WorldWideScience

Sample records for hadron collider cern

  1. CERN's Large Hadron Collider project

    Science.gov (United States)

    Fearnley, Tom A.

    1997-03-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B.

  2. CERN's Large Hadron Collider project

    International Nuclear Information System (INIS)

    Fearnley, Tom A.

    1997-01-01

    The paper gives a brief overview of CERN's Large Hadron Collider (LHC) project. After an outline of the physics motivation, we describe the LHC machine, interaction rates, experimental challenges, and some important physics channels to be studied. Finally we discuss the four experiments planned at the LHC: ATLAS, CMS, ALICE and LHC-B

  3. Protection of the CERN Large Hadron Collider

    Science.gov (United States)

    Schmidt, R.; Assmann, R.; Carlier, E.; Dehning, B.; Denz, R.; Goddard, B.; Holzer, E. B.; Kain, V.; Puccio, B.; Todd, B.; Uythoven, J.; Wenninger, J.; Zerlauth, M.

    2006-11-01

    The Large Hadron Collider (LHC) at CERN will collide two counter-rotating proton beams, each with an energy of 7 TeV. The energy stored in the superconducting magnet system will exceed 10 GJ, and each beam has a stored energy of 362 MJ which could cause major damage to accelerator equipment in the case of uncontrolled beam loss. Safe operation of the LHC will therefore rely on a complex system for equipment protection. The systems for protection of the superconducting magnets in case of quench must be fully operational before powering the magnets. For safe injection of the 450 GeV beam into the LHC, beam absorbers must be in their correct positions and specific procedures must be applied. Requirements for safe operation throughout the cycle necessitate early detection of failures within the equipment, and active monitoring of the beam with fast and reliable beam instrumentation, mainly beam loss monitors (BLM). When operating with circulating beams, the time constant for beam loss after a failure extends from apms to a few minutes—failures must be detected sufficiently early and transmitted to the beam interlock system that triggers a beam dump. It is essential that the beams are properly extracted on to the dump blocks at the end of a fill and in case of emergency, since the beam dump blocks are the only elements of the LHC that can withstand the impact of the full beam.

  4. The ATLAS experiment at the CERN Large Hadron Collider

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Bobbink, G.J.; Bos, K.; Boterenbrood, H.; Brouwer, G.; Buis, E.J.; Buskop, J.J.F.; Colijn, A.P.; Dankers, R.; Daum, C.; de Boer, R.; de Jong, P.; Ennes, P.; Gosselink, M.; Groenstege, H.; Hart, R.G.G.; Hartjes, F.; Hendriks, P.J.; Hessey, N.P.; Jansweijer, P.P.M.; Kieft, G.; Klok, P.F.; Klous, S.; Kluit, P.; Koffeman, E.; Koutsman, A.; Liebig, W.; Limper, M.; Linde, F.; Luijckx, G.; Massaro, G.; Muijs, A.; Peeters, S.J.M.; Reichold, A.; Rewiersma, P.; Rijpstra, M.; Scholte, R.C.; Schuijlenburg, H.W.; Snuverink, J.; van der Graaf, H.; van der Kraaij, E.; van Eijk, B.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J.C.; Vreeswijk, M.; Werneke, P.

    2008-01-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  5. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    Gian Giudice; Ellis, Nick; Jakobs, Karl; Mage, Patricia; Seymour, Michael H; Spiropulu, Maria; Wilkinson, Guy; CERN-FNAL Summer School; Hadron Collider Physics Summer School

    2007-01-01

    For the past few years, experiments at the Fermilab Tevatron Collider have once again been exploring uncharted territory at the current energy frontier of particle physics. With CERN's LHC operations to start in 2007, a new era in the exploration of the fundamental laws of nature will begin. In anticipation of this era of discovery, Fermilab and CERN are jointly organizing a series of "Hadron Collider Physics Summer Schools", whose main goal is to offer a complete picture of both the theoretical and experimental aspects of hadron collider physics. Preparing young researchers to tackle the current and anticipated challenges at hadron colliders, and spreading the global knowledge required for a timely and competent exploitation of the LHC physics potential, are concerns equally shared by CERN, the LHC host laboratory, and by Fermilab, the home of the Tevatron and host of CMS's LHC Physics Center in the U.S. The CERN-Fermilab Hadron Collider Physics Summer School is targeted particularly at young postdocs in exp...

  6. 12th CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2017-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the twelfth edition, from 28th August to 6th September 2017. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Other schools, such as the CERN European School of High Energy Physics, may provide more appropriate training for students in experimental HEP who are still working towards their PhDs. Mark your calendar for 28 August - 6 September 2017, when CERN will welcome students to the twelfth CERN-Fermilab Hadron Collider Physics Summer School. The School will include nine days of lectures and discussions, and one free day in the middle of the period. Limited scholarship ...

  7. A Large Hadron Electron Collider at CERN

    CERN Document Server

    Abelleira Fernandez, J L; Adzic, P; Akay, A N; Aksakal, H; Albacete, J L; Allanach, B; Alekhin, S; Allport, P; Andreev, V; Appleby, R B; Arikan, E; Armesto, N; Azuelos, G; Bai, M; Barber, D; Bartels, J; Behnke, O; Behr, J; Belyaev, A S; Ben-Zvi, I; Bernard, N; Bertolucci, S; Bettoni, S; Biswal, S; Blumlein, J; Bottcher, H; Bogacz, A; Bracco, C; Bracinik, J; Brandt, G; Braun, H; Brodsky, S; Bruning, O; Bulyak, E; Buniatyan, A; Burkhardt, H; Cakir, I T; Cakir, O; Calaga, R; Caldwell, A; Cetinkaya, V; Chekelian, V; Ciapala, E; Ciftci, R; Ciftci, A K; Cole, B A; Collins, J C; Dadoun, O; Dainton, J; Roeck, A.De; d'Enterria, D; DiNezza, P; Dudarev, A; Eide, A; Enberg, R; Eroglu, E; Eskola, K J; Favart, L; Fitterer, M; Forte, S; Gaddi, A; Gambino, P; Garcia Morales, H; Gehrmann, T; Gladkikh, P; Glasman, C; Glazov, A; Godbole, R; Goddard, B; Greenshaw, T; Guffanti, A; Guzey, V; Gwenlan, C; Han, T; Hao, Y; Haug, F; Herr, W; Herve, A; Holzer, B J; Ishitsuka, M; Jacquet, M; Jeanneret, B; Jensen, E; Jimenez, J M; Jowett, J M; Jung, H; Karadeniz, H; Kayran, D; Kilic, A; Kimura, K; Klees, R; Klein, M; Klein, U; Kluge, T; Kocak, F; Korostelev, M; Kosmicki, A; Kostka, P; Kowalski, H; Kraemer, M; Kramer, G; Kuchler, D; Kuze, M; Lappi, T; Laycock, P; Levichev, E; Levonian, S; Litvinenko, V N; Lombardi, A; Maeda, J; Marquet, C; Mellado, B; Mess, K H; Milanese, A; Milhano, J G; Moch, S; Morozov, I I; Muttoni, Y; Myers, S; Nandi, S; Nergiz, Z; Newman, P R; Omori, T; Osborne, J; Paoloni, E; Papaphilippou, Y; Pascaud, C; Paukkunen, H; Perez, E; Pieloni, T; Pilicer, E; Pire, B; Placakyte, R; Polini, A; Ptitsyn, V; Pupkov, Y; Radescu, V; Raychaudhuri, S; Rinolfi, L; Rizvi, E; Rohini, R; Rojo, J; Russenschuck, S; Sahin, M; Salgado, C A; Sampei, K; Sassot, R; Sauvan, E; Schaefer, M; Schneekloth, U; Schorner-Sadenius, T; Schulte, D; Senol, A; Seryi, A; Sievers, P; Skrinsky, A N; Smith, W; South, D; Spiesberger, H; Stasto, A M; Strikman, M; Sullivan, M; Sultansoy, S; Sun, Y P; Surrow, B; Szymanowski, L; Taels, P; Tapan, I; Tasci, T; Tassi, E; Kate, H.Ten; Terron, J; Thiesen, H; Thompson, L; Thompson, P; Tokushuku, K; Tomas Garcia, R; Tommasini, D; Trbojevic, D; Tsoupas, N; Tuckmantel, J; Turkoz, S; Trinh, T N; Tywoniuk, K; Unel, G; Ullrich, T; Urakawa, J; VanMechelen, P; Variola, A; Veness, R; Vivoli, A; Vobly, P; Wagner, J; Wallny, R; Wallon, S; Watt, G; Weiss, C; Wiedemann, U A; Wienands, U; Willeke, F; Xiao, B W; Yakimenko, V; Zarnecki, A F; Zhang, Z; Zimmermann, F; Zlebcik, R; Zomer, F; CERN. Geneva. LHeC Department

    2012-01-01

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.

  8. CERN to start Large Hadron Collider november 2007

    CERN Multimedia

    2006-01-01

    "The Large Hadron Collider (LHC) is expected to provide its first collisions in November 2007, CERN has announced. A two-month run at 0.9 TeV is planned for 2007 to test the accelerating and detecting equipment, and a full power run at 14 TeV is expected in the spring of 2008."

  9. CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    Applications are now open for the 2nd CERN-Fermilab Hadron Collider Physics Summer School, which will take place at CERN from 6 to 15 June 2007. The school web site is http://cern.ch/hcpss with links to the academic program and application procedure. The application deadline is 9 March 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be given on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be  supported by in-depth discussion sess...

  10. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2007-01-01

    June 6-15, 2007, CERN The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007 The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, extensively covered the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis t...

  11. CERN Library | Mario Campanelli presents "Inside CERN's Large Hadron Collider" | 16 March

    CERN Multimedia

    CERN Library

    2016-01-01

    "Inside CERN's Large Hadron Collider" by Mario Campanelli. Presentation on Wednesday, 16 March at 4 p.m. in the Library (bldg 52-1-052) The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson.  Inside CERN's Large Hadron Collider  Mario Campanelli World Scientific Publishing, 2015  ISBN 9789814656641​

  12. 3rd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at ...

  13. Radiation protection at the LHC, CERN's large hadron collider

    International Nuclear Information System (INIS)

    Potter, K.M.; Hoefert, M.; Stevenson, G.R.

    1996-01-01

    After a brief description of the Large Hadron Collider (LHC), which will produce 7 TeV on 7 TeV proton collisions, some of the radiological questions it raises will be discussed. The machine will be built in the 27 km circumference ring-tunnel of an existing collider at CERN. It aims to achieve collision rates of 10 9 per second in two of its high-energy particle detectors. This requires two high-intensity beams of more than 10 14 protons each. Shielding, access control and activation in addition to the high power in the proton-proton collisions must be taken into account. The detectors and local electronics of the particle physics experiments, which will surround these collisions, will have to be radiation resistant. Some of the environmental issues raised by the project will be discussed. (author)

  14. Fast symplectic map tracking for the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Dan T. Abell

    2003-06-01

    Full Text Available Tracking simulations remain the essential tool for evaluating how multipolar imperfections in ring magnets restrict the domain of stable phase-space motion. In the Large Hadron Collider (LHC at CERN, particles circulate at the injection energy, when multipole errors are most significant, for more than 10^{7} turns, but systematic tracking studies are limited to a small fraction of this total time—even on modern computers. A considerable speedup is expected by replacing element-by-element tracking with the use of a symplectified one-turn map. We have applied this method to the realistic LHC lattice, version 6, and report here our results for various map orders, with special emphasis on precision and speed.

  15. 2nd CERN-Fermilab Hadron Collider Physics Summer School, June 6-15, 2007, CERN

    CERN Multimedia

    2007-01-01

    The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis techniques and tools...

  16. Beyond the Large Hadron Collider: A First Look at Cryogenics for CERN Future Circular Colliders

    Science.gov (United States)

    Lebrun, Philippe; Tavian, Laurent

    Following the first experimental discoveries at the Large Hadron Collider (LHC) and the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. The study, conducted with the collaborative participation of interested institutes world-wide, considers several options for very high energy hadron-hadron, electron-positron and hadron-electron colliders to be installed in a quasi-circular underground tunnel in the Geneva basin, with a circumference of 80 km to 100 km. All these machines would make intensive use of advanced superconducting devices, i.e. high-field bending and focusing magnets and/or accelerating RF cavities, thus requiring large helium cryogenic systems operating at 4.5 K or below. Based on preliminary sets of parameters and layouts for the particle colliders under study, we discuss the main challenges of their cryogenic systems and present first estimates of the cryogenic refrigeration capacities required, with emphasis on the qualitative and quantitative steps to be accomplished with respect to the present state-of-the-art.

  17. 10th joint CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2015-01-01

    The CERN-Fermilab Hadron Collider Physics Summer Schools are targeted particularly at young postdocs and senior PhD students working towards the completion of ther thesis project, in both experimental High Energy Physics (HEP) and phenomenology.

  18. Superconductive technologies for the Large Hadron collider at CERN

    CERN Document Server

    Rossi, L

    2000-01-01

    The Large Hadron Collider (LHC) project is the largest plant based on superconductivity and cryogenics: 27 km of tunnel filled with superconducting magnets and other equipment that will be kept at 1.9 K. The dipole magnets have to generate a minimum magnetic field of 8.3 T to allow collisions of proton beams at an energy of 14 TeV in the centre of mass. The construction of LHC started in 1997 at CERN in Geneva and required 10 years of research and development on fine- filament NbTi superconducting wires and cables, on magnet technology and on He-II refrigerators. In particular the project needs the production of about 1000 tons of high-homogeneity NbTi with current densities of more than 2000 A mm/sup -2/ at 9 T and 1.9 K, with tight control also of all other cable properties such as magnetization, interstrand resistance and copper resistivity. The paper describes the main dipole magnets and reviews the most significant steps in the research and development, focusing on the issues related to the conductor, to...

  19. The future of the Large Hadron Collider and CERN.

    Science.gov (United States)

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  20. A Large Hadron Electron Collider at CERN, Physics, Machine, Detector

    CERN Document Server

    Adolphson, C

    2011-01-01

    The physics programme and the design are described of a new electron-hadron collider, the LHeC, in which electrons of $60$ to possibly $140$\\,GeV collide with LHC protons of $7000$\\,GeV. With an $ep$ design luminosity of about $10^{33}$\\,cm$^{-2}$s$^{-1}$, the Large Hadron Electron Collider exceeds the integrated luminosity collected at HERA by two orders of magnitude and the kinematic range by a factor of twenty in the four-momentum squared, $Q^2$, and in the inverse Bjorken $x$. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering (DIS) measurements. These are projected to solve a variety of fundamental questions in strong and electroweak interactions. The LHeC thus becomes the world's cleanest high resolution microscope, designed to continue the path of deep inelastic lepton-hadron scattering into unknown areas of physics and kinematics. The physics ...

  1. Environmental monitoring at CERN: present status and future plans for the Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Hoefert, M.; Stevenson, G.R.; Vojtyla, P.; Wittekind, D.

    1998-01-01

    The present radiological impact of CERN on the environment is negligible. It is assessed that this will also be the case after the Large Hadron Collider starts operation in 2005. Nevertheless, the environmental monitoring programme at CERN will be further extended, so as to demonstrate that the Organization fully complies with standards and limits for environmental impact of nuclear installations as laid down by authorities in the CERN host countries. (P.A.)

  2. CERN-Fermilab Hadron Collider Physics Summer School 2013 open for applications

    CERN Multimedia

    2013-01-01

    Mark your calendar for 28 August - 6 September 2013, when CERN will welcome students to the eighth CERN-Fermilab Hadron Collider Physics Summer School.   Experiments at hadron colliders will continue to provide our best tools for exploring physics at the TeV scale for some time. With the completion of the 7-8 TeV runs of the LHC, and the final results from the full Tevatron data sample becoming available, a new era in particle physics is beginning, heralded by the Higgs-like particle recently discovered at 125 GeV. To realize the full potential of these developments, CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the eighth edition, from 28 August to 6 September 2013. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school which particularly targets young postdocs in exper...

  3. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    Science.gov (United States)

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  4. CERN celebrating the Lowering of the final detector element for large Hadron Collider

    CERN Multimedia

    2008-01-01

    In the early hours of the morning the final element of the Compact Muon Solenoid (CMS) detector began the descent into its underground experimental cavern in preparation for the start-up of CERNs Large Hadron Collider (LHC) this summer. This is a pivotal moment for the CMS collaboration.

  5. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  6. Controls for the CERN large hadron collider (LHC)

    International Nuclear Information System (INIS)

    Kissler, K.H.; Perriollat, F.; Rabany, M.; Shering, G.

    1992-01-01

    CERN's planned large superconducting collider project presents several new challenges to the Control System. These are discussed along with current thinking as to how they can be met. The high field superconducting magnets are subject to 'persistent currents' which will require real time measurements and control using a mathematical model on a 2-10 second time interval. This may be realized using direct links, multiplexed using TDM, between the field equipment and central servers. Quench control and avoidance will make new demands on speed of response, reliability and surveillance. The integration of large quantities of industrially controlled equipment will be important. Much of the controls will be in common with LEP so a seamless integration of LHC and LEP controls will be sought. A very large amount of new high-tech equipment will have to be tested, assembled and installed in the LEP tunnel in a short time. The manpower and cost constrains will be much tighter than previously. New approaches will have to be found to solve many of these problems, with the additional constraint of integrating them into an existing frame work. (author)

  7. University of Tennessee deploys force10 C-series to analyze data from CERN's Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "Force20 networks, the pioneer in building and securing reliable networks, today announced that the University of Tennessee physics department has deployed the C300 resilient switch to analyze data form CERN's Large Hadron Collider." (1 page)

  8. For Information: CERN-Fermilab2006 Hadron Collider Physics Summer School

    CERN Multimedia

    2006-01-01

    Applications are Now Open for the CERN-Fermilab2006 Hadron Collider Physics Summer School August 9-18, 2006 Please go to the school web site http://hcpss.fnal.gov/ and follow the links to the Application process. The APPLICATION DEADLINE IS APRIL 8, 2006. Successful applicants and support awards will be announced shortly thereafter. Also available on the web is the tentative academic program of the school. The main goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers a broad picture of both the theoretical and experimental aspects of hadron collider physics. The emphasis of the first school will be on the physics potential of the first years of data taking at the LHC, and on the experimental and theoretical tools needed to exploit that potential. A series of lectures and informal discussions will include an introduction to the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics, as...

  9. Design and Installation Challenges of the Neutral Beam Absorbers for the Large Hadron Collider at CERN

    OpenAIRE

    Fernández Vélez, Óscar

    2005-01-01

    El CERN (Consejo Europeo de Investigación Nuclear) está construyendo su nuevo acelerador de partículas en la frontera franco-suiza. Actualmente en la fase de instalación, El Large Hadron Collider (LHC), con 26,7 kilómetros de longitud a 100 metros bajo tierra, será el mayor y más potente acelerador de partículas jamás construido. A su llegada al CERN, cada uno de casi 2000 imanes superconductores que formarán parte del acelerador debe ser verificado, ensamblado y transportado hasta ...

  10. Inside CERN's Large Hadron Collider from the proton to the Higgs boson

    CERN Document Server

    AUTHOR|(CDS)2051256

    2016-01-01

    The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson. Readers are led step-by-step to understanding why we do particle physics, as well as the tools and problems involved in the field. It provides an insider's view on the experiments at the Large Hadron Collider.

  11. The ATLAS Experiment at the CERN Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abat, E.; Abdallah, J.; Bazalová, Magdalena; Böhm, Jan; Chudoba, Jiří; Gunther, J.; Hruška, I.; Jahoda, M.; Jež, J.; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kus, V.; Kvasnička, O.; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Panušková, M.; Polák, Ivo; Popule, Jiří; Přibyl, Lukáš; Šícho, Petr; Staroba, Pavel; Šťastný, Jan; Taševský, Marek; Tic, Tomáš; Tomášek, Lukáš; Tomášek, Michal; Valenta, Jan; Vrba, Václav

    2008-01-01

    Roč. 3, - (2008), S08003/1-S08003/437 ISSN 1748-0221 R&D Projects: GA MŠk LA08032; GA MŠk 1P04LA212 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * LHC * CERN * accelerator * proton-proton collisions * heavy-ion collisions * minimum-bias events * bunch-crossings * pile-up * superconducting magnets Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.333, year: 2008

  12. 3rd CERN-Fermilab HadronCollider Physics Summer School

    CERN Multimedia

    EP Department

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at Fermilab. Further enquiries should ...

  13. Beam-related machine protection for the CERN Large Hadron Collider experiments

    Directory of Open Access Journals (Sweden)

    R. B. Appleby

    2010-06-01

    Full Text Available The Large Hadron Collider at CERN, Geneva stores 360 MJ per beam of protons at the top machine energy. This amount of energy storage presents a considerable challenge to the machine protection systems designed to protect both the machine and the six LHC experiments. This paper provides an overview of the machine protection systems relevant to the protection of the experiments, and demonstrates their operation and level of protection through a series of injection and stored beam failure scenarios. We conclude that the systems provide sufficient coverage for the protection of the experiments as far as reasonably possible.

  14. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  15. The Large Hadron Collider of CERN and the roadmap toward higher performance

    CERN Document Server

    Rossi, L

    2012-01-01

    The Large Hadron Collider is exploring the new frontier of particle physics. It is the largest and most ambitious scientific instrument ever built and 100 years after the Rutherford experiment it continues that tradition of “smashing atoms” to unveil the secret of the infinitely small. LHC makes use of all what we learnt in 40 years of hadron colliders, in particular of ISR and Sp-pbarS at CERN and Tevatron at Fermilab, and it is based on Superconductivity, discovered also 100 years ago. Designing, developing the technology, building and finally commissioning the LHC took more than twenty years. While LHC is now successfully running, we are already preparing the future for the next step. First, by increasing of a factor five the LHC luminosity in ten years from now, and then by increasing its energy by a factor two or more, on the horizon of the next twenty years. These LHC upgrades, in luminosity and energy, will be the super-exploitation of the CERN infrastructure and is the best investment that the HEP...

  16. Radiation protection considerations in the design of the LHC, CERN's large hadron collider

    International Nuclear Information System (INIS)

    Hoefert, M.; Huhtinen, M.; Moritz, L.E.; Nakashima, H.; Potter, K.M.; Rollet, S.; Stevenson, G.R.; Zazula, J.M.

    1996-01-01

    This paper describes the radiological concerns which are being taken into account in the design of the LHC (CERN's future Large Hadron Collider). The machine will be built in the 27 km circumference ring tunnel of the existing LEP collider at CERN. The high intensity of the circulating beams (each containing more than 10 14 protons at 7 TeV) determines the thickness specification of the shielding of the main-ring tunnel, the precautions to be taken in the design of the beam dumps and their associated caverns and the radioactivity induced by the loss of protons in the main ring by inelastic beam-gas interactions. The high luminosity of the collider is designed to provide inelastic collision rates of 10 9 per second in each of the two principal detector installations, ATLAS and CMS. These collisions determine the shielding of the experimental areas, the radioactivity induced in both the detectors and in the machine components on either side of the experimental installations and, to some extent, the radioactivity induced in the beam-cleaning (scraper) systems. Some of the environmental issues raised by the project will be discussed. (author)

  17. Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "In the spring 2008, the Large Hadron Collider (LHC) machine at CERN (the European Particle Physics laboratory) will be switched on for the first time. The huge machine is housed in a circular tunnel, 27 km long, excavated deep under the French-Swiss border near Geneva." (1,5 page)

  18. Minimum Bias Measurements with the ATLAS Detector at the CERN Large Hadron Collider

    CERN Document Server

    Leyton, M

    2009-01-01

    The Large Hadron Collider (LHC) at CERN will collide bunches of protons (p) at a center-of-mass energy of sqrt(s) = 14 TeV and a rate of 40 MHz. The unprecedented collision energy and interaction rate at the LHC will allow us to explore the TeV mass scale and take a major step forward in our understanding of the fundamental nature of matter. The initial physics run of the LHC is expected to start in November 2009 and continue until the end of 2010, with collisions at sqrt(s) = 900 GeV, 7 TeV and 10 TeV. ATLAS (A Toroidal LHC ApparatuS) is a 4pi general-purpose detector designed for studying LHC collisions at the particle level. The design and layout of ATLAS are intended to cover the wide spectrum of physics signatures that are possible at the TeV mass scale. Construction and installation of the ATLAS detector at CERN are now complete. This dissertation focuses on measuring the properties of inelastic pp interactions at the LHC with the ATLAS detector. A method for measuring the central pseudorapidity den...

  19. For information - Université de Genève : Accelerator Physics Challenges for the Large Hadron Collider at CERN

    CERN Multimedia

    Université de Genève

    2005-01-01

    UNIVERSITE DE GENEVE Faculte des sciences Section de physique - Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet - 1211 GENEVE 4 Tél : (022) 379 62 73 Fax: (022) 379 69 92 Mercredi 16 March SEMINAIRE DE PHYSIQUE CORPUSCULAIRE à 17h00 - Auditoire Stückelberg Accelerator Physics Challenges for the Large Hadron Collider at CERN Prof. Olivier Bruning / CERN The Large Hadron Collider project at CERN will bring the energy frontier of high energy particle physics back to Europe and with it push the accelerator technology into uncharted teritory. The talk presents the LHC project in the context of the past CERN accelerator developments and addresses the main challenges in terms of technology and accelerator physics. Information: http://dpnc.unige.ch/seminaire/annonce.html Organizer: A. Cervera Villanueva

  20. Probing two-photon decay widths of mesons at energies available at the CERN Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Bertulani, C. A.

    2009-01-01

    Meson production cross sections in ultraperipheral relativistic heavy ion collisions at the CERN Large Hadron Collider are revisited. The relevance of meson models and of exotic QCD states is discussed. This study includes states that have not been considered before in the literature.

  1. Photoproduction of vector mesons in proton-proton ultraperipheral collisions at the CERN Large Hadron Collider

    Science.gov (United States)

    Xie, Ya-Ping; Chen, Xurong

    2018-05-01

    Photoproduction of vector mesons is computed with dipole model in proton-proton ultraperipheral collisions (UPCs) at the CERN Large Hadron Collider (LHC). The dipole model framework is employed in the calculations of vector mesons production in diffractive processes. Parameters of the bCGC model are refitted with the latest inclusive deep inelastic scattering experimental data. Employing the bCGC model and boosted Gaussian light-cone wave function for vector mesons, we obtain the prediction of rapidity distributions of J/ψ and ψ(2s) mesons in proton-proton ultraperipheral collisions at the LHC. The predictions give a good description of the experimental data of LHCb. Predictions of ϕ and ω mesons are also evaluated in this paper.

  2. Quench protection diodes for the large hadron collider LHC at CERN

    International Nuclear Information System (INIS)

    Hagedorn, D.; Naegele, W.

    1992-01-01

    For the quench protection of the main ring dipole and quadrupole magnets for the proposed Large Hadron Collider at CERN two lines of approach have been pursued for the realization of a suitable high current by-pass element and liquid helium temperature. Two commercially available diodes of the HERA type connected in parallel can easily meet the requirements if a sufficient good current sharing is imposed by current balancing elements. Design criteria for these current balancing elements are derived from individual diode characteristics. Single diode elements of thin base region, newly developed in industry, have been successfully tested. The results are promising and, if the diodes can be made with reproducible characteristics, they will provide the preferred solution especially in view of radiation hardness

  3. First β-beating measurement and optics analysis for the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    M. Aiba

    2009-08-01

    Full Text Available Proton beams were successfully steered through the entire ring of the CERN Large Hadron Collider (LHC on September the 10th of 2008. A reasonable lifetime was achieved for the counterclockwise beam, namely beam 2, after the radiofrequency capture of the particle bunch was established. This provided the unique opportunity of acquiring turn-by-turn betatron oscillations for a maximum of 90 turns right at injection. Transverse coupling was not corrected and chromaticity was estimated to be large. Despite this largely constrained scenario, reliable optics measurements have been accomplished. These measurements together with the application of new algorithms for the reconstruction of optics errors have led to the identification of a dominant error source.

  4. Hadron-hadron colliders

    International Nuclear Information System (INIS)

    Month, M.; Weng, W.T.

    1983-01-01

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility

  5. Particle production at energies available at the CERN Large Hadron Collider within an evolutionary model

    Science.gov (United States)

    Sinyukov, Yu. M.; Shapoval, V. M.

    2018-06-01

    The particle yields and particle number ratios in Pb+Pb collisions at the CERN Large Hadron Collider (LHC) energy √{sN N}=2.76 TeV are described within the integrated hydrokinetic model (iHKM) at two different equations of state (EoS) for quark-gluon matter and the two corresponding hadronization temperatures T =165 MeV and T =156 MeV. The role of particle interactions at the final afterburner stage of the collision in the particle production is investigated by means of comparison of the results of full iHKM simulations with those where the annihilation and other inelastic processes (except for resonance decays) are switched off after hadronization/particlization, similarly as in the thermal models. An analysis supports the picture of continuous chemical freeze-out in the sense that the corrections to the sudden chemical freeze-out results, which arise because of the inelastic reactions at the subsequent evolution times, are noticeable and improve the description of particle number ratios. An important observation is that, although the particle number ratios with switched-off inelastic reactions are quite different at different particlization temperatures which are adopted for different equations of state to reproduce experimental data, the complete iHKM calculations bring very close results in both cases.

  6. Design optimization of 600 A-13 kA current leads for the Large Hadron Collider project at CERN

    CERN Document Server

    Spiller, D M; Al-Mosawl, M K; Friend, C M; Thacker, P; Ballarino, A

    2001-01-01

    The requirements of the Large Hadron Collider project at CERN for high-temperature superconducting (HTS) current leads have been widely publicized. CERN require hybrid current leads of resistive and HTS materials with current ratings of 600 A, 6 kA and 13 kA. BICC General Superconductors, in collaboration with the University of Southampton, have developed and manufactured prototype current leads for the Large Hadron Collider project. The resistive section consists of a phosphorus de-oxidized copper conductor and heat exchanger and the HTS section is constructed from BICC General's (Pb, Bi)2223 tapes with a reduced thermal conductivity Ag alloy sheath. We present the results of the materials optimization studies for the resistive and the HTS sections. Some results of the acceptance tests at CERN are discussed. (9 refs).

  7. CERN 's large hadron collider : Radiation protection aspects of design and commissioning

    International Nuclear Information System (INIS)

    Forkel-Wirth, Doris; Brugger, Markus; Menzel, Hans; Roesler, Stefan; Vincke, Heinz; Vincke, Helmut

    2008-01-01

    Full text: CERN, the world's largest particle physics laboratory provides high energy hadron beams for experiments exploring matter. For this purpose various accelerators are operated and in 2008 the last link will be added to the accelerator chain: beam will be injected into CERN 's new 'flagship', the Large Hadron Collider (LHC). From then on high energy physics experiments will exploit the LHC 's colliding beams of protons and lead ions with a center of mass energy of 14 TeV and 1150 TeV, respectively. Radiation Protection aspects were taken into account during the whole duration of the design phase. Conservative design constraints were defined in 1996; some years later some of them, in particular with respect to the dose to occupational exposed workers, had to be readjusted to account for the latest development in CERN 's radiation protection rules and regulations. Numerous radiation protection studies had been performed to ensure a lay-out of the machine and its experiments in compliance with these constraints. These studies assessed all radiation risks related to the various beam-operation modes of the accelerator. In all cases external exposure was identified as the major risk: due to high energetic, mixed radiation fields during beam-on and due to beta and gamma radiation fields caused by induced radioactivity during beam-off. Counter measures were implemented like an optimized beam operation to limit beam losses, installation of thick shielding, prohibition of access to the major part of the LHC underground areas during beam-operation and optimization of the equipment and its handling during maintenance and repair. Detailed Monte Carlo simulations were performed to derive from the various beam loss scenarios the dose rates the workers will be exposed to. Individual and collective doses were projected based on the calculations and the maintenance scenarios provided by the teams concerned. In an iterative way the lay-out of the various regions were optimized

  8. Study of high muon multiplicity cosmic ray events with ALICE at the CERN Large Hadron Collider

    CERN Document Server

    Rodriguez Cahuantzi, Mario

    2015-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider. Located 52 meters undergroundwith 28meters of overburden rock, it has also been used to detect atmosphericmuons produced by cosmic-ray interactions in the upper atmosphere. We present the muon multiplicity distribution of these cosmic-ray events and their comparison with Monte Carlo simulation. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density larger than 5.9 m$^{−2}$. The measured rate of these events shows that they stem from primary cosmic-rays with energies above 10$^{16}$ eV. The frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic-rays in this energy range and using the most recent hadronic interaction models to simulate the development of the resulting air sh...

  9. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    Science.gov (United States)

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  10. Advanced superconducting technology for global science: The Large Hadron Collider at CERN

    International Nuclear Information System (INIS)

    Lebrun, Ph.

    2002-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology-high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system-to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 10 34 cm -2 ·s -1 , respectively with protons). After some ten years of focussed R and D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling the physics goals, performance challenges and design choices of the machine, we describe its major technical systems, with particular emphasis on relevant advances in the key technologies of superconductivity and cryogenics, and report on its construction progress

  11. Advanced superconducting technology for global science: The Large Hadron Collider at CERN

    Science.gov (United States)

    Lebrun, Ph.

    2002-05-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organization for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology-high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system-to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2ṡs-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling the physics goals, performance challenges and design choices of the machine, we describe its major technical systems, with particular emphasis on relevant advances in the key technologies of superconductivity and cryogenics, and report on its construction progress.

  12. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-21

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

  13. Advanced Superconducting Technology for Global Science The Large Hadron Collider at CERN

    CERN Document Server

    Lebrun, P

    2002-01-01

    The Large Hadron Collider (LHC), presently in construction at CERN, the European Organisation for Nuclear Research near Geneva (Switzerland), will be, upon its completion in 2005 and for the next twenty years, the most advanced research instrument of the world's high-energy physics community, providing access to the energy frontier above 1 TeV per elementary constituent. Re-using the 26.7-km circumference tunnel and infrastructure of the past LEP electron-positon collider, operated until 2000, the LHC will make use of advanced superconducting technology - high-field Nb-Ti superconducting magnets operated in superfluid helium and a cryogenic ultra-high vacuum system - to bring into collision intense beams of protons and ions at unprecedented values of center-of-mass energy and luminosity (14 TeV and 1034 cm-2.s-1, respectively with protons). After some ten years of focussed R&D, the LHC components are presently series-built in industry and procured through world-wide collaboration. After briefly recalling ...

  14. Fault Tracking of the Superconducting Magnet System at the CERN Large Hadron Collider

    CERN Document Server

    Griesemer, Tobias

    2016-03-25

    The Large Hadron Collider (LHC) at CERN is one of the most complex machines ever built. It is used to explore the mysteries of the universe by reproducing conditions of the big bang. High energy particles are collide in particle detectors and as a result of the collision process secondary particles are created. New particles could be discovered during this process. The operation of such a machine is not straightforward and is subject to many different types of failures. A model of LHC operation needs to be defined in order to understand the impact of the various failures on availability. As an example a typical operational cycle is described: the beams are first injected, then accelerated, and finally brought into collisions. Under nominal conditions, beams should be in collision (so-called ‘stable beams’ period) for about 10 hours and then extracted onto a beam dump block. In case of a failure, the Machine Protection Systems ensure safe extraction of the beams. From the experience in LHC Run 1 (2009 - 20...

  15. Cryogenic Studies for the Proposed CERN Large Hadron Electron Collider (LHeC)

    CERN Document Server

    Haug, F

    2011-01-01

    The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energy-recovery type machine with two 1 km long straight acceleration sections. The 944 hi...

  16. The CERN Large Hadron Collider as a tool to study high-energy density matter.

    Science.gov (United States)

    Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E

    2005-04-08

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  17. Superconductivity: Its Role, Its Success and Its Setbacks in the Large Hadron Collider of CERN

    CERN Document Server

    Rossi, L

    2010-01-01

    The Large Hadron Collider - LHC, the particle accelerator at CERN, Geneva, is the largest and probably the most complex scientific instrument ever built. Superconductivity plays a key role because the accelerator is based on the reliable operation of almost 10,000 superconducting magnets cooled by 130 tonnes of helium at 1.9 and 4.2 K and containing a total stored magnetic energy of about 15,000 MJ (including detector magnets). The characteristics of the 1200 tonnes of high quality Nb-Ti cables have met the severe requests in terms of critical currents, magnetization and inter-strand resistance; the magnets are built with an unprecedented uniformity, about 0.01% of variation in field quality among the 1232 main dipoles which are 15 m in length and 30 tonnes in weight. The results of this 20 year long enterprise will be discussed together with problems faced during construction and commissioning and their remedies. Particular reference is made to the severe incident which occurred nine days after the spectacul...

  18. The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider

    CERN Document Server

    Battistin, M; Bitadze, A; Bonneau, P; Botelho-Direito, J; Boyd, G; Corbaz, F; Crespo-Lopez, O; Da Riva, E; Degeorge, C; Deterre, C; DiGirolamo, B; Doubek, M; Favre, G; Godlewski, J; Hallewell, G; Katunin, S; Lefils, D; Lombard, D; McMahon, S; Nagai, K; Robinson, D; Rossi, C; Rozanov, A; Vacek, V; Zwalinski, L

    2015-01-01

    The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed th...

  19. The CERN Large Hadron Collider as a tool to study high-energy density matter

    CERN Document Server

    Tahir, N A; Gryaznov, V; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M

    2005-01-01

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15*10/sup 11/ protons so that the total number of protons in one beam will be about 3*10/sup 14/ and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma =0.2 mm. The total duration of the beam will be about 89 mu s. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  20. Calculations of safe collimator settings and β^{*} at the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2015-06-01

    Full Text Available The first run of the Large Hadron Collider (LHC at CERN was very successful and resulted in important physics discoveries. One way of increasing the luminosity in a collider, which gave a very significant contribution to the LHC performance in the first run and can be used even if the beam intensity cannot be increased, is to decrease the transverse beam size at the interaction points by reducing the optical function β^{*}. However, when doing so, the beam becomes larger in the final focusing system, which could expose its aperture to beam losses. For the LHC, which is designed to store beams with a total energy of 362 MJ, this is critical, since the loss of even a small fraction of the beam could cause a magnet quench or even damage. Therefore, the machine aperture has to be protected by the collimation system. The settings of the collimators constrain the maximum beam size that can be tolerated and therefore impose a lower limit on β^{*}. In this paper, we present calculations to determine safe collimator settings and the resulting limit on β^{*}, based on available aperture and operational stability of the machine. Our model was used to determine the LHC configurations in 2011 and 2012 and it was found that β^{*} could be decreased significantly compared to the conservative model used in 2010. The gain in luminosity resulting from the decreased margins between collimators was more than a factor 2, and a further contribution from the use of realistic aperture estimates based on measurements was almost as large. This has played an essential role in the rapid and successful accumulation of experimental data in the LHC.

  1. Calculations of safe collimator settings and β* at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Redaelli, S.

    2015-06-01

    The first run of the Large Hadron Collider (LHC) at CERN was very successful and resulted in important physics discoveries. One way of increasing the luminosity in a collider, which gave a very significant contribution to the LHC performance in the first run and can be used even if the beam intensity cannot be increased, is to decrease the transverse beam size at the interaction points by reducing the optical function β*. However, when doing so, the beam becomes larger in the final focusing system, which could expose its aperture to beam losses. For the LHC, which is designed to store beams with a total energy of 362 MJ, this is critical, since the loss of even a small fraction of the beam could cause a magnet quench or even damage. Therefore, the machine aperture has to be protected by the collimation system. The settings of the collimators constrain the maximum beam size that can be tolerated and therefore impose a lower limit on β*. In this paper, we present calculations to determine safe collimator settings and the resulting limit on β*, based on available aperture and operational stability of the machine. Our model was used to determine the LHC configurations in 2011 and 2012 and it was found that β* could be decreased significantly compared to the conservative model used in 2010. The gain in luminosity resulting from the decreased margins between collimators was more than a factor 2, and a further contribution from the use of realistic aperture estimates based on measurements was almost as large. This has played an essential role in the rapid and successful accumulation of experimental data in the LHC.

  2. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  3. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2014-08-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010–2013, the LHC was routinely storing protons at 3.5–4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  4. Cryogenic studies for the proposed CERN large hadron electron collider (LHEC)

    Science.gov (United States)

    Haug, F.; LHeC Study Team, The

    2012-06-01

    The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energyrecovery type machine with two 1 km long straight acceleration sections. The 944 high field 2 K SC cavities dissipate 30 kW at CW operation. Eight 10 kW @ 4.5 K refrigerators are proposed. The particle detector contains a combined SC solenoid and dipole forming the cold mass and an independent liquid argon calorimeter. Cooling is done with two individual small sized cryoplants; a 4.5 K helium, and a 87 K liquid nitrogen plant.

  5. Large Hadron Collider manual

    CERN Document Server

    Lavender, Gemma

    2018-01-01

    What is the universe made of? How did it start? This Manual tells the story of how physicists are seeking answers to these questions using the world’s largest particle smasher – the Large Hadron Collider – at the CERN laboratory on the Franco-Swiss border. Beginning with the first tentative steps taken to build the machine, the digestible text, supported by color photographs of the hardware involved, along with annotated schematic diagrams of the physics experiments, covers the particle accelerator’s greatest discoveries – from both the perspective of the writer and the scientists who work there. The Large Hadron Collider Manual is a full, comprehensive guide to the most famous, record-breaking physics experiment in the world, which continues to capture the public imagination as it provides new insight into the fundamental laws of nature.

  6. Heavy leptons at hadron colliders

    International Nuclear Information System (INIS)

    Ohnemus, J.E.

    1987-01-01

    The recent advent of high energy hadron colliders capable of producing weak bosons has opened new vistas for particle physics research, including the search for a possible fourth generation heavy charged lepton, which is the primary topic of the thesis. Signals for identifying a new heavy lepton have been calculated and compared to Standard Model backgrounds. Results are presented for signals at the CERN collider, the Fermilab collider, and the proposed Superconducting Supercollider

  7. Measured and simulated heavy-ion beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Hermes, P. D.; Bruce, R.; Jowett, J. M.; Redaelli, S.; Salvachua Ferrando, B.; Valentino, G.; Wollmann, D.

    2016-05-01

    The Large Hadron Collider (LHC) at CERN pushes forward to new regimes in terms of beam energy and intensity. In view of the combination of very energetic and intense beams together with sensitive machine components, in particular the superconducting magnets, the LHC is equipped with a collimation system to provide protection and intercept uncontrolled beam losses. Beam losses could cause a superconducting magnet to quench, or in the worst case, damage the hardware. The collimation system, which is optimized to provide a good protection with proton beams, has shown a cleaning efficiency with heavy-ion beams which is worse by up to two orders of magnitude. The reason for this reduced cleaning efficiency is the fragmentation of heavy-ion beams into isotopes with a different mass to charge ratios because of the interaction with the collimator material. In order to ensure sufficient collimation performance in future ion runs, a detailed theoretical understanding of ion collimation is needed. The simulation of heavy-ion collimation must include processes in which 82 + 208Pb ions fragment into dozens of new isotopes. The ions and their fragments must be tracked inside the magnetic lattice of the LHC to determine their loss positions. This paper gives an overview of physical processes important for the description of heavy-ion loss patterns. Loss maps simulated by means of the two tools ICOSIM [1,2] and the newly developed STIER (SixTrack with Ion-Equivalent Rigidities) are compared with experimental data measured during LHC operation. The comparison shows that the tool STIER is in better agreement.

  8. Signals of doubly-charged Higgsinos at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Demir, Durmus A.; Frank, Mariana; Turan, Ismail; Huitu, Katri; Rai, Santosh Kumar

    2008-01-01

    Several supersymmetric models with extended gauge structures, motivated by either grand unification or by neutrino mass generation, predict light doubly-charged Higgsinos. In this work we study productions and decays of doubly-charged Higgsinos present in left-right supersymmetric models, and show that they invariably lead to novel collider signals not found in the minimal supersymmetric model or in any of its extensions motivated by the μ problem or even in extra dimensional theories. We investigate their distinctive signatures at the Large Hadron Collider in both pair- and single-production modes, and show that they are powerful tools in determining the underlying model via the measurements at the Large Hadron Collider experiments.

  9. Future Hadron Colliders

    CERN Document Server

    Keil, Eberhard

    1998-01-01

    Plans for future hadron colliders are presented, and accelerator physics and engineering aspects common to these machines are discussed. The Tevatron is presented first, starting with a summary of the achievements in Run IB which finished in 1995, followed by performance predictions for Run II which will start in 1999, and the TeV33 project, aiming for a peak luminosity $L ~ 1 (nbs)^-1$. The next machine is the Large Hadron Collider LHC at CERN, planned to come into operation in 2005. The last set of machines are Very Large Hadron Colliders which might be constructed after the LHC. Three variants are presented: Two machines with a beam energy of 50 TeV, and dipole fields of 1.8 and 12.6 T in the arcs, and a machine with 100 TeV and 12 T. The discussion of accelerator physics aspects includes the beam-beam effect, bunch spacing and parasitic collisions, and the crossing angle. The discussion of the engineering aspects covers synchrotron radiation and stored energy in the beams, the power in the debris of the p...

  10. Prompt D*+ production in proton-proton and lead-lead collisions, measured with the ALICE experiment at the CERN Large Hadron Collider

    NARCIS (Netherlands)

    de Rooij, R. S.

    2013-01-01

    In this thesis the results are presented of the first measurements of the D*+ meson nuclear modification factor RAA in heavy ion collisions at the Large Hadron Collider (LHC) using the ALICE (A Large Ion Collider Experiment) detector at CERN. These open charmed mesons are a useful tool to

  11. CERN Library | Pauline Gagnon presents the book "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN" | 15 September

    CERN Multimedia

    CERN Library

    2016-01-01

    "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN ", by Pauline Gagnon. Thursday 15 September 2016, 16:00 - 17:30 in the CERN Library (Bldg 52 1-052) *Coffee will be served at 15:30* CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers...

  12. Cryogenic testing of by-pass diode stacks for the superconducting magnets of the large hadron collider at CERN

    International Nuclear Information System (INIS)

    Della Corte, A.; Catitti, A.; Chiarelli, S.; Di Ferdinando, E.; Verdini, L.; Gharib, A.; Hagedorn, D.; Turtu, S.; Basile, G. L.; Taddia, G.; Talli, M.; Viola, R.

    2002-01-01

    A dedicated facility prepared by ENEA (Italian Agency for Energy and Environment) for the cryogenic testing of by-pass diodes for the protection of the CERN Large Hadron Collider main magnets will be described. This experimental activity is in the frame of a contract awarded to OCEM, an Italian firm active in the field of electronic devices and power supplies, in collaboration with ENEA, for the manufacture and testing of all the diode stacks. In particular, CERN requests the measurement of the reverse and forward voltage diode characteristics at 300 K and 77 K, and endurance test cycles at liquid helium temperature. The experimental set-up at ENEA and data acquisition system developed for the scope will be described and the test results reported

  13. Energy Extraction in the CERN Large Hadron Collider a Project Overview

    CERN Document Server

    Dahlerup-Petersen, K; Kazmine, B; Medvedko, A S; Sytchev, V V; Vasilev, L B

    2001-01-01

    In case of a resistive transition (quench), fast and reliable extraction of the magnetic energy, stored in the superconducting coils of the electromagnets of a particle collider, represents an important part of its magnet protection system. In general, the quench detectors, the quench heaters and the cold by-pass diodes across each magnet, together with the energy extraction facilities provide the required protection of the quenching superconductors against damage due to local energy dissipation. In CERN's LHC machine the energy stored in each of its eight superconducting dipole chains exceeds 1300 MJ. Following an opening of the extraction switches this energy will be absorbed in large extraction resistors located in the underground collider tunnel or adjacent galleries, during the exponential current decay. Also the sixteen, 13 kA quadrupole chains (QF, QD) and more than one hundred and fifty, 600 A circuits of the corrector magnets will be equipped with extraction systems. The extraction switch-gear is bas...

  14. Modeling of random geometric errors in superconducting magnets with applications to the CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    P. Ferracin

    2000-12-01

    Full Text Available Estimates of random field-shape errors induced by cable mispositioning in superconducting magnets are presented and specific applications to the Large Hadron Collider (LHC main dipoles and quadrupoles are extensively discussed. Numerical simulations obtained with Monte Carlo methods are compared to analytic estimates and are used to interpret the experimental data for the LHC dipole and quadrupole prototypes. The proposed approach can predict the effect of magnet tolerances on geometric components of random field-shape errors, and it is a useful tool to monitor the obtained tolerances during magnet production.

  15. Dijet asymmetry at the energies available at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    The martini numerical simulation allows for direct comparison of theoretical model calculations and the latest results for dijet asymmetry from the ATLAS and CMS collaborations. In this paper, partons are simulated as undergoing radiative and collisional processes throughout the evolution of central lead-lead collisions at the Large Hadron Collider. Using hydrodynamical background evolution determined by a simulation which fits well with the data on charged particle multiplicities from ALICE and a value of α s ≅0.25-0.3, the dijet asymmetry is found to be consistent with partonic energy loss in a hot, strongly interacting medium.

  16. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    CERN Document Server

    Sun, Y P; Barranco, J; Tomás, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A

    2009-01-01

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit...

  17. Azimuthal coil size and field quality in the main CERN Large Hadron Collider dipoles

    Directory of Open Access Journals (Sweden)

    P. Ferracin

    2002-06-01

    Full Text Available Field quality in superconducting magnets strongly depends on the geometry of the coil. Fiberglass spacers (shims placed between the coil and the collars have been used to optimize magnetic and mechanical performances of superconducting magnets in large accelerators. A change in the shim thickness affects both the geometry of the coil and its state of compression (prestress under operational conditions. In this paper we develop a coupled magnetomechanical model of the main Large Hadron Collider dipole. This model allows us to evaluate the prestress dependence on the shim thickness and the map of deformations of the coil and the collars. Results of the model are compared to experimental measurements carried out in a dedicated experiment, where a magnet model has been reassembled 5 times with different shims. A good agreement is found between simulations and experimental data both on the mechanical behavior and on the field quality. We show that this approach allows us to improve this agreement with respect to models previously used in the literature. We finally evaluate the range of tunability that will be provided by shims during the production of the Large Hadron Collider main dipoles.

  18. Collide@CERN Geneva

    CERN Multimedia

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  19. Simulation study of electron cloud induced instabilities and emittance growth for the CERN Large Hadron Collider proton beam

    CERN Document Server

    Benedetto, Elena; Schulte, Daniel; Rumolo, Giovanni

    2005-01-01

    The electron cloud may cause transverse single-bunch instabilities of proton beams such as those in the Large Hadron Collider (LHC) and the CERN Super Proton Synchrotron (SPS). We simulate these instabilities and the consequent emittance growth with the code HEADTAIL, which models the turn-by-turn interaction between the cloud and the beam. Recently some new features were added to the code, in particular, electric conducting boundary conditions at the chamber wall, transverse feedback, and variable beta functions. The sensitivity to several numerical parameters has been studied by varying the number of interaction points between the bunch and the cloud, the phase advance between them, and the number of macroparticles used to represent the protons and the electrons. We present simulation results for both LHC at injection and SPS with LHC-type beam, for different electron-cloud density levels, chromaticities, and bunch intensities. Two regimes with qualitatively different emittance growth are observed: above th...

  20. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  1. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Zhang, Chunhui; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ferreira Natal Da Luz, Pedro Hugo; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-19

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density $\\rho_{\\mu} > 5.9~$m$^{-2}$. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplic...

  2. Large Area Silicon Tracking Detectors with Fast Signal Readout for the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Köstner, S

    2005-01-01

    The Standard Model of elementary particles, which is summarized briefly in the second chapter, incorporates a number of successful theories to explain the nature and consistency of matter. However not all building blocks of this model could yet be tested by experiment. To confirm existing theories and to improve nowadays understanding of matter a new machine is currently being built at CERN, the Large Hadron Collider (LHC), described in the third chapter. LHC is a proton-proton collider which will reach unprecedented luminosities and center of mass energies. Five experiments are attached to it to give answers to questions like the existence of the Higgs meson, which allows to explain the mass content of matter, and the origin of CP-violation, which plays an important role in the baryogenesis of the universe. Supersymmetric theories, proposing a bosonic superpartner for each fermion and vice versa, will be tested. By colliding heavy ions, high energy and particle densities can be achieved and probed. This stat...

  3. Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-01-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...

  4. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  5. Recent results from hadron colliders

    International Nuclear Information System (INIS)

    Frisch, H.J.

    1990-01-01

    This is a summary of some of the many recent results from the CERN and Fermilab colliders, presented for an audience of nuclear, medium-energy, and elementary particle physicists. The topics are jets and QCD at very high energies, precision measurements of electroweak parameters, the remarkably heavy top quark, and new results on the detection of the large flux of B mesons produced at these machines. A summary and some comments on the bright prospects for the future of hadron colliders conclude the talk. 39 refs., 44 figs., 3 tabs

  6. On-Line Radiation Test Facility for Industrial Equipment needed for the Large Hadron Collider at CERN

    CERN Document Server

    Rausch, R

    1999-01-01

    The future Large Hadron Collider to be built at CERN will use superconducting magnets cooled down to 1.2 K. To preserve the superconductivity, the energy deposition dose levels in equipment located outside the cryostat, in the LHC tunnel, are calculated to be of the order of 1 to 10 Gy per year. At such dose levels, no major radiation-damage problems are to be expected, and the possibility of installing Commercial Of The Shelf (COTS) electronic equipment in the LHC tunnel along the accelerator is considered. To this purpose, industrial electronic equipment and circuits have to be qualified and tested against radiation to insure their long term stability and reliability. An on-line radiation test facility has been setup at the CERN Super Proton Synchrotron (SPS) and a program of on-line tests for electronic equipment is ongoing. Equipment tested includes Industrial Programmable Logic Controllers (PLCs) from several manufacturers, standard VME modules, Fieldbuses like Profibus, WorldFIP and CAN, various electro...

  7. Who cares about particle physics? making sense of the Higgs boson, the Large Hadron Collider and CERN

    CERN Document Server

    AUTHOR|(CDS)2051327

    2016-01-01

    CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers work together to push scientific knowledge forward. Here is a book written for every person who wishes to learn a little more about particle physics, without requiring prior scientific knowledge. It starts from the basics to build a solid understanding of current res...

  8. Development of large-capacity refrigeration at 1.8 K for the Large Hadron Collider at CERN

    CERN Document Server

    Lebrun, P; Claudet, G

    1996-01-01

    CERN, the European Laboratory for Particle Physics, is working towards the construction of the Large Hadron Collider (LHC), a high-energy, high-luminosity particle accelerator and collider [1] of 26.7 km circumference, due to start producing frontier physics, by bringing into collision intense proton and ion beams with centre-of-mass energies in the TeV-per-constituent range, at the beginning of the next century. The key technology for achieving this ambitious scientific goal at economically acceptable cost is the use of high-field superconducting magnets using Nb-Ti conductor operating in superfluid helium [2]. To maintain the some 25 km of bending and focusing magnets at their operating temperature of 1.9 K, the LHC cryogenic system will have to produce an unprecedented total refrigeration capacity of about 20 kW at 1.8 K, in eight cryogenic plants distributed around the machine circumference [3]. This has requested the undertaking of an industrial development programme, in the form of a collaboration betwe...

  9. Reliability of the beam loss monitors system for the large hadron collider at CERN

    International Nuclear Information System (INIS)

    Guaglio, G.

    2005-12-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  10. Development of radiation-tolerant components for the quench detection system at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bitterling, Oliver

    2017-04-03

    This works describes the results of a three year project to improve the radiation tolerance of the Quench Protection System of the CERN Large Hadron Collider. Radiation-induced premature beam aborts have been a limiting factor for accelerator availability in the recent years. Furthermore, the future upgrade of the Large Hadron Collider to its High Luminosity phase will further increase the radiation load and has higher requirements for the overall machine availability. Therefore equipment groups like the Quench protection groups have used the last years to redesign many of their systems to fulfill those requirements. In support of the development of radiation-tolerant systems, several proton beam irradiation campaigns were conducted to determine the inherent radiation tolerance of a selection of varied electronic components. Using components from this selection a new Quench Protection System for the 600 A corrector magnets was developed. The radiation tolerance of this system was further improved by developing a filter and error correction system for all discovered failure modes. Furthermore, compliance of the new system with the specification was shown by simulating the behavior of the system using data taken from the irradiation campaigns. The resulting system is operational since the beginning of 2016 and has in the first 9 months of operation not shown a single radiation-induced failure. Using results from simulations and irradiation campaigns the predicted failure cross section for the full new 600 A Quench Protection System is 4.358±0.564.10{sup -10} cm{sup 2} which is one order of magnitude lower than the target set during the development of this system.

  11. Development of radiation-tolerant components for the quench detection system at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Bitterling, Oliver

    2017-01-01

    This works describes the results of a three year project to improve the radiation tolerance of the Quench Protection System of the CERN Large Hadron Collider. Radiation-induced premature beam aborts have been a limiting factor for accelerator availability in the recent years. Furthermore, the future upgrade of the Large Hadron Collider to its High Luminosity phase will further increase the radiation load and has higher requirements for the overall machine availability. Therefore equipment groups like the Quench protection groups have used the last years to redesign many of their systems to fulfill those requirements. In support of the development of radiation-tolerant systems, several proton beam irradiation campaigns were conducted to determine the inherent radiation tolerance of a selection of varied electronic components. Using components from this selection a new Quench Protection System for the 600 A corrector magnets was developed. The radiation tolerance of this system was further improved by developing a filter and error correction system for all discovered failure modes. Furthermore, compliance of the new system with the specification was shown by simulating the behavior of the system using data taken from the irradiation campaigns. The resulting system is operational since the beginning of 2016 and has in the first 9 months of operation not shown a single radiation-induced failure. Using results from simulations and irradiation campaigns the predicted failure cross section for the full new 600 A Quench Protection System is 4.358±0.564.10 -10 cm 2 which is one order of magnitude lower than the target set during the development of this system.

  12. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  13. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; et al.,

    2013-11-21

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, and show that beam-gas interactions are the dominating source of machine-induced background for the studied machine scenarios. Our results serve as a starting point for the experiments to perform further simulations in order to estimate the resulting signals in the detectors.

  14. The New Superfluid Helium Cryostats for the Short Straight Sections of the CERN Large Hadron Collider (LHC)

    CERN Document Server

    Cameron, W; Kurtyka, T; Parma, Vittorio; Renaglia, T; Rifflet, J M; Rohmig, P; Skoczen, Blazej; Tortschanoff, Theodor; Trilhe, P; Védrine, P; Vincent, D

    1998-01-01

    The lattice of the CERN Large Hadron Collider (LHC) contains 364 Short Straight Section (SSS) units, one in every 53 m long half-cell. An SSS consists of three major assemblies: the standard cryostat section, the cryogenic service module, and the jumper connection. The standard cryostat section of an SSS contains the twin aperture high-gradient superconducting quadrupole and two pairs of superconducting corrector magnets, operating in pressurized helium II at 1.9 K. Components for isolating cryostat insulation vacuum, and the cryogenic supply lines, have to be foreseen. Special emphasis is given to the design changes of the SSS following adoption of an external cryogenic supply line (QRL). A jumper connection connects the SSS to the QRL, linking all the cryogenic tubes necessary for the local full-cell cooling loop [at every second SSS]. The jumper is connected to one end of the standard cryostat section via the cryogenic service module, which also houses beam diagnostics, current feedthroughs, and instrument...

  15. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  16. Hadron collider physics

    International Nuclear Information System (INIS)

    Pondrom, L.

    1991-01-01

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs

  17. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: ALICE Collaboration

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density ρ{sub μ} > 5.9 m{sup −2}. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplicities, their simulations failed to describe the frequency of the highest multiplicity events. In this work we show that the high multiplicity events observed in ALICE stem from primary cosmic rays with energies above 10{sup 16} eV and that the frequency of these events can be successfully described by assuming a heavy mass composition of primary cosmic rays in this energy range. The development of the resulting air showers was simulated using the latest version of QGSJET to model hadronic interactions. This observation places significant constraints on alternative, more exotic, production mechanisms for these events.

  18. Reaching record-low β* at the CERN Large Hadron Collider using a novel scheme of collimator settings and optics

    Science.gov (United States)

    Bruce, R.; Bracco, C.; De Maria, R.; Giovannozzi, M.; Mereghetti, A.; Mirarchi, D.; Redaelli, S.; Quaranta, E.; Salvachua, B.

    2017-03-01

    The Large Hadron Collider (LHC) at CERN is built to collide intense proton beams with an unprecedented energy of 7 TeV. The design stored energy per beam of 362 MJ makes the LHC beams highly destructive, so that any beam losses risk to cause quenches of superconducting magnets or damage to accelerator components. Collimators are installed to protect the machine and they define a minimum normalized aperture, below which no other element is allowed. This imposes a limit on the achievable luminosity, since when squeezing β* (the β-function at the collision point) to smaller values for increased luminosity, the β-function in the final focusing system increases. This leads to a smaller normalized aperture that risks to go below the allowed collimation aperture. In the first run of the LHC, this was the main limitation on β*, which was constrained to values above the design specification. In this article, we show through theoretical and experimental studies how tighter collimator openings and a new optics with specific phase-advance constraints allows a β* as small as 40 cm, a factor 2 smaller than β*=80 cm used in 2015 and significantly below the design value β*=55 cm, in spite of a lower beam energy. The proposed configuration with β*=40 cm has been successfully put into operation and has been used throughout 2016 as the LHC baseline. The decrease in β* compared to 2015 has been an essential contribution to reaching and surpassing, in 2016, the LHC design luminosity for the first time, and to accumulating a record-high integrated luminosity of around 40 fb-1 in one year, in spite of using less bunches than in the design.

  19. A Nuclear Physics Program at the ATLAS Experiment at the CERN Large Hadron Collider

    CERN Document Server

    Aronson, S H; Gordon, H; Leite, M; Le Vine, M J; Nevski, P; Takai, H; White, S; Cole, B; Nagle, J L

    2002-01-01

    The ATLAS collaboration has significant interest in the physics of ultra-relativistic heavy ion collisions. We submitted a Letter of Intent to the United States Department of Energy in March 2002. The following document is a slightly modified version of that LOI. More details are available at: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/SM/ions

  20. Microwave Schottky diagnostic systems for the Fermilab Tevatron, Recycler, and CERN Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Ralph J. Pasquinelli

    2011-07-01

    Full Text Available A means for noninvasive measurement of transverse and longitudinal characteristics of bunched beams in synchrotrons has been developed based on high sensitivity slotted waveguide pickups. The pickups allow for bandwidths exceeding hundreds of MHz while maintaining good beam sensitivity characteristics. Wide bandwidth is essential to allow bunch-by-bunch measurements by means of a fast gate. The Schottky detector system is installed and successfully commissioned in the Fermilab Tevatron, Recycler and CERN LHC synchrotrons. Measurement capabilities include tune, chromaticity, and momentum spread of single or multiple beam bunches in any combination. With appropriate calibrations, emittance can also be measured by integrating the area under the incoherent tune sidebands.

  1. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  2. Loans may keep CERN collider on target

    CERN Multimedia

    Abbott, A

    1996-01-01

    The European Laboratory for Particle Physics (CERN) is considering taking out bank loans to fund its Large Hadron Collider project. CERN officials are evaluating this option in view of the German government's decision to substantially reduce its annual contributions to the project. They state that the bank loans may be the only way to complete the project by the year 2005, especially if other contributing nations follow Germany's lead.

  3. Black Holes and the Large Hadron Collider

    Science.gov (United States)

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  4. Hadron collider physics at UCR

    International Nuclear Information System (INIS)

    Kernan, A.; Shen, B.C.

    1997-01-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e + -e - collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2γ at PEP and the OPAL detector at LEP, as well as efforts on hadron machines

  5. B factory with hadron colliders

    International Nuclear Information System (INIS)

    Lockyer, N.S.

    1990-01-01

    The opportunities to study B physics in a hadron collider are discussed. Emphasis is placed on the technological developments necessary for these experiments. The R and D program of the Bottom Collider Detector group is reviewed. (author)

  6. Advances in elementary particle physics with applied superconductivity. Contribution of superconducting technology to CERN large hadron collider accelerator

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2011-01-01

    The construction of the Large Hadron Collider (LHC) was started in 1994 and completed in 2008. The LHC consists of more than seven thousand superconducting magnets and cavities, which play an essential role in elementary particle physics and its energy frontier. Since 2010, physics experiments at the new energy frontier have been carried out to investigate the history and elementary particle phenomena in the early universe. The superconducting technology applied in the energy frontier physics experiments is briefly introduced. (author)

  7. A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

    CERN Document Server

    Abelleira Fernandez, J.L.; Akay, A.N.; Aksakal, H.; Albacete, J.L.; Alekhin, S.; Allport, P.; Andreev, V.; Appleby, R.B.; Arikan, E.; Armesto, N.; Azuelos, G.; Bai, M.; Barber, D.; Bartels, J.; Behnke, O.; Behr, J.; Belyaev, A.S.; Ben-Zvi, I.; Bernard, N.; Bertolucci, S.; Bettoni, S.; Biswal, S.; Blumlein, J.; Bottcher, H.; Bogacz, A.; Bracco, C.; Brandt, G.; Braun, H.; Brodsky, S.; Buning, O.; Bulyak, E.; Buniatyan, A.; Burkhardt, H.; Cakir, I.T.; Cakir, O.; Calaga, R.; Cetinkaya, V.; Ciapala, E.; Ciftci, R.; Ciftci, A.K.; Cole, B.A.; Collins, J.C.; Dadoun, O.; Dainton, J.; De Roeck, A.; d'Enterria, D.; Dudarev, A.; Eide, A.; Enberg, R.; Eroglu, E.; Eskola, K.J.; Favart, L.; Fitterer, M.; Forte, S.; Gaddi, A.; Gambino, P.; Garcia Morales, H.; Gehrmann, T.; Gladkikh, P.; Glasman, C.; Godbole, R.; Goddard, B.; Greenshaw, T.; Guffanti, A.; Guzey, V.; Gwenlan, C.; Han, T.; Hao, Y.; Haug, F.; Herr, W.; Herve, A.; Holzer, B.J.; Ishitsuka, M.; Jacquet, M.; Jeanneret, B.; Jimenez, J.M.; Jowett, J.M.; Jung, H.; Karadeniz, H.; Kayran, D.; Kilic, A.; Kimura, K.; Klein, M.; Klein, U.; Kluge, T.; Kocak, F.; Korostelev, M.; Kosmicki, A.; Kostka, P.; Kowalski, H.; Kramer, G.; Kuchler, D.; Kuze, M.; Lappi, T.; Laycock, P.; Levichev, E.; Levonian, S.; Litvinenko, V.N.; Lombardi, A.; Maeda, J.; Marquet, C.; Mellado, B.; Mess, K.H.; Milanese, A.; Moch, S.; Morozov, I.I.; Muttoni, Y.; Myers, S.; Nandi, S.; Nergiz, Z.; Newman, P.R.; Omori, T.; Osborne, J.; Paoloni, E.; Papaphilippou, Y.; Pascaud, C.; Paukkunen, H.; Perez, E.; Pieloni, T.; Pilicer, E.; Pire, B.; Placakyte, R.; Polini, A.; Ptitsyn, V.; Pupkov, Y.; Radescu, V.; Raychaudhuri, S.; Rinol, L.; Rohini, R.; Rojo, J.; Russenschuck, S.; Sahin, M.; Salgado, C.A.; Sampei, K.; Sassot, R.; Sauvan, E.; Schneekloth, U.; Schorner-Sadenius, T.; Schulte, D.; Senol, A.; Seryi, A.; Sievers, P.; Skrinsky, A.N.; Smith, W.; Spiesberger, H.; Stasto, A.M.; Strikman, M.; Sullivan, M.; Sultansoy, S.; Sun, Y.P.; Surrow, B.; Szymanowski, L.; Taels, P.; Tapan, I.; Tasci, T.; Tassi, E.; Ten Kate, H.; Terron, J.; Thiesen, H.; Thompson, L.; Tokushuku, K.; Tomas Garcia, R.; Tommasini, D.; Trbojevic, D.; Tsoupas, N.; Tuckmantel, J.; Turkoz, S.; Trinh, T.N.; Tywoniuk, K.; Unel, G.; Urakawa, J.; VanMechelen, P.; Variola, A.; Veness, R.; Vivoli, A.; Vobly, P.; Wagner, J.; Wallny, R.; Wallon, S.; Watt, G.; Weiss, C.; Wiedemann, U.A.; Wienands, U.; Willeke, F.; Xiao, B.W.; Yakimenko, V.; Zarnecki, A.F.; Zhang, Z.; Zimmermann, F.; Zlebcik, R.; Zomer, F.

    2012-01-01

    The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ ran...

  8. Hadron collider physics 2005. Proceedings

    International Nuclear Information System (INIS)

    Campanelli, M.; Clark, A.; Wu, X.

    2006-01-01

    The Hadron Collider Physics Symposia (HCP) are a new series of conferences that follow the merger of the Hadron Collider Conferences with the LHC Symposia series, with the goal of maximizing the shared experience of the Tevatron and LHC communities. This book gathers the proceedings of the first symposium, HCP2005, and reviews the state of the art in the key physics directions of experimental hadron collider research: - QCD physics - precision electroweak physics - c-, b-, and t-quark physics - physics beyond the Standard Model - heavy ion physics The present volume will serve as a reference for everyone working in the field of accelerator-based high-energy physics. (orig.)

  9. Physics at Future Hadron Colliders

    CERN Document Server

    Baur, U.; Parsons, J.; Albrow, M.; Denisov, D.; Han, T.; Kotwal, A.; Olness, F.; Qian, J.; Belyaev, S.; Bosman, M.; Brooijmans, G.; Gaines, I.; Godfrey, S.; Hansen, J.B.; Hauser, J.; Heintz, U.; Hinchliffe, I.; Kao, C.; Landsberg, G.; Maltoni, F.; Oleari, C.; Pagliarone, C.; Paige, F.; Plehn, T.; Rainwater, D.; Reina, L.; Rizzo, T.; Su, S.; Tait, T.; Wackeroth, D.; Vataga, E.; Zeppenfeld, D.

    2001-01-01

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  10. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  11. Le Japon contribue au grand collisionneur de hadrons du CERN

    CERN Multimedia

    CERN Press Office. Geneva

    1995-01-01

    Japan's Ministry of Education, Science and Culture (Monbusho), announced on May 10 that it would help to finance the construction of CERN*'s next particle accelerator, the Large Hadron Collider (LHC). This announcement follows the visit of a CERN delegation, led by Director-General Prof. Christopher Llewellyn Smith to Japan in March 1995.

  12. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  13. Predictions for multiplicities and flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider

    Science.gov (United States)

    Eskola, K. J.; Niemi, H.; Paatelainen, R.; Tuominen, K.

    2018-03-01

    We present the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics (EKRT) model predictions for the centrality dependence of the charged hadron multiplicity in the pseudorapidity interval |η |≤0.5 , and for the centrality dependence of the charged hadron flow harmonics vn{2 } obtained from two-particle cumulants, in √{sN N}=5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider. Our prediction for the 0-5 % central charged multiplicity is d Nch/d η =1218 ±46 . We also predict vn{2 } in Xe+Xe collisions to increase more slowly from central towards peripheral collisions than those in a Pb+Pb system. We find that at 10 ,⋯,50 % centralities v2{2 } is smaller and v3{2 } is larger than in the Pb+Pb system while v4{2 } is of the same magnitude in both systems. We also find that the ratio of flow harmonics in Xe+Xe collisions and in Pb+Pb collisions shows a slight sensitivity to the temperature dependence of the shear-viscosity-to-entropy ratio. As we discuss here, the new nuclear mass-number systematics especially in the flow harmonics serves as a welcome further constraint for describing the space-time evolution of a heavy-ion system and for determining the shear viscosity and other transport properties of strongly interacting matter.

  14. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  15. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non–Ideal Plasmas

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Deutsch, C; Fortov, V E

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commission- ing phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 1034 cm−2s−1. Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  16. The Large Hadron Collider and the Super Proton Synchrotron at CERN as Tools to Generate Warm Dense Matter and Non-Ideal Plasmas

    CERN Document Server

    Tahir, N A; Deutsch, C; Gryaznov, V; Lomonosov, I V; Shutov, A; Piriz, A R; Fortov, V E; Geissel, H; Redmer, R

    2011-01-01

    The largest accelerator in the world, the Large Hadron Collider (LHC) at CERN, has entered into commissioning phase. It is expected that when this impressive machine will become fully operational, it will generate two counter rotating 7 TeV/c proton beams that will be made to collide, leading to an unprecedented luminosity of 10(34) cm(-2)s(-1). Total energy stored in each LHC beam is about 362 MJ, sufficient to melt 500 kg copper. Safety of operation is a very critical issue when working with such extremely powerful beams. It is important to know the consequences of an accidental release of the beam energy in order to design protection system for the equipment. For this purpose we have carried out extensive numerical simulations of the interaction of one full LHC beam with copper and graphite targets which are materials of practical importance. Our calculations have shown that the LHC protons will penetrate up to about 35 m in solid copper and 10 m in solid graphite. A very interesting outcome of this work i...

  17. Hadron collider luminosity limitations

    CERN Document Server

    Evans, Lyndon R

    1992-01-01

    The three colliders operated to date have taught us a great deal about the behaviour of both bunched and debunched beams in storage rings. The main luminosity limitations are now well enough understood that most of them can be stronglu attenuated or eliminated by approriate design precautions. Experience with the beam-beam interaction in both the SPS and the Tevatron allow us to predict the performance of the new generation of colliders with some degree of confidence. One of the main challenges that the accelerator physicist faces is the problem of the dynamic aperture limitations due to the lower field quality expected, imposed by economic and other constraints.

  18. Physics at hadron colliders: Experimental view

    International Nuclear Information System (INIS)

    Siegrist, J.L.

    1987-08-01

    The physics of the hadron-hadron collider experiment is considered from an experimental point of view. The problems encountered in determination of how well the standard model describes collider results are discussed. 53 refs., 58 figs

  19. The Large Hadron Collider

    CERN Multimedia

    't Hooft, Gerardus; Llewellyn Smith, Christopher Hubert; Brüning, Oliver Sim; Collier, Paul; Stapnes, Steinar; Ellis, Jonathan Richard; Braun-Munzinger, Peter; Stachel, Johanna; Lederman, Leon Max

    2007-01-01

    Several articles about the LHC: The Making of the standard model; high-energy colliders and the rise of the standard model; How the LHC came to be; Building a behemoth; Detector challenges at the LHC; Beyond the standard model with the LHC; The quest for the quark-gluon plasma; The God particle et al. (42 pages

  20. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  1. Hard QCD at hadron colliders

    International Nuclear Information System (INIS)

    Moch, S.

    2008-02-01

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W ± /Z-boson, Higgs boson or top quark production. (orig.)

  2. Top production at hadron colliders

    Indian Academy of Sciences (India)

    New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including ...

  3. Electroweak results from hadron colliders

    International Nuclear Information System (INIS)

    Demarteau, Marcel

    1997-01-01

    A review of recent electroweak results from hadron colliders is given. Properties of the W ± and Z 0 gauge bosons using final states containing electrons and muons based on large integrated luminosities are presented. The emphasis is placed on the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings

  4. The large hadron collider project

    International Nuclear Information System (INIS)

    Maiani, L.

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10 -16 cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10 2 GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range - a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10 3 GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the construction of the large hadron collider (LHC), a proton-proton collider of a new design to be installed in the existing LEP tunnel, with an energy of 7 TeV per beam and extremely large luminosity, of ∝10 34 cm -2 s -1 . Construction was started in 1996, with the additional support of the US, Japan, Russia, Canada and other European countries, making the LHC a really global project, the first one in particle physics. After a short review of the physics scenario, I report on the present status of the LHC construction. Special attention is given to technological problems such as the realization of the super-conducting dipoles, following an extensive R and D program with European industries. The construction of the large LHC detectors has required a vast R and D program by a large international community, to overcome the problems posed by the complexity of the collisions and by the large luminosity of the machine. (orig.)

  5. Collide@CERN - public lecture

    CERN Multimedia

    2012-01-01

    CERN, the Republic and Canton of Geneva and the City of Geneva are delighted to invite you to a public lecture by Gilles Jobin, first winner of the Collide@CERN Geneva Dance and Performance Artist-in-residence Prize, and his CERN inspiration partner, Joao Pequenao. They will present their work in dance and science at the Globe of Science and Innovation on Wednesday, 23 May 2012 at 7 p.m. (doors open at 6.30 p.m.).   
                                                  Programme 19:00 Opening address by - Professor Rolf-Dieter Heuer, CERN Director-General, - Ariane Koek...

  6. Hadron collider searches for diboson resonances

    Science.gov (United States)

    Dorigo, Tommaso

    2018-05-01

    This review covers results of searches for new elementary particles that decay into boson pairs (dibosons), performed at the CERN Large Hadron Collider in proton-proton collision data collected by the ATLAS and CMS experiments at 7-, 8-, and 13-TeV center-of-mass energy until the year 2017. The available experimental results of the analysis of final states including most of the possible two-object combinations of W and Z bosons, photons, Higgs bosons, and gluons place stringent constraints on a variety of theoretical ideas that extend the standard model, pushing into the multi-TeV region the scale of allowed new physics phenomena.

  7. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158 GeV/u $In^{49+}$ ions at the CERN Super Proton Synchrotron

    CERN Document Server

    Mahner, Edgar; Hansen, Jan; Page, Eric; Vincke, H

    2004-01-01

    During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10/sup 4/ to 10/sup 7/ molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC) ion operation. In 2003, a desorption experiment was installed at the super proton synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV) graphite, and 316 LN (low carbon with nitrogen) stainless steel were irradiated under grazing angle with 158 GeV/u indium ions. After a description of the new experimental ...

  8. Soviet Hadron Collider

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  9. The Compact Muon Solenoid Experiment at the Large Hadron Collider The Compact Muon Solenoid Experiment at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    David Delepine

    2012-02-01

    Full Text Available The Compact Muon Solenoid experiment at the CERN Large Hadron Collider will study protonproton collisions at unprecedented energies and luminosities. In this article we providefi rst a brief general introduction to particle physics. We then explain what CERN is. Thenwe describe the Large Hadron Collider at CERN, the most powerful particle acceleratorever built. Finally we describe the Compact Muon Solenoid experiment, its physics goals,construction details, and current status.El experimento Compact Muon Solenoid en el Large Hadron Collider del CERN estudiarácolisiones protón protón a energías y luminosidades sin precedente. En este artículo presentamos primero una breve introducción general a la física de partículas. Despuésexplicamos lo que es el CERN. Luego describimos el Large Hadron Collider, el más potente acelerador de partículas construido por el hombre, en el CERN. Finalmente describimos el experimento Compact Muon Solenoid, sus objetivos en física, los detalles de su construcción,y su situación presente.

  10. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  11. The large hadron collider beauty experiment calorimeters

    International Nuclear Information System (INIS)

    Martens, A.; LHCb Collaboration; Martens, A.

    2010-01-01

    The Large Hadron Collider beauty experiment (LHCb), one of the four largest experiments at the LHC at CERN, is dedicated to precision studies of CP violation and other rare effects, in particular in the b and c quark sectors. It aims at precisely measuring the Standard Model parameters and searching for effects inconsistent with this picture. The LHCb calorimeter system comprises a scintillating pad detector, a pre-shower (PS), electromagnetic (ECAL) and hadronic calorimeters, all of these employing the principle of transporting the light from scintillating layers with wavelength shifting fibers to photomultipliers. The fast response of the calorimeters ensures their key role in the LHCb trigger, which has to cope with the LHC collision rate of 40MHz. After discussing the design and expected performance of the LHCb calorimeter system, one addresses the time and energy calibration issues. The results obtained with the calorimeter system from the first LHC data will be shown.

  12. Leak-tightness assessment of demountable joints for the super fluid helium system of the CERN Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Brunet, J.C.; Poncet, A.; Trilhe, P.

    1994-01-01

    The future high energy accelerator LHC presently considered at CERN, will make heavy use of demountable cryogenic joints operating at superfluid helium temperatures (1.8 K). These joints will be required for connecting the cryomagnets to their feeding lines, helium safety valves to cold masses, both on their measuring benches and eventually in their final installation set-up. The very large size of the future machine and, consequently, the large number of cryogenic joints imply that their reliability in leak tightness be very high, in particular after extreme loading conditions such as the high helium pressures resulting from superconducting magnet quenches. For these reasons, a test set-up has been especially built at CERN to reproduce these conditions, and to assess the leak tightness reliability of commercially available joints. A description of the facility is presented, together with the first test results

  13. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Čepila, J.; Contreras, J. G.; Eyyubova, G.; Ferencei, Jozef; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Schulc, M.; Špaček, M.; Šumbera, Michal; Vajzer, Michal; Vaňát, Tomáš; Závada, Petr

    2016-01-01

    Roč. 2016, č. 1 (2016), s. 032 ISSN 1475-7516 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE collaboration * cosmic ray experiments * cosmic rays detectors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 4.734, year: 2016

  14. Z0-tagged jet event asymmetry in heavy-ion collisions at the CERN large hadron collider.

    Science.gov (United States)

    Neufeld, R B; Vitev, I

    2012-06-15

    Tagged jet measurements provide a promising experimental channel to quantify the similarities and differences in the mechanisms of jet production in proton-proton and nucleus-nucleus collisions. We present the first calculation of the transverse momentum asymmetry of Z0/γ*-tagged jet events in sqrt[s]=2.76  TeV reactions at the LHC. Our results combine the O(G(F)α(s)2) perturbative cross sections with the radiative and collisional processes that modify parton showers in the presence of dense strongly interacting matter. We find that a strong asymmetry is generated in central lead-lead reactions that has little sensitivity to the fluctuations of the underlying soft hadronic background. We present theoretical model predictions for its shape and magnitude.

  15. EIB lends EUR 300 million for CERN's major collider

    CERN Multimedia

    2002-01-01

    "The European Investment Bank (EIB) is lending EUR 300 million to finance the final phase of construction of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research. The EIB loan will also help to finance the instrumentation to record and analyse the high-energy particle collisions at the LHC" (1 page).

  16. Minimal spontaneously broken hidden sector and its impact on Higgs boson physics at the CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Schabinger, Robert; Wells, James D.

    2005-01-01

    Little experimental data bears on the question of whether there is a spontaneously broken hidden sector that has no Standard Model quantum numbers. Here we discuss the prospects of finding evidence for such a hidden sector through renormalizable interactions of the Standard Model Higgs boson with a Higgs boson of the hidden sector. We find that the lightest Higgs boson in this scenario has smaller rates in standard detection channels, and it can have a sizeable invisible final state branching fraction. Details of the hidden sector determine whether the overall width of the lightest state is smaller or larger than the Standard Model width. We compute observable rates, total widths and invisible decay branching fractions within the general framework. We also introduce the 'A-Higgs Model', which corresponds to the limit of a hidden sector Higgs boson weakly mixing with the Standard Model Higgs boson. This model has only one free parameter in addition to the mass of the light Higgs state and it illustrates most of the generic phenomenology issues, thereby enabling it to be a good benchmark theory for collider searches. We end by presenting an analogous supersymmetry model with similar phenomenology, which involves hidden sector Higgs bosons interacting with MSSM Higgs bosons through D-terms

  17. Flavorful leptoquarks at hadron colliders

    Science.gov (United States)

    Hiller, Gudrun; Loose, Dennis; Nišandžić, Ivan

    2018-04-01

    B -physics data and flavor symmetries suggest that leptoquarks can have masses as low as a few O (TeV ) , predominantly decay to third generation quarks, and highlight p p →b μ μ signatures from single production and p p →b b μ μ from pair production. Abandoning flavor symmetries could allow for inverted quark hierarchies and cause sizable p p →j μ μ and j j μ μ cross sections, induced by second generation couplings. Final states with leptons other than muons including lepton flavor violation (LFV) ones can also arise. The corresponding couplings can also be probed by precision studies of the B →(Xs,K*,ϕ )e e distribution and LFV searches in B -decays. We demonstrate sensitivity in single leptoquark production for the large hadron collider (LHC) and extrapolate to the high luminosity LHC. Exploration of the bulk of the parameter space requires a hadron collider beyond the reach of the LHC, with b -identification capabilities.

  18. Aperture meter for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Mueller, G.J.; Fuchsberger, K.; Redaelli, S.

    2012-01-01

    The control of the high intensity beams of the CERN Large Hadron Collider (LHC) is particular challenging and requires a good modeling of the machine and monitoring of various machine parameters. During operation it is crucial to ensure a minimal distance between the beam edge and the aperture of sensitive equipment, e.g. the superconducting magnets, which in all cases must be in the shadow of the collimator's that protect the machine. Possible dangerous situations must be detected as soon as possible. In order to provide the operator with information about the current machine bottlenecks an aperture meter application was developed based on the LHC online modeling tool-chain. The calculation of available free aperture takes into account the best available optics and aperture model as well as the relevant beam measurements. This paper describes the design and integration of this application into the control environment and presents results of the usage in daily operation and from validation measurements. (authors)

  19. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  20. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider (English version)

    CERN Multimedia

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  1. Very large hadron collider (VLHC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  2. The 20th Hadron Collider Physics Symposium in Evian

    CERN Multimedia

    Ludwik Dobrzynski and Emmanuel Tsesmelis

    The 20th Hadron Collider Physics Symposium took place in Evian from 16 to 20 November 2009. The Hadron Collider Physics Symposium series has been a major forum for presentations of physics at the Tevatron over the past two decades. The merger of the former Topical Conference on Hadron Collider Physics with the LHC Symposium in 2005 brought together the Tevatron and LHC communities in a single forum. The 20th Hadron Collider Physics Symposium took place in Evian, on the shores of Lake Geneva, from 16-20 November 2009, some 17 years after the historic ECFA-CERN Evian meeting in March 1992 when Expressions of Interest for LHC detectors were presented for the first time. The 2009 event was organized jointly by CERN and the French high-energy physics community (CNRS-IN2P3 and CEA-IRFU). More than 170 people registered for this symposium. This year’s symposium was held at an important time for both the Tevatron and the LHC. It stimulated the completion of analyses for a significant Tevatron data sam...

  3. Flavor changing effects on single charged Higgs boson production associated with a bottom-charm pair at CERN Large Hadron Collider

    International Nuclear Information System (INIS)

    Hao Sun; Ma Wengan; Zhang Renyou; Guo Lei; Han Liang; Jiang Yi

    2007-01-01

    We study flavor changing effects on the pp→bcH ± +X process at the Large Hadron Collider, which are inspired by the left-handed up-type squark mixings in the minimal supersymmetric standard model (MSSM). We find that the SUSY QCD radiative corrections to bcH ± coupling can significantly enhance the cross sections at the tree level by a factor about 1.5∼5 with our choice of parameters. We conclude that the squark-mixing mechanism in the MSSM makes the pp→bcH ± +X process a new channel for discovering a charged Higgs boson and investigating flavor changing effects

  4. CERN

    CERN Multimedia

    2007-01-01

    "Geat ready for the mother of all particle accelerator: the Large Hadron Collider (LHC), nearing completion at CERN, the International particle physics lab headquartered in Geneva, Switzerland." (1 paragraph)

  5. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  6. Large hadron collider in the LEP tunnel. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    1984-01-01

    A Workshop, jointly organized by ECFA and CERN, took place at Lausanne and at CERN in March 1984 to study various options for a pp (or panti p) collider which might be installed at a later data alongside LEP in the LEP tunnel. Following the exploration of e + e - physics up to the highest energy now foreseeable, this would open up the opportunity to investigate hadron collisions in the new energy range of 10 to 20 TeV in the centre of mass. These proceedings put together the documents prepared in connection with this Workshop. They cover possible options for a Large Hadron Collider (LHC) in the LEP tunnel, the physics case as it stands at present, and studies of experimental possibilities in this energy range with luminosities as now considered. See hints under the relevant topics. (orig./HSI)

  7. Large hadron collider in the LEP tunnel. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    1984-01-01

    A Workshop, jointly organized by ECFA and CERN, took place at Lausanne and at CERN in March 1984 to study various options for a pp (or panti p) collider which might be installed at a later date alongside LEP in the LEP tunnel. Following the exploration of e + e - physics up to the highest energy now foreseeable, this would open up the opportunity to investigate hadron collisions in the new energy range of 10 to 20 TeV in the centre of mass. These proceedings put together the documents prepared in connection with this Workshop. They cover possible options for a Large Hadron Collider (LHC= in the LEP tunnel, the physics case at it stands at present, and studies of experimental possibilities in this energy range with luminosities as now considered. See hints under the relevant topics. (orig.)

  8. SEARCHING FOR HIGGS BOSONS AND NEW PHYSICS AT HADRON COLLIDERS

    International Nuclear Information System (INIS)

    Chung Kao

    2007-01-01

    The objectives of research activities in particle theory are predicting the production cross section and decay branching fractions of Higgs bosons and new particles at hadron colliders, developing techniques and computer software to discover these particles and to measure their properties, and searching for new phenomena and new interactions at the Fermilab Tevatron and the CERN Large Hadron Collider. The results of our project could lead to the discovery of Higgs bosons, new particles, and signatures for new physics, or we will be able to set meaningful limits on important parameters in particle physics. We investigated the prospects for the discovery at the CERN Large Hadron Collider of Higgs bosons and supersymmetric particles. Promising results are found for the CP-odd pseudoscalar (A 0 ) and the heavier CP-even scalar (H 0 ) Higgs bosons with masses up to 800 GeV. Furthermore, we study properties of the lightest neutralino (χ 0 ) and calculate its cosmological relic density in a supersymmetric U(1)(prime) model as well as the muon anomalous magnetic moment a μ = (g μ -2)/2 in a supersymmetric U(1)(prime) model. We found that there are regions of the parameter space that can explain the experimental deviation of a μ from the Standard Model calculation and yield an acceptable cold dark matter relic density without conflict with collider experimental constraints. Recently, we presented a complete next-to-leading order (NLO) calculation for the total cross section of inclusive Higgs pair production via bottom-quark fusion (b(bar b) to hh) at the CERN Large Hadron Collider (LHC) in the Standard Model and the minimal supersymmetric model. We plan to predict the Higgs pair production rate and to study the trilinear coupling among the Higgs bosons. In addition, we have made significant contributions in B physics, single top production, charged Higgs search at the Fermilab as well as in grid computing for both D0 and ATLAS

  9. An investigation of triply heavy baryon production at hadron colliders

    CERN Document Server

    Gomshi Nobary, M A

    2006-01-01

    The triply heavy baryons have a rather diverse mass range. While some of them possess considerable production rates at existing facilities, others need to be produced at future high energy colliders. Here we study the direct fragmentation production of the Ωccc and Ωbbb baryons as the prototypes of triply heavy baryons at the hadron colliders with different . We present and compare the transverse momentum distributions of the differential cross sections, distributions of total cross sections and the integrated total cross sections of these states at the RHIC, the Tevatron Run II and the CERN LHC.

  10. An investigation of triply heavy baryon production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gomshi Nobary, M.A. [Department of Physics, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of) and Center for Theoretical Physics and Mathematics, AEOI, Roosbeh Building, PO Box 11365-8486, Tehran (Iran, Islamic Republic of)]. E-mail: mnobary@razi.ac.ir; Sepahvand, R. [Department of Physics, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2006-05-01

    The triply heavy baryons have a rather diverse mass range. While some of them possess considerable production rates at existing facilities, others need to be produced at future high energy colliders. Here we study the direct fragmentation production of the {omega}{sub ccc} and {omega}{sub bbb} baryons as the prototypes of triply heavy baryons at the hadron colliders with different s. We present and compare the transverse momentum distributions of the differential cross sections, p{sub T}{sup min} distributions of total cross sections and the integrated total cross sections of these states at the RHIC, the Tevatron Run II and the CERN LHC.

  11. Physics at Hadronic Colliders (4/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  12. Physics at Hadronic Colliders (1/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  13. Physics at Hadronic Colliders (2/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  14. Physics at Hadronic Colliders (3/4)

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  15. Higgs Boson and the Large Hadron Collider

    International Nuclear Information System (INIS)

    Banerjee, Sunanda

    2014-01-01

    The Standard Model of particle physics has been extremely successful in explaining all the precision data collected during the past few decades. The model, however, was incomplete with one of the key particles still not experimentally observed till 2012. This particle is predicted by the theory in the context of providing mass to the fundamental constituents as well as the exchange particles W and Z bosons. In the recent past, two experiments, ATLAS and CMS operating at the Large Hadron Collider, CERN have observed the evidence of a new state. Search signal of this object has been motivated by the Higgs boson within the Standard Model. These results have been consolidated with newer data and some attempt has gone to determine some of the properties of this newly observed state. Some of the most important recent results in this context are presented in this lecture. Several groups from India have participated in the LHC program and contributed to various aspects like the machine, computing grid and the experiments. In particular, 3 institutes and 2 University groups have been a member of the CMS collaboration and took part in the discovery of the new state. The participation of the Indian groups are also highlighted. (author)

  16. Weak boson emission in hadron collider processes

    International Nuclear Information System (INIS)

    Baur, U.

    2007-01-01

    The O(α) virtual weak radiative corrections to many hadron collider processes are known to become large and negative at high energies, due to the appearance of Sudakov-like logarithms. At the same order in perturbation theory, weak boson emission diagrams contribute. Since the W and Z bosons are massive, the O(α) virtual weak radiative corrections and the contributions from weak boson emission are separately finite. Thus, unlike in QED or QCD calculations, there is no technical reason for including gauge boson emission diagrams in calculations of electroweak radiative corrections. In most calculations of the O(α) electroweak radiative corrections, weak boson emission diagrams are therefore not taken into account. Another reason for not including these diagrams is that they lead to final states which differ from that of the original process. However, in experiment, one usually considers partially inclusive final states. Weak boson emission diagrams thus should be included in calculations of electroweak radiative corrections. In this paper, I examine the role of weak boson emission in those processes at the Fermilab Tevatron and the CERN LHC for which the one-loop electroweak radiative corrections are known to become large at high energies (inclusive jet, isolated photon, Z+1 jet, Drell-Yan, di-boson, tt, and single top production). In general, I find that the cross section for weak boson emission is substantial at high energies and that weak boson emission and the O(α) virtual weak radiative corrections partially cancel

  17. Cryogenics for the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2000-01-01

    The Large Hadron Collider (LHC), a 26.7 km circumference superconducting accelerator equipped with high-field magnets operating in superfluid helium below 1.9 K, has now fully entered construction at CERN, the European Laboratory for Particle Physics. The heart of the LHC cryogenic system is the quasi-isothermal magnet cooling scheme, in which flowing two-phase saturated superfluid helium removes the heat load from the 36000 ton cold mass, immersed in some 400 m/sup 3/ static pressurised superfluid helium. The LHC also makes use of supercritical helium for nonisothermal cooling of the beam screens which intercept most of the dynamic heat loads at higher temperature. Although not used in normal operation, liquid nitrogen will provide the source of refrigeration for precooling the machine. Refrigeration for the LHC is produced in eight large refrigerators, each with an equivalent capacity of about 18 kW at 4.5 K, completed by 1.8 K refrigeration units making use of several stages of hydrodynamic cold compressor...

  18. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    International Nuclear Information System (INIS)

    Fitterer, Miriam

    2013-01-01

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  19. Design study of the large hadron electron collider and a rapid cycling synchrotron as alternative to the PS booster upgrade at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Fitterer, Miriam

    2013-02-22

    With the Large Hadron Collider (LHC) the exploration of particle physics at center of mass energies at the TeV scale has begun. To extend the discovery potential of the LHC, a major upgrade is foreseen around 2020 of the LHC itself and the LHC injectors - the chain of accelerators preparing the beam for the LHC. One of the injectors - the second one in the chain - is the Proton Synchrotron (PS) Booster. Its performance is currently limited by the space-charge effect, which is the effect of the electromagnetic field of the particle beam on itself. This effect becomes weaker with higher energy, and therefore an energy upgrade of the PS Booster to 2 GeV maximum beam energy is foreseen. As the PS Booster is with its 40 years already an old machine, the construction of a new accelerator, a Rapid Cycling Synchrotron (RCS), to replace the PS Booster has been proposed. In this thesis different options for the beam guidance in the RCS - referred to as lattice and optics - are studied, followed by a more general comparison of different lattices and optics and their performance under consideration of the space-charge effect. To further complement the LHC physics program, also the possibility of deep inelastic lepton-nucleon scattering at the LHC has been suggested, referred to as Large Hadron Electron Collider (LHeC). In this case the proton beam of the LHC collides with the electron beam, which is accelerated in a separate newly built machine. Two options are considered as electron accelerator: a new energy recovery linac - the Linac-Ring option - and the installation of an electron ring in the existing LHC tunnel - the Ring-Ring option. One of the main challenges of the Ring-Ring option is the integration of the electron ring in the current LHC tunnel. A layout, lattice and optics of the electron accelerator is developed in this thesis, which meets the requirements with regard to integration and reaches the beam parameters demanded by the particle physics experiments.

  20. Measurement of the s dependence of jet production at the CERN pp collider

    DEFF Research Database (Denmark)

    Appel, J.A.; Bagnaia, P.; Banner, M.

    1985-01-01

    The production of very large transverse momentum (pT) hadron jets has been measured in the UA2 experiment at the CERN pp Collider for s=630 GeV. The inclusive jet production cross sections exhibit a pT-dependent increase with respect to the s=546 GeV data from previous Collider runs. This increase...

  1. Top quark studies at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  2. Top quark studies at hadron colliders

    International Nuclear Information System (INIS)

    Sinervo, P.K.

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented

  3. Top quark studies at hadron colliders

    International Nuclear Information System (INIS)

    Sinervo, P.K.

    1996-08-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and D null collaborations are reviewed, including the top quark cross section, mass, branching fractions and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented

  4. Excited quark production at hadron colliders

    International Nuclear Information System (INIS)

    Baur, U.; Hinchliffe, I.; Zeppenfeld, D.

    1987-06-01

    Composite models generally predict the existence of excited quark and lepton states. We consider the production and experimental signatures of excited quarks Q* of spin and isospin 1/2 at hadron colliders and estimate the background for those channels which are most promising for Q* identification. Multi-TeV pp-colliders will give access to such particles with masses up to several TeV

  5. Physics possibilities of lepton and hadron colliders

    International Nuclear Information System (INIS)

    Peccei, R.D.

    1985-05-01

    After a brief introduction to lepton and hadron colliders presently being planned, I give some examples of the nice standard physics which is expected to be seen in them. The bulk of the discussion, however, is centered on signals for new physics. Higgs searches at the new colliders are discussed, as well as signatures and prospects for detecting effects of supersymmetry, compositeness and dynamical symmetry breakdown. (orig.)

  6. Direct-photon spectrum and elliptic flow produced from Pb+Pb collisions at √{sN N}=2.76 TeV at the CERN Large Hadron Collider within an integrated hydrokinetic model

    Science.gov (United States)

    Naboka, V. Yu.; Sinyukov, Yu. M.; Zinovjev, G. M.

    2018-05-01

    The photon transverse momentum spectrum and its anisotropy from Pb+Pb collisions at the CERN Large Hadron Collider energy √{sN N}=2.76 TeV are investigated within the integrated hydrokinetic model (iHKM). Photon production is accumulated from the different processes at the various stages of relativistic heavy ion collisions: from the primary hard photons of very early stage of parton collisions to the thermal photons from equilibrated quark-gluon and hadron gas stages. Along the way a hadronic medium evolution is treated in two distinct, in a sense opposite, approaches: chemically equilibrated and chemically frozen system expansion. Studying the centrality dependence of the results obtained allows us to conclude that a relatively strong transverse momentum anisotropy of thermal radiation is suppressed by prompt photon emission which is an isotropic. We find out that this effect is getting stronger as centrality increases because of the simultaneous increase in the relative contribution of prompt photons in the soft part of the spectra. The substantial results obtained in iHKM with nonzero viscosity (η /s =0.08 ) for photon spectra and v2 coefficients are mostly within the error bars of experimental data, but there is some systematic underestimation of both observables for the near central events. We claim that a situation could be significantly improved if an additional photon radiation that accompanies the presence of a deconfined environment is included. Since a matter of a space-time layer where hadronization takes place is actively involved in anisotropic transverse flow, both positive contributions to the spectra and v2 are considerable, albeit such an argument needs further research and elaboration.

  7. The Large Hadron Collider in the LEP tunnel

    International Nuclear Information System (INIS)

    Brianti, G.; Huebner, K.

    1987-01-01

    The status of the studies for the CERN Large Hadron Collider (LHC) is described. This collider will provide proton-proton collisions with 16 TeV centre-of-mass energy and a luminosity exceeding 10 33 cm -2 s -1 per interaction point. It can be installed in the tunnel of the Large Electron-Positron Storage Ring (LEP) above the LEP elements. It will use superconducting magnets of a novel, compact design, having two horizontally separated channels for the two counter-rotating bunched proton beams, which can collide in a maximum of seven interaction points. Collisions between protons of the LHC and electrons of LEP are also possible with a centre-of-mass energy of up to 1.8 TeV and a luminosity of up to 2 x 10 32 cm -2 s -1 . (orig.)

  8. Higgs physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Higgs boson; Large Hadron Collider; electroweak symmetry; spin and CP of the Higgs boson ... I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at ...

  9. Experiments at future hadron colliders

    International Nuclear Information System (INIS)

    Paige, F.E.

    1991-01-01

    This report summarizes signatures and backgrounds for processes in high-energy hadronic collisions, particularly at the SSC. It includes both signatures for new particles -- t quarks, Higgs bosons, new Ζ' bosons, supersymmetric particles, and technicolor particles -- and other experiments which might be done. It is based on the 1990 Snowmass Workshop and on work contained in the Expressions of Interest submitted to the SSC. 46 refs., 19 figs., 1 tab

  10. Unveiling the top secrets with the Large Hadron Collider

    Science.gov (United States)

    Chierici, R.

    2013-12-01

    Top quark physics is one of the pillars of fundamental research in the field of high energy physics. It not only gives access to precision measurements for constraining the Standard Model of particles and interactions but also it represents a privileged domain for new physics searches. This contribution summarizes the main results in top quark physics obtained with the two general-purpose detectors ATLAS and CMS during the first two years of operations of the Large Hadron Collider (LHC) at CERN. It covers the 2010 and 2011 data taking periods, where the LHC ran at a centre-of-mass energy of 7 TeV.

  11. Unveiling the top secrets with the Large Hadron Collider

    International Nuclear Information System (INIS)

    Chierici, R

    2013-01-01

    Top quark physics is one of the pillars of fundamental research in the field of high energy physics. It not only gives access to precision measurements for constraining the Standard Model of particles and interactions but also it represents a privileged domain for new physics searches. This contribution summarizes the main results in top quark physics obtained with the two general-purpose detectors ATLAS and CMS during the first two years of operations of the Large Hadron Collider (LHC) at CERN. It covers the 2010 and 2011 data taking periods, where the LHC ran at a centre-of-mass energy of 7 TeV. (paper)

  12. Status of the Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Evans, Lyndon R.

    2004-01-01

    The Large Hadron Collider (LHC), due to be commissioned in 2007, will provide particle physics with the first laboratory tool to access the energy frontier above 1 TeV. In order to achieve this, protons must be accelerated and stored at 7 TeV, colliding with an unprecedented luminosity of 10 34 cm -2 s -1 The 8.3 Tesla guide field is obtained using conventional NbTi technology cooled to below the lambda point of helium. The machine is now well into its installation phase, with first beam injection foreseen for spring 2007. A brief status report is given and future prospects are discussed. (orig.)

  13. Department of Energy assessment of the Large Hadron Collider

    International Nuclear Information System (INIS)

    1996-06-01

    This report summarizes the conclusions of the committee that assessed the cost estimate for the Large Hadron Collider (LHC). This proton-proton collider will be built at CERN, the European Laboratory for Particle Physics near Geneva, Switzerland. The committee found the accelerator-project cost estimate of 2.3 billion in 1995 Swiss francs, or about $2 billion US, to be adequate and reasonable. The planned project completion date of 2005 also appears achievable, assuming the resources are available when needed. The cost estimate was made using established European accounting procedures. In particular, the cost estimate does not include R and D, prototyping and testing, spare parts, and most of the engineering labor. Also excluded are costs for decommissioning the Large Electron-Positron collider (LEP) that now occupies the tunnel, modifications to the injector system, the experimental areas, preoperations costs, and CERN manpower. All these items are assumed by CERN to be included in the normal annual operations budget rather than the construction budget. Finally, contingency is built into the base estimate, in contrast to Department of Energy (DOE) estimates that explicitly identify contingency. The committee's charge, given by Dr. James F. Decker, Deputy Directory of the DOE Office of Energy Research, was to understand the basis for the LHC cost estimate, identify uncertainties, and judge the overall validity of the estimate, proposed schedule, and related issues. The committee met at CERN April 22--26, 1996. The assessment was based on the October 1995 LHC Conceptual Design Report or ''Yellow Book,'' cost estimates and formal presentations made by the CERN staff, site inspection, detailed discussions with LHC technical experts, and the committee members' considerable experience

  14. 1st Large Hadron Collider Physics Conference

    CERN Document Server

    Juste, A; Martínez, M; Riu, I; Sorin, V

    2013-01-01

    The conference is the result of merging two series of international conferences, "Physics at Large Hadron Collider" (PLHC2012) and "Hadron Collider Physics Symposium" (HCP2012). With a program devoted to topics such as the Standard Model and Beyond, the Higgs Boson, Supersymmetry, Beauty and Heavy Ion Physics, the conference aims at providing a lively forum for discussion between experimenters and theorists of the latest results and of new ideas. LHCP 2013 will be hosted by IFAE (Institut de Fisica d'Altes Energies) in Barcelona (Spain), and will take place from May 13 to 18, 2013. The venue will be the Hotel Catalonia Plaza, Plaza España (Barcelona). More information will be posted soon. For questions, please contact lhcp2013@ifae.es.

  15. The Large Hadron Collider project

    CERN Document Server

    Maiani, Luciano

    1999-01-01

    Knowledge of the fundamental constituents of matter has greatly advanced, over the last decades. The standard theory of fundamental interactions presents us with a theoretically sound picture, which describes with great accuracy known physical phenomena on most diverse energy and distance scales. These range from 10/sup -16/ cm, inside the nucleons, up to large-scale astrophysical bodies, including the early Universe at some nanosecond after the Big-Bang and temperatures of the order of 10/sup 2/ GeV. The picture is not yet completed, however, as we lack the observation of the Higgs boson, predicted in the 100-500 GeV range-a particle associated with the generation of particle masses and with the quantum fluctuations in the primordial Universe. In addition, the standard theory is expected to undergo a change of regime in the 10/sup 3/ GeV region, with the appearance of new families of particles, most likely associated with the onset of a new symmetry (supersymmetry). In 1994, the CERN Council approved the con...

  16. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  17. Top Quark Production at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Phaf, Lukas Kaj [Univ. of Amsterdam (Netherlands)

    2004-03-01

    This thesis describes both theoretical and experimental research into top quark production. The theoretical part contains a calculation of the single-top quark production cross section at hadron colliders, at Next to Leading Order (NLO) accuracy. The experimental part describes a measurement of the top quark pair production cross section in proton-antiproton collisions, at a center of mass energy of 1.96 TeV.

  18. Large Hadron Collider commissioning and first operation.

    Science.gov (United States)

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  19. Really large hadron collider working group summary

    International Nuclear Information System (INIS)

    Dugan, G.; Limon, P.; Syphers, M.

    1996-01-01

    A summary is presented of preliminary studies of three 100 TeV center-of-mass hadron colliders made with magnets of different field strengths, 1.8T, 9.5T and 12.6T. Descriptions of the machines, and some of the major and most challenging subsystems, are presented, along with parameter lists and the major issues for future study

  20. In the loop Large Hadron Collider project - UK engineering firms

    CERN Document Server

    Wilks, N

    2004-01-01

    This paper presents the latest measures being taken to boost the level of UK engineering firms' involvement in research at CERN (Centre for Nuclear Research), including its 27 km circular Large Hadron Collider (LHC) project. Virtually all of the components on this complex project have had to be custom-made, usually in the form of collaboration. It is part of these collaborations that some UK firms have proved they can shine. However, despite the proven capabilities, the financial return continues to be less than the government's funding. Each of the 20 CERN member states provides funds in proportion to its GDP and the UK is the second largest financial contributor. UK firms become price-competitive where a contract calls for a degree of customisation or product development, project management and tight quality control. Development of the Particle Physics Grid, for dissemination and analysis of data from the LHC, continues to provide major supply opportunities for UK manufacturers.

  1. Large Hadron Collider (LHC) phenomenology, operational challenges and theoretical predictions

    CERN Document Server

    Gilles, Abelin R

    2013-01-01

    The Large Hadron Collider (LHC) is the highest-energy particle collider ever constructed and is considered "one of the great engineering milestones of mankind." It was built by the European Organization for Nuclear Research (CERN) from 1998 to 2008, with the aim of allowing physicists to test the predictions of different theories of particle physics and high-energy physics, and particularly prove or disprove the existence of the theorized Higgs boson and of the large family of new particles predicted by supersymmetric theories. In this book, the authors study the phenomenology, operational challenges and theoretical predictions of LHC. Topics discussed include neutral and charged black hole remnants at the LHC; the modified statistics approach for the thermodynamical model of multiparticle production; and astroparticle physics and cosmology in the LHC era.

  2. The Tevatron Hadron Collider: A short history

    International Nuclear Information System (INIS)

    Tollestrup, A.V.

    1994-11-01

    The subject of this presentation was intended to cover the history of hadron colliders. However this broad topic is probably better left to historians. I will cover a much smaller portion of this subject and specialize my subject to the history of the Tevatron. As we will see, the Tevatron project is tightly entwined with the progress in collider technology. It occupies a unique place among accelerators in that it was the first to make use of superconducting magnets and indeed the basic design now forms a template for all machines using this technology. It was spawned in an incredibly productive era when new ideas were being generated almost monthly and it has matured into our highest energy collider complete with two large detectors that provide the major facility in the US for probing high Pt physics for the coming decade

  3. Beam-loss induced pressure rise of Large Hadron Collider collimator materials irradiated with 158  GeV/u In^{49+} ions at the CERN Super Proton Synchrotron

    Directory of Open Access Journals (Sweden)

    E. Mahner

    2004-10-01

    Full Text Available During heavy ion operation, large pressure rises, up to a few orders of magnitude, were observed at CERN, GSI, and BNL. The dynamic pressure rises were triggered by lost beam ions that impacted onto the vacuum chamber walls and desorbed about 10^{4} to 10^{7} molecules per ion. The deterioration of the dynamic vacuum conditions can enhance charge-exchange beam losses and can lead to beam instabilities or even to beam abortion triggered by vacuum interlocks. Consequently, a dedicated measurement of heavy-ion induced molecular desorption in the GeV/u energy range is important for Large Hadron Collider (LHC ion operation. In 2003, a desorption experiment was installed at the Super Proton Synchrotron to measure the beam-loss induced pressure rise of potential LHC collimator materials. Samples of bare graphite, sputter coated (Cu, TiZrV graphite, and 316 LN (low carbon with nitrogen stainless steel were irradiated under grazing angle with 158  GeV/u indium ions. After a description of the new experimental setup, the results of the pressure rise measurements are presented, and the derived desorption yields are compared with data from other experiments.

  4. Large Hadron Collider au CERN: des big bangs en série sous le contrôle de WorldFIP

    CERN Multimedia

    2007-01-01

    Thanks to WorlsFIP, associated with a GPS system, CERN is able to synchronize most of the LHC equipments, to drive the magnetic field of giant experiments, to put back automatically the clock at the hour and date events with a precision better than 10 mu s. (1 page)

  5. Ntuples for NLO Events at Hadron Colliders

    CERN Document Server

    Bern, Z.; Febres Cordero, F.; Höche, S.; Ita, H.; Kosower, D.A.; Maitre, D.

    2014-01-01

    We present an event-file format for the dissemination of next-to-leading-order (NLO) predictions for QCD processes at hadron colliders. The files contain all information required to compute generic jet-based infrared-safe observables at fixed order (without showering or hadronization), and to recompute observables with different factorization and renormalization scales. The files also make it possible to evaluate cross sections and distributions with different parton distribution functions. This in turn makes it possible to estimate uncertainties in NLO predictions of a wide variety of observables without recomputing the short-distance matrix elements. The event files allow a user to choose among a wide range of commonly-used jet algorithms and jet-size parameters. We provide event files for a $W$ or $Z$ boson accompanied by up to four jets, and for pure-jet events with up to four jets. The files are for the Large Hadron Collider with a center of mass energy of 7 or 8 TeV. A C++ library along with a Python in...

  6. Production of light nuclei and anti-nuclei in pp and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Bielčík, J.; Bielčíková, Jana; Brož, M.; Čepila, J.; Contreras, J. G.; Eyyubova, G.; Ferencei, Jozef; Křelina, M.; Křížek, Filip; Kučera, Vít; Kushpil, Svetlana; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Schulc, M.; Špaček, M.; Šumbera, Michal; Vajzer, Michal; Vaňát, Tomáš; Závada, Petr

    2016-01-01

    Roč. 93, č. 2 (2016), s. 024917 ISSN 0556-2813 R&D Projects: GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : heavy ion collisions * ALICE collaboration * deuteron production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 3.820, year: 2016

  7. Collide@CERN is looking for mentors

    CERN Multimedia

    2011-01-01

    The Collide@CERN Artist-in-Residence Programme is currently seeking CERN scientists interested in engaging in thought-provoking and creative collaborations with visiting artists.     In early 2012, a Digital artist will take up a 2-month residency and a Dance and Performance artist a 3-month residency.  Each artist will be allocated a specially selected science inspiration partner to work with. Both the artists and their mentors will give a public lecture in the Globe of Science and Innovation at the beginning and end of the residencies.  One scientist will be selected for each artist. Mentors and artists will be required to share knowledge by:   ·      Meeting once a week throughout the residency ·      Conducting online communications (such as a blog). If you are interested in becoming a mentor, please send the following information by e-m...

  8. The CERN SPS proton–antiproton collider

    CERN Document Server

    Schmidt, Rudiger

    2016-01-01

    One of CERN's most ambitious and successful projects was the search for the intermediate bosons, W and Z [1]. The accelerator part of the project relied on a number of innovations in accelerator physics and technology. The invention of the method of stochastic cooling and the extension by many orders of magnitude beyond the initial proof of principle demonstration allowed the construction of the Antiproton Accumulator. Major modifications to the 26 GeV PS complex and the conversion of the 300 GeV SPS, which had just started up as an accelerator, to a collider were required. The SPS collider had to master the beam–beam effect far beyond limits reached before and had to function in a tight symbiosis with the UA1 and UA2 experiments.

  9. The Large Hadron Collider project: organizational and financial matters (of physics at the terascale)

    NARCIS (Netherlands)

    Engelen, J.

    2012-01-01

    n this paper, I present a view of organizational and financial matters relevant for the successful construction and operation of the experimental set-ups at the Large Hadron Collider of CERN, the European Laboratory for Particle Physics in Geneva. Construction of these experiments was particularly

  10. Large Hadron particle collider may not have its run this November

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (LHC), based at CERN in Geneva, Switzerland, will not run in November this year as scheduled. The LHC was supposed to have a test run this yera, before switching on the scientific search for the Higgs boson in 2008."(1 page)

  11. Smash! exploring the mysteries of the Universe with the Large Hadron Collider

    CERN Document Server

    Latta, Sara

    2017-01-01

    What is the universe made of? At CERN, the European Organization for Nuclear Research, scientists have searched for answers to this question using the largest machine in the world: the Large Hadron Collider. It speeds up tiny particles, then smashes them togetherand the collision gives researchers a look at the building blocks of the universe.

  12. Civil Engineering Optimisation Tool for the Study of CERN's Future Circular Colliders

    OpenAIRE

    Cook, Charlie; Goddard, Brennan; Lebrun, Philippe; Osborne, John; Robert, Youri; Sturzaker, C; Sykes, M; Loo, Y; Brasser, J; Trunk, R

    2015-01-01

    The feasibility of Future Circular Colliders (FCC), possible successors to the Large Hadron Collider (LHC), is currently under investigation at CERN. This paper describes how CERN’s civil engineering team are utilising an interactive tool containing a 3D geological model of the Geneva basin. This tool will be used to investigate the optimal position of the proposed 80km-100km tunnel. The benefits of using digital modelling during the feasibility stage are discussed and some early results of t...

  13. Multipion Bose-Einstein correlations in pp, p-Pb, and Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Czech Academy of Sciences Publication Activity Database

    Adam, J.; Adamová, Dagmar; Benáček, Pavel; Bielčík, J.; Bielčíková, Jana; Brož, M.; Contreras, J. G.; Eyyubova, G.; Ferencei, Jozef; Horák, D.; Kravčáková, A.; Křížek, Filip; Kučera, Vít; Mareš, Jiří A.; Petráček, V.; Pospíšil, Jan; Schulc, M.; Špaček, M.; Šumbera, Michal; Vajzer, Michal; Vaňát, Tomáš; Závada, Petr

    2016-01-01

    Roč. 93, č. 5 (2016), s. 054908 ISSN 0556-2813 R&D Projects: GA MŠk(CZ) LG13031; GA MŠk LG15001 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : ALICE collaboration * heavy ion collisions * Bose-Einstein correlations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders; BF - Elementary Particles and High Energy Physics (FZU-D) Impact factor: 3.820, year: 2016

  14. Heavy-Ion Collimation at the Large Hadron Collider: Simulations and Measurements

    OpenAIRE

    Hermes, Pascal Dominik; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    2017-01-01

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets ca...

  15. Quench testing of HTS sub-elements for 13 kA and 600 A leads designed to the specifications for the CERN Large Hadron Collider project

    CERN Document Server

    Cowey, L; Krischel, D; Bock, J J

    2000-01-01

    Ability to safely withstand and survive self quench conditions is an important consideration in the design and utilisation of HTS current leads. The provision of a non superconducting shunt path allows current to be diverted in the event of a transition to the normal state. This shunt should allow very rapid transfer of current out of the HTS material and be able to safely support the full load current for the time required to detect the fault and reduce the current to zero. However, the shunt should also be designed to minimise the increased heat load which will result from it's addition to the lead. Test of leads based on melt cast BSCCO 2212 utilising a fully integrated silver gold alloy sheath are described. The HTS sub- elements form part of a full 13 kA lead, designed to the specifications of CERN for the LHC project. The sub-elements proved able to fully comply with and exceed the quench performance required by CERN. The HTS module was quenched at the full design current and continued to maintain this ...

  16. Large hadron collider workshop. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Jarlskog, G.; Rein, D.

    1990-01-01

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol.1 of these proceedings contains the papers presented at the plenary sessions, Vol.2 the individual contributions to the physics sessions, and Vol.3 those to the instrumentation sessions. (orig.)

  17. Large hadron collider workshop. Proceedings. Vol. 3

    International Nuclear Information System (INIS)

    Jarlskog, G.; Rein, D.

    1990-01-01

    The aim of the LHC workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentaiton and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  18. Large hadron collider workshop. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Jarlskog, G.; Rein, D.

    1990-01-01

    The aim of the LCH workshop at Aachen was to discuss the 'discovery potential' of a high-luminosity hadron collider (the Large Hadron Collider) and to define the requirements of the detectors. Of central interest was whether a Higgs particle with mass below 1 TeV could be seen using detectors potentially available within a few years from now. Other topics included supersymmetry, heavy quarks, excited gauge bosons, and exotica in proton-proton collisions, as well as physics to be observed in electron-proton and heavy-ion collisions. A large part of the workshop was devoted to the discussion of instrumental and detector concepts, including simulation, signal processing, data acquisition, tracking, calorimetry, lepton identification and radiation hardness. The workshop began with parallel sessions of working groups on physics and instrumentation and continued, in the second half, with plenary talks giving overviews of the LHC project and the SSC, RHIC, and HERA programmes, summaries of the working groups, presentations from industry, and conclusions. Vol. 1 of these proceedings contains the papers presented at the plenary sessions, Vol. 2 the individual contributions to the physics sessions, and Vol. 3 those to the instrumentation sessions. (orig.)

  19. Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in p p and p +Pb collisions with the ATLAS detector at the CERN Large Hadron Collider

    Science.gov (United States)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agatonovic-Jovin, T.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Akerstedt, H.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S. C.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Girolamo, B.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobos, D.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Ernst, M.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores Castillo, L. R.; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gascon Bravo, A.; Gasnikova, K.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonski, J. L.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Gui, B.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Han, S.; Hanagaki, K.; Hanawa, K.; Hance, M.; Handl, D. M.; Haney, B.; Hanke, P.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayakawa, D.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Juste Rozas, A.; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Komar, A. A.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, Changqiao; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maiani, C.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rangel-Smith, C.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Roe, S.; Rogan, C. S.; Røhne, O.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Ruettinger, E. M.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Martinez, V.; Sanchez Pineda, A.; Sandaker, H.; Sandbach, R. L.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sato, K.; Sauvan, E.; Savage, G.; Savard, P.; Savic, N.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Sopczak, A.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, D. M. S.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanaka, S.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Valkar, S.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veeraraghavan, V.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. W.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wotschack, J.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2018-02-01

    A detailed study of multiparticle azimuthal correlations is presented using p p data at √{s }=5.02 and 13 TeV, and p +Pb data at √{sNN}=5.02 TeV, recorded with the ATLAS detector at the CERN Large Hadron Collider. The azimuthal correlations are probed using four-particle cumulants cn{4 } and flow coefficients vn{4 } =(-cn{4 } ) 1 /4 for n =2 and 3, with the goal of extracting long-range multiparticle azimuthal correlation signals and suppressing the short-range correlations. The values of cn{4 } are obtained as a function of the average number of charged particles per event, Nch>">Nch, using the recently proposed two-subevent and three-subevent cumulant methods, and compared with results obtained with the standard cumulant method. The standard method is found to be strongly biased by short-range correlations, which originate mostly from jets with a positive contribution to cn{4 } . The three-subevent method, on the other hand, is found to be least sensitive to short-range correlations. The three-subevent method gives a negative c2{4 } , and therefore a well-defined v2{4 } , nearly independent of Luminosity Tuning at the Large Hadron Collider

    CERN Document Server

    Wittmer, W

    2006-01-01

    By measuring and adjusting the beta-functions at the interaction point (IP the luminosity is being optimized. In LEP (Large Electron Positron Collider) this was done with the two closest doublet magnets. This approach is not applicable for the LHC (Large Hadron Collider) and RHIC (Relativistic Heavy Ion Collider) due to the asymmetric lattice. In addition in the LHC both beams share a common beam pipe through the inner triplet magnets (in these region changes of the magnetic field act on both beams). To control and adjust the beta-functions without perturbation of other optics functions, quadrupole groups situated on both sides further away from the IP have to be used where the two beams are already separated. The quadrupoles are excited in specific linear combinations, forming the so-called "tuning knobs" for the IP beta-functions. For a specific correction one of these knobs is scaled by a common multiplier. The different methods which were used to compute such knobs are discussed: (1) matching in MAD, (2)i...

  1. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    CERN Document Server

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  2. Cooldown and Warmup Studies for the Large Hadron Collider

    CERN Document Server

    Lebrun, P; Tavian, L; Wagner, U

    1998-01-01

    The Large Hadron Collider (LHC), currently under construction at CERN, will make use of superconducting magnets operating in superfluid helium below 2 K. The LHC ring is divided in 8 sectors, each of them cooled by a refrigerator of 18 kW at 4.5 K equivalent cooling power. For the cooldown and warmup of a 3.3 km long LHC sector, the flow available above 80 K per refrigerator is 770 g/s and the cor responding capacity is 600 kW. This paper presents the results of cooldown and warmup simulations, as concerns time delays, temperature difference across magnets, available power and flow-rates, and estimates of energy and liquid nitrogen consumption.

  3. Collide@CERN ProHelvetia Public Lecture

    CERN Multimedia

    CERN. Geneva; Heuer, Rolf; Mr. de Diesbach, Simon; Mr. Dubois, Marc; Ms. Perrenoud, Laura; Mr. Vust, Michel; Mrs. Bello, Monica

    2015-01-01

    You are very warmly invited to the opening presentation of Fragment.In’s residency at CERN. Fragment.In are the winners of Collide@CERN ProHelvetia, a collective formed by Laura Perrenoud, Simon de Diesbach, and Marc Dubois. They will present their artistic work along with their CERN scientific inspiration partner, who will present his/her work on Science. In their proposal, Fragment.In has a unique, original and creative approach to data visualization. We look forward to having them at CERN. Collide@CERN is the three month residency programme providing artists with time and space to reflect, research and renew their artistic practice.

  4. Comedy Collider presents: No cause for conCERN

    CERN Multimedia

    Traczyk, Piotr

    2014-01-01

    Comedy Collider presents: No cause for conCERN was the highly anticipated follow up to LHComedy: CERN After Dark, starring an entirely new ensemble of comedy talent. Time: 13th June 2014, 19:30 for 20:00 Location: Globe of Science and Innovation, CERN, Geneva, Switzerland

  5. QCD and Jets at Hadron Colliders

    CERN Document Server

    Sapeta, Sebastian

    2016-01-01

    We review various aspects of jet physics in the context of hadron colliders. We start by discussing the definitions and properties of jets and recent development in this area. We then consider the question of factorization for processes with jets, in particular for cases in which jets are produced in special configurations, like for example in the region of forward rapidities. We review numerous perturbative methods for calculating predictions for jet processes, including the fixed-order calculations as well as various matching and merging techniques. We also discuss the questions related to non-perturbative effects and the role they play in precision jet studies. We describe the status of calculations for processes with jet vetoes and we also elaborate on production of jets in forward direction. Throughout the article, we present selected comparisons between state-of-the-art theoretical predictions and the data from the LHC.

  6. Signatures of massive sgoldstinos at hadron colliders

    International Nuclear Information System (INIS)

    Perazzi, Elena; Ridolfi, Giovanni; Zwirner, Fabio

    2000-01-01

    In supersymmetric extensions of the Standard Model with a very light gravitino, the effective theory at the weak scale should contain not only the goldstino G-tilde, but also its supersymmetric partners, the sgoldstinos. In the simplest case, the goldstino is a gauge-singlet and its superpartners are two neutral spin-0 particles, S and P. We study possible signals of massive sgoldstinos at hadron colliders, focusing on those that are most relevant for the Tevatron. We show that inclusive production of sgoldstinos, followed by their decay into two photons, can lead to observable signals or to stringent combined bounds on the gravitino and sgoldstino masses. Sgoldstino decays into two gluon jets may provide a useful complementary signature

  7. Helicity antenna showers for hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine; Skands, Peter [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Lifson, Andrew [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); ETH Zuerich, Zurich (Switzerland)

    2017-10-15

    We present a complete set of helicity-dependent 2 → 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2 → 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226. (orig.)

  8. Stop Lepton Associated Production at Hadron Colliders

    CERN Document Server

    Alves, A; Plehn, Tilman

    2003-01-01

    At hadron colliders, the search for R-parity violating supersymmetry can probe scalar masses beyond what is covered by pair production processes. We evaluate the next-to-leading order SUSY-QCD corrections to the associated stop or sbottom production with a lepton through R-parity violating interactions. We show that higher order corrections render the theoretical predictions more stable with respect to variations of the renormalization and factorization scales and that the total cross section is enhanced by a factor up to 70% at the Tevatron and 50% at the LHC. We investigate in detail how the heavy supersymmetric states decouple from the next-to-leading order process, which gives rise to a theory with an additional scalar leptoquark. In this scenario the inclusion of higher order QCD corrections increases the Tevatron reach on leptoquark masses by up to 40 GeV and the LHC reach by up to 200 GeV.

  9. Helicity antenna showers for hadron colliders

    Science.gov (United States)

    Fischer, Nadine; Lifson, Andrew; Skands, Peter

    2017-10-01

    We present a complete set of helicity-dependent 2→ 3 antenna functions for QCD initial- and final-state radiation. The functions are implemented in the Vincia shower Monte Carlo framework and are used to generate showers for hadron-collider processes in which helicities are explicitly sampled (and conserved) at each step of the evolution. Although not capturing the full effects of spin correlations, the explicit helicity sampling does permit a significantly faster evaluation of fixed-order matrix-element corrections. A further speed increase is achieved via the implementation of a new fast library of analytical MHV amplitudes, while matrix elements from Madgraph are used for non-MHV configurations. A few examples of applications to QCD 2→ 2 processes are given, comparing the newly released Vincia 2.200 to Pythia 8.226.

  10. QCD studies at the hadron colliders

    International Nuclear Information System (INIS)

    Flaugher, B.L.

    1990-01-01

    Two hadron collider experiments are actively pursuing QCD jet analyses. They are CDF, with a √s = 1800 GeV, and UA2, with a √s = 630 GeV. Recent results from these collaborations are discussed. The inclusive jet spectrum, dijet mass and angular distribution are compared to QCD predictions and used to set limits on quark substructure. Data from both experiments are compared to the O(α s 3 ) calculations for the inclusive jet cross section. Studies of 3-jet, 4-jet and 5-jet events are described. A limit is set on the cross section for double parton scattering from the UA2 4-jet analysis. The inclusive photon cross section has been measured by both CDF and UA2 and is compared to theoretical predictions. 13 refs., 17 figs., 1 tab

  11. Weak mixing angle measurements at hadron colliders

    CERN Document Server

    Di Simone, Andrea; The ATLAS collaboration

    2015-01-01

    The Talk will cover weak mixing angle measurements at hadron colliders ATLAS and CMS in particular. ATLAS has measured the forward-backward asymmetry for the neutral current Drell Yan process in a wide mass range around the Z resonance region using dielectron and dimuon final states with $\\sqrt{s}$ =7 TeV data. For the dielectron channel, the measurement includes electrons detected in the forward calorimeter which extends the covered phase space. The result is then used to extract a measurement of the effective weak mixing angle. Uncertainties from the limited knowledge on the parton distribution functions in the proton constitute a significant part of the uncertainty and a dedicated study is performed to obtain a PDF set describing W and Z data measured previously by ATLAS. Similar studies from CMS will be reported.

  12. A feedback microprocessor for hadron colliders

    International Nuclear Information System (INIS)

    Herrup, D.A.; Chapman, L.; Franck, A.; Groves, T.; Lublinsky, B.

    1992-12-01

    A feedback microprocessor has been built for the TEVATRON. It has been constructed to be applicable to hadron colliders in general. Its inputs are realtime accelerator measurements, data describing the state of the TEVATRON, and ramp tables. The microprocessor software includes a finite state machine. Each state corresponds to a specific TEVATRON operation and has a state-specific TEVATRON model. Transitions between states are initiated by the global TEVATRON clock. Each state includes a cyclic routine which is called periodically and where all calculations are performed. The output corrections are inserted onto a fast TEVATRON-wide link from which the power supplies will read the realtime corrections. We also store all of the input data and output corrections in a set of buffers which can easily be retrieved for diagnostic analysis. In this paper we will describe this device and its use to control the TEVATRON tunes as well as other possible applications

  13. Physics at the Large Hadron Collider

    CERN Document Server

    Mukhopadhyaya, Biswarup; Raychaudhari, Amitava

    2009-01-01

    In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expert...

  14. The Large Hadron Collider, a personal recollection

    CERN Document Server

    Evans, L

    2014-01-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavor spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing LEP tunnel of 27 km circumference and with a tunnel diameter of only 3.8m has required considerable innovation. The first was the development of an idea first proposed by Bob Palmer at Brookhaven National Laboratory in 1978, where the two rings are integrated into a single magnetic structure. This compact 2-in-1 structure was essential for the LHC due to both the limited space available in the existing Large Electron-Positron collider tunnel and the cost. The second innovation was the bold move to use superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor. In this article, no attempt is made to give a comprehensive review of the machine design. This can be found in the LHC Design Report {[}1], w...

  15. CERN, Geneva

    CERN Multimedia

    2007-01-01

    "The Large Hadron Collider (pages 1-3) is being built at CERN, the European Centre for Nuclear Research near Geneva. CERN offers some extremely exciting opportunities to see "big bang" in action. (1 page)

  16. Prospects for heavy flavor physics at hadron colliders

    International Nuclear Information System (INIS)

    Butler, J.N.

    1997-09-01

    The role of hadron colliders in the observation and study of CP violation in B decays is discussed. We show that hadron collider experiments can play a significant role in the early studies of these phenomena and will play an increasingly dominant role as the effort turns towards difficult to measure decays, especially those of the B s meson, and sensitive searches for rare decays and subtle deviations from Standard Model predictions. We conclude with a discussion of the relative merits of hadron collider detectors with 'forward' vs 'central' rapidity coverage

  17. Sextupole correction magnets for the Large Hadron Collider

    CERN Document Server

    Meinke, R B; Senti, M; Op de Beeck, W J; De Ryck, C; MacKay, W W

    1999-01-01

    About 2500 superconducting sextupole corrector magnets (MCS) are needed for the Large Hadron Collider (LHC) at CERN to compensate persistent current sextupole fields of the main dipoles. The MCS is a cold bore magnet with iron yoke. The coils are made from a NbTi conductor, which is cooled to 1.9 K. In the original CERN design 6 individual sub-coils, made from a monolithic composite conductor, are assembled and spliced together to form the sextupole. The coils are individually wound around precision-machined central islands and stabilized with matching saddle pieces at both ends. The Advanced Magnet Lab, Inc. (AML) has produced an alternative design, which gives improved performance and reliability at reduced manufacturing cost. In the AML design, the magnet consists of three splice-free sub-coils, which are placed with an automated winding process into pockets of prefabricated G-11 support cylinders. Any assembly process of sub-coils with potential misalignment is eliminated. The AML magnet uses a Kapton-wra...

  18. Status of CERN linear collider studies

    International Nuclear Information System (INIS)

    Guignard, G.

    1991-01-01

    A description is given of the topics which have been the subject of studies and developments, and the status of the work on a CERN linear collider (CLIC) is summarized. Progress was made on the test facility, for investigating the critical question of generating the short and intense bunches required for the driving beam. In the drive linac, the wake fields associated with the transfer structure and the consequent stability issue are severe. Therefore, studies and calculations are carried on overmoded pipes, cylindrical with either symmetrical corrugations or combs asymmetrically placed on one side. In the main linac, the question was addressed of minimizing the energy spread by shifting the phase of the accelerating voltage, leading to requirements conflicting with those for beam stability. A prototype of high-gradient accelerating cells has been built and measured. In parallel with the design studies of the final focus system, a model of a small-aperture, high-gradient quadrupole, that could be part of the scheme, has been realized and measured

  19. Recent results from the Large Hadron Collider

    CERN Document Server

    Alcaraz Maestre, J

    2013-01-01

    We present an overview of the physics results obtained by experiments at the Large Hadron Collider (LHC) in 2009–2010, for an integrated luminosity of L ≈ 40 pb$^{−1}$ , collected mostly at a centre-of-mass energy of √ s = 7 TeV. After an introduction to the physics environment at the LHC and the current performance of the accelerator and detectors, we will discuss quantum chro- modynamics and B-physics analyses, W and Z production, the first results in the top sector, and searches for new physics, with particular emphasis on su- persymmetry and Higgs studies. While most of the presented results are in remarkable agreement with Standard Model predictions, the excellent perfor- mance of the LHC machine and experiments, the prompt analysis of all data within just a few months after the end of data taking, and the high quality of the results obtained constitute an encouraging step towards unique measurements and exciting discoveries in the 2011–2012 period and beyond.

  20. Dijet physics with CMS detector at the Large Hadron Collider

    Indian Academy of Sciences (India)

    2012-10-06

    Oct 6, 2012 ... Hadron Collider, at a proton–proton collision energy of. √ ... generator predicts less azimuthal decorrelation than observed in data [8]. ... The dijet mass spectrum predicted by quantum chromodynamics (QCD) falls smoothly.

  1. Computing and data handling requirements for SSC [Superconducting Super Collider] and LHC [Large Hadron Collider] experiments

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs

  2. Flat beams in a 50 TeV hadron collider

    International Nuclear Information System (INIS)

    Peggs, S.; Harrison, M.; Pilat, F.; Syphers, M.

    1997-01-01

    The basic beam dynamics of a next generation 50 x 50 TeV hadron collider based on a high field magnet approach have been outlined over the past several years. Radiation damping not only produces small emittances, but also flat beams, just as in electron machines. Based on open-quotes Snowmass 96close quotes parameters, we investigate the issues associated with flat beams in very high energy hadron colliders

  3. Ryoji Ikeda, Data Artist - Prix Ars Electronica Collide@CERN

    CERN Multimedia

    CERN. Geneva; Koek, Ariane; Heuer, Rolf; Ikeda, Ryoji; Mr. Horst, Hoertner

    2014-01-01

    at the CERN Globe of Science and Innovation, CERN. You are very warmly invited to the opening presentation of Data Artist, Ryoji Ikeda’s residency at CERN. Ryoji Ikeda, one of the world’s leading electronic composers and visual artists, is the new Prix Ars Electronica Collide@CERN award winner. Ryoji Ikeda and his science inspiration partner, Theoretical Physicist, Dr. Tom Melia will talk about their work in arts and science. They are at the beginning of their creative journey together at CERN. A little about Ryoji Ikeda – the new Prix Ars Electronica Collide@CERN artist in residence. Ryoji Ikeda focuses on the essential characteristics of sound itself and that of visuals as light by means of both mathematical precision and mathematical aesthetics. Ikeda has gained a reputation as one of the few international artists working convincingly across both visual ...

  4. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    Science.gov (United States)

    Kotnig, C.; Tavian, L.

    2015-12-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets’ refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  5. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  6. Working group report: Physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    cally viable physics issues at two hadron colliders currently under operation, the p¯p collider ... corrections to different SM processes are very important. ... Keeping all these in mind and the available skills and interests of the ... relation involving the masses of the Standard Model particles as well as the masses of any.

  7. Tolerable systematic errors in Really Large Hadron Collider dipoles

    International Nuclear Information System (INIS)

    Peggs, S.; Dell, F.

    1996-01-01

    Maximum allowable systematic harmonics for arc dipoles in a Really Large Hadron Collider are derived. The possibility of half cell lengths much greater than 100 meters is justified. A convenient analytical model evaluating horizontal tune shifts is developed, and tested against a sample high field collider

  8. Detectors and luminosity for hadron colliders

    International Nuclear Information System (INIS)

    Diebold, R.

    1983-01-01

    Three types of very high energy hadron-hadron coliders are discussed in terms of the trade-off between energy and luminosity. The usable luminosity depends both on the physics under study and the rate capabilities of the detector

  9. Higgs Bosons, Electroweak Symmetry Breaking, and the Physics of the Large Hadron Collider

    CERN Document Server

    Quigg, Chris

    2007-01-01

    The Large Hadron Collider, a 7 + 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  10. Development of superconducting links for the Large Hadron Collider machine

    CERN Document Server

    Ballarino, A

    2014-01-01

    In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB 2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.

  11. Development of superconducting links for the Large Hadron Collider machine

    Science.gov (United States)

    Ballarino, Amalia

    2014-04-01

    In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.

  12. Using Data from the Large Hadron Collider in the Classroom

    Science.gov (United States)

    Smith, Jeremy

    2017-01-01

    Now is an exciting time for physics students, because they have access to technology and experiments all over the world that were unthinkable a generation ago. Therefore, now is also the ideal time to bring these experiments into the classroom, so students can see what cutting edge science looks like, both in terms of the underlying physics and in terms of the technology used to gather data. With the continued running of the Large Hadron Collider at CERN, and the lab's continued dedication to providing open, worldwide access to their data, there is a unique opportunity for students to use these data in a manner very similar to how it's done in the particle physics community. In this session, we will explore ways for students to analyze real data from the CMS experiment at the LHC, plot these data to discover patterns and signals, and use these plots to determine quantities such as the invariant masses of the W, Z and Higgs bosons. Furthermore, we will show how such activities already fit well into standard introductory physics classes, and can in fact enhance already-existing lessons in the topics of momentum, kinematics, energy and electromagnetism.

  13. Gilles Jobin Collide@CERN - Strangels Intervention

    CERN Multimedia

    Gregory Batardon

    2012-01-01

    STRANGELS Cie Gilles Jobin. Site specific choreographic intervention inside the CERN's library. Three strangels on a migration to another dimension rest at the CERN's library. Strangels need food for thoughts. Do not pay attention to them they are only strangels. Dancers : Ruth Childs, Susana Panadès Diaz, Gilles Jobin

  14. The Very Large Hadron Collider: The farthest energy frontier

    International Nuclear Information System (INIS)

    Barletta, William A.

    2001-01-01

    The Very Large Hadron Collider (or Eloisatron) represents what may well be the final step on the energy frontier of accelerator-based high energy physics. While an extremely high luminosity proton collider at 100-200 TeV center of mass energy can probably be built in one step with LHC technology, that machine would cost more than what is presently politically acceptable. This talk summarizes the strategies of collider design including staged deployment, comparison with electron-positron colliders, opportunities for major innovation, and the technical challenges of reducing costs to manageable proportions. It also presents the priorities for relevant R and D for the next few years

  15. From the CERN web: Collide@CERN, Fermilab neutrinos and more

    CERN Multimedia

    2015-01-01

    This new section highlights articles, blog posts and press releases published in the CERN web environment over the past weeks. This way, you won’t miss a thing...   Ruth Jarman and Joe Gerhardt. (Photo: Matthias H. Risse). Collide@CERN Ars Electronica Award goes to “Semiconductor” 10 August – Collide@CERN Ruth Jarman and Joe Gerhardt, two English artists collaborating under the name Semiconductor, are this year’s recipients of the Collide@CERN Ars Electronica Award. In the coming months, they will begin a two-month residency at CERN.  Continue to read…     Illustration: Fermilab/Sandbox Studio.   Fermilab experiment sees neutrinos change over 500 miles 7 August - Fermilab press release Scientists on the NOvA experiment saw their first evidence of oscillating neutrinos, confirming that the extraordinary detector built for the project not only functions as planned but is also making great p...

  16. Academic Training Lecture: Higgs Boson Searches at Hadron Colliders

    CERN Multimedia

    HR Department

    2010-01-01

    Regular Programme 21, 22, 23 & 24 June 2010 from 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Higgs Boson Searches at Hadron Colliders by Dr. Karl Jakobs (University of Freiburg) In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and ...

  17. Il Collisore LHC (Large Hadron Collider)

    CERN Multimedia

    Brianti, Giorgio

    2004-01-01

    In 2007, in a new Collider in the tunnel of 27km, collisions will be made between very powerful beams of protons and ions. The energies will be very high to try to catch the most tiny particle (1 page)

  18. Production of electroweak bosons at hadron colliders: theoretical aspects

    CERN Document Server

    Mangano, Michelangelo L.

    2016-01-01

    Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  19. The feasibility of experiments at high luminosity at the large hadron collider

    International Nuclear Information System (INIS)

    Mulvey, J.H.

    1988-01-01

    The studies reported in this volume extend some of those made during Workshop on Physics at Future Accelerators held at La Thuile and CERN in January 1987 (CERN 87-07, Vol. 1 and 2). They consider the feasibility of performing experiments with a 16 TeV proton-proton collider, the Large Hadron Collider (LHC), at luminosities as high as 5.10 34 cm -2 s -1 . To illustrate the difficulties and the extent to which the potential for discovery at the LHC might be improved by such a step, three specific topics were chosen: searches for a) a massive Higgs boson, b) SUSY gluinos and squarks, and c) a new Z'. Following the Summary Report of the High Luminosity Study Group are papers discussing a possible detector system, radiation levels, and the analyses leading to estimated mass-limits for the searches. (orig.)

  20. First Considerations on Beam Optics and Lattice Design for the Future Hadron-Hadron Collider FCC

    CERN Document Server

    Alemany Fernandez, R

    2014-01-01

    The present document explains the steps carried out in order to make the first design of the Future Hadron-Hadron Collider (FCC-hh) following the base line parameters that can be found in [1]. Two lattice layouts are presented, a ring collider with 12 arcs and 12 straight sections, four of them designed as interaction points, and a racetrack like collider with two arcs and two straight sections, each of them equipped with two interaction points. The lattice design presented in the paper is modular allowing the same modules be used for both layouts. The present document addresses as well the beta star reach at the interaction points.

  1. TOP AND HIGGS PHYSICS AT THE HADRON COLLIDERS

    Energy Technology Data Exchange (ETDEWEB)

    Jabeen, Shabnam

    2013-10-20

    This review summarizes the recent results for top quark and Higgs boson measurements from experiments at Tevatron, a proton–antiproton collider at a center-of-mass energy of √ s =1 . 96 TeV, and the Large Hadron Collider, a proton–proton collider at a center- of-mass energy of √ s = 7 TeV. These results include the discovery of a Higgs-like boson and measurement of its various properties, and measurements in the top quark sector, e.g. top quark mass, spin, charge asymmetry and production of single top quark.

  2. Revealing Partons in Hadrons: From the ISR to the SPS Collider

    CERN Document Server

    Darriulat, Pierre

    2015-01-01

    Our understanding of the structure of hadrons has developed during the seventies and early eighties from a few vague ideas to a precise theory, Quantum Chromodynamics, that describes hadrons as made of elementary partons (quarks and gluons). Deep inelastic scattering of electrons and neutrinos on nucleons and electron–positron collisions have played a major role in this development. Less well known is the role played by hadron collisions in revealing the parton structure, studying the dynamic of interactions between partons and offering an exclusive laboratory for the direct study of gluon interactions. The present article recalls the decisive contributions made by the CERN Intersecting Storage Rings and, later, the proton–antiproton SPS Collider to this chapter of physics.

  3. Search for Exotic Processes at the CERN pp Collider

    DEFF Research Database (Denmark)

    Ansari, R.; Bagnaia, P.; Banner, M.;......Kofoed-Hansen

    1987-01-01

    The total UA2 data sample at the CERN pp̄ Collider corresponds to an integrated luminosity of 910 nb−1. Limits on various hypothetical processes, such as production of excited electrons, additional charged or neutral vector bosons, or supersymmetric particles, are presented from the analysis...

  4. Phenomenology at the CERN pp-bar collider

    International Nuclear Information System (INIS)

    Phillips, R.J.N.

    1986-05-01

    The paper concerns some comparisons of theory with high-psub(T) data from the CERN pp-bar collider, beginning with some background about the machine and detectors. Later sections describe weak boson searches, high psub(T) jets, heavy quark phenomena and possible E 6 exotica from superstrings. (author)

  5. Search for exotic processes at the CERN panti p collider

    International Nuclear Information System (INIS)

    Ansari, R.; Chollet, J.C.; Lotto, B. de; Fayard, L.; Froidevaux, D.; Gaillard, J.M.; Iconomidou-Fayard, L.; Merkel, B.; Moniez, M.; Parrour, G.; Repellin, J.P.; Sauvage, G.; Banner, M.; Lancon, E.; Loucatos, S.; Mansoulie, B.; Polverel, M.; Roussarie, A.; Ruhlmann, V.; Teiger, J.; Zaccone, H.; Battiston, R.; Mantovani, G.C.; Pepe, M.; Conta, C.; Ferrari, R.; Fraternali, M.; Goggi, V.G.; Livan, M.; Pastore, F.; Vercesi, V.; Dines-Hansen, J.; Hansen, P.; Kofoed-Hansen, O.; Madsen, B.; Mollerud, R.; Tsang, W.Y.

    1987-01-01

    The total UA2 data sample at the CERN panti p Collider corresponds to an integrated luminosity of 910 nb -1 . Limits on various hypothetical processes, such as production of excited electrons, additional charged or neutral vector bosons, or supersymmetric particles, are presented from the analysis of this sample. (orig.)

  6. Promise of Higgs fails to save CERN collider

    CERN Multimedia

    Abbott, A

    2000-01-01

    After eleven years and a three-month reprieve, the death knell for LEP has finally been sounded. Luciano Maiani, director-general of CERN, rejected requests to keep the collider running for another year, ruling it shoud be dismantled in the new year (1/2 page).

  7. Third intervention of Gilles Jobin and Collide@CERN

    CERN Document Server

    2012-01-01

    Everything you wanted to know about contemporary dance but were afraid to ask. - 4 September 2012 at 4 p.m. in the Council Chamber -   A subjective and personal presentation of the recent history of contemporary dance by Gilles Jobin, Collide@CERN choreographer in residence.

  8. submitter Projects for ultra-high-energy circular colliders at CERN

    CERN Document Server

    Bogomyagkov, A V; Levichev, E B; Piminov, P A; Sinyatkin, S V; Shatilov, D N; Benedict, M; Oide, K; Zimmermann, F

    2016-01-01

    Within the Future Circular Collider (FCC) design study launched at CERN in 2014, it is envisaged to construct hadron (FCC-hh) and lepton (FCC-ee) ultra-high-energy machines aimed to replace the LHC upon the conclusion of its research program. The Budker Institute of Nuclear Physics is actively involved in the development of the FCC-ee electron–positron collider. The Crab Waist (CR) scheme of the collision region that has been proposed by INP and will be implemented at FCC-ee is expected to provide high luminosity over a broad energy range. The status and development of the FCC project are described, and its parameters and limitations are discussed for the lepton collider in particular.

  9. Model independent spin determination at hadron colliders

    International Nuclear Information System (INIS)

    Edelhaeuser, Lisa

    2012-01-01

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s ff of the adjacent particles. In this thesis we

  10. Model independent spin determination at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Edelhaeuser, Lisa

    2012-04-25

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s{sub ff} of the adjacent particles. In this thesis

  11. Model independent spin determination at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Edelhaeuser, Lisa

    2012-04-25

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s{sub ff} of the adjacent particles. In this thesis

  12. Parton Distributions at a 100 TeV Hadron Collider

    NARCIS (Netherlands)

    Rojo, Juan

    2016-01-01

    The determination of the parton distribution functions (PDFs) of the proton will be an essential input for the physics program of a future 100 TeV hadron collider. The unprecedented center-of-mass energy will require knowledge of PDFs in currently unexplored kinematical regions such as the ultra

  13. Search for invisibly decaying Higgs boson at Large Hadron Collider

    Indian Academy of Sciences (India)

    In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting possibility. The search strategy for an invisible Higgs boson at the Large Hadron Collider (LHC), using weak boson fusion process, has been studied in detail, by taking into account all possible ...

  14. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  15. Russian plant grows monocrystals for CERN collider

    CERN Multimedia

    2003-01-01

    "..Experts of an enterprise in Murmansk Region has started to make so-called monocrystals. They are needed for making of a huge device the construction of which has started in Switzerland. Thanks to this unique equipment scientists of the European Organization for Nuclear Research (CERN) will be able to model the creation of the universe for the first time ever" (1/2 page).

  16. Collide@CERN: Horizons Irrésolus

    CERN Multimedia

    2016-01-01

    Sound Installation by Collide@CERN Geneva artists Rudy Decelière and Vincent Hänni in collaboration with physicists Diego Blas and Robert Kieffer, for the Electron Festival 25-27th March, 2016 (see here).   Horizons irrésolus is a sound installation that follows on the artistic residency Collide@CERN 2014.    Registration is absolutely required. Each guest will have to have registered using their own name. Guests without having registered will not be able to come into CERN. Free entrance: Book here  A shuttle will be available every 15 minutes from 6 p.m. until 9 p.m. from CERN Reception (in front of CERN Globe) to the sound art installation. Access from Geneva to CERN Reception by tram 18, end of the line. With the support from The Republic and Canton of Geneva and The City of Geneva. Find out more on the artists and their Geneva 2...

  17. Hadron Collider Physics with Real Time Trajectory Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Annovi, Alberto [Univ. of Pisa (Italy)

    2005-01-01

    During last century experiments with accelerators have been extensively used to improve our understanding of matter. They are now the most common tool used to search for new phenomena in high energy physics. In the process of probing smaller distances and searching for new particles the center of mass energy has been steadily increased. The need for higher center of mass energy made hadron colliders the natural tool for discovery physics. Hadron colliders have a major drawback with respect to electron-positron colliders. As shown in fig. 1 the total cross section is several orders of magnitude larger than the cross section of interesting processes such as top or Higgs production. This means that, in order to observe interesting processes, it’s necessary to have collisions at very high rates and it becomes necessary to reject on-line most of the “non-interesting” events. In this thesis I have described the wide range of SVT applications within CDF.

  18. The CERN linear collider test facility (CTF)

    International Nuclear Information System (INIS)

    Baconnier, Y.; Battisti, S.; Bossart, R.; Delahaye, J.P.; Geissler, K.K.; Godot, J.C.; Huebner, K.; Madsen, J.H.B.; Potier, J.P.; Riche, A.J.; Sladen, J.; Suberlucq, G.; Wilson, I.; Wuensch, W.

    1992-01-01

    The CTF (Collider Test Facility) was brought into service last year. The 3 GHz gun produced a beam of 3 MeV/c which was accelerated to 40 MeV/c. This beam, passing a prototype CLIC (linear collider) structure, generated a sizeable amount of 30 GHz power. This paper describes the results and experience with the gun driven by a 8 ns long laser pulse and its CsI photo cathode, the beam behaviour, the beam diagnostics in particular with the bunch measurements by Cerenkov or transition radiation light and streak camera, the photo cathode research, and the beam dynamics studies on space charge effects. (Author)4 figs., tab., 6 refs

  19. Jet shapes in hadron and electron colliders

    International Nuclear Information System (INIS)

    Wainer, N.

    1993-05-01

    High energy jets are observed both in hadronic machines like the Tevatron and electron machines like LEP. These jets have an extended structure in phase space which can be measured. This distribution is usually called the jet shape. There is an intrinsic relation between jet variables, like energy and direction, the jet algorithm used, and the jet shape. Jet shape differences can be used to separate quark and gluon jets

  20. Large Hadron Collider The Discovery Machine

    CERN Multimedia

    2008-01-01

    The mammoth machine, after a nine-year construction period, is scheduled (touch wood) to begin producing its beams of particles later this year. The commissioning process is planned to proceed from one beam to two beams to colliding beams; from lower energies to the terascale; from weaker test intensities to stronger ones suitable for producing data at useful rates but more difficult to control.

  1. 25th anniversary of the Large Hadron Collider (LHC) experimental programme

    CERN Multimedia

    AUTHOR|(CDS)2094367

    2017-01-01

    On Friday 15 December 2017, CERN celebrated the 25th anniversary of the Large Hadron Collider (LHC) experimental programme. The occasion was marked with a special scientific symposium looking at the LHC’s history, the physics landscape into which the LHC experiments were born, and the challenging path that led to the very successful LHC programme we know today. The anniversary was linked to a meeting that took place in 1992, in Evian, entitled "Towards the LHC Experimental Programme", marking a crucial milestone in the design and development of the LHC experiments.

  2. Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation

    CERN Document Server

    AUTHOR|(CDS)2238544; Podzorny, Tomasz; Uythoven, Jan

    2018-01-01

    In this work, we present a concatenated repetition-polar coding scheme that is aimed at applications requiring highly unbalanced unequal bit-error protection, such as the Beam Interlock System of the Large Hadron Collider at CERN. Even though this concatenation scheme is simple, it reveals significant challenges that may be encountered when designing a concatenated scheme that uses a polar code as an inner code, such as error correlation and unusual decision log-likelihood ratio distributions. We explain and analyze these challenges and we propose two ways to overcome them.

  3. Operational experience with the CERN hadron linacs

    International Nuclear Information System (INIS)

    Charmot, H.; Dutriat, C.; Hill, C.E.; Langbein, K.; Lombardi, A.M.; O'Neil, M.; Tanke, E.; Vretenar, M.

    1996-01-01

    The present CERN proton linac (Linac2) was commissioned in 1978 and since that date has been the primary source of protons to the CERN accelerator complex. During the past 18 years, the machine has had a very good reliability record in spite of the demands made upon it. Modifications have been made with the view of maintaining this reliability with reduced resources and new requirements from the users. Further demands will be made in the future for LHC operation. In 1994, a new linac for heavy ion production was put into service replacing the original CERN proton linac. As this machine was built within an international collaboration, operation had to take into account the novelty of the techniques used and the variety of equipment supplied by outside collaborators. Even so, the new machine has also had very good reliability. (author)

  4. Physics Opportunities at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Roeck, Albert de

    2006-01-01

    In about two years time the LHC is scheduled to deliver its first pp collisions at a centre of mass energy of 14 TeV. The LHC is expected to open up the discovery of new physics at the TeV scale, and give the final answer on the Standard Model Higgs. The LHC will however also be a tool for precision physics. Furthermore LHC is also a pA and AA collider. This report summarizes some of the physics opportunities of the LHC

  5. The Large Hadron Collider - Expectations and Reality

    International Nuclear Information System (INIS)

    Litov, Leandar

    2010-01-01

    The Large Hadron Colider (LHC) is the biggest particle accelerator in the world designed to accelerate protons and heavy ions to extremely high energies. The four detector complexes installed around the beam crossing points, are expected to shed light on some of the more fundamental questions about our Universe ever asked--what are the fundamental constituents of the matter, what are the forces controlling their behavior and what is the structure of the space-time. In November, the LHC will be restarted and the detector complexes are expected to commence taking the first collision data. The physical motivation for the LHC experimental program and some open questions of the Standard Model of strong and electroweak interactions (SM) are discussed. Special attention is paid to observation of signatures for physics beyond the SM and the discovery potential of the LHC experiments is commented. One of the two general-purpose detector complexes (CMS, the Compact Muon Solenoid) is described briefly.

  6. Monotop phenomenology at the Large Hadron Collider

    CERN Document Server

    Agram, Jean-Laurent; Buttignol, Michael; Conte, Eric; Fuks, Benjamin

    2014-01-01

    We investigate new physics scenarios where systems comprised of a single top quark accompanied by missing transverse energy, dubbed monotops, can be produced at the LHC. Following a simplified model approach, we describe all possible monotop production modes via an effective theory and estimate the sensitivity of the LHC, assuming 20 fb$^{-1}$ of collisions at a center-of-mass energy of 8 TeV, to the observation of a monotop state. Considering both leptonic and hadronic top quark decays, we show that large fractions of the parameter space are reachable and that new physics particles with masses ranging up to 1.5 TeV can leave hints within the 2012 LHC dataset, assuming moderate new physics coupling strengths.

  7. Tracking study of hadron collider boosters

    Energy Technology Data Exchange (ETDEWEB)

    Machida, S.; Bourianoff, G.; Huang, Y.; Mahale, N.

    1992-07-01

    A simulation code SIMPSONS (previously called 6D-TEASE T) of single- and multi-particle tracking has been developed for proton synchrotrons. The 6D phase space coordinates are calculated each time step including acceleration with an arbitrary ramping curve by integration of the rf phase. Space-charge effects are modelled by means of the Particle In Cell (PIC) method. We observed the transverse emittance growth around the injection energy of the Low Energy Booster (LEB) of the Superconducting Super Collider (SSC) with and without second harmonic rf cavities which reduce peak line density. We also employed the code to see the possible transverse emittance deterioration around the transition energy in the Medium Energy Booster (MEB) and to estimate the emittance dilution due to an injection error of the MEB.

  8. QCD threshold corrections for gluino pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Langenfeld, Ulrich [Wuerzburg Univ. (Germany); Moch, Sven-Olaf; Pfoh, Torsten [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-11-15

    We present the complete threshold enhanced predictions in QCD for the total cross section of gluino pair production at hadron colliders at next-to-next-to-leading order. Thanks to the computation of the required one-loop hard matching coefficients our results are accurate to the next-to-next-to-leading logarithm. In a brief phenomenological study we provide predictions for the total hadronic cross sections at the LHC and we discuss the uncertainties arising from scale variations and the parton distribution functions.

  9. A search for technicolor at the large hadron collider

    Science.gov (United States)

    Love, Jeremy R.

    The Standard Model of particle physics provides an accurate description of all experimental data to date. The only unobserved piece of the Standard Model is the Higgs boson, a consequence of the spontaneous breaking of electroweak symmetry by the Higgs mechanism. An alternative to the Higgs mechanism is proposed by Technicolor theories which break electroweak symmetry dynamically through a new force. Technicolor predicts many new particles, called Technihadrons, that could be observed by experiments at hadron colliders. This thesis presents a search for two of the lightest Technihadrons, the rhoT and oT. The Low-Scale Technicolor model predicts the phenomenology of these new states. The rhoT and oT are produced through qq annihilation and couple to Standard Model fermions through the Drell-Yan process, which can result in the dimuon final state. The rhoT and oT preferentially decay to the piT and a Standard Model gauge boson if kinematically allowed. Changing the mass of the piT relative to that of the rhoT and o T affects the cross section times branching fraction to dimuons. The rhoT and oT are expected to have masses below about 1 TeV. The Large Hadron Collider (LHC) at CERN outside of Geneva, Switzerland, produces proton-proton collisions with a center of mass energy of 7 TeV. A general purpose high energy physics detector ATLAS has been used in this analysis to search for Technihadrons decaying to two muons. We use the ATLAS detector to reconstruct the tracks of muons with high transverse momentum coming from these proton-proton collisions. The dimuon invariant mass spectrum is analyzed above 130 GeV to test the consistency of the observed data with the Standard Model prediction. We observe excellent agreement between our data and the background only hypothesis, and proceed to set limits on the cross section times branching ratio of the rhoT and oT as a function of their mass using the Low-Scale Technicolor model. We combine the dielectron and dimuon channels

  10. Supersymmetric Higgs pair discovery prospects at hadron colliders

    CERN Document Server

    Belyaev, A; Éboli, Oscar J P; Mizukoshi, J K; Novaes, S F

    2000-01-01

    We study the potential of hadron colliders in the search for the pair production of neutral Higgs bosons in the framework of the Minimal Supersymmetric Standard Model. Using analytical expressions for the relevant amplitudes, we perform a detailed signal and background analysis, working out efficient kinematical cuts for the extraction of the signal. The important role of squark loop contributions to the signal is emphasised. If the signal is sufficiently enhanced by these contributions, it could even be observable at the next run of the upgraded Tevatron collider in the near future. At the LHC the pair production of light and heavy Higgs bosons might be detectable simultaneously.

  11. Higgs Boson Searches at Hadron Colliders (1/4)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  12. Electron Lenses for the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermilab; Valishev, Alexander [Fermilab; Bruce, Roderik [CERN; Redaelli, Stefano [CERN; Rossi, Adriana [CERN; Salvachua, Belen [CERN

    2014-07-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.

  13. Electron lenses for the large hadron collider

    CERN Document Server

    Stancari†, G; Bruce, R; Redaelli, S; Rossi, A; Salvachua Ferrando, B

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beamswhose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-bybunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beamcompensation, and for the demonstration of halo scrapingwith hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. A conceptual design was recently completed, and the project is moving towards a technical design in 2014–2015 for construction in 2015–2017, if needed, after resuming LHC operations and re-assessing collimation needs and requirements at 6.5 TeV. Because of the...

  14. The Initial Stages of Colliding Nuclei and Hadrons

    International Nuclear Information System (INIS)

    Tribedy, Prithwish

    2017-01-01

    The final day of the Hot Quarks 2016 conference was focused on the discussions of the initial stages of colliding nuclei and hadrons. In this conference proceedings we give a brief overview of a few selective topics discussed at the conference that include latest developments in the theoretical description of the initial state towards understanding a number of recent experimental results from RHIC and LHC. (paper)

  15. Next to leading order three jet production at hadron colliders

    International Nuclear Information System (INIS)

    Kilgore, W.

    1997-01-01

    Results from a next-to-leading order event generator of purely gluonic jet production are presented. This calculation is the first step in the construction of a full next-to-leading order calculation of three jet production at hadron colliders. Several jet algorithms commonly used in experiments are implemented and their numerical stability is investigated. A numerical instability is found in the iterative cone algorithm which makes it inappropriate for use in fixed order calculations beyond leading order. (author)

  16. Higgs-photon associated production at hadron colliders

    International Nuclear Information System (INIS)

    Abbasabadi, A.; Repko, W.W.

    1997-01-01

    The authors present cross sections for the reactions p anti p → Hγ and pp → Hγ arising from the subprocess q anti q → Hγ. The calculation includes the complete one-loop contribution from all light quarks and is the main source of Higgs-photon associated production in hadron colliders. At Tevatron energies, the cross section is typically 0.1 fb or less, while at LHC energies it can exceed 1.0fb

  17. Theory Overview of Electroweak Physics at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, John M. [Fermilab

    2016-09-03

    This contribution summarizes some of the important theoretical progress that has been made in the arena of electroweak physics at hadron colliders. The focus is on developments that have sharpened theoretical predictions for final states produced through electroweak processes. Special attention is paid to new results that have been presented in the last year, since LHCP2015, as well as on key issues for future measurements at the LHC.

  18. CERN accelerator school: Antiprotons for colliding beam facilities

    International Nuclear Information System (INIS)

    Bryant, P.; Newman, S.

    1984-01-01

    This is a specialized course which addresses a wide spectrum of theoretical and technological problems confronting the designer of an antiproton facility for high-energy-physics research. A broad and profound basis is provided by the lecturers' substantial experience gained over many years with CERN's unique equipment. Topics include beam optics, special lattices for antiproton accumulation and storage rings, antiproton production, stochastic cooling, acceleration and storage, r.f. noise, r.f. beam manipulations, beam-beam interaction, beam stability due to ion accumulation, and diagnostics. The SPS (Super Proton Synchrotron) panti p collider, LEAR (the Low Energy Antiproton Ring at CERN), antiprotons in the ISR (Intersecting Storage Rings), the new antiproton collector (ACOL) and gas jet targets are also discussed. A table is included listing the parameters of all CERN's accelerators and storage rings. See hints under the relevant topics. (orig./HSI)

  19. Manufacturing and Installation of the Compound Cryogenic Distribution Line for the Large Hadron Collider

    CERN Document Server

    Riddone,, G; Bouillot, A; Brodzinski, K; Dupont, M; Fathallah, M; Fournel, JL; Gitton, E; Junker, S; Moussavi, H; Parente, C; Riddone, G

    2007-01-01

    The Large Hadron Collider (LHC) [1] currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. A compound cryogenic distribution line (QRL) will feed with helium at different temperatures and pressures the local elementary cooling loops in the cryomagnet strings. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. Following a competitive tendering, CERN adjudicated in 2001 the contract for the series line to Air Liquide (France). This paper recalls the main features of the technical specification and shows the project status. The basic choices and achievements for the industrialization phase of the series production are also presented, as well as the installation issues and status.

  20. Radioactivation of silicon tracker modules in high-luminosity hadron collider radiation environments

    CERN Document Server

    Dawson, I; Buttar, C; Cindro, V; Mandic, I

    2003-01-01

    One of the consequences of operating detector systems in harsh radiation environments will be radioactivation of the components. This will certainly be true in experiments such as ATLAS and CMS, which are currently being built to exploit the physics potential at CERN's Large Hadron Collider. If the levels of radioactivity and corresponding dose rates are significant, then there will be implications for any access or maintenance operations. This paper presents predictions for the radioactivation of ATLAS's Semi- Conductor Tracker (SCT) barrel system, based on both calculations and measurements. It is shown that both neutron capture and high-energy hadron reactions must be taken into account. The predictions also show that the SCT barrel-module should not pose any serious radiological problems after operation in high radiation environments.

  1. Heavy-Ion Collimation at the Large Hadron Collider Simulations and Measurements

    CERN Document Server

    AUTHOR|(CDS)2083002; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with t...

  2. Hunting electroweakinos at future hadron colliders and direct detection experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cortona, Giovanni Grilli di [SISSA - International School for Advanced Studies,Via Bonomea 265, I-34136 Trieste (Italy); INFN - Sezione di Trieste,via Valerio 2, I-34127 Trieste (Italy)

    2015-05-07

    We analyse the mass reach for electroweakinos at future hadron colliders and their interplay with direct detection experiments. Motivated by the LHC data, we focus on split supersymmetry models with different electroweakino spectra. We find for example that a 100 TeV collider may explore Winos up to ∼7 TeV in low scale gauge mediation models or thermal Wino dark matter around 3 TeV in models of anomaly mediation with long-lived Winos. We show moreover how collider searches and direct detection experiments have the potential to cover large part of the parameter space even in scenarios where the lightest neutralino does not contribute to the whole dark matter relic density.

  3. Online track reconstruction at hadron colliders

    International Nuclear Information System (INIS)

    Amerio, Silvia; Bettini, Marco; Nicoletto, Marino; Crescioli, Francesco; Bucciantonio, Martina; DELL'ORSO, Mauro; Piendibene, Marco; VOLPI, Guido; Annovi, Alberto; Catastini, Pierluigi; Giannetti, Paola; Lucchesi, Donatella

    2010-01-01

    Real time event reconstruction plays a fundamental role in High Energy Physics experiments. Reducing the rate of data to be saved on tape from millions to hundreds per second is critical. In order to increase the purity of the collected samples, rate reduction has to be coupled with the capability to simultaneously perform a first selection of the most interesting events. A fast and efficient online track reconstruction is important to effectively trigger on leptons and/or displaced tracks from b-quark decays. This talk will be an overview of online tracking techniques in different HEP environments: we will show how H1 experiment at HERA faced the challenges of online track reconstruction implementing pattern matching and track linking algorithms on CAMs and FPGAs in the Fast Track Processor (FTT). The pattern recognition technique is also at the basis of the Silicon Vertex Trigger (SVT) at the CDF experiment at Tevatron: coupled to a very fast fitting phase, SVT allows to trigger on displaced tracks, thus greatly increasing the efficiency for the hadronic B decay modes. A recent upgrade of the SVT track fitter, the Giga-fitter, can perform more than 1 fit/ns and further improves the CDF online trigger capabilities at high luminosity. At SLHC, where luminosities will be 2 orders of magnitude greater than Tevatron, online tracking will be much more challenging: we will describe CMS future plans for a Level-1 track trigger and the Fast Tracker (FTK) processor at the ATLAS experiment, based on the Giga-fitter architecture and designed to provide high quality tracks reconstructed over the entire detector in time for a Level-2 trigger decision.luminosity. At SLHC, where luminosities will be 2 orders of magnitude greater than Tevatron, online tracking will be much more challenging: we will describe CMS future plans for a Level-1 track trigger and the Fast Tracker (FTK) processor at the Atlas experiment, based on the Giga-fitter architecture and designed to provide high

  4. "Towards a Future Linear Collider" and "The Linear Collider Studies at CERN"

    CERN Document Server

    CERN. Geneva

    2010-01-01

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  5. Physics and Analysis at a Hadron Collider - An Introduction (1/3)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    This is the first lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This first lecture provides a brief introduction to hadron collider physics and collider detector experiments as well as offers some analysis guidelines. The lectures are aimed at graduate students.

  6. CERN recognizes LHC suppliers with Golden Hadron awards

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The recipients of CERN's first 'Golden Hadron' awards for outstanding supplier performance are the Russian institute BINP, the Belgian firm Cockerill-Sambre and the US company Wah-Chang. LHC project leader Lyn Evans (centre) with Santo Comel of Cockerill-Sambre (left) and Lynn Davis of Wah-Chang. The third recipient, Alexander Skrinsky of the Budker Institute, was unable to attend the ceremony and will collect the Institute's award in September.

  7. Transverse Characteristics of Hadron Production in Elementary and Nuclear Collisions at the CERN SPS Energies

    CERN Document Server

    AUTHOR|(CDS)2076476; Bialkowska, H

    2004-01-01

    A comprehensive study of transverse phenomena at CERN-SPS energies has been performed using data collected by the NA49 experiment. Results on p, p, pi+ and pi- production in elementary hadronic interactions (p + p, pi+ +p and pi- + p) as well as in nuclear collisions (centrality-defined p + Pb, C + C, Si + Si And Pb + Pb) are presented. The dependence of transverse momentum spectra, and in particular the - xF correlations, on particle species, collision energy, size and structure of the colliding objects has been investigated. Particle composition, in terms of the nuclear modification factors RpA (pT) for different xF regions – and particle ratios, has been also studied. The whole set of experimental data puts strong constraints on theoretical models aiming at the description of hadron production in the studied reactions.

  8. Design Study for a Staged Very Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex W.

    2002-02-27

    Particle physics makes its greatest advances with experiments at the highest energy. The only sure way to advance to a higher-energy regime is through hadron colliders--the Tevatron, the LHC, and then, beyond that, a Very Large Hadron Collider. At Snowmass-1996 [1], investigators explored the best way to build a VLHC, which they defined as a 100 TeV collider. The goals in this study are different. The current study seeks to identify the best and cheapest way to arrive at frontier-energy physics, while simultaneously starting down a path that will eventually lead to the highest-energy collisions technologically possible in any accelerator using presently conceivable technology. This study takes the first steps toward understanding the accelerator physics issues, the technological possibilities and the approximate cost of a particular model of the VLHC. It describes a staged approach that offers exciting physics at each stage for the least cost, and finally reaches an energy one-hundred times the highest energy currently achievable.

  9. Updates on the optics of the future hadron-hadron collider FCC-hh

    CERN Document Server

    AUTHOR|(CDS)2093721; Boutin, David Jean Henri; Dalena, Barbara; Holzer, Bernhard; Langner, Andy Sven; Schulte, Daniel

    2017-01-01

    The FCC-hh (Future Hadron-Hadron Circular Collider) is one of the three options considered for the next generation accelerator in high-energy physics as recommended by the European Strategy Group. The layout of FCC-hh has been optimized to a more compact design following recommendations from civil engineering aspects. The updates on the first order and second order optics of the ring will be shown for collisions at the required centre-of-mass energy of 100 TeV. Special emphasis is put on the dispersion suppressors and general beam cleaning sections as well as first considerations of injection and extraction sections.

  10. The CERN Antiproton Collider Programme Accelerators and Accumulation Rings

    CERN Document Server

    Koziol, Heribert

    2004-01-01

    One of CERN's most daring and successful undertakings was the quest for the intermediate bosons, W and Z. In this paper, we describe the accelerator part of the venture which relied on a number of innovations: an extension of the budding method of stochastic cooling by many orders of magnitude; the construction of the Antiproton Accumulator, depending on several novel accelerator methods and technologies; major modifications to the 26 GeV PS Complex; and the radical conversion of the 300 GeV SPS, which just had started up as an accelerator, to a protonâ€"antiproton collider. The SPS Collider had to master the beamâ€"beam effect far beyond limits reached ever before and had to function in a tight symbiosis with the huge detectors UA1 and UA2.

  11. Viewpoint: the End of the World at the Large Hadron Collider?

    International Nuclear Information System (INIS)

    Peskin, Michael E.

    2008-01-01

    New arguments based on astrophysical phenomena constrain the possibility that dangerous black holes will be produced at the CERN Large Hadron Collider. On 8 August, the Large Hadron Collider (LHC) at CERN injected its first beams, beginning an experimental program that will produce proton-proton collisions at an energy of 14 TeV. Particle physicists are waiting expectantly. The reason is that the Standard Model of strong, weak, and electromagnetic interactions, despite its many successes, is clearly incomplete. Theory says that the holes in the model should be filled by new physics in the energy region that will be studied by the LHC. Some candidate theories are simple quick fixes, but the most interesting ones involve new concepts of spacetime waiting to be discovered. Look up the LHC on Wikipedia, however, and you will find considerable space devoted to safety concerns. At the LHC, we will probe energies beyond those explored at any previous accelerator, and we hope to create particles that have never been observed. Couldn't we, then, create particles that would actually be dangerous, for example, ones that would eat normal matter and eventually turn the earth into a blob of unpleasantness? It is morbid fun to speculate about such things, and candidates for such dangerous particles have been suggested. These suggestions have been analyzed in an article in Reviews of Modern Physics by Jaffe, Busza, Wilczek, and Sandweiss and excluded on the basis of constraints from observation and from the known laws of physics. These conclusions have been upheld by subsequent studies conducted at CERN.

  12. The Large Hadron Collider: Present Status and Prospects

    CERN Document Server

    Evans, Lyndon R

    2000-01-01

    The Large Hadron Collider (LHC), due to be commissioned in 2005, will provide particle physics with the first laboratory tool to access the energy frontier above 1 TeV. In order to achieve this , protons must be accelerated and stored at 7 TeV, colliding with an unprecedented luminosity of 1034 cm-2 s-1. The 8.3 Tesla guide field is obtained using conventional NbTi technology cooled to below the lambda point of helium. Considerable modification of the infrastructure around the existing LEP tunnel is needed to house the LHC machine and detectors. The project is advancing according to schedule with most of the major hardware systems including cryogenics and magnets under construction. A brief status report is given and future prospects are discussed.

  13. The Large Hadron Collider Present Status and Prospects

    CERN Document Server

    Evans, Lyndon R

    2001-01-01

    The Large Hadron Collider (LHC), due to be commissioned in 2005, will provide particle physics with the first laboratory tool to access the energy frontier above 1 TeV. In order to achieve this , protons must be accelerated and stored at 7 TeV, colliding with an unprecedented luminosity of 1034 cm-2 s-1. The 8.3 Tesla guide field is obtained using conventional NbTi technology cooled to below the lambda point of helium. Considerable modification of the infrastructure around the existing LEP tunnel is needed to house the LHC machine and detectors. The project is advancing according to schedule with most of the major hardware systems including cryogenics and magnets under construction. A brief status report is given and future prospects are discussed.

  14. Probing the $WW \\gamma$ vertex at hadron colliders

    CERN Document Server

    Papavassiliou, J

    1999-01-01

    We present a new, model independent method for extracting bounds for the anomalous $\\gamma WW$ couplings from hadron collider experiments. At the partonic level we introduce a set of three observables which are constructed from the unpolarized differential cross-section for the process $d\\bar{u}\\to W^{-}\\gamma$ by appropriate convolution with a set of simple polynomials depending only on the center-of-mass angle. One of these observables allows for the direct determination of the anomalous coupling usually denoted by presence of a radiation zero. The other two observables impose two sum rules on the remaining three anomalous couplings. The inclusion of the structure functions is discussed in detail for both $p\\bar{p}$ and $pp$ colliders. We show that, whilst for $p\\bar{p}$ experiments this can be accomplished straightforwardly, in the $pp$ case one has to resort to somewhat more elaborate techniques, such as the binning of events according to their longitudinal momenta.

  15. Naming Conventions for the Large Hadron Collider Project

    CERN Document Server

    Faugeras, Paul E

    1997-01-01

    This report gives the procedures for defining standard abbreviations for the various machine components of the Large Hadron Collider (LHC) Project, as well as for the surface buildings and the underground Civil Engineering works of the LHC. The contents of this report has been approved by the LHC Project Leader and is published in the form of a Project Report in order to allow its immediate implementation. It will be incorporated later in the Quality Assurance Plan of the LHC Project which is under preparation.

  16. Detector development for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367854; Gößling, Claus

    To maximise the discovery potential of the Large Hadron Collider, it will be upgraded to the High Luminosity Large Hadron Collider in 2024. New detector challenges arise from the higher instantaneous luminosity and the higher particle flux. The new ATLAS Inner Tracker will replace the current tracking detector to be able to cope with these challenges. Many pixel detector technologies exist for particle tracking, but their suitability for the ATLAS Inner Tracker needs to be studied. Active high-voltage CMOS sensors, which are produced in industrialised processes, offer a fast readout and radiation tolerance. In this thesis the HV2FEI4v2 sensor, which is capacitively coupled to the ATLAS Pixel FE-I4 readout chip, is characterised for the usage in the outer layers of the ATLAS Inner Tracker. Key quantities of this prototype module are studied, such as the hit efficiency and the subpixel encoding. The early HV2FEI4v2 prototype shows promising results as a starting point for further module developments. Active CMO...

  17. The higgsino-singlino world at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Soo [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Ray, Tirtha Sankar [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Melbourne, VIC (Australia)

    2015-02-01

    We consider light higgsinos and singlinos in the next-to-minimal supersymmetric standard model at the large hadron collider. We assume that the singlino is the lightest supersymmetric particle and that the higgsino is the next-to-lightest supersymmetric particle with the remaining supersymmetric particles in the multi-TeV range. This scenario, which is motivated by the flavor and CP issues, provides a phenomenologically viable dark matter candidate and improved electroweak fit consistent with the measured Higgs mass. Here, the higgsinos decay into on (off)-shell gauge boson and the singlino. We consider the leptonic decay modes and the resulting signature is three isolated leptons and missing transverse energy which is known as the trilepton signal. We simulate the signal and the Standard Model backgrounds and present the exclusion region in the higgsino-singlino mass plane at the large hadron collider at √(s) = 14 TeV for an integrated luminosity of 300 fb{sup -1}. (orig.)

  18. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  19. FCC-hh Hadron Collider - Parameter Scenarios and Staging Options

    CERN Document Server

    Benedikt, Michael; Schulte, Daniel; Zimmermann, F; Syphers, M J

    2015-01-01

    FCC-hh is a proposed future energy-frontier hadron collider, based on dipole magnets with a field around 16 T installed in a new tunnel with a circumference of about 100 km, which would provide proton collisions at a centre-of-mass energy of 100 TeV, as well as heavy-ion collisions at the equivalent energy. The FCC-hh should deliver a high integrated proton-proton luminosity at the level of several 100 fb−1 per year, or more. The challenges for operating FCC-hh with high beam current and at high luminosity include the heat load from synchrotron radiation in a cold environment, the radiation from collision debris around the interaction region, and machine protection. In this paper, starting from the FCC-hh design baseline parameters we explore different approaches for increasing the integrated luminosity, and discuss the impact of key individual pa- rameters, such as the turnaround time. We also present some injector considerations and options for early hadron-collider operation.

  20. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Previtali, Valentina [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bruce, Roderik [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Redaelli, Stefano [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, Adriana [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salvachua Ferrando, Belen [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  1. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Salvachua Ferrando, Belen

    2014-01-01

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were check...

  2. Design of the large hadron electron collider interaction region

    Science.gov (United States)

    Cruz-Alaniz, E.; Newton, D.; Tomás, R.; Korostelev, M.

    2015-11-01

    The large hadron electron collider (LHeC) is a proposed upgrade of the Large Hadron Collider (LHC) within the high luminosity LHC (HL-LHC) project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β*=10 cm in the LHeC interaction point to reach the desired luminosity of L =1033 cm-2 s-1 . This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L*=10 m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.

  3. Design of the large hadron electron collider interaction region

    Directory of Open Access Journals (Sweden)

    E. Cruz-Alaniz

    2015-11-01

    Full Text Available The large hadron electron collider (LHeC is a proposed upgrade of the Large Hadron Collider (LHC within the high luminosity LHC (HL-LHC project, to provide electron-nucleon collisions and explore a new regime of energy and luminosity for deep inelastic scattering. The design of an interaction region for any collider is always a challenging task given that the beams are brought into crossing with the smallest beam sizes in a region where there are tight detector constraints. In this case integrating the LHeC into the existing HL-LHC lattice, to allow simultaneous proton-proton and electron-proton collisions, increases the difficulty of the task. A nominal design was presented in the the LHeC conceptual design report in 2012 featuring an optical configuration that focuses one of the proton beams of the LHC to β^{*}=10  cm in the LHeC interaction point to reach the desired luminosity of L=10^{33}  cm^{-2} s^{-1}. This value is achieved with the aid of a new inner triplet of quadrupoles at a distance L^{*}=10  m from the interaction point. However the chromatic beta beating was found intolerable regarding machine protection issues. An advanced chromatic correction scheme was required. This paper explores the feasibility of the extension of a novel optical technique called the achromatic telescopic squeezing scheme and the flexibility of the interaction region design, in order to find the optimal solution that would produce the highest luminosity while controlling the chromaticity, minimizing the synchrotron radiation power and maintaining the dynamic aperture required for stability.

  4. Hadron collider tests of neutrino mass-generating mechanisms

    Science.gov (United States)

    Ruiz, Richard Efrain

    The Standard Model of particle physics (SM) is presently the best description of nature at small distances and high energies. However, with tiny but nonzero neutrino masses, a Higgs boson mass unstable under radiative corrections, and little guidance on understanding the hierarchy of fermion masses, the SM remains an unsatisfactory description of nature. Well-motivated scenarios that resolve these issues exist but also predict extended gauge (e.g., Left-Right Symmetric Models), scalar (e.g., Supersymmetry), and/or fermion sectors (e.g., Seesaw Models). Hence, discovering such new states would have far-reaching implications. After reviewing basic tenets of the SM and collider physics, several beyond the SM (BSM) scenarios that alleviate these shortcomings are investigated. Emphasis is placed on the production of a heavy Majorana neutrinos at hadron colliders in the context of low-energy, effective theories that simultaneously explain the origin of neutrino masses and their smallness compared to other elementary fermions, the so-called Seesaw Mechanisms. As probes of new physics, rare top quark decays to Higgs bosons in the context of the SM, the Types I and II Two Higgs Doublet Model (2HDM), and the semi-model independent framework of Effective Field Theory (EFT) have also been investigated. Observation prospects and discovery potentials of these models at current and future collider experiments are quantified.

  5. Challenges for MSSM Higgs searches at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela S.; /Fermilab; Menon, A.; /Argonne /Chicago U., EFI; Wagner, C.E.M.; /Argonne /Chicago U., EFI /KICP, Chicago /Chicago U.

    2007-04-01

    In this article we analyze the impact of B-physics and Higgs physics at LEP on standard and non-standard Higgs bosons searches at the Tevatron and the LHC, within the framework of minimal flavor violating supersymmetric models. The B-physics constraints we consider come from the experimental measurements of the rare B-decays b {yields} s{gamma} and B{sub u} {yields} {tau}{nu} and the experimental limit on the B{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio. We show that these constraints are severe for large values of the trilinear soft breaking parameter A{sub t}, rendering the non-standard Higgs searches at hadron colliders less promising. On the contrary these bounds are relaxed for small values of A{sub t} and large values of the Higgsino mass parameter {mu}, enhancing the prospects for the direct detection of non-standard Higgs bosons at both colliders. We also consider the available ATLAS and CMS projected sensitivities in the standard model Higgs search channels, and we discuss the LHC's ability in probing the whole MSSM parameter space. In addition we also consider the expected Tevatron collider sensitivities in the standard model Higgs h {yields} b{bar b} channel to show that it may be able to find 3 {sigma} evidence in the B-physics allowed regions for small or moderate values of the stop mixing parameter.

  6. Observation of very large transverse momentum jets at the CERN pp collider

    CERN Document Server

    Banner, M; Bonaudi, Franco; Borer, K; Borghini, M; Chollet, J C; Clark, A G; Conta, C; Darriulat, Pierre; Di Lella, L; Dines-Hansen, J; Dorsaz, P A; Fayard, L; Fraternali, M; Froidevaux, D; Gaillard, J M; Gildemeister, O; Goggi, V G; Grote, H; Hahn, B; Hänni, H; Hansen, J R; Hansen, P; Himel, T; Hungerbühler, V; Jenni, Peter; Kofoed-Hansen, Otto Møgens; Livan, M; Loucatos, Sotirios S; Madsen, B; Mansoulié, B; Mantovani, G C; Mapelli, L; Merkel, B; Mermikides, Michael E; Møllerud, R; Nilsson, B; Onions, Christopher J; Parrour, G; Pastore, F; Plothow-Besch, H; Repellin, J P; Ringel, J; Rothenberg, A F; Roussarie, A; Sauvage, G; Schacher, J; Siegrist, J L; Stocker, F; Teiger, J; Vercesi, V; Williams, H H; Zaccone, Henri; Zeller, W

    1982-01-01

    The distribution of total transverse energy Sigma E/sub T/ over the pseudorapidity interval -1( eta (1 and an azimuthal range Delta phi =300 degrees has been measured in the UA2 experiment at the CERN pp collider ( \\sqrt{s}=540 GeV) using a highly segmented total absorption calorimeter. In the events with the very large Sigma E/sub T/ ( Sigma E/sub T/>or approximately=60 GeV) most of the transverse energy is found to be contained in small angular regions as expected for high transverse momentum hadron jets. The authors discuss the properties of a sample of two-jet events with invariant two-jet masses up to 140 GeV/c/sup 2/ and measure the cross section for inclusive jet production in the range of jet transverse momenta between 15 and 60 Ge V/c.

  7. Industrial Technology for Unprecented Energy and Luminosity The Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2004-01-01

    With over 3 billion Swiss francs procurement contracts under execution in industry and the installation of major technical systems in its first 3.3 km sector, the Large Hadron Collider (LHC) construction is now in full swing at CERN, the European Organization for Nuclear Research. The LHC is not only the most challenging particle accelerator, it is also the largest global project ever for a scientific instrument based on advanced technology. Starting from accelerator performance requirements, we recall how these can be met by an appropriate combination of technologies, such as high-field superconducting magnets, superfluid helium cryogenics, power electronics, with particular emphasis on developments required to meet demanding specifications, and industrialization issues which had to be solved for achieving series production of precision components under tight quality assurance and within limited resources. This provides the opportunity for reviewing the production status of the main systems and the progress ...

  8. Electron cloud buildup driving spontaneous vertical instabilities of stored beams in the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Annalisa Romano

    2018-06-01

    Full Text Available At the beginning of the 2016 run, an anomalous beam instability was systematically observed at the CERN Large Hadron Collider (LHC. Its main characteristic was that it spontaneously appeared after beams had been stored for several hours in collision at 6.5 TeV to provide data for the experiments, despite large chromaticity values and high strength of the Landau-damping octupole magnet. The instability exhibited several features characteristic of those induced by the electron cloud (EC. Indeed, when LHC operates with 25 ns bunch spacing, an EC builds up in a large fraction of the beam chambers, as revealed by several independent indicators. Numerical simulations have been carried out in order to investigate the role of the EC in the observed instabilities. It has been found that the beam intensity decay is unfavorable for the beam stability when LHC operates in a strong EC regime.

  9. Grid computing in pakistan and: opening to large hadron collider experiments

    International Nuclear Information System (INIS)

    Batool, N.; Osman, A.; Mahmood, A.; Rana, M.A.

    2009-01-01

    A grid computing facility was developed at sister institutes Pakistan Institute of Nuclear Science and Technology (PINSTECH) and Pakistan Institute of Engineering and Applied Sciences (PIEAS) in collaboration with Large Hadron Collider (LHC) Computing Grid during early years of the present decade. The Grid facility PAKGRID-LCG2 as one of the grid node in Pakistan was developed employing mainly local means and is capable of supporting local and international research and computational tasks in the domain of LHC Computing Grid. Functional status of the facility is presented in terms of number of jobs performed. The facility developed provides a forum to local researchers in the field of high energy physics to participate in the LHC experiments and related activities at European particle physics research laboratory (CERN), which is one of the best physics laboratories in the world. It also provides a platform of an emerging computing technology (CT). (author)

  10. Electromigration driven failures on miniature silver fuses at the Large Hadron Collider

    CERN Document Server

    Trikoupis, Nikolaos; Perez Fontenla, Ana Teresa

    2017-01-01

    Spurious faults were observed on the miniature silver fuses of electronic cards used for the cryogenics instrumentation in the LHC (Large Hadron Collider) accelerator at CERN. By applying analytical tools and techniques such as Scanning Electron Microscopy, spectrometry and Weibull reliability calculations and by the knowledge of operating temperatures and operational time of each unit, the origin of the problem has now been understood and can be attributed to electromigration. The selected fuse was operated at moderate temperature and load conditions and was considered as a “lifetime” component. However, it turned out to have a smaller than expected MTTF with failures following a Weibull distribution of $\\beta = 3.91$ and $\\eta = 2323$. The literature describes extensively the effects of electromigration, but there are only limited references referring to the impact of this phenomenon on miniature silver fuses for electronic circuits.

  11. EXERGY ANALYSIS OF THE CRYOGENIC HELIUM DISTRIBUTION SYSTEM FOR THE LARGE HADRON COLLIDER (LHC)

    International Nuclear Information System (INIS)

    Claudet, S.; Lebrun, Ph.; Tavian, L.; Wagner, U.

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world's largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility.

  12. Cost-Benefit Analysis of the Large Hadron Collider to 2025 and beyond

    CERN Document Server

    Florio, Massimo; Sirtori, Emanuela

    2015-01-01

    Social cost-benefit analysis (CBA) of projects has been successfully applied in different fields such as transport, energy, health, education, and environment, including climate change. It is often argued that it is impossible to extend the CBA approach to the evaluation of the social impact of research infrastructures, because the final benefit to society of scientific discovery is generally unpredictable. Here, we propose a quantitative approach to this problem, we use it to design an empirically testable CBA model, and we apply it to the the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by determining their value to users (scientists, early-stage researchers, firms, visitors) and non-users (the general public). Four classes of contributions to users are identified: knowledge output, human capital development, technological spillovers, and cultural effects. Benefits for non-users can be ...

  13. Precision Muon Tracking at Future Hadron Colliders with sMDT Chambers

    CERN Document Server

    Kortner, Oliver; Müller, Felix; Nowak, Sebastian; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers are a cost-effective technology for high-precision muon tracking. The rate capability of the sMDT chambers has been extensively tested at the Gamma Irradiation Facility at CERN in view of expected rates at future high-energy hadron colliders. Results show that it fulfills the requirements over most of the acceptance of muon detectors. The optimization of the read-out electronics to further increase the rate capability of the detectors is discussed. Chambers of this type are under construction for upgrades of the muon spectrometer of the ATLAS detector at high LHC luminosities. Design and construction procedures have been optimized for mass production while providing a precision of better than 10 micrometers in the sense wire positions and the mechanical stability required to cover large areas.

  14. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Tavian, L; Wagner, U

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world’s largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility..

  15. Field and structural analysis of 56 mm aperture dipole model magnets for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Song, Naihao; Yamamoto, Akira; Shintomi, Takakazu; Hirabayashi, Hiromi; Yamaoka, Hiroshi; Terashima, A.

    1996-01-01

    A new dipole model magnet design has been made with an aperture of 56 mm according to re-optimization of the accelerator design for the Large Hadron Collider (LHC) to be built at CERN. A feature of symmetric/separate collar configuration in the new design proposed by KEK has been evaluated in terms of field quality and mechanical stability according to the process of the magnet fabrication, cool-down and excitations. The analysis has been carried out by using the finite element analysis code ANSYS, in linkage of field analysis with structural analysis. Effect of the deformation, due to electromagnetic force, on the field quality has been also investigated. Results of the analysis will be presented

  16. Study for a failsafe trigger generation system for the Large Hadron Collider beam dump kicker magnets

    CERN Document Server

    Rampl, M

    1999-01-01

    The 27 km-particle accelerator Large Hadron Collider (LHC), which will be completed at the European Laboratory for Particle Physics (CERN) in 2005, will work with extremely high beam energies (~334 MJ per beam). Since the equipment and in particular the superconducting magnets must be protected from damage caused by these high energy beams the beam dump must be able to absorb this energy very reliable at every stage of operation. The kicker magnets that extract the particles from the accelerator are synchronised with the beam by the trigger generation system. This thesis is a first study for this electronic module and its functions. A special synchronisation circuit and a very reliable electronic switch were developed. Most functions were implemented in a Gate-Array to improve the reliability and to facilitate modifications during the test stage. This study also comprises the complete concept for the prototype of the trigger generation system. During all project stages reliability was always the main determin...

  17. Summary of the very large hadron collider physics and detector workshop

    International Nuclear Information System (INIS)

    Anderson, G.; Berger, M.; Brandt, A.; Eno, S.

    1997-01-01

    One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV

  18. Extra dimension searches at hadron colliders to next-to-leading ...

    Indian Academy of Sciences (India)

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton ...

  19. How hadron collider experiments contributed to the development of QCD: from hard-scattering to the perfect liquid

    Science.gov (United States)

    Tannenbaum, M. J.

    2018-05-01

    A revolution in elementary particle physics occurred during the period from the ICHEP1968 to the ICHEP1982 with the advent of the parton model from discoveries in Deeply Inelastic electron-proton Scattering at SLAC, neutrino experiments, hard-scattering observed in p+p collisions at the CERN ISR, the development of QCD, the discovery of the J/ Ψ at BNL and SLAC and the clear observation of high transverse momentum jets at the CERN SPS p¯ + p collider. These and other discoveries in this period led to the acceptance of QCD as the theory of the strong interactions. The desire to understand nuclear physics at high density such as in neutron stars led to the application of QCD to this problem and to the prediction of a Quark-Gluon Plasma (QGP) in nuclei at high energy density and temperatures. This eventually led to the construction of the Relativistic Heavy Ion Collider (RHIC) at BNL to observe superdense nuclear matter in the laboratory. This article discusses how experimental methods and results which confirmed QCD at the first hadron collider, the CERN ISR, played an important role in experiments at the first heavy ion collider, RHIC, leading to the discovery of the QGP as a perfect liquid as well as discoveries at RHIC and the LHC which continue to the present day.

  20. Benchmarking the Particle Background in the Large Hadron Collider Experiments

    CERN Document Server

    Gschwendtner, Edda; Fabjan, Christian Wolfgang; Hessey, N P; Otto, Thomas

    2002-01-01

    Background benchmarking measurements have been made to check the low-energy processes which will contribute via nuclear reactions to the radiation background in the LHC experiments at CERN. Previously these processes were only evaluated with Monte Carlo simulations, estimated to be reliable within an uncertainty factor of 2.5. Measurements were carried out in an experimental set-up comparable to the shielding of ATLAS, one of the general-purpose experiments at LHC. The absolute yield and spectral measurements of photons and neutrons emanating from the final stages of the hadronic showers were made with a Bi_4Ge_3O_{12} (BGO) detector. The particle transport code FLUKA was used for detailed simulations. Comparison between measurements and simulations show that they agree within 20% and hence the uncertainty factor resulting from the shower processes can be reduced to a factor of 1.2.

  1. Tests of electroweak interactions at CERN's LEP Collider

    Science.gov (United States)

    Fearnley, T. A.

    1995-08-01

    Precision measurements of electroweak interactions at the Z0 energy are performed at four experiments at the Large Electron Positron (LEP) Collider at CERN in Geneva, Switzerland. The large amount of data obtained from 1989 until today allows detailed comparisons with the predictions made by the Standard Model. Within the experimental errors the agreement with the Standard Model is good. Fits to the LEP data allow an indirect determination of the mass of the top quark: Mt=173+12+18-13-20 GeV, assuming a Higgs boson mass of 300 GeV. The first errors reflect the experimental errors (systematic and statistical) on the measurements. The second errors correspond to the variation of the central value when varying the Higgs mass between 60 and 1000 GeV. This paper reviews the results of the measurements of electroweak interactions, and compares the results with predictions made by the Standard Model.

  2. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    Science.gov (United States)

    Infantino, Angelo; Alía, Rubén García; Besana, Maria Ilaria; Brugger, Markus; Cerutti, Francesco

    2017-09-01

    As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh), running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee) as well as a lepton-hadron option (FCC-he). In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  3. Preliminary design of CERN Future Circular Collider tunnel: first evaluation of the radiation environment in critical areas for electronics

    Directory of Open Access Journals (Sweden)

    Infantino Angelo

    2017-01-01

    Full Text Available As part of its post-LHC high energy physics program, CERN is conducting a study for a new proton-proton collider, called Future Circular Collider (FCC-hh, running at center-of-mass energies of up to 100 TeV in a new 100 km tunnel. The study includes a 90-350 GeV lepton collider (FCC-ee as well as a lepton-hadron option (FCC-he. In this work, FLUKA Monte Carlo simulation was extensively used to perform a first evaluation of the radiation environment in critical areas for electronics in the FCC-hh tunnel. The model of the tunnel was created based on the original civil engineering studies already performed and further integrated in the existing FLUKA models of the beam line. The radiation levels in critical areas, such as the racks for electronics and cables, power converters, service areas, local tunnel extensions was evaluated.

  4. Beam losses from ultraperipheral nuclear collisions between ^{208}Pb^{82+} ions in the Large Hadron Collider and their alleviation

    Directory of Open Access Journals (Sweden)

    R. Bruce

    2009-07-01

    Full Text Available Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte Carlo shower simulation, and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of ^{208}Pb^{82+} ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal ^{208}Pb^{82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  5. Forward-central jet correlations at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Deak, M. [Univ. Autonoma de Madrid, Cantoblanco (Spain). Inst. de Fisica Teorica UAM/CSIC; Hautmann, F. [Oxford Univ. (United Kingdom). Theoretical Physics Dept.; Jung, H. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysics; Kutak, K. [Antwerpen Univ. (Belgium). Elementaire Deeltjes Fysics

    2010-12-15

    For high-p{sub T} forward processes at the Large Hadron Collider (LHC), QCD logarithmic corrections in the hard transverse momentum and in the large rapidity interval may both be quantitatively significant. The theoretical framework to resum consistently both kinds of logarithmic corrections to higher orders in perturbation theory is based on QCD high-energy factorization. We present numerical Monte Carlo applications of this method to final-state observables associated with production of one forward and one central jet. By computing jet correlations in rapidity and azimuth, we analyze the role of corrections to the parton-showering chain from large-angle gluon radiation, and discuss this in relationship with Monte Carlo results modeling interactions due to multiple parton chains. (orig.)

  6. Threshold resummation for slepton-pair production at hadron colliders

    International Nuclear Information System (INIS)

    Bozzi, Giuseppe; Fuks, Benjamin; Klasen, Michael

    2007-01-01

    We present a first and extensive study of threshold resummation effects for supersymmetric (SUSY) particle production at hadron colliders, focusing on Drell-Yan like slepton-pair and slepton-sneutrino associated production. After confirming the known next-to-leading order (NLO) QCD corrections and generalizing the NLO SUSY-QCD corrections to the case of mixing squarks in the virtual loop contributions, we employ the usual Mellin N-space resummation formalism with the minimal prescription for the inverse Mellin-transform and improve it by resumming 1/N-suppressed and a class of N-independent universal contributions. Numerically, our results increase the theoretical cross sections by 5 to 15% with respect to the NLO predictions and stabilize them by reducing the scale dependence from up to 20% at NLO to less than 10% with threshold resummation

  7. A real-time tracker for hadronic collider experiments

    International Nuclear Information System (INIS)

    Bardi, A.; Belforte, S.; Galeotti, S.; Giannetti, P.; Morsani, F.; Spinella, F.; Dell'Orso, M.; Meschi, E.

    1999-01-01

    In this paper the authors propose highly parallel dedicated processors, able to provide precise on-line track reconstruction for future hadronic collider experiments. The processors, organized in a 2-level pipelined architecture, execute very fast algorithms based on the use of a large bank of pre-stored patterns of trajectory points. An associative memory implements the first stage by recognized track candidates at low resolution to match the demanding task of tracking at the detector readout rate. Alternative technological implementations for the associative memory are compared. The second stage receives track candidates and high resolution hits to refine pattern recognition at the associative memory output rate. A parallel and pipelines hardware implements a binary search strategy inside a hierarchically structured pattern bank, stored in the high density commercial RAMs

  8. The fast tracker processor for hadron collider triggers

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; D'Onofrio, M; Giannetti, P; Iannaccone, G; Morsani, E; Pietri, M; Varotto, G

    2001-01-01

    Perspectives for precise and fast track reconstruction in future hadron collider experiments are addressed. We discuss the feasibility of a pipelined highly parallel processor dedicated to the implementation of a very fast tracking algorithm. The algorithm is based on the use of a large bank of pre-stored combinations of trajectory points, called patterns, for extremely complex tracking systems. The CMS experiment at LHC is used as a benchmark. Tracking data from the events selected by the level-1 trigger are sorted and filtered by the Fast Tracker processor at an input rate of 100 kHz. This data organization allows the level-2 trigger logic to reconstruct full resolution tracks with transverse momentum above a few GeV and search for secondary vertices within typical level-2 times. (15 refs).

  9. The fast tracker processor for hadronic collider triggers

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; D'Onofrio, M; Giannetti, P; Iannaccone, G; Morsani, F; Pietri, M; Varotto, G

    2000-01-01

    Perspective for precise and fast track reconstruction in future hadronic collider experiments are addressed. We discuss the feasibility of a pipelined highly parallelized processor dedicated to the implementation of a very fast algorithm. The algorithm is based on the use of a large bank of pre-stored combinations of trajectory points (patterns) for extremely complex tracking systems. The CMS experiment at LHC is used as a benchmark. Tracking data from the events selected by the level-1 trigger are sorted and filtered by the Fast Tracker processor at a rate of 100 kHz. This data organization allows the level-2 trigger logic to reconstruct full resolution traces with transverse momentum above few GeV and search secondary vertexes within typical level-2 times. 15 Refs.

  10. Threshold resummation for slepton-pair production at hadron colliders

    International Nuclear Information System (INIS)

    Bozzi, Giuseppe; Fuks, Benjamin; Klasen, Michael

    2007-01-01

    We present a first and extensive study of threshold resummation effects for supersymmetric (SUSY) particle production at hadron colliders, focusing on Drell-Yan like slepton-pair and slepton-sneutrino associated production. After confirming the known next-to-leading order (NLO) QCD corrections and generalizing the NLO SUSY-QCD corrections to the case of mixing squarks in the virtual loop contributions, we employ the usual Mellin N-space resummation formalism with the minimal prescription for the inverse Mellin-transform and improve it by re-summing 1/N-suppressed and a class of N-independent universal contributions. Numerically, our results increase the theoretical cross sections by 5 to 15% with respect to the NLO predictions and stabilize them by reducing the scale dependence from up to 20% at NLO to less than 10% with threshold resummation. (authors)

  11. Forward-central jet correlations at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Deak, M.; Hautmann, F.; Jung, H.; Antwerpen Univ.; Kutak, K.

    2010-12-01

    For high-p T forward processes at the Large Hadron Collider (LHC), QCD logarithmic corrections in the hard transverse momentum and in the large rapidity interval may both be quantitatively significant. The theoretical framework to resum consistently both kinds of logarithmic corrections to higher orders in perturbation theory is based on QCD high-energy factorization. We present numerical Monte Carlo applications of this method to final-state observables associated with production of one forward and one central jet. By computing jet correlations in rapidity and azimuth, we analyze the role of corrections to the parton-showering chain from large-angle gluon radiation, and discuss this in relationship with Monte Carlo results modeling interactions due to multiple parton chains. (orig.)

  12. Effective models of new physics at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Llodra-Perez, J.

    2011-07-01

    With the start of the Large Hadron Collider runs, in 2010, particle physicists will be soon able to have a better understanding of the electroweak symmetry breaking. They might also answer to many experimental and theoretical open questions raised by the Standard Model. Surfing on this really favorable situation, we will first present in this thesis a highly model-independent parametrization in order to characterize the new physics effects on mechanisms of production and decay of the Higgs boson. This original tool will be easily and directly usable in data analysis of CMS and ATLAS, the huge generalist experiments of LHC. It will help indeed to exclude or validate significantly some new theories beyond the Standard Model. In another approach, based on model-building, we considered a scenario of new physics, where the Standard Model fields can propagate in a flat six-dimensional space. The new spatial extra-dimensions will be compactified on a Real Projective Plane. This orbifold is the unique six-dimensional geometry which possesses chiral fermions and a natural Dark Matter candidate. The scalar photon, which is the lightest particle of the first Kaluza-Klein tier, is stabilized by a symmetry relic of the six dimension Lorentz invariance. Using the current constraints from cosmological observations and our first analytical calculation, we derived a characteristic mass range around few hundred GeV for the Kaluza-Klein scalar photon. Therefore the new states of our Universal Extra-Dimension model are light enough to be produced through clear signatures at the Large Hadron Collider. So we used a more sophisticated analysis of particle mass spectrum and couplings, including radiative corrections at one-loop, in order to establish our first predictions and constraints on the expected LHC phenomenology. (author)

  13. Art and science interactions - First Collide @CERN public lecture by Julius Von Bismarck

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Creative collisions between the arts and science have begun at CERN with the first Collide@CERN artist, Julius Von Bismarck starting his digital arts residency at the world's largest particle physics laboratory outside Geneva. He was chosen from 395 entries from 40 countries around the world from the Prix Ars Electronica Collide@CERN competition launched last September 2011. To mark this special occasion, the first Collide@CERN public lecture open to everyone will take place on March 21st 2012 at CERN's Globe of Science and Innovation, with a drinks reception at 18.45 and with presentations starting at 19.30. The event is free and will be opened by the Director General of CERN, Professor Rolf-Dieter Heuer and Gerfried Stocker, the Artistic Director of Ars Electronica, Linz, - CERN's international cultural partners for the digital arts Collide@CERN award known as Prix Ars Electronica Collide@CERN in recognition of our joint partnership. Julius Von Bismarck and his CERN science inspiration partner, the physic...

  14. Radial scaling in inclusive jet production at hadron colliders

    Science.gov (United States)

    Taylor, Frank E.

    2018-03-01

    Inclusive jet production in p-p and p ¯ -p collisions shows many of the same kinematic systematics as observed in single-particle inclusive production at much lower energies. In an earlier study (1974) a phenomenology, called radial scaling, was developed for the single-particle inclusive cross sections that attempted to capture the essential underlying physics of pointlike parton scattering and the fragmentation of partons into hadrons suppressed by the kinematic boundary. The phenomenology was successful in emphasizing the underlying systematics of the inclusive particle productions. Here we demonstrate that inclusive jet production at the Large Hadron Collider (LHC) in high-energy p-p collisions and at the Tevatron in p ¯ -p inelastic scattering shows similar behavior. The ATLAS inclusive jet production plotted as a function of this scaling variable is studied for √s of 2.76, 7 and 13 TeV and is compared to p ¯ -p inclusive jet production at 1.96 TeV measured at the CDF and D0 at the Tevatron and p-Pb inclusive jet production at the LHC ATLAS at √sNN=5.02 TeV . Inclusive single-particle production at Fermi National Accelerator Laboratory fixed target and Intersecting Storage Rings energies are compared to inclusive J /ψ production at the LHC measured in ATLAS, CMS and LHCb. Striking common features of the data are discussed.

  15. The Large Hadron Collider unraveling the mysteries of the universe

    CERN Document Server

    Beech, Martin

    2010-01-01

    The Large Hadron Collider (LHC) is the largest engineering project ever undertaken, and one of the most expensive. Why are physicists around the world so excited about it? What secrets of the universe does this gargantuan piece of machinery hope to reveal? What risks are there in operating it? Could the exotic particles that are produced in the collisions—including tiny black holes that should wink into and out of existence— between subatomic particles be a threat not only to humankind but to the planet itself? In this thorough and engaging review of cutting-edge physics and cosmology, you will learn why the collider was built and how it works. You will find out what scientists are hoping to find out and what current aspects of the Standard Model might need to be revised. You will even learn about the quest to identify so-called dark matter and dark energy, which many now feel make up most of what's out there. This is a wild ride into some very unfamiliar and strange territory, but it is well worth your t...

  16. Phenomenology of the Higgs at the hadron colliders: from the standard model to supersymmetry

    International Nuclear Information System (INIS)

    Baglio, J.

    2011-10-01

    This thesis has been conducted in the context of one of the utmost important searches at current hadron colliders, that is the search for the Higgs boson, the remnant of the electroweak symmetry breaking. We wish to study the phenomenology of the Higgs boson in both the Standard Model (SM) framework and its minimal Supersymmetric extension (MSSM). After a review of the Standard Model in a first part and of the key reasons and ingredients for the supersymmetry in general and the MSSM in particular in a third part, we will present the calculation of the inclusive production cross sections of the Higgs boson in the main channels at the two current hadron colliders that are the Fermilab Tevatron collider and the CERN Large Hadron Collider (LHC), starting by the SM case in the second part and presenting the MSSM results, where we have 5 Higgs bosons and focusing on the two main production channels that are the gluon gluon fusion and the bottom quarks fusion, in the fourth part. The main output of this calculation is the extensive study of the various theoretical uncertainties that affect the predictions: the scale uncertainties which probe our ignorance of the higher-order terms in a fixed order perturbative calculation, the parton distribution functions (PDF) uncertainties and its related uncertainties from the value of the strong coupling constant, and the uncertainties coming from the use of an effective field theory to simplify the hard calculation. We then move on to the study of the Higgs decay branching ratios which are also affected by diverse uncertainties. We will present the combination of the production cross sections and decay branching fractions in some specific cases which will show interesting consequences on the total theoretical uncertainties. We move on to present the results confronted to experiments and show that the theoretical uncertainties have a significant impact on the inferred limits either in the SM search for the Higgs boson or on the MSSM

  17. Comprehending particle production in proton+proton and heavy-ion collisions at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Sahoo, Raghunath

    2017-01-01

    In the extreme conditions of temperature and energy density, nuclear matter undergoes a transition to a new phase, which is governed by partonic degrees of freedom. This phase is called Quark-Gluon Plasma (QGP). The transition to QGP phase was conjectured to take place in central nucleus-nucleus collisions. With the advent of unprecedented collision energy at the Large Hadron Collider (LHC), at CERN, it has been possible to create energy densities higher than that was predicted by lattice QCD for a deconfinement transition

  18. Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider

    CERN Document Server

    Draskovic, Drasko; Jones, Owain Rhodri; Lefèvre, Thibaut; Wendt, Manfred

    2015-01-01

    This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.

  19. Jets in hadron colliders at order αs3

    International Nuclear Information System (INIS)

    Ellis, S.D.; Kunszt, Z.; Soper, D.E.

    1991-10-01

    Recent results from the study of hadronic jets in hadron-hadron collisions at order a s 3 in perturbation theory are presented. The numerical results are in good agreement with data and this agreement is illustrated where possible

  20. Development of an abort gap monitor for the large hadron collider

    International Nuclear Information System (INIS)

    Beche, J.-F.; Byrd, J.; De Santis, S.; Placidi, M.; Turner, W.; Zolotorev, M.

    2004-01-01

    The Large Hadron Collider (LHC), presently under construction at CERN, requires monitoring the parasitic charge in the 3.3ms long gap in the machine fill structure. This gap, referred to as the abort gap, corresponds to the raise time of the abort kickers magnets. Any circulating particle present in the abort gap at the time of the kickers firing is lost inside the ring, rather than in the beam dump, and can potentially damage a number of the LHC components. CERN specifications indicate a linear density of 6 x 106 protons over a 100 ns interval as the maximum charge safely allowed to accumulate in the abort gap at 7 TeV. We present a study of an abort gap monitor, based on a photomultiplier tube with a gated microchannel plate, which would allow for detecting such low charge densities by monitoring the synchrotron radiation emitted in the dedicated diagnostics port. We show results of beam test experiments at the Advanced Light Source (ALS) using a Hamamatsu 5961U MCP-PMT, which indicate that such an instrument has the required sensitivity to meet LHC specifications

  1. Science and the Large Hadron Collider: a probe into instrumentation, periodization and classification

    CERN Document Server

    Roy, Arpita

    2012-01-01

    On September 19, 2008, the Large Hadron Collider (LHC) at CERN, Switzerland, began the world’s highest energy experiments as a probe into the structure of matter and forces of nature. Just nine days after the gala start-up, an explosion occurred in the LHC tunnel that brought the epic collider to a complete standstill. In light of the catastrophic incident that disrupted the operation of the LHC, the paper investigates the relation of temporality to the cycle of work in science, and raises the question: What kind of methodological value should we ascribe to events such as crises or breakdowns? Drawing upon and integrating classical anthropological themes with two and a half years of fieldwork at the LHC particle accelerator complex, the paper explores how the incident in September, which affected the instrument, acquaints us with the distribution of work in the laboratory. The incident discloses that the organization of science is not a homogenous ensemble, but marked by an enormous diversity of tasks and p...

  2. Drell-Yan and diphoton production at hadron colliders and low scale gravity model

    International Nuclear Information System (INIS)

    Cheung, Kingman; Landsberg, Greg

    2000-01-01

    In the model of Arkani-Hamed, Dimopoulos, and Dvali where gravity is allowed to propagate in the extra dimensions of very large size, virtual graviton exchange between the standard model particles can give rise to signatures that can be tested in collider experiments. We study these effects in dilepton and diphoton production at hadron colliders. Specifically, we examine the double differential cross section in the invariant mass and scattering angle, which is found to be useful in separating the gravity effects from the standard model. In this work, sensitivity obtained using the double differential cross section is higher than that in previous studies based on single differential distributions. Assuming no excess of events over the standard model predictions, we obtain the following 95% confidence level lower limits on the effective Planck scale: 0.9-1.5 TeV in the Fermilab Tevatron run I, 1.3-2.5 TeV in run IIa, 1.7-3.5 TeV in run IIb, and 6.5-12.8 TeV at the CERN LHC. The range of numbers corresponds to the number of extra dimensions n=7-2. (c) 2000 The American Physical Society

  3. VUV photoemission studies of candidate Large Hadron Collider vacuum chamber materials

    CERN Document Server

    Cimino, R; Baglin, V

    1999-01-01

    In the context of future accelerators and, in particular, the beam vacuum of the Large Hadron Collider (LHC), a 27 km circumference proton collider to be built at CERN, VUV synchrotron radiation (SR) has been used to study both qualitatively and quantitatively candidate vacuum chamber materials. Emphasis is given to show that angle and energy resolved photoemission is an extremely powerful tool to address important issues relevant to the LHC, such as the emission of electrons that contributes to the creation of an electron cloud which may cause serious beam instabilities and unmanageable heat loads on the cryogenic system. Here we present not only the measured photoelectron yields from the proposed materials, prepared on an industrial scale, but also the energy and in some cases the angular dependence of the emitted electrons when excited with either a white light (WL) spectrum, simulating that in the arcs of the LHC, or monochromatic light in the photon energy range of interest. The effects on the materials ...

  4. NLO corrections to production of heavy particles at hadron colliders

    International Nuclear Information System (INIS)

    Pagani, Davide

    2013-01-01

    In this thesis we study specific aspects of the production of heavy particles at hadron colliders, with emphasis on precision predictions including next-to-leading order (NLO) corrections from the strong and electroweak interactions. In the first part of the thesis we consider the top quark charge asymmetry. In particular, we discuss in detail the calculation of the electroweak contributions from the asymmetric part of the top quark pair production cross section at O(α 2 s α) and O(α 2 ) and their numerical impact on predictions for the asymmetry measurements at the Tevatron. These electroweak contributions provide a non-negligible addition to the QCD-induced asymmetry with the same overall sign and, in general, enlarge the Standard Model predictions by a factor around 1.2, diminishing the deviations from experimental measurements. In the second part of the thesis we consider the production of squarks, the supersymmetric partners of quarks, at the Large Hadron Collider (LHC). We discuss the calculation of the contribution of factorizable NLO QCD corrections to the production of squark-squark pairs combined at fully differential level with squark decays. Combining the production process with two different configurations for the squark decays, our calculation is used to provide precise phenomenological predictions for two different experimental signatures that are important for the search of supersymmetry at the LHC. We focus, for one signature, on the impact of our results on important physical differential distributions and on cut-and-count searches performed by the ATLAS and CMS collaborations. Considering the other signature, we analyze the effects from NLO QCD corrections and from the combination of production and decays on distributions relevant for parameter determination. In general, factorizable NLO QCD corrections have to be taken into account to obtain precise phenomenological predictions for the analyzed distributions and inclusive quantities. Moreover

  5. Resummation for supersymmetric particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Brensing, Silja Christine

    2011-05-10

    The search for supersymmetry is among the most important tasks at current and future colliders. Especially the production of coloured supersymmetric particles would occur copiously in hadronic collisions. Since these production processes are of high relevance for experimental searches accurate theoretical predictions are needed. Higher-order corrections in quantum chromodynamics (QCD) to these processes are dominated by large logarithmic terms due to the emission of soft gluons from initial-state and final-state particles. A systematic treatment of these logarithms to all orders in perturbation theory is provided by resummation methods. We perform the resummation of soft gluons at next-to-leading-logarithmic (NLL) accuracy for all possible production processes in the framework of the Minimal Supersymmetric Standard Model. In particular we consider pair production processes of mass-degenerate light-flavour squarks and gluinos as well as the pair production of top squarks and non-mass-degenerate bottom squarks. We present analytical results for all considered processes including the soft anomalous dimensions. Moreover numerical predictions for total cross sections and transverse-momentum distributions for both the Large Hadron Collider (LHC) and the Tevatron are presented. We provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. The inclusion of NLL corrections leads to a considerable reduction of the theoretical uncertainty due to scale variation and to an enhancement of the next-to-leading order (NLO) cross section predictions. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. At the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV, the corrections due to NLL resummation over and above the NLO predictions can be as high as 35 % in the case of gluino-pair production, whereas at the

  6. Comparison of impact-picture predictions with data from CERN panti p collider

    International Nuclear Information System (INIS)

    Bourrely, C.; Westfield Coll., London; Soffer, J.; Tai Tsun Wu.

    1982-11-01

    Recent data on the total cross section and the elastic slope parameters at small momentum transfers from the UA1 and UA4 Collaborations at the CERN panti p Collider are compared with the impact-picture predictions. (orig.)

  7. Prospects for heavy charged Higgs search at hadron Colliders

    CERN Document Server

    Belyaev, A S; Guasch, J; Solà, J; Belyaev, Alexander; Garcia, David; Guasch, Jaume; Sola, Joan

    2002-01-01

    We investigate the prospects for heavy charged Higgs boson production through the mechanisms pp-bar(pp)->tbH+ +X at the upgraded Fermilab Tevatron and at the upcoming LHC collider at CERN respectively. We focus on the MSSM case at high values of tan[beta]> m_top/m_bot and include the leading SUSY quantum corrections. A detailed study is performed for all important production modes and basic background processes for the "ttbb" signature. At the upgraded Tevatron a charged Higgs signal is potentially viable in the 220-250 GeV range or excluded at 95%CL up to 300 GeV. At the LHC, a H+ of mass up to 800 GeV can be discovered at 5 sigma or else be excluded up to a mass of ~ 1.5 TeV. The presence ofSUSY quantum effects may highly influence the discovery potential in both machines and can typically shift these limits by 200 GeV at the LHC.

  8. [Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    1992-01-01

    This document provides a progress report on research that has been conducted under DOE Grant DEFG0292ER40697 for the past year, and describes proposed work for the second year of this 8 year grant starting November 15, 1992. Personnel supported by the contract include 4 faculty, 1 research faculty, 4 postdocs, and 9 graduate students. The work under this grant has in the past been directed in two complementary directions -- DO at Fermilab, and the second SSC detector GEM. A major effort has been towards the construction and commissioning of the new Fermilab Collider detector DO, including design, construction, testing, the commissioning of the central tracking and the central calorimeters. The first DO run is now underway, with data taking and analysis of the first events. Trigger algorithms, data acquisition, calibration of tracking and calorimetry, data scanning and analysis, and planning for future upgrades of the DO detector with the advent of the FNAL Main Injector are all involved. The other effort supported by this grant has been towards the design of GEM, a large and general-purpose SSC detector with special emphasis on accurate muon measurement over a large solid angle. This effort will culminate this year in the presentation to the SSC laboratory of the GEM Technical Design Report. Contributions are being made to the detector design, coordination, and physics simulation studies with special emphasis on muon final states. Collaboration with the RD5 group at CERN to study muon punch through and to test cathode strip chamber prototypes was begun

  9. The Hunt for New Physics at the Large Hadron Collider

    CERN Document Server

    Nath, Pran; Davoudiasl, Hooman; Dutta, Bhaskar; Feldman, Daniel; Liu, Zuowei; Han, Tao; Langacker, Paul; Mohapatra, Rabi; Valle, Jose; Pilaftsis, Apostolos; Zerwas, Dirk; AbdusSalam, Shehu; Adam-Bourdarios, Claire; Aguilar-Saavedra, J A; Allanach, Benjamin; Altunkaynak, B; Anchordoqui, Luis A; Baer, Howard; Bajc, Borut; Buchmueller, O; Carena, M; Cavanaugh, R; Chang, S; Choi, Kiwoon; Csaki, C; Dawson, S; de Campos, F; De Roeck, A; Duhrssen, M; Eboli, O J.P; Ellis, J R; Flacher, H; Goldberg, H; Grimus, W; Haisch, U; Heinemeyer, S; Hirsch, M; Holmes, M; Ibrahim, Tarek; Isidori, G; Kane, Gordon; Kong, K; Lafaye, Remi; Landsberg, G; Lavoura, L; Lee, Jae Sik; Lee, Seung J; Lisanti, M; Lust, Dieter; Magro, M B; Mahbubani, R; Malinsky, M; Maltoni, Fabio; Morisi, S; Muhlleitner, M M; Mukhopadhyaya, B; Neubert, M; Olive, K A; Perez, Gilad; Perez, Pavel Fileviez; Plehn, T; Ponton, E; Porod, Werner; Quevedo, F; Rauch, M; Restrepo, D; Rizzo, T G; Romao, J C; Ronga, F J; Santiago, Jose; Schechter, J; Senjanovic, G; Shao, J; Spira, M; Stieberger, S; Sullivan, Zack; Tait, Tim M P; Tata, Xerxes; Taylor, T R; Toharia, M; Wacker, J; Wagner, C E.M; Wang, Lian-Tao; Weiglein, G; Zeppenfeld, D; Zurek, K

    2010-01-01

    The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory ...

  10. The Large Hadron Collider: lessons learned and summary

    CERN Document Server

    Llewellyn Smith, Chris

    2012-01-01

    The Large Hadron Collider (LHC) machine and detectors are now working superbly. There are good reasons to hope and expect that the new domain that the LHC is already exploring, operating at 7 TeV with a luminosity of 1033 cm−2 s−1, or the much bigger domain that will be opened up as the luminosity increases to over 1034 and the energy to 14 TeV, will provide clues that will usher in a new era in particle physics. The arguments that new phenomena will be found in the energy range that will be explored by the LHC have become stronger since they were first seriously analysed in 1984, although their essence has changed little. I will review the evolution of these arguments in a historical context, the development of the LHC project since 1984, and the outlook in the light of reports on the performance of the machine and detectors presented at this meeting.

  11. Large hadron collider (LHC) project quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-09-30

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

  12. A Search for Technicolor at The Large Hadron Collider

    CERN Document Server

    Love, Jeremy R

    The ATLAS detector has been used in this analysis to search for Technihadrons, predicted by Technicolor theories, decaying to two muons. These new states can be produced by the Large Hadron Collider in proton-proton collisions with a center of mass energy of 7 TeV. The Low-Scale Technicolor model predicts the phenomenology of the new $\\rho_T$ and $\\omega_T$. The dimuon invariant mass spectrum is analyzed above 130 GeV to test the consistency of the observed data with the Standard Model prediction. We observe excellent agreement between our data and the background only hypothesis, and proceed to set limits on the cross section times branching ratio of the $\\rho_T$ and $\\omega_T$ as a function of their mass. We combine the dielectron and dimuon channels to exclude masses of the $\\rho_T$ and $\\omega_T$ between 130 GeV - 480 GeV at 95 % Confidence Level for masses of the $\\pi_T$ between 50 GeV - 480 GeV. In addition for the parameter choice of m($\\pi_T$) = m($\\rho_T$/$\\omega_T$) - 100 GeV, 95 % Confidence Level l...

  13. Dissecting multi-photon resonances at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Allanach, B.C. [University of Cambridge, Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge (United Kingdom); Bhatia, D.; Iyer, Abhishek M. [Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India)

    2017-09-15

    We examine the phenomenology of the production, at the 13 TeV Large Hadron Collider (LHC), of a heavy resonance X, which decays via other new on-shell particles n into multi-(i.e. three or more) photon final states. In the limit that n has a much smaller mass than X, the multi-photon final state may dominantly appear as a two-photon final state because the γs from the n decay are highly collinear and remain unresolved. We discuss how to discriminate this scenario from X → γγ: rather than discarding non-isolated photons, it is better to relax the isolation criteria and instead form photon jets substructure variables. The spins of X and n leave their imprint upon the distribution of pseudo-rapidity gap Δη between the apparent two-photon states. Depending on the total integrated luminosity, this can be used in many cases to claim discrimination between the possible spin choices of X and n, although the case where X and n are both scalar particles cannot be discriminated from the direct X → γγ decay in this manner. Information on the mass of n can be gained by considering the mass of each photon jet. (orig.)

  14. First electron-cloud studies at the Large Hadron Collider

    CERN Document Server

    Dominguez, O; Arduini, G; Metral, E; Rumolo, G; Zimmermann, F; Maury Cuna, H

    2013-01-01

    During the beam commissioning of the Large Hadron Collider (LHC) with 150, 75, 50, and 25-ns bunch spacing, important electron-cloud effects, like pressure rise, cryogenic heat load, beam instabilities, or emittance growth, were observed. Methods have been developed to infer different key beam-pipe surface parameters by benchmarking simulations and pressure rise as well as heat-load observations. These methods allow us to monitor the scrubbing process, i.e., the reduction of the secondary emission yield as a function of time, in order to decide on the most appropriate strategies for machine operation. To better understand the influence of electron clouds on the beam dynamics, simulations have been carried out to examine both the coherent and the incoherent effects on the beam. In this paper we present the methodology and first results for the scrubbing monitoring process at the LHC. We also review simulated instability thresholds and tune footprints for beams of different emittance, interacting with an electr...

  15. Longitudinal emittance blowup in the large hadron collider

    CERN Document Server

    Baudrenghien, P

    2013-01-01

    The Large Hadron Collider (LHC) relies on Landau damping for longitudinal stability. To avoid decreasing the stability margin at high energy, the longitudinal emittance must be continuously increased during the acceleration ramp. Longitudinal blowup provides the required emittance growth. The method was implemented through the summer of 2010. Band-limited RF phase-noise is injected in the main accelerating cavities during the whole ramp of about 11min. Synchrotron frequencies change along the energy ramp, but the digitally created noise tracks the frequency change. The position of the noise-band, relative to the nominal synchrotron frequency, and the bandwidth of the spectrum are set by pre-defined constants, making the diffusion stop at the edges of the demanded distribution. The noise amplitude is controlled by feedback using the measurement of the average bunch length. This algorithm reproducibly achieves the programmed bunch length of about 1.2ns, at flat top with low bunch-to-bunch scatter and provides a...

  16. The hunt for new physics at the Large Hadron Collider

    International Nuclear Information System (INIS)

    AbdusSalam, S.; Adam-Bourdarios, C.; Aguilar-Saavedra, J.A.; Allanach, B.; Altunkaynak, B.; Wagner, C.E.M.

    2010-01-01

    The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory to test the hypothesis of TeV scale strings and D brane models. An overview of these possibilities is presented in the spirit that it will serve as a companion to the Technical Design Reports (TDRs) by the particle detector groups ATLAS and CMS to facilitate the test of the new theoretical ideas at the LHC. Which of these ideas stands the test of the LHC data will govern the course of particle physics in the subsequent decades.

  17. Large hadron collider (LHC) project quality assurance plan

    International Nuclear Information System (INIS)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-01-01

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4)

  18. CP violation in supersymmetry, Higgs sector and large hadron collider

    International Nuclear Information System (INIS)

    Godbole, Rohini M.

    2006-01-01

    In this talk I discuss some aspects of CP violation (CPV) in supersymmetry (SUSY) as well as in the Higgs sector. Further, I discuss ways in which these may be probed at hadronic colliders. In particular I will point out the ways in which studies in the χ ∼± , χ 2 ∼0 sector at Tevatron may be used to provide information on this and how the search can be extended to the LHC. I will then follow this by a discussion of the CP mixing induced in the Higgs sector due to the above-mentioned CPV in the soft SUSY breaking parameters and its effects on the Higgs phenomenology at the LHC. I would then point out some interesting aspects of the phenomenology of a moderately light charged Higgs boson, consistent with the LEP constraints, in this scenario. Decay of such a charged Higgs boson would also allow a probe of a light (≤)50 GeV), CP-violating (CPV) Higgs boson. Such a light neutral Higgs boson might have escaped detection at LEP and could also be missed at the LHC in the usual search channels. (author)

  19. Unparticle self-interactions at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Bergstroem, Johannes; Ohlsson, Tommy

    2009-01-01

    We investigate the effect of unparticle self-interactions at the Large Hadron Collider (LHC). Especially, we discuss the three-point correlation function, which is determined by conformal symmetry up to a constant, and study its relation to processes with four-particle final states. These processes could be used as a favorable way to look for unparticle physics, and for weak enough couplings to the standard model, even the only way. We find updated upper bounds on the cross sections for unparticle-mediated 4γ final states at the LHC and novel upper bounds for the corresponding 2γ2l and 4l final states. The size of the allowed cross sections obtained are comparably large for large values of the scaling dimension of the unparticle sector, but they decrease with decreasing values of this parameter. In addition, we present relevant distributions for the different final states, enabling the possible identification of the unparticle scaling dimension if there was to be a large number of events of such final states at the LHC.

  20. Supersymmetric dark matter in the harsh light of the Large Hadron Collider

    Science.gov (United States)

    Peskin, Michael E.

    2015-01-01

    I review the status of the model of dark matter as the neutralino of supersymmetry in the light of constraints on supersymmetry given by the 7- to 8-TeV data from the Large Hadron Collider (LHC). PMID:25331902

  1. Quench protection test results and comparative simulations on the first 10 meter prototype dipoles for the Large Hadron Collider

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Gerin, G.; Marquis, A.

    1996-01-01

    The first 10 meter long dipole prototypes made by European Industry within the framework of the R and D program for the Large Hadron Collider (LHC) have been tested at CERN. As a part of the test program, a series of quench protection tests have been carried out in order to qualify the basic protection scheme foreseen for the LHC dipoles (quench heaters and cold diodes). Results are presented on the quench heater performance, and on the maximum temperatures and voltages observed during quenches under the so-called machine conditions. Moreover, an update of the quench simulation package specially developed at CERN (QUABER 2) has been recently made. Details on this new version of QUABER are given. Simulation runs have been made specifically to validate the model with the results from the measurements on quench protection mentioned above

  2. Hadronic cross-sections in two photon processes at a future linear collider

    International Nuclear Information System (INIS)

    Godbole, Rohini M.; Roeck, Albert de; Grau, Agnes; Pancheri, Giulia

    2003-01-01

    In this note we address the issue of measurability of the hadronic cross-sections at a future photon collider as well as for the two-photon processes at a future high energy linear e + e - collider. We extend, to higher energy, our previous estimates of the accuracy with which the γ γ cross-section needs to be measured, in order to distinguish between different theoretical models of energy dependence of the total cross-sections. We show that the necessary precision to discriminate among these models is indeed possible at future linear colliders in the Photon Collider option. Further we note that even in the e + e - option a measurement of the hadron production cross-section via γ γ processes, with an accuracy necessary to allow discrimination between different theoretical models, should be possible. We also comment briefly on the implications of these predictions for hadronic backgrounds at the future TeV energy e + e - collider CLIC. (author)

  3. K factor for Higgs boson production via gluon fusion process at hadron colliders

    International Nuclear Information System (INIS)

    Tanaka, H.

    1992-01-01

    In this paper soft gluon corrections for Higgs boson production at hadron colliders are calculated. It is found that the soft contributions for the Higgs boson production via gluon fusion process is large and it cannot be neglected even at SSC energy. Some qualitative discussions for the QCD corrections to the Higgs boson production at hadron colliders and their background processes are presented for various Higgs boson mass cases

  4. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    Science.gov (United States)

    Kumar, M. C.; Mathews, Prakash; Ravindran, V.

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  5. The design, construction and commissioning of the CERN Large Electron-Positron collider

    International Nuclear Information System (INIS)

    Myers, S.; Picasso, E.

    1990-01-01

    A description is given of the most important parameters considered in the design of the CERN Large Electron-Positron collider. It is shown how these parameters affect the collider performance and how they have been optimised with respect to the cost of the project. The functioning of each major subsystem is described with respect to its role as part of the collider. Finally, the planning, testing and initial commissioning of LEP is described and possible future developments are outlined. (author)

  6. The TOTEM Experiment at the CERN Large Hadron Collider

    Science.gov (United States)

    TOTEM Collaboration; Anelli, G.; Antchev, G.; Aspell, P.; Avati, V.; Bagliesi, M. G.; Berardi, V.; Berretti, M.; Boccone, V.; Bottigli, U.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F.; Calicchio, M.; Capurro, F.; Catanesi, M. G.; Catastini, P. L.; Cecchi, R.; Cerchi, S.; Cereseto, R.; Ciocci, M. A.; Cuneo, S.; Da Vià, C.; David, E.; Deile, M.; Dimovasili, E.; Doubrava, M.; Eggert, K.; Eremin, V.; Ferro, F.; Foussat, A.; Galuška, M.; Garcia, F.; Gherarducci, F.; Giani, S.; Greco, V.; Hasi, J.; Haug, F.; Heino, J.; Hilden, T.; Jarron, P.; Joram, C.; Kalliopuska, J.; Kaplon, J.; Kašpar, J.; Kundrát, V.; Kurvinen, K.; Lacroix, J. M.; Lami, S.; Latino, G.; Lauhakangas, R.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Rodriguez, F. Lucas; Macina, D.; Macrí, M.; Magazzù, C.; Magazzù, G.; Magri, A.; Maire, G.; Manco, A.; Meucci, M.; Minutoli, S.; Morelli, A.; Musico, P.; Negri, M.; Niewiadomski, H.; Noschis, E.; Notarnicola, G.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Perrot, A.-L.; Österberg, K.; Paoletti, R.; Pedreschi, E.; Petäjäjärvi, J.; Pollovio, P.; Quinto, M.; Radermacher, E.; Radicioni, E.; Rangod, S.; Ravotti, F.; Rella, G.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Rummel, A.; Saarikko, H.; Sanguinetti, G.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Squillacioti, P.; Ster, A.; Taylor, C.; Tazzioli, A.; Torazza, D.; Trovato, A.; Trummal, A.; Turini, N.; Vacek, V.; Van Remortel, N.; Vinš, V.; Watts, S.; Whitmore, J.; Wu, J.

    2008-08-01

    The TOTEM Experiment will measure the total pp cross-section with the luminosity-independent method and study elastic and diffractive scattering at the LHC. To achieve optimum forward coverage for charged particles emitted by the pp collisions in the interaction point IP5, two tracking telescopes, T1 and T2, will be installed on each side in the pseudorapidity region 3.1 <= |η| <= 6.5, and Roman Pot stations will be placed at distances of ±147 m and ±220 m from IP5. Being an independent experiment but technically integrated into CMS, TOTEM will first operate in standalone mode to pursue its own physics programme and at a later stage together with CMS for a common physics programme. This article gives a description of the TOTEM apparatus and its performance.

  7. Longitudinal intensity effects in the CERN Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2081238; Rivkin, Leonid

    This PhD thesis provides an improved knowledge of the LHC longitudinal impedance model and a better understanding of the longitudinal intensity effects. These effects can limit the LHC performance and lead to a reduction of the integrated luminosity. The LHC longitudinal impedance was measured with beams. Results obtained using traditional techniques are consistent with the expectations based on the impedance model, although the measurement precision was proven insufficient for the low impedance of the LHC. Innovative methods to probe the LHC reactive impedance were successfully used. One of the methods is based on exciting the beam with a sinusoidal rf phase modulation to estimate the synchrotron frequency shift from potential-well distortion. In the second method, the impedance is estimated from the loss of Landau damping threshold, which is also found to be in good agreement with analytical estimations. Beam-based impedance measurements agree well with estimations using the LHC impedance model. Macropartic...

  8. CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-09-15

    The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel.

  9. CERN: TeV Electron-Positron Linear Collider Studies; More polarization in LEP

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The world's highest energy electronpositron collider - CERN's LEP, with a circumference of 27 kilometres - will also be the last such machine to be built as a storage ring. With interest growing in electronpositron physics at energies beyond those attainable at LEP, the next generation of electron-positron colliders must be linear if prohibitive synchrotron radiation power losses are to be avoided. Very high energy linear colliders present many technical challenges but mastery of SLC at Stanford, the world's first electron-positron linear collider, is encouraging. The physics issues of a linear collider have been examined by the international community in ICFA workshops in Saariselka, Finland (September 1991) and most recently in Hawaii (April 1993). The emerging consensus is for a collider with an initial collision energy around 500 GeV, and which can be upgraded to over 1 TeV. A range of very different collider designs are being studied at Laboratories in Europe, the US, Japan and Russia. Following the report of the 1987 CERN Long Range Planning Committee chaired by Carlo Rubbia, studies for a 2 TeV linear collider have progressed at CERN alongside work towards the Laboratory's initial objective - the LHC high energy proton-proton collider in the LEP tunnel

  10. A conceptual solution for a beam halo collimation system for the Future Circular hadron-hadron Collider (FCC-hh)

    Science.gov (United States)

    Fiascaris, M.; Bruce, R.; Redaelli, S.

    2018-06-01

    We present the first conceptual solution for a collimation system for the hadron-hadron option of the Future Circular Collider (FCC-hh). The collimation layout is based on the scaling of the present Large Hadron Collider collimation system to the FCC-hh energy and it includes betatron and momentum cleaning, as well as dump protection collimators and collimators in the experimental insertions for protection of the final focus triplet magnets. An aperture model for the FCC-hh is defined and the geometrical acceptance is calculated at injection and collision energy taking into account mechanical and optics imperfections. The performance of the system is then assessed through the analysis of normalized halo distributions and complete loss maps for an ideal lattice. The performance limitations are discussed and a solution to improve the system performance with the addition of dispersion suppression collimators around the betatron cleaning insertion is presented.

  11. Strong and weak production of beauty and charm at the CERN p anti p collider

    International Nuclear Information System (INIS)

    Ransdell, J.T.

    1987-01-01

    Beauty and charm production has been studied in proton-antiproton collisions at √s = 630 GeV with the UA1 detector at the CERN collider. Clear evidence for strong production of b- and c-quarks has been obtained. The feasibility of observing hadronic decays of the W and Z intermediate vector bosons in the channels W → cs, Z → cc, bb was investigated. Beauty and charm was identified from their semileptonic decays by the presence of a muon in or near a jet. The analysis was performed on a sample of 20,000 muon trigger events containing jets in which the reconstructed muon has a transverse momentum greater than 6 GeV/c. The integrated luminosity of the sample was 573 nb -1 . The detailed kinematics of the muon-jet events are in excellent agreement with the predictions of QCD for beauty and charm strong production. The QCD expectations were calculated with the ISAJET Monte Carlo in conjunction with a full simulation of the UA1 detector. No evidence for W/Z → c/b was observed in the invariant mass distribution of the jet-jet-μ-υ system. The mass resolution achieved was ±20%. The measured strong beauty and charm cross sections imply a signal to noise ratio of 1/50 for standard model W and Z cross sections

  12. Hadron collider physics. Final report, February 1, 1991--January 31, 1994

    International Nuclear Information System (INIS)

    1994-01-01

    This report contains summaries of work accomplished for Task A1 and A2 (Hadron Collider physics) and Task B. During the first half of the contract period work for Task A1 was focused on the design and implementation of both the D0 detector high voltage system and Level 1 muon trigger. During the second half the emphasis shifted to data analysis. For the major project of Task A2, OPAL, they have recorded and analyzed over one million decays of the Z 0 boson. They began participating in the RD5 experiment at the CERN SPS to study muon tracking in high energy collisions. The LSND experiment at LAMPF recorded physics data in the fall of 1993 and expects to report analysis results at upcoming conferences. In this three year period, the theory task, Task B, completed a number of projects, resulting in over 40 publications. The main emphasis of the research is on a better understanding of the fundamental interactions of quarks and leptons, and the possibility of physics beyond the standard model

  13. Thermomechanical response of Large Hadron Collider collimators to proton and ion beam impacts

    Directory of Open Access Journals (Sweden)

    Marija Cauchi

    2015-04-01

    Full Text Available The CERN Large Hadron Collider (LHC is designed to accelerate and bring into collision high-energy protons as well as heavy ions. Accidents involving direct beam impacts on collimators can happen in both cases. The LHC collimation system is designed to handle the demanding requirements of high-intensity proton beams. Although proton beams have 100 times higher beam power than the nominal LHC lead ion beams, specific problems might arise in case of ion losses due to different particle-collimator interaction mechanisms when compared to protons. This paper investigates and compares direct ion and proton beam impacts on collimators, in particular tertiary collimators (TCTs, made of the tungsten heavy alloy INERMET® 180. Recent measurements of the mechanical behavior of this alloy under static and dynamic loading conditions at different temperatures have been done and used for realistic estimates of the collimator response to beam impact. Using these new measurements, a numerical finite element method (FEM approach is presented in this paper. Sequential fast-transient thermostructural analyses are performed in the elastic-plastic domain in order to evaluate and compare the thermomechanical response of TCTs in case of critical beam load cases involving proton and heavy ion beam impacts.

  14. Jet signals for low mass strings at the large hadron collider.

    Science.gov (United States)

    Anchordoqui, Luis A; Goldberg, Haim; Nawata, Satoshi; Taylor, Tomasz R

    2008-05-02

    The mass scale M{s} of superstring theory is an arbitrary parameter that can be as low as few TeVs if the Universe contains large extra dimensions. We propose a search for the effects of Regge excitations of fundamental strings at the CERN Large Hadron Collider (LHC), in the process pp-->gamma+jet. The underlying parton process is dominantly the single photon production in gluon fusion, gg-->gammag, with open string states propagating in intermediate channels. If the photon mixes with the gauge boson of the baryon number, which is a common feature of D-brane quivers, the amplitude appears already at the string disk level. It is completely determined by the mixing parameter-and it is otherwise model (compactification) independent. Even for relatively small mixing, 100 fb{-1} of LHC data could probe deviations from standard model physics, at a 5sigma significance, for M{s} as large as 3.3 TeV.

  15. Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets

    Directory of Open Access Journals (Sweden)

    Nicholas Sammut

    2006-01-01

    Full Text Available CERN is currently assembling the LHC (Large Hadron Collider that will accelerate and bring in collision 7 TeV protons for high energy physics. Such a superconducting magnet-based accelerator can be controlled only when the field errors of production and installation of all magnetic elements are known to the required accuracy. The ideal way to compensate the field errors obviously is to have direct diagnostics on the beam. For the LHC, however, a system solely based on beam feedback may be too demanding. The present baseline for the LHC control system hence requires an accurate forecast of the magnetic field and the multipole field errors to reduce the burden on the beam-based feedback. The field model is the core of this magnetic prediction system, that we call the field description for the LHC (FIDEL. The model will provide the forecast of the magnetic field at a given time, magnet operating current, magnet ramp rate, magnet temperature, and magnet powering history. The model is based on the identification and physical decomposition of the effects that contribute to the total field in the magnet aperture of the LHC dipoles. Each effect is quantified using data obtained from series measurements, and modeled theoretically or empirically depending on the complexity of the physical phenomena involved. This paper presents the developments of the new finely tuned magnetic field model and, using the data accumulated through series tests to date, evaluates its accuracy and predictive capabilities over a sector of the machine.

  16. Search for Microscopic Black Hole Signatures at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ka Vang [Brown Univ., Providence, RI (United States)

    2011-05-01

    A search for microscopic black hole production and decay in proton-proton collisions at a center-of-mass energy of 7 TeV has been conducted using Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider. A total integrated luminosity of 35 pb-1 data sample, taken by CMS Collaboration in year 2010, has been analyzed. A novel background estimation for multi-jet events beyond TeV scale has been developed. A good agreement with standard model backgrounds, dominated by multi-jet production, is observed for various final-state multiplicities. Using semi-classical approximation, upper limits on minimum black hole mass at 95% confidence level are set in the range of 3.5 - 4.5 TeV for values of the Planck scale up to 3 TeV. Model-independent limits are provided to further constrain microscopic black hole models with additional regions of parameter space, as well as new physics models with multiple energetic final states. These are the first limits on microscopic black hole production at a particle accelerator.

  17. The adventures of the Large Hadron Collider from the Big Bang to the Higgs boson

    CERN Document Server

    Denegri, Daniel; Hoecker, Andreas; Roos, Lydia

    2018-01-01

    An introduction to the world of quarks and leptons, and of their interactions governed by fundamental symmetries of nature, as well as an introduction to the connection that exists between worlds of the infinitesimally small and the infinitely large. The book starts with a simple presentation of the theoretical framework, the so-called Standard Model, which evolved gradually since the 1960's. This is followed by its main experimental successes, and its weaknesses and incompleteness. We proceed then with the incredible story of the Large Hadron Collider at CERN — the largest purely scientific project ever realized. What follows is the discussion of the conception, design and construction of the detectors of size and complexity without precedent in scientific history. The book summarizes the main physics results obtained firstly during the initial phase of operation of the LHC, which culminated in the discovery of the Higgs boson in 2012 (the Nobel Prize in Physics in 2013). This is followed by the results o...

  18. The new Level-1 Topological Trigger for the ATLAS experiment at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00047907; The ATLAS collaboration

    2017-01-01

    At the CERN Large Hadron Collider, the world’s most powerful particle accelerator, the ATLAS experiment records high-energy proton collision to investigate the properties of fundamental particles. These collisions take place at a 40 MHz, and the ATLAS trigger system selects the interesting ones, reducing the rate to 1 kHz, allowing for their storage and subsequent offline analysis. The ATLAS trigger system is organized in two levels, with increasing degree of details and of accuracy. The first level trigger reduces the event rate to 100 kHz with a decision latency of less than 2.5 micro seconds. It is composed of the calorimeter trigger, muon trigger and central trigger processor. A new component of the first-level trigger was introduced in 2015: the Topological Processor (L1Topo). It allows to use detailed real-time information from the Level-1 calorimeter and muon systems, to compute advanced kinematic quantities using state of the art FPGA processors, and to select interesting events based on several com...

  19. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  20. Investigation of collimator materials for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2085459; Bertarelli, Alessandro; Redaelli, Stefano

    This PhD thesis work has been carried out at the European Organisation for Nuclear Research (CERN), Geneva, Switzerland), in the framework of the High Luminosity (HL) upgrade of the Large Hadron Collider (LHC). The HL-LHC upgrade will bring the accelerator beyond the nominal performance: it is planning to reach higher stored beam energy up to 700 MJ, through more intense proton beams. The present multi-stage LHC collimation system was designed to handle 360 MJ stored beam energy and withstand realistic losses only for this nominal beam. Therefore, the challenging HL-LHC beam parameters pose strong concerns for beam collimation, which call for important upgrades of the present system. The objective of this thesis is to provide solid basis for optimum choices of materials for the different collimators that will be upgraded for the baseline layout of the HL-LHC collimation system. To achieve this goal, material-related limitations of the present system are identified and novel advanced composite materials are se...

  1. High Luminosity Large Hadron Collider A description for the European Strategy Preparatory Group

    CERN Document Server

    Rossi, L

    2012-01-01

    The Large Hadron Collider (LHC) is the largest scientific instrument ever built. It has been exploring the new energy frontier since 2009, gathering a global user community of 7,000 scientists. It will remain the most powerful accelerator in the world for at least two decades, and its full exploitation is the highest priority in the European Strategy for Particle Physics, adopted by the CERN Council and integrated into the ESFRI Roadmap. To extend its discovery potential, the LHC will need a major upgrade around 2020 to increase its luminosity (rate of collisions) by a factor of 10 beyond its design value. As a highly complex and optimized machine, such an upgrade of the LHC must be carefully studied and requires about 10 years to implement. The novel machine configuration, called High Luminosity LHC (HL-LHC), will rely on a number of key innovative technologies, representing exceptional technological challenges, such as cutting-edge 13 tesla superconducting magnets, very compact and ultra-precise superconduc...

  2. A Possible 1.8 K Refrigeration Cycle for the Large Hadron Collider

    CERN Document Server

    Millet, F; Tavian, L; Wagner, U

    1998-01-01

    The Large Hadron Collider (LHC) under construction at the European Laboratory for Particle Physics, CERN, will make use of superconducting magnets operating below 2.0 K. This requires, for each of the eight future cryogenic installations, an isothermal cooling capacity of up to 2.4 kW obtained by vaporisation of helium II at 1.6 kPa and 1.8 K. The process design for this cooling duty has to satisfy several demands. It has to be adapted to four already existing as well as to four new refrigerators. It must cover a dynamic range of one to three, and it must to allow continuous pump-down from 4.5 K to 1.8 K. A possible solution, as presented in this paper, includes a combination of cold centrifugal and warm volumetric compressors. It is characterised by a low thermal load on the refrigerator, and a large range of adaptability to different operation modes. The expected power factor for 1.8 K cooling is given, and the proposed control strategy is explained.

  3. Modelling of flexibles for structural analysis of short straight section of Large Hadron Collider

    International Nuclear Information System (INIS)

    Abhay Kumar; Dutta, Subhajit; Dwivedi, Jishnu; Soni, H.C.

    2003-01-01

    Short Straight Section (SSS) of Large hadron Collider (LRCM) is a 8-meter long structure with a diameter of 1 meter and it houses a twin quadrupole. The cryogens are fed to the Sass through a jumper connection between Cryogenic Distribution Line (QRL) and SSS. The bus bars travel through interconnection bellows to adjoining magnets. CAT is studying the structural behavior of cold mass and the cryostat when subjected to various forces imposed on the SSS under various operating conditions of LHC machine including realignment required to compensate local sinking of the floor of the tunnel during the LHC machine's lifetime. CAT did calculation of reaction forces and moments on the Short Straight Section due to presence of jumper connection last year after the experimental verification of finite element model at CERN. Subsequently, a unified Fe model consisting of cold mass, cold feet, vacuum vessel, main vacuum vessel bellows (large sleeves), magnet interconnects, jumper connection, service module and precision motion jacks is being developed for studying the structural behaviour. (author)

  4. QCD and low-x physics at a Large Hadron electron Collider

    CERN Document Server

    Laycock, Paul

    2012-01-01

    The Large Hadron electron Collider (LHeC) is a proposed facility which will exploit the new world of energy and intensity offered by the LHC for electron-proton scattering, through the addition of a new electron accelerator. This contribution, which is derived from the draft CERN-ECFA-NuPECC Conceptual Design report (due for release in 2012), addresses the expected impact of the LHeC precision and extended kinematic range for low Bjorken-x and diffractive physics, and detailed simulation studies and prospects for high precision QCD and electroweak fits. Numerous observables which are sensitive to the expected low-x saturation of the parton densities are explored. These include the inclusive electron-proton scattering cross section and the related structure functions $F_2$ and $F_L$, as well as exclusive processes such as deeply-virtual Compton scattering and quasi-elastic heavy vector meson production and diffractive virtual photon dissociation. With a hundred times the luminosity that was achieved at HERA, s...

  5. Accelerator physics and technology challenges of very high energy hadron colliders

    Science.gov (United States)

    Shiltsev, Vladimir D.

    2015-08-01

    High energy hadron colliders have been in the forefront of particle physics for more than three decades. At present, international particle physics community considers several options for a 100 TeV proton-proton collider as a possible post-LHC energy frontier facility. The method of colliding beams has not fully exhausted its potential but has slowed down considerably in its progress. This paper briefly reviews the accelerator physics and technology challenges of the future very high energy colliders and outlines the areas of required research and development towards their technical and financial feasibility.

  6. Lecture | CERN prepares its long-term future: a 100-km circular collider to follow the LHC? | CERN Globe | 11 March

    CERN Multimedia

    2015-01-01

    Particle physics is a long-term field of research: the LHC was originally conceived in the 1980s, but did not start running until 25 years later. An accelerator unlike any other, it is now just at the start of a programme that is set to run for another 20 years.   Frédérick Bordry. While the LHC programme is already well defined for the next two decades, it is now time to look even further ahead, and so CERN is initiating an exploratory study for a future long-term project centred on a next-generation circular collider with a circumference of 80 to 100 kilometres. A worthy successor to the LHC, whose collision energies will reach 13 TeV in 2015, such an accelerator would allow particle physicists to push the boundaries of knowledge even further. The Future Circular Collider (FCC) programme will focus especially on studies for a hadron collider, like the LHC, capable of reaching unprecedented energies in the region of 100 TeV. Opening with an introduction to the LHC and...

  7. Higgs boson production at hadron colliders at N3LO in QCD

    Science.gov (United States)

    Mistlberger, Bernhard

    2018-05-01

    We present the Higgs boson production cross section at Hadron colliders in the gluon fusion production mode through N3LO in perturbative QCD. Specifically, we work in an effective theory where the top quark is assumed to be infinitely heavy and all other quarks are considered to be massless. Our result is the first exact formula for a partonic hadron collider cross section at N3LO in perturbative QCD. Furthermore, our result is an analytic computation of a hadron collider cross section involving elliptic integrals. We derive numerical predictions for the Higgs boson cross section at the LHC. Previously this result was approximated by an expansion of the cross section around the production threshold of the Higgs boson and we compare our findings. Finally, we study the impact of our new result on the state of the art prediction for the Higgs boson cross section at the LHC.

  8. CERN told to start technical thinking for next collider

    CERN Multimedia

    1998-01-01

    CERN has been told to begin technical design work for the successor to the LHC. A report commissioned last year, suggests that future design work should focus on developping cost-effective high-field magnets (1 page).

  9. Top-quark pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Valentin

    2011-12-08

    In this thesis we investigate several phenomenologically important properties of top-quark pair production at hadron colliders. We calculate double differential cross sections in two different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI) kinematics. In pair invariant-mass kinematics we are able to present results for the double differential cross section with respect to the invariant mass of the top-quark pair and the top-quark scattering angle. Working in the threshold region, where the pair invariant mass M is close to the partonic center-of-mass energy {radical}(s), we are able to factorize the partonic cross section into different energy regions. We use renormalization-group (RG) methods to resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy. On a technical level this is done using effective field theories, such as heavy-quark effective theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied when working in 1PI kinematics, leading to a calculation of the double differential cross section with respect to transverse-momentum pT and the rapidity of the top quark. We restrict the phase-space such that only soft emission of gluons is possible, and perform a NNLL resummation of threshold logarithms. The obtained analytical expressions enable us to precisely predict several observables, and a substantial part of this thesis is devoted to their detailed phenomenological analysis. Matching our results in the threshold regions to the exact ones at next-to-leading order (NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed order perturbation theory. We give numerical results for the invariant mass distribution of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum. We predict the total cross section, separately for both

  10. Possibilities of polarized protons in Sp anti p S and other high energy hadron colliders

    International Nuclear Information System (INIS)

    Courant, E.D.

    1984-01-01

    The requirements for collisions with polarized protons in hadron colliders above 200 GeV are listed and briefly discussed. Particular attention is given to the use of the ''Siberan snake'' to eliminate depolarizing resonances, which occur when the spin precession frequency equals a frequency contained in the spectrum of the field seen by the beam. The Siberian snake is a device which makes the spin precession frequency essentially constant by using spin rotators, which precess the spin by 180 0 about either the longitudinal or transverse horizontal axis. It is concluded that operation with polarized protons should be possible at all the high energy hadron colliders

  11. Design considerations and expectations of a very large hadron collider

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1996-01-01

    The ELOISATRON Project is a proton-proton collider at very high energy and very large luminosity. The main goal is to determine the ultimate performance that is possible to achieve with reasonable extrapolation of the present accelerator technology. A complete study and design of the collider requires that several steps of investigations are undertaken. The authors count five of such steps as outlined in the report

  12. CERN and the LHC

    CERN Multimedia

    Cramer, J G

    1992-01-01

    CERN, a high-energy physics laboratory in Europe, is planning to build a more powerful particle accelerator, the Large Hadronic Collider. The US spreads its accelerators around the country while most of Europe's research is conducted at and around CERN.

  13. Processes with weak gauge boson pairs at hadron colliders. Precise predictions and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Salfelder, Lukas

    2017-02-08

    In the last years, scattering processes comprising pairs of the massive weak gauge bosons gain more and more attention. Those reactions provide particularly promising means to investigate the very mechanism responsible for electroweak symmetry breaking in the Standard Model of particle physics and to search for new physics entering via the weak sector of the theory. Precisely predicting the differential distributions of the final-state particles in realistic conditions is an essential prerequisite to potentially reveal tiny deviations induced by physics beyond the Standard Model. In this thesis we present a calculation of the next-to-leading order (NLO) electroweak corrections to W-boson pair production at CERNs Large Hadron Collider (LHC), as well as a detailed analysis of vector-boson scattering (VBS) processes at a future high-energy proton.proton collider. In particular, our calculation of the NLO electroweak corrections to the hadronic process pp→W{sup +}W{sup -}→4 leptons takes the leptonic W-boson decays as well as all off-shell effects fully into account and, thus, is the first prediction providing NLO accuracy everywhere in phase space. Employing realistic event selection criteria, we study the influence of the corrections in situations that are typical for the experimental analyses in the high-energy region and for Higgs-boson precision studies in the channel H→WW{sup *}, to which direct W-boson pair production represents an important irreducible background. We observe non-trivial distortions of the differential distributions that, if not properly included in upcoming analyses, could easily be misidentified as first signs of new physics. Furthermore, we compare our predictions to previous results obtained by employing the so-called double-pole approximation. At small and intermediate scales the two approaches show the expected agreement at the level of fractions of a percent, while in the TeV range the differences may easily reach several tens of

  14. Analysis of the fragmentation properties of quark and gluon jets at the CERN SPS panti p collider

    International Nuclear Information System (INIS)

    Arnison, G.; Albrow, M.G.; Denby, B.; Flynn, P.; Grayer, G.; Haynes, W.; Roberts, C.; Scott, W.; Shah, T.P.; Allkofer, O.C.; Dau, D.; Leuchs, R.; Levegrun, S.; Astbury, A.; Fincke Keeler, M.; Keeler, R.; Sobie, R.; Zanello, L.; Aubert, B.; Catz, P.; Della Negra, M.; Ghez, P.; Gonidec, A.; Linglin, D.; Minard, M.N.; Mours, B.; Perault, C.; Vialle, J.P.; Wingerter, I.; Yvert, M.; Bacci, C.; Ceradini, F.; Ciapetti, G.; Diaccio, A.; Lacava, F.; Moricca, M.; Paoluzi, L.; Piano Mortari, G.; Salvini, G.; Batley, J.R.; Buckley, E.; Eisenhandler, E.; Gibson, W.R.; Honma, A.; Kalmus, P.I.P.; Kyberd, P.; Nandi, A.; Thompson, G.; Bauer, G.; Geer, S.; Goodman, M.; Rohlf, J.; Sumorok, K.; Centro, S.; Bezaguet, A.; Bock, R.K.; Cennini, P.; Cittolin, S.; Demoulin, M.; Hofmann, H.; Jank, W.; Jorat, G.; Levi, M.; Maurin, G.; Meyer, O.; Meyer, T.; Muller, T.; Naumann, L.; Norton, A.; Pauss, F.; Placci, A.; Porte, J.P.; Rich, J.; Rijssenbeek, M.; Rubbia, C.; Sass, J.; Sadoulet, B.; Schinzel, D.; Vuillemin, V.; Wilke, R.; Wyatt, T.; Leveque, A.; Dorenbosch, J.; Holthuizen, D.J.; Eijk, B. van; Cline, D.; Markiewicz, T.; Mohammadi, M.; Cochet, C.; Debeer, M.; Denegri, D.; Givernaud, A.; Laugier, J.P.; Locci, E.; Savoy-Navarro, A.; Verecchia, P.; Corden, M.; Dowell, J.D.; Edgecock, R.; Ellis, N.; Garvey, J.; Homer, R.J.; Kenyon, I.; McMahon, T.; Streets, J.; Watkins, P.; Wilson, J.; Dallman, D.; Fruehwirth, R.; Markytan, M.; Strauss, J.; Szonczo, F.; Wahl, H.D.; Wulz, C.E.; Dobrzynski, L.; Fontaine, G.; Giraud-Heraud, Y.; Kryn, D.; Martin, T.; Mendiburu, J.P.; Sajot, G.; Tao, C.; Vrana, J.; Eggert, K.; Erhard, P.; Faissner, H.; Hansl-Kozanecka, T.; Radermacher, E.; Redelberger, T.; Reithler, H.; Tscheslog, E.; Frey, R.; Guryn, W.; Kernan, A.; Kozanecki, W.; Morgan, K.; Pitman, D.; Ransdell, J.; Sheer, I.; Smith, D.; Karimaeki, V.; Kinnunen, R.; Pietarinen, E.; Pimiae, M.; Tuominiemi, J.; Revol, J.P.; Calvetti, M.; Dibitonto, D.; Ghesquiere, C.; Giboni, K.L.; Hertzberger, L.O.; Hoffmann, D.; Lees, J.P.; Lehmann, H.; Rossi, P.; Stenzler, M.; Timmer, J.; Colas, J.; Kinnunen, R.

    1986-01-01

    A sample of two-jet events from the UA1 experiment at the CERN panti p Collider has been used to study the fragmentation of high-energy quark and gluon jets into charged hadrons. Compared with lower-energy jets observed in e + e - and pp collisions, the fragmentation function measured in the present experiment is softer (i.e. peaked to smaller values of z) and the mean internal transverse momentum is larger, mainly because of the effects of the QCD scaling violations. Using our knowledge of the quark and gluon structure functions in the proton, together with the QCD matrix elements, a statistical separation of quark and gluon jets is achieved within the present experiment. The fragmentation function for the gluon jets is found to be softer, and the angular spread of the fragmentation products larger, than is the case for quark jets. (orig.)

  15. A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gildemeister, Otto; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmid, Peter; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trilling, George; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga–electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.

  16. ECFA study week on instrumentation technology for high-luminosity hadron colliders. Proceedings. Vol. 1 and 2

    International Nuclear Information System (INIS)

    Fernandez, E.; Jarlskog, G.

    1989-01-01

    The main aim of the present ECFA Study Week on 'Instrumentation Technology for High Luminosity Hadron Colliders' was to review the progress made after the La Thuile Workshop (1987) and to critically evaluate which of the detection methods and data handling structures could be suitable for luminosities in the 10 34 cm -2 s -1 range. The Study Week was sponsored by the Universitat Autonoma de Barcelona, the Comision Interministerial Ciencia y Tecnologia of Spain, CERN, and the Commission of the European Communities. It attracted 220 participants, including 35 from industry and good representation from groups planning experiments at the SSC. The various conveners gathered many excellent and original contributions, which led to intense discussions. Subjects covered include the use of scintillating fibres; silicon, gaseous, and crystal detectors, particle identification; readout and data acquisition systems. A separate session dealt with the contributions of industry to this kind of research. (orig.)

  17. A particle consistent with the Higgs boson observed with the ATLAS detector at the large hadron collider

    International Nuclear Information System (INIS)

    Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kononov, A.I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T.C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J.E.; Temming, K.K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; Radziewski, H. von; Vu Anh, T.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L.A.M.; Winkelmann, S.; Xie, S.; Zimmermann, S.; Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J.B.; Bolnet, N.M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A.I.; Formica, A.; Gauthier, L.; Giraud, P.F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J.F.; Legendre, M.; Maiani, C.; Mal, P.; Manjarres Ramos, J.A.; Mansoulie, B.; Meyer, J.P.; Mijovic, L.; Morange, N.; Nguyen Thi Hong, V.; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C.R.; Schoeffel, L.; Schune, Ph.; Schwindling, J.; Simard, O.; Vranjes, N.; Xiao, M.; Abdel Khalek, S.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdarios, C.; De La Taille, C.; De Vivie De Regie, J.B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J.F.; Guillemin, T.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lorenzo Martinez, N.; Lounis, A.; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J.B.; Schaarschmidt, J.; Schaffer, A.C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J.J.; Wicek, F.; Zerwas, D.; Zhang, Z.; Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Glatzer, J.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V.V.; Kraus, J.K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A.M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A.E.; Pohl, D.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M.J.; Schwindt, T.; Stillings, J.A.; Therhaag, J.; Tsung, J.W.; Uchida, K.; Uhlenbrock, M.; Urquijo, P.; Vogel, A.; Toerne, E. von; Wang, T.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.; Abbott, B.; Gutierrez, P.; Jana, D.K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.

    2012-01-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself. (authors)

  18. A Demonstration Experiment for the Forecast of Magnetic Field and Field Errors in the Large Hadron Collider

    CERN Document Server

    Sammut, N J; Bottura, L; Deferne, G; Lamont, M; Miles, J; Sanfilippo, S; Strzelczyk, M; Venturini-Delsolaro, W; Xydi, P

    2008-01-01

    In order to reduce the burden on the beam-based feedback, the Large Hadron Collider control system is equipped with the Field Description for the LHC (FiDeL) which provides a forecast of the magnetic field and the multipole field errors. FiDeL has recently been extensively tested at CERN to determine main field tracking, multipole forecasting and compensation accuracy. This paper describes the rationale behind the tests, the procedures employed to power the main magnets and their correctors, and finally, we present the results obtained. We also give an indication of the prediction accuracy that the system can deliver during the operation of the LHC and we discuss the implications that these will have on the machine performance.

  19. Public Lecture Collide@CERN Pro Helvetia | 23 July | Main Auditorium

    CERN Multimedia

    2015-01-01

    You are very warmly invited to the opening presentation of Fragment.In’s residency at CERN.   Fragment.In: Simon de Diesbach, Laura Perrenoud and Marc Dubois. 23 July 2015 - 7 p.m. Main Auditorium  The lecture will be followed by a drinks reception at 8.30 p.m. Doors open at 6.30 p.m.  Opening address by Rolf Heuer, CERN Director-General, Michel Vust, project leader at the Swiss Arts Council Pro Helvetia, and Monica Bello, Head of Arts@CERN. Fragment.In are the winners of Collide@CERN Pro Helvetia, formed by Laura Perrenoud, Simon de Diesbach, and Marc Dubois. They will present their artistic work along with their CERN scientific inspiration partner, who will present his/her scientific work. In their proposal, Fragment.In took a unique, original and creative approach to data visualization. We look forward to having them at CERN.  Fragment.In Collide@CERN is the three month residency programme providing artists with time and...

  20. Diffractive dissociation of top hadrons at collider energies

    International Nuclear Information System (INIS)

    Di Bitonto, D.

    1983-01-01

    In an optical model in which heavy-flavour production is described as coherent scattering within the nucleon, the total heavy-flavour cross-section is expected to obey a m q -2 dependence, while the partial differential cross-section dσ/dp T for top hadrons is expected to show a broad plateau above approx. 20 GeV/c in transverse momentum. The expected top hadron signal dσ/dp T is 60 nb for m t = 20 GeV/c 2 appearing in the approx. angular range of expected value of θ 10 deg - 20 deg. (author)

  1. Collider workshop

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The promise of initial results after the start of operations at CERN's SPS proton-antiproton collider and the prospects for high energy hadron collisions at Fermilab (Tevatron) and Brookhaven (ISABELLE) provided a timely impetus for the recent Topical Workshop on Forward Collider Physics', held at Madison, Wisconsin, from 10-12 December. It became the second such workshop to be held, the first having been in 1979 at the College de France, Paris. The 100 or so participants had the chance to hear preliminary results from the UA1, UA4 and UA5 experiments at the CERN SPS collider, together with other new data, including that from proton-antiproton runs at the CERN Intersecting Storage Rings

  2. Computer simulation of the emittance growth due to noise in large hadron colliders

    International Nuclear Information System (INIS)

    Lebedev, V.

    1993-03-01

    The problem of emittance growth due to random fluctuations of the magnetic field in a hadron collider is considered. The results of computer simulations are compared with the analytical theory developed earlier. A good agreement was found between the analytical theory predictions and the computer simulations for the collider tunes located far enough from high order betatron resonances. The dependencies of the emittance growth rate on noise spectral density, beam separation at the Interaction Point (IP) and value of beam separation at long range collisions are studied. The results are applicable to the Superconducting Super Collider (SSC)

  3. Hunt for Higgs particle wins time for CERN collider

    CERN Multimedia

    Abbott, A

    2000-01-01

    Physicists at CERN believe that a new analysis of their recent data indicates it is possible they have witnessed the creation of the Higgs boson. As a result the director general has agreed to extend the operation of LEP by one more month (1/2 page).

  4. A search for relativistic particles with fractional electric charge at the Cern collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    A search for relativistic particles with fractional electric charge has been performed at the CERN collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (40 gr cm−2) limits this search to particles without strong...

  5. Large Hadron Collider in crisis as magnet costs spiral upwards

    CERN Multimedia

    Adam, D

    2001-01-01

    Managers of the LHC project admitted this week that it faces cost overruns of several hundred million dollars. CERN will face years of budget cuts but this will cover only a fraction of the extra costs - the 20 member states will be asked to cover the rest (1 page).

  6. Higgs-boson production with one bottom-quark jet at hadron colliders

    International Nuclear Information System (INIS)

    Dawson, S.; Jackson, C.B.; Reina, L.; Wackeroth, D.

    2005-01-01

    We present total rates and kinematic distributions for the associated production of a single bottom quark and a Higgs boson at the Fermilab Tevatron and CERN Large Hardon Collider. We include next-to-leading order QCD corrections and compare the results obtained in the four and five flavor number schemes for parton distribution functions

  7. Recognizing Critical Behavior amidst Minijets at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Rudolph C. Hwa

    2015-01-01

    Full Text Available The transition from quarks to hadrons in a heavy-ion collision at high energy is usually studied in two different contexts that involve very different transverse scales: local and nonlocal. Models that are concerned with the pT spectra and azimuthal anisotropy belong to the former, that is, hadronization at a local point in (η,ϕ space, such as the recombination model. The nonlocal problem has to do with quark-hadron phase transition where collective behavior through near-neighbor interaction can generate patterns of varying sizes in the (η,ϕ space. The two types of problems are put together in this paper both as brief reviews separately and to discuss how they are related to each other. In particular, we ask how minijets produced at LHC can affect the investigation of multiplicity fluctuations as signals of critical behavior. It is suggested that the existing data from LHC have sufficient multiplicities in small pT intervals to make the observation of distinctive features of clustering of soft particles, as well as voids, feasible that characterize the critical behavior at phase transition from quarks to hadrons, without any ambiguity posed by the clustering of jet particles.

  8. Inclusive Charged Particle Production at the CERN pp Collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    Transverse momentum distributions of pions, kaons and protons have been measured around 90° in the UA2 detector at the SPS p collider, at a CM energy of 540 GeV. All the cross sections have increased by more than a factor of 2 over those measured at ISR energies and exhibit a flatter behaviour wi...

  9. Beam losses from ultra-peripheral nuclear collisions between $^{208}$Pb$^{82+}$ ions in the Large Hadron Collider and their alleviation

    CERN Document Server

    Bruce, R.; Jowett, J.M.; Bocian, D.; CERN. Geneva. BE Department

    2009-01-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  10. Working group report: Dictionary of Large Hadron Collider signatures

    Indian Academy of Sciences (India)

    4Centre for High Energy Physics, Indian Institute of Science, Bangalore 560 012, ... of 14 TeV will shed light on the origin of electroweak symmetry breaking and are expected to provide collider signatures of dark matter (DM), thus directly ... SUSY superpartners have a different spin compared to their partners, while LHT.

  11. Vector-like fermion and standard Higgs production at hadron colliders

    International Nuclear Information System (INIS)

    Aguila, F. del; Ametller, L.; Kane, G.L.; Vidal, J.; Centro Mixto Valencia Univ./CSIC, Valencia

    1990-01-01

    Vector-like fermions are characterized by large neutral current decay rates, in particular into Higgs bosons. If they exist, their clear signals at hadron colliders open a window to Higgs detection, especially to the intermediate Higgs mass region. We discuss in some detail rates and signatures for simple cases. (orig.)

  12. Physics and Analysis at a Hadron Collider - Searching for New Physics (2/3)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    This is the second lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This second lecture discusses techniques important for analyses searching for new physics using the CDF B_s --> mu+ mu- search as a specific example. The lectures are aimed at graduate students.

  13. Discovering a Light Scalar or Pseudoscalar at The Large Hadron Collider

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sannino, Francesco

    2012-01-01

    The allowed standard model Higgs mass range has been reduced to a region between 114 and 130 GeV or above 500 GeV, at the 99% confidence level, since the Large Hadron Collider (LHC) program started. Furthermore some of the experiments at Tevatron and LHC observe excesses that could arise from...

  14. Status of the 16 T dipole development program for a future hadron collider

    NARCIS (Netherlands)

    Tommasini, Davide; Arbelaez, Diego; Auchmann, Bernhard; Bajas, Hugues; Bajko, Marta; Ballarino, Amalia; Barzi, Emanuela; Bellomo, Giovanni; Benedikt, Michael; Izquierdo Bermudez, Susana; Bordini, Bernardo; Bottura, Luca; Brouwer, Lucas; Buzio, Marco; Caiffi, Barbara; Caspi, Shlomo; Dhalle, Marc; Durante, Maria; De Rijk, Gijs; Fabbricatore, Pasquale; Farinon, Stefania; Ferracin, Paolo; Gao, Peng; Gourlay, Steve; Juchno, Mariusz; Kashikhin, Vadim; Lackner, Friedrich; Lorin, Clement; Marchevsky, Maxim; Marinozzi, Vittorio; Martinez, Teresa; Munilla, Javier; Novitski, Igor; Ogitsu, Toru; Ortwein, Rafal; Perez, Juan Carlos; Petrone, Carlo; Prestemon, Soren; Prioli, Marco; Rifflet, Jean Michel; Rochepault, Etienne; Russenschuck, Stephan; Salmi, Tiina; Savary, Frederic; Schoerling, Daniel; Segreti, Michel; Senatore, Carmine; Sorbi, Massimo; Stenvall, Antti; Todesco, Ezio; Toral, Fernando; Verweij, Arjan P.; Wessel, W.A.J.; Wolf, Felix; Zlobin, Alexander

    A next step of energy increase of hadron colliders beyond the LHC requires high-field superconducting magnets capable of providing a dipolar field in the range of 16 T in a 50 mm aperture with accelerator quality. These characteristics could meet the re-quirements for an upgrade of the LHC to twice

  15. Summary of the Very Large Hadron Collider Physics and Detector subgroup

    International Nuclear Information System (INIS)

    Denisov, D.; Keller, S.

    1996-01-01

    We summarize the activity of the Very Large Hadron Collider Physics and Detector subgroup during Snowmass 96. Members of the group: M. Albrow, R. Diebold, S. Feher, L. Jones, R. Harris, D. Hedin, W. Kilgore, J. Lykken, F. Olness, T. Rizzo, V. Sirotenko, and J. Womersley. 9 refs

  16. Improved squark and gluino mass limits from searches for supersymmetry at hadron colliders

    NARCIS (Netherlands)

    Beenakker, W.; Brensing, S.; D'Onofrio, M.; Krämer, M.; Kulesza, A.; Laenen, E.; Martinzez, M.; Niessen, I.

    2012-01-01

    Squarks and gluinos have been searched for at hadron colliders in events with multiple jets and missing transverse energy. No excess has been observed to date, and from a comparison of experimental cross section limits and theoretical cross section predictions one can deduce lower bounds on the

  17. One-loop helicity amplitudes for t anti t production at hadron colliders

    International Nuclear Information System (INIS)

    Badger, Simon; Yundin, Valery

    2011-01-01

    We present compact analytic expressions for all one-loop helicity amplitudes contributing to t anti t production at hadron colliders. Using recently developed generalised unitarity methods and a traditional Feynman based approach we produce a fast and flexible implementation. (ORIG.)

  18. One-loop helicity amplitudes for t anti t production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Badger, Simon [The Niels Bohr International Academy and Discovery Center, Copenhagen (Denmark). Niels Bohr Inst.; Sattler, Ralf [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Yundin, Valery [Silesia Univ., Katowice (Poland). Inst. of Physics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2011-01-15

    We present compact analytic expressions for all one-loop helicity amplitudes contributing to t anti t production at hadron colliders. Using recently developed generalised unitarity methods and a traditional Feynman based approach we produce a fast and flexible implementation. (ORIG.)

  19. CERN: Making CLIC tick

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    While the Large Hadron Collider (LHC) scheme for counter-rotating proton beams in a new superconducting ring to be built in CERN's existing 27-kilometre LEP tunnel is being pushed as the Laboratory's main construction project for the 1990s, research and development continues in parallel for an eventual complementary attack on new physics frontiers with CERN's Linear Collider - CLIC - firing TeV electron and positron beams at each other

  20. There’s more to particle physics at CERN than colliders

    CERN Multimedia

    2016-01-01

    CERN’s scientific programme must be compelling, unique, diverse, and integrated into the global landscape of particle physics. One of the Laboratory’s primary goals is to provide a diverse range of excellent physics opportunities and to put its unique facilities to optimum use, maximising the scientific return.   In this spirit, we have recently established a Physics Beyond Colliders study group with a mandate to explore the unique opportunities offered by the CERN accelerator complex to address some of today’s outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The study group will provide input to the next update of the European Strategy for Particle Physics. The process kicked off with a two-day workshop at CERN on 6 and 7 September, organised by the study group conveners: Joerg Jaeckel (Heidelberg), Mike Lamont (CERN) and Claude Vallée (CPPM Marseille and DESY). Its purpo...

  1. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Mirarchi, D.; Redaelli, S.; Scandale, W.; Hall, G.

    2017-01-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  2. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Science.gov (United States)

    Mirarchi, D.; Hall, G.; Redaelli, S.; Scandale, W.

    2017-06-01

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going.

  3. Design and implementation of a crystal collimation test stand at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Mirarchi, D.; Redaelli, S.; Scandale, W. [CERN, European Organization for Nuclear Research, Geneva 23 (Switzerland); Hall, G. [Imperial College, Blackett Laboratory, London (United Kingdom)

    2017-06-15

    Future upgrades of the CERN Large Hadron Collider (LHC) demand improved cleaning performance of its collimation system. Very efficient collimation is required during regular operations at high intensities, because even a small amount of energy deposited on superconducting magnets can cause an abrupt loss of superconducting conditions (quench). The possibility to use a crystal-based collimation system represents an option for improving both cleaning performance and impedance compared to the present system. Before relying on crystal collimation for the LHC, a demonstration under LHC conditions (energy, beam parameters, etc.) and a comparison against the present system is considered mandatory. Thus, a prototype crystal collimation system has been designed and installed in the LHC during the Long Shutdown 1 (LS1), to perform feasibility tests during the Run 2 at energies up to 6.5 TeV. The layout is suitable for operation with proton as well as heavy ion beams. In this paper, the design constraints and the solutions proposed for this test stand for feasibility demonstration of crystal collimation at the LHC are presented. The expected cleaning performance achievable with this test stand, as assessed in simulations, is presented and compared to that of the present LHC collimation system. The first experimental observation of crystal channeling in the LHC at the record beam energy of 6.5 TeV has been obtained in 2015 using the layout presented (Scandale et al., Phys Lett B 758:129, 2016). First tests to measure the cleaning performance of this test stand have been carried out in 2016 and the detailed data analysis is still on-going. (orig.)

  4. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    Science.gov (United States)

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  5. Study of Hadron Production in Hadron-Nucleus and Nucleus-Nucleus Collisions at the CERN SPS

    CERN Multimedia

    Klochkov, V; Herve, A E; Kowalski, S; Kaptur, E A; Kowalik, K L; Dominik, W M; Matulewicz, T N; Krasnoperov, A; Feofilov, G; Vinogradov, L; Kovalenko, V; Johnson, S R; Planeta, R J; Rubbia, A; Marton, K; Messerly, B A; Puzovic, J; Bogomilov, M V; Bravar, A; Renfordt, R A E; Deveaux, M; Engel, R R; Grzeszczuk, A; Davis, N; Kuich, M; Lyubushkin, V; Kondratev, V; Kadija, K; Diakonos, F; Slodkowski, M A; Rauch, W H; Pistillo, C; Laszlo, A; Nakadaira, T; Hasegawa, T; Sadovskiy, A; Morozov, S; Petukhov, O; Mathes, H; Roehrich, D; Marcinek, A J; Marino, A D; Grebieszkow, K; Di luise, S; Wlodarczyk, Z; Rybczynski, M A; Wojtaszek-szwarc, A; Nirkko, M C; Sakashita, K; Golubeva, M; Kurepin, A; Manic, D; Kolev, D I; Kisiel, J E; Koziel, M E; Rondio, E; Larsen, D T; Czopowicz, T R; Seyboth, P; Turko, L; Guber, F; Marin, V; Busygina, O; Strikhanov, M; Taranenko, A; Cirkovic, M; Roth, M A; Pulawski, S M; Aduszkiewicz, A M; Bunyatov, S; Vechernin, V; Nagai, Y; Anticic, T; Dynowski, K M; Mackowiak-pawlowska, M K; Stefanek, G; Pavin, M; Fodor, Z P; Nishikawa, K; Tada, M; Blondel, A P P; Stroebele, H W; Posiadala, M Z; Kolesnikov, V; Andronov, E; Zimmerman, E D; Antoniou, N; Majka, Z; Dumarchez, J; Naskret, M; Ivashkin, A; Tsenov, R V; Koziel, M G; Schmidt, K J; Melkumov, G; Popov, B; Panagiotou, A; Richter-was, E M; Morgala, S J; Paolone, V; Damyanova, A; Gazdzicki, M; Unger, M T; Wilczek, A G; Stepaniak, J M; Seryakov, A; Susa, T; Staszel, P P; Brzychczyk, J; Maksiak, B; Tefelski, D B

    2007-01-01

    The NA61/SHINE (SHINE = SPS Heavy Ion and Neutrino Experiment) experiment is a large acceptance hadron spectrometer at the CERN SPS for the study of the hadronic final states produced in interactions of various beam particles (pions, protons, C, S and In) with a variety of fixed targets at the SPS energies. The main components of the current detector were constructed and used by the NA49 experiment. The physics program of NA61/SHINE consists of three main subjects. In the first stage of data taking (2007-2009) measurements of hadron production in hadron-nucleus interactions needed for neutrino (T2K) and cosmic-ray (Pierre Auger and KASCADE) experiments will be performed. In the second stage (2009-2011) hadron production in proton-proton and proton-nucleus interactions needed as reference data for a better understanding of nucleus-nucleus reactions will be studied. In the third stage (2009-2013) energy dependence of hadron production properties will be measured in nucleus-nucleus collisions as well as in p+p a...

  6. 1994 expected to be year of decision for European Super Collider.

    CERN Multimedia

    Sweet, William N

    1994-01-01

    Plans to build Europe's counterpart to the US' Superconducting Super Collider, the Large Hadron Collider, may push through when the CERN Council meets on Apr 15, 1994. The European scientific community is optimistic that the plan will be approved.

  7. Unintegrated parton distributions and electroweak boson production at hadron colliders

    CERN Document Server

    Watt, G; Ryskin, M G

    2004-01-01

    We describe the use of doubly-unintegrated parton distributions in hadron-hadron collisions, using the (z,k_t)-factorisation prescription where the transverse momentum of the incoming parton is generated in the last evolution step. We apply this formalism to calculate the transverse momentum (P_T) distributions of produced W and Z bosons and compare the predictions to Tevatron Run 1 data. We find that the observed P_T distributions can be generated almost entirely by the leading order q_1 q_2 -> W,Z subprocesses, using known and universal doubly-unintegrated quark distributions. We also calculate the P_T distribution of the Standard Model Higgs boson at the LHC, where the dominant production mechanism is by gluon-gluon fusion.

  8. Dimuon production at the CERN panti p collider

    International Nuclear Information System (INIS)

    Moser, H.G.

    1987-10-01

    In panti p collisions at 630 (540) GeV centre of mass energy heavy quarks are copiously produced, mainly by gluon fusion. About 10% of them decay semileptonically into muons. In order to study heavy quark physics at the collider, we selected dimuon event satisfying following cuts: P t > 3 GeV/c (each muon) m μμ > 6 GeV/c 2 . (orig./HSI)

  9. Ultra-high-field magnets for future hadron colliders

    International Nuclear Information System (INIS)

    McIntyre, P.M.; Shen, W.

    1997-01-01

    Several new concepts in magnetic design and coil fabrication are being incorporated into designs for ultra-high field collider magnets: a 16 Tesla block-coil dual dipole, also using Nb 3 Sn cable, featuring simple pancake coil construction and face-loaded prestress geometry; a 330 T/m block-coil quadrupole; and a ∼ 20 Tesla pipe-geometry dual dipole, using A15 or BSCCO tape. Field design and fabrication issues are discussed for each magnet

  10. CERN strives to stay ahead

    International Nuclear Information System (INIS)

    Sutton, Christine.

    1987-01-01

    The paper examines the future of CERN, with respect to its proposed research programme and its need to save money. Proposals concerning what accelerators CERN should build for the future are outlined; machines such as the Large Hadron Collider and the CERN Linear Collider have been proposed. Experimental expectations for the first Large Electron Positron (LEP) collider (now close to completion) are briefly described, along with the experimental investigations for the second phase of operation of LEP where modifications will increase the machine's energy. Criticisms of CERN's management by its governing body are also discussed. (UK)

  11. Low-cost hadron colliders at Fermilab: A discussion paper

    International Nuclear Information System (INIS)

    Foster, G.W.; Malamud, E.

    1996-01-01

    New more economic approaches are required to continue the dramatic exponential rise in collider energies as represented by the well known Livingston plot. The old idea of low cost, low field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) advanced tunneling technologies for small diameter, non human accessible tunnels, (2) accurate remote guidance systems for tunnel survey and boring machine steering, (3) high T c superconductors operating at liquid N 2 or liquid H 2 temperatures, (4) industrial applications of remote manipulation and robotics, (5) digitally multiplexed electronics to minimize cables, (6) achievement of high luminosities in p-p and p-anti P colliders. The goal of this paper is to stimulate continuing discussions on approaches to this new collider and to identify critical areas needing calculations, construction of models, proof of principle experiments, and full scale prototypes in order to determine feasibility and arrive at cost estimates

  12. VUV photoemission studies of candidate Large Hadron Collider vacuum chamber materials

    Directory of Open Access Journals (Sweden)

    R. Cimino

    1999-06-01

    Full Text Available In the context of future accelerators and, in particular, the beam vacuum of the Large Hadron Collider (LHC, a 27 km circumference proton collider to be built at CERN, VUV synchrotron radiation (SR has been used to study both qualitatively and quantitatively candidate vacuum chamber materials. Emphasis is given to show that angle and energy resolved photoemission is an extremely powerful tool to address important issues relevant to the LHC, such as the emission of electrons that contributes to the creation of an electron cloud which may cause serious beam instabilities and unmanageable heat loads on the cryogenic system. Here we present not only the measured photoelectron yields from the proposed materials, prepared on an industrial scale, but also the energy and in some cases the angular dependence of the emitted electrons when excited with either a white light (WL spectrum, simulating that in the arcs of the LHC, or monochromatic light in the photon energy range of interest. The effects on the materials examined of WL irradiation and /or ion sputtering, simulating the SR and ion bombardment expected in the LHC, were investigated. The studied samples exhibited significant modifications, in terms of electron emission, when exposed to the WL spectrum from the BESSY Toroidal Grating Monochromator beam line. Moreover, annealing and ion bombardment also induce substantial changes to the surface thereby indicating that such surfaces would not have a constant electron emission during machine operation. Such characteristics may be an important issue to define the surface properties of the LHC vacuum chamber material and are presented in detail for the various samples analyzed. It should be noted that all the measurements presented here were recorded at room temperature, whereas the majority of the LHC vacuum system will be maintained at temperatures below 20 K. The results cannot therefore be directly applied to these sections of the machine until

  13. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    International Nuclear Information System (INIS)

    Hermes, Pascal Dominik

    2016-01-01

    The CERN Large Hadron Collider (LHC) stores and collides proton and 208 Pb 82+ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new tracking

  14. Heavy-ion collimation at the Large Hadron Collider. Simulations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hermes, Pascal Dominik

    2016-12-19

    The CERN Large Hadron Collider (LHC) stores and collides proton and {sup 208}Pb{sup 82+} beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with the collimators. Previous simulation tools used simplified models for the simulation of particle-matter interaction and showed discrepancies compared to the measured loss patterns. This thesis describes the development and application of improved heavy-ion collimation simulation tools. Two different approaches are presented to provide these functionalities. In the first presented tool, called STIER, fragmentation at the primary collimator is simulated with the Monte-Carlo event generator FLUKA. The ion fragments scattered out of the primary collimator are subsequently tracked as protons with ion-equivalent rigidities in the existing proton tracking tool SixTrack. This approach was used to prepare the collimator settings for the 2015 LHC heavy-ion run and its predictions allowed reducing undesired losses. More accurate simulation results are obtained with the second presented simulation tool, in which SixTrack is extended to track arbitrary heavy ions. This new

  15. CERN-BINP Workshop for Young Scientists in $e^{+}e^{-}$ Colliders

    CERN Document Server

    Linssen, Lucie; eCOL 2016

    2017-01-01

    The "CERN-BINP workshop for young scientists in e+e- colliders" is organised in the framework of the EU-funded CREMLIN project. The CREMLIN project aims at strengthening science cooperation between six Russian megascience facilities and related research infrastructure counterparts in Europe. BINP and CERN coordinate a dedicated CREMLIN work package focusing on a future super-charm-tau factory (SCT) at BINP. SCT aims at producing e+e- collisions with up to 5 GeV centre-of-mass energy and at very high luminosity. In parallel CERN is hosting design studies for two possible high-energy e+e- colliders: FCC-ee and CLIC. In matters of physics, design and technologies the BINP and CERN studies address technological and scientific questions of common interest. Similar issues are dealt with in the framework of other flavour factories and energy frontier e+e- colliders worldwide. The 3-day workshop provides young scientists (at the student and postdoc level) opportunities to present their work and exchange experiences. ...

  16. Rapidity correlations in Wγ production at hadron colliders

    International Nuclear Information System (INIS)

    Baur, U.; Errede, S.; Landsberg, G.

    1994-01-01

    We study the correlation of photon and charged lepton pseudorapidities, η(γ) and η(l), l=e,μ, in pp (-) →W ± γ+X→l ± at sign;sp T γ+X. In the standard model, the Δη(γ,l)=η(γ)-η(l) differential cross section is found to exhibit a pronounced dip at Δη(γ,l)∼ minus-plus 0.3 (=0) in p bar p(pp) collisions, which originates from the radiation zero present in q bar q'→Wγ. The sensitivity of the Δη(γ,l) distribution to higher order QCD corrections, nonstandard WWγ couplings, the W+ jet ''fake'' background, and the cuts imposed is explored. At hadron supercolliders, next-to-leading order QCD corrections are found to considerably obscure the radiation zero. The advantages of the Δη(γ,l) distribution over other quantities which are sensitive to the radiation zero are discussed. We conclude that photon-lepton rapidity correlations at the Fermilab Tevatron offer a unique opportunity to search for the standard model radiation zero in hadronic Wγ production

  17. The Quest for High Luminosity in Hadron Colliders (413th Brookhaven Lecture)

    International Nuclear Information System (INIS)

    Fischer, Wolfram

    2006-01-01

    In 1909, by bombarding a gold foil with alpha particles from a radioactive source, Ernest Rutherford and coworkers learned that the atom is made of a nucleus surrounded by an electron cloud. Ever since, scientists have been probing deeper and deeper into the structure of matter using the same technique. With increasingly powerful machines, they accelerate beams of particles to higher and higher energies, to penetrate more forcefully into the matter being investigated and reveal more about the contents and behavior of the unknown particle world. To achieve the highest collision energies, projectile particles must be as heavy as possible, and collide not with a fixed target but another beam traveling in the opposite direction. These experiments are done in machines called hadron colliders, which are some of the largest and most complex research tools in science. Five such machines have been built and operated, with Brookhaven's Relativistic Heavy Ion Collider (RHIC) currently the record holder for the total collision energy. One more such machine is under construction. Colliders have two vital performance parameters on which their success depends: one is their collision energy, and the other, the number of particle collisions they can produce, which is proportional to a quantity known as the luminosity. One of the tremendous achievements in the world's latest collider, RHIC, is the amazing luminosity that it produces in addition to its high energy. To learn about the performance evolution of these colliders and the way almost insurmountable difficulties can be overcome, especially in RHIC, join Wolfram Fischer, a physicist in the Collider-Accelerator (C-A) Department, who will give the next Brookhaven Lecture, on 'The Quest for High Luminosity in Hadron Colliders.'

  18. Collide@CERN: exclusive open rehearsal of Gilles Jobin's last piece

    CERN Multimedia

    2012-01-01

    Collide@CERN and Gilles Jobin, artist in residency at CERN, present an exclusive open rehearsal of his last piece SPIDER GALAXIES Tuesday 31 July 2012 - A new piece created to open new territories of the mind - Join us in Restaurant 1 from 4 p.m. (next to the Glass Box Restaurant) With this piece, the body turns into matter, which is complete, spatial and sensual. Come and see Gilles Jobin and his dancers. With a score by Cristian Vogel and Carla Scaletti invoking sound particles, while Daniel Demont disperses the spectrum. Protean, infinitely large or infinitesimal, such are the Spider Galaxies.    

  19. The application of the Monte Carlo code FLUKA in radiation protection studies for the large hadron collider

    International Nuclear Information System (INIS)

    Battistoni, Giuseppe; Broggi, Francesco; Brugger, Markus

    2010-01-01

    The multi-purpose particle interaction and transport code FLUKA is integral part of all radiation protection studies for the design and operation of the Large Hadron Collider (LHC) at CERN. It is one of the very few codes available for this type of calculations which is capable to calculate in one and the same simulation proton-proton and heavy ion collisions at LHC energies as well as the entire hadronic and electromagnetic particle cascade initiated by secondary particles in detectors and beam-line components from TeV energies down to energies of thermal neutrons. The present paper reviews these capabilities of FLUKA in giving details of relevant physics models along with examples of radiation protection studies for the LHC such as shielding studies for underground areas occupied by personnel during LHC operation and the simulation of induced radioactivity around beam loss points. Integral part of the FLUKA development is a careful benchmarking of specific models as well as the code performance in complex, real life applications which is demonstrated with examples of studies relevant to radiation protection at the LHC. (author)

  20. Exploring Higher Dimensional Black Holes at the Large Hadron Collider

    CERN Document Server

    Harris, C M; Parker, M A; Richardson, P; Sabetfakhri, A; Webber, Bryan R

    2005-01-01

    In some extra dimension theories with a TeV fundamental Planck scale, black holes could be produced in future collider experiments. Although cross sections can be large, measuring the model parameters is difficult due to the many theoretical uncertainties. Here we discuss those uncertainties and then we study the experimental characteristics of black hole production and decay at a typical detector using the ATLAS detector as a guide. We present a new technique for measuring the temperature of black holes that applies to many models. We apply this technique to a test case with four extra dimensions and, using an estimate of the parton-level production cross section error of 20\\%, determine the Planck mass to 15\\% and the number of extra dimensions to $\\pm$0.75.

  1. Exploring higher dimensional black holes at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Harris, Christopher M.; Palmer, Matthew J.; Parker, Michael A.; Richardson, Peter; Sabetfakhri, Ali; Webber, Bryan R.

    2005-01-01

    In some extra dimension theories with a TeV fundamental Planck scale, black holes could be produced in future collider experiments. Although cross sections can be large, measuring the model parameters is difficult due to the many theoretical uncertainties. Here we discuss those uncertainties and then we study the experimental characteristics of black hole production and decay at a typical detector using the ATLAS detector as a guide. We present a new technique for measuring the temperature of black holes that applies to many models. We apply this technique to a test case with four extra dimensions and, using an estimate of the parton-level production cross section error of 20%, determine the Planck mass to 15% and the number of extra dimensions to ±0.75

  2. Electroweak and flavor dynamics at hadron colliders - I

    International Nuclear Information System (INIS)

    Elchtent, E.; Lane, K.

    1998-02-01

    This is the first of two reports cataloging the principal signatures of electroweak and flavor dynamics at anti pp and pp colliders. Here, we discuss some of the signatures of dynamical electroweak and flavor symmetry breaking. The framework for dynamical symmetry breaking we assume is technicolor, with a walking coupling α TC , and extended technicolor. The reactions discussed occur mainly at subprocess energies √s approx-lt 1 TeV. They include production of color-singlet and octet technirhos and their decay into pairs of technipions, longitudinal weak bosons, or jets. Technipions, in turn, decay predominantly into heavy fermions. This report will appear in the Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High Energy Physics (Snowmass 96)

  3. Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    1993-01-01

    The work was directed in two complementary directions, the D0 experiment at Fermilab, and the GEM detector for the SSC. Efforts have been towards the data taking and analysis with the newly commissioned D0 detector at Fermilab in the bar pp Collider run that started in May 1992 and ended on June 1, 1993. We involved running and calibration of the calorimeter and tracking chambers, the second level trigger development, and various parts of the data analysis, as well as studies for the D0 upgrade planned in the second half of this decade. Another major accomplishment was the ''delivery'' of the Technical Design Report for the GEM SSC detector. Efforts to the overall detector and magnet design, design of the facilities, installation studies, muon system coordination, muon chamber design and tests, muon system simulation studies, and physics simulation studies. In this document we describe these activities separately

  4. Analysis of possible free quarks production process at hadron colliders

    International Nuclear Information System (INIS)

    Boos, E.E.; Ermolov, P.F.; Golubkov, Yu.A.

    1990-01-01

    The authors regard the process of free b-quark production in proton-antiproton collisions at energies of new colliders. It is suggested to use the pair of unlike sign with transverse momenta in the range p tr >5 GeV/c to trigger this process. Additionally it is suggested to measure a weak ionization signal from free s-quark from b-quark decay. The calculations of free bb-quarks production cross-sections have been made taking into account their energy losses in strong colour field. It is shown that the most effective range of lepton transverse momenta for observation of the process does not depend on threshold energy and is approximately equal to one for usual b mesons. 16 refs.; 10 figs

  5. Trading studies of a very large hadron collider

    International Nuclear Information System (INIS)

    Ruggiero, A.G.

    1996-01-01

    The authors have shown that the design of the ELOISATRON can be approached in five separate steps. In this report they deal with the two major issues of the collider: the size and the strength of the superconducting magnets. The reference design of the SSC calls for a collider circumference of 86 km. It represents the largest size that until recently was judged feasible. The reference design of the LHC requires a bending field of 9 Tesla, that industries are presently determined to demonstrate. Clearly the large size of the project presents problem with magnet tolerances, and collider operation and management. The high field of the superconducting magnets needs to be demonstrated, and the high-field option in excess of 9 Tesla requires extensive research and development. It is obvious from the start that, if the ELOISATRON has to allow large beam energies, the circumference has also to be larger than that of the SSC, probably of few hundred kilometers. On the other end, Tevatron, RHIC and SSC type of superconducting magnets have been built and demonstrated on a large scale and proven to be cost effective and reliable. Their field, nevertheless, hardly can exceed a value of 7.5 Tesla, without major modifications that need to be studied. The LHC type of magnets may be capable of 9 Tesla, but they are being investigated presently by the European industries. It is desired that if one wants to keep the size of the ring under reasonable limits, a somewhat higher bending field is required for the ELOISATRON, especially if one wants also to take advantage of the synchrotron radiation effects. A field value of 13 Tesla, twice the value of the SSC superconducting magnets, has recently been proposed, but it clearly needs a robust program of research and development. This magnet will not probably be of the RHIC/SSC type and not even of the LHC type. It will have to be designed and conceived anew. In the following they examine two possible approaches. In the first approach

  6. NLO production of W' bosons at hadron colliders using the MCatNLO and POWHEG methods

    International Nuclear Information System (INIS)

    Papaefstathiou, A.; Latunde-Dada, O.

    2009-01-01

    We present a next-to-leading order (NLO) treatment of the production of a new charged heavy vector boson, generically called W', at hadron colliders via the Drell-Yan process. We fully consider the interference effects with the Standard Model W boson and allow for arbitrary chiral couplings to quarks and leptons. We present results at both leading order (LO) and NLO in QCD using the MCatNLO/Herwig++ and POWHEG methods. We derive theoretical observation curves on the mass-width plane for both the LO and NLO cases at different collider luminosities. The event generator used, Wpnlo, is fully customisable and publicly available.

  7. Emittance growth due to noise and its suppression with the Feedback system in large hadron colliders

    International Nuclear Information System (INIS)

    Lebedev, V.; Parkhomchuk, V.; Shiltsev, V.; Stupakov, G.

    1993-03-01

    The problem of emittance growth due to random fluctuation of the magnetic field in hadron colliders is considered. Based on a simple one-dimensional linear model, a formula for an emittance growth rate as a function of the noise spectrum is derived. Different sources of the noise are analyzed and their role is estimated for the Superconducting Super Collider (SSC). A theory of feedback suppression of the emittance growth is developed which predicts the residual growth of the emittance in the accelerator with a feedback system

  8. How to Find a Hidden World at the Large Hadron Collider

    CERN Document Server

    Wells, James D.

    2008-01-01

    I discuss how the Large Hadron Collider era should broaden our view of particle physics research, and apply this thinking to the case of Hidden Worlds. I focus on one of the simplest representative cases of a Hidden World, and detail the rich implications it has for LHC physics, including universal suppression of Higgs boson production, trans-TeV heavy Higgs boson signatures, heavy-to-light Higgs boson decays, weakly coupled exotic gauge bosons, and Higgs boson decays to four fermions via light exotic gauge bosons. Some signatures may be accessible in the very early stages of collider operation, whereas others motivate a later high-lumonosity upgrade.

  9. Jet Substructure as a New Higgs-Search Channel at the Large Hadron Collider

    International Nuclear Information System (INIS)

    Butterworth, Jonathan M.; Davison, Adam R.; Rubin, Mathieu; Salam, Gavin P.

    2008-01-01

    It is widely considered that, for Higgs boson searches at the CERN Large Hadron Colider, WH and ZH production where the Higgs boson decays to bb are poor search channels due to large backgrounds. We show that at high transverse momenta, employing state-of-the-art jet reconstruction and decomposition techniques, these processes can be recovered as promising search channels for the standard model Higgs boson around 120 GeV in mass

  10. Inclusive\\pi^{0} production at the CERN p-p collider

    CERN Document Server

    Banner, M; Bonaudi, Franco; Borer, K; Borghini, M; Chollet, J C; Clark, A G; Conta, C; Darriulat, Pierre; Di Lella, L; Dines-Hansen, J; Dorsaz, P A; Fayard, L; Fraternali, M; Froidevaux, D; Gaillard, J M; Gildemeister, O; Goggi, V G; Grote, H; Hahn, B; Hänni, H; Hansen, J R; Hansen, P; Himel, T; Hungerbühler, V; Jenni, Peter; Kofoed-Hansen, Otto Møgens; Livan, M; Loucatos, Sotirios S; Madsen, B; Mansoulié, B; Mantovani, G C; Mapelli, L; Merkel, B; Møllerud, R; Nilsson, B; Onions, Christopher J; Parrour, G; Pastore, F; Plothow-Besch, H; Repellin, J P; Ringel, J; Rothenberg, A F; Roussarie, A; Sauvage, G; Schacher, J; Siegrist, J L; Stocker, F; Teiger, J; Vercesi, V; Zaccone, Henri; Zeller, W

    1982-01-01

    Inclusive\\pi^{0} production has been measured at the CERN pp collider, \\sqrt{s}=540 GeV, for 90 degrees production angle and in a range of transverse moment between 1.5 and 4.5 GeV/c. The invariant production cross section is larger than that measured at \\sqrt{s}=53 GeV for p-p collisions. The production of mu mesons and of direct photons is also investigated.

  11. Probing gauge-phobic heavy Higgs bosons at high energy hadron colliders

    Directory of Open Access Journals (Sweden)

    Yu-Ping Kuang

    2015-07-01

    Full Text Available We study the probe of the gauge-phobic (or nearly gauge-phobic heavy Higgs bosons (GPHB at high energy hadron colliders including the 14 TeV LHC and the 50 TeV Super Proton–Proton Collider (SppC. We take the process pp→tt¯tt¯, and study it at the hadron level including simulating the jet formation and top quark tagging (with jet substructure. We show that, for a GPHB with MH<800 GeV, MH can be determined by adjusting the value of MH in the theoretical pT(b1 distribution to fit the observed pT(b1 distribution, and the resonance peak can be seen at the SppC for MH=800 GeV and 1 TeV.

  12. Accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    P. Bauer et al.

    2002-12-05

    The following presents a study of the accelerator physics and technology limitations to ultimate energy and luminosity in very large hadron colliders (VLHCs). The main accelerator physics limitations to ultimate energy and luminosity in future energy frontier hadron colliders are synchrotron radiation (SR) power, proton-collision debris power in the interaction regions (IR), number of events-per-crossing, stored energy per beam and beam-stability [1]. Quantitative estimates of these limits were made and translated into scaling laws that could be inscribed into the particle energy versus machine size plane to delimit the boundaries for possible VLHCs. Eventually, accelerator simulations were performed to obtain the maximum achievable luminosities within these boundaries. Although this study aimed at investigating a general VLHC, it was unavoidable to refer in some instances to the recently studied, [2], 200 TeV center-of-mass energy VLHC stage-2 design (VLHC-2). A more thorough rendering of this work can be found in [3].

  13. Stop decay into right-handed sneutrino LSP at hadron colliders

    International Nuclear Information System (INIS)

    Gouvea, Andre de; Gopalakrishna, Shrihari; Porod, Werner

    2006-01-01

    Right-handed neutrinos offer us the possibility of accommodating neutrino masses. In a supersymmetric model, this implies the existence of right-handed sneutrinos. Right-handed sneutrinos are expected to be as light as other supersymmetric particles if the neutrinos are Dirac fermions or if the lepton-number breaking scale is at (or below) the supersymmetry (SUSY) breaking scale, assumed to be around the electroweak scale. Depending on the mechanism of SUSY breaking, the lightest right-handed sneutrino may be the lightest supersymmetric particle (LSP). We consider the unique hadron collider signatures of a weak scale right-handed sneutrino LSP, assuming R-parity conservation. For concreteness, we concentrate on stop pair-production and decay at the Tevatron and the Large Hadron Collider, and briefly comment on the production and decay of other supersymmetric particles

  14. Physics and Analysis at a Hadron Collider - Making Measurements (3/3)

    CERN Multimedia

    CERN. Geneva

    2010-01-01

    This is the third lecture of three which together discuss the physics of hadron colliders with an emphasis on experimental techniques used for data analysis. This third lecture discusses techniques important for analyses making a measurement (e.g. determining a cross section or a particle property such as its mass or lifetime) using some CDF top-quark analyses as specific examples. The lectures are aimed at graduate students.

  15. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Kee [State University of New York at Stony Brook; Douglas, Michaek [State University of New York at Stony Brook; Hobbs, John [State University of New York at Stony Brook; McGrew, Clark [State University of New York at Stony Brook; Rijssenbeek, Michael [State University of New York at Stony Brook

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  16. Study of vector boson decay and determination of the Standard Model parameters at hadronic colliders

    International Nuclear Information System (INIS)

    Amidei, D.

    1991-01-01

    The power of the detectors and the datasets at hadronic colliders begins to allow measurement of the electroweak parameters with a precision that confronts the perturbative corrections to the theory. Recent measurements of M z , M w , and sin θ w by CDF and UA2 are reviewed, with some emphasis on how experimental precision is achieved, and some discussion of the import for the specifications of the Standard Model. 14 refs., 10 figs., 4 tabs

  17. A high granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Cvach, Jaroslav; Danilov, M.; Devitsin, E.; Dodonov, V.; Eigen, G.; Garutti, E.; Gilitzky, Yu.; Groll, M.; Heuer, R.D.; Janata, Milan; Kacl, Ivan; Korbel, V.; Kozlov, V. Yu; Meyer, H.; Morgunov, V.; Němeček, Stanislav; Pöschl, R.; Polák, Ivo; Raspereza, A.; Reiche, S.; Rusinov, V.; Sefkow, F.; Smirnov, P.; Terkulov, A.; Valkár, Š.; Weichert, Jan; Zálešák, Jaroslav

    2006-01-01

    Roč. 564, - (2006), s. 144-154 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259; GA ČR(CZ) GA202/05/0653 Institutional research plan: CEZ:AV0Z10100502 Keywords : hadronic calorimeter * plastic scintillator tile * APD readout * linear collider detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.185, year: 2006

  18. Operational Experience with and Performance of the ATLAS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Grummer, Aidan; The ATLAS collaboration

    2018-01-01

    The operational experience and requirements to ensure optimum data quality and data taking efficiency with the 4-layer ATLAS Pixel Detector are discussed. The detector has undergone significant hardware and software upgrades to meet the challenges imposed by the fact that the Large Hadron Collider is exceeding expectations for instantaneous luminosity by more than a factor of two (more than $2 \\times 10^{34}$ cm$^{-2}$ s$^{-1}$). Emphasizing radiation damage effects, the key status and performance metrics are described.

  19. Production and decay channels of charged Higgs boson at high energy hadron colliders

    Science.gov (United States)

    Demirci, Alev Ezgi; ćakır, Orhan

    2018-02-01

    We have studied charged Higgs boson interactions and production cross sections within the framework of two Higgs doublet model, which is an extension of standard model and the decay processes of charged Higgs boson have been calculated. There are different scenarios which have been studied in this work and these parameters have been transferred to the event generator, and the cross sections calculations for different center of mass energies of hadron colliders have been performed.

  20. Charmed-hadron fragmentation functions from CERN LEP1 revisted

    International Nuclear Information System (INIS)

    Kniehl, B.A.; Kramer, G.

    2006-07-01

    In Phys. Rev. D 58, 014014 (1998) and 71, 094013 (2005), we determined non-perturbative D 0 , D + , D *+ , D s + , and Λ c + fragmentation functions, both at leading and next-to-leading order in the MS factorization scheme, by fitting e + e - data taken by the OPAL Collaboration at CERN LEP1. The starting points for the evolution in the factorization scale μ were taken to be μ 0 -2m Q , where Q = c, b. For the reader's convenience, in this Addendum, we repeat this analysis for μ 0 =m Q , where the flavor thresholds of modern sets of parton density functions are located. (Orig.)

  1. arXiv Energy-Frontier Lepton-Hadron Collisions at CERN: the LHeC and the FCC-eh

    CERN Document Server

    Kuze, Masahiro

    2018-05-03

    Lepton-hadron colliders that use a proton or nucleus beam of current and future hadron colliders and let it collide with an electron beam from a newly built electron accelerator bring attractive physics programs which are strong and complementary to the hadron collider physics. Machine development for Energy Recovery LINAC and physics performance studies of such electron-hadron colliders, specifically the LHeC that uses the existing LHC beam and FCC-eh that is an option of Future Circular Collider program, are ongoing and reviewed in this article.

  2. Emission of single photons, hadrons, and dileptons in $Pb+Pb$ collisions at CERN SPS and quark hadron phase transition

    CERN Document Server

    Srivastava, D K; Kvasnikova, I; Gale, C; Srivastava, Dinesh Kumar; Sinha, Bikash; Kvasnikova, Ioulia; Gale, Charles

    2002-01-01

    The production of single photons in $Pb+Pb$ collisions at the CERN SPS as measured by the WA98 experiment is analysed. A very good description of the data is obtained if a quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of the interacting system is taken into account. The recent estimates of photon production in quark-matter (at two loop level) along with the dominant reactions in the hadronic matter leading to photons are used. Most of the radiation of the photons is seen to arise from the quark-matter, which contributes dominantly through the mechanism of annihilation of quarks with scattering, and which in turn is possible only in a hot and dense plasma of quarks and gluons. The same treatment provides a very good description to hadronic spectra measured by several groups and the intermediate mass dileptons measured by the NA50 experiment, lending a strong support to the ...

  3. High performance distributed objects in large hadron collider experiments

    International Nuclear Information System (INIS)

    Gutleber, J.

    1999-11-01

    This dissertation demonstrates how object-oriented technology can support the development of software that has to meet the requirements of high performance distributed data acquisition systems. The environment for this work is a system under planning for the Compact Muon Solenoid experiment at CERN that shall start its operation in the year 2005. The long operational phase of the experiment together with a tight and puzzling interaction with custom devices make the quest for an evolvable architecture that exhibits a high level of abstraction the driving issue. The question arises if an existing approach already fits our needs. The presented work casts light on these problems and as a result comprises the following novel contributions: - Application of object technology at hardware/software boundary. Software components at this level must be characterised by high efficiency and extensibility at the same time. - Identification of limitations when deploying commercial-off-the-shelf middleware for distributed object-oriented computing. - Capturing of software component properties in an efficiency model for ease of comparison and improvement. - Proof of feasibility that the encountered deficiencies in middleware can be avoided and that with the use of software components the imposed requirements can be met. - Design and implementation of an on-line software control system that allows to take into account the ever evolving requirements by avoiding hardwired policies. We conclude that state-of-the-art middleware cannot meet the required efficiency of the planned data acquisition system. Although new tool generations already provide a certain degree of configurability, the obligation to follow standards specifications does not allow the necessary optimisations. We identified the major limiting factors and argue that a custom solution following a component model with narrow interfaces can satisfy our requirements. This approach has been adopted for the current design

  4. The Large Hadron Collider the greatest adventure in town and ten reasons why it matters, as illustrated by the ATLAS experiment

    CERN Document Server

    Millington, Andrew J; MacPherson, Rob; Nordberg, Markus

    2016-01-01

    When the discovery of the Higgs Boson at CERN hit the headlines in 2012, the world was stunned by this achievement of modern science. Less well appreciated, however, were the many ways in which this benefited wider society. The Large Hadron Collider — The Greatest Adventure in Town charts a path through the cultural, economic and medical gains of modern particle physics. It illustrates these messages through the ATLAS experiment at CERN, one of the two big experiments which found the Higgs particle. Moving clear of in-depth physics analysis, it draws on the unparalleled curiosity about particle physics aroused by the Higgs discovery, and relates it to developments familiar in the modern world, including the Internet, its successor "The Grid", and the latest cancer treatments. In this book, advances made from developing the 27 kilometre particle accelerator and its detectors are presented with the benefit of first hand interviews and are extensively illustrated throughout. Interviewees are leading physicis...

  5. Extracting the top-quark running mass using t anti t+1-jet events produced at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Fuster, J.; Vos, M. [Valencia Univ. and CSIC, Paterna (Spain). IFIC; Irles, A. [Paris-Sud XI Univ., CNRS/IN2P3, Orsay (France). Lab. de l' Accelerateur Lineaire; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Melini, D. [Valencia Univ. and CSIC, Paterna (Spain). IFIC; Granada Univ. (Spain). Dept. de Fisica Teorica y del Cosmos; Uwer, P. [Humboldt-Univ., Berlin (Germany)

    2017-04-04

    We present the calculation of the next-to-leading order QCD corrections for top quark pair production in association with an additional jet at hadron colliders, using the modified minimal subtraction scheme to renormalize the top-quark mass. The results are compared to measurements at the Large Hadron Collider run I. In particular, we determine the top-quark running mass from a fit of the theoretical results presented here to the LHC data.

  6. Extracting the top-quark running mass using t anti t + 1-jet events produced at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Fuster, J.; Vos, M. [IFIC, Universitat de Valencia y CSIC, Paterna (Spain); Irles, A. [Universite de Paris-Sud XI, CNRS/IN2P3, Laboratoire de l' Accelerateur Lineaire, Orsay (France); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Melini, D. [IFIC, Universitat de Valencia y CSIC, Paterna (Spain); Universidad de Granada, Departamento de Fisica Teorica y del Cosmos, Granada (Spain); Uwer, P. [Humboldt-Universitaet Berlin (Germany)

    2017-11-15

    We present the calculation of the next-to-leading order QCD corrections for top-quark pair production in association with an additional jet at hadron colliders, using the modified minimal subtraction scheme to renormalize the top-quark mass. The results are compared to measurements at the Large Hadron Collider run I. In particular, we determine the top-quark running mass from a fit of the theoretical results presented here to the LHC data. (orig.)

  7. News from the Library: CERN Library and Collide@CERN present media artist Nataša Teofilović

    CERN Multimedia

    CERN Library

    2012-01-01

    The Serbian media artist Nataša Teofilović creates virtual characters which are living art works, often employing animation techniques. She won an honorary mention for her work in the first Prix Ars Electronica Collide@CERN competition for her outstanding digital works which cross the boundaries between virtual and real spaces.  As part of her prize, Arts@CERN offered Nataša the opportunity for a two-day visit to CERN, which is being funded by a Swedish foundation travel grant.   Nataša talks about why and how she creates her digital work and virtual beings, shows examples and reveals insights into the role and status of an artist in her native Serbia. Nataša Teofilović has an PhD and MA in Digital Art (Belgrade University of Arts, Interdisciplinary Studies) and holds a BA in Architecture from Belgrade University of Architecture. She lives in Pančevo, Vojvodina, Serbia. See examples of Nataša’s work here. &quo...

  8. Secondary particle background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-01-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC(LHC) √s=40TeV (√s=16TeV) and L=10 33 cm -2 s -1 (L=3x10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the open-quotes task force on radiation levels in the SSC interaction regions.close quotes The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes

  9. Secondary particle in background levels and effects on detectors at future hadron colliders

    International Nuclear Information System (INIS)

    Pal, T.

    1993-06-01

    The next generation of hadron colliders, the Superconducting Super Collider (SSC) and the Large Hadron Collider (LHC), will operate at high center-of-mass energies and luminosities. Namely, for the SSC (LHC) √s = 40 TeV (√s = 16 TeV) and L = 10 33 cm -2 s -1 (L = 3 x 10 34 cm -2 s -1 ). These conditions will result in the production of large backgrounds as well as radiation environments. Ascertaining the backgrounds, in terms of the production of secondary charged and neutral particles, and the radiation environments are important considerations for the detectors proposed for these colliders. An initial investigation of the radiation levels in the SSC detectors was undertaken by D. Groom and colleagues, in the context of the ''task force on radiation levels in the SSC interaction regions.'' The method consisted essentially of an analytic approach, using standard descriptions of average events in conjunction with simulations of secondary processes. Following Groom's work, extensive Monte Carlo simulations were performed to address the issues of backgrounds and radiation environments for the GEM and SD C3 experiments proposed at the SSC, and for the ATLAS and CMS experiments planned for the LHC. The purpose of the present article is to give a brief summary of some aspects of the methods, assumptions, and calculations performed to date (principally for the SSC detectors), and to stress the relevance of such calculations to the detectors proposed for the study of B-physics in particular

  10. Probing gluon number fluctuation effects in future electron–hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, J.T.; Gonçalves, V.P. [Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96010-900, Pelotas, RS (Brazil); Kugeratski, M.S. [Universidade Federal de Santa Catarina, Campus Joinville, Rua Presidente Prudente de Moraes, 406, CEP 89218-000, Joinville, SC (Brazil)

    2014-10-15

    The description of the QCD dynamics in the kinematical range which will be probed in the future electron–hadron colliders is still an open question. Although phenomenological studies indicate that the gluon number fluctuations, which are related to discreteness in the QCD evolution, are negligible at HERA, the magnitude of these effects for the next generation of colliders still should be estimated. In this paper we investigate inclusive and diffractive ep observables considering a model for the physical scattering amplitude which describes the HERA data. Moreover, we estimate, for the first time, the contribution of the fluctuation effects for the nuclear structure functions. Our results indicate that the study of these observables in the future colliders can be useful to constrain the presence of gluon number fluctuations.

  11. Hadron distributions - recent results from the CERN experiment NA44

    International Nuclear Information System (INIS)

    Xu, N.

    1996-01-01

    Proton distributions at midrapidity have been measured for 158A circ GeV/c Pb + Pb collisions in the focusing spectrometer experiment NA44 at CERN. A high degree of nuclear stopping is found in the truly heavy ion collisions. Systematic results of single particle transverse momentum distributions of pions, kaons, and protons, of 200A-GeV/c S+S and 158A circ GeV/c Pb+Pb central collisions will be addressed within the context of thermalization. By comparing these data with thermal and transport models, freeze-out parameters such as the temperature parameter T fo and mean collective flow velocity (Β) are extracted. Preliminary results of the particle ratios of K - /K + and p/p are discussed in the context of cascade models of RQMD and VENUS

  12. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    International Nuclear Information System (INIS)

    Weuste, Lars

    2013-01-01

    The Compact Linear Collider (CLIC) is a concept for a 48.3 km long e + e - accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, is presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30 x 30 x 5 mm 3 , read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimeter (W-AHCal) during beam tests performed at CERN in 2010 and 2011. The resulting data is compared to simulation obtained with three different hadronic shower physics models of the Geant4 simulation toolkit: QGSPBERT, QGSPBERTHP and QBBC. The results from 60 GeV high statistics run show that QBBC and QGSPBERTHP are mostly consistent with the testbeam data, while QGSPBERT, which is lacking a sophisticated treatment of neutrons, overestimates the late energy depositions. The second part of this thesis presents one out of the six benchmark processes that were part of the CLIC Conceptual Design Report (CDR) to verify the detector performance at CLIC. This benchmark process is the measurement of the mass and cross-section of two supersymmetric right-handed scalar quarks. In the underlying SUSY model these almost exclusively decay into the lightest neutralino (missing energy) and the corresponding standard model quark (jet). Within this analysis pile-up from beam

  13. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  14. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Document Server

    Cecile Noels

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  15. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Document Server

    Cecile Noels

    2009-01-01

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  16. Quantum chromodynamics at high energy, theory and phenomenology at hadron colliders; Chromodynamique quantique a haute energie, theorie et phenomenologie appliquee aux collisions de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, C

    2006-09-15

    When probing small distances inside a hadron, one can resolve its partonic constituents: quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This substructure reveals itself in hadronic collisions characterized by a large momentum transfer: in such collisions, a hadron acts like a collection of partons whose interactions can be described in QCD. In a collision at moderate energy, a hadron looks dilute and the partons interact incoherently. As the collision energy increases, the parton density inside the hadron grows. Eventually, at some energy much bigger than the momentum transfer, one enters the saturation regime of QCD: the gluon density has become so large that collective effects are important. We introduce a formalism suitable to study hadronic collisions in the high-energy limit in QCD, and the transition to the saturation regime. In this framework, we derive known results that are needed to present our personal contributions and we compute different cross-sections in the context of hard diffraction and particle production. We study the transition to the saturation regime as given by the Balitsky-Kovchegov equation. In particular we derive properties of its solutions.We apply our results to deep inelastic scattering and show that, in the energy range of the HERA collider, the predictions of high-energy QCD are in good agreement with the data. We also consider jet production in hadronic collisions and discuss the possibility to test saturation at the Large Hadron Collider. (author)

  17. LEP the lord of the collider rings at CERN 1980-2000

    CERN Document Server

    Schopper, Herwig Franz

    2009-01-01

    Housed by a 4 m diameter tunnel of 27 km circumference, with huge underground labs and numerous surface facilities, and set up with a precision of 0.1 mm per kilometer, the Large Electron-Positron Collider (LEP) was not only the largest but also one of the most sophisticated scientific research instrument ever created by Man. Located at CERN, near Geneva, LEP was built during the years 1983 - 1989, was operational until 2000, and corroborated the standard model of particle physics through continous high precision measurements. The Author, director-general of CERN during the crucial period of the construction of LEP, recounts vividly the convoluted decision-making and technical implementation processes - the tunnel alone being a highly challenging geo- and civil engineering project - and the subsequent extremely fruitful period of scientific research. Finally he describes the difficult decision to close down LEP, at a time when the discovery of the Higgs boson seemed within reach. LEP was eventually dismantled...

  18. Interaction region for crab waist scheme of the Future Electron-Positron Collider (CERN)

    CERN Document Server

    Bogomyagkov, A

    2015-01-01

    Design study in CERN of the accelerator that would fit 80-100 km tunnel called Future Circular Colliders (FCC) includes high-luminosity $e^+ e^−$ collider (FCC-ee) with center-of-mass energy from 90 to 350 GeV to study Higgs boson properties and perform precise measurements at the electroweak scale [1–3]. Crab waist interaction region provides collisions with luminosity higher than 2 × 10$^{36}$ cm$^{−2}$ sec$^{−1}$ at beam energy of 45 GeV. The small values of the beta functions at the interaction point and distant final focus lenses are the reasons for high nonlinear chromaticity limiting energy acceptance of the whole ring. The paper describes interaction region for crab waist collision scheme in the FCC-ee, principles of tuning the chromaticity correction section in order to provide large energy acceptance.

  19. A search for scalar leptoquarks at the CERN anti pp collider

    International Nuclear Information System (INIS)

    Alitti, J.; Ambrosini, G.; Ansari, R.; Autiero, D.; Bareyre, P.; Bertram, I.A.; Blaylock, G.; Bonamy, P.; Borer, K.; Bourliaud, M.; Buskulic, D.; Carboni, G.; Cavalli, D.; Cavasinni, V.; Cenci, P.; Chollet, J.C.; Conta, C.; Costa, G.; Costantini, F.; Cozzi, L.; Cravero, A.; Curatolo, M.; Dell'Acqua, A.; DelPrete, T.; DeWolf, R.S.; DiLella, L.; Ducros, Y.; Egan, G.F.; Einsweiler, K.F.; Esposito, B.; Fayard, L.; Federspiel, A.; Ferrari, R.; Fraternali, M.; Froidevaux, D.; Fumagalli, G.; Gaillard, J.M.; Gianotti, F.; Gildemeister, O.; Goessling, C.; Goggi, V.G.; Gruenendahl, S.; Hara, K.; Hellman, S.; Hrivnac, J.; Hufnagel, H.; Hugentobler, E.; Hultqvist, K.; Iacopini, E.; Incandela, J.; Jakobs, K.; Jenni, P.; Kluge, E.E.; Kurz, N.; Lami, S.; Lariccia, P.; Lefebvre, M.; Linssen, L.; Livan, M.; Lubrano, P.; Magneville, C.; Mandelli, L.; Mapelli, L.; Mazzanti, M.; Meier, K.; Merkel, B.; Meyer, J.P.; Moniez, M.; Moning, R.; Morganti, M.; Mueller, L.; Munday, D.J.; Nessi, M.; Nessi-Tedaldi, F.; Onions, C.; Pal, T.; Parker, M.A.; Parrour, G.; Pastore, F.; Pennacchio, E.; Pentney, J.M.; Pepe, M.; Perini, L.; Petridou, C.; Petroff, P.; Plothow-Besch, H.; Polesello, G.; Poppleton, A.; Pretzl, K.; Primavera, M.; Punturo, M.; Repellin, J.P.; Rimoldi, A.; Sacchi, M.; Scampoli, P.; Schacher, J.; Schmidt, B.; Simak, V.; Singh, S.L.; Sondermann, V.; Spiwoks, R.; Stapnes, S.; Talamonti, C.; Tondini, F.; Tovey, S.N.; Tsesmelis, E.; Unal, G.; Valdata-Nappi, M.; Vercesi, V.; Weidberg, A.R.; Wells, P.S.; White, T.O.; Wood, D.R.; Wotton, S.A.; Zaccone, H.; Zylberstejn, A.

    1992-01-01

    A search has been made for scalar leptoquark pair production with the upgraded UA2 detector at the CERN anti pp Collider at √s=630 GeV, investigating decays of the leptoquark into a quark and either an electron or an electron neutrino. From an event sample corresponding to an integrated luminosity of 13 pb -1 a lower limit has been determined for the mass of first generation leptoquarks, yielding 67 GeV (95% CL) for a scalar leptoquark decaying with a 50% branching ratio into a quark and an electron. (orig.)

  20. Forecasting the Socio-Economic Impact of the Large Hadron Collider: a Cost-Benefit Analysis to 2025 and Beyond

    CERN Document Server

    Florio, Massimo; Sirtori, Emanuela

    2016-01-01

    In this paper we develop a cost-benefit analysis of a major research infrastructure, the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by estimating their welfare effects on different types of agents. Four classes of direct benefits are identified, according to the main social groups involved: (a) scientists; (b) students and young researchers; (c) firms in the procurement chain and other organizations; (d) the general public, including onsite and website visitors and other media users. These benefits are respectively related to the knowledge output of scientists; human capital formation; technological spillovers; and direct cultural effects for the general public. Welfare effects for taxpayers can also be estimated by the contingent valuation of the willingness to pay for a pure public good for which there is no specific direct use (i.e., as non-use value). Using a Monte Carlo approach, w...

  1. Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnets. II. Dynamic field changes and scaling laws

    Directory of Open Access Journals (Sweden)

    Nicholas J. Sammut

    2007-08-01

    Full Text Available A superconducting particle accelerator like the LHC (Large Hadron Collider at CERN, can only be controlled well if the effects of the magnetic field multipoles on the beam are compensated. The demands on a control system solely based on beam feedback may be too high for the requirements to be reached at the specified bandwidth and accuracy. Therefore, we designed a suitable field description for the LHC (FIDEL as part of the machine control baseline to act as a feed-forward magnetic field prediction system. FIDEL consists of a physical and empirical parametric field model based on magnetic measurements at warm and in cryogenic conditions. The performance of FIDEL is particularly critical at injection when the field decays, and in the initial part of the acceleration when the field snaps back. These dynamic components are both current and time dependent and are not reproducible from cycle to cycle since they also depend on the magnet powering history. In this paper a qualitative and quantitative description of the dynamic field behavior substantiated by a set of scaling laws is presented.

  2. Development of Muon Drift-Tube Detectors for High-Luminosity Upgrades of the Large Hadron Collider

    CERN Document Server

    Bittner, B; Kortner, O.; Kroha, H.; Legger, F.; Richter, R.; Biebel, O.; Engl, A.; Hertenberger, R.; Rauscher, F.

    2016-01-01

    The muon detectors of the experiments at the Large Hadron Collider (LHC) have to cope with unprecedentedly high neutron and gamma ray background rates. In the forward regions of the muon spectrometer of the ATLAS detector, for instance, counting rates of 1.7 kHz/square cm are reached at the LHC design luminosity. For high-luminosity upgrades of the LHC, up to 10 times higher background rates are expected which require replacement of the muon chambers in the critical detector regions. Tests at the CERN Gamma Irradiation Facility showed that drift-tube detectors with 15 mm diameter aluminum tubes operated with Ar:CO2 (93:7) gas at 3 bar and a maximum drift time of about 200 ns provide e?cient and high-resolution muon tracking up to the highest expected rates. For 15 mm tube diameter, space charge e?ects deteriorating the spatial resolution at high rates are strongly suppressed. The sense wires have to be positioned in the chamber with an accuracy of better than 50 ?micons in order to achieve the desired spatial...

  3. Investigation of induced radioactivity in the CERN Large Electron Positron collider for its decommissioning

    CERN Document Server

    Silari, Marco

    2004-01-01

    The future installation of the Large Hadron Collider in the tunnel formerly housing the Large Electron Positron collider (LEP) required the dismantling of the latter after 11-year operation. As required by the French legislation, an extensive theoretical study was conducted before decommissioning to establish the possible activation paths both in the accelerator and in the four experiments (L3, ALEPH, OPAL and DELPHI) installed around the ring. The aim was to define which areas may contain activated material and which ones would be completely free of activation. The four major sources of activation in LEP, i.e., distributed and localized beam losses, synchrotron radiation and the super-conducting RF cavities, were investigated. Conversion coefficients from unit lost beam power to induced specific activity were established for a number of materials. A similar study was conducted for the four experiments, evaluating the four potential sources of induced radioactivity, namely e**+e **- annihilation events, two-p...

  4. Theoretical studies of hadronic calorimetry for high luminosity, high energy colliders

    Energy Technology Data Exchange (ETDEWEB)

    Brau, J.E.; Gabriel, T.A.

    1989-01-01

    Experiments at the high luminosity, high energy colliders of the future are going to demand optimization of the state of the art of calorimetry design and construction. During the past few years, the understanding of the basic phenomenology of hadron calorimeters has advanced through paralleled theoretical and experimental investigations. The important underlying processes are reviewed to set the framework for the presentation of recent calculations of the expected performance of silicon detector based hadron calorimeters. Such devices employing uranium are expected to achieve the compensation condition (that is, e/h approx. 1.0) based on the understanding that has been derived from the uranium-liquid argon and uranium-plastic scintillator systems. In fact, even lead-silicon calorimeters are found to achieve the attractive value for the e/h ratio of 1.16 at 10 GeV. 62 refs., 22 figs., 3 tabs.

  5. Theoretical studies of hadronic calorimetry for high luminosity, high energy colliders

    International Nuclear Information System (INIS)

    Brau, J.E.; Gabriel, T.A.

    1989-01-01

    Experiments at the high luminosity, high energy colliders of the future are going to demand optimization of the state of the art of calorimetry design and construction. During the past few years, the understanding of the basic phenomenology of hadron calorimeters has advanced through paralleled theoretical and experimental investigations. The important underlying processes are reviewed to set the framework for the presentation of recent calculations of the expected performance of silicon detector based hadron calorimeters. Such devices employing uranium are expected to achieve the compensation condition (that is, e/h ∼ 1.0) based on the understanding that has been derived from the uranium-liquid argon and uranium-plastic scintillator systems. In fact, even lead-silicon calorimeters are found to achieve the attractive value for the e/h ratio of 1.16 at 10 GeV. 62 refs., 22 figs., 3 tabs

  6. From the LHC to future colliders. CERN Theory Institute summary report

    International Nuclear Information System (INIS)

    Roeck, A. de; Ellis, J.; Wells, J.; Gripaios, B.; Dittmar, M.; Grojean, C.; Heinemeyer, S.; Jakobs, K.; Schumacher, M.; Duehrssen, M.; Weiglein, G.; Moortgat-Pick, G.; Morton-Thurtle, V.; Rolbiecki, K.; Smillie, J.; Tattersall, J.; Azuelos, G.; Dawson, S.; Assamagan, K.; Gopalakrishna, S.; Han, T.; Hewett, J.; Rizzo, T.; Lancaster, M.; Ozcan, E.; Mariotti, C.; Moortgat, F.; Polesello, G.; Riemann, S.; Bechtle, P.; Carena, M.; Juste, A.; Chachamis, G.; Chen, K.F.; Hou, W.S.; Curtis, S. de; Desch, K.; Wienemann, P.; Dreiner, H.; Foster, B.; Frandsen, M.T.; Giammanco, A.; Godbole, R.; Govoni, P.; Gunion, J.; Hollik, W.; Isidori, G.; Kalinowski, J.; Krawczyk, M.; Korytov, A.; Kou, E.; Kraml, S.; Martin, A.; Milstead, D.; Moenig, K.; Mele, B.; Pieri, M.; Plehn, T.; Reina, L.; Richter-Was, E.; Sannino, F.; Schram, M.; Sultansoy, S.; Uwer, P.; Webber, B.

    2010-01-01

    Discoveries at the LHC will soon set the physics agenda for future colliders. This report of a CERN Theory Institute includes the summaries of Working Groups that reviewed the physics goals and prospects of LHC running with 10 to 300 fb -1 of integrated luminosity, of the proposed sLHC luminosity upgrade, of the ILC, of CLIC, of the LHeC and of a muon collider. The four Working Groups considered possible scenarios for the first 10 fb -1 of data at the LHC in which (i) a state with properties that are compatible with a Higgs boson is discovered, (ii) no such state is discovered either because the Higgs properties are such that it is difficult to detect or because no Higgs boson exists, (iii) a missing-energy signal beyond the Standard Model is discovered as in some supersymmetric models, and (iv) some other exotic signature of new physics is discovered. In the contexts of these scenarios, the Working Groups reviewed the capabilities of the future colliders to study in more detail whatever new physics may be discovered by the LHC. Their reports provide the particle physics community with some tools for reviewing the scientific priorities for future colliders after the LHC produces its first harvest of new physics from multi-TeV collisions. (orig.)

  7. Heavy-ion collisions at the dawn of the large hadron collider era

    International Nuclear Information System (INIS)

    Takahashi, J.

    2011-01-01

    In this paper I present a review of the main topics associated with the study of heavy-ion collisions, intended for students starting or interested in the field. It is impossible to summarize in a few pages the large amount of information that is available today, after a decade of operations of the Relativistic Heavy Ion Collider and the beginning of operations at the Large Hadron Collider. Thus, I had to choose some of the results and theories in order to present the main ideas and goals. All results presented here are from publicly available references, but some of the discussions and opinions are my personal view, where I have made that clear in the text (author)

  8. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    Science.gov (United States)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  9. Large Hadron Collider Physics (LHCP2017) conference | 15-20 May 2017 | Shanghai

    CERN Multimedia

    2016-01-01

    The fifth Annual Large Hadron Collider Physics will be held in Shanghai and hosted by Shanghai Jiao Tong University in the period of May 15-20, 2017. The main goal of the conference is to provide intense and lively discussions between experimenters and theorists in such research areas as the Standard Model Physics and Beyond, the Higgs Boson, Supersymmetry, Heavy Quark Physics and Heavy Ion Physics as well as to share a recent progress in the high luminosity upgrades and future colliders developments.     The LHCP2017 website: http://lhcp2017.physics.sjtu.edu.cn/ Event date: 15 - 20 May 2017 Location: Shanghai, China

  10. Electroweak corrections to top quark pair production in association with a hard photon at hadron colliders

    International Nuclear Information System (INIS)

    Duan, Peng-Fei; Zhang, Yu; Wang, Yong; Song, Mao; Li, Gang

    2017-01-01

    We present the next-to-leading order (NLO) electroweak (EW) corrections to the top quark pair production associated with a hard photon at the current and future hadron colliders. The dependence of the leading order (LO) and NLO EW corrected cross sections on the photon transverse momentum cut are investigated. We also provide the LO and NLO EW corrected distributions of the transverse momentum of final top quark and photon and the invariant mass of top quark pair and top–antitop-photon system. The results show that the NLO EW corrections are significant in high energy regions due to the EW Sudakov effect.

  11. Undergraduate Laboratory Experiment: Measuring Matter Antimatter Asymmetries at the Large Hadron Collider

    CERN Document Server

    Parkes, Chris; Gutierrez, J

    2015-01-01

    This document is the student manual for a third year undergraduate laboratory experiment at the University of Manchester. This project aims to measure a fundamental difference between the behaviour of matter and antimatter through the analysis of data collected by the LHCb experiment at the Large Hadron Collider. The three-body dmecays $B^\\pm \\rightarrow h^\\pm h^+ h^-$, where $h^\\pm$ is a $\\pi^\\pm$ or $K^\\pm$ are studied. The inclusive matter antimatter asymmetry is calculated, and larger asymmetries are searched for in localized regions of the phase-space.

  12. The Fermi motion contribution to J/{psi} production at the hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gomshi Nobary, M.A. [Department of Physics, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of) and Center for Theoretical Physics and Mathematics, AEOI, Roosbeh Building, P.O. Box 11365-8486 Tehran (Iran, Islamic Republic of)]. E-mail: mnobary@razi.ac.ir; Nikoobakht, B. [Department of Physics, Faculty of Science, Razi University, Kermanshah (Iran, Islamic Republic of)

    2006-08-17

    We investigate the relativistic Fermi motion effect in the case of J/{psi} production in various hadron colliders. A light-cone wave function is adopted to represent the J/{psi} final state. The change in the confint parameter which sets a scale for the size of the final state, allows one to see the effect in an explicit manner. While the effect has considerable influence on the fragmentation probabilities and the differential cross sections, the total cross sections essentially are left unchanged. Such a feature is in agreement with the momentum sum rule which the fragmentation functions should satisfy.

  13. NNLO QCD corrections to jet production at hadron colliders from gluon scattering

    International Nuclear Information System (INIS)

    Currie, James; Ridder, Aude Gehrmann-De; Glover, E.W.N.; Pires, João

    2014-01-01

    We present the next-to-next-to-leading order (NNLO) QCD corrections to dijet production in the purely gluonic channel retaining the full dependence on the number of colours. The sub-leading colour contribution in this channel first appears at NNLO and increases the NNLO correction by around 10% and exhibits a p T dependence, rising from 8% at low p T to 15% at high p T . The present calculation demonstrates the utility of the antenna subtraction method for computing the full colour NNLO corrections to dijet production at the Large Hadron Collider

  14. SUSY-QCD corrections to Higgs boson production at hadron colliders

    International Nuclear Information System (INIS)

    Djouadi, A.; Spira, M.

    1999-12-01

    We analyze the next-to-leading order SUSY-QCD corrections to the production of Higgs particles at hadron colliders in supersymmetric extensions of the standard model. Besides the standard QCD corrections due to gluon exchange and emission, genuine supersymmetric corrections due to the virtual exchange of squarks and gluinos are present. At both the Tevatron and the LHC, these corrections are found to be small in the Higgs-strahlung, Drell-Yan-like Higgs pair production and vector boson fusion processes. (orig.)

  15. Estimates of Hadronic Backgrounds in a 5 TeV e+e- Linear Collider

    International Nuclear Information System (INIS)

    Murayama, H.; Ohgaki, Tomomi; Xie, M.

    1998-01-01

    We have estimated hadronic backgrounds by γγ collisions in an e + e - linear collider at a center-of-mass energy of 5 TeV. We introduce a simple ansatz, that is, a total γγ cross section of σ γγ = (σγ p ) 2 /σ pp shall be saturated by minijet productions, whose rate is controlled by p t,min (√s). We present that the background yields are small and the energy deposits are tinier than the collision energy of the initial electron and positron beams by a simulation

  16. University of Tennessee deploys force10 switch for CERN work

    CERN Multimedia

    2007-01-01

    "Force20 networks, the pioneer in building and securing reliable networks, today announced that the University of Tennessee physics department has deployed the C300 resilient switch to analyze data form CERN's Large Hadron Collider." (1/2 page)

  17. Llewellyn Smith, Director-General designate of CERN, discusses LHC

    CERN Multimedia

    Sweet, William N

    1992-01-01

    Christopher Llewellyn Smith was nominated by the Committee of Council to be Director General of CERN. He aims to pave the way for the Large Hadron Collider and utilize to the full the Large Electron-Positron machine.

  18. CERN confirms goal of 2007 start-up for LHC

    CERN Document Server

    2005-01-01

    Speaking at the 131st session of CERN Council on 17 December 2004, the Director-General, Robert Aymar, confirmed that the top priority is to maintain the goal of starting up the Large Hadron Collider (LHC) in 2007.

  19. The case for future hadron colliders from B → K (*) μ + μ - decays

    Science.gov (United States)

    Allanach, B. C.; Gripaios, Ben; You, Tevong

    2018-03-01

    Recent measurements in B → K (*) μ + μ - decays are somewhat discrepant with Standard Model predictions. They may be harbingers of new physics at an energy scale potentially accessible to direct discovery. We estimate the sensitivity of future hadron colliders to the possible new particles that may be responsible for the anomalies at tree-level: leptoquarks or Z's. We consider luminosity upgrades for a 14 TeV LHC, a 33 TeV LHC, and a 100 TeV pp collider such as the FCC-hh. In the most conservative and pessimistic models, for narrow particles with perturbative couplings, Z' masses up to 20 TeV and leptoquark masses up to 41 TeV may in principle explain the anomalies. Coverage of Z' models is excellent: a 33 TeV 1 ab-1 LHC is expected to cover most of the parameter space up to 8 TeV in mass, whereas the 100 TeV FCC-hh with 10 ab-1 will cover all of it. A smaller portion of the leptoquark parameter space is covered by future colliders: for example, in a μ + μ - jj di-leptoquark search, a 100 TeV 10 ab-1 collider has a projected sensitivity up to leptoquark masses of 12 TeV (extendable to 21 TeV with a strong coupling for single leptoquark production).

  20. Superplasticiteit bij Cern

    NARCIS (Netherlands)

    Snippe, Q.H.C.; Snippe, Corijn

    2008-01-01

    Op CERN, het Europees onderzoekscentrum voor subatomaire fysica in Genève, wordt dit jaar een nieuwe deeltjesversneller, de Large Hadron Collider (LHC), in werking gesteld die nieuwe inzichten moet bieden over hoe de kleinste deeltjes der materie zich gedragen. Om hierachter te komen, is op plaatsen