-off inelastic reactions are quite different at different particlization temperatures which are adopted for different equations of state to reproduce experimental data, the complete iHKM calculations bring very close results in both cases.

  17. Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields

    Science.gov (United States)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2018-05-01

    If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.

  18. Unraveling the Structure of Hadrons with Effective Field Theories of QCD

    International Nuclear Information System (INIS)

    Iain Stewart

    2004-01-01

    Effective Field theory is a powerful framework based on controlled expansions for problems with a natural separation of energy scales. This technique is particularly important for QCD, the theory of strong interactions, due to the vast diversity of phenomena that it describes. Stewart and collaborators have invented a new class of effective theories that can be used in processes with energetic hadrons. These Soft-Collinear Effective Theories provide a unified framework for describing hadronic processes which involve hard probes or the release of a large amount of energy. Many interesting issues about hadronic physics can be addressed with the soft-collinear effective theory. Examples include the size and shape of hadronic form factors, the universality of hadronic distribution functions for a plethora of processes, and the importance of subleading corrections at intermediate energy scales. Effective field theories allow these issues to be addressed using only the underlying symmetries and scales in QCD. Understanding these issues also has a direct impact on other areas of physics, such as on devising clean methods for the measurement of CP violation in the decay of B-mesons. Current progress on the soft-collinear effective theory and related methods is discussed in this report

  19. Plastic tube hadron calorimeter: study of operation properties and particle separation

    International Nuclear Information System (INIS)

    Akopdzhanov, G.A.; Belousov, V.I.; Blik, A.M.; Romanovski, V.I.

    1988-01-01

    The DELPHI hadron calorimeter prototype plastic tubes were tested to show a long-term stability of the prototype operating with the gas mixture carbon dioxide isobutane. The operating properties of the prototype are investigated and presented as well as the results on particles separation. 5 refs.; 11 figs.; 9 tabs

  20. Measurement of the charged particle multiplicity of weakly decaying B hadrons

    CERN Document Server

    Abreu, P; Adye, T; Adzic, P; Ajinenko, I; Alekseev, G D; Alemany, R; Allport, P P; Almehed, S; Amaldi, Ugo; Amato, S; Andersson, P; Andreazza, A; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Bärring, O; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Beillière, P; Belokopytov, Yu A; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bianchi, F; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Branchini, P; Brand, K D; Brenke, T; Brenner, R A; Brown, R; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Burgsmüller, T; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camacho-Rozas, A J; Camporesi, T; Canale, V; Canepa, M; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Cerruti, C; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chen, M; Chierici, R; Chliapnikov, P V; Chochula, P; Chorowicz, V; Chudoba, J; Collins, P; Colomer, M; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Cowell, J H; Crawley, H B; Crennell, D J; Crosetti, G; Cuevas-Maestro, J; Czellar, S; D'Almagne, B; Damgaard, G; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Brabandere, S; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Di Diodato, A; Djannati, A; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Drees, K A; Dris, M; Duperrin, A; Durand, J D; Ehret, R; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Erzen, B; Espirito-Santo, M C; Falk, E; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Fichet, S; Firestone, A; Fischer, P A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gandelman, M; García, C; García, J; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Gerber, J P; Gerdyukov, L N; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Górski, M; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Green, C; Grefrath, A; Gris, P; Grosdidier, G; Grzelak, K; Günther, M; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Harris, F J; Hedberg, V; Heising, S; Henriques, R P; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Holthuizen, D J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huet, K; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Johansson, E K; Jönsson, L B; Jönsson, P E; Joram, C; Juillot, P; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Khokhlov, Yu A; Khomenko, B A; Khovanskii, N N; King, B J; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Knoblauch, D; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kreuter, C; Kronkvist, I J; Krstic, J; Krumshtein, Z; Kubinec, P; Kucewicz, W; Kurvinen, K L; Lacasta, C; Lamsa, J; Lanceri, L; Lane, D W; Langefeld, P; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lemonne, J; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Malychev, V; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Medbo, J; Meroni, C; Michelotto, M; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Münich, K; Mulders, M; Mundim, L M; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Némécek, S; Neufeld, N; Neumann, W; Neumeister, N; Nicolaidou, R; Nielsen, B S; Nieuwenhuizen, M; Nikolaenko, V; Nikolenko, M; Nomerotski, A; Normand, Ainsley; Nygren, A; Oberschulte-Beckmann, W; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganini, P; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Piana, G; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Podobrin, O; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rakoczy, D; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schneider, H; Schwemling, P; Schwickerath, U; Schyns, M A E; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Sekulin, R L; Shellard, R C; Sheridan, A; Silvestre, R; Simonetto, F; Sissakian, A N; Skaali, T B; Smadja, G; Smirnov, N; Smirnova, O G; Smith, G R; Sopczak, André; Sosnowski, R; Souza-Santos, D; Spiriti, E; Sponholz, P; Squarcia, S; Stampfer, D; Stanescu, C; Stanic, S; Stapnes, Steinar; Stavitski, I; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Tegenfeldt, F; Terranova, F; Thomas, J; Tilquin, A; Timmermans, J; Tkatchev, L G; Todorov, T; Todorova, S; Toet, D Z; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tranströmer, G; Treille, D; Tristram, G; Trombini, A; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Überschär, B; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Apeldoorn, G W; van Dam, P; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Vulpen, I B; Vassilopoulos, N; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Vrba, V; Wahlen, H; Walck, C; Weiser, C; Wetherell, Alan M; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wlodek, T; Wolf, G; Yi, J; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zucchelli, G C; Zumerle, G

    1998-01-01

    From the $Z$ decays recorded in 1994 and 1995 by the DELPHI detector at LEP, the charged particle multiplicity of weakly decaying $B$ hadrons was measured to be: \\begin{center} $4.97 \\pm 0.03 \\pm 0.06 \\, ,$ \\end{center} \

  1. High energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  2. Four-dimensional jets of hadrons: universal characteristics of multiple production of particles

    International Nuclear Information System (INIS)

    Baldin, A.M.; Batyunya, B.V.; Gramenitskii, I.M.; Grishin, V.G.; Didenko, L.A.; Kuznetsov, A.A.; Metreveli, Z.V.

    1986-01-01

    In a new relativistically invariant approach, data on multiple production of particles are analyzed in pp, p-barp, π - p, π - C, pC, and pTa interactions in the momentum range from 6 to 205 GeV/c. Distributions of hadrons (π - , K 0 /sub S/, Λ) in the square of the 4-velocity (b/sub k/) relative to the jet axis are obtained. It is shown that at a momentum p/sub lab/ ≥22 GeV/c these distributions do not depend on energy and are identical for hadronization of quarks and of multiquark systems. The observed universal properties of 4-dimensional jets of hadrons apparently are fundamental characteristics of interactions of color charges with the vacuum

  3. Theory Overview of Electroweak Physics at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M. [Fermilab

    2016-09-03

    This contribution summarizes some of the important theoretical progress that has been made in the arena of electroweak physics at hadron colliders. The focus is on developments that have sharpened theoretical predictions for final states produced through electroweak processes. Special attention is paid to new results that have been presented in the last year, since LHCP2015, as well as on key issues for future measurements at the LHC.

  4. Universality of hadron jets in soft and hard particle interactions at high energies

    International Nuclear Information System (INIS)

    Baldin, A.M.; Didenko, L.A.; Grishin, V.G.; Kuznetsov, A.A.

    1985-01-01

    The hadron jet production in soft π - p- and cumulative π - pC-interactions at a 40 GeV/c momentum is studied. The collective characteristics of jets and the functions of the quark and diquark fragmentation into charged pions and neutral strange particles are analysed. The results obtained are compared with analogous data for e + e - - and ν(anti ν)p- interactions. The hadron jet properties are also studied using relativistic invariant variables - the squared relative 4-velocities b sub(ik).-(Psub(i)/msub(i)-Psub(k)sup(2)/msub(k) (where Psub(i), Psub(k) are 4-momenta of i-th and K-th particles and msub(i), msub(k) are their masses). The results obtained show that the quark (diquark) fragmentation proceed in a similar manner in soft hadron-hadron collisions, cumulative interactions on light nuclei, in e + e - -annihilation and deep inelastic ν(anti ν)p-scattering

  5. The gentilionic theory for quarks: Manifestly confining for quarks and manifestly non-coalescent for hadrons

    International Nuclear Information System (INIS)

    Cattani, M.S.D.

    1987-01-01

    It's shown that the gentilionic theory for quarks is manifestly confining for quarks and manifestly non-coalescent for hadrons, and that these properties are rigorously deduced only from first principles. To prove them no arguments involving the intrinsic nature of gentileons or dynamical hypothesis are necessary to be adopted. It's also shown that, in the context of the quantum field theory, gentileous can be taken approximately as fermions and that the usual quantum chromodynamics can be used to calculate the properties of gentilionic hadrons. (Author) [pt

  6. The theory of hadronic systems. Annual progress report

    International Nuclear Information System (INIS)

    Gibbs, W.R.

    1993-01-01

    This report briefly discusses progress on the following topics: isospin breaking in the pion-nucleon system; direct capture of pions into deeply bound atomic states; knock out of secondary components in the nucleus; study of the radii of neutron distributions in nuclei; the hadronic double scattering operator; transparency in pion production; asymmetry in pion scattering and charge exchange from polarized nuclei; the mechanism of pion absorption in nuclei; the neutron-proton charge-exchange reaction; modification of the fundamental structure of nucleons in nuclei; and antiproton annihilation in nuclei

  7. Particle accelerators from Big Bang physics to hadron therapy

    CERN Document Server

    Amaldi, Ugo

    2015-01-01

    The theoretical physicist Victor “Viki” Weisskopf, Director-General of CERN from 1961 to 1965, once “There are three kinds of physicists, namely the machine builders, the experimental physicists, and the theoretical physicists. […] The machine builders are the most important ones, because if they were not there, we would not get into this small-scale region of space. If we compare this with the discovery of America, the machine builders correspond to captains and ship builders who really developed the techniques at that time. The experimentalists were those fellows on the ships who sailed to the other side of the world and then landed on the new islands and wrote down what they saw. The theoretical physicists are those who stayed behind in Madrid and told Columbus that he was going to land in India.” Rather than focusing on the theoretical physicists, as most popular science books on particle physics do, this beautifully written and also entertaining book is different in that, firstly, the main foc...

  8. Measuring Hadronic Jets at the ILC - From Particle Flow Calorimetry to the Higgs Self-Coupling

    CERN Document Server

    Hermberg, Benjamin

    2015-01-01

    This work deals with the development of a technical prototype of a highly segmented hadron calorimeter for precision measurements at the future International Linear Col- lider (ILC). The precision measurements at the ILC pose special challenges for both the detector technology as well as for the reconstruction methods. In this thesis two aspects to hadronic final states are examined. The first part deals with a prototype of a highly segmented hadronic calorimeter and the second part with kinematic Fits for the deter- mination of the Higgs self-coupling in decays of the Higgs boson into b quarks. The challenge for the examined prototype of the hadronic calorimeter is the demon- stration of the technical feasibility of a real detector. The ILC is pursuing the Particle Flow concept, as a consequence, it follows for the calorimeter a high granularity and an integrated readout electronics. Two important aspects of the calorimeter prototype are the channel-wise adjustable trigger threshold and the power-pulsing fun...

  9. Investigations in Elementary Particle Theory

    Energy Technology Data Exchange (ETDEWEB)

    Weiler, Thomas J. [Vanderbilt Univ., Nashville, TN (United States); Kephart, Thomas W. [Vanderbilt Univ., Nashville, TN (United States); Scherrer, Robert J. [Vanderbilt Univ., Nashville, TN (United States)

    2014-07-02

    The research interests of our three Co-PI’s complement each other very well. Kephart works mainly on models of particle unification in four or higher dimensions, on aspects of gravity such as inflation, black-holes, and the very early Universe, and on applications of knot theory and topology to various physical systems (including gluon dynamics). Scherrer works mainly on aspects of the intermediate-aged Universe, including dark matter and dark energy, and particle physics in the early Universe. Weiler works mainly on neutrino physics, dark matter signatures, and extreme particle-astrophysics in the late Universe, including origins of the highest-energy cosmic-rays and gamma-rays, and the future potential of neutrino astrophysics. Kephart and Weiler have lately devoted some research attention to the LHC and its reach for probing physics beyond the Standard Model. During the 3-year funding period, our grant supported one postdoc (Chiu Man Ho) and partially supported two students, Peter Denton and Lingjun Fu. Chiu Man collaborated with all three of the Co-PI’s during the 3-year funding period and published 16 refereed papers. Chiu Man has gone on to a postdoc with Steve Hsu at Michigan State University. Denton and Fu will both receive their PhDs during the 2014-15 academic year. The total number of our papers published in refereed journals by the three co-PIs during the period of this grant (2011-present) is 54. The total number of talks given by the group members during this time period, including seminars, colloquia, and conference presentations, is 47. Some details of the accomplishments of our DOE funded researchers during the grant period include Weiler being named a Simons Fellow in 2013. He presented an invited TEDx talk in 2012. His paper on closed timelike curves (2013) garnered a great deal of national publicity. Scherrer’s paper on the “little rip” (2011) fostered a new area of cosmological research, and the name “little rip” has now entered

  10. On measuring the masses of pair-produced semi-invisibly decaying particles at hadron colliders

    International Nuclear Information System (INIS)

    Tovey, Daniel R.

    2008-01-01

    A straightforward new technique is introduced which enables measurement at hadron colliders of an analytical combination of the masses of pair-produced semi-invisibly decaying particles and their invisible decay products. The new technique makes use of the invariance under contra-linear Lorentz boosts of a simple combination of the transverse momentum components of the aggregate visible products of each decay chain. In the general case where the invariant masses of the visible decay products are non-zero it is shown that in principle the masses of both the initial particles from the hard scattering and the invisible particles produced in the decay chains can be determined independently. This application is likely to be difficult to realise in practice however due to the contamination of the final state with ISR jets. The technique may be of most use for measurements of SUSY particle masses at the LHC, however the technique should be applicable to any class of hadron collider events in which heavy particles of unknown mass are pair-produced and decay to semi-invisible final states

  11. Theory-data comparisons for jet measurements in hadron-induced processes

    Energy Technology Data Exchange (ETDEWEB)

    Wobisch, M. [Lousiana Tech Univ., Ruston, LA (United States); Britzger, D. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kluge, T. [Liverpool Univ. (United Kingdom); Rabbertz, K.; Stober, F. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany)

    2011-09-15

    We present a comprehensive overview of theory-data comparisons for inclusive jet production. Theory predictions are derived for recent parton distribution functions and compared with jet data from different hadron-induced processes at various center-of-mass energies {radical}(s). The comparisons are presented as a function of jet transverse momentum p{sub T} or, alternatively, of the scaling variable x{sub T}=2p{sub T}/{radical}(s). (orig.)

  12. Tracking and Particle Identification at LHCb and Strange Hadron Production in Events with Z Boson

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00392146; Serra, N.; Mueller, K; Steinkamp, O

    The Lhcb experiment, located at the Large Hadron Collider at CERN, is a high energy particle physics experiment dedicated to precision measurements of events containing beauty and charm quarks. The detector is built as a single-arm forward spectrometer. It uses tracking stations upstream and downstream of its dipole magnet to measure the trajectories and momenta of charged particles. This thesis describes the improvements to the track reconstruction algorithm, which were implemented for the second run of the LHC that started in spring 2015. Furthermore, the method to confirm the performance numbers on data is presented. In addition to the tracking system, the detector uses two Ring Imaging Cherenkov detectors, upstream and downstream of the dipole magnet, together with the calorimeter and muon system, for particle identification. The detector response for the particle identification is known to be poorly modelled, since the dependence on environmental variables like temperature and pressure inside the gas mo...

  13. Chiral perturbation theory approach to hadronic weak amplitudes

    International Nuclear Information System (INIS)

    Rafael, E. de

    1989-01-01

    We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)

  14. An experimental study on the long-term stability of particle motion in hadron storage rings

    International Nuclear Information System (INIS)

    Fischer, W.

    1995-12-01

    Nonlinear magnetic fields in conjunction with tune modulation may lead to chaotic particle motion and thereby limit the dynamic aperture in hadron storage rings. This is on particular interest for high energy storage rings with superconducting magnets at injection energy where magnetic field errors and the beam size have their maximum values. At the CERN SPS a dynamic aperture experiment was performed with the aim of finding the relevant effects for the stability of single particle motion in hadron storage rings. Experimental results are compared to long-term particle tracking to test to which extent computer programs can predict the dynamic aperture under well known conditions. In addition, detailed investigations of the loss mechanisms were pursued to improve the phenomenological understanding of the intricate details of particle motion in phase space. In a complementary experiment at the HERA proton ring at injection energy the dynamic aperture was measured under normal operating conditions. The computer simulations for these measurements included a very detailed model of the nonlinear fields which were measured for each individual magnet. Simulation results for the LHC are shown that estimate the effect of tune ripple of different strength on the dynamic aperture for different sets of random nonlinear field errors. (orig.)

  15. Wilson loop, Regge trajectory and hadron masses in a Yang-Mills theory from semiclassical strings

    International Nuclear Information System (INIS)

    Bigazzi, F.; Cotrone, A.L.; Martucci, L.; Pando Zayas, L.A.

    2004-07-01

    We compute the one-loop string corrections to the Wilson loop, glueball Regge trajectory and stringy hadron masses in the Witten model of non supersymmetric, large-N Yang-Mills theory. The classical string configurations corresponding to the above field theory objects are respectively: open straight strings, folded closed spinning strings, and strings orbiting in the internal part of the supergravity background. For the rectangular Wilson loop we show that besides the standard Luscher term, string corrections provide a rescaling of the field theory string tension. The one-loop corrections to the linear glueball Regge trajectories render them nonlinear with a positive intercept, as in the experimental soft Pomeron trajectory. Strings orbiting in the internal space predict a spectrum of hadronic-like states charged under global flavor symmetries which falls in the same universality class of other confining models. (author)

  16. Particles, fields and quantum theory

    International Nuclear Information System (INIS)

    Bongaarts, P.J.M.

    1982-01-01

    The author gives an introduction to the development of gauge theories of the fundamental interactions. Starting from classical mechanics and quantum mechanics the development of quantum electrodynamics and non-abelian gauge theories is described. (HSI)

  17. Composite hadron models

    International Nuclear Information System (INIS)

    Ogava, S.; Savada, S.; Nakagava, M.

    1983-01-01

    Composite models of hadrons are considered. The main attention is paid to the Sakata, S model. In the framework of the model it is presupposed that proton, neutron and Λ particle are the fundamental particles. Theoretical studies of unknown fundamental constituents of a substance have led to the creation of the quark model. In the framework of the quark model using the theory of SU(6)-symmetry the classification of mesons and baryons is considered. Using the quark model relations between hadron masses, their spins and electromagnetic properties are explained. The problem of three-colour model with many flavours is briefly presented

  18. Theory of heavy ion collision physics in hadron therapy

    CERN Document Server

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.

  19. Charged particle multiplicity distributions in restricted rapidity intervals in Z0 hadronic decays

    International Nuclear Information System (INIS)

    Uvarov, V.

    1991-01-01

    The multiplicity distributions of charged particles in restricted rapidity intervals in Z 0 hadronic decays measured by the DELPHI detector are presented. The data reveal a shoulder structure, best visible for intervals of intermediate size, i.e. for rapidity limits around ±1.5. The whole set of distributions including the shoulder structure is reproduced by the Lund Parton Shower model. The structure is found to be due to important contributions from 3- and 4-jet events with a hard gluon jet. A different model, based on the concept of independently produced groups of particles, 'clans', fluctuating both in number per event and particle content per clan, has also been used to analyse the present data. The results show that for each interval of rapidity the average number of clans per event is approximately the same as at lower energies. (author) 11 refs., 3 figs

  20. Particle ratios from AGS to RHIC in an interacting hadronic model

    International Nuclear Information System (INIS)

    Zschiesche, D; Zeeb, G; Paech, K; Schramm, S; Stoecker, H

    2004-01-01

    The measured particle ratios in central heavy-ion collisions at RHIC-BNL are investigated within a chemical and thermal equilibrium chiral SU(3) σ-ωapproach. The commonly adopted non-interacting gas calculations yield temperatures close to or above the critical temperature for the chiral phase transition, but without taking into account any interactions. In contrast, the chiral SU(3) model predicts temperature and density dependent effective hadron masses and effective chemical potentials in the medium and a transition to a chirally restored phase at high temperatures or chemical potentials. Three different parametrizations of the model, which show different types of phase transition behaviour, are investigated. We show that if a chiral phase transition occured in those collisions, 'freezing' of the relative hadron abundances in the symmetric phase is excluded by the data. Therefore, either very rapid chemical equilibration must occur in the broken phase, or the measured hadron ratios are the outcome of the dynamical symmetry breaking. Furthermore, the extracted chemical freeze-out parameters differ considerably from those obtained in simple non-interacting gas calculations. In particular, the three models yield up to 35 MeV lower temperatures than the free gas approximation. The in-medium masses turn out to differ up to 150 MeV from their vacuum values

  1. Gauge theories in particle physics

    International Nuclear Information System (INIS)

    Aitchison, I.J.R.; Hey, A.J.G.

    1982-01-01

    The first theory, quantum electrodynamics (QED) is known to give a successful account of electromagnetic interactions. Weak and strong interactions are described by gauge theories which are generalisations of QED. The electro-weak gauge theory of Glashow Salam and Weinberg unites electromagnetic and weak interactions. Quantum chromodynamics (QCD) is the gauge theory of strong interactions. This approach to these theories, designed for the non-specialist, is based on a straightforward generalisation of non-relativistic quantum-mechanical perturbation theory to the relativistic case, leading to an intuitive introduction to Feynman graphs. Spontaneously broken-or 'hidden'-symmetries are given particular attention, with the physics of hidden gauge invariance and the role of the vacuum (essential to the unified theories) being illustrated by an extended but elementary discussion of the non-relativistic example of superconductivity. Throughout, emphasis is placed both on realistic calculations and on physical understanding. (author)

  2. Hadronic Multi-Particle Final State Measurements with CLAS at Jefferson Lab

    International Nuclear Information System (INIS)

    Will Brooks

    2002-01-01

    Precision measurements in the neutrino sector are becoming increasingly feasible due to the development of relatively high-rate experimental capabilities. These important developments command renewed attention to the systematic corrections needed to interpret the data. Hadronic multi-particle final state measurements made using CLAS at Jefferson Lab, together with a broad theoretical effort that links electro-nucleus and neutrino-nucleus data, will address this problem, and will elucidate long-standing problems in intermediate energy nuclear physics. This new work will ultimately enable precision determinations of fundamental quantities such as the neutrino mixing matrix elements in detailed studies of neutrino oscillations

  3. Hadronic Form Factors in Asymptotically Free Field Theories

    Science.gov (United States)

    Gross, D. J.; Treiman, S. B.

    1974-01-01

    The breakdown of Bjorken scaling in asymptotically free gauge theories of the strong interactions is explored for its implications on the large q{sup 2} behavior of nucleon form factors. Duality arguments of Bloom and Gilman suggest a connection between the form factors and the threshold properties of the deep inelastic structure functions. The latter are addressed directly in an analysis of asymptotically free theories; and through the duality connection we are then led to statements about the form factors. For very large q{sup 2} the form factors are predicted to fall faster than any inverse power of q{sup 2}. For the more modest range of q{sup 2} reached in existing experiments the agreement with data is fairly good, though this may well be fortuitous. Extrapolations beyond this range are presented.

  4. Theory of deep inelastic lepton-hadron scattering

    International Nuclear Information System (INIS)

    Geyer, B.; Robaschik, D.; Wieczorek, E.

    1979-01-01

    The description of deep inelastic lepton-nucleon scattering in the lowest order of the electromagnetic and weak coupling constants leads to a study of virtual Compton amplitudes and their absorptive parts. Some aspects of quantum chromodynamics are discussed. Deep inelastic scattering enables a central quantity of quantum field theory, namely the light cone behaviour of the current commutator. The moments of structure functions are used for the description of deep inelastic scattering. (author)

  5. Gauge Theories of Vector Particles

    Science.gov (United States)

    Glashow, S. L.; Gell-Mann, M.

    1961-04-24

    The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.

  6. Towards a theory of weak hadronic decays of charmed particles

    International Nuclear Information System (INIS)

    Blok, B.Yu.; Shifman, M.A.

    1986-01-01

    Weak decays of charmed mesons are considered. A new quantitative framework for theoretical analysis of nonleptonic two-body decays based on the QCD sum rules are proposed. This is the first of a series of papers devoted to the subject. Theoretical foundations of the approach ensuring model-independent predictions for the partial decay widths are discussed

  7. Theories of higher spin particles

    International Nuclear Information System (INIS)

    Akshay, Y.S.; Sudarshan, Ananth

    2015-01-01

    One of the aims of theoretical physics is to understand the fundamental constituents of Nature and the interactions between them. The Standard Model of particle physics is currently our best description of Nature. It has been phenomenally successful in describing physics upto energy scales of a few hundred GeV. The SM contains matter particles (fermions), force carriers or mediators and the Higgs (bosons). The fermionic particles that make up all the visible matter around us are the leptons (electron, muon, tau, their respective neutrinos) and quarks (up, down, top, bottom, charm and strange). The force carriers of the SM mediate three of the four fundamental forces in Nature. The photon (γ) mediates the electromagnetic force, the W+,W-,Z mediate the weak force and the gluons (g) mediate the strong force. The Higgs boson plays an important role in the generation of masses for various particles

  8. BRST field theory of relativistic particles

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1992-01-01

    A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs

  9. Hadronic equation of state in the statistical bootstrap model and linear graph theory

    International Nuclear Information System (INIS)

    Fre, P.; Page, R.

    1976-01-01

    Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed

  10. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    Lemaitre–Robertson–Walker cosmological model during the early stages of the universe is analysed in the framework of higher derivative theory. The universe has been considered as an open thermodynamic system where particle production ...

  11. QCD coherence and correlations of particles with restricted momenta in hadronic Z decays

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A., Jr.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2006-01-01

    QCD coherence effects are studied based on measurements of correlations of particles with either restricted transverse momenta, pThadronic Z decays recorded at LEP with the OPAL detector. The correlations are analyzed in terms of normalized factorial and cumulant moments. The analysis is inspired by analytical QCD calculations which, in conjunction with Local Parton-Hadron Duality (LPHD), predict that, due to colour coherence, the multiplicity distribution of particles with restricted transverse momenta should become Poissonian as pTcut decreases. The expected correlation pattern is indeed observed down to pTcut approx 1GeV but not at lower transverse momenta. Furthermore, for pcut to 0 GeV a strong rise is observed in the data, in disagreement with theoretical expectation. The Monte Carlo models reproduce well the measurements at large pTcut and pcut but underestimat...

  12. Theory of elementary particles. Proceedings

    International Nuclear Information System (INIS)

    Luest, D.; Weigt, G.

    1994-03-01

    These proceedings contain most of the invited talks ans short communications presented at the named symposium. These concern developments in field theory in connection with string models, grand unification, and quantum gravity. See hints under the relevant topics. (HSI)

  13. Study of particle production in hadron-nucleus interactions for neutrino experiments

    CERN Document Server

    Palczewski, Tomasz Jan

    The dissertation presents a study of hadron product ion in the NA61/SHINE large acceptance spectrometer at CERN SPS. The differential cross se ctions were obtained for the production of negatively charged pions, neutral Kaons, and Lam bdas from the proton-Carbon interactions at 31 GeV/c. Methods of particle yields extraction from proton Carbon interactions were developed. An analysis chain of global correction m ethod (h- method) was established for the thin carbon target and as well for T2K replica targ et and compared to the results obtained with full particle identification. The h- method permits to cover larger phase space region not otherwise accessible. In addition, a full chain of V 0 analysis was prepared to obtain neutral Kaon and Lambda results in polar angle and momentum variables (p, θ ). Results on the differential production cross sections and mean mul tiplicities in production processes for negatively charge...

  14. Theory of hot particle stability

    International Nuclear Information System (INIS)

    Berk, H.L.; Wong, H.V.; Tsang, K.T.

    1986-10-01

    The investigation of stabilization of hot particle drift reversed systems to low frequency modes has been extended to arbitrary hot beta, β/sub H/ for systems that have unfavorable field line curvature. We consider steep profile equilibria where the thickness of the pressure drop, Δ, is less than plasma radius, r/sub p/. The analysis describes layer modes which have mΔ/r/sub p/ 2/3. When robust stability conditions are fulfilled, the hot particles will have their axial bounce frequency less than their grad-B drift frequency. This allows for a low bounce frequency expansion to describe the axial dependence of the magnetic compressional response

  15. Valencia 93: The summary of particle theory

    International Nuclear Information System (INIS)

    Senjanovic, G.

    1994-07-01

    The International School on Cosmological Dark Matter held in Valencia in the fall of 1993 was devoted to the interplay of cosmology and particle physics, with the obvious emphasis on the Dark Matter issue. Here I present the expanded version of my summary talk regarding the particle physics theory part of the School. (author). 13 refs

  16. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    1989-01-01

    The Syracuse High Energy Theory group has continued to make significant contributions to many areas. Many novel aspects of Chern-Simons terms and effective Lagrangians were investigated. Various interesting aspects of quantum gravity and string theory were explored. Gauge models of elementary particles were studied in depth. The investigations of QCD at finite temperatures and multiply connected configuration spaces continued. 24 refs

  17. Topological cross sections in hadron-nucleus collisions and multiple scattering theory

    International Nuclear Information System (INIS)

    Zoller, V.R.

    1987-01-01

    The multiple scattering theory supplemented with cutting rules of Abramovsky, V.A., Gribov, V.N., Kancheli, O.V. is applied to calculation of the hadron-nucleus interaction cross sections. In contrast to standard Glauber approach neither smalness of the interaction radius compared to the nuclear radii nor Gaussian form of the hN-interaction profile function are assumed. The theory of the supercritical pomeron are used. However all the results are more general and do not depend on the parametrization of the pomeron pole amplitude. The region of validity of the widely used approximate formulae for topological and total hA-interaction cross sections are discussed

  18. Large Hadron Collider: does every particle in the universe consist of points, strings, or loops?

    CERN Multimedia

    Atkins, William

    2007-01-01

    "For many years String Theory has been a viable adjustment to the Standard Model of particle physics - a quantum field theory that cosmologists hope will unite all the fundamental forces of nature (weak, strong, electromagnetic, and gratitational). In other words, explailn how the universe works. (1 page)

  19. Proceedings of the 24. SLAC summer institute on particle physics: The strong interaction, from hadrons to partons

    Energy Technology Data Exchange (ETDEWEB)

    Chan, J.; DePorcel, L.; Dixon, L. [eds.

    1997-06-01

    This conference explored the role of the strong interaction in the physics of hadrons and partons. The Institute attracted 239 physicists from 16 countries to hear lectures on the underlying theory of Quantum Chromodynamics, modern theoretical calculational techniques, and experimental investigation of the strong interaction as it appears in various phenomena. Different regimes in which one can calculate reliably in QCD were addressed in series of lectures on perturbation theory, lattice gauge theories, and heavy quark expansions. Studies of QCD in hadron-hadron collisions, electron-positron annihilation, and electron-proton collisions all give differing perspectives on the strong interaction--from low-x to high-Q{sup 2}. Experimental understanding of the production and decay of heavy quarks as well as the lighter meson states has continued to evolve over the past years, and these topics were also covered at the School. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  20. A new tagger for hadronically decaying heavy particles at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Lapsien, T.; Kogler, R.; Haller, J. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (Germany)

    2016-11-15

    A new algorithm for the identification of boosted, hadronically decaying, heavy particles at the LHC is presented. The algorithm is based on the known procedure of jet clustering with variable distance parameter R and adapts the jet size to its transverse momentum p{sub T}. Subjets are found using a mass jump condition. The resulting algorithm - called Heavy Object Tagger with Variable R (HOTVR) - features little algorithmic complexity and combines jet clustering, subjet finding and rejection of soft clusters in one sequence. While the HOTVR algorithm can be used for the identification of any heavy object decaying hadronically, e.g. W, Z, H, t, or possible new heavy resonances, this paper targets specifically the tagging of boosted top quarks. The studies presented here demonstrate a stable performance of the HOTVR algorithm in a wide range of top quark p{sub T}, from low p{sub T}, where the decay products can be resolved, to the region of boosted decays at high p{sub T}. (orig.)

  1. Secondary particle background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-01-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC(LHC) √s=40TeV (√s=16TeV) and L=10 33 cm -2 s -1 (L=3x10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the open-quotes task force on radiation levels in the SSC interaction regions.close quotes The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes

  2. Secondary particle in background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-06-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC (LHC) √s = 40 TeV (√s = 16 TeV) and L = 10 33 cm -2 s -1 (L = 3 x 10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the ''task force on radiation levels in the SSC interaction regions.'' The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes. Following Groom's work, extensive Monte Carlo simulations were performed to address the issues of backgrounds and radiation environments for the GEM and SD C3 experiments proposed at the SSC, and for the ATLAS and CMS experiments planned for the LHC. The purpose of the present article is to give a brief summary of some aspects of the methods, assumptions, and calculations performed to date (principally for the SSC detectors), and to stress the relevance of such calculations to the detectors proposed for the study of B-physics in particular

  3. Measuring hadronic jets at the ILC. From particle flow calorimetry to the Higgs self-coupling

    International Nuclear Information System (INIS)

    Hermberg, Benjamin

    2015-10-01

    This work deals with the development of a technical prototype of a highly segmented hadron calorimeter for precision measurements at the future International Linear Collider (ILC). The precision measurements at the ILC pose special challenges for both the detector technology as well as for the reconstruction methods. In this thesis two aspects to hadronic final states are examined. The first part deals with a prototype of a highly segmented hadronic calorimeter and the second part with kinematic Fits for the determination of the Higgs self-coupling in decays of the Higgs boson into b quarks. The challenge for the examined prototype of the hadronic calorimeter is the demonstration of the technical feasibility of a real detector. The ILC is pursuing the Particle Flow concept, as a consequence, it follows for the calorimeter a high granularity and an integrated readout electronics. Two important aspects of the calorimeter prototype are the channel-wise adjustable trigger threshold and the power-pulsing functionality to minimize the power consumption. In this work it could be shown that with the current readout chip generation, the use of the channel-wise threshold adjustment leads to a shift of the global trigger threshold. Despite of the functionality of the power pulsing, the total current consumption is 30 times above the desired power consumption of 25 μW/channel. In the data of a test beam campaign at CERN 2012 the pedestal was determined, the stability analyzed and specific features of the pedestal identified. In order to achieve the accuracy for the measurement of the Higgs self-coupling, this work examines the applicability of kinematic fits within the framework of the Higgs self-coupling analysis. Basis of the analysis is the lepton channel ZHH→l anti lb anti bb anti b.It could be shown that the use of kinematic fits improves the mass resolution, thus the uncertainty of the cross section is reduced by 18%. The use of a modified fit processor improves the

  4. VNI 3.1 MC-simulation program to study high-energy particle collisions in QCD by space-time evolution of parton-cascades and parton-hadron conversion

    Science.gov (United States)

    Geiger, Klaus

    1997-08-01

    VNI is a general-purpose Monte Carlo event generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. On the basis of renormalization-group improved parton description and quantum-kinetic theory, it uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme that is governed by the dynamics itself. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position space, momentum space and color space. The parton evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi) hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. This article gives a brief review of the physics underlying VNI, which is followed by a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including a simple example), annotates input and control parameters, and discusses output data provided by it.

  5. Relativistic three-particle theory

    International Nuclear Information System (INIS)

    Hochauser, S.

    1979-01-01

    In keeping with recent developments in experimental nuclear physics, a formalism is developed to treat interactions between three relativistic nuclear particles. The concept of unitarity and a simple form of analyticity are used to construct coupled, integral, Faddeev-type equations and, with the help of analytic separable potentials, these are cast in simple, one-dimensional form. Energy-dependent potentials are introduced so as to take into account the sign-change of some phase shifts in the nucleon-nucleon interaction and parameters for these potentials are obtained. With regard to the success of such local potentials as the Yukawa potential, a recently developed method for expanding these in separable form is discussed. Finally, a new method for the numerical integration of the Faddeev equations along the real axis is introduced, thus avoiding the traditional need for contour rotations into the complex plane. (author)

  6. FANSY 1.0: a phenomenological model for simulation of coplanar particle generation in superhigh-energy hadron interactions

    International Nuclear Information System (INIS)

    Mukhamedshin, Rauf

    2009-01-01

    Simulations show that a phenomenon of coplanarity of most energetic subcores of γ-ray-hadron families found in mountain-based and stratospheric X-ray-emulsion chamber experiments requires to introduce a coplanar particle generation with large transverse momenta in hadron interactions at superhigh energies. Some physical mechanisms are considered. A phenomenological model, which makes it possible to simulate the coplanar particle generation, is presented. Different versions of this model are considered, their features are described and compared with those of models applied by the CORSIKA package. Cosmic-ray experimental data and simulated results are compared. Conclusion on features of hadron interactions at superhigh energies and some predictions with respect to LHC experiments are made. (orig.) 3

  7. Matrix elements of Δ B =0 operators in heavy hadron chiral perturbation theory

    Science.gov (United States)

    Lee, Jong-Wan

    2015-05-01

    We study the light-quark mass and spatial volume dependence of the matrix elements of Δ B =0 four-quark operators relevant for the determination of Vu b and the lifetime ratios of single-b hadrons. To this end, one-loop diagrams are computed in the framework of heavy hadron chiral perturbation theory with partially quenched formalism for three light-quark flavors in the isospin limit; flavor-connected and -disconnected diagrams are carefully analyzed. These calculations include the leading light-quark flavor and heavy-quark spin symmetry breaking effects in the heavy hadron spectrum. Our results can be used in the chiral extrapolation of lattice calculations of the matrix elements to the physical light-quark masses and to infinite volume. To provide insight on such chiral extrapolation, we evaluate the one-loop contributions to the matrix elements containing external Bd, Bs mesons and Λb baryon in the QCD limit, where sea and valence quark masses become equal. In particular, we find that the matrix elements of the λ3 flavor-octet operators with an external Bd meson receive the contributions solely from connected diagrams in which current lattice techniques are capable of precise determination of the matrix elements. Finite volume effects are at most a few percent for typical lattice sizes and pion masses.

  8. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  9. Semileptonic decays of atomlike hadrons in the heavy quark effective theory

    International Nuclear Information System (INIS)

    Ito, Toshiaki; Morii, Toshiyuki; Tanimoto, Morimitsu.

    1992-01-01

    Semileptonic decays of heavy flavored hadrons are analyzed in the heavy quark effective theory (HQET) with leading 1/m Q corrections. All existing date for B-bar→D (*) lν-bar and D-bar→K (*) lν-bar are reproduced well in virtue of 1/m Q corrections, while the value of |V cb | derived by the HQET is almost independent of those corrections. In particular, 1/m s corrections are remarkable for D-bar→K (*) l ν -bar. Semiloptonic decays of Λ c and Λ b are also discussed including the 1/m Q corrections. (author)

  10. Advances in elementary particle physics with applied superconductivity. Contribution of superconducting technology to CERN large hadron collider accelerator

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2011-01-01

    The construction of the Large Hadron Collider (LHC) was started in 1994 and completed in 2008. The LHC consists of more than seven thousand superconducting magnets and cavities, which play an essential role in elementary particle physics and its energy frontier. Since 2010, physics experiments at the new energy frontier have been carried out to investigate the history and elementary particle phenomena in the early universe. The superconducting technology applied in the energy frontier physics experiments is briefly introduced. (author)

  11. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e+e-... A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    International Nuclear Information System (INIS)

    Geiger, K.; Longacre, R.

    1999-01-01

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 → 2 parton collisions, 2 → 1 parton fusion processes, and 1 → 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 → n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it

  12. The determination of the hadron mean free path for particle-producing collisions in intranuclear matter by measurement

    International Nuclear Information System (INIS)

    Strugalski, Z.; Mousa, M.

    1987-01-01

    It is shown how it is possible to determine the hadron mean free path in > for particle-producing collisions in intranuclear matter by measurement. The mean free path for the collisions of pions inside 54 131 Xe nuclei at 3.5 GeV/c momentum has been measured. The relation between in > in units nucleons/S and the hadron-nucleon inelastic cross section σ in in units S/nucleon is found: in >k1/σ in , where S∼10 fm 2 , k=3.0±0.15; physical meaning of S is given in this paper

  13. Particle production in higher derivative theory

    Indian Academy of Sciences (India)

    Cosmological models; particle production; higher derivative theory of gravitation. PACS No. 98.80. 1. ... is of singular models where the cosmic expansion is driven by the big-bang impulse; all ... According to Gibbs integrability condition, one cannot independently specify an equa- .... [3] B Hartle and S W Hawking Phys. Rev.

  14. On three-particle scattering theory

    International Nuclear Information System (INIS)

    Kuz'michev, V.E.

    1977-01-01

    The approach proposed earlier by the author to three-particle scattering theory is discussed. This approach may prove to be useful for studying certain problems in the physics of few-nucleon systems. The corresponding equations for the partial components of the amplitudes and the potentials are obtained in the N-d scattering case

  15. Integrated analysis of particle interactions at hadron colliders Report of research activities in 2010-2015

    Energy Technology Data Exchange (ETDEWEB)

    Nadolsky, Pavel M. [Southern Methodist Univ., Dallas, TX (United States)

    2015-08-31

    The report summarizes research activities of the project ”Integrated analysis of particle interactions” at Southern Methodist University, funded by 2010 DOE Early Career Research Award DE-SC0003870. The goal of the project is to provide state-of-the-art predictions in quantum chromodynamics in order to achieve objectives of the LHC program for studies of electroweak symmetry breaking and new physics searches. We published 19 journal papers focusing on in-depth studies of proton structure and integration of advanced calculations from different areas of particle phenomenology: multi-loop calculations, accurate long-distance hadronic functions, and precise numerical programs. Methods for factorization of QCD cross sections were advanced in order to develop new generations of CTEQ parton distribution functions (PDFs), CT10 and CT14. These distributions provide the core theoretical input for multi-loop perturbative calculations by LHC experimental collaborations. A novel ”PDF meta-analysis” technique was invented to streamline applications of PDFs in numerous LHC simulations and to combine PDFs from various groups using multivariate stochastic sampling of PDF parameters. The meta-analysis will help to bring the LHC perturbative calculations to the new level of accuracy, while reducing computational efforts. The work on parton distributions was complemented by development of advanced perturbative techniques to predict observables dependent on several momentum scales, including production of massive quarks and transverse momentum resummation at the next-to-next-to-leading order in QCD.

  16. Introduction to the supersymmetry theories of particles

    International Nuclear Information System (INIS)

    Fayet, P.

    We present the motivations for a supersymmetry relating bosons and fermions, and we show how the supersymmetry algebra can be naturally introduced. We study supersymmetric field theories: super Yukawa model, and gauge theories. We show how supersymmetry relates massive gauge bosons such as the W +- and Z, and Higgs bosons. We discuss spontaneous supersymmetry breaking, and its special features. We also define a new invariance R, related with a conserved quantum number carried by the supersymmetry generators. We apply these ideas to elementary particles. This leads to new particles such as spin 0 leptons and quarks, photino and gluinos; their properties are discussed in detail. We also introduce gravitation (supergravity) and we study the properties of the gravitino. Finally we comment on supersymmetric grand unified theories [fr

  17. Covariantized matrix theory for D-particles

    Energy Technology Data Exchange (ETDEWEB)

    Yoneya, Tamiaki [Institute of Physics, The University of Tokyo,3-8-1 Komaba, Meguro-ku, Tokyo 153-8902 (Japan); School of Graduate Studies, The Open University of Japan,2-11 Wakaba, Mihama-ku, Chiba 261-8586 (Japan)

    2016-06-09

    We reformulate the Matrix theory of D-particles in a manifestly Lorentz-covariant fashion in the sense of 11 dimesnional flat Minkowski space-time, from the viewpoint of the so-called DLCQ interpretation of the light-front Matrix theory. The theory is characterized by various symmetry properties including higher gauge symmetries, which contain the usual SU(N) symmetry as a special case and are extended from the structure naturally appearing in association with a discretized version of Nambu’s 3-bracket. The theory is scale invariant, and the emergence of the 11 dimensional gravitational length, or M-theory scale, is interpreted as a consequence of a breaking of the scaling symmetry through a super-selection rule. In the light-front gauge with the DLCQ compactification of 11 dimensions, the theory reduces to the usual light-front formulation. In the time-like gauge with the ordinary M-theory spatial compactification, it reduces to a non-Abelian Born-Infeld-like theory, which in the limit of large N becomes equivalent with the original BFSS theory.

  18. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates

    International Nuclear Information System (INIS)

    Beucher, J.

    2007-10-01

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO 2 has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10 9 by incident hadron and a spatial resolution of 51 μm have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  19. Path integral for relativistic particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, Sh.M.

    1990-06-01

    An action for a relativistic spinning particle interacting with external electromagnetic field is considered in reparametrization and local supergauge invariant form. It is shown that various path integral representations derived for the causal Green function correspond to the different forms of the relativistic particle action. The analogy of the path integral derived with the Lagrangian path integral of the field theory is discussed. It is shown that to obtain the causal propagator, the integration over the null mode of the Lagrangian multiplier corresponding to the reparametrization invariance, has to be performed in the (0,+infinity) limits. (author). 23 refs

  20. Hadron spectroscopy

    International Nuclear Information System (INIS)

    Oka, Makoto

    2012-01-01

    Spectra of hadrons show various and complex structures due to the strong coupling constants of the quantum chromodynamics (QCD) constituting its fundamental theory. For their understandings, two parameters, i.e., (1) the quark mass and (2) their excitation energies are playing important roles. In low energies, for example, rather simple structures similar to the positronium appear in the heavy quarks such as charms and bottoms. It has been, however, strongly suggested by the recent experiments that the molecular resonant state shows up when the threshold to decay to mesons is exceeded. On the other hand, chiral symmetry and its breaking play important roles in the dynamics of light quarks. Strange quarks are in between and show special behaviors. In the present lecture, the fundamental concept of the hadron spectroscopy based on the QCD is expounded to illustrate the present understandings and problems of the hadron spectroscopy. Sections are composed of 1. Introduction, 2. Fundamental Concepts (hadrons, quarks and QCD), 3. Quark models and exotic hadrons, 4. Lattice QCD and QCD sum rules. For sections 1 to 3, only outline of the concepts is described because of the limited space. Exotic hadrons, many quark pictures of light hadrons and number of quarks in hadrons are described briefly. (S. Funahashi)

  1. Fitting of Hadron Mass Spectra and Contributions to Perturbation Theory of Conformal Quantum Field Theory

    Science.gov (United States)

    Luna Acosta, German Aurelio

    The masses of observed hadrons are fitted according to the kinematic predictions of Conformal Relativity. The hypothesis gives a remarkably good fit. The isospin SU(2) gauge invariant Lagrangian L(,(pi)NN)(x,(lamda)) is used in the calculation of d(sigma)/d(OMEGA) to 2nd-order Feynman graphs for simplified models of (pi)N(--->)(pi)N. The resulting infinite mass sums over the nucleon (Conformal) families are done via the Generalized-Sommerfeld-Watson Transform Theorem. Even though the models are too simple to be realistic, they indicate that if (DELTA)-internal lines were to be included, 2nd-order Feynman graphs may reproduce the experimental data qualitatively. The energy -dependence of the propagator and couplings in Conformal QFT is different from that of ordinary QFT. Suggestions for further work are made in the areas of ultra-violet divergences and OPEC calculations.

  2. Microscopic theory of particle-vibration coupling

    Energy Technology Data Exchange (ETDEWEB)

    Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)

    2011-09-16

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  3. Microscopic theory of particle-vibration coupling

    International Nuclear Information System (INIS)

    Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van

    2011-01-01

    Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.

  4. Particle Production in Hadron - Nuclear Matter in the Energy Range Between 50-GeV - 150-GeV

    CERN Document Server

    Braune, Kersten

    1980-01-01

    In an experiment at the CERN SPS the particle production in hadron-nucleus collisions in an energy range between 50 and 150 GeV was studied. The detector detects charged particles and separates them into two groups: fast particles, mainly produced pions, and slow particles, mainly recoil protons from the nucleus, whereby the boundary lies at a velocity v/c = 0.7. Multiplicity and angular respectively pseudo-rapidity distributions were measured. From the data analysis resulted that the slow particles are a measure for the number of collisions of the projectile in the nucleus. The properties of the fast particle were studied in dependence on . Thereby it was shown that at a description of the measured results using the variable the dependence on the projectile and on the mass number A of the target are extensively eliminated.

  5. Particle production in hadron--nucleus collisions above 10 GeV

    International Nuclear Information System (INIS)

    Busza, W.

    1978-01-01

    The reasons for interest in the observed phenomena in hadron reactions above 10 GeV are considered. The latest data are not reviewed except for comparison with theoretical models. Among the topics considered are total or absorption cross sections, low average multiplicity, nuclear fragment distributions, implications for the nature of hadrons and their interactions, rapidity distributions, and multiple production energy dependence. 38 references

  6. Advanced concepts in particle and field theory

    CERN Document Server

    Hübsch, Tristan

    2015-01-01

    Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the basic building blocks of nature, by journeying through contemporary discoveries in the field, and analysing elementary particles and their interactions. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as including historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and...

  7. Model independent particle mass measurements in missing energy events at hadron colliders

    Science.gov (United States)

    Park, Myeonghun

    2011-12-01

    This dissertation describes several new kinematic methods to measure the masses of new particles in events with missing transverse energy at hadron colliders. Each method relies on the measurement of some feature (a peak or an endpoint) in the distribution of a suitable kinematic variable. The first method makes use of the "Gator" variable s min , whose peak provides a global and fully inclusive measure of the production scale of the new particles. In the early stage of the LHC, this variable can be used both as an estimator and a discriminator for new physics over the standard model backgrounds. The next method studies the invariant mass distributions of the visible decay products from a cascade decay chain and the shapes and endpoints of those distributions. Given a sufficient number of endpoint measurements, one could in principle attempt to invert and solve for the mass spectrum. However, the non-linear character of the relevant coupled quadratic equations often leads to multiple solutions. In addition, there is a combinatorial ambiguity related to the ordering of the decay products from the cascade decay chain. We propose a new set of invariant mass variables which are less sensitive to these problems. We demonstrate how the new particle mass spectrum can be extracted from the measurement of their kinematic endpoints. The remaining methods described in the dissertation are based on "transverse" invariant mass variables like the "Cambridge" transverse mass MT2, the "Sheffield" contrasverse mass MCT and their corresponding one-dimensional projections MT2⊥, M T2||, MCT⊥ , and MCT|| with respect to the upstream transverse momentum U⃗T . The main advantage of all those methods is that they can be applied to very short (single-stage) decay topologies, as well as to a subsystem of the observed event. The methods can also be generalized to the case of non-identical missing particles, as demonstrated in Chapter 7. A complete set of analytical results for the

  8. Supersymmetric hadronic mechanics and procedures for isosupersymmetrization

    International Nuclear Information System (INIS)

    Ntibashirakandi, L.; Callebaut, D.K.

    1994-01-01

    In this paper the authors present the Lie-Santilli lifting of Witten's one-dimensional supersymmetric quantum mechanical model within the context of supersymmetric hadronic mechanics and extended it to three dimensions. They show that the model describes the motion of a spin one-half particle in a central isosuperpotential. Choosing this isosuperpotential within the specific isosupersymmetrization procedure, their theory produces the model of hadronic harmonic oscillator plus isotopic spin-orbit couplings. They finally indicate that their model describes a particle under conventional potentials plus nonlocal-nonhamiltonian corrections expected in deep penetrations of the wavepackets. As such, the model appears to be significant for the recently proposed chemical synthesis of unstable hadrons via lighter hadrons, which is prohibited by quantum mechanics, but permitted by the covering hadronic mechanics. 16 refs

  9. Shower characteristics of particles with momenta up to 100 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    CERN Document Server

    AUTHOR|(CDS)2073690

    2015-01-01

    We present a study of showers initiated by 1–100 GeV positrons, pions, kaons, and protons in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were taken at the CERN PS and SPS. The analysis includes measurements of the calorimeter response to each particle type and studies of the longitudinal and radial shower development. The results are compared to several Geant4 simulation models.

  10. Confinement and hadron-hadron interactions by general relativistic methods

    Science.gov (United States)

    Recami, Erasmo

    By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.

  11. Topological background on charmed and beauty particle pairs produced in high energy hadron interactions in nuclear emulsions

    International Nuclear Information System (INIS)

    Romano, G.

    1984-01-01

    This chapter demonstrates that by making use of the fact that new flavors must be produced in pairs in strong interactions and that beauty particles are expected to decay often into charmed particles, the contribution of background simulating decays can be computed from a pure topological point of view. Topics covered include the emulsion data, the search for charmed particles, the search for beauty particles, detection efficiency, and the evaluation of mean life-time. It is assumed that in the interaction of (350-400) GeV hadrons in emulsion the production rate of charmed particle pairs is 5X10 -3 /interaction. The corresponding figures for BB production are estimated to be 10 3 times smaller. It is noted that some neutral decay topology, like 4 or more charged prongs, are much less affected by background

  12. Search for Colour Reconnection Effects in $e^+ e^- \\to W^+ W^- \\to hadrons$ through Particle-Flow Studies at LEP

    CERN Document Server

    Achard, P; Aguilar-Benítez, M; Alcaraz, J; Alemanni, G; Allaby, James V; Aloisio, A; Alviggi, M G; Anderhub, H; Andreev, V P; Anselmo, F; Arefev, A; Azemoon, T; Aziz, T; Bagnaia, P; Bajo, A; Baksay, G; Baksay, L; Baldew, S V; Banerjee, S; Banerjee, Sw; Barczyk, A; Barillère, R; Bartalini, P; Basile, M; Batalova, N; Battiston, R; Bay, A; Becattini, F; Becker, U; Behner, F; Bellucci, L; Berbeco, R; Berdugo, J; Berges, P; Bertucci, B; Betev, B L; Biasini, M; Biglietti, M; Biland, A; Blaising, J J; Blyth, S C; Bobbink, Gerjan J; Böhm, A; Boldizsar, L; Borgia, B; Bottai, S; Bourilkov, D; Bourquin, Maurice; Braccini, S; Branson, J G; Brochu, F; Burger, J D; Burger, W J; Cai, X D; Capell, M; Cara Romeo, G; Carlino, G; Cartacci, A M; Casaus, J; Cavallari, F; Cavallo, N; Cecchi, C; Cerrada, M; Chamizo-Llatas, M; Chang, Y H; Chemarin, M; Chen, A; Chen, G; Chen, G M; Chen, H F; Chen, H S; Chiefari, G; Cifarelli, Luisa; Cindolo, F; Clare, I; Clare, R; Coignet, G; Colino, N; Costantini, S; de la Cruz, B; Cucciarelli, S; van Dalen, J A; De Asmundis, R; Déglon, P L; Debreczeni, J; Degré, A; Dehmelt, K; Deiters, K; Della Volpe, D; Delmeire, E; Denes, P; De Notaristefani, F; De Salvo, A; Diemoz, M; Dierckxsens, M; Dionisi, C; Dittmar, M; Doria, A; Dova, M T; Duchesneau, D; Duda, M; Echenard, B; Eline, A; El-Hage, A; El-Mamouni, H; Engler, A; Eppling, F J; Extermann, P; Falagán, M A; Falciano, S; Favara, A; Fay, J; Fedin, O; Felcini, M; Ferguson, T; Fesefeldt, H S; Fiandrini, E; Field, J H; Filthaut, Frank; Fisher, P H; Fisher, W; Fisk, I; Forconi, G; Freudenreich, Klaus; Furetta, C; Galaktionov, Yu; Ganguli, S N; García-Abia, P; Gataullin, M; Gentile, S; Giagu, S; Gong, Z F; Grenier, G; Grimm, O; Grünewald, M W; Guida, M; van Gulik, R; Gupta, V K; Gurtu, A; Gutay, L J; Haas, D; Hakobyan, R S; Hatzifotiadou, D; Hebbeker, T; Hervé, A; Hirschfelder, J; Hofer, H; Hohlmann, M; Holzner, G; Hou, S R; Hu, Y; Jin, B N; Jones, L W; de Jong, P; Josa-Mutuberria, I; Käfer, D; Kaur, M; Kienzle-Focacci, M N; Kim, J K; Kirkby, Jasper; Kittel, E W; Klimentov, A; König, A C; Kopal, M; Koutsenko, V F; Kräber, M H; Krämer, R W; Krüger, A; Kunin, A; Ladrón de Guevara, P; Laktineh, I; Landi, G; Lebeau, M; Lebedev, A; Lebrun, P; Lecomte, P; Lecoq, P; Le Coultre, P; Le Goff, J M; Leiste, R; Levtchenko, M; Levchenko, P M; Li, C; Likhoded, S; Lin, C H; Lin, W T; Linde, Frank L; Lista, L; Liu, Z A; Lohmann, W; Longo, E; Lü, Y S; Luci, C; Luminari, L; Lustermann, W; Ma Wen Gan; Malgeri, L; Malinin, A; Maña, C; Mans, J; Martin, J P; Marzano, F; Mazumdar, K; McNeil, R R; Mele, S; Merola, L; Meschini, M; Metzger, W J; Mihul, A; Milcent, H; Mirabelli, G; Mnich, J; Mohanty, G B; Muanza, G S; Muijs, A J M; Musicar, B; Musy, M; Nagy, S; Natale, S; Napolitano, M; Nessi-Tedaldi, F; Newman, H; Nisati, A; Nowak, H; Ofierzynski, R A; Organtini, G; Pal, I; Palomares, C; Paolucci, P; Paramatti, R; Passaleva, G; Patricelli, S; Paul, T; Pauluzzi, M; Paus, C; Pauss, Felicitas; Pedace, M; Pensotti, S; Perret-Gallix, D; Petersen, B; Piccolo, D; Pierella, F; Pioppi, M; Piroué, P A; Pistolesi, E; Plyaskin, V; Pohl, M; Pozhidaev, V; Pothier, J; Prokofev, D; Prokofiev, D O; Quartieri, J; Rahal-Callot, G; Rahaman, M A; Raics, P; Raja, N; Ramelli, R; Rancoita, P G; Ranieri, R; Raspereza, A V; Razis, P A; Ren, D; Rescigno, M; Reucroft, S; Riemann, S; Riles, K; Roe, B P; Romero, L; Rosca, A; Rosier-Lees, S; Roth, S; Rosenbleck, C; Rubio, J A; Ruggiero, G; Rykaczewski, H; Sakharov, A; Saremi, S; Sarkar, S; Salicio, J; Sánchez, E; Schäfer, C; Shchegelskii, V; Schopper, Herwig Franz; Schotanus, D J; Sciacca, C; Servoli, L; Shevchenko, S; Shivarov, N; Shoutko, V; Shumilov, E; Shvorob, A V; Son, D; Souga, C; Spillantini, P; Steuer, M; Stickland, D P; Stoyanov, B; Strässner, A; Sudhakar, K; Sultanov, G G; Sun, L Z; Sushkov, S; Suter, H; Swain, J D; Szillási, Z; Tang, X W; Tarjan, P; Tauscher, Ludwig; Taylor, L; Tellili, B; Teyssier, D; Timmermans, C; Ting, Samuel C C; Ting, S M; Tonwar, S C; Tóth, J; Tully, C; Tung, K L; Ulbricht, J; Valente, E; Van de Walle, R T; Vásquez, R; Veszpremi, V; Vesztergombi, G; Vetlitskii, I; Vicinanza, D; Viertel, Gert M; Villa, S; Vivargent, M; Vlachos, S; Vodopyanov, I; Vogel, H; Vogt, H; Vorobev, I; Vorobyov, A A; Wadhwa, M; Wang, Q; Wang, X L; Wang, Z M; Weber, M; Wienemann, P; Wilkens, H; Wynhoff, S; Xia, L; Xu, Z Z; Yamamoto, J; Yang, B Z; Yang, C G; Yang, H J; Yang, M; Yeh, S C; Zalite, A; Zalite, Yu; Zhang, Z P; Zhao, J; Zhu, G Y; Zhu, R Y; Zhuang, H L; Zichichi, A; Zimmermann, B; Zöller, M

    2003-01-01

    A search for colour reconnection effects in hadronic decays of W pairs is performed with the L3 detector at centre-of-mass energies between 189 and 209 GeV. The analysis is based on the study of the particle flow between jets associated to the same W boson and between two different W bosons in qqqq events. The ratio of particle yields in the different interjet regions is found to be sensitive to colour reconnection effects implemented in some hadronisation models. The data are compared to different models with and without such effects. An extreme scenario of colour reconnection is ruled out.

  13. Measurement of charged-particle multiplicity distributions and their $H_q$ moments in hadronic Z decays at LEP

    CERN Document Server

    Achard, P.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Anderhub, H.; Andreev, Valery P.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S.V.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brochu, F.; Buijs, A.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y.H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J.A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; van Dierendonck, D.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M.T.; Duchesneau, D.; Duinker, P.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Ewers, A.; Extermann, P.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S.R.; Hu, Y.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, J.K.; Kirkby, Jasper; Kittel, W.; Klimentov, A.; Konig, A.C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J.M.; Leiste, R.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W.G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J.P.; Marzano, F.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W.J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Muanza, G.S.; Muijs, A.J.M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofev, D.O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, Keith; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rosenbleck, C.; Roux, B.; Rubio, J.A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Sushkov, S.; Suter, H.; Swain, J.D.; Szillasi, Z.; Tang, X.W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Ulbricht, J.; Valente, E.; Van de Walle, R.T.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobyov, A.A.; Wadhwa, M.; Wallraff, W.; Wang, X.L.; Wang, Z.M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yamamoto, J.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Yeh, S.C.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhao, J.; Zhu, G.Y.; Zhu, R.Y.; Zhuang, H.L.; Zichichi, A.; Zilizi, G.; Zimmermann, B.; Zoller, M.

    2003-01-01

    The charged-particle multiplicity distribution and the inclusive momentum distribution, in terms of the variable $\\xi$, are measured for all hadronic events as well as for light-quark and b-quark events in $\\mathrm{e}^{+}\\mathrm{e}^{-}$ collisions at the Z pole. Moments of the charged-particle multiplicity distributions are calculated, and the peak positions of the $\\xi$ distributions determined. The multiplicity distributions are studied in terms of their $H_q$ moments. Their quasi-oscillations when plotted versus the rank of the moment are compared with different theoretical approaches.

  14. Studies of the ATLAS hadronic Calorimeter response to different particles at Test Beams

    CERN Document Server

    Zakareishvili, Tamar; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muons data allow to study the dependence of the response on the incident point and angle in the cell. The electron data are used to determine the linearity of the electron energy measurement. The hadron data will allow to tune the calorimeter response to pions and kaons modelling to improve the reconstruction of the jet energies. The results of the ongoing data analysis are discussed in the presentation.

  15. Hadron production in high energy muon scattering. [Quark-parton model, 225 GeV, structure functions, particle ratios

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, R.G.

    1978-01-01

    An experiment was performed to study muon-proton scattering at an incident energy of 225 GeV and a total effective flux of 4.3 x 10/sup 10/ muons. This experiment is able to detect charged particles in coincidence with the scattered muon in the forward hemisphere, and results are reported for the neutral strange particles K/sub s//sup 0/ and ..lambda../sup 0/ decaying into two charged particles. Within experimental limits the masses and lifetimes of these particles are consistent with previous measurements. The distribution of hadrons produced in muon scattering is determined, measuring momentum components parallel and transverse to the virtual photon direction, and these distributions are compared to other high energy experiments involving the scattering of pions, protons, and neutrinos from protons. Structure functions for hadron production and particle ratios are calculated. No azimuthal dependence is observed, and lambda production does not appear to be polarized. The physical significance of the results is discussed within the framework of the quark-parton model. 29 references.

  16. Vanishing cosmological constant in elementary particles theory

    International Nuclear Information System (INIS)

    Pisano, F.; Tonasse, M.D.

    1997-01-01

    The quest of a vanishing cosmological constant is considered in the simplest anomaly-free chiral gauge extension of the electroweak standard model where the new physics is limited to a well defined additional flavordynamics above the Fermi scale, namely up to a few TeVs by matching the gauge coupling constants at the electroweak scale, and with an extended Higgs structure. In contrast to the electroweak standard model, it is shown how the extended scalar sector of the theory allows a vanishing or a very small cosmological constant. the details of the cancellation mechanism are presented. At accessible energies the theory is indistinguishable from the standard model of elementary particles and it is in agreement with all existing data. (author). 32 refs

  17. QCD-resummation and non-minimal flavour-violation for supersymmetric particle production at hadron colliders

    International Nuclear Information System (INIS)

    Fuks, B.

    2007-06-01

    Cross sections for supersymmetric particles production at hadron colliders have been extensively studied in the past at leading order and also at next-to-leading order of perturbative QCD. The radiative corrections include large logarithms which have to be re-summed to all orders in the strong coupling constant in order to get reliable perturbative results. In this work, we perform a first and extensive study of the resummation effects for supersymmetric particle pair production at hadron colliders. We focus on Drell-Yan like slepton-pair and slepton-sneutrino associated production in minimal supergravity and gauge-mediated supersymmetry-breaking scenarios, and present accurate transverse-momentum and invariant-mass distributions, as well as total cross sections. In non-minimal supersymmetric models, novel effects of flavour violation may occur. In this case, the flavour structure in the squark sector cannot be directly deduced from the trilinear Yukawa couplings of the fermion and Higgs supermultiplets. We perform a precise numerical analysis of the experimentally allowed parameter space in the case of minimal supergravity scenarios with non-minimal flavour violation, looking for regions allowed by low-energy, electroweak precision, and cosmological data. Leading order cross sections for the production of squarks and gauginos at hadron colliders are implemented in a flexible computer program, allowing us to study in detail the dependence of these cross sections on flavour violation. (author)

  18. Low-energy particle production and residual nuclei production from high-energy hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Alsmiller, F.S.; Alsmiller, R.G. Jr.; Hermann, O.W.

    1987-01-01

    The high-energy hadron-nucleus collision model, EVENTQ, has been modified to include a calculation of the excitation and kinetic energy of the residual compound nucleus. The specific purpose of the modification is to make it possible to use the model in the high-energy radiation transport code, HETC, which, in conjunction with MORSE, is used to transport the low energy particles. It is assumed that the nucleons in the nucleus move in a one-dimensional potential well and have the momentum distribution of a degenerate Fermi gas. The low energy particles produced by the deexcitation of the residual compound nucleus, and the final residual nucleus, are determined from an evaporation model. Comparisons of multiplicities and residual nuclei distributions with experimental data are given. The ''grey'' particles, i.e., charged particles with 0.25 < β < 0.7, are in good agreement with experimental data but the residual nuclei distributions are not. 12 refs., 3 figs

  19. HERWIG for Hadron-Hadron physics

    International Nuclear Information System (INIS)

    Seymour, M.H.

    1993-05-01

    HERWIG is a general-purpose particle physics event generator, which includes the simulation of any combination of hard lepton, hadron or photon scattering and soft hadron-hadron collisions in one package. It uses the parton-shower approach for initial-state and final-state QCD radiation, including colour coherence effects and azimuthal correlations both within and between jets. This article describes HERWIG version 5.6, and gives a brief review of the physics underlying HERWIG, with particular emphasis on hadron-hadron collisions. Details are given of the input and control parameters used by the program

  20. Research program in elementary particle theory. Progress report, 1984

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1984-04-01

    Research progress is reported on the following topics: gauge theory and monopole physics; supersymmetry and proton decay; strong interactions and model of particles; quantum rotator and spectrum generating group models of particles; geometric foundations of particle physics and optics; and application of particle physics to astrophysics. The titles of DOE reports are listed, and research histories of the scientific staff of the Center for Particle Theory are included

  1. Forward charge distributions associated with hadronically produced J/psi particles

    International Nuclear Information System (INIS)

    Budd, H.S.

    1983-01-01

    We have measured the forward charge as a function of x/sub F/ of the psi for events produced by 225 Gev/c π-Be interactions. The forward charge is the average difference between the number of positive hadrons and negative hadrons produced in the forward hemisphere. The standard Drell-Yan model predicts that the forward charge should become less negative as the x/sub F/ of the J/psi increases. The measured forward charge becomes more negative as the x/sub F/ of the J/psi increases although it is consistent with being flat as a function of x/sub F/. Hence the data is not consistent with any Drell-Yan type model which assumes the forward charge is not strongly dependent on the hadronic energy left over after the J/psi is formed. 45 references

  2. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    International Nuclear Information System (INIS)

    Lindstroem, Gunnar; Dolenc, Irena; Fretwurst, Eckhart; Hoenniger, Frank; Kramberger, Gregor; Moll, Michael; Nossarzewska, Elsbieta; Pintilie, Ioana; Roeder, Ralf

    2006-01-01

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 μm had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of Φ eq =10 16 cm -2 . Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E C -0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with 90 Sr electrons (mip's) is also almost identical to what was expected. A charge collection efficiency of

  3. Epitaxial silicon detectors for particle tracking-Radiation tolerance at extreme hadron fluences

    Energy Technology Data Exchange (ETDEWEB)

    Lindstroem, Gunnar [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany)]. E-mail: gunnar.lindstroem@desy.de; Dolenc, Irena [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Fretwurst, Eckhart [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Hoenniger, Frank [Institute for Experimental Physics, University of Hamburg, Hamburg, 22761 (Germany); Kramberger, Gregor [Jozef Stefan Institute, University of Ljubljana, Ljubljana, 100 (Slovenia); Moll, Michael [CERN, Geneva, 1211 (Switzerland); Nossarzewska, Elsbieta [ITME, Institute for Electronocs Materials Technology, Warsaw, 01919 (Poland); Pintilie, Ioana [National Institute of Materials Physics, Bucharest, 077125 (Romania); Roeder, Ralf [CiS Institute for Microsensors gGmbH, Erfurt, 99099 (Germany)

    2006-11-30

    Diodes processed on n-type epitaxial silicon with a thickness of 25, 50 and 75 {mu}m had been irradiated with reactor neutrons and high-energy protons (24 GeV/c) up to integrated fluences of {phi} {sub eq}=10{sup 16} cm{sup -2}. Systematic experiments on radiation-induced damage effects revealed the following results: in contrast to standard and oxygen-enriched float zone (FZ) silicon devices no space charge sign inversion was observed after irradiation. It is shown that the radiation-generated concentration of deep acceptors, dominating the behavior of n-type FZ diodes, is compensated by creation of shallow donors. Thus a positive space charge is maintained throughout the irradiation up to the highest fluence and even during prolonged elevated-temperature annealing cycles. Defect analysis studies using thermally stimulated current measurements attribute the effect to a damage-induced shallow donor at E {sub C}-0.23 eV. It is argued that, as in the case of thermal donors, oxygen dimers, out diffusing from the Cz substrate during the diode processing, are responsible precursers. Results from extensive annealing experiments at elevated temperatures are verified by comparison with prolonged room-temperature annealing. These results showed that in contrast to FZ detectors, which always have to be cooled, room-temperature storage during beam off periods of future elementary particle physics experiments would even be beneficial for n-type epi-silicon detectors. A dedicated experiment at CERN-PS had successfully proven this expectation. It was verified, that in such a scenario the depletion voltage for the epi-detector could always be kept at a moderate level throughout the full S-LHC operation (foreseen upgrade of the large hadron collider). Practically no difference with respect to FZ-silicon devices was found in the damage-induced bulk generation current. The charge trapping measured with {sup 90}Sr electrons (mip's) is also almost identical to what was expected

  4. Transport theory applied to hadron and light fragment production in high energy nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Schuermann, B.; Malfliet, R.; Mies, S.; Zwermann, W.

    1984-01-01

    Foundations of the transport theory for studying K + , K - , π - and light fragment production in nucleus-nucleus interactions at high energies are given. Inclusive production of protons, K + and π - in the Ne+NaF reaction at 400 MeV and 21 GeV/nucleon is consdered, their differential cross sections are caculated. Differential cross sections of K - and π - production in Si+Si → K + +X and Ne+NaF → π - +X reactions at the energy of 2.1 GeV/nucleon, their energy dependence are estimated. Comparison of the calculated and experimental data is graphically presented. The model of the transport theory is shown to successfully reproduce inclusive spectra of different particles (p, d, π, K + , K - ) in a wide energy range of incident particles (from 400 MeV to 2 GeV/nucleon). This approach can be generalized for lower energies by generating a mean nuclear potentiasl field

  5. Exclusive hadronic and nuclear processes in QCD

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1985-12-01

    Hadronic and nuclear processes are covered, in which all final particles are measured at large invariant masses compared with each other, i.e., large momentum transfer exclusive reactions. Hadronic wave functions in QCD and QCD sum rule constraints on hadron wave functions are discussed. The question of the range of applicability of the factorization formula and perturbation theory for exclusive processes is considered. Some consequences of quark and gluon degrees of freedom in nuclei are discussed which are outside the usual domain of traditional nuclear physics. 44 refs., 7 figs

  6. Pseudo-classical theory of Majorana-Weyl particle

    International Nuclear Information System (INIS)

    Grigoryan, G.V.; Grigoryan, R.P.; Tyutin, I.V.

    1996-01-01

    A pseudo-classical theory of Weyl particle in the space-time dimensions D = 2 n is constructed. The canonical quantization of that pseudo-classical theory is carried out and it results in the theory of the D = 2 n dimensional Weyl particle in the Foldy-Wouthuysen representation. 28 refs

  7. Determination of the differential cross-section in hadronic e+e--annihilation events with hard, isolated, neutral particles

    International Nuclear Information System (INIS)

    Makowsky, M.

    1982-10-01

    Hadronic e + e - -annihilation events have been measured, by the CELLO-detector at PETRA at the center of mass energy Esub(cm) = 34 GeV and Esub(cm) = 22 GeV. Those events with hard, isolated, neutral particles are selected and explored. At Esub(cm) = 34 GeV the predominant source of these isolated photons is found to be initial state bremsstrahlung of the e + e - -annihilation. The measured photon distributions as function of its energy and the total cross section are investigated. The agreement with QED-predictions is good. (orig.) [de

  8. Theory of conductivity of chiral particles

    International Nuclear Information System (INIS)

    Kailasvuori, Janik; Šopík, Břetislav; Trushin, Maxim

    2013-01-01

    In this methodology focused paper we scrutinize the application of the band-coherent Boltzmann equation approach to calculating the conductivity of chiral particles. As the ideal testing ground we use the two-band kinetic Hamiltonian with an N-fold chiral twist that arises in a low-energy description of charge carriers in rhombohedrally stacked multilayer graphene. To understand the role of chirality in the conductivity of such particles we also consider the artificial model with the chiral winding number decoupled from the power of the dispersion. We first utilize the approximate but analytically solvable band-coherent Boltzmann approach including the ill-understood principal value terms that are a byproduct of several quantum many-body theory derivations of Boltzmann collision integrals. Further on, we employ the finite-size Kubo formula with the exact diagonalization of the total Hamiltonian perturbed by disorder. Finally, we compare several choices of Ansatz in the derivation of the Boltzmann equation according to the qualitative agreement between the Boltzmann and Kubo conductivities. We find that the best agreement can be reached in the approach where the principal value terms in the collision integral are absent. (paper)

  9. Large Hadron particle collider may not have its run this November

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (LHC), based at CERN in Geneva, Switzerland, will not run in November this year as scheduled. The LHC was supposed to have a test run this yera, before switching on the scientific search for the Higgs boson in 2008."(1 page)

  10. On the multiplicity of secondary particles in the interactions of hadrons with nuclei

    International Nuclear Information System (INIS)

    Babecki, J.

    1976-01-01

    An analysis of the interactions of hadrons at different primary energies (from a few GeV to some thousands of GeV) with nuclei of various mass numbers A was made. Experimental data were compared with the prediction sof a simple model of non-interacting fireballs. (author)

  11. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    Energy Technology Data Exchange (ETDEWEB)

    Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Melnitchouk, Wally [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-07

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.

  12. Wigner particle theory and local quantum physics

    International Nuclear Information System (INIS)

    Fassarella, Lucio; Schroer, Bert

    2002-01-01

    Wigner's irreducible positive energy representations of the Poincare group are often used to give additional justifications for the Lagrangian quantization formalism of standard QFT. Here we study another more recent aspect. We explain in this paper modular concepts by which we are able to construct the local operator algebras for all standard positive energy representations directly without going through field coordinations. In this way the artificial emphasis on Lagrangian field coordinates is avoided from the very beginning. These new concepts allow to treat also those cases of 'exceptional' Wigner representations associated with anyons and the famous Wigner spin tower which have remained inaccessible to Lagrangian quantization. Together with the d=1+1 factorizing models (whose modular construction has been studied previously), they form an interesting family of theories with a rich vacuum-polarization structure (but no on shell real particle creation) to which the modular methods can be applied for their explicit construction. We explain and illustrate the algebraic strategy of this construction. We also comment on possibilities of formulating the Wigner theory in a setting of a noncommutativity. (author)

  13. Wigner particle theory and local quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Fassarella, Lucio; Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: fassarel@cbpf.br; schroer@cbpf.br

    2002-01-01

    Wigner's irreducible positive energy representations of the Poincare group are often used to give additional justifications for the Lagrangian quantization formalism of standard QFT. Here we study another more recent aspect. We explain in this paper modular concepts by which we are able to construct the local operator algebras for all standard positive energy representations directly without going through field coordinations. In this way the artificial emphasis on Lagrangian field coordinates is avoided from the very beginning. These new concepts allow to treat also those cases of 'exceptional' Wigner representations associated with anyons and the famous Wigner spin tower which have remained inaccessible to Lagrangian quantization. Together with the d=1+1 factorizing models (whose modular construction has been studied previously), they form an interesting family of theories with a rich vacuum-polarization structure (but no on shell real particle creation) to which the modular methods can be applied for their explicit construction. We explain and illustrate the algebraic strategy of this construction. We also comment on possibilities of formulating the Wigner theory in a setting of a noncommutativity. (author)

  14. Research program in elementary-particle theory, 1981. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1981-01-01

    Progress is reported for research in the physics of ultra high energies and cosmology, the phenomenology of particle physics, composite models of particles and quantum field theory, quantum mechanics, geometric formulations, fiber bundles, and other algebraic models

  15. Gluonic hadrons

    International Nuclear Information System (INIS)

    Close, F.E.

    1987-09-01

    The standard theory of colour forces (Quantum Chromodynamics) suggests that in addition to the familiar hadrons made of quarks, there should exist new states where coloured gluons play an essential dynamical role. The author reviews the theoretical predictions for the properties of these ''glueballs'' and of states containing resonating quarks and gluons. Attempts are made to highlight those features which are common to several models in the literature. Experimental candidates are confronted with the models. No clear cut signal for a gluonic hadron yet exists; consequently what future data are required to determine the constituency of some popular candidates is considered. (author)

  16. Construction and commissioning of a hadronic test-beam calorimeter to validate the particle-flow concept at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Groll, M.

    2007-06-15

    This thesis discusses research and development studies performed for a hadronic calorimeter concept for the International Linear Collider (ILC). The requirements for a detector for the ILC are de ned by the particle-ow concept in which the overall detector performance for jet reconstruction is optimised by reconstructing each particle individually. The calorimeter system has to have unprecedented granularity to ful l the task of shower separation. The validation of the shower models used to simulate the detector performance is mandatory for the design and optimisation of the ILC detector. The construction and operation of a highly granular test-beam system will serve as a tool for this validation. This motivates the urgent need of research and development on calorimeter prototypes. One possible realisation of the hadronic calorimeter is based on a sampling structure of steel and plastic scintillator with analogue readout, where the sensitive scintillator layers are divided into tiles. A newly developed silicon based photo-detector (SiPM) o ers the possibilities to design such a system. The SiPM is a multi-pixel avalanche photo-diode operated in Geiger mode. Due to its small dimensions it is possible to convert the light produced in the calorimeter to an electronic signal already inside the calorimeter volume. The basic developments on scintillator, tile and photo-detector studies provide the basis for prototype construction. The main part of this thesis will discuss the construction and rst commissioning of an analogue hadronic calorimeter prototype consisting of 8000 channels read out with SiPMs. The smallest calorimeter unit is the tile system including the SiPM. The production and characterisation chain of this unit is an essential step in the construction of a large scale prototype. These basic units are arranged on readout layers, which are already a multi-channel system of 200 channels. In addition, the new photo-detector requires dedicated readout

  17. Construction and commissioning of a hadronic test-beam calorimeter to validate the particle-flow concept at the ILC

    International Nuclear Information System (INIS)

    Groll, M.

    2007-06-01

    This thesis discusses research and development studies performed for a hadronic calorimeter concept for the International Linear Collider (ILC). The requirements for a detector for the ILC are de ned by the particle-ow concept in which the overall detector performance for jet reconstruction is optimised by reconstructing each particle individually. The calorimeter system has to have unprecedented granularity to ful l the task of shower separation. The validation of the shower models used to simulate the detector performance is mandatory for the design and optimisation of the ILC detector. The construction and operation of a highly granular test-beam system will serve as a tool for this validation. This motivates the urgent need of research and development on calorimeter prototypes. One possible realisation of the hadronic calorimeter is based on a sampling structure of steel and plastic scintillator with analogue readout, where the sensitive scintillator layers are divided into tiles. A newly developed silicon based photo-detector (SiPM) o ers the possibilities to design such a system. The SiPM is a multi-pixel avalanche photo-diode operated in Geiger mode. Due to its small dimensions it is possible to convert the light produced in the calorimeter to an electronic signal already inside the calorimeter volume. The basic developments on scintillator, tile and photo-detector studies provide the basis for prototype construction. The main part of this thesis will discuss the construction and rst commissioning of an analogue hadronic calorimeter prototype consisting of 8000 channels read out with SiPMs. The smallest calorimeter unit is the tile system including the SiPM. The production and characterisation chain of this unit is an essential step in the construction of a large scale prototype. These basic units are arranged on readout layers, which are already a multi-channel system of 200 channels. In addition, the new photo-detector requires dedicated readout

  18. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  19. Electronic properties of single crystal CVD diamond and its suitability for particle detection in hadron physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pomorski, Michal

    2008-08-07

    This work presents the study on the suitability of single-crystal CVD diamond for particle-detection systems in present and future hadron physics experiments. Different characterization methods of the electrical and the structural properties were applied to gain a deeper understanding of the crystal quality and the charge transport properties of this novel semiconductor material. First measurements regarding the radiation tolerance of diamond were performed with sensors heavily irradiated with protons and neutrons. Finally, detector prototypes were fabricated and successfully tested in various experiments as time detectors for minimum ionizing particles as well as for spectroscopy of heavy ions at the energy ranges available at the SIS and the UNILAC facilities of GSI. (orig.)

  20. Electronic properties of single crystal CVD diamond and its suitability for particle detection in hadron physics experiments

    International Nuclear Information System (INIS)

    Pomorski, Michal

    2008-01-01

    This work presents the study on the suitability of single-crystal CVD diamond for particle-detection systems in present and future hadron physics experiments. Different characterization methods of the electrical and the structural properties were applied to gain a deeper understanding of the crystal quality and the charge transport properties of this novel semiconductor material. First measurements regarding the radiation tolerance of diamond were performed with sensors heavily irradiated with protons and neutrons. Finally, detector prototypes were fabricated and successfully tested in various experiments as time detectors for minimum ionizing particles as well as for spectroscopy of heavy ions at the energy ranges available at the SIS and the UNILAC facilities of GSI. (orig.)

  1. Self-consistent theory of hadron-nucleus scattering. Application to pion physics

    International Nuclear Information System (INIS)

    Johnson, M.B.

    1980-01-01

    The requirement of using self-consistent amplitudes to evaluate microscopically the scattering of strongly interacting particles from nuclei is developed. Application of the idea to a simple model of pion-nucleus scattering is made. Numerical results indicate that the expansion of the optical potential converges when evaluated in terms of fully self-consistent quantities. A comparison of the results to a recent determination of the spreading interaction in the phenomenological isobar-hole model shows that the theory accounts for the sign and magnitude of the real and imaginary part of the spreading interaction with no adjusted parameters. The self-consistnt theory has a strong density dependence, and the consequences of this for pion-nucleus scattering are discussed. 18 figures, 1 table

  2. Forecasting report. Particle physics

    International Nuclear Information System (INIS)

    The present status of particle and antiparticle physics is examined. As for electromagnetic interactions, the quantum electrodynamics theory is briefly reviewed and the various types of hadronic electromagnetic interactions classified. The theoretical approaches of strong interactions are outlined with hadron spectroscopy. Dynamical models and high energy phenomena are presented. The theoretical problems of weak interaction physics are examined with some experimental aspects. Experimental investigations of the hadron internal structure are briefly surveyed [fr

  3. Massive neutral particles on heterotic string theory

    International Nuclear Information System (INIS)

    Olivares, Marco; Villanueva, J.R.

    2013-01-01

    The motion of massive particles in the background of a charged black hole in heterotic string theory, which is characterized by a parameter α, is studied in detail in this paper. Since it is possible to write this space-time in the Einstein frame, we perform a quantitative analysis of the time-like geodesics by means of the standard Lagrange procedure. Thus, we obtain and solve a set of differential equations and then we describe the orbits in terms of the elliptic p-Weierstrass function. Also, by making an elementary derivation developed by Cornbleet (Am. J. Phys. 61(7):650-651, 1993) we obtain the correction to the angle of advance of perihelion to first order in α, and thus, by comparing with Mercury's data we give an estimation for the value of this parameter, which yields an heterotic solar charge Q s un ≅ 0.728 [Km]=0.493 M s un. Therefore, in addition to the study on null geodesics performed by Fernando (Phys. Rev. D 85:024033, 2012), this work completes the geodesic structure for this class of space-time. (orig.)

  4. Massive neutral particles on heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Marco [Pontificia Universidad de Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Villanueva, J.R. [Universidad de Valparaiso, Departamento de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile)

    2013-12-15

    The motion of massive particles in the background of a charged black hole in heterotic string theory, which is characterized by a parameter {alpha}, is studied in detail in this paper. Since it is possible to write this space-time in the Einstein frame, we perform a quantitative analysis of the time-like geodesics by means of the standard Lagrange procedure. Thus, we obtain and solve a set of differential equations and then we describe the orbits in terms of the elliptic p-Weierstrass function. Also, by making an elementary derivation developed by Cornbleet (Am. J. Phys. 61(7):650-651, 1993) we obtain the correction to the angle of advance of perihelion to first order in {alpha}, and thus, by comparing with Mercury's data we give an estimation for the value of this parameter, which yields an heterotic solar charge Q{sub s}un {approx_equal} 0.728 [Km]=0.493 M{sub s}un. Therefore, in addition to the study on null geodesics performed by Fernando (Phys. Rev. D 85:024033, 2012), this work completes the geodesic structure for this class of space-time. (orig.)

  5. Search for pair-produced long-lived neutral particles decaying in the ATLAS hadronic calorimeter in $pp$ collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Do Valle Wemans, André; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2015-04-09

    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb$^{-1}$ of data collected in proton--proton collisions at $\\sqrt{s}$ = 8 TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.

  6. The hadronic standard model for strong and electroweak interactions

    International Nuclear Information System (INIS)

    Raczka, R.

    1993-01-01

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of Λ-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e + + e - → hadrons, e + + e - → W + + W - , e + + e - → p + anti-p, e + p → e + p and p + anti-p → p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant α(M z ) and we predicted the top baryon mass M Λ t ≅ 240 GeV. Since in our model the proton, neutron, Λ-particles, vector mesons like ρ, ω, φ, J/ψ ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab

  7. Hadron Structure '87. Volume 14

    International Nuclear Information System (INIS)

    Krupa, D.

    1988-01-01

    Out of the 21 papers and 41 short communications presented at the conference, the proceedings contain the full texts of 12 papers and 35 short communications. All these contributions have been inputted to INIS. The topics covered include nonperturbative calculations in the field theory, in QCD in particular; particle production in hadron-nucleus and nucleus-nucleus collisions and the quark-gluon plasma; and recent experimental results in the field. (A.K.)

  8. Particles Produced in Association with High Transverse Momentum Single Photons and $\\pi^0$s in Hadronic Collision

    Energy Technology Data Exchange (ETDEWEB)

    Sinanidis, Alexandros Pericles [Northeastern U.

    1989-01-01

    The charged and neutral particles produced in association with high transverse momentum ($Pr_{\\tau}$ > 5.0 GeV /c) photons ($\\gamma$) and neutral pions ($\\pi^0$) in p(Cu+Be) and $\\pi^-$(cu+Be) collisions at vs = 31.5 GeV are studied in this thesis. It was observed that 1) The relative rapidity of the two highest Pr recoiling particles in the events have a jet - like structure. 2) The relative rapidity of the single $\\gamma$ (or $\\pi^0$ ) and the highest $P_{\\tau}$ charged particle accompanying the single $\\gamma$ (or $\\pi^0$ ) show that the high $P_{\\tau} \\pi^0$ events have a jet - like structure in the trigger hemisphere whereas the high $P_{\\tau}$ single $\\gamma$ events do not. 3) The angular distributions of the particles produced in the reactions show that high $P_{\\tau} \\pi^0$s are accompanied by other particles, whereas high $P_{\\tau}$ single photons are relatively isolated. 4) The fragmentation distributions of the recoiling particles from the high $P_{\\tau}$ single photons and $\\pi^0$s are consistent with the measurements of other experiments. 5) The recoiling particles are consistent with the fragmentation of either a quark or a gluon according to the QCD (Quantum Chromodynamics). In summary, particles produced in association with high transverse momentum single photons and $\\pi^0$s in hadronic collisions have been measured and their properties are in good agreement with the predictions of the parton model and those of QCD

  9. Long-range two-particle correlations of strange hadrons with charged particles in pPb and PbPb collisions at LHC energies

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Zenoni, Florian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Tao, Junquan; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Künsken, Andreas; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Roland, Benoit; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Kumar, Ramandeep; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Biasotto, Massimo; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Gabusi, Michele; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Lloret Iglesias, Lara; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Korotkikh, Vladimir; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Vardanyan, Irina; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Takahashi, Yuta; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Hoss, Jan; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Dhingra, Nitish; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Yoo, Jaehyeok; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Sperka, David; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Zvada, Marian; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Barnes, Virgil E; Benedetti, Daniele; Bortoletto, Daniela; De Mattia, Marco; Gutay, Laszlo; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Kaplan, Steven; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Vuosalo, Carl; Woods, Nathaniel

    2015-03-06

    Measurements of two-particle angular correlations between an identified strange hadron (${\\rm K}^0_{\\rm S}$ or $\\Lambda$/$\\overline{\\Lambda}$) and a charged particle, emitted in pPb collisions, are presented over a wide range in pseudorapidity and full azimuth. The data, corresponding to an integrated luminosity of approximately 35 nb$^{-1}$, were collected at a nucleon-nucleon center-of-mass energy ($\\sqrt{s_{NN}}$) of 5.02 TeV with the CMS detector at the LHC. The results are compared to semi-peripheral PbPb collision data at $\\sqrt{s_{NN}}$ = 2.76 TeV, covering similar charged-particle multiplicities in the events. The observed azimuthal correlations at large relative pseudorapidity are used to extract the second-order ($v_2$) and third-order ($v_3$) anisotropy harmonics of ${\\rm K}^0_{\\rm S}$ and $\\Lambda$/$\\overline{\\Lambda}$ particles. These quantities are studied as a function of the charged-particle multiplicity in the event and the transverse momentum of the particles. For high-multiplicity pPb event...

  10. European hadrons

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The European Hadron Facility (EHF) is a project for particle and nuclear physics in the 1990s which would consist of a fast cycling high intensity proton synchrotron of about 30 GeV primary energy and providing a varied spectrum of intense high quality secondary beams (polarized protons, pions, muons, kaons, antiprotons, neutrinos). The physics case of this project has been studied over the last two years by a European group of particle and nuclear physicists (EHF Study Group), whilst the conceptual design for the accelerator complex was worked out (and is still being worked on) by an international group of machine experts (EHF Design Study Group). Both aspects have been discussed in recent years in a series of working parties, topical seminars, and workshops held in Freiburg, Trieste, Heidelberg, Karlsruhe, Les Rasses and Villigen. This long series of meetings culminated in the International Conference on a European Hadron Facility held in Mainz from 10-14 March

  11. Determination of the shapes and sizes of the regions in which in hadron-nucleus collisions reactions leading to the nucleon emission, particle production, and fragment evaporation occur

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1985-01-01

    Shapes and sizes of the regions in target-nuclei in which reactions leading to the nucleon emission, particle production and fragment evaporation occur are determined. The region of nucleon emission is of cylindrical shape, with the diameter as large as two nucleon diameters, centered on the incident hadron course. The reactions leading to the particle production happen predominantly along the incident hadron course in nuclear matter. The fragment evaporation goes from the surface layer of the part of the target-nucleus damaged in nucleon emission process

  12. Multi-hadron-state contamination in nucleon observables from chiral perturbation theory

    Science.gov (United States)

    Bär, Oliver

    2018-03-01

    Multi-particle states with additional pions are expected to be a non-negligible source of the excited-state contamination in lattice simulations at the physical point. It is shown that baryon chiral perturbation theory (ChPT) can be employed to calculate the contamination due to two-particle nucleon-pion states in various nucleon observables. Results to leading order are presented for the nucleon axial, tensor and scalar charge and three Mellin moments of parton distribution functions: the average quark momentum fraction, the helicity and the transversity moment. Taking into account experimental and phenomenological results for the charges and moments the impact of the nucleon-pionstates on lattice estimates for these observables can be estimated. The nucleon-pion-state contribution leads to an overestimation of all charges and moments obtained with the plateau method. The overestimation is at the 5-10% level for source-sink separations of about 2 fm. Existing lattice data is not in conflict with the ChPT predictions, but the comparison suggests that significantly larger source-sink separations are needed to compute the charges and moments with few-percent precision. Talk given at the 35th International Symposium on Lattice Field Theory, 18 - 24 June 2017, Granada, Spain.

  13. Progress in elementary particle theory, 1950-1964

    International Nuclear Information System (INIS)

    Gell-Mann, M.

    1989-01-01

    This final chapter of the book lists advances in elementary particle theory from 1950 to 1964 in an order of progressive understanding of ideas rather than chronologically. Starting with quantum field theory and the important discoveries within it, the author explains the connections and items missing in this decade, but understood later. The second part of the chapter takes the same pattern, but deals with basic interactions (strong, electromagnetic, weak and gravitational) and elementary particles, including quarks. By 1985, theory had developed to such a degree that it was hoped that the long-sought-after unified field theory of all elementary particles and interactions of nature might be close at hand. (UK)

  14. Mathematical theories of classical particle channeling in perfect crystals

    International Nuclear Information System (INIS)

    Dumas, H. Scott

    2005-01-01

    We present an overview of our work on rigorous mathematical theories of channeling for highly energetic positive particles moving in classical perfect crystal potentials. Developed over the last two decades, these theories include: (i) a comprehensive, highly mathematical theory based on Nekhoroshev's theorem which embraces both axial and planar channeling as well as certain non-channeling particle motions (ii) a theory of axial channeling for relativistic particles based on a single-phase averaging method for ordinary differential equations and (iii) a theory of planar channeling for relativistic particles based on a two-phase averaging method for ordinary differential equations. Here we touch briefly on (i) and (ii), then focus on (iii). Together these theories place Lindhard's continuum model approximations on a firm mathematical foundation, and should serve as the starting point for more refined mathematical treatments of channeling

  15. Hadron reaction mechanisms

    International Nuclear Information System (INIS)

    Collins, P.D.B.; Martin, A.D.

    1982-01-01

    The mechanism of hadron scattering at high energies are reviewed in such a way as to combine the ideas of the parton model and quantum chromodynamics (QCD) with Regge theory and phenomenology. After a brief introduction to QCD and the basic features of hadron scattering data, scaling and the dimensional counting rules, the parton structure of hadrons, and the parton model for large momentum transfer processes, including scaling violations are discussed. Hadronic jets and the use of parton ideas in soft scattering processes are examined, attention being paid to Regge theory and its applications in exclusive and inclusive reactions, the relationship to parton exchange being stressed. The mechanisms of hadron production which build up cross sections, and hence the underlying Regge singularities, and the possible overlap of Regge and scaling regions are discussed. It is concluded that the key to understanding hadron reaction mechanisms seems to lie in the marriage of Regge theory with QCD. (author)

  16. Hadron spectroscopy 1987

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk

  17. Hadron spectroscopy 1987

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-09-15

    With much particle physics research using particle beams to probe the behaviour of the quark constituents deep inside nucleons and other strongly interacting particles (hadrons), it is easy to overlook the progress being made through hadron spectroscopy – the search for and classification of rare particles – and the way it has increased our understanding of quark physics. One way of remedying this was to attend the stimulating and encouraging Hadron 87 meeting held earlier this year at the Japanese KEK Laboratory, where Jonathan Rosner from Chicago's Enrico Fermi Institute gave the concluding talk.

  18. Uses of solid state analogies in elementary particle theory

    International Nuclear Information System (INIS)

    Anderson, P.W.

    1976-01-01

    The solid state background of some of the modern ideas of field theory is reviewed, and additional examples of model situations in solid state or many-body theory which may have relevance to fundamental theories of elementary particles are adduced

  19. Light Cone 2016 : Challenges for Theory and Experiment in Hadron and Nuclear Physics on the Light Front

    CERN Document Server

    Pena, Teresa

    2018-01-01

    The Light-Cone 2016 conference, held in September 2016 in Lisbon, Portugal, belongs to a series of yearly Light-Cone meetings that started in 1991. As its predecessors, this conference was guided by the objectives defined by the International Light Cone Advisory Committee, namely to “advance research in quantum field theory, particularly light-cone quantization methods applicable to the solution of physical problems”. This volume compiles selected papers presented at the conference by experts from all over the world, which describe recent progress in theoretical research, and new results and planned activities at leading experimental facilities, with special emphasis on the physics of hadrons and nuclei.

  20. Who cares about particle physics? making sense of the Higgs boson, the Large Hadron Collider and CERN

    CERN Document Server

    AUTHOR|(CDS)2051327

    2016-01-01

    CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers work together to push scientific knowledge forward. Here is a book written for every person who wishes to learn a little more about particle physics, without requiring prior scientific knowledge. It starts from the basics to build a solid understanding of current res...

  1. Quark-model study of the hadron structure and the hadron-hadron interaction

    International Nuclear Information System (INIS)

    Valcarce, A; Caramés, T F; Vijande, J; Garcilazo, H

    2011-01-01

    Recent results of hadron spectroscopy and hadron-hadron interaction within a quark model framework are reviewed. Higher order Fock space components are considered based on new experimental data on low-energy hadron phenomenology. The purpose of this study is to obtain a coherent description of the low-energy hadron phenomenology to constrain QCD phenomenological models and try to learn about low-energy realizations of the theory.

  2. Test-particle motion in Einstein's unified field theory. I. General theory and application to neutral test particles

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1985-01-01

    We develop a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. The method is also applicable to Einstein's gravitational theory. Particles are represented by singularities in the field. The method is covariant at each step of the analysis. We also apply the method and find both in Einstein's unified field theory and in Einstein's gravitational theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In the case of Einstein's gravitational theory the results are the well-known equations of structure and motion of a neutral pole-dipole test particle in a given background gravitational field. In the case of Einstein's unified field theory the results are the same, providing we identify a certain symmetric second-rank tensor field appearing in Einstein's theory with the metric and gravitational field. We therefore discover not only the equations of structure and motion of a neutral test particle in Einstein's unified field theory, but we also discover what field in Einstein's theory plays the role of metric and gravitational field

  3. Giant particle detector magnet goes underground at CERN's Large Hadron Collider accelerator

    CERN Multimedia

    2007-01-01

    "Scientists of the US CMS collaboration joined colleagues around the world in announcing that the heaviest piece of the Compact Muon Solenoid particle detector has begun the momentous journey into its experimental cavern 100 meters underground." (1 page)

  4. Quantum field theory and the internal states of elementary particles

    CSIR Research Space (South Africa)

    Greben, JM

    2011-01-01

    Full Text Available A new application of quantum field theory is developed that gives a description of the internal dynamics of dressed elementary particles and predicts their masses. The fermionic and bosonic quantum fields are treated as interdependent fields...

  5. Renormalization and operator product expansion in theories with massless particles

    International Nuclear Information System (INIS)

    Anikin, S.A.; Smirnov, V.A.

    1985-01-01

    Renormalization procedure in theories including massless particles is presented. With the help of counterterm formalism the operator product expansion for arbitrary composite fields is derived. The coefficient functions are explicitly expressed in terms of certain Green's functions. (author)

  6. Dynamical theory of anomalous particle transport

    International Nuclear Information System (INIS)

    Meiss, J.D.; Cary, J.R.; Escande, D.F.; MacKay, R.S.; Percival, I.C.; Tennyson, J.L.

    1985-01-01

    The quasi-linear theory of transport applies only in a restricted parameter range, which does not necessarily correspond to experimental conditions. Theories are developed which extend transport calculations to the regimes of marginal stochasticity and strong turbulence. Near the stochastic threshold the description of transport involves the leakage through destroyed invariant surfaces, and the dynamical scaling theory is used to obtain a universal form for transport coefficients. In the strong-turbulence regime, there is an adiabatic invariant which is preserved except near separatrices. Breakdown of this invariant leads to a new form for the diffusion coefficient. (author)

  7. Distributions of charged hadrons associated with high transverse momentum particles in pp and Au+Au collisions at sqrt[sNN]=200 GeV.

    Science.gov (United States)

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grebenyuk, O; Gronstal, S; Grosnick, D; Guertin, S M; Gupta, A; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Hughes, E; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Levine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mischke, A; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Timoshenko, S; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; Vandermolen, A M; Varma, R; Vasilevski, I; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Vznuzdaev, M; Waggoner, W; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Yuting, B; Zanevski, Y V; Zhang, H; Zhang, W M; Zhang, Z P; Zhaomin, Z P; Zizong, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2005-10-07

    Charged hadrons in [EQUATION: SEE TEXT] associated with particles of [EQUATION: SEE TEXT] are reconstructed in pp and Au+Au collisions at sqrt[sNN]=200 GeV. The associated multiplicity and p magnitude sum are found to increase from pp to central Au+Au collisions. The associated p distributions, while similar in shape on the nearside, are significantly softened on the awayside in central Au+Au relative to pp and not much harder than that of inclusive hadrons. The results, consistent with jet quenching, suggest that the awayside fragments approach equilibration with the medium traversed.

  8. Monitoring of laser-accelerated particle beams for hadron therapy via Compton tracking

    Energy Technology Data Exchange (ETDEWEB)

    Lang, C.; Thirolf, P.G. [LMU, Muenchen (Germany); Habs, D.; Tajima, T. [LMU, Muenchen (Germany); MPQ, Garching (Germany); Zoglauer, A. [SSL, Berkeley (United States); Kanbach, G.; Diehl, R. [MPE, Muenchen (Germany); Schreiber, J. [MPQ, Garching (Germany)

    2011-07-01

    Presently large efforts have been achieved towards the development of hadron cancer therapy based on laser-accelerated ion (p, C) beams, particularly aiming at the treatment of small tumors (few mm size). Thus precise monitoring of the ion track is mandatory. Conventional PET technology suffers from limited signal strength and precision of locating the source position. We envisage to use Compton tracking, i.e. determining energy and momentum of Compton photons and electrons, emitted along the ion track in the irradiated soft tissue. Confining the Compton cone by tracking the scattered electron will allow to significantly improve on the position resolution. Monte Carlo simulations have been performed to characterize the achievable position resolution and efficiency of a Compton camera. We estimate a resolution of 2 mm (1 mm; 5 mm) FWHM at 2 MeV (5 MeV; 0.5 MeV). An efficiency of 1.4*10{sup -3} (4.6*10{sup -6}) at 0.5 MeV (2 MeV) is envisaged. Optimized for an energy range between 0.5 MeV and 5 MeV, we plan for a system of 5 layers of double-sided Si strip detectors (for Compton electron tracking) and an additional LaBr{sub 3}:Ce calorimeter, read out by a segmented photomultiplier tube.

  9. Muon Identification in Hadron Calorimeter at DELPHI and Muons as P robes of Particle Interactions

    CERN Document Server

    Ridky, Jan

    2007-01-01

    The presented dissertation consists of the papers [A.1, A.2, A.3, A.4, A.5, A.6, A.7] on DELPHI hadron calorimeter (HAC) [B.1]. These papers deal with signal simulations, performance and major upgrade of HAC after the period LEP1 (production of Z 0 around the resonance peak). This upgrade resulted from extensive tests of streamer tube1 prop- erties and studies of possible utilisation of tube signals for data analysis. The aim was to improve the capabilities of HAC for the second period of the LEP collider operation, so called LEP200 program when the energy of e+ and e− beams has been gradually increased up to the energy 104 GeV per beam. The above mentioned studies led to the conclusion, that with the constraints imposed by HAC construction, the upgrade can improve signif- icantly the muon identification of DELPHI [A.7] and on this ground the upgrade project has been defended and realized in the years 1994-1996. The muon identification has been used in standard analyses (part 3.1). However, it turned out th...

  10. When is quasi-linear theory exact. [particle acceleration

    Science.gov (United States)

    Jones, F. C.; Birmingham, T. J.

    1975-01-01

    We use the cumulant expansion technique of Kubo (1962, 1963) to derive an integrodifferential equation for the average one-particle distribution function for particles being accelerated by electric and magnetic fluctuations of a general nature. For a very restricted class of fluctuations, the equation for this function degenerates exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, including the adiabatic assumption, is an exact theory only for this limited class of fluctuations.

  11. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    International Nuclear Information System (INIS)

    Dudek, Jozef; Melnitchouk, Wally

    2016-01-01

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German ''hub'' for visits of U.S. physicists, while Jefferson Lab served as the corresponding ''hub'' for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theory Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.

  12. General algebraic theory of identical particle scattering

    International Nuclear Information System (INIS)

    Bencze, G.; Redish, E.F.

    1978-01-01

    We consider the nonrelativistic N-body scattering problem for a system of particles in which some subsets of the particles are identical. We demonstrate how the particle identity can be included in a general class of linear integral equations for scattering operators or components of scattering operators. The Yakubovskii, Yakubovskii--Narodestkii, Rosenberg, and Bencze--Redish--Sloan equations are included in this class. Algebraic methods are used which rely on the properties of the symmetry group of the system. Operators depending only on physically distinguishable labels are introduced and linear integral equations for them are derived. This procedure maximally reduces the number of coupled equations while retaining the connectivity properties of the original equations

  13. Hadron production at SPEAR

    International Nuclear Information System (INIS)

    Schwitters, R.F.

    1975-01-01

    A report is given of the knowledge obtained from SPEAR about hadron production in e + e - annihilation since the discovery of the new particles. Included are the SPEAR magnetic detector, the total cross sections, mean charged multiplicity and energy, inclusive momentum spectra, and hadron angular distribution

  14. Quantum theory of many-particle systems

    CERN Document Server

    Fetter, Alexander L

    2003-01-01

    ""Singlemindedly devoted to its job of educating potential many-particle theorists…deserves to become the standard text in the field."" - Physics Today""The most comprehensive textbook yet published in its field and every postgraduate student or teacher in this field should own or have access to a copy."" - EndeavorA self-contained, unified treatment of nonrelativistic many-particle systems, this text offers a solid introduction to procedures in a manner that enables students to adopt techniques for their own use. Its discussions of formalism and applications move easily between general theo

  15. Relativistic scattering theory of charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann, M.

    1986-01-01

    In the context of relativistic quantum mechanics the scattering is discussed of two and three charged spinless particles. The corresponding transition operators are shown to satisfy four-dimensional Lippmann-Schwinger and eight-dimensional Faddeev-type equations, respectively. A simplified model of two particles with Coulomb interaction can be solved exactly. Calculations have been made of (i) the partial wave S-matrix from which the bound state spectrum has been extracted; the latter agrees with a fourth-order result of Schwinger; (ii) the full scattering amplitude which in the weak-field limit coincides with the expression derived by Fried et al. from eikonalized QED. (author)

  16. Testing model energy spectra of charged particles produced in hadron interactions on the basis of atmospheric muons

    International Nuclear Information System (INIS)

    Dedenko, L. G.; Roganova, T. M.; Fedorova, G. F.

    2015-01-01

    An original method for calculating the spectrum of atmospheric muons with the aid of the CORSIKA 7.4 code package and numerical integration is proposed. The first step consists in calculating the energy distribution of muons for various fixed energies of primary-cosmic-ray particles and within several chosen hadron-interaction models included in the CORSIKA 7.4 code package. After that, the spectrum of atmospheric muons is calculated via integrating the resulting distribution densities with the chosen spectrum of primary-cosmic-ray particles. The atmospheric-muon fluxes that were calculated on the basis of the SIBYLL 2.1, QGSJET01, and QGSJET II-04 models exceed the predictions of the wellknown Gaisser approximation of this spectrum by a factor of 1.5 to 1.8 in the range of muon energies between about 10 3 and 10 4 GeV.Under the assumption that, in the region of extremely highmuon energies, a dominant contribution to the muon flux comes from one to two generations of charged π ± and K ± mesons, the production rate calculated for these mesons is overestimated by a factor of 1.3 to 1.5. This conclusion is confirmed by the results of the LHCf and TOTEM experiments

  17. Review of the particle scattering theory in rocket technique application

    International Nuclear Information System (INIS)

    Wang Fuheng; Ma Fang

    1990-01-01

    Three calculation methods of scattering cross section have been discussed. Particle scattering theory and its concrete calculation, existing problems and further development have been also studied. The developement of theoretical aspects of particles scattering in rocket exhaust plume was concerned in this paper

  18. Research program in elementary-particle theory, 1983. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1983-08-01

    Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed

  19. Research program in elementary-particle theory, 1983. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E C.G.; Ne& #x27; eman, Y

    1983-08-01

    Progress is reviewed on the following topics: physics of ultra high energies and cosmology; phenomenology of particle physics; quantum field theory, supersymmetry and models of particles; and geometric formulations and algebraic models. Recent DOE reports resulting from the contract are listed. (WHK)

  20. Search for additional muons in hadronic production of J/psi particles

    International Nuclear Information System (INIS)

    Anderson, K.J.; Coleman, R.N.; Karhi, K.P.; Newman, C.B.; Pilcher, J.E.; Rosenberg, E.I.; Thaler, J.J.; Hogan, G.E.; McDonald, K.T.; Sanders, G.H.; Smith, A.J.S.

    1980-01-01

    A sample of J/psi → μ + μ - decays produced by a 225-GeV/c π - beam on nuclear targets has been analyzed for extra muons. Muons observed in coincidence with J/psi production could indicate either the production of charmed particles or the production of pairs of J/psi particles. We find 90% confidence limits of sigma/sub J/DD-bar/sigma/sub J/<0.016 for associated charm production and sigma/sub J/J/sigma/sub J/<0.005 for the production of J/psi pairs

  1. Large transverse momenta phenomena in hadron-hadron collisions

    International Nuclear Information System (INIS)

    McCubbin, N.A.

    1981-05-01

    The production of particles with large transverse momentum in high energy hadron-hadron collisions is reviewed. The emphasis is placed on the experimental results. These results are discussed in terms of present theoretical ideas on interactions between hadronic constituents, but no attempt is made to review the theoretical work in a comprehensive manner. (author)

  2. Research program in elementary particle theory, 1980. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification

  3. Research program in elementary particle theory, 1980. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E. C.G.; Ne' eman, Y.

    1980-01-01

    Research is reported for these subject areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics, QCD, and quark-parton physics; quantum field theory, quantum mechanics and fundamental problems; groups, gauges, and grand unified theories; and supergeometry, superalgebra, and unification. (GHT)

  4. Some interesting features of charged particles produced in high-energy hadron-emulsion collisions

    International Nuclear Information System (INIS)

    Khushnood, H.; Ansari, A.R.

    1990-01-01

    The emission characteristics of secondary charged particles produced in 400 GeV proton-emulsion interactions were compared with those obtained at other energies. The results revealed that the angular distribution of grey particles does not depend on the nature and energy of the projectile. The dependence of the average multiplicity of the grey, black, shower, and heavily ionizing tracks on the mass of the target nucleus (A) and the nature and energy of the projectiles are also examined. The ratio of the valance quarks in pions (π - ) and protons (p) was found to be almost equal to the ratio of the grey particles produced in π - -A and p-A collisions at the same energy. The values of the normalized moments of the multiplicity distributions of charged shower particles in different N h intervals were found to nearly the same. However, this value increased with increasing values of the moment index, K. Finally, the values of the normalized and central moments were almost equal for both p-p and p-A interactions

  5. Fundamental theories of waves and particles formulated without classical mass

    Science.gov (United States)

    Fry, J. L.; Musielak, Z. E.

    2010-12-01

    Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.

  6. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Rosenzweig, C.; Schechter, J.; Wali, K.C.

    1992-01-01

    In this paper we give a brief account of the work of the group during the past year. The topics covered here include (1) Effective Lagrangians and Solitons; (2) Chern-Simons and Conformal Field Theories; (3) Spin and Statistics; (4) The Standard Model and Beyond; (5) Non-Abelian Monopoles; (6) The Inflationary Universe; (7) The Hubbard Model, and (8) Miscellaneous

  7. Statistical theory of correlations in random packings of hard particles.

    Science.gov (United States)

    Jin, Yuliang; Puckett, James G; Makse, Hernán A

    2014-05-01

    A random packing of hard particles represents a fundamental model for granular matter. Despite its importance, analytical modeling of random packings remains difficult due to the existence of strong correlations which preclude the development of a simple theory. Here, we take inspiration from liquid theories for the n-particle angular correlation function to develop a formalism of random packings of hard particles from the bottom up. A progressive expansion into a shell of particles converges in the large layer limit under a Kirkwood-like approximation of higher-order correlations. We apply the formalism to hard disks and predict the density of two-dimensional random close packing (RCP), ϕ(rcp) = 0.85 ± 0.01, and random loose packing (RLP), ϕ(rlp) = 0.67 ± 0.01. Our theory also predicts a phase diagram and angular correlation functions that are in good agreement with experimental and numerical data.

  8. Electromagnetic corrections to ππ scattering lengths: some lessons for the construction of effective hadronic field theories

    International Nuclear Information System (INIS)

    Maltman, K.

    1998-01-01

    Using the framework of effective chiral Lagrangians, we show that, in order to correctly implement electromagnetism (EM), as generated from the Standard Model, into effective hadronic theories (such as meson-exchange models) it is insufficient to consider only graphs in the low-energy effective theory containing explicit photon lines. The Standard Model requires the presence of contact interactions in the effective theory which are electromagnetic in origin, but which involve no photons in the effective theory. We illustrate the problems which can result from a ''standard'' EM subtraction: i.e., from assuming that removing all contributions in the effective theory generated by graphs with explicit photon lines fully removes EM effects, by considering the case of the s-wave ππ scattering lengths. In this case it is shown that such a subtraction procedure would lead to the incorrect conclusion that the strong interaction isospin-breaking contributions to these quantities were large when, in fact, they are known to vanish at leading order in m d -m u . The leading EM contact corrections for the channels employed in the extraction of the I=0,2 s-wave ππ scattering lengths from experiment are also evaluated. (orig.)

  9. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  10. R-hadron and long lived particle searches at the LHC

    CERN Document Server

    Bressler, S

    2007-01-01

    If long lived charged particles exist, and produced at the LHC, they may travel with velocity significantly slower than the speed of light. This unique signature was not considered during the design of the LHC experiments, ATLAS and CMS. As a result, hardware and trigger capabilities need to be evaluated. Model independent approaches for finding long lived particles with the LHC experiments are introduced. They are tested using two bench marks, one in GMSB and one in Split SUSY. The focus is on hardware and trigger issues, as well as reconstruction methods developed by ATLAS and CMS. Both experiments suggest time of flight (TOF) based methods. However, the implementation is different. In ATLAS a first beta estimation is done already at the trigger level. CMS also uses dE/dx to estimate beta.

  11. R-Hadron and long lived particle searches at the LHC

    CERN Document Server

    Bressler, S.

    2007-01-01

    If long lived charged particles exist, and produced at the LHC, they may travel with velocity significantly slower than the speed of light. This unique signature was not considered during the design of the LHC experiments, ATLAS and CMS. As a result, hardware and trigger capabilities need to be evaluated. Model independent approaches for finding long lived particles with the LHC experiments are introduced. They are tested using two bench marks, one in GMSB and one in Split SUSY. The focus is on hardware and trigger issues, as well as reconstruction methods developed by ATLAS and CMS. Both experiments suggest time of flight (TOF) based methods. However, the implementation is different. In ATLAS a first beta estimation is done already at the trigger level. CMS also uses dE/dx to estimate beta.

  12. An analysis of the long-term stability of the particle dynamics in hadron storage rings

    International Nuclear Information System (INIS)

    Bruening, O.S.

    1994-05-01

    This thesis extends the stability analysis of the particle motion in a storage ring and estimates the diffusion rates well inside the dynamic aperture. The calculation of the drift and diffusion coefficients focuses on an application to the proton storage ring in HERA, where the proton beam lifetime drops considerably after the proton and electron beams are brought to collision. The analysis shows that the combined effect of slow and fast modulation frequencies leads to an increased emittance growth in the storage ring. HERA the slow frequency components are caused by ground motion in the HERA tunnel and the fast frequency components by ripples in the power supplies. The thesis provides upper limits for the modultion depths of a fast tune modulation which result in tolerable growth rates for the proton emittance. The analytically calculated drift coefficients agree numerical simulations for the particle dynamics. A comparison of the calculated drift coefficients with those measured in the HERA proton storage ring shows that the analyzed mechanism can lead to growth rates of the same order of magnitude as the ones measured during the luminosity operation in the HERA storage ring. Analytical estimates for the proton growth rates predict a high sensitivity to the particle diffusion on the frequency components of the fast fast tune modulation. This prediction was confirmed by a subsequent modulation experiment in the proton storage ring of HERA, where an external tune modulation with fast frequency components led to a drastic increase in the growth rates

  13. Artificial Neural Networks For Hadron Hadron Cross-sections

    International Nuclear Information System (INIS)

    ELMashad, M.; ELBakry, M.Y.; Tantawy, M.; Habashy, D.M.

    2011-01-01

    In recent years artificial neural networks (ANN ) have emerged as a mature and viable framework with many applications in various areas. Artificial neural networks theory is sometimes used to refer to a branch of computational science that uses neural networks as models to either simulate or analyze complex phenomena and/or study the principles of operation of neural networks analytically. In this work a model of hadron- hadron collision using the ANN technique is present, the hadron- hadron based ANN model calculates the cross sections of hadron- hadron collision. The results amply demonstrate the feasibility of such new technique in extracting the collision features and prove its effectiveness

  14. Theory of intense beams of charged particles

    CERN Document Server

    Hawkes, Peter W

    2011-01-01

    Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains. * Contributions from leading international scholars and industry experts * Discusses hot topic areas and presents current and future research trends * Invaluable reference and guide for physicists, engineers and mathematicians.

  15. The mode coupling theory in the FDR-preserving field theory of interacting Brownian particles

    International Nuclear Information System (INIS)

    Kim, Bongsoo; Kawasaki, Kyozi

    2007-01-01

    We develop a renormalized perturbation theory for the dynamics of interacting Brownian particles, which preserves the fluctuation-dissipation relation order by order. We then show that the resulting one-loop theory gives a closed equation for the density correlation function, which is identical with that in the standard mode coupling theory. (fast track communication)

  16. Hadronic jets an introduction

    CERN Document Server

    Banfi, Andrea

    2016-01-01

    Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.

  17. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  18. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Rosenzweig, C.; Schechter, J.; Wali, K.C.

    1990-01-01

    Discussed in this paper is a brief account of the research work of the principal investigators and their co-workers during the past few years. The topics covered include: Topology in Physics; Skyrme Model; High Temperature Superconductivity; fractional statistics, and generalized spin statistics theorem; QCD as a dual chromomagnetic superconductor; confinement and string picture in QCD; quark gluon plasmas; cosmic strings; effective Lagrangians for QCD; ''proton spin,'' ''strange content'' and related topics; physical basis of the Skyrme model; gauge theories and weak interactions; grand unification; Universal ''see saw mechanism''; abelian and non-abelian interactions of a test string

  19. Asymptotic kinetic theory of magnetized plasmas: quasi-particle concept

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Zagorodny, A.H.

    2004-01-01

    The asymptotic kinetic theory of magnetized plasmas is elaborated within the context of general statistical approach and asymptotic methods, developed by M. Krylov and M. Bohol'ubov, for linear and non-linear dynamic systems with a rapidly rotating phase. The quasi-particles are introduced already on the microscopic level. Asymptotic expansions enable to close the description for slow processes, and to relate consistently particles and guiding centres to quasi-particles. The kinetic equation for quasi-particles is derived. It makes a basis for the reduced description of slow collective phenomena in the medium. The kinetic equation for quasi-particles takes into account self-consistent interaction fields, quasi-particle collisions and collective-fluctuation-induced relaxation of quasi-particle distribution function. The relationships between the distribution functions for particles, guiding centres and quasi-particles are derived taking into account fluctuations, which can be especially important in turbulent states. In this way macroscopic (statistical) particle properties can be obtained from those of quasi-particles in the general case of non-equilibrium. (authors)

  20. Entanglement in Quantum Field Theory: particle mixing and oscillations

    International Nuclear Information System (INIS)

    Blasone, M; Dell'Anno, F; De Siena, S; Illuminati, F

    2013-01-01

    The phenomena of particle mixing and flavor oscillations in elementary particle physics are associated with multi-mode entanglement of single-particle states. We show that, in the framework of quantum field theory, these phenomena exhibit a fine structure of quantum correlations, as multi-mode multi-particle entanglement appears. Indeed, the presence of anti-particles adds further degrees of freedom, thus providing nontrivial contributions both to flavor entanglement and, more generally, to multi-partite entanglement. By using the global entanglement measure, based on the linear entropies associated with all the possible bipartitions, we analyze the entanglement in the multiparticle states of two-flavor neutrinos and anti-neutrinos. A direct comparison with the instance of the quantum mechanical Pontecorvo single-particle states is also performed.

  1. Hadron-hadron colliders

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility

  2. Charged and Identified Particles in the Hadronic Decay of W Bosons and in $e^{+}e^{-} \\to q\\overline{q}$ from 130 to 200 GeV

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W-D.; Arnoud, Y.; Asman, B.; Augustin, J-E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Y.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K-H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Bigi, M.; Bilenky, M.S.; Bizouard, M-A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J-M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; M.Castillo Gimenez, V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Crepe, S.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J-D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J-P.; Espirito Santo, M.; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Fichet, S.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, Ph.; Gazis, E.N.; Gele, D.; Geralis, T.; Ghodbane, N.; Gil, I.; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S-O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Huet, K.; Hughes, G.J.; Hultqvist, K.; Jackson, J.N.; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, Ch.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, E.K.; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, F.; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.; Khomenko, B.A.; Khovanski, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Klein, H.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krammer, M.; Kriznic, E.; Krumstein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Lapin, V.; Laugier, J-P.; Lauhakangas, R.; Leder, G.; Ledroit, F.; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; Cubbin, M.Mc; Kay, R.Mc; Nulty, R.Mc; Pherson, G.Mc; Meroni, C.; Metreveli, Z.; Meyer, W.T.; Miagkov, A.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjoernmark, U.; Moa, T.; Moch, M.; Moeller, R.; Moenig, K.; Monge, M.R.; Moraes, D.; Moreau, X.; Morettini, P.; Morton, G.; Mueller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.; Olshevski, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, Th.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, A.L.; Rebecchi, P.; Redaelli, N.G.; Regler, M.; Rehn, J.; Reid, D.; Reinertsen, P.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, I.; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Royon, Ch.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schwemling, Ph.; Schwering, B.; Schwickerath, U.; Scuri, F.; Seager, P.; Sedykh, Y.; Segar, A.M.; Seibert, N.; Sekulin, R.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Solovianov, O.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanic, S.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, J.; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M-L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, P.; Van den Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopyanov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, Ph.; Zucchelli, G.C.; Zumerle, G.

    2000-01-01

    Inclusive distributions of charged particles in hadronic Wdecays are experimentally investigated using the statisticscollected by the DELPHI experiment at LEP during 1997, 1998and 1999, at centre-of-mass energies from 183 to around 200 GeV.The possible effects of interconnection betweenthe hadronic decays of two Ws are not observed.Measurements of the average multiplicity for charged and identified particles in q$\\bar{\\mathrm q}$ and WW events at centre-of-mass energies from 130 to 200 GeV and in W decays are presented.The results on the average multiplicity of identified particlesand on the position $\\xi^*$ of the maximum of the maximum of$\\xi_p = -\\mathrm{log} (\\frac{2p}{\\sqrt{s}})$distribution are compared with predictionsof JETSET and MLLA calculations.

  3. Elementary particle theory in Japan, 1930-1960

    International Nuclear Information System (INIS)

    Brown, L.M.; Kawabe, Rokuo; Konuma, Michiji; Maki, Ziro

    1991-01-01

    The present volume consists of the combined proceedings of two Japan-USA Collaborative Workshops, organized to explore historical developments of particle theory in Japan during the period 1930-1960, i.e., the three decades that include the birth and development of Meson Theory. The first phase of workshops was held during September 1978-July 1979 and the second during July 1984-September 1985. The original versions of these proceedings were published informally; namely, the former was distributed as a series of preprints of the Yukawa Institute (then called RIFP) entitled 'Particle Physics in Japan, 1930-50 Vol. I, II' (RIFP-407 and -408, September 1980); the latter was issued in the form of camera-ready printing from Yukawa Hall Archival Library (YHAL) in May 1988, under the title 'Elementary Particle Theory in Japan, 1935-1960'. Only a small number of copies were printed for both sets of proceedings due to financial limitations of the project. (author)

  4. Problems in particle theory. Technical report - 1993--1994

    International Nuclear Information System (INIS)

    Adler, S.L.; Wilczek, F.

    1994-10-01

    This report is a progress report on the work of two principal investigators in the broad area of particle physics theory, covering their personal work, that of their coworkers, and their proposed work for the future. One author has worked in the past on various topics in field theory and particle physics, among them current algebras, the physics of neutrino induced reactions, quantum electrodynamics (including strong magnetic field processes), the theory of the axial-vector current anomaly, topics in quantum gravity, and nonlinear models for quark confinement. While much of his work has been analytical, all of the projects listed above (except for the work on gravity) had phases which required considerable computer work as well. Over the next several years, he proposes to continue or initiate research on the following problems: (1) Acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, and more generally, new research in computational neuroscience and pattern recognition. (2) Construction of quaternionic generalizations of complex quantum mechanics and field theory, and their application to composite models of quarks and leptons, and to the problem of unifying quantum theories of matter with general relativity. One author has worked on problems in exotic quantum statistics and its applications to condensed matter systems. His work has also continued on the quantum theory of black holes. This has evolved toward understanding properties of quantum field theory and string theory in incomplete regions of flat space

  5. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.

    1976-01-01

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  6. QCD and hadron structure

    International Nuclear Information System (INIS)

    Kaplan, D.B.

    1995-01-01

    I give a brief and selective overview of QCD as it pertains to determining hadron structure, and the relevant directions in this field for nuclear theory. This document is intended to start discussion about priorities, not end it

  7. Next-to-next-to-leading order N-jettiness soft function for one massive colored particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai Tao [ARC Centre of Excellence for Particle Physics at the Terascale,School of Physics and Astronomy, Monash University, VIC-3800 (Australia); Wang, Jian [PRISMA Cluster of Excellence Mainz Institute for Theoretical Physics, Johannes Gutenberg University, D-55099 Mainz (Germany); Physik Department T31, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany)

    2017-02-01

    The N-jettiness subtraction has proven to be an efficient method to perform differential QCD next-to-next-to-leading order (NNLO) calculations in the last few years. One important ingredient of this method is the NNLO soft function. We calculate this soft function for one massive colored particle production at hadron colliders. We select the color octet and color triplet cases to present the final results. We also discuss its application in NLO and NNLO differential calculations.

  8. Motivating quantum field theory: the boosted particle in a box

    International Nuclear Information System (INIS)

    Vutha, Amar C

    2013-01-01

    It is a maxim often stated, yet rarely illustrated, that the combination of special relativity and quantum mechanics necessarily leads to quantum field theory. An elementary illustration is provided using the familiar particle in a box, boosted to relativistic speeds. It is shown that quantum fluctuations of momentum lead to energy fluctuations, which are inexplicable without a framework that endows the vacuum with dynamical degrees of freedom and allows particle creation/annihilation. (letters and comments)

  9. VNI version 4.1. Simulation of high-energy particle collisions in QCD: Space-time evolution of e{sup +}e{sup {minus}}...A + B collisions with parton-cascades, cluster-hadronization, final-state hadron cascades

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, K.; Longacre, R. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.; Srivastava, D.K. [Variable Energy Cyclotron Centre, Calcutta (India)

    1999-02-01

    VNI is a general-purpose Monte-Carlo event-generator, which includes the simulation of lepton-lepton, lepton-hadron, lepton-nucleus, hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. It uses the real-time evolution of parton cascades in conjunction with a self-consistent hadronization scheme, as well as the development of hadron cascades after hadronization. The causal evolution from a specific initial state (determined by the colliding beam particles) is followed by the time-development of the phase-space densities of partons, pre-hadronic parton clusters, and final-state hadrons, in position-space, momentum-space and color-space. The parton-evolution is described in terms of a space-time generalization of the familiar momentum-space description of multiple (semi)hard interactions in QCD, involving 2 {r_arrow} 2 parton collisions, 2 {r_arrow} 1 parton fusion processes, and 1 {r_arrow} 2 radiation processes. The formation of color-singlet pre-hadronic clusters and their decays into hadrons, on the other hand, is treated by using a spatial criterion motivated by confinement and a non-perturbative model for hadronization. Finally, the cascading of produced prehadronic clusters and of hadrons includes a multitude of 2 {r_arrow} n processes, and is modeled in parallel to the parton cascade description. This paper gives a brief review of the physics underlying VNI, as well as a detailed description of the program itself. The latter program description emphasizes easy-to-use pragmatism and explains how to use the program (including simple examples), annotates input and control parameters, and discusses output data provided by it.

  10. Systematic Analysis of the Non-Extensive Statistical Approach in High Energy Particle Collisions—Experiment vs. Theory

    Directory of Open Access Journals (Sweden)

    Gábor Bíró

    2017-02-01

    Full Text Available The analysis of high-energy particle collisions is an excellent testbed for the non-extensive statistical approach. In these reactions we are far from the thermodynamical limit. In small colliding systems, such as electron-positron or nuclear collisions, the number of particles is several orders of magnitude smaller than the Avogadro number; therefore, finite-size and fluctuation effects strongly influence the final-state one-particle energy distributions. Due to the simple characterization, the description of the identified hadron spectra with the Boltzmann–Gibbs thermodynamical approach is insufficient. These spectra can be described very well with Tsallis–Pareto distributions instead, derived from non-extensive thermodynamics. Using the q-entropy formula, we interpret the microscopic physics in terms of the Tsallis q and T parameters. In this paper we give a view on these parameters, analyzing identified hadron spectra from recent years in a wide center-of-mass energy range. We demonstrate that the fitted Tsallis-parameters show dependency on the center-of-mass energy and particle species (mass. Our findings are described well by a QCD (Quantum Chromodynamics inspired parton evolution ansatz. Based on this comprehensive study, apart from the evolution, both mesonic and baryonic components found to be non-extensive ( q > 1 , besides the mass ordered hierarchy observed in the parameter T. We also study and compare in details the theory-obtained parameters for the case of PYTHIA8 Monte Carlo Generator, perturbative QCD and quark coalescence models.

  11. On the incompatibility of parity, baryon number and supersymmetries in hadron physics

    International Nuclear Information System (INIS)

    Grosser, D.

    1976-01-01

    Consider a theory with nontrivial S-matrix, nonvanishing masses and the property that to every mass belongs only a finite number of different types of particles. Suppose that it admits parity, baryon number and supersymmetries. It is shown that, if the theory accommodates a supermultiplet of hadrons and if all physically realizable vectors belonging to the mass of this supermultiplet represent hadrons, then the theory is inconsistent. In the derivation use is made of the experimental fact that hadrons have baryon number zero if they are bosons and baryon number +-1 if they are fermions

  12. Theories of Variable Mass Particles and Low Energy Nuclear Phenomena

    Science.gov (United States)

    Davidson, Mark

    2014-02-01

    Variable particle masses have sometimes been invoked to explain observed anomalies in low energy nuclear reactions (LENR). Such behavior has never been observed directly, and is not considered possible in theoretical nuclear physics. Nevertheless, there are covariant off-mass-shell theories of relativistic particle dynamics, based on works by Fock, Stueckelberg, Feynman, Greenberger, Horwitz, and others. We review some of these and we also consider virtual particles that arise in conventional Feynman diagrams in relativistic field theories. Effective Lagrangian models incorporating variable mass particle theories might be useful in describing anomalous nuclear reactions by combining mass shifts together with resonant tunneling and other effects. A detailed model for resonant fusion in a deuterium molecule with off-shell deuterons and electrons is presented as an example. Experimental means of observing such off-shell behavior directly, if it exists, is proposed and described. Brief explanations for elemental transmutation and formation of micro-craters are also given, and an alternative mechanism for the mass shift in the Widom-Larsen theory is presented. If variable mass theories were to find experimental support from LENR, then they would undoubtedly have important implications for the foundations of quantum mechanics, and practical applications may arise.

  13. Test-particle motion in Einstein's unified field theory. III. Magnetic monopoles and charged particles

    International Nuclear Information System (INIS)

    Johnson, C.R.

    1986-01-01

    In a previous paper (paper I), we developed a method for finding the exact equations of structure and motion of multipole test particles in Einstein's unified field theory: the theory of the nonsymmetric field. In that paper we also applied the method and found in Einstein's unified field theory the equations of structure and motion of neutral pole-dipole test particles possessing no electromagnetic multipole moments. In a second paper (paper II), we applied the method and found in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing no magnetic monopole moments. In the present paper (paper III), we apply the method and find in Einstein's unified field theory the exact equations of structure and motion of charged test particles possessing magnetic monopole moments. It follows from the form of these equations of structure and motion that in general in Einstein's unified field theory a test particle possessing a magnetic monopole moment in a background electromagnetic field must also possess spin

  14. Theoretical studies in medium-energy nuclear and hadronic physics. [Indiana Univ. Nuclear Theory Center and Department of Physics

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C J; Macfarlane, M H; Matsui, T; Serot, B D

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e[prime]p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus[endash]nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark[endash]gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon[endash]nucleon force.

  15. Power functional theory for the dynamic test particle limit

    International Nuclear Information System (INIS)

    Brader, Joseph M; Schmidt, Matthias

    2015-01-01

    For classical Brownian systems both in and out of equilibrium we extend the power functional formalism of Schmidt and Brader (2013 J. Chem. Phys. 138 214101) to mixtures of different types of particles. We apply the framework to develop an exact dynamical test particle theory for the self and distinct parts of the van Hove function, which characterize tagged and collective particle motion. The memory functions that induce non-Markovian dynamics are related to functional derivatives of the excess (over ideal) free power dissipation functional. The method offers an alternative to the recently found nonequilibrium Ornstein–Zernike relation for dynamic pair correlation functions. (paper)

  16. Relativistic local quantum field theory for m=0 particles

    International Nuclear Information System (INIS)

    Morales Villasevil, A.

    1965-01-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs

  17. Light scattering by nonspherical particles theory, measurements, and applications

    CERN Document Server

    Mishchenko, Michael I; Travis, Larry D

    1999-01-01

    There is hardly a field of science or engineering that does not have some interest in light scattering by small particles. For example, this subject is important to climatology because the energy budget for the Earth's atmosphere is strongly affected by scattering of solar radiation by cloud and aerosol particles, and the whole discipline of remote sensing relies largely on analyzing the parameters of radiation scattered by aerosols, clouds, and precipitation. The scattering of light by spherical particles can be easily computed using the conventional Mie theory. However, most small solid part

  18. Hadron-hadron potentials from lattice quantum chromodynamics

    International Nuclear Information System (INIS)

    Rabitsch, K.

    1997-10-01

    Problems in nuclear physics generally involve several nucleons due to the composite structure of the atomic nucleus. To study such systems one has to solve the Schroedinger equation and therefore has to know a nucleon-nucleon potential. Experimental data and theoretical considerations indicate that nucleons consist of constituent particles, called quarks. Today, Quantum Chromodynamics (QCD) is believed to be the fundamental theory of strong interactions. Consequently, one should try to understand the nucleon-nucleon interaction from first principles of QCD. At nucleonic distances the strong coupling constant is large. Thus, a perturbative treatment of QCD low energy phenomena is not adequate. However, the formulation of QCD on a four-dimensional Euclidean lattice (lattice QCD) makes it possible to address the nonperturbative aspects of the theory. This approach has already produced valuable results. For example, the confinement of quarks in a nucleon has been demonstrated, and hadron masses have been calculated In this thesis various methods to extract the hadron-hadron interactions from first principles of lattice QCD are presented. One possibility is to consider systems of two static hadrons. A comparison of results in pure gluonic vacuum and with sea quarks is given for both the confinement and the deconfinement phase of QCD. Numerical simulations yield attractive potentials in the overlap region of the hadrons for all considered systems. In the deconfinement phase the resulting potentials are shallower reflecting the dissolution of the hadrons. A big step towards the simulation of realistic two-hadron systems on the lattice is the consideration of mesons consisting of dynamic valence quarks. This is done for the two most important fermionic discretization schemes in the pure gluonic vacuum. A calculation in coordinate space utilizing Kogut-Susskind fermions for the valence quarks yields meson-meson potentials with a long ranged interaction, an intermediate

  19. Firetube model and hadron-hadron collisions

    International Nuclear Information System (INIS)

    Nazareth, R.A.M.S.; Kodama, T.; Portes Junior, D.A.

    1992-01-01

    A new version of the fire tube model is developed to describe hadron-hadron collisions at ultrarelativistic energies. Several improvements are introduced in order to include the longitudinal expansion of intermediate fireballs, which remedies the overestimates of the transverse momenta in the previous version. It is found that, within a wide range of incident energies, the model describes well the experimental data for the single particle rapidity distribution, two-body correlations in the pseudo-rapidity, transverse momentum spectra of pions and kaons, the leading particle spectra and the K/π ratio. (author)

  20. Effective field theory of thermal Casimir interactions between anisotropic particles.

    Science.gov (United States)

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  1. Effective field theory approach to parton-hadron conversion in high energy QCD processes

    CERN Document Server

    Kinder-Geiger, Klaus

    1995-01-01

    A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...

  2. A new formulation of the effective theory for heavy particles

    International Nuclear Information System (INIS)

    Aglietti, U.; Capitani, S.

    1994-01-01

    We derive the effective theories for heavy particles with a functional integral approach by integrating away the states with high velocity and with high virtuality. This formulation is non-perturbative and has a close connection with the Wilson renormalization group transformation. The fixed point hamiltonian of our transformation coincides with the static hamiltonian and irrelevant operators can be identified with the usual 1/M corrections to the static theory. No matching condition has to be imposed between the full and the static theory operators with our approach. The values of the matching constants come out as a dynamical effect of the renormalization group flow. ((orig.))

  3. Research program in elementary-particle theory. Progress report

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1982-08-01

    This progress report of the Center for Particle Theory of the University of Texas at Austin reviews the work done over the past year and is part of the renewal proposal for the period from January 1, 1983 to December 31, 1983

  4. Linear kinetic theory and particle transport in stochastic mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, G.C. [Univ. of California, Los Angeles, CA (United States)

    1995-12-31

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  5. Spinning particle approach to higher spin field theory

    International Nuclear Information System (INIS)

    Corradini, Olindo

    2011-01-01

    We shortly review on the connection between higher-spin gauge field theories and supersymmetric spinning particle models. In such approach the higher spin equations of motion are linked to the first-class constraint algebra associated with the quantization of particle models. Here we consider a class of spinning particle models characterized by local O(N)-extended supersymmetry since these models are known to provide an alternative approach to the geometric formulation of higher spin field theory. We describe the canonical quantization of the models in curved target space and discuss the obstructions that appear in presence of an arbitrarily curved background. We then point out the special role that conformally flat spaces appear to have in such models and present a derivation of the higher-spin curvatures for maximally symmetric spaces.

  6. Spin rotation and depolarization of high-energy particles in crystals at Hadron Collider (LHC) and Future Circular Collider (FCC) energies and the possibility to measure the anomalous magnetic moments of short-lived particles

    CERN Document Server

    Baryshevsky, V.G.

    2015-01-01

    We study the phenomena of spin rotation and depolarization of high-energy particles in crystals in the range of high energies that will be available at Hadron Collider (LHC) and Future Circular Collider (FCC). It is shown that these phenomena can be used to measure the anomalous magnetic moments of short-lived particles in this range of energies. We also demonstrate that the phenomenon of particle spin depolarization in crystals provides a unique possibility of measuring the anomalous magnetic moment of negatively-charged particles (e.g., beauty baryons), for which the channeling effect is hampered due to far more rapid dechanneling as compared to that for positively-charged particles. Channeling of particles in either straight or bent crystals with polarized nuclei could be used for polarization and the analysis thereof of high-energy particles.

  7. Schur indices, BPS particles, and Argyres-Douglas theories

    International Nuclear Information System (INIS)

    Córdova, Clay; Shao, Shu-Heng

    2016-01-01

    We conjecture a precise relationship between the Schur limit of the superconformal index of four-dimensional N=2 field theories, which counts local operators, and the spectrum of BPS particles on the Coulomb branch. We verify this conjecture for the special case of free field theories, N=2 QED, and SU(2) gauge theory coupled to fundamental matter. Assuming the validity of our proposal, we compute the Schur index of all Argyres-Douglas theories. Our answers match expectations from the connection of Schur operators with two-dimensional chiral algebras. Based on our results we propose that the chiral algebra of the generalized Argyres-Douglas theory (A_k_−_1,A_N_−_1) with k and N coprime, is the vacuum sector of the (k,k+N)W_k minimal model, and that the Schur index is the associated vacuum character.

  8. Green's functions for theories with massless particles (in perturbation theory). [Growth properties, momentum space, mass renormalization

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P [European Organization for Nuclear Research, Geneva (Switzerland); Seneor, R [European Organization for Nuclear Research, Geneva (Switzerland); Ecole Polytechnique, 75 - Paris (France). Centre de Physique Theorique)

    1975-01-01

    With the method of perturbative renormalization developed by Epstein and Glaser it is shown that Green's functions exist for theories with massless particles such as Q.E.D. and lambda:PHI/sup 2n/ theories. Growth properties are given in momentum space. In the case of Q.E.D., it is also shown that one can perform the physical mass renormalization.

  9. Field-theoretic model of Harari's two component phenomenological theory of high energy hadron scattering

    International Nuclear Information System (INIS)

    Dymski, T.C.

    1976-01-01

    For high energy scattering of pseudoscalar particles on spin 1 / 2 particles, the transition amplitude (for a given signature) is constructed as an infinite sum over spin of boson exchange graphs of the Feynman type, each of which has impact parameters up to some value R completely removed. This amplitude is advanced as a field theoretic realization of the nondiffractive component of Harari's dual absorption model. Comparing with π/sup +-/p→π/sup +-/p and π - p→π 0 n data shows that the imaginary parts of both helicity amplitudes are excellent, for either signature

  10. New approach to nonleptonic weak interactions. I. Derivation of asymptotic selection rules for the two-particle weak ground-state-hadron matrix elements

    International Nuclear Information System (INIS)

    Tanuma, T.; Oneda, S.; Terasaki, K.

    1984-01-01

    A new approach to nonleptonic weak interactions is presented. It is argued that the presence and violation of the Vertical BarΔIVertical Bar = 1/2 rule as well as those of the quark-line selection rules can be explained in a unified way, along with other fundamental physical quantities [such as the value of g/sub A/(0) and the smallness of the isoscalar nucleon magnetic moments], in terms of a single dynamical asymptotic ansatz imposed at the level of observable hadrons. The ansatz prescribes a way in which asymptotic flavor SU(N) symmetry is secured levelwise for a certain class of chiral algebras in the standard QCD model. It yields severe asymptotic constraints upon the two-particle hadronic matrix elements of nonleptonic weak Hamiltonians as well as QCD currents and their charges. It produces for weak matrix elements the asymptotic Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart for the ground-state hadrons, while for strong matrix elements quark-line-like approximate selection rules. However, for the less important weak two-particle vertices involving higher excited states, the Vertical BarΔIVertical Bar = 1/2 rule and its charm counterpart are in general violated, providing us with an explicit source of the violation of these selection rules in physical processes

  11. Hamiltonian theory of wave and particle in quantum mechanics 2. Hamilton-Jacobi theory and particle back-reaction

    International Nuclear Information System (INIS)

    Holland, P.

    2001-01-01

    Pursuing the Hamiltonian formulation of the De Broglie-Bohm (deBB) theory presented in the preceding paper, the Hamilton-Jacobi (HJ) theory of the wave-particle system is developed. It is shown how to derive a HJ equation for the particle, which enables trajectories to be computed algebraically using Jacobi's method. Using Liouville's equation in the HJ representation it was found the restriction on the Jacobi solutions which implies the quantal distribution. This gives a first method for interpreting the deBB theory in HJ terms. A second method proceeds via an explicit solution of the field+particle HJ equation. Both methods imply that the quantum phase may be interpreted as an incomplete integral. Using these results and those of the first paper it is shown how Schroedinger's equation can be represented in Liouvilian terms, and vice versa. The general theory of canonical transformations that represent quantum unitary transformations is given, and it is shown in principle how the trajectory theory may be expressed in other quantum representations. Using the solution found for the total HJ equation, an explicit solution for the additional field containing a term representing the particle back-reaction is found. The conservation of energy and momentum in the model is established, and weak form of the action-reaction principle is shown to hold. Alternative forms for the Hamiltonian are explored and it is shown that, within this theoretical context, the deBB theory is not unique. The theory potentially provides an alternative way of obtaining the classical limit

  12. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  13. Proceedings of the workshop on B physics at hadron accelerators

    International Nuclear Information System (INIS)

    McBride, P.; Mishra, C.S.

    1993-01-01

    This report contains papers on the following topics: Measurement of Angle α; Measurement of Angle β; Measurement of Angle γ; Other B Physics; Theory of Heavy Flavors; Charged Particle Tracking and Vertexing; e and γ Detection; Muon Detection; Hadron ID; Electronics, DAQ, and Computing; and Machine Detector Interface. Selected papers have been indexed separately for inclusion the in Energy Science and Technology Database

  14. Proceedings of the workshop on B physics at hadron accelerators

    Energy Technology Data Exchange (ETDEWEB)

    McBride, P. [Superconducting Super Collider Lab., Dallas, TX (United States); Mishra, C.S. [Fermi National Accelerator Lab., Batavia, IL (United States)] [eds.

    1993-12-31

    This report contains papers on the following topics: Measurement of Angle {alpha}; Measurement of Angle {beta}; Measurement of Angle {gamma}; Other B Physics; Theory of Heavy Flavors; Charged Particle Tracking and Vertexing; e and {gamma} Detection; Muon Detection; Hadron ID; Electronics, DAQ, and Computing; and Machine Detector Interface. Selected papers have been indexed separately for inclusion the in Energy Science and Technology Database.

  15. Hadronization in nuclear matter

    International Nuclear Information System (INIS)

    Anton, G.; Blok, H.P.; Boudard, A.; Kopeliovich, B.

    1993-01-01

    The investigation of the space time structure of quark propagation and hadronization is proposed by studying particle production in deep-inelastic scattering of electrons from nucleons and nuclei with high statistics. A 15 to 30 GeV electron beam impinging on targets of hydrogen, deuterium, helium, carbon and lead is planned to be used and the final state hadrons are to be detected in a large solid angle device. (authors). 48 refs., 13 figs., 4 tabs

  16. Test-particle motion in the nonsymmetric gravitation theory

    Science.gov (United States)

    Moffat, J. W.

    1987-06-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor gμν, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor Rμν. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r=0.

  17. High energy hadron scattering

    International Nuclear Information System (INIS)

    Johnson, R.C.

    1980-01-01

    High energy and small momentum transfer 2 'yields' 2 hadronic scattering processes are described in the physical framework of particle exchange. Particle production in high energy collisions is considered with emphasis on the features of inclusive reactions though with some remarks on exclusive processes. (U.K.)

  18. Visualization of acoustic particle interaction and agglomeration: Theory evaluation

    International Nuclear Information System (INIS)

    Hoffmann, T.L.; Koopmann, G.H.

    1997-01-01

    In this paper experimentally observed trajectories of particles undergoing acoustically induced interaction and agglomeration processes are compared to and validated with numerically generated trajectories based on existing agglomeration theories. Models for orthokinetic, scattering, mutual radiation pressure, and hydrodynamic particle interaction are considered in the analysis. The characteristic features of the classical orthokinetic agglomeration hypothesis, such as collision processes and agglomerations due to the relative entrainment motion, are not observed in the digital images. The measured entrainment rates of the particles are found to be consistently lower than the theoretically predicted values. Some of the experiments reveal certain characteristics which may possibly be related to mutual scattering interaction. The study's most significant discovery is the so-called tuning fork agglomeration [T. L. Hoffmann and G. H. Koopmann, J. Acoust. Soc. Am. 99, 2130 endash 2141 (1996)]. It is shown that this phenomenon contradicts the theories for mutual scattering interaction and mutual radiation pressure interaction, but agrees with the acoustic wake effect model in its intrinsic feature of attraction between particles aligned along the acoustic axis. A model by Dianov et al. [Sov. Phys. Acoust. 13 (3), 314 endash 319 (1968)] is used to describe this effect based on asymmetric flow fields around particles under Oseen flow conditions. It is concluded that this model is consistent with the general characteristics of the tuning fork agglomerations, but lacks certain refinements with respect to accurate quantification of the effect. copyright 1997 Acoustical Society of America

  19. Hadron physics from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics

    2016-11-01

    Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it

  20. The Higgs particle and higher-dimensional theories

    International Nuclear Information System (INIS)

    Lim, C. S.

    2014-01-01

    In spite of the great success of LHC experiments, we do not know whether the discovered “standard model-like” Higgs particle is really what the standard model predicts, or a particle that some new physics has in its low-energy effective theory. Also, the long-standing problems concerning the property of the Higgs and its interactions are still there, and we still do not have any conclusive argument on the origin of the Higgs itself. In this article we focus on higher-dimensional theories as new physics. First we give a brief review of their representative scenarios and closely related 4D scenarios. Among them, we mainly discuss two interesting possibilities of the origin of the Higgs: the Higgs as a gauge boson and the Higgs as a (pseudo) Nambu–Goldstone boson. Next, we argue that theories of new physics are divided into two categories, i.e., theories with normal Higgs interactions and those with anomalous Higgs interactions. Interestingly, both the candidates for the origin of the Higgs mentioned above predict characteristic “anomalous” Higgs interactions, such as the deviation of the Yukawa couplings from the standard model predictions. Such deviations can hopefully be investigated by precision tests of Higgs interactions at the planned ILC experiment. Also discussed is the main decay mode of the Higgs, H→γγ. Again, theories belonging to different categories are known to predict remarkably different new physics contributions to this important process

  1. Statistical quasi-particle theory for open quantum systems

    Science.gov (United States)

    Zhang, Hou-Dao; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2018-04-01

    This paper presents a comprehensive account on the recently developed dissipaton-equation-of-motion (DEOM) theory. This is a statistical quasi-particle theory for quantum dissipative dynamics. It accurately describes the influence of bulk environments, with a few number of quasi-particles, the dissipatons. The novel dissipaton algebra is then followed, which readily bridges the Schrödinger equation to the DEOM theory. As a fundamental theory of quantum mechanics in open systems, DEOM characterizes both the stationary and dynamic properties of system-and-bath interferences. It treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that could be experimentally measurable. Examples are the linear or nonlinear Fano interferences and the Herzberg-Teller vibronic couplings in optical spectroscopies. This review covers the DEOM construction, the underlying dissipaton algebra and theorems, the physical meanings of dynamical variables, the possible identifications of dissipatons, and some recent advancements in efficient DEOM evaluations on various problems. The relations of the present theory to other nonperturbative methods are also critically presented.

  2. Fitting of hadron spectrum in 5-dimensional conformal relativity

    International Nuclear Information System (INIS)

    Luna-Acosta, G.A.

    1984-11-01

    There is no well known kinematic theory of masses which can be used to compute masses of observed particles. The theory of mass of Conformal Relativity in 5-dimensions does promise to fulfill this need. Here we apply its theoretical results to hadrons and successfully fit their masses with a universal length l (the size of the 5th dimension) of 1.36 Fermi. Our fitting scheme shows a trend from which we can predict the observed masses. We conjecture about reasons our fitting distinguishes between hadrons in terms of their quark composition. The value of l suggests physical interpretations and possible means of detection. (author)

  3. Improved theory of collisionless particle motion in stellarators

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1983-01-01

    A theory of particle motion in stellarators is developed which, in contrast to previous work, is both realistic enough to account for collisionless detrapping, yet simple enough that most features of the orbits can be expressed in analytic, reasonably simple formulas. From the study of detrapping, a systematic, complete classification of possible orbit types emerges. The theory is valid for a class of stellarator configurations which contains the standard model traditionally envisaged, as well as somewhat more complex configurations recently found to have favorable transport properties. The reasons for the differences in transport between configurations are elucidated

  4. Gauge theories in particle physics a practical introduction

    CERN Document Server

    Aitchison, Ian J R

    2013-01-01

    The fourth edition of this well-established, highly regarded two-volume set continues to provide a fundamental introduction to advanced particle physics while incorporating substantial new experimental results, especially in the areas of CP violation and neutrino oscillations. It offers an accessible and practical introduction to the three gauge theories included in the Standard Model of particle physics: quantum electrodynamics (QED), quantum chromodynamics (QCD), and the Glashow-Salam-Weinberg (GSW) electroweak theory. In the first volume, a new chapter on Lorentz transformations and discrete symmetries presents a simple treatment of Lorentz transformations of Dirac spinors. Along with updating experimental results, this edition also introduces Majorana fermions at an early stage, making the material suitable for a first course in relativistic quantum mechanics. Covering much of the experimental progress made in the last ten years, the second volume remains focused on the two non-Abelian quantum gauge field...

  5. Particle versus field structure in conformal quantum field theories

    International Nuclear Information System (INIS)

    Schroer, Bert

    2000-06-01

    I show that a particle structure in conformal field theory is incompatible with interactions. As a substitute one has particle-like excitations whose interpolating fields have in addition to their canonical dimension an anomalous contribution. The spectra of anomalous dimension is given in terms of the Lorentz invariant quadratic invariant (compact mass operator) of a conformal generator R μ with pure discrete spectrum. The perturbative reading of R o as a Hamiltonian in its own right, associated with an action in a functional integral setting naturally leads to the Ad S formulation. The formal service role of Ad S in order to access C QFT by a standard perturbative formalism (without being forced to understand first massive theories and then taking their scale-invariant limit) vastly increases the realm of conventionally accessible 4-dim. C QFT beyond those for which one had to use Lagrangians with supersymmetry in order to have a vanishing Beta-function. (author)

  6. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1993-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  7. The hadronic standard model for strong and electroweak interactions

    Energy Technology Data Exchange (ETDEWEB)

    Raczka, R [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    We propose a new model for strong and electro-weak interactions. First, we review various QCD predictions for hadron-hadron and lepton-hadron processes. We indicate that the present formulation of strong interactions in the frame work of Quantum Chromodynamics encounters serious conceptual and numerical difficulties in a reliable description of hadron-hadron and lepton-hadron interactions. Next we propose to replace the strong sector of Standard Model based on unobserved quarks and gluons by the strong sector based on the set of the observed baryons and mesons determined by the spontaneously broken SU(6) gauge field theory model. We analyse various properties of this model such as asymptotic freedom, Reggeization of gauge bosons and fundamental fermions, baryon-baryon and meson-baryon high energy scattering, generation of {Lambda}-polarization in inclusive processes and others. Finally we extend this model by electro-weak sector. We demonstrate a remarkable lepton and hadron anomaly cancellation and we analyse a series of important lepton-hadron and hadron-hadron processes such as e{sup +} + e{sup -} {yields} hadrons, e{sup +} + e{sup -} {yields} W{sup +} + W{sup -}, e{sup +} + e{sup -} {yields} p + anti-p, e + p {yields} e + p and p + anti-p {yields} p + anti-p processes. We obtained a series of interesting new predictions in this model especially for processes with polarized particles. We estimated the value of the strong coupling constant {alpha}(M{sub z}) and we predicted the top baryon mass M{sub {Lambda}{sub t}} {approx_equal} 240 GeV. Since in our model the proton, neutron, {Lambda}-particles, vector mesons like {rho}, {omega}, {phi}, J/{psi} ect. and leptons are elementary most of experimentally analysed lepton-hadron and hadron-hadron processes in LEP1, LEP2, LEAR, HERA, HERMES, LHC and SSC experiments may be relatively easily analysed in our model. (author). 252 refs, 65 figs, 1 tab.

  8. A gauge field theory of fermionic continuous-spin particles

    Energy Technology Data Exchange (ETDEWEB)

    Bekaert, X., E-mail: xavier.bekaert@lmpt.univ-tours.fr [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science, Daejeon (Korea, Republic of); Najafizadeh, M., E-mail: mnajafizadeh@gmail.com [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS, Fédération de Recherche 2964 Denis Poisson, Université François Rabelais, Parc de Grandmont, 37200 Tours (France); Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of); Setare, M.R., E-mail: rezakord@ipm.ir [Department of Physics, Faculty of Sciences, University of Kurdistan, 66177-15177 Sanandaj (Iran, Islamic Republic of)

    2016-09-10

    In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  9. A gauge field theory of fermionic continuous-spin particles

    International Nuclear Information System (INIS)

    Bekaert, X.; Najafizadeh, M.; Setare, M.R.

    2016-01-01

    In this letter, we suggest a local covariant action for a gauge field theory of fermionic Continuous-Spin Particles (CSPs). The action is invariant under gauge transformations without any constraint on both the gauge field and the gauge transformation parameter. The Fang–Fronsdal equations for a tower of massless fields with all half-integer spins arise as a particular limit of the equation of motion of fermionic CSPs.

  10. True many-particle scattering theory in oscillator representation

    International Nuclear Information System (INIS)

    Smirnov, Yu.F.; Shirokov, A.M.

    1988-01-01

    The scattering theory in oscillator representation in case of true multiparticle scattering (TMS) is generalized. All necessary expressions to construct a wave function of several particles system in a discrete or continuous spectra at TMS approximation are obtained. Essential advantage of the method suggested lies in the fact that the most difficult part: construction and diagonolization of the Hamiltonian cutted matrix is to be carried out only once, and then the wave function can be calculated at any designed energy. 23 refs

  11. Two- and three-particle azimuthal correlations of high-$p_{t}$ charged hadrons in Pb - Au collisions at 158A GeV/c

    CERN Document Server

    Kniege, S; Ploskon, M; Kniege, Stefan; Ploskon, Mateusz

    2007-01-01

    Azimuthal correlations of hadrons with high transverse momenta serve as a measure to study the energy loss and the fragmentation pattern of jets emerging from hard parton-parton interactions in heavy ion collisions. Preliminary results from the CERES experiment on two- and three-particle correlations in central Pb-Au collisions are presented. A strongly non-Gaussian shape on the away-side of the two-particle correlation function is observed, indicating significant interactions of the emerging partons with the medium. Mechanisms like deflection of the initial partons or the evolution of a mach cone in the medium can lead to similar modifications of the jet structure on the away-side. An analysis based on three-particle correlations is presented which helps to shed light on the origin of the observed away-side pattern.

  12. Two- and three-particle azimuthal correlations of high-pt charged hadrons in Pb-Au collisions at 158 A GeV/c

    International Nuclear Information System (INIS)

    Kniege, Stefan; Ploskon, Mateusz

    2007-01-01

    Azimuthal correlations of hadrons with high transverse momenta serve as a measure to study the energy loss and the fragmentation pattern of jets emerging from hard parton-parton interactions in heavy-ion collisions. Preliminary results from the CERES experiment on two- and three-particle correlations in central Pb-Au collisions are presented. A strongly non-Gaussian shape on the away-side of the two-particle correlation function is observed, indicating significant interactions of the emerging partons with the medium. Mechanisms like deflection of the initial partons or the evolution of a mach cone in the medium can lead to similar modifications of the jet structure on the away-side. An analysis based on three-particle correlations is presented which helps us to shed light on the origin of the observed away-side pattern

  13. Scattering, diffraction and multiparticle production on hadron and nuclei at high energy

    International Nuclear Information System (INIS)

    Ter-Martirosyan, K.A.; Zoller, V.R.

    1988-01-01

    The cross sections for different types of interactions of hadronic with hadrons and nuclei at high energy are obtained in the simple form in the supercritical pomeron theory. Diffraction desintegration (DD) of hadrons both in the intermediate states, between rescatterings on pomerons, and in the final states is taken into account. With the same accuracy the cross sections δ n for production of n pomeron jets on hadrons and nuclei are also obtained. They determine the whole dynamics of the multiple particle productions, i.e. the spectra and multiplicities of produced particles, the cross sections for DD of colliding hadrons and nucleons inside the target nuclei. The numerical results for δ tot , δ el and for dδ el /dp tr 2 with the set of the pomeron and f, ω-reggeons pole parameters obtained early are presented. 19 refs.; 6 figs

  14. Hadrons at finite temperature

    CERN Document Server

    Mallik, Samirnath

    2016-01-01

    High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...

  15. Inclusive hadron production and two particle correlations in e+e- annihilation at 29 GeV center-of-mass energy

    International Nuclear Information System (INIS)

    Shapiro, M.

    1984-12-01

    We have studied hadron production in e + e - annihilation at 29 GeV center-of-mass energy using the PEP-4 Time Projection Chamber Detector. The inclusive cross sections and mean multiplicities for π +- , K +- and (p + anti p) production have been measured using ionization energy loss to separate particle species. We find on average 10.7 +- 0.6 π +- , 1.35 +- .13 K +- and 0.60 +- 0.08 (p + anti p) per multihadron event. The differential cross section is well described by a number of Monte Carlo hadronization models. In addition, we have observed correlations in rapidity space for identified pions and kaons. Short-range KK correlations provide evidence for local flavor compensation during hadronization. Long-range ππ and KK correlations indicate that the initial partons carry flavor. We also observe significant long-range πK correlations as a result of heavy quark decays. 85 references, 67 figures, 11 tables

  16. Interactions of Particles with Momenta of 1–10 GeV in a Highly Granular Hadronic Calorimeter with Tungsten Absorbers

    CERN Document Server

    Lam, Ching Bon; van Eijk, Bob

    Linear electron-positron colliders are proposed to complement and extend the physics programme of the Large Hadron Collider at CERN. In order to satisfy the physics goal requirements at linear colliders, detector concepts based on the Particle Flow approach are developed. Central to this approach are a high resolution tracker and a highly granular calorimeter which provide excellent jet energy resolution and background separation. The Compact Linear Collider (CLIC) is an electron-positron collider under study, aiming at centre-of-mass energies up to 3TeV. For the barrel hadronic calorimeter of experiments at CLIC, a detector with tungsten absorber plates is considered, as it is able to contain shower jets while keeping the diameter of the surrounding solenoid magnet limited. A highly granular analogue hadron calorimeter with tungsten absorbers was built by the CALICE collaboration. This thesis presents the analysis of the low-momentum data (1 GeV $\\leq$ p $\\leq$ 10 GeV) recorded in 2010 at the CERN Proton Syn...

  17. Highlights from COMPASS in hadron spectroscopy

    CERN Document Server

    Krinner, Fabian

    2015-01-01

    Since Quantum Choromdynamics allows for gluon self-coupling, quarks and gluons cannot be observed as free particles, but only their bound states, the hadrons. This so-called confinement phenomenon is responsible for $98\\%$ of the mass in the visible universe. The measurement of the hadron excitation spectra therefore gives valuable input for theory and phenomenology to quantitatively understand this phenomenon. One simple model to describe hadrons is the Constituent Quark Model (CQM), which knows two types of hadrons: mesons, consisting of a quark and an antiquark, and baryons, which are made out of three quarks. More advanced models, which are inspired by QCD as well as calculations within Lattice QCD predict the existence of other types of hadrons, which may be e.g. described solely by gluonic excitations (glueballs) or mixed quark and gluon excitations (hybrids). In order to search for such states, the COMPASS experiment at the Super Proton Synchrotron at CERN has collected large data sets, which allow to ...

  18. First measurement of the cross section for the production of hadrons with high transverse momenta at COMPASS, and developments for particle tracking in high-rate experiments

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, Christian C.

    2012-01-31

    In this dissertation, the first measurement of the luminosity for data from the COMPASS experiment is presented. The result is obtained by the direct measurement of the beam flux and the correction of all inefficiencies and dead times of the measurement. The normalized data set consists of about 30% of the COMPASS data recorded in 2004 and the effective integrated luminosity is 142.4 pb{sup -1} {+-} 10%, which is verified by the determination of the structure function F{sub 2} of the nucleon and its comparison to literature. Based on this result, the cross section for the quasi-real photoproduction of charged hadrons with high transverse momenta in muon-deuteron scattering at a center-of-mass energy of {radical}(s)=17.4 GeV is determined. The measurement of a hadron-production cross section in a thick solid-state target is quite challenging in comparison to collider measurements of such processes. The issue of secondary hadronic interactions in the target material is carefully studied and taken into account. The cross section is presented in bins of the pseudo-rapidity of the hadrons and separated by hadron charge. The results are discussed and compared to recent calculations of next-to-leading order perturbative Quantum Chromodynamics. This comparison serves as a test of the applicability of such calculations to the production of hadrons with high transverse momenta at COMPASS energies. The second part of this dissertation describes new developments for charged-particle tracking in high-rate experiments. The design of a new type of Time Projection Chamber (TPC), which employs GEM foils instead of proportional wires for gas amplification, is discussed. This technology opens up the possibility of using TPCs in experiments with trigger rates beyond about 1 kHz. Several important contributions to the GEM-TPC project are presented. Furthermore, a generic framework for track fitting in high-energy physics, called GENFIT, is introduced. This novel software is being used

  19. First measurement of the cross section for the production of hadrons with high transverse momenta at COMPASS, and developments for particle tracking in high-rate experiments

    International Nuclear Information System (INIS)

    Hoeppner, Christian C.

    2012-01-01

    In this dissertation, the first measurement of the luminosity for data from the COMPASS experiment is presented. The result is obtained by the direct measurement of the beam flux and the correction of all inefficiencies and dead times of the measurement. The normalized data set consists of about 30% of the COMPASS data recorded in 2004 and the effective integrated luminosity is 142.4 pb -1 ± 10%, which is verified by the determination of the structure function F 2 of the nucleon and its comparison to literature. Based on this result, the cross section for the quasi-real photoproduction of charged hadrons with high transverse momenta in muon-deuteron scattering at a center-of-mass energy of √(s)=17.4 GeV is determined. The measurement of a hadron-production cross section in a thick solid-state target is quite challenging in comparison to collider measurements of such processes. The issue of secondary hadronic interactions in the target material is carefully studied and taken into account. The cross section is presented in bins of the pseudo-rapidity of the hadrons and separated by hadron charge. The results are discussed and compared to recent calculations of next-to-leading order perturbative Quantum Chromodynamics. This comparison serves as a test of the applicability of such calculations to the production of hadrons with high transverse momenta at COMPASS energies. The second part of this dissertation describes new developments for charged-particle tracking in high-rate experiments. The design of a new type of Time Projection Chamber (TPC), which employs GEM foils instead of proportional wires for gas amplification, is discussed. This technology opens up the possibility of using TPCs in experiments with trigger rates beyond about 1 kHz. Several important contributions to the GEM-TPC project are presented. Furthermore, a generic framework for track fitting in high-energy physics, called GENFIT, is introduced. This novel software is being used in the PANDA

  20. CERN Library | Pauline Gagnon presents the book "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN" | 15 September

    CERN Multimedia

    CERN Library

    2016-01-01

    "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN ", by Pauline Gagnon. Thursday 15 September 2016, 16:00 - 17:30 in the CERN Library (Bldg 52 1-052) *Coffee will be served at 15:30* CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers...

  1. Jets in hadron colliders at order αs3

    International Nuclear Information System (INIS)

    Ellis, S.D.; Kunszt, Z.; Soper, D.E.

    1991-10-01

    Recent results from the study of hadronic jets in hadron-hadron collisions at order a s 3 in perturbation theory are presented. The numerical results are in good agreement with data and this agreement is illustrated where possible

  2. Photon-hadron fragmentation: theoretical situation

    International Nuclear Information System (INIS)

    Peschanski, R.

    1983-07-01

    Using a selection of new experimental results models of hadronic fragmentation and their phenomenological comparison are presented. Indeed a convenient theory of hadronic fragmentation -for instance based on Q.C.D.- does not exist: low transverse momentum fragmentation involves the badly known hadronic long-range forces. Models should clarify the situation in the prospect of an eventual future theory

  3. Particle, superparticle, superstring and new approach to twistor theory

    International Nuclear Information System (INIS)

    Eisenberg, Y.

    1990-10-01

    A new approach to twistor theory is proposed. The approach is based on certain reformulations of the classical massless particle and superparticle in terms of twistors. The first quantization of these systems leads to a full classification of all the free 4D field theories. The extension of one of this systems to the interacting case leads to a reformulation of the standard Dirac-Yang-Mills field equations in terms of gauge potential which fulfills certain curvatureless conditions in a generalized space (Minkowski+twistor). These conditions are a consequence of integrability conditions of an overdetermined system of linear equations whose vector field is composed from the components of the Dirac field and the Yang-Mills field strength. The twistorial reformulation allows us to gauge away all the ordinary space-time variables. By this procedure we obtain a description of the usual free massless field theories in terms of pure twistor space. These systems are invariant under an infinite dimensional algebra, which contains the two dimensional conformal algebera as a subalgebra. We propose this systems as candidates to a generalization of the notion of two-dimensional conformal field theories to four dimensions. Alternatively, we introduce an extension of the pure twistorial point particle to a two dimensional object, i.e. a pure twistorial string. (author)

  4. The theory of accelerated particles in AVF cyclotrons

    International Nuclear Information System (INIS)

    Schulte, W.M.

    1978-01-01

    This thesis deals with the study of the motion of accelerated charged particles in an AVF cyclotron. This study has been done on behalf of the VICKSI- project of the Hahn-Meitner-Institut in West Berlin. A new theory is developed which facilitates an accurate description of the influence of the acceleration on the motion in the median plane of a cyclotron. The theory is applied to systems with 1 or 2 Dee electrodes, the frequency of the accelerating voltage being equal to the revolution frequency of the particles or a higher harmonic of this frequency. It turned out that the betatron oscillations in the radial phase space may be disturbed considerably as a result of the acceleration. In the theory the author makes use of the Hamilton formalism. After a number of canonical transformations a Hamilton function was found, in which the most important effects show themselves clearly. The corresponding equations of motion can be solved very quickly with the help of a simple computer program. The results of this theory are in agreement with those of extensive numerical orbit integration programmes. In this thesis attention is also devoted to the centering of the beam in the VICKSI cyclotron just after injection, the possibility to obtain single-turn extraction and the interpretation of the high frequency phase measurements. (Auth.)

  5. Remarks on a gauge theory for continuous spin particles

    Energy Technology Data Exchange (ETDEWEB)

    Rivelles, Victor O. [Universidade de Sao Paulo, Instituto de Fisica, Sao Paulo, SP (Brazil)

    2017-07-15

    We discuss in a systematic way the gauge theory for a continuous spin particle proposed by Schuster and Toro. We show that it is naturally formulated in a cotangent bundle over Minkowski spacetime where the gauge field depends on the spacetime coordinate x{sup μ} and on a covector η{sub μ}. We discuss how fields can be expanded in η{sub μ} in different ways and how these expansions are related to each other. The field equation has a derivative of a Dirac delta function with support on the η-hyperboloid η{sup 2} + 1 = 0 and we show how it restricts the dynamics of the gauge field to the η-hyperboloid and its first neighbourhood. We then show that on-shell the field carries one single irreducible unitary representation of the Poincare group for a continuous spin particle. We also show how the field can be used to build a set of covariant equations found by Wigner describing the wave function of one-particle states for a continuous spin particle. Finally we show that it is not possible to couple minimally a continuous spin particle to a background abelian gauge field, and we make some comments about the coupling to gravity. (orig.)

  6. Test-particle motion in the nonsymmetric gravitation theory

    International Nuclear Information System (INIS)

    Moffat, J.W.

    1987-01-01

    A derivation of the motion of test particles in the nonsymmetric gravitational theory (NGT) is given using the field equations in the presence of matter. The motion of the particle is governed by the Christoffel symbols, which are formed from the symmetric part of the fundamental tensor g/sub μ//sub ν/, as well as by a tensorial piece determined by the skew part of the contracted curvature tensor R/sub μ//sub ν/. Given the energy-momentum tensor for a perfect fluid and the definition of a test particle in the NGT, the equations of motion follow from the conservation laws. The tensorial piece in the equations of motion describes a new force in nature that acts on the conserved charge in a body. Particles that carry this new charge do not follow geodesic world lines in the NGT, whereas photons do satisfy geodesic equations of motion and the equivalence principle of general relativity. Astronomical predictions, based on the exact static, spherically symmetric solution of the field equations in a vacuum and the test-particle equations of motion, are derived in detail. The maximally extended coordinates that remove the event-horizon singularities in the static, spherically symmetric solution are presented. It is shown how an inward radially falling test particle can be prevented from forming an event horizon for a value greater than a specified critical value of the source charge. If a test particle does fall through an event horizon, then it must continue to fall until it reaches the singularity at r = 0

  7. A theory of jet shapes and cross sections: from hadrons to nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vitev, Ivan [Los Alamos National Laboratory; Zhang, Benwei [Los Alamos National Laboratory; Wicks, Smon [COLUMBIA

    2008-01-01

    For jets, with great power comes great opportunity. The unprecedented center of mass energies available at the LHC open new windows on the QGP: we demonstrate that jet shape and jet cross section measurements become feasible as a new, differential and accurate test of the underlying QCD theory. We present a first step in understanding these shapes and cross sections in heavy ion reactions. Our approach allows for detailed simulations of the experimental acceptance/cuts that help isolate jets in such high-multiplicity environment. It is demonstrated for the first time that the pattern of stimulated gluon emission can be correlated with a variable quenching of the jet rates and provide an approximately model-independent approach to determining the characteristics of the medium-induced bremsstrahlung spectrum. Surprisingly, in realistic simulations of parton propagation through the QGP we find a minimal increase in the mean jet radius even for large jet attenuation. Jet broadening is manifest in the tails of the energy distribution away from the jet axis and its quantification requires high statistics measurements that will be possible at the LHC.

  8. High-energy hadron dynamics based on a stochastic-field multieikonal theory

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1977-01-01

    Multieikonal theory, using a stochastic-field representation for collective long-range rapidity correlations, is developed and applied to the calculation of Regge-pole parameters, high-transverse-momentum enhancements, and fluctuation patterns in rapidity densities. If a short-range-order model, such as the one-dimensional planar bootstrap, with only leading t-channel meson poles, is utilized as input to the multieikonal method, the pole spectrum is modified in three ways: promotion and renormalization of leading trajectories (suggesting an effective Pomeron above unity at intermediate energies), and a proliferation of dynamical secondary trajectories, reminiscent of dual models. When transverse dimensions are included, the collective effects produce a growth with energy of large-P/sub T/ inclusive cross sections. Typical-event rapidity distributions, at energies of a few TeV, can be estimated by suitable approximations; the fluctuations give rise to ''domain'' patterns, which have the appearance of clusters separated by rapidity gaps. The relations between this approach to strong-interaction dynamics and a possible unification of weak, electromagnetic, and strong interactions are outlined

  9. High energy hadron dynamics based on a Stochastic-field multi-eikonal theory

    International Nuclear Information System (INIS)

    Arnold, R.C.

    1977-06-01

    Multi-eikonal theory, using a stoichastic-field representation for collective long range rapidity correlations, is developed and applied to the calculation of Regge pole parameters, high transverse momentum enhancements, and fluctuation patterns in rapidity densities. If a short-range-order model, such as the one-dimensional planar bootstrap, with only leading t-channel meson poles, is utilized as input to the multi-eikonal method, the pole spectrum is modified in three ways; promotion and renormalization of leading trajectories (suggesting an effective pomeron above unity at intermediate energies), and a proliferation of dynamical secondary trajectories, reminiscent of dual models. When transverse dimensions are included, the collective effects produce a growth with energy of large-P/sub tau/ inclusive cross-sections. Typical-event rapidity distributions, at energies of a few TeV, can be estimated by suitable approximations; the fluctuations give rise to ''domain'' patterns, which have the appearance of clusters separated by rapidity gaps. The relations between this approach to strong-interaction dynamics and a possible unification of weak, electromagnetic, and strong interactions are outlined

  10. Perspectives in hadron and quark dynamics

    International Nuclear Information System (INIS)

    Amsler, C.; Bressani, T.; Close, F.E.; De Sanctis, E.; Frois, B.; Kunne, F.; Laget, J.M.; von Harrach, D.; Metag, V.; Mulders, P.J.; Riska, D.O.

    1997-01-01

    In the past two decades, quantum chromodynamics (QCD) has emerged as the theory for the strong force with quarks and gluons as the building blocks of nuclear matter at large densities and high temperatures. One of the most exciting challenges for nuclear physics is the study of the non-perturbative regime of QCD. It is this regime which is relevant for understanding how the elementary fields of QCD - quarks and gluons - build up particles such as protons and neutrons. A basic theoretical difficulty is the non-existence of asymptotic, isolated, colored objects. This is a feature of the richness of the vacuum structure of QCD. Understanding the different QCD phases and the transitions among them is the challenge of the modern study of strong interactions. At low energy, chiral symmetry can be used to build aneffective theory of hadron interactions. At higher energies, the parton model uses non-perturbative quark and gluon distributions to describe hadronic scattering processes. (orig)

  11. One-particle reducibility in effective scattering theory

    International Nuclear Information System (INIS)

    Vereshagin, V.

    2016-01-01

    To construct the reasonable renormalization scheme suitable for the effective theories one needs to resolve the “problem of couplings” because the number of free parameters in a theory should be finite. Otherwise the theory would loose its predictive power. In the case of effective theory already the first step on this way shows the necessity to solve the above-mentioned problem for the 1-loop 2-leg function traditionally called self energy. In contrast to the customary renormalizable models the corresponding Feynman graph demonstrates divergencies that require introducing of an infinite number of prescriptions. In the recent paper [1] it has been shown that the way out of this difficulty requires the revision of the notion of one-particle reducibility. The point is that in effective scattering theory one can introduce two different notions: the graphic reducibility and the analytic one. Below we explain the main ideas of the paper [1] and recall some notions and definitions introduced earlier in [2] and [3

  12. Pairing in hadron structure

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1981-08-01

    A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)

  13. Quantum chromodynamics and hadron jets

    International Nuclear Information System (INIS)

    Dokshitser, Y.L.; Dyakonov, D.I.

    1979-07-01

    These lectures are devoted to the description of the various properties of hard scattering processes with the participation of hadrons in the framework of Quantum Chromodynamics. We discuss in detail the validity and region of applicability of perturbation theory applied to hadron processes. Particular attention is paid to the question of the structure of quark and gluon jets produced in hard processes (as an example, e + e - annihilation into hadrons). In addition to giving a pedagogical review, we also present new results. (orig.)

  14. [Theory of elementary particles studies in weak interaction and grand unification and studies in accelerator design

    International Nuclear Information System (INIS)

    1989-01-01

    This report discusses topics on: Rare B decay; Physics beyond the standard model; Intermittency; Relativistic heavy-ion collisions; Cross section for jet production in hadron collisions; Factorization; Determination of the parton distribution function; Left-right electroweak theories; and Supersymmetry at Lepton colliders

  15. Twistor theory

    International Nuclear Information System (INIS)

    Perjes, Z.

    1982-01-01

    Particle models in twistor theory are reviewed, starting with an introduction into the kinematical-twistor formalism which describes massive particles in Minkowski space-time. The internal transformations of constituent twistors are then discussed. The quantization rules available from a study of twistor scattering situations are used to construct quantum models of fundamental particles. The theory allows the introduction of an internal space with a Kaehlerian metric where hadron structure is described by spherical states of bound constituents. It is conjectured that the spectrum of successive families of hadrons might approach an accumulation point in energy. Above this threshold energy, the Kaehlerian analog of ionization could occur wherein the zero-mass constituents (twistors) of the particle break free. (Auth.)

  16. NEW HYPERON EQUATIONS OF STATE FOR SUPERNOVAE AND NEUTRON STARS IN DENSITY-DEPENDENT HADRON FIELD THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Banik, Sarmistha [BITS Pilani, Hyderabad Campus, Hyderabad-500078 (India); Hempel, Matthias [Departement Physik, Universität Basel, Klingelbergstrasse 82, 4056 Basel (Switzerland); Bandyopadhyay, Debades [Astroparticle Physics and Cosmology Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata-700064 (India)

    2014-10-01

    We develop new hyperon equation of state (EoS) tables for core-collapse supernova simulations and neutron stars. These EoS tables are based on a density-dependent relativistic hadron field theory where baryon-baryon interaction is mediated by mesons, using the parameter set DD2 for nucleons. Furthermore, light and heavy nuclei along with interacting nucleons are treated in the nuclear statistical equilibrium model of Hempel and Schaffner-Bielich which includes excluded volume effects. Of all possible hyperons, we consider only the contribution of Λs. We have developed two variants of hyperonic EoS tables: in the npΛφ case the repulsive hyperon-hyperon interaction mediated by the strange φ meson is taken into account, and in the npΛ case it is not. The EoS tables for the two cases encompass a wide range of densities (10{sup –12} to ∼1 fm{sup –3}), temperatures (0.1 to 158.48 MeV), and proton fractions (0.01 to 0.60). The effects of Λ hyperons on thermodynamic quantities such as free energy per baryon, pressure, or entropy per baryon are investigated and found to be significant at higher densities. The cold, β-equilibrated EoS (with the crust included self-consistently) results in a 2.1 M {sub ☉} maximum mass neutron star for the npΛφ case, whereas that for the npΛ case is 1.95 M {sub ☉}. The npΛφ EoS represents the first supernova EoS table involving hyperons that is directly compatible with the recently measured 2 M {sub ☉} neutron stars.

  17. Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    CERN Document Server

    Chefdeville, M.; Repond, J.; Schlereth, J.; Xia, L.; Eigen, G.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Alipour Tehrani, N.; Apostolakis, J.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Brianne, E.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Karstensen, S.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Tran, H.L.; Vargas-Trevino, A.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Onel, Y.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Calvo Alamillo, E.; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Cornebise, P.; Richard, F.; Pöschl, R.; Rouëné, J.; Thiebault, A.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C.; Cizel, J-B.; Cornat, R.; Frotin, M.; Gastaldi, F.; Haddad, Y.; Magniette, F.; Nanni, J.; Pavy, S.; Rubio-Roy, M.; Shpak, K.; Tran, T.H.; Videau, H.; Yu, D.; Callier, S.; Conforti di Lorenzo, S.; Dulucq, F.; Fleury, J.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Chen, S.; Jeans, D.; Komamiya, S.; Kozakai, C.; Nakanishi, H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2015-12-10

    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.

  18. Probing exotic phenomena at the interface of nuclear and particle physics with the electric dipole moments of diamagnetic atoms: A unique window to hadronic and semi-leptonic CP violation

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, N. [RIKEN, Wako, iTHES Research Group, Saitama (Japan); Far Eastern Federal University, Complex Simulation Group, School of Biomedicine, Vladivostok (Russian Federation); Sahoo, B.K. [Physical Research Laboratory, Atomic, Molecular and Optical Physics Division, Ahmedabad (India); Yoshinaga, N. [Graduate School of Science and Engineering, Saitama (Japan); Sato, T. [RIKEN, Nishina Center, Saitama (Japan); Asahi, K. [RIKEN, Nishina Center, Saitama (Japan); Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan); Das, B.P. [Tokyo Institute of Technology, Department of Physics and International Education and Research Center of Science, Tokyo (Japan)

    2017-03-15

    The current status of electric dipole moments of diamagnetic atoms which involves the synergy between atomic experiments and three different theoretical areas, i.e. particle, nuclear and atomic, is reviewed. Various models of particle physics that predict CP violation, which is necessary for the existence of such electric dipole moments, are presented. These include the standard model of particle physics and various extensions of it. Effective hadron level combined charge conjugation (C) and parity (P) symmetry violating interactions are derived taking into consideration different ways in which a nucleon interacts with other nucleons as well as with electrons. Nuclear structure calculations of the CP-odd nuclear Schiff moment are discussed using the shell model and other theoretical approaches. Results of the calculations of atomic electric dipole moments due to the interaction of the nuclear Schiff moment with the electrons and the P and time-reversal (T) symmetry violating tensor-pseudotensor electron-nucleus are elucidated using different relativistic many-body theories. The principles of the measurement of the electric dipole moments of diamagnetic atoms are outlined. Upper limits for the nuclear Schiff moment and tensor-pseudotensor coupling constant are obtained combining the results of atomic experiments and relativistic many-body theories. The coefficients for the different sources of CP violation have been estimated at the elementary particle level for all the diamagnetic atoms of current experimental interest and their implications for physics beyond the standard model is discussed. Possible improvements of the current results of the measurements as well as quantum chromodynamics, nuclear and atomic calculations are suggested. (orig.)

  19. Theories of extended objects and composite models of particles

    International Nuclear Information System (INIS)

    Barut, A.O.

    1992-05-01

    The goal of the relativistic theory of extended objects is to predict and correlate the experimentally observed mass spectra, form factors, inelastic transitions, polarizabilities, structure functions of particles from different probes (photons, neutrinos, electrons), and eventually, the break-up, pair production of the system, and scattering of extended objects among themselves. The internal structure may be classified by the nature and number of the internal variables: discrete (fundamental particles), finite number of continuous variables (bound systems), infinite number of continuous variables (p-membranes or localized fields). The algebraic group theoretical S-matrix approach allows us to formulate all the above properties in a unified manner. Different structures are then characterized by different specific parameters. (author). Refs, 4 figs, 1 tab

  20. Gyrokinetic theory for particle and energy transport in fusion plasmas

    Science.gov (United States)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  1. Critical behavior in continuous dimension, ε∞ theory and particle physics

    International Nuclear Information System (INIS)

    Goldfain, Ervin

    2008-01-01

    Bringing closure to the host of open questions posed by the current standard model for particle physics (SM) continues to be a major challenge for the theoretical physics community. Despite years of multiple research efforts, a consistent and comprehensive understanding of standard model parameters is missing. Our work suggests that critical dynamics of the renormalization group flow provides valuable insights into most of the unresolved issues surrounding SM. We report that the dynamics of the renormalization group flow and the topological approach of El Naschie's ε ∞ theory are viewpoints that share a common foundation. The paper concludes with a brief overview of future developments and integration efforts

  2. Research program in elementary particle theory. Progress report, 1975--1976

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included

  3. Research program in elementary particle theory. Progress report, 1975--1976. [Summaries of research activities

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.; Ne' eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included. (JFP)

  4. Study of the hadronic production and properties of new particles with a lifetime 10$^{-13}$ s < $\\tau$ < 10$^{-10}$ s using LEBC-EHS

    CERN Multimedia

    2002-01-01

    The 1-litre high resolution hydrogen bubble chamber LEBC is combined with a downstream analysis system provided by the European Hybrid Spectrometer in an experiment designed to study the hadronic production and properties of charmed and other short-lived particles. In a previous test experiment (NA13) the bubble chamber has operated with resolved bubble images in the range 35-50 $\\mu$m diameter and bubble densities $\\sim$ 100/cm. Candidates for charm pair production have been observed. \\\\ \\\\ The experiment should yield 20-30 events per microbarn in each of two exposures, to 370 GeV $\\pi^{-}$ and to 400 GeV protons. The high resolution chamber serves to identify events containing short-lived particles and to associate the final state charged particles correctly with their vertices of origin. Momentum analysis will be to $\\simeq \\pm$ 1% for x > 0 charged particles and 2-3% on forward $\\pi^{0}$s using the intermediate and forward gamma detectors. Some charged particle identification is provided by the test modu...

  5. Particle connectedness and cluster formation in sequential depositions of particles: integral-equation theory.

    Science.gov (United States)

    Danwanichakul, Panu; Glandt, Eduardo D

    2004-11-15

    We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.

  6. Theory of flotation of small and medium-size particles

    Science.gov (United States)

    Derjaguin, B. V.; Dukhin, S. S.

    1993-08-01

    The paper describes a theory of flotation of small and medium-size particles less than 50μ in radius) when their precipitation on a bubble surface depends more on surface forces than on inertia forces, and deformation of the bubble due to collisions with the particles may be neglected. The approach of the mineral particle to the bubble surface is regarded as taking place in three stages corresponding to movement of the particles through zones 1, 2 and 3. Zone 3 is a liquid wetting layer of such thickness that a positive or negative disjoining pressure arises in this intervening layer between the particle and the bubble. By zone 2 is meant the diffusional boundary layer of the bubble. In zone 1, which comprises the entire liquid outside zone 2, there are no surface forces. Precipitation of the particles is calculated by considering the forces acting in zones 1, 2 and 3. The particles move through zone 1 under the action of gravity and inertia. Analysis of the movement of the particles under the action of these forces gives the critical particle size, below which contact with the bubble surface is impossible, if the surface forces acting in zones 2 and 3 be neglected. The forces acting in zone 2 are ‘diffusio-phoretic’ forces due to the concentration gradient in the diffusional boundary layer. The concentration and electric field intensity distribution in zone 2 is calculated, taking into account ion diffusion to the deformed bubble surface. An examination is made of the ‘equilibrium’ surface forces acting in zone 3 independent of whether the bubble is at rest or in motion. These forces, which determine the behaviour of the thin wetting intervening layer between the bubble and the mineral particle and the height of the force barrier against its rupture, may be represented as results of the disjoining pressure forces acting on various parts of the film. The main components of the disjoining pressure are van der Waals forces, forces of an iono

  7. Hadrons-94

    International Nuclear Information System (INIS)

    Bugrij, G.; Jenkovsky, L.; Martynov, E.

    1994-01-01

    These Proceedings contain the contributions to the Workshop HADRONS-94,held in Uzhgorod between September 7-11,1994. They covers the topics: - elastic and diffractive scattering of hadrons and nuclei; -small-x and spin physics; - meson and baryon spectroscopy; - dual and string models; - collective properties of the strongly interacting matter

  8. Hadrons-94

    Energy Technology Data Exchange (ETDEWEB)

    Bugrij, G; Jenkovsky, L; Martynov, E [eds.

    1994-12-31

    These Proceedings contain the contributions to the Workshop HADRONS-94,held in Uzhgorod between September 7-11,1994. They covers the topics: - elastic and diffractive scattering of hadrons and nuclei; -small-x and spin physics; - meson and baryon spectroscopy; - dual and string models; - collective properties of the strongly interacting matter.

  9. Assembly of the CMS hadronic calorimeter

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  10. Quarkonium production in hadronic collisions

    International Nuclear Information System (INIS)

    Gavai, R.; Schuler, G.A.; Sridhar, K.

    1995-01-01

    We summarize the theoretical description of charmonium and bottonium production in hadronic collisions and compare it to the available data from hadron-nucleon interactions. With the parameters of the theory established by these data, we obtain predictions for quarkonium production at RHIC and LHC energies

  11. Hadronic cascade processes

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.; Kripfganz, J.; Moehring, H.J.

    1977-01-01

    The analytical treatment of hadronic decay cascades within the framework of the statistical bootstrap model is demonstrated on the basis of a simple variant. Selected problems for a more comprehensive formulation of the model such as angular momentum conservation, quantum statistical effects, and the immediate applicability to particle production processes at high energies are discussed in detail

  12. The large hadron computer

    CERN Multimedia

    Hirstius, Andreas

    2008-01-01

    Plans for dealing with the torrent of data from the Large Hadron Collider's detectors have made the CERN particle-phycis lab, yet again, a pioneer in computing as well as physics. The author describes the challenges of processing and storing data in the age of petabyt science. (4 pages)

  13. Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)

  14. Parton dynamics in hadronic processes. Final report

    International Nuclear Information System (INIS)

    Sukhatme, U.P.

    1984-07-01

    We have elucidated several aspects of the dual parton fragmentation model for low transverse momentum multiparticle production in hadronic collisions previously developed by the author and collaborators at Orsay, France. In particular, we have verified that the dual parton model correctly reproduces recently obtained two particle inclusive distributions and particle ratios in the central region of pp and anti pp collisions. This work sheds light on the dynamics of partons in a hadronic collision since it strongly indicates that a valence quark from each initial hadron is held back with a small momentum fraction. Also, we have extended the dual parton approach to include diffraction dissocation and studied the consequences on inclusive pion production in pp interactions. We have investigated the virtues and limitations of logarithmic perturbation theory, which is often a much simpler alternative to standard Rayleigh-Schroedinger perturbation theory. Finally, we have developed and studied the shifted 1/N expansion for the enrgy eigenstates in non-relativistic quantum mechanics. Our results provide an accurate, rapidly convergent, powerful new way of handling any spherically symmetric potential. 18 references

  15. Theory and phenomenology of strong and weak interaction high energy physics: [Technical progress report, 5/1/86-4/30/87

    International Nuclear Information System (INIS)

    Thews, R.L.

    1986-01-01

    The research reported includes: low energy quark-hadron dynamics; quark-gluon models for hadronic interactions, decays and structure; mathematical and physical properties of nonlinear sigma models, Yang-Mills theories, and Coulomb gases, which are of interest in both particle physics and condensed matter physics; statistical and dynamical aspects of hadronic multiparticle production. 28 refs

  16. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  17. Comprehending particle production in proton+proton and heavy-ion collisions at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2017-01-01

    In the extreme conditions of temperature and energy density, nuclear matter undergoes a transition to a new phase, which is governed by partonic degrees of freedom. This phase is called Quark-Gluon Plasma (QGP). The transition to QGP phase was conjectured to take place in central nucleus-nucleus collisions. With the advent of unprecedented collision energy at the Large Hadron Collider (LHC), at CERN, it has been possible to create energy densities higher than that was predicted by lattice QCD for a deconfinement transition

  18. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  19. Classical Noether theory with application to the linearly damped particle

    International Nuclear Information System (INIS)

    Leone, Raphaël; Gourieux, Thierry

    2015-01-01

    This paper provides a modern presentation of Noether’s theory in the realm of classical dynamics, with application to the problem of a particle submitted to both a potential and a linear dissipation. After a review of the close relationships between Noether symmetries and first integrals, we investigate the variational point symmetries of the Lagrangian introduced by Bateman, Caldirola and Kanai. This analysis leads to the determination of all the time-independent potentials allowing such symmetries, in the one-dimensional and the radial cases. Then we develop a symmetry-based transformation of Lagrangians into autonomous others, and apply it to our problem. To be complete, we enlarge the study to Lie point symmetries which we associate logically to the Noether ones. Finally, we succinctly address the issue of a ‘weakened’ Noether’s theory, in connection with ‘on-flows’ symmetries and non-local constant of motions, because it has a direct physical interpretation in our specific problem. Since the Lagrangian we use gives rise to simple calculations, we hope that this work will be of didactic interest to graduate students, and give teaching material as well as food for thought for physicists regarding Noether’s theory and the recent developments around the idea of symmetry in classical mechanics. (paper)

  20. Transverse momentum and angular distributions of hadrons in e+e- jets from QCD

    International Nuclear Information System (INIS)

    Kramer, G.; Schierholz, G.

    1978-10-01

    Hadron jets in e + e - annihilation will broaden at high energies due to gluon bremsstrahlung. With nonperturbative PT effects dying out rapidly, the basic features of hadron jets can be calculated in perturbation theory. We examine the PT distribution of secondarily produced hadrons. This is uniquely connected with the deviation from the 1 cos 2 THETA dependence of single particle inclusive distributions. We discuss what can be learned about the gluon fragmentation given the PT and/or angular distributions. A sum rule is derived which establishes a relationship between the average P 2 T and αs. (orig.) [de

  1. Transverse momentum and angular distributions of hadrons in e+e- jets from QCD

    International Nuclear Information System (INIS)

    Kramer, G.

    1979-01-01

    Hadron jets in e + e - annihilation will broaden at high energies due to gluon bremsstrahlung. With nonperturbative psub(T) effects dying out rapidly, the basic features of hadron jets can be calculated in perturbation theory. The authors examine the psub(T) distribution of secondarily produced hadrons. This is uniquely connected with the deviation from the 1 + cos 2 theta dependence of single particle inclusive distributions. The authors discuss what can be learned about the gluon fragmentation given the psub(T) and/or angular distributions. A sum rule is derived which establishes a relationship between the average p 2 sub(T) and αsub(S). (Auth.)

  2. Particle physics

    International Nuclear Information System (INIS)

    Kamal, Anwar

    2014-01-01

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  3. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  4. High intensity hadron accelerators

    International Nuclear Information System (INIS)

    Teng, L.C.

    1989-05-01

    This rapporteur report consists mainly of two parts. Part I is an abridged review of the status of all High Intensity Hadron Accelerator projects in the world in semi-tabulated form for quick reference and comparison. Part II is a brief discussion of the salient features of the different technologies involved. The discussion is based mainly on my personal experiences and opinions, tempered, I hope, by the discussions I participated in in the various parallel sessions of the workshop. In addition, appended at the end is my evaluation and expression of the merits of high intensity hadron accelerators as research facilities for nuclear and particle physics

  5. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  6. Hadrons in medium

    Indian Academy of Sciences (India)

    manifestly the symmetries of the underlying theory of strong interactions, i.e. ..... Note that such a picture, in which the self-energies of hadrons are generated by ..... An experimental verification of this prediction would be a major step forward in.

  7. Hadron collider physics

    International Nuclear Information System (INIS)

    Pondrom, L.

    1991-01-01

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs

  8. Search for New Particles Decaying to Hadronic Jets in Proton-Proton Collision at $\\sqrt{s} = 13$ TeV

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00405663

    This thesis presents a search for new resonances decaying to pairs of jets in $37 \\mathrm{fb^{-1}}$ of proton-proton collision data produced by the Large Hadron Collider at a center-of-mass energy of $13$ TeV. The data was collected in $2015$ and $2016$ by the ATLAS detector. A new resonance search algorithm - SWiFt - was used to reduce the uncertainty in the data-driven estimate of the unknown backgrounds. SWiFt was utilized in a model-independent search, and also to perform model-dependent searches for excited quarks ($q^*$) and heavy gauge bosons ($W′$). No evidence for new phenomena was observed, so $95\\%$ confidence-level upper limits were calculated on the production rates of $q^*$ and $W′$. Upper limits were also calculated for Gaussian models which represent first-order approximations for many theoretical models that predict new particles decaying to two jets.

  9. Model building with a dynamical volume element in gravity, particle theory and theories of extended object

    International Nuclear Information System (INIS)

    Guendelman, E.

    2004-01-01

    Full Text:The Volume Element of Space Time can be considered as a geometrical object which can be independent of the metric. The use in the action of a volume element which is metric independent leads to the appearance of a measure of integration which is metric independent. This can be applied to all known generally coordinate invariant theories, we will discuss three very important cases: 1. 4-D theories describing gravity and matter fields, 2. Parametrization invariant theories of extended objects and 3. Higher dimensional theories including gravity and matter fields. In case 1, a large number of new effects appear: (i) spontaneous breaking of scale invariance associated to integration of degrees of freedom related to the measure, (ii) under normal particle physics laboratory conditions fermions split into three families, but when matter is highly diluted, neutrinos increase their mass and become suitable candidates for dark matter, (iii) cosmic coincidence between dark energy and dark matter is natural, (iv) quintessence scenarios with automatic decoupling of the quintessence scalar to ordinary matter, but not dark matter are obtained (2) For theories or extended objects, the use of a measure of integration independent of the metric leads to (i) dynamical tension, (ii) string models of non abelian confinement (iii) The possibility of new Weyl invariant light-like branes (WTT.L branes). These Will branes dynamically adjust themselves to sit at black hole horizons and in the context of higher dimensional theories can provide examples of massless 4-D particles with nontrivial Kaluza Klein quantum numbers, (3) In Bronx and Kaluza Klein scenarios, the use of a measure independent of the metric makes it possible to construct naturally models where only the extra dimensions get curved and the 4-D observable space-time remain flat

  10. PREFACE: Focus section on Hadronic Physics

    Science.gov (United States)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  11. Plans for checking hadronic energy depositions in the ATLAS calorimeters with early LHC data using charged particles

    CERN Document Server

    Davidson, N; The ATLAS collaboration

    2009-01-01

    The first data from the ATLAS detector at the Large Hadron Collider (LHC) is due to be collected later this year. This first phase will play a vital role in understanding the detector and its response, in-situ. Jet reconstruction is important for identifying new physics as well as making precision measurements of standard model physics. The fine granularity of the ATLAS calorimeters can be used to gain information about a jet's shape and the classification of energy deposits, which allows a better estimate of the jet energy to be made and in particular correction for the non-compensating nature of the calorimeter using so-called calibration weights. The classification algorithm and weights are presently calculated using simulation. In this presentation we describe an important step in the validation of ATLAS's jet calibration using charged tracks reconstructed in the inner detector and their inter-calibration with the clusters reconstructed in the calorimeters.

  12. Relativistic direct interaction and hadron models

    International Nuclear Information System (INIS)

    Biswas, T.

    1984-01-01

    Direct interaction theories at a nonrelativistic level have been used successfully in several areas earlier (e.g. nuclear physics). But for hadron spectroscopy relativistic effects are important and hence the need for a relativistic direct interaction theory arises. It is the goal of this thesis to suggest such a theory which has the simplicity and the flexibility required for phenomenological model building. In general the introduction of relativity in a direct interaction theory is shown to be non-trivial. A first attempt leads to only an approximate form for allowed interactions. Even this is far too complex for phenomenological applicability. To simplify the model an extra spacelike particle called the vertex is introduced in any set of physical (timelike) particles. The vertex model is successfully used to fit and to predict experimental data on hadron spectra, γ and psi states fit very well with an interaction function inspired by QCD. Light mesons also fit reasonably well. Better forms of hyperfine interaction functions would be needed to improve the fitting of light mesons. The unexpectedly low pi meson mass is partially explained. Baryon ground states are fitted with unprecedented accuracy with very few adjustable parameters. For baryon excited states it is shown that better QCD motivated interaction functions are needed for a fit. Predictions for bb states in e + e - experiments are made to assist current experiments

  13. Hadronization, spin and lifetimes

    International Nuclear Information System (INIS)

    Grossman, Yuval; Nachshon, Itay

    2008-01-01

    Measurements of lifetimes can be done in two ways. For very short lived particles, the width can be measured. For long lived ones, the lifetime can be directly measured, for example, using a displaced vertex. Practically, the lifetime cannot be extracted for particles with intermediate lifetimes. We show that for such cases information about the lifetime can be extracted for heavy colored particles that can be produced with known polarization. For example, a t-like particle with intermediate lifetime hadronizes into a superposition of the lowest two hadronic states, T* and T (the equivalent of B* and B). Depolarization effects are governed by time scales that are much longer than the hadronization time scale, Λ QCD -1 . After a time of order 1/Δm, with Δm≡m(T*)-m(T), half of the initial polarization is lost. The polarization is totally lost after a time of order 1/Γ γ , with Γ γ = Γ(T* → Tγ). Thus, by comparing the initial and final polarization, we get information on the particle's lifetime.

  14. From Theory to Experiment: Hadron Electromagnetic Form Factors in Space-like and Time-like Regions

    International Nuclear Information System (INIS)

    Tomasi-Gustafsson, E.; Gakh, G.I.; Rekalo, A.P.

    2007-01-01

    Hadron electromagnetic form factors contain information on the intrinsic structure of the hadrons. The pioneering work developed at the Kharkov Physical-Technical Institute in the 60's on the relation between the polarized cross section and the proton form factors triggered a number of experiments. Such experiments could be performed only recently due to the progress in accelerator and polarimetry techniques. The principle of these measurements is recalled and surprise and very precise results obtained on proton are presented. The actual status of nucleon electromagnetic form factors is reviewed, with special attention to the basic work done in Kharkov Physical-Technical Institute. This Paper is devoted to the memory of Prof. M.P. Rekalo

  15. Digital Hadron Calorimetry

    Science.gov (United States)

    Bilki, Burak

    2018-03-01

    The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.

  16. Supersymmetry at hadron supercolliders

    International Nuclear Information System (INIS)

    Dzialo, D.L.

    1989-01-01

    At the next generation of hadron supercolliders, the proposed US Superconducting Supercollider (SSC) and the European Large Hadron Collider (LHC), protons will be collided at such high energy to allow the creation of new particles with masses greater those that have been previously created in the laboratory. One of the most important questions to be resolved at these accelerators is whether or not any supersymmetric extension of the Standard Model is manifest below the TeV scale. It is expected that the strongly-interacting supersymmetric particles, the gluinos and squarks, will be pair-produced in the most abundance there. Light gluinos primarily decay into quarks and the lightest supersymmetric particle, which is assumed to escape detection; this gives the classic supersymmetric signature of events with large missing momentum. It is known, however, that for gluinos of masses larger than just 100 GeV this process is no longer the preferred gluino decay channel. New signals must therefore be sought to either detect these particles, or to set meaningful lower mass limits. It is in this work that such new detection strategies for supersymmetry at hadron supercolliders are proposed. Gluino and squark production rates and decay channels are studied in a model-independent fashion over the entire theoretical mass range of interest. New experimental signatures are proposed and compared with sources of background over a wide region of the parameter space that characterizes different supersymmetric models

  17. Quasi-linear theory and transport theory. [particle acceleration in interplanetary medium

    Science.gov (United States)

    Smith, Charles W.

    1992-01-01

    The theory of energetic particle scattering by magnetostatic fluctuations is reviewed in so far as it fails to produce the rigidity-independent mean-free-paths observed. Basic aspects of interplanetary magnetic field fluctuations are reviewed with emphasis placed on the existence of dissipation range spectra at high wavenumbers. These spectra are then incorporated into existing theories for resonant magnetostatic scattering and are shown to yield infinite mean-free-paths. Nonresonant scattering in the form of magnetic mirroring is examined and offered as a partial solution to the magnetostatic problem. In the process, mean-free-paths are obtained in good agreement with observations in the interplanetary medium at 1 AU and upstream of planetary bow shocks.

  18. Hadronic interactions from effective chiral Lagrangians of quarks and gluons

    International Nuclear Information System (INIS)

    Krein, G.

    1996-06-01

    We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs

  19. Research and development of a gaseous detector PIM (parallel ionization multiplier) dedicated to particle tracking under high hadron rates; Recherche et developpement d'un detecteur gazeux PIM (Parallel Ionization Multiplier) pour la trajectographie de particules sous un haut flux de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Beucher, J

    2007-10-15

    PIM (Parallel Ionization Multiplier) is a multi-stage micro-pattern gaseous detector using micro-meshes technology. This new device, based on Micromegas (micro-mesh gaseous structure) detector principle of operation, offers good characteristics for minimum ionizing particles track detection. However, this kind of detectors placed in hadron environment suffers discharges which degrade sensibly the detection efficiency and account for hazard to the front-end electronics. In order to minimize these strong events, it is convenient to perform charges multiplication by several successive steps. Within the framework of a European hadron physics project we have investigated the multi-stage PIM detector for high hadrons flux application. For this part of research and development, a systematic study for many geometrical configurations of a two amplification stages separated with a transfer space operated with the gaseous mixture Ne + 10% CO{sub 2} has been performed. Beam tests realised with high energy hadrons at CERN facility have given that discharges probability could be strongly reduced with a suitable PIM device. A discharges rate lower to 10{sup 9} by incident hadron and a spatial resolution of 51 {mu}m have been measured at the beginning efficiency plateau (>96 %) operating point. (author)

  20. Theory of electrostatics and electrokinetics of soft particles

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ohshima

    2009-01-01

    Full Text Available We investigate theoretically the electrostatics and electrokinetics of a soft particle, i.e. a hard particle covered with an ion-penetrable surface layer of polyelectrolytes. The electric properties of soft particles in an electrolyte solution, which differ from those of hard particles, are essentially determined by the Donnan potential in the surface layer. In particular, the Donnan potential plays an essential role in the electrostatics and electrokinetics of soft particles. Furthermore, the concept of zeta potential, which is important in the electrokinetics of hard particles, loses its physical meaning in the electrokinetics of soft particles. In this review, we discuss the potential distribution around a soft particle, the electrostatic interaction between two soft particles, and the motion of a soft particle in an electric field.

  1. Model for nucleus-nucleus, hadron-nucleus and hadron-proton multiplicity distributions

    International Nuclear Information System (INIS)

    Singh, C.P.; Shyam, M.; Tuli, S.K.

    1986-07-01

    A model relating hadron-proton, hadron-nucleus and nucleus-nucleus multiplicity distributions is proposed and some interesting consequences are derived. The values of the parameters are the same for all the processes and are given by the QCD hypothesis of ''universal'' hadronic multiplicities which are found to be asymptotically independent of target and beam in hadronic and current induced reactions in particle physics. (author)

  2. Detailed examination of 'standard elementary particle theories' based on measurement with Tristan

    International Nuclear Information System (INIS)

    Kamae, Tsuneyoshi

    1989-01-01

    The report discusses possible approaches to detailed analysis of 'standard elementary particle theories' on the basis of measurements made with Tristan. The first section of the report addresses major elementary particles involved in the 'standard theories'. The nature of the gauge particles, leptons, quarks and Higgs particle are briefly outlined. The Higgs particle and top quark have not been discovered, though the Higgs particle is essential in the Weiberg-Salam theory. Another important issue in this field is the cause of the collapse of the CP symmetry. The second section deals with problems which arise in universalizing the concept of the 'standard theories'. What are required to solve these problems include the discovery of supersymmetric particles, discovery of conflicts in the 'standard theories', and accurate determination of fundamental constants used in the 'standard theories' by various different methods. The third and fourth sections address the Weinberg-Salam theory and quantum chromodynamics (QCD). There are four essential parameters for the 'standard theories', three of which are associated with the W-S theory. The mass of the W and Z bosons measured in proton-antiproton collision experiments is compared with that determined by applying the W-S theory to electron-positron experiments. For QCD, it is essential to determine the lambda constant. (N.K.)

  3. Large Hadron Collider manual

    CERN Document Server

    Lavender, Gemma

    2018-01-01

    What is the universe made of? How did it start? This Manual tells the story of how physicists are seeking answers to these questions using the world’s largest particle smasher – the Large Hadron Collider – at the CERN laboratory on the Franco-Swiss border. Beginning with the first tentative steps taken to build the machine, the digestible text, supported by color photographs of the hardware involved, along with annotated schematic diagrams of the physics experiments, covers the particle accelerator’s greatest discoveries – from both the perspective of the writer and the scientists who work there. The Large Hadron Collider Manual is a full, comprehensive guide to the most famous, record-breaking physics experiment in the world, which continues to capture the public imagination as it provides new insight into the fundamental laws of nature.

  4. A particle consistent with the Higgs Boson observed with the ATLAS detector at the Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Havránek, Miroslav; Jakoubek, Tomáš; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Vrba, Václav; Valenta, J.; Zeman, Martin

    2012-01-01

    Roč. 338, č. 6114 (2012), s. 1576-1582 ISSN 0036-8075 R&D Projects: GA MŠk LA08032 Institutional support: RVO:68378271 Keywords : Higgs particle * mass * ATLAS * CERN LHC Coll * interpretation of experiments Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 31.027, year: 2012

  5. Japan Hadron Facility (JHF) project

    International Nuclear Information System (INIS)

    Nagamiya, S.

    1999-01-01

    The Japan Hadron Facility (JHF) is the next accelerator project proposed at KEK to promote exciting sciences by utilising high-intensity proton beams. The project is characterised by three unique features: hadronic beams of the world's highest intensity; a variety of beams from one accelerator complex; frontier sciences to cover a broad research area including nuclear physics, particle physics, material sciences and life sciences by utilising a common accelerator complex. (author)

  6. Proceedings of the 5. Jorge Andre Swieca Summer School Field Theory and Particle Physics

    International Nuclear Information System (INIS)

    Eboli, O.J.P.; Gomes, M.; Santoro, A.

    1989-01-01

    Lectures on quantum field theories and particle physics are presented. The part of quantum field theories contains: constrained dynamics; Schroedinger representation in field theory; application of this representation to quantum fields in a Robertson-Walker space-time; Berry connection; problem of construction and classification of conformal field theories; lattice models; two-dimensional S matrices and conformal field theory for unifying perspective of Yang-Baxter algebras; parasupersymmetric quantum mechanics; introduction to string field theory; three dimensional gravity and two-dimensional parafermionic model. The part of particle physics contains: collider physics; strong interactions and use of strings in strong interactions. (M.C.K.)

  7. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  8. [Theory of elementary particle studies in weak iteration and grand unification and studies in accelerator design]: Annual report

    International Nuclear Information System (INIS)

    Deshpande, N.G.

    1987-01-01

    This paper discusses the work done in high energy physics at the University of Oregon over the post year. Some of the topics briefly discussed are: string phenomenology, horizontal symmetry, heavy quark decays, neutrino counting and new quarks and leptons, treatment of heavy particles and w-bosons as constituents of hadrons, higher twist corrections to heavy particle production, factorization in the Drell-Yan process, jets and compositeness at the SSC, minimum-bias physics in hadronic collisions, and quark-gluon plasma

  9. Research program in elementary particle theory: Progress report, January 1, 1987-December 1987

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1987-08-01

    Progress is reported in the areas of: strings and gauge theories, mathematical physics and quantum optics, high energy physics phenomenology, quantum chromodynamic sum rules, and application of particle physics to astrophysics. Titles of DOE reports resulting from this research are listed, and the research histories of the scientific staff of the Center for Particle Theory are given

  10. Prediction of beauty particle masses with the heavy quark effective theory

    International Nuclear Information System (INIS)

    Aglietti, U.

    1992-01-01

    Using symmetry properties of the static theory for heavy quarks, the spectrum of beauty particles is predicted in terms of the spectrum of charmed particles. A simple technique for cancelling spin dependent corrections to the static theory is explained and systematically applied. (orig.)

  11. Heavy hadron spectroscopy: A quark model perspective

    International Nuclear Information System (INIS)

    Vijande, J.; Valcarce, A.; Caramés, T.F.; Garcilazo, H.

    2013-01-01

    We present recent results of hadron spectroscopy and hadron–hadron interaction from the perspective of constituent quark models. We pay special attention to the role played by higher order Fock space components in the hadron spectra and the connection of this extension with the hadron–hadron interaction. The main goal of our description is to obtain a coherent understanding of the low-energy hadron phenomenology without enforcing any particular model, to constrain its characteristics and learn about low-energy realization of the theory

  12. PREFACE: Focus section on Hadronic Physics Focus section on Hadronic Physics

    Science.gov (United States)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  13. Correlations in electron-positron, lepton-hadron and hadron-hadron collisions

    International Nuclear Information System (INIS)

    Koch, W.

    1982-11-01

    Recent results on two-particle correlations in rapidity space, forward-backward multiplicity correlations, charge correlations, flavour and baryon number correlations as well as Bose-Einstein correlations of identical particles are reviewed. Particular emphasis is given to the data from e + e - annihilation which serve in many respects as reference point in the interpretation of correlation phenomena observed in hadronic reactions. (orig.)

  14. Light Scattering by Optically Soft Particles Theory and Applications

    CERN Document Server

    Sharma, Subodh K

    2006-01-01

    The present monograph deals with a particular class of approximation methods in the context of light scattering by small particles. This class of approximations has been termed as eikonal or soft particle approximations. The eikonal approximation was studied extensively in the potential scattering and then adopted in optical scattering problems. In this context, the eikonal and other soft particle approximations pertain to scatterers whose relative refractive index compared to surrounding medium is close to unity. The study of these approximations is very important because soft particles occur abundantly in nature. For example, the particles that occur in ocean optics, biomedical optics, atmospheric optics and in many industrial applications can be classified as soft particles. This book was written in recognition of the long-standing and current interest in the field of scattering approximations for soft particles. It should prove to be a useful addition for researchers in the field of light scattering.

  15. Elastic diffraction interactions of hadrons at high energies

    International Nuclear Information System (INIS)

    Ismatov, E.I.; Ubaev, J.K.; Tshay, K.V.; Zholdasova, S.M.; Juraev, Sh.Kh.; Essaniazov, Sh.P.

    2006-01-01

    Full text: 1. The diffraction theory of elastic and inelastic scattering of hadron-hadron and hadron-nucleus processes is developed. The description of experimental data on differential cross section of elastic scattering p p, p-bar p in wide range of transferred momentum is made in the frames of the developed inelastic overlap function model. The investigation of nuclei elastic scattering at the low, middle and high energies is carried out, that allowed to execute quantitative control of efficiency or quantum-field and phenomenological theories and make critical analysis of their utility. The principle of construction of realistic amplitudes of the elastic scattering is confirmed on the basic of the s- and t-channel approaches both conditions stationary of amplitudes. For a wide range of models the comparative analysis of amplitude of inelastic scattering in representation of impact parameter is executed. The expression for effective radius of interaction, effective trajectory Regge and slope of inelastic function of overlapping are analysed. In diffraction approximation the satisfactory description of the data on hadrons interaction at the energy of tens GeV with proton and deuterons is received. The features of spectra of fast particles are analysed. The theory of collective variables S, T, P which characterize a deviation degree of angular distribution of particles from spherical symmetry, the general formula for dispersion of any density of obtained, the particles decays are investigated [1-2]. 2. The solution of Lippmann-Schwinger equation investigated within the frameworks of frameworks of high -energy approximation satisfies the generalized Huygens principle used in the diffraction theory nuclear processes. The diffraction emission is considered at the interaction of charged hadrons one with another and the nuclei [3]. 3. Study of elastic interactions of hadrons at high energies is of great interest due to the fact that the amplitude of this process is the

  16. Special Colloquium for the CERN-Fermilab Hadron Collider Physics Summer School: Main Dilemmas in Particle Physics for the LHC

    CERN Document Server

    CERN. Geneva

    2007-01-01

    A review of the status of the most crucial issues in particle physics at the start of the LHC is presented. The main questions are related to electroweak symmetry breaking and the mystery of new physics at the TeV scale, that is reasonably expected to be nearby and yet must be very peculiar because it was not seen at LEP and in flavour physics experiments. The main current ideas on models will be discussed and their implications for LHC searches, dark matter etc.

  17. 1. Vienna central european seminar on particle physics and quantum field theory. Advances in quantum field theory. Program

    International Nuclear Information System (INIS)

    Hueffel, H.

    2004-01-01

    The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)

  18. Some applications of the multiple scattering theory to the study of the hadron-nucleus interactions at intermediate energies

    International Nuclear Information System (INIS)

    Dedonder, J.-P.

    1979-01-01

    This work is devoted to the study of elastic hadron nucleus scattering. At first, an asymptotic evaluation leads to a closed, analytic expression of the eikonal amplitude. This approximate expression displays the role and the influence of the nuclear paremeters in, e.g., p-nucleus scattering around 1 GeV. Pion-nucleus scattering around the 3-3 resonance is then studied. A 3 body model calculation (pion, bound nucleon and residual nucleus represented by a potential) allows to study the importance of binding effects in this problem dominated by the strong energy dependence of the elementary amplitude. The last part is devoted to the construction in momentum space of a realistic optical potential and its comparison with experimental data. The scalling of π + and π - on neighbouring isotopes should allow the measure of the differences between the proton and neutron distributions in nuclei [fr

  19. Quantum theory of nonrelativistic particles interacting with gravity

    International Nuclear Information System (INIS)

    Anastopoulos, C.

    1996-01-01

    We investigate the effects of the gravitational field on the quantum dynamics of nonrelativistic particles. We consider N nonrelativistic particles, interacting with the linearized gravitational field. Using the Feynman-Vernon influence functional technique, we trace out the graviton field to obtain a master equation for the system of particles to first order in G. The effective interaction between the particles as well as the self-interaction is in general non-Markovian. We show that the gravitational self-interaction cannot be held responsible for decoherence of microscopic particles due to the fast vanishing of the diffusion function. For macroscopic particles though, it leads to diagonalization to the energy eigenstate basis, a desirable feature in gravity-induced collapse models. We finally comment on possible applications. copyright 1996 The American Physical Society

  20. Problems in particle theory: Progress report, April 30, 1988--April 30, 1989

    International Nuclear Information System (INIS)

    Wilczek, F.; Adler, S.L.

    1989-01-01

    Funds are requested for the support of members of The Institute for Advanced Study working on problems in high energy theory. The specific problems to be investigated, which will depend strongly on the particular individuals supported, are expected to cover a variety of topics in particle theory and quantum field theory

  1. Pion interferometry theory for the hydrodynamic stage of multiple processes

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1986-01-01

    The double pion inclusive cross section for identical particles is described in hydrodynamical theory of multiparticle production. The pion interferometry theory is developed for the case when secondary particles are generated against the background of internal relativistic motion of radiative hadron matter. The connection between correlation functions in various schemes of experiment is found within the framework of relativistic Wigner functions formalism

  2. All possible lightest supersymmetric particles in proton hexality violating minimal supergravity models and their signals at hadron colliders

    International Nuclear Information System (INIS)

    Grab, Sebastian

    2009-08-01

    The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b→sγ, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p T muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background at the LHC

  3. The apparent irreversibility of particle creation: A study of time scales and of the mechanisms responsible for entropy production in quantum field theory

    International Nuclear Information System (INIS)

    Rau, J.

    1993-01-01

    In the presence of strong gravitational, electromagnetic or other gauge fields, particle-antiparticle pairs are created out of the vacuum. Creation processes of this type are responsible for, e.g., hadron production in heavy ion collisions or the radiation of black holes. They lead to an increase in entropy, thus contributing to the thermalization of the system under consideration. This suggests that particle creation in strong fields is an irreversible process. Key issues to be addressed are: (1) under which conditions particle creation is indeed irreversible, and how this can be reconciled with the time-reversal invariance of the underlying microscopic dynamics: (ii) if-and if so, how-particle creation can be described within the framework of a theory of nonequilibrium processes: (iii) how the associated entropy is defined; and (iv) how particle creation can be incorporated into a kinetic equation that also accounts for subsequent acceleration and collisions. These issues are studied by means of the projection method. After a comprehensive introduction to that method, it is applied to a simple model from quantum electrodynamics which incorporates acceleration, collisions, and pair creation due to the Schwinger mechanism. For this model, the author obtains: (1) the complete set of time scales, which furnishes a precise mathematical criterion for the irreversibility of particle creation; (2) the associated relevant entropy to which the H-theorem applies; and (3) a generalization of the quantum Boltzmann equation which includes a source term derived from first principles

  4. Late effects from hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2004-06-01

    Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.

  5. Theoretical particle physics. Progress report, May 1, 1982-April 15, 1983

    International Nuclear Information System (INIS)

    Hendry, A.W.; Lichtenberg, D.B.; Weingarten, D.H.

    1983-04-01

    Our research activities for the past year have ranged from properties of hadrons in quark models to various aspects of grand unified theories and lattice QCD. Specific topics include studies of the hadron spectrum using several types of relativistic wave equations, the scattering of high energy particles from nuclei, intermediate energy scales in a grand unified theory based on SO(10), and calculating masses and decay constants in the valence approximation of lattice gauge theory

  6. Experiments at future hadron colliders

    International Nuclear Information System (INIS)

    Paige, F.E.

    1991-01-01

    This report summarizes signatures and backgrounds for processes in high-energy hadronic collisions, particularly at the SSC. It includes both signatures for new particles -- t quarks, Higgs bosons, new Ζ' bosons, supersymmetric particles, and technicolor particles -- and other experiments which might be done. It is based on the 1990 Snowmass Workshop and on work contained in the Expressions of Interest submitted to the SSC. 46 refs., 19 figs., 1 tab

  7. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  8. SEARCHING FOR HIGGS BOSONS AND NEW PHYSICS AT HADRON COLLIDERS

    International Nuclear Information System (INIS)

    Chung Kao

    2007-01-01

    The objectives of research activities in particle theory are predicting the production cross section and decay branching fractions of Higgs bosons and new particles at hadron colliders, developing techniques and computer software to discover these particles and to measure their properties, and searching for new phenomena and new interactions at the Fermilab Tevatron and the CERN Large Hadron Collider. The results of our project could lead to the discovery of Higgs bosons, new particles, and signatures for new physics, or we will be able to set meaningful limits on important parameters in particle physics. We investigated the prospects for the discovery at the CERN Large Hadron Collider of Higgs bosons and supersymmetric particles. Promising results are found for the CP-odd pseudoscalar (A 0 ) and the heavier CP-even scalar (H 0 ) Higgs bosons with masses up to 800 GeV. Furthermore, we study properties of the lightest neutralino (χ 0 ) and calculate its cosmological relic density in a supersymmetric U(1)(prime) model as well as the muon anomalous magnetic moment a μ = (g μ -2)/2 in a supersymmetric U(1)(prime) model. We found that there are regions of the parameter space that can explain the experimental deviation of a μ from the Standard Model calculation and yield an acceptable cold dark matter relic density without conflict with collider experimental constraints. Recently, we presented a complete next-to-leading order (NLO) calculation for the total cross section of inclusive Higgs pair production via bottom-quark fusion (b(bar b) to hh) at the CERN Large Hadron Collider (LHC) in the Standard Model and the minimal supersymmetric model. We plan to predict the Higgs pair production rate and to study the trilinear coupling among the Higgs bosons. In addition, we have made significant contributions in B physics, single top production, charged Higgs search at the Fermilab as well as in grid computing for both D0 and ATLAS

  9. All possible lightes supersymmetric particles in proton hexality violating minimal supergravity models and their signals at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Grab, Sebastian

    2009-08-15

    The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b{yields}s{gamma}, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p{sub T} muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background

  10. ATLAS Transition Radiation Tracker (TRT): Straw tubes for tracking and particle identification at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00220535; The ATLAS collaboration

    2017-01-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three inner detector tracking subsystems and consists of ∼300,000 thin-walled drift tubes (“straw tubes”) that are 4 mm in diameter. The TRT system provides ∼30 space points with ∼130 micron resolution for charged tracks with |η| 0.5 GeV/c . The TRT also provides electron identification capability by detecting transition radiation (TR) X-ray photons in an Xe-based working gas mixture. Compared to Run 1, the LHC beams now provide a higher centre of mass energy (13 TeV), more bunches with a reduced spacing (25 ns), and more particles in each bunch leading to very challenging, higher occupancies in the TRT. Significant modifications of the TRT detector have been made for LHC Run 2 mainly to improve response to the expected much higher rate of hits and to mitigate leaks of the Xe-based active gas mixture. The higher rates required changes to the data acquisition system and introduction of validity gate to reject out-of-time hits. Man...

  11. ATLAS Transition Radiation Tracker (TRT): Straw Tubes for Tracking and Particle Identification at the Large Hadron Collider

    CERN Document Server

    Mindur, Bartosz; The ATLAS collaboration

    2016-01-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three inner detector tracking subsystems and consists of 300000 thin-walled drift tubes (“straw tubes”) that are 4 mm in diameter. The TRT system provides 30 space points with 130 micron resolution for charged tracks with |η| 0.5 GeV/c. The TRT also provides electron identification capability by detecting transition radiation (TR) X-ray photons in a Xe-based working gas mixture. Compared to Run 1, the LHC beams now provide a higher center of mass energy (13 TeV), more bunches with a reduced spacing (25 ns), and more particles in each bunch leading to very challenging, higher occupancies in the TRT. We will present TRT modifications made for Run 2 for in areas: to improve response to the expected much higher rate of hits and to mitigate leaks of the Xe-based active gas mixture. The higher rates required changes to the data acquisition system and introduction of validity gate to reject out-of-time hits. Radiation-induced gain changes in ...

  12. Three-particle physics and dispersion relation theory

    CERN Document Server

    Anisovich, A V; Matveev, M A; Nikonov, V A; Nyiri, J; Sarantsev, A V

    2013-01-01

    The necessity of describing three-nucleon and three-quark systems have led to a constant interest in the problem of three particles. The question of including relativistic effects appeared together with the consideration of the decay amplitude in the framework of the dispersion technique. The relativistic dispersion description of amplitudes always takes into account processes connected with the investigated reaction by the unitarity condition or by virtual transitions; in the case of three-particle processes they are, as a rule, those where other many-particle states and resonances are produced. The description of these interconnected reactions and ways of handling them is the main subject of the book.

  13. Full nuclear field theory treatment of two-particle-one-hole-excitations

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Liotta, R.J.

    1981-01-01

    The nuclear field theory series is summed up to all orders of perturbation theory including only Tamm-Dancoff vertices for the case of two-particle-one-hole-excitations. It is found that the theory gives the same results as those provided by the shell-model method, but only if all possible basis states are included in the formalism. Applicability of the theory is discussed in a simple model

  14. [Research programs on elementary particle and field theories and superconductivity

    International Nuclear Information System (INIS)

    Khuri, N.N.

    1992-01-01

    Research of staff members in theoretical physics is presented in the following areas: super string theory, a new approach to path integrals, new ideas on the renormalization group, nonperturbative chiral gauge theories, the standard model, K meson decays, and the CP problem. Work on high-T c superconductivity and protein folding is also related

  15. Kinetic theory of a longitudinally expanding system of scalar particles

    International Nuclear Information System (INIS)

    Epelbaum, Thomas; Gelis, François; Jeon, Sangyong; Moore, Guy; Wu, Bin

    2015-01-01

    A simple kinematical argument suggests that the classical approximation may be inadequate to describe the evolution of a system with an anisotropic particle distribution. In order to verify this quantitatively, we study the Boltzmann equation for a longitudinally expanding system of scalar particles interacting with a ϕ 4 coupling, that mimics the kinematics of a heavy ion collision at very high energy. We consider only elastic 2→2 scatterings, and we allow the formation of a Bose-Einstein condensate in overpopulated situations by solving the coupled equations for the particle distribution and the particle density in the zero mode. For generic CGC-like initial conditions with a large occupation number, the solutions of the full Boltzmann equation cease to display the classical attractor behavior sooner than expected; for moderate coupling, the solutions appear never to follow a classical attractor solution.

  16. Shock waves in collective field theories for many particle systems

    Energy Technology Data Exchange (ETDEWEB)

    Oki, F; Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K

    1980-10-01

    We find shock wave solutions to collective field equations for quantum mechanical many particle system. Importance of the existence of a ''tension'' working on the surface of the shock-wave front is pointed out.

  17. Proceedings of the Johns Hopkins workshop on current problems in particle theory 5: unified field theories and beyond

    International Nuclear Information System (INIS)

    1981-01-01

    Topics covered include: symmetric gauge theories; infinite lie algebras in physics; the mechanism for confinement in massive quark QCD; a search for possible composite models of quarks and leptons; the radiative structure of Fermion masses; fractional electric charge in QCD; heavy particle effects; Fermion mass heirarchies in theories of technicolor; statistical notions applied in the early universe; grand unification and cosmology - an environmental impact statement; first order phase transition in the early universe; the electric dipole moment of the neutron; cosmological constraints on Grand Unified Theories; and the consequences for CP invariance of instanton angles THETA in dynamically broken gauge theories. Individual items from this workshop were prepared separately for the data base

  18. Quark confinement and hadronic interactions

    International Nuclear Information System (INIS)

    Lenz, F.

    1985-01-01

    With the possibility for 'exact' calculations within the framework of a fundamental theory, QCD, the role of models in strong interaction physics is changing radically. The relevance of detailed numerical model studies is diminishing with the development of those exact, numerical approaches to QCD. On the other hand, the insight gained from such purely numerical studies is necessarily limited and must be complemented by the more qualitative but also more intuitive insight gained from model studies. In particular, the subject of hadron-hadron interactions requires model studies to relate the wide variety of strong interaction physics to the fundamental properties of strong interaction physics. The author reports on such model studies of the hadron-hadron interaction

  19. Particles and energy fluxes from a conformal field theory perspective

    International Nuclear Information System (INIS)

    Fabbri, A.; Navarro-Salas, J.; Olmo, G.J.

    2004-01-01

    We analyze the creation of particles in two dimensions under the action of conformal transformations. We focus our attention on Mobius transformations and compare the usual approach, based on the Bogoliubov coefficients, with an alternative but equivalent viewpoint based on correlation functions. In the latter approach the absence of particle production under full Mobius transformations is manifest. Moreover, we give examples, using the moving-mirror analogy, to illustrate the close relation between the production of quanta and energy

  20. Interaction range perturbation theory for three-particle problem

    International Nuclear Information System (INIS)

    Simenog, I.V.; Shapoval, D.V.

    1988-01-01

    The limit of zero interaction range is correctly defined for a system of three spinless particles and three particles in a doublet state. The scattering amplitude is expanded with respect to the interaction range r, and the corrections of order r ln r, r, and r 2 ln2 r are found. An explicit model-independent asymptotic expression is obtained for the scattering amplitude in terms of the scattering length, and its accuracy is established

  1. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  2. Correlations in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Wosiek, B.

    1976-09-01

    The correlations between the particles produced in interactions of hadrons with emulsion nuclei were investigated. The data are in qualitative agreement with the models which describe the interactions with nuclei as subsequent collisions of the fast part of excited hadronic matter inside the nucleus. (author)

  3. Exploring hadronic physics by solving QCD with a teraflops computer

    International Nuclear Information System (INIS)

    Negele, J.

    1993-01-01

    Quantum chromodynamics, the theory believed to govern the nucleons, mesons, and other strongly interacting particles making up most of the known mass of the universe is such a challenging, nonlinear many-body problem that it has never been solved using conventional analytical techniques. This talk will describe how this theory can be solved numerically on a space-time lattice, show what has already been understood about the structure of hadrons and the quark gluon phase transition. and describe an exciting initiative to build a dedicated Teraflops computer capable of performing 10 12 operations per second to make fundamental advances in QCD

  4. Deducing T, C, and P invariance for strong interactions in topological particle theory

    International Nuclear Information System (INIS)

    Jones, C.E.

    1985-01-01

    It is shown here how the separate discrete invariances [time reversal (T), charge conjugation (C), and parity (P)] in strong interactions can be deduced as consequences of other S-matrix requirements in topological particle theory

  5. Research program in elementary particle theory: Progress report, January 1, 1988-December 1988

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Dicus, D.A.

    1988-08-01

    This report discusses progress in the following areas: Mathematical Physics, Strings and Gauge Theories; Quantum Optics; High Energy Phenomenology; Angular Momentum, QCD Sum Rules; and Application of Particle Physics to Astrophysics

  6. Three- and two-point one-loop integrals in heavy particle effective theories

    International Nuclear Information System (INIS)

    Bouzas, A.O.

    2000-01-01

    We give a complete analytical computation of three- and two-point loop integrals occurring in heavy particle theories, involving a velocity change, for arbitrary real values of the external masses and residual momenta. (orig.)

  7. Introduction of the chronon in the theory of electron and the wave-particle duality

    International Nuclear Information System (INIS)

    Caldirola, P.

    1984-01-01

    The author summarizes the more important results obtained in the electron theory based on the chronon and stresses some peculiarities of the wave-particle duality directly connected with the introduction of the chronon. (Auth.)

  8. Hadron physics

    International Nuclear Information System (INIS)

    Bunce, G.

    1984-01-01

    Is all hadronic physics ultimately describable by QCD. Certainly, many disparate phenomena can be understood within the QCD framework. Also certainly, there are important questions which are open, both theoretically (little guidance, as yet) and experimentally, regarding confinement. Are there dibaryons, baryonium, glueballs. In addition, there are experimental results which at present do not have an explanation. This talk, after a short section on QCD successes and difficulties, will emphasize two experimental topics which have recent results - glueball spectroscopy and exclusive reactions at large momentum transfer. Both are experimentally accessible in the AGS/LAMPF II/AGS II/TRIUMF II/SIN II energy domain

  9. Research program in elementary particle theory. Progress report for the period ending June 30, 1983

    International Nuclear Information System (INIS)

    1983-01-01

    The Syracuse High-Energy Theory group has contributed significantly to many of the current areas of active research in particle physics. Multigenerational grand unified theories have been explored in depth and the predictions of grand unified theories for proton decay have been critically examined. The properties of magnetic monopoles predicted by such theories have been studied. Topological solutions predicted by chiral and other phenomenologically interesting models have been studied. Various properties of glueballs have been explored using the effective Lagrangian approach. Now results of neutrinoless double beta decay in lepton-number-violating gauge theories were found. Aspects of galaxy formation, the nature of phase transitions in general field theories, and properties of supersymmetric theories have been explored. Progress has also been made in the formulation of relativistic particle dynamics. Publications are listed

  10. Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dannheim, D.; Dotti, A.; Folger, G.; Ivantchenko, V.; Klempt, W.; Kraaij, E.van der; Lucaci-Timoce, A.-I; Ribon, A.; Schlatter, D.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.-Y; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Feege, N.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Magnan, A.-M; Bartsch, V.; Wing, M.; Salvatore, F.; Gil, E.Cortina; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Negra, R.Della; Grenier, G.; Han, R.; Ianigro, J-C; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Donckt, M.Vander; Zoccarato, Y.; Alamillo, E.Calvo; Fouz, M.-C; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Lorenzo, S.Conforti di; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; der Kolk, N.van; Li, H.; Martin-Chassard, G.; Richard, F.; Taille, Ch de la; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Takeshita, T.; Uozumi, S.; Jeans, D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-01-01

    We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.

  11. Hadron structure from lattice QCD

    International Nuclear Information System (INIS)

    Schaefer, Andreas

    2008-01-01

    Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review

  12. Nonlinear theory of diffusive acceleration of particles by shock waves

    Energy Technology Data Exchange (ETDEWEB)

    Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)

    2001-04-01

    Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)

  13. Motion of spinning particles. Post-Newtonian approximation in the Einstein-Cartan theory

    Energy Technology Data Exchange (ETDEWEB)

    Boccaletti, D; Agostini, W; Festa, P [Rome Univ. (Italy). Ist. di Matematica

    1979-01-11

    The equations of motion of spinning particles are obtained in the post-Newtonian approximation of the Einstein-Cartan theory. The starting point of the calculation is the Hehl combined equation and a semi-classical model is assumed for the system of spinning particles. Comparison is made with an analogous quantum result obtained in the context of Gupta quantization of the linearized Einstein theory.

  14. Research program in elementary particle theory: Outstanding Junior Investigator Program

    International Nuclear Information System (INIS)

    Bowick, M.J.

    1990-01-01

    This report discusses the following topics: aspects of string theory; nonlinear sigma models and high-T c superconductivity; axionic black holes; topological mass generation; and quantum gravity in 2 + 1 dimensions

  15. Research program in elementary particle theory: Outstanding junior investigator program

    International Nuclear Information System (INIS)

    Bowick, M.J.

    1989-01-01

    This report briefly discusses the following topics: high-temperature strings; axionic black holes and wormholes; equations of motion for massless modes as vanishing curvature; vertex algebras and string theory; and massive axions

  16. Medical radiation dosimetry theory of charged particle collision energy loss

    CERN Document Server

    McParland, Brian J

    2014-01-01

    Accurate radiation dosimetry is a requirement of radiation oncology, diagnostic radiology and nuclear medicine. It is necessary so as to satisfy the needs of patient safety, therapeutic and diagnostic optimisation, and retrospective epidemiological studies of the biological effects resulting from low absorbed doses of ionising radiation. The radiation absorbed dose received by the patient is the ultimate consequence of the transfer of kinetic energy through collisions between energetic charged particles and atoms of the tissue being traversed. Thus, the ability of the medical physicist to both measure and calculate accurately patient dosimetry demands a deep understanding of the physics of charged particle interactions with matter. Interestingly, the physics of charged particle energy loss has an almost exclusively theoretical basis, thus necessitating an advanced theoretical understanding of the subject in order to apply it appropriately to the clinical regime. ​ Each year, about one-third of the worl...

  17. The existence of superluminal particles is consistent with the kinematics of Einstein's special theory of relativity

    OpenAIRE

    Székely, Gergely

    2012-01-01

    Within an axiomatic framework of kinematics, we prove that the existence of faster than light particles is logically independent of Einstein's special theory of relativity. Consequently, it is consistent with the kinematics of special relativity that there might be faster than light particles.

  18. Particle theory, cosmology and relativity. Progress report, August 1, 1983-March 31, 1984

    International Nuclear Information System (INIS)

    Gaisser, T.K.; Steigman, G.

    1983-01-01

    Research progress is briefly described on the following topics: calculation of neutrino flux produced by cosmic rays, multiple muon events in deep underground detectors, large air showers, primordial nucleosynthesis, supersymmetry and equilibrium in the very early universe, the bag model of particle interactions, and particle theory in curved spaces. Publications are listed

  19. Theory and simulation of epitaxial rotation. Light particles adsorbed on graphite

    DEFF Research Database (Denmark)

    Vives, E.; Lindgård, P.-A.

    1993-01-01

    We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise to frustra...... found a modulated 4 x 4 structure. Energy, structure-factor intensities, peak positions, and epitaxial rotation angles as a function of temperature and coverage have been determined from the simulations. Good agreement with theory and experimental data is found.......We present a theory and Monte Carlo simulations of adsorbed particles on a corrugated substrate. We have focused on the case of rare gases and light molecules, H-2 and D2, adsorbed on graphite. The competition between the particle-particle and particle-substrate interactions gives rise...... between the commensurate and incommensurate phase for the adsorbed systems. From our simulations and our theory, we are, able to understand the gamma phase of D2 as an ordered phase stabilized by disorder. It can be described as a 2q-modulated structure. In agreement with the experiments, we have also...

  20. The number of elementary particles in a fractal M-theory of 11.2360667977 dimensions

    International Nuclear Information System (INIS)

    He, J.-H.

    2007-01-01

    It is generally accepted that there are 60 experimentally found particles. The standard model strongly predicts two more hypothetical particles, the Higgs and the graviton. This paper reveals other possible scenario for predicting 69 particles at different energy scales in 11+φ 3 fractal dimensions of a fractal M theory, where φ=(5-1)/2. A modified Newton's law is suggested to experimentally verify our predictions at extremely small quantum scales. The modified Newton's law is in harmony with Heisenberg's uncertainty principle

  1. Distribution over pT of direct secondary ha drons in hadron-hadron and hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Braun, V.M.

    1986-01-01

    Transverse momentum distributions of direct secondary hadrons produced in proton, pion and kaon collisons with nucleons and nuclei are calculated in the additive quark model. Results of calculations are compared to the experimental data on production of neutral strange particles

  2. QCD-resummation and non-minimal flavour-violation for supersymmetric particle production at hadron colliders; Resommation des corrections radiatives QCD et violation de la saveur non-minimale pour la production de particules supersymetriques aupres des collisionneurs hadroniques

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, B

    2007-06-15

    Cross sections for supersymmetric particles production at hadron colliders have been extensively studied in the past at leading order and also at next-to-leading order of perturbative QCD. The radiative corrections include large logarithms which have to be re-summed to all orders in the strong coupling constant in order to get reliable perturbative results. In this work, we perform a first and extensive study of the resummation effects for supersymmetric particle pair production at hadron colliders. We focus on Drell-Yan like slepton-pair and slepton-sneutrino associated production in minimal supergravity and gauge-mediated supersymmetry-breaking scenarios, and present accurate transverse-momentum and invariant-mass distributions, as well as total cross sections. In non-minimal supersymmetric models, novel effects of flavour violation may occur. In this case, the flavour structure in the squark sector cannot be directly deduced from the trilinear Yukawa couplings of the fermion and Higgs supermultiplets. We perform a precise numerical analysis of the experimentally allowed parameter space in the case of minimal supergravity scenarios with non-minimal flavour violation, looking for regions allowed by low-energy, electroweak precision, and cosmological data. Leading order cross sections for the production of squarks and gauginos at hadron colliders are implemented in a flexible computer program, allowing us to study in detail the dependence of these cross sections on flavour violation. (author)

  3. Path integral for a relativistic-particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, S.M.

    1991-01-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + ∞ limits

  4. Path integral for a relativistic-particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S. (AN SSSR, Moscow (SU)); Gitman, D.M. (Moskovskij Inst. Radiotekhniki, Ehlektroniki i Automatiki, Moscow (SU)); Shvartsman, S.M. (Tomskij Pedagogicheskij Inst., Tomsk (SU))

    1991-06-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + {infinity}) limits.

  5. On the theory of high-velocity particles

    International Nuclear Information System (INIS)

    Gordeyev, G.V.

    1979-01-01

    The equations of mechanics and electrodynamics are presented in a form which is covariant for Galileo transformations in Euclidean space. The author shows that Galileo transformations in the Euclidean space are valid for particles with velocities approaching that of light. (author)

  6. Quantum Optics, Diffraction Theory, and Elementary Particle Physics

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.

  7. Anyons as spin particles: from classical mechanics to field theory

    OpenAIRE

    Plyushchay, Mikhail S.

    1995-01-01

    (2+1)-dimensional relativistic fractional spin particles are considered within the framework of the group-theoretical approach to anyons starting from the level of classical mechanics and concluding by the construction of the minimal set of linear differential field equations.

  8. Martinus Veltman, the Electroweak Theory, and Elementary Particle Physics

    Science.gov (United States)

    Particle Physics Resources with Additional Information Martinus Veltman Courtesy University of Michigan Martinus J.G. Veltman, the John D. MacArthur Professor Emeritus of Physics at the University of Michigan , was awarded the 1999 Nobel Prize in physics "for elucidating the quantum structure of electroweak

  9. Hadronic Resonances from STAR

    Directory of Open Access Journals (Sweden)

    Wada Masayuki

    2012-11-01

    Full Text Available The results of resonance particle productions (ρ0, ω, K*, ϕ, Σ*, and Λ* measured by the STAR collaboration at RHIC from various colliding systems and energies are presented. Measured mass, width, 〈pT〉, and yield of those resonances are reviewed. No significant mass shifts or width broadening beyond the experiment uncertainties are observed. New measurements of ϕ and ω from leptonic decay channels are presented. The yields from leptonic decay channels are compared with the measurements from hadronic decay channels and the two results are consistent with each other.

  10. [Investigations in dynamics of gauge theories in theoretical particle physics

    International Nuclear Information System (INIS)

    1993-01-01

    The major theme of the theoretical physics research conducted under DOE support over the past several years has been within the rubric of the standard model, and concerned the interplay between symmetries and dynamics. The research was thus carried out mostly in the context of gauge field theories, and usually in the presence of chiral fermions. Dynamical symmetry breaking was examined both from the point of view of perturbation theory, as well as from non-perturbative techniques associated with certain characteristic features of specific theories. Among the topics of research were: the implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in any theory, topological and conformal properties of quantum fields in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD, the phenomenological implications of a strongly interacting Higgs sector in the standard model, and the application of soliton ideas to the physics to be explored at the SSC

  11. A PARTNERship for hadron therapy

    CERN Multimedia

    2008-01-01

    PARTNER, the Particle Training Network for European Radiotherapy, has recently been awarded 5.6 million euros by the European Commission. The project, which is coordinated by CERN, has been set up to train researchers of the future in hadron therapy and in doing so aid the battle against cancer.

  12. Feigenbaum constants in hadron collisions

    International Nuclear Information System (INIS)

    Batunin, A.V.

    1991-01-01

    The coincidence is found between the law n ch (s) growth in hadron collisions for symmetric rapidity intervals and the law of growth of the number of elements in limit 2 m -cycles for one-dimensional quadratic maps when a govering parameter is varied. Fractal structure of the corresponding attractor underlies intermittency phenomenon in the multiplicity distribution of particles. 12 refs.; 1 fig

  13. Polarization correction in the theory of energy losses by charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, D. N., E-mail: makarovd0608@yandex.ru; Matveev, V. I. [Lomonosov Northern (Arctic) Federal University (Russian Federation)

    2015-05-15

    A method for finding the polarization (Barkas) correction in the theory of energy losses by charged particles in collisions with multielectron atoms is proposed. The Barkas correction is presented in a simple analytical form. We make comparisons with experimental data and show that applying the Barkas correction improves the agreement between theory and experiment.

  14. Progress report on research program in elementary particle theory, 1979-1980

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1980-01-01

    A qualitative description is given of research in the following areas: particle physics in relativistic astrophysics and cosmology; phenomenology of weak and electromagnetic interactions; strong interaction physics and quark-parton physics; quantum mechanics, quantum field theory, and fundamental problems; and groups, gauges, and grand unified theories. Reports on this work have already been published, or will be, when it is completed

  15. Particle transport methods for LWR dosimetry developed by the Penn State transport theory group

    International Nuclear Information System (INIS)

    Haghighat, A.; Petrovic, B.

    1997-01-01

    This paper reviews advanced particle transport theory methods developed by the Penn State Transport Theory Group (PSTTG) over the past several years. These methods have been developed in response to increasing needs for accuracy of results and for three-dimensional modeling of nuclear systems

  16. Exactly renormalizable model in quantum field theory. II. The physical-particle representation

    NARCIS (Netherlands)

    Ruijgrok, Th.W.

    1958-01-01

    For the simplified model of quantum field theory discussed in a previous paper it is shown how the physical particles can be properly described by means of the so-called asymptotically stationary (a.s.) states. It is possible by formulating the theory in terms of these a.s. states to express it

  17. What's Next for Particle Physics?

    Science.gov (United States)

    White, Martin

    2017-10-01

    Following the discovery of the Higgs boson in 2012, particle physics has entered its most exciting and crucial period for over 50 years. In this book, I first summarise our current understanding of particle physics, and why this knowledge is almost certainly incomplete. We will then see that the Large Hadron Collider provides the means to search for the next theory of particle physics by performing precise measurements of the Higgs boson, and by looking directly for particles that can solve current cosmic mysteries such as the nature of dark matter. Finally, I will anticipate the next decade of particle physics by placing the Large Hadron Collider within the wider context of other experiments. The results expected over the next ten years promise to transform our understanding of what the Universe is made of and how it came to be.

  18. XIII International Workshop on Hadron Physics

    CERN Document Server

    2015-01-01

    The XIII International Workshop on Hadron Physics, XIII Hadron Physics, is intended for graduate students, postdocs and researchers in Hadronic Physics, High Energy Physics, Astrophysics and Effective Field Theories, who wish to improve their theoretical background, learn about recent experimental results and develop collaboration projects. The series Hadron Physics, in activity since 1988, has the format of an advanced school and has the objective to introduce, in a series of pedagogical lectures, new lines of research in Strong Interaction Physics, mainly concerned with QCD. It envisages also to stimulate collaborations in international level.

  19. Cluster concept in multiple hadron production

    International Nuclear Information System (INIS)

    Dremin, I.M.; Quigg, C.

    1978-01-01

    The general features of high-energy collisions of elementary particles are outlined. It is argued that multiple production occurs through the production of hadronic clusters. The history and present status of the cluster concept are surveyed

  20. An empirical approach to the theory of particle and nuclear ...

    Indian Academy of Sciences (India)

    Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, ... brief review of some interesting consequences is presented here. ... generalization of the Gutzwiller trace formula for field theories may lead to a systematic semiclassi- ... There are two important gaps in the line, first being between Т.

  1. Particle Production and Effective Thermalization in Inhomogeneous Mean Field Theory

    NARCIS (Netherlands)

    Aarts, G.; Smit, J.

    2000-01-01

    As a toy model for dynamics in nonequilibrium quantum field theory we consider the abelian Higgs model in 1+1 dimensions with fermions. In the approximate dynamical equations, inhomogeneous classical (mean) Bose fields are coupled to quantized fermion fields, which are treated with a mode function

  2. Literature in focus: Particle beams from theory to practice

    CERN Multimedia

    2003-01-01

    Wednesday 1st October 16 h00 - Central Library CERN's Frank Zimmermann and DESY's Michiko G. Minty had their book 'Measurement and control of charged particle beams' published a few months ago by Springer. Frank Zimmermann, a young but already well established accelerator physicist, was awarded the European Accelerator Prize by the Interdivisional Group on Accelerators of the European Physical Society last year. Mr. Zimmermann was particularly cited for his significant contribution to the understanding of fast ion and electron cloud instabilities. The book is the first comprehensive and systematic review of all methods used for the measurement, correction, and control of the beam dynamics of modern particle accelerators and is intended for graduate students starting research or work in the field of beam physics. Specific techniques and methods for relativistic beams are illustrated by examples from operational accelerators, like CERN, DESY, SLAC, KEK, LBNL, and FNAL. Problems and solutions enhance the book...

  3. Duffin-Kemmer formulation of spin one-half particle gauge theory

    International Nuclear Information System (INIS)

    Samiullah, M.; Mansour, H.M.M.

    1981-02-01

    We have gauge formulated the spin one-half particle equation in the Duffin-Kemmer formalism of Barut et al. The theory distinguishes between the left and the right chiral states and has a built in chirality. As an example the theory has been applied to the Weinberg Salam model reproducing all its essential features. In view of the built in chirality a lattice gauge version of such a theory is expected to be useful. (author)

  4. Conceptual basis for the radiometric dye film dose meter as a test of particle track theory

    International Nuclear Information System (INIS)

    Hansen, J.W.

    1980-05-01

    This report is a summary of a lecture held at the Danish-Polish Symposium on Radiation Chemistry in Warsaw, October 1979, describing an initiated work connected to the particle track theory worked out by R. Katz and coworkers. A short description is given of the theory and the applicability of the theory in the use of the radiometric dye cyanide film dose meter as a detector in radiation of different qualities. A few experimental results are given. (author)

  5. Relativistic scattering theory of two charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann

    1985-01-01

    In the framework of a relativistic quantum mechanics, the authors calculate for two spinless particles with Coulomb interaction exactly the partial-wave S-matrix and the full scattering amplitude. From the former they can extract the exact binding energies which, when expanded in powers of α, reproduce in the hydrogenic case the fourth-order result of a previous study. In the weak field limit, the latter coincides with the amplitude derived by another study from QED in eikonal approximation

  6. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    Science.gov (United States)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  7. N-particle effective generators of the Poincare group derived from a field theory

    International Nuclear Information System (INIS)

    Krueger, A.; Gloeckle, W.

    1999-01-01

    In quantum mechanics the principle of relativity is guaranteed by unitary operators being associated with inhomogeneous Lorentz transformations ensuring that quantum mechanical expectation values remain unchanged. In field theory the ten generators of inhomogeneous Lorentz transformations can be derived from a scalar Lagrangian density describing the physical system of interest. They obey the well known Poincare Lie algebra. For interacting systems some of the generators become operators allowing for particle production or annihilation so that the generators act on the full Fock space. However, given a field theory on the whole Fock space we prove that it is possible to construct generators acting on a subspace with a finite number of particles by one and the same unitary transformation of all generators leaving the Poincare algebra valid. In this manner it is in principle possible to derive a relativistically invariant theory of interacting particles on a Hilbert space with a finite number of particles from a field theoretical Lagrangian. Refs. 3 (author)

  8. Stochastic evolutions and hadronization of highly excited hadronic matter

    International Nuclear Information System (INIS)

    Carruthers, P.

    1984-01-01

    Stochastic ingredients of high energy hadronic collisions are analyzed, with emphasis on multiplicity distributions. The conceptual simplicity of the k-cell negative binomial distribution is related to the evolution of probability distributions via the Fokker-Planck and related equations. The connection to underlying field theory ideas is sketched. 17 references

  9. Hadronic and nuclear interactions in QCD

    International Nuclear Information System (INIS)

    1982-01-01

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics

  10. The hadronic corrections to muonic hydrogen Lamb shift from ChPT and the proton radius

    Energy Technology Data Exchange (ETDEWEB)

    Peset, Clara [Grup de Física Teòrica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2016-01-22

    We obtain a model independent expression for the muonic hydrogen Lamb shift. The leading hadronic effects are controlled by the chiral theory, which allows for their model independent determination. We give their complete expression including the pion and Delta particles. Out of this analysis and the experimental measurement of the muonic hydrogen Lamb shift we determine the electromagnetic proton radius: r{sub p} = 0.8412(15) fm. This number is at 6.8σ variance with respect to the CODATA value. The parametric control of the uncertainties allows us to obtain a model independent determination of the error, which is dominated by hadronic effects.

  11. Second quantization approach to composite hadron interactions in quark models

    International Nuclear Information System (INIS)

    Hadjimichef, D.; Krein, G.; Veiga, J.S. da; Szpigel, S.

    1995-11-01

    Starting from the Fock space representation of hadron bound states in a quark model, a change of representation is implemented by a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation to the microscopic quark Hamiltonian gives rise to effective hadron-hadron, hadron-quark, and quark-quark Hamiltonians. An effective baryon Hamiltonian is derived using a simple quark model. The baryon Hamiltonian is free of the post-prior discrepancy which usually plagues composite-particle effective interactions. (author). 13 refs., 1 fig

  12. Hadronic couplings of open beauty states

    International Nuclear Information System (INIS)

    Ram, S.N.; Singh, C.P.

    1982-08-01

    Strong interaction coupling parameters of particles with beauty quantum number are obtained using dispersion sum rules in various forms, e.g. current algebra sum rules, superconvergence sum rules and finite energy sum rules etc. These sum rules lead to a set of algebraic relations among masses and coupling constants. We compare the hadronic couplings of beautiful particles as obtained from various techniques and discuss their implications on the hadronic production of these states. (author)

  13. Large Hadron Collider (LHC) phenomenology, operational challenges and theoretical predictions

    CERN Document Server

    Gilles, Abelin R

    2013-01-01

    The Large Hadron Collider (LHC) is the highest-energy particle collider ever constructed and is considered "one of the great engineering milestones of mankind." It was built by the European Organization for Nuclear Research (CERN) from 1998 to 2008, with the aim of allowing physicists to test the predictions of different theories of particle physics and high-energy physics, and particularly prove or disprove the existence of the theorized Higgs boson and of the large family of new particles predicted by supersymmetric theories. In this book, the authors study the phenomenology, operational challenges and theoretical predictions of LHC. Topics discussed include neutral and charged black hole remnants at the LHC; the modified statistics approach for the thermodynamical model of multiparticle production; and astroparticle physics and cosmology in the LHC era.

  14. On the theory of direct reactions with many particle final states

    International Nuclear Information System (INIS)

    Trautmann, D.; Baur, G.

    1977-01-01

    We study the theory of direct reactions with many particle final states. First, we concentrate on the DWBA formulation of the break-up of deuterons on heavy nuclei below the Coulomb barrier. Because there are no free parameters, this permits a clean test of the theory by comparing it to the experimental data. The agreement is very good. The theory is applied to the break-up of antideuteronic atoms. Then the effect of virtual deuteron break-up on Rutherford scattering is studied. It is small, but it seems to be measurable. Also the deuteron break-up above the Coulomb barrier can be well explained theoretically. In this context, small effects are studied briefly. A semiclassical theory of the break-up process is given, which results in an intuitive picture and a fast computational method. Our theory lends itself in a natural way to the study of stripping reactions to unbound states. The relation of stripping into the continuum to elastic scattering of the transferred particle on the same target nucleus is explained. Then the connection of stripping to bound and unbound states is established. Finally various examples of stripping of uncharged and charged particles into the continuum are given to illustrate the theory. Resonance wave functions describing the transferred particle are discussed. In a conclusion an outlook for possible future developments of experiment and theory is given. (author)

  15. Linear kinetic theory and particle transport in stochastic mixtures

    International Nuclear Information System (INIS)

    Pomraning, G.C.

    1994-03-01

    The primary goal in this research is to develop a comprehensive theory of linear transport/kinetic theory in a stochastic mixture of solids and immiscible fluids. The statistics considered correspond to N-state discrete random variables for the interaction coefficients and sources, with N denoting the number of components of the mixture. The mixing statistics studied are Markovian as well as more general statistics, such as renewal processes. A further goal of this work is to demonstrate the applicability of the formalism to real world engineering problems. This three year program was initiated June 15, 1993 and has been underway nine months. Many significant results have been obtained, both in the formalism development and in representative applications. These results are summarized by listing the archival publications resulting from this grant, including the abstracts taken directly from the papers

  16. Topics in gauge theories and unification of elementary particle interactions

    International Nuclear Information System (INIS)

    Srivastava, Y.N.; Vaughn, M.T.

    1986-01-01

    The proposed research includes work on (1) jets in minimum bias, (2) quantum Hall effect and applications of quantum electrodynamics to microelectronics and (3) renormalization group analysis of unified gauge theories. In addition, rates were computed for vector boson decay modes of the nucleon in N=1 supergravity models, and is doing further work on supersymmetric signals at SLC and LEP, and on superstring phenomenology

  17. Gauge transformations in relativistic two-particle constraint theory

    International Nuclear Information System (INIS)

    Jallouli, H.; Sazdjian, H.

    1996-01-01

    The forms of the local potentials in linear covariant gauges are investigated and relationships are found between them. The gauge transformation properties of the Green's function and of the Bethe-Salpeter wave function are reviewed. The infinitesimal gauge transformation laws of the constraint theory wave functions and potentials are determined. The case of the local approximation of potentials is considered. The general properties of the gauge transformations in the local approximation are studied. (K.A.)

  18. Heavy ion and hadron reactions in emulsion

    International Nuclear Information System (INIS)

    Otterlund, I.

    1979-04-01

    Recent results from heavy ion and hadron reactions in emulsion are reviewed. General properties of hadron-reaction multiplicities and their correlation to the production of recoiling protons are given. Properties of pseudo-rapidity distributions of shower-particles especially the particle production in the central region of pseudo-rapidity will be discussed. Non-peripheral heavy ion reactions are compared to recent participant-spectator model calculations. Very energetic cosmic ray events will be examined in the light of recent results from hadron-nucleus reactions. (author)

  19. Summary: Hadron dynamics sessions

    International Nuclear Information System (INIS)

    Carroll, A.S.; Londergan, J.T.

    1993-01-01

    Four sessions on Hadron Dynamics were organized at this Workshop. The first topic, QCD Exclusive Reactions and Color Transparency, featured talks by Ralston, Heppelman and Strikman; the second, QCD and Inclusive Reactions had talks by Garvey, Speth and Kisslinger. The third dynamics session, Medium Modification of Elementary Interactions had contributions from Kopeliovich, Alves and Gyulassy; the fourth session Pre-QCD Dynamics and Scattering, had talks by Harris, Myhrer and Brown. An additional joint Spectroscopy/Dynamics session featured talks by Zumbro, Johnson and McClelland. These contributions are reviewed briefly in this summary. Two additional joint sessions between Dynamics and η physics are reviewed by the organizers of the Eta sessions. In such a brief review there is no way the authors can adequately summarize the details of the physics presented here. As a result, they concentrate only on brief impressionistic sketches of the physics topics discussed and their interrelations. They include no bibliography in this summary, but simply refer to the talks given in more detail in the Workshop proceedings. They focus on topics which were common to several presentations in these sessions. First, nuclear and particle descriptions of phenomena are now clearly converging, in both a qualitative and quantitative sense; they show several examples of this convergence. Second, an important issue in hadron dynamics is the extent to which elementary interactions are modified in nuclei at high energies and/or densities, and they illustrate some of these medium effects. Finally, they focus on those dynamical issues where hadron facilities can make an important, or even a unique, contribution to the knowledge of particle and nuclear physics

  20. Scattering by ensembles of small particles experiment, theory and application

    Science.gov (United States)

    Gustafson, B. A. S.

    1980-01-01

    A hypothetical self consistent picture of evolution of prestellar intertellar dust through a comet phase leads to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of (ALPHA)-meteoroids is also predicted.

  1. Magnetohydrodynamic Particle Acceleration Processes: SSX Experiments, Theory and Astrophysical Applications

    International Nuclear Information System (INIS)

    Matthaeus, W.; Brown, M.

    2006-01-01

    This is the final technical report for a funded program to provide theoretical support to the Swarthmore Spheromak Experiment. We examined mhd relaxation, reconnecton between two spheromaks, particle acceleration by these processes, and collisonless effects, e.g., Hall effect near the reconnection zone,. Throughout the project, applications to space plasma physics and astrophysics were included. Towards the end of the project we were examining a more fully turbulent relaxation associated with unconstrained dynamics in SSX. We employed experimental, spacecraft observations, analytical and numerical methods.

  2. Scattering by ensembles of small particles experiment, theory and application

    International Nuclear Information System (INIS)

    Gustafson, B.Aa.S.

    1980-01-01

    A hypothetical selfconsistent picture of evolution of prestellar interstellar dust through a comet phase leades to predictions about the composition of the circum-solar dust cloud. Scattering properties of thus resulting conglomerates with a bird's-nest type of structure are investigated using a micro-wave analogue technique. Approximate theoretical methods of general interest are developed which compared favorably with the experimental results. The principal features of scattering of visible radiation by zodiacal light particles are reasonably reproduced. A component which is suggestive of β-meteoroids is also predicted. (author)

  3. Black holes, magnetic fields and particle creation. [Quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, G W [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1976-10-01

    Wald has given a classical argument suggesting that a rotating black hole immersed in a uniform magnetic field B will acquire a charge Q = 2JB where J is the angular momentum of the hole. The note contains a quantum field theoretic treatment of this process. For fields B greater than B/sub 0/ = 4 x 10/sup 13/ G the black hole will rapidly emit charged particles to achieve the equilibrium value. If B is less than the critical value the charge will remain zero.

  4. A search for jet handedness in hadronic Z0 decays

    International Nuclear Information System (INIS)

    Hasegawa, Yoji.

    1995-03-01

    Transport of polarization through hadronization process is one of the fundamental interest in Quantum Chromodynamics which is a theory of strong interactions. In the low energy region where the hadronization occurs, QCD calculations are difficult, therefore at present the transport can be investigated experimentally. In this study the authors have searched for signatures of polarization of quarks and antiquarks in hadronic jets from Z 0 → q bar q decays. The polarization of quarks and antiquark produced by Z 0 decays are predicted by the Standard Model of elementary particle physics. The authors defined several quantities depending on open-quotes jet handednessclose quotes methods and studied the correlation between the predicted polarization and the quantities. The signal was estimated by analyzing power which represents degree of the polarization transport through the hadronization process. The Z 0 decays were measured by SLC Large Detector and the polarized electron beam provided by SLAC Linear Collider was useful for this study. The data from the 1993 run showed no signature of the transport of quark and antiquark polarization. Upper limits on magnitude of the analyzing power were set in the range 0.05-0.15 depending on the methods

  5. Application of particle-mesh Ewald summation to ONIOM theory

    International Nuclear Information System (INIS)

    Kobayashi, Osamu; Nanbu, Shinkoh

    2015-01-01

    Highlights: • Particle-mesh Ewald sum is extended to ONIOM scheme. • Non-adiabatic MD simulation in solution is performed. • The behavior of excited (Z)-penta-2,4-dieniminium cation in methanol is simulated. • The difference between gas phase and solution is predicted. - Abstract: We extended a particle mesh Ewald (PME) summation method to the ONIOM (our Own N-layered Integrated molecular Orbitals and molecular Mechanics) scheme (PME-ONIOM) to validate the simulation in solution. This took the form of a nonadiabatic ab initio molecular dynamics (MD) simulation in which the Zhu-Nakamura trajectory surface hopping (ZN-TSH) method was performed for the photoisomerization of a (Z)-penta-2,4-dieniminium cation (protonated Schiff base, PSB3) electronically excited to the S 1 state in a methanol solution. We also calculated a nonadiabatic ab initio MD simulation with only minimum image convention (MI-ONIOM). The lifetime determined by PME-ONIOM-MD was 3.483 ps. The MI-ONIOM-MD lifetime of 0.4642 ps was much shorter than those of PME-ONIOM-MD and the experimentally determined excited state lifetime. The difference eminently illustrated the accurate treatment of the long-range solvation effect, which destines the electronically excited PSB3 for staying in S 1 at the pico-second or the femto-second time scale.

  6. Proceedings of the 28. international symposium Ahrenshoop on the theory of elementary particles

    International Nuclear Information System (INIS)

    Luest, D.; Weigt, G.

    1995-03-01

    The following topics were dealt with: elementary particle theory, string theory, algebra, group theory, symmetries, Lie groups, unified field theories, topology and theories of gravitation.ok place from August 30 to September 3, 1994 at Wendisch-Rietz near Berlin. The Symposium was organized jointly by the Institute for Elementary Particle Physics of the Humboldt University of Berlin, the Institute for Theoretical Physics of the University Hannover, the Section of Physics of the University Munich, and DESY Institute for High Energy Physics Zeuthen. It was made possible thanks to the financial support of the Bundesland Brandenburg, the DESY Institute for High Energy Physics Zeuthen, the Walter and Eva Andrejewski Stiftung, and last but not least the Deutsche Forschungsgemeinschaft (DFG). We also would like to thank Karin Pipke for her dedicated assistance to prepare this manuscript. (orig.)

  7. Resummation and renormalization in effective theories of particle physics

    CERN Document Server

    Jakovac, Antal

    2015-01-01

    Effective models of strong and electroweak interactions are extensively applied in particle physics phenomenology, and in many instances can compete with large-scale numerical simulations of Standard Model physics. These contexts include but are not limited to providing indications for phase transitions and the nature of elementary excitations of strong and electroweak matter. A precondition for obtaining high-precision predictions is the application of some advanced functional techniques to the effective models, where the sensitivity of the results to the accurate choice of the input parameters is under control and the insensitivity to the actual choice of ultraviolet regulators is ensured. The credibility of such attempts ultimately requires a clean renormalization procedure and an error estimation due to a necessary truncation in the resummation procedure. In this concise primer we discuss systematically and in sufficient technical depth the features of a number of approximate methods, as applied to vario...

  8. Electromagnetic form factors of hadrons

    International Nuclear Information System (INIS)

    Zidell, V.S.

    1976-01-01

    A vector meson dominance model of the electromagnetic form factors of hadrons is developed which is based on the use of unstable particle propagators. Least-square fits are made to the proton, neutron, pion and kaon form factor data in both the space and time-like regions. A good fit to the low-energy nucleon form factor data is obtained using only rho, ω, and phi dominance, and leads to a determination of the vector meson resonance parameters in good agreement with experiment. The nucleon-vector meson coupling constants obey simple sum rules indicating that there exists no hard core contribution to the form factors within theoretical uncertainties. The prediction for the electromagnetic radii of the proton is in reasonable agreement with recent experiments. The pion and kaon charge form factors as deduced from the nucleon form factors assuming vector meson universality are compared to the data. The pion form factor agrees with the data in both the space and time-like regions. The pion charge radius is in agreement with the recent Dubna result, but the isovector P-wave pion-pion phase shift calculated from the theory disagrees with experiment. A possible contribution to the form factors from a heavy rho meson is also evaluated

  9. The COMPASS Hadron Spectroscopy Programme

    CERN Document Server

    Austregesilo, A

    2011-01-01

    COMPASS is a fixed-target experiment at the CERN SPS for the investigation of the structure and the dynamics of hadrons. The experimental setup features a large acceptance and high momentum resolution spectrometer including particle identification and calorimetry and is therefore ideal to access a broad range of different final states. Following the promising observation of a spin-exotic resonance during an earlier pilot run, COMPASS focused on light-quark hadron spectroscopy during the years 2008 and 2009. A data set, world leading in terms of statistics and resolution, has been collected with a 190GeV/c hadron beam impinging on either liquid hydrogen or nuclear targets. Spin-exotic meson and glueball candidates formed in both diffractive dissociation and central production are presently studied. Since the beam composition includes protons, the excited baryon spectrum is also accessible. Furthermore, Primakoff reactions have the potential to determine radiative widths of the resonances and to probe chiral pe...

  10. Particle contamination effects in EUVL: enhanced theory for the analytical determination of critical particle sizes

    Science.gov (United States)

    Brandstetter, Gerd; Govindjee, Sanjay

    2012-03-01

    Existing analytical and numerical methodologies are discussed and then extended in order to calculate critical contamination-particle sizes, which will result in deleterious effects during EUVL E-chucking in the face of an error budget on the image-placement-error (IPE). The enhanced analytical models include a gap dependant clamping pressure formulation, the consideration of a general material law for realistic particle crushing and the influence of frictional contact. We present a discussion of the defects of the classical de-coupled modeling approach where particle crushing and mask/chuck indentation are separated from the global computation of mask bending. To repair this defect we present a new analytic approach based on an exact Hankel transform method which allows a fully coupled solution. This will capture the contribution of the mask indentation to the image-placement-error (estimated IPE increase of 20%). A fully coupled finite element model is used to validate the analytical models and to further investigate the impact of a mask back-side CrN-layer. The models are applied to existing experimental data with good agreement. For a standard material combination, a given IPE tolerance of 1 nm and a 15 kPa closing pressure, we derive bounds for single particles of cylindrical shape (radius × height < 44 μm) and spherical shape (diameter < 12 μm).

  11. Very high multiplicity hadron processes

    International Nuclear Information System (INIS)

    Mandzhavidze, I.; Sisakyan, A.

    2000-01-01

    The paper contains a description of a first attempt to understand the extremely inelastic high energy hadron collisions, when the multiplicity of produced hadrons considerably exceeds its mean value. Problems with existing model predictions are discussed. The real-time finite-temperature S-matrix theory is built to have a possibility to find model-free predictions. This allows one to include the statistical effects into consideration and build the phenomenology. The questions to experiment are formulated at the very end of the paper

  12. Hadron scattering, resonances, and QCD

    Science.gov (United States)

    Briceño, R. A.

    2016-11-01

    The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.

  13. An experiment to measure accurately the lifetime of the $D^{0}, D^{\\pm}, F^{\\pm}, \\Lambda_{c}$-charm particles and to study their hadronic production and decay properties

    CERN Multimedia

    2002-01-01

    We propose to use the EHS with the hydrogen bubble chamber HOLEBC equipped with classical optics to accumulate statistics of several hundred fully reconstructed $D^{0}$ and $D^{\\pm}$ and several tens of $F^{\\pm}$ and $\\Lambda_{c}$ decays produced by 360 GeV/c $\\pi^{-}$ and 360 GeV/c proton beams. The main aim of the experiment is to determine accurately the lifetime of these particles. Interesting information will also be obtained on branching ratios, decay modes and hadronic production mechanisms.

  14. The large hadron collider project

    International Nuclear Information System (INIS)

    Maiani, L.

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10 -16 cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10 2 GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range - a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10 3 GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the construction of the large hadron collider (LHC), a proton-proton collider of a new design to be installed in the existing LEP tunnel, with an energy of 7 TeV per beam and extremely large luminosity, of ∝10 34 cm -2 s -1 . Construction was started in 1996, with the additional support of the US, Japan, Russia, Canada and other European countries, making the LHC a really global project, the first one in particle physics. After a short review of the physics scenario, I report on the present status of the LHC construction. Special attention is given to technological problems such as the realization of the super-conducting dipoles, following an extensive R and D program with European industries. The construction of the large LHC detectors has required a vast R and D program by a large international community, to overcome the problems posed by the complexity of the collisions and by the large luminosity of the machine. (orig.)

  15. Proceedings of the Johns Hopkins workshop on current problems in particle theory 5: unified field theories and beyond

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01