WorldWideScience

Sample records for hadron calorimeter front-end

  1. Front end readout electronics for the CMS hadron calorimeter

    CERN Document Server

    Shaw, Terri M

    2002-01-01

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm sup 2. For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes.

  2. Front end readout electronics for the CMS hadron calorimeter

    International Nuclear Information System (INIS)

    Terri M. Shaw et al.

    2002-01-01

    The front-end electronics for the CMS Hadron Calorimeter provides digitized data at the beam interaction rate of 40 MHz. Analog signals provided by hybrid photodiodes (HPDs) or photomultiplier tubes (PMTs) are digitized and the data is sent off board through serialized fiber optic links running at 1600 Mbps. In order to maximize the input signal, the front-end electronics are housed on the detector in close proximity to the scintillating fibers or phototubes. To fit the electronics into available space, custom crates, backplanes and cooling methods have had to be developed. During the expected ten-year lifetime, the front-end readout electronics will exist in an environment where radiation levels approach 330 rads and the neutron fluence will be 1.3E11 n/cm 2 . For this reason, the design approach relies heavily upon custom radiation tolerant ASICs. This paper will present the system architecture of the front-end readout crates and describe their results with early prototypes

  3. Electronic front-end for LHCb electromagnetic and hadronic calorimeters

    International Nuclear Information System (INIS)

    Beigbeder, Ch.

    2000-11-01

    The electronic front-end of the LHCb electromagnetic and hadronic calorimeters will be described. It consists of a 9U 32 channel board, each channel including shaper-integrator, 12 bit ADC and look-up tables allowing to code the transverse energy information both for readout and for the Level 0 trigger. The readout information is stored in a fixed latency followed by a derandomizer. The trigger information is processed further on the board by FPGA, performing channel addition and comparison to extract the highest transverse energy local cluster for further processing. The system is fully synchronous and allows to extract candidates for calorimetric trigger at every 40 MHz clock cycle. The operation and characteristics (noise, linearity etc.) of a prototype board will be described. (author)

  4. Test system for the production of the Atlas Tile Calorimeter front-end electronics

    International Nuclear Information System (INIS)

    Calvet, David

    2004-01-01

    The Atlas hadronic Tile Calorimeter front-end electronics is fully included in the so-called 'super-drawers'. The 256 super-drawers needed for the entire calorimeter are assembled and extensively tested in Clermont-Ferrand before being sent to CERN to be inserted in the calorimeter modules. A mobile system has been developed to perform a complete test of the super-drawers during their insertion

  5. Phase I Upgrade of the CMS Hadron Calorimeter

    CERN Document Server

    Cooper, Seth Isaac

    2014-01-01

    In preparation for Run 2 (2015) and Run 3 of the LHC (2019), the CMS hadron calorimeter has begun a series of ambitious upgrades. These include new photodetectors in addition to improved front-end and back-end readout electronics. In the hadron forward calorimeter, the existing photomultiplier tubes are being replaced with thinner window, multi-anode readout models, while in the central region, the hybrid photodiodes will be replaced with silicon photomultipliers. The front-end electronics will include high precision timing readout, and the backend electronics will handle the increased data bandwidth. The barrel and endcap longitudinal segmentation will also be increased. This report will describe the motivation for the upgrade, its major components, and its current status.

  6. Phase 1 upgrade of the CMS forward hadronic calorimeter

    CERN Document Server

    Noonan, Daniel Christopher

    2017-01-01

    The CMS experiment at the Large Hadron Collider at CERN is upgrading the photo- detection and readout system of the forward hadronic calorimeter. The phase 1 upgrade of the CMS forward calorimeter requires the replacement of the current photomultiplier tubes, as well as the installation of a new front-end readout system. The new photomultiplier tubes contain a thinner window as well as multi-anode readout. The front-end electronics will use the QIE10 ASIC which combines signal digitization with timing information. The major components of the upgrade as well as the current status are described in this paper.

  7. First Wheel of the Hadronic EndCap Calorimeter Completed

    CERN Multimedia

    Oram, C.J.

    2002-01-01

    With the LAr calorimeters well advanced in module production, the attention is turning to Batiment 180 where the calorimeter modules are formed into complete detectors and inserted into their respective cryostats. For the Hadronic End Cap (HEC) Group the task in B180 is to assemble the wheels, rotate them into their final orientation, and put them onto the cradle in front of the End Cap Cryostat. These tasks have been completed for the first HEC wheel in the B180 End Cap Clean Room. Given that this wheel weighs 70 tons the group is very relieved to have established that these gymnastics with the wheel proceed in a routine fashion. To assemble a wheel we take modules that have already been cold tested, do the final electrical testing and locate them onto the HEC wheel assembly table. Four wheels are required in total, each consisting of 32 modules. Wheel assembly is done in the horizontal position, creating a doughnut-like object sitting on the HEC table. The first picture shows the last module being added ...

  8. Development of ATLAS Liquid Argon Calorimeter Front-end Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00219286; The ATLAS collaboration

    2016-01-01

    The high-luminosity phase of the Large Hadron Collider will provide 5-7 times greater luminosities than assumed in the original detector design. An improved trigger system requires an upgrade of the readout electronics of the ATLAS Liquid Argon Calorimeter. Concepts for the future readout of the 182,500 calorimeter channels at 40-80 MHz and 16-bit dynamic range and the developments of radiation-tolerant, low-noise, low-power, and high-bandwidth front-end electronic components, including preamplifiers and shapers, 14-bit ADCs, and 10-Gb/s laser diode array drivers, are presented.

  9. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Van Daalen, Tal Roelof; The ATLAS collaboration

    2018-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for the reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized every 25 ns by sampling the signal. About 10000 channels of the front-end electronics measure the signals of the calorimeter with energies ranging from ~30 MeV to ~2 TeV. Each step of the signal reconstruction from scintillation light to the digital pulse reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations...

  10. Overview of the front end electronics for the Atlas LAR calorimeter

    International Nuclear Information System (INIS)

    Rescia, S.

    1997-11-01

    Proposed experiments for the Large Hadron Collider (LHC) set new demands on calorimeter readout electronics. The very high energy and large luminosity of the collider call for a large number of high speed, large dynamic range readout channels which have to be carefully synchronized. The ATLAS liquid argon collaboration, after more than 5 years of R and D developments has now finalized the architecture of its front end and read-out electronics, which have been written down in its Technical Design Report (TDR). An overview is presented

  11. Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Vesztergombi, Gyorgy; Zálán, Peter; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sudhakar, Katta; Verma, Piyush; Paktinat, S; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Mescheryakov, G; Sergeyev, S; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Stolin, Viatcheslav; Ulyanov, A; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Kuzucu-Polatoz, A; Onengüt, G; Ozdes-Koca, N; Cankocak, Kerem; Ozok, Ferhat; Serin-Zeyrek, M; Sever, Ramazan; Zeyrek, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchishin, V; Anderson, E Walter; Hauptman, John M; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Lazic, Dragoslav; Los, Serguei; O'Dell, Vivian; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumu, K; Thomas, Ray; Baarmand, Marc M; Ralich, Robert; Vodopiyanov, Igor; Cushman, Priscilla; Heering, Arjan Hendrix; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Mans, Jeremy; Tully, Christopher; De Barbaro, Pawel; Bodek, Arie; Budd, Howard; Chung, Yeon Sei; Haelen, T; Imboden, Matthias; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2007-01-01

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%.

  12. Commissioning of Upgrade Forward Hadron Calorimeters of CMS

    CERN Document Server

    Bilki, Burak

    2016-01-01

    The CMS experiment at the Large Hadron Collider (LHC) at CERN is upgrading the photo-detection and readout system of the forward hadron calorimeter (HF). During Long Shutdown 1, all of the original PMTs were replaced with multi-anode, thin window photomultipliers. At the same time, the back-end readout system was upgraded to micro-TCA readout. Here we report on the experience with commissioning and calibrating the HF front-end as well as the online operational challenges of the micro-TCA system.

  13. Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    de La Taille, C

    2008-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  14. Design, Construction and Testing of the Digital Hadron Calorimeter (DHCAL) Electronics

    CERN Document Server

    Adams, C; Bilki, B; Butler, J; Corriveau, F; Cundiff, T; Drake, G; Francis, K; Guarino, V; Haberichter, B; Hazen, E; Hoff, J; Holm, S; Kreps, A; DeLurgio, P; Monte, L Dal; Mucia, N; Norbeck, E; Northacker, D; Onel, Y; Pollack, B; Repond, J; Schlereth, J; Smith, J R; Trojand, D; Underwood, D; Velasco, M; Walendziak, J; Wood, K; Wu, S; Xia, L; Zhang, Q; Zhao, A

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of the electronic readout system of this prototype calorimeter. The system is based on the DCAL front-end chip and a VME-based back-end.

  15. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    CERN Document Server

    Bilki, Burak

    2017-01-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I upgrade was performed during the Extended Year End Technical Stop of 2016 and 2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics were also upgraded to QIE10-based electronics which implement larger dynamic range and a 6-bit TDC. Following this major upgrade, the Hadron Forward Calorimeters were commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  16. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    Science.gov (United States)

    Bilki, B.; Onel, Y.

    2018-03-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I Upgrade was performed during the Extended Year End Technical Stop of 2016-2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics were also upgraded to QIE10-based electronics which implement larger dynamic range and a 6-bit TDC. Following this major upgrade, the Hadron Forward Calorimeters were commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  17. Assembly of the CMS hadronic calorimeter

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  18. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    CERN Document Server

    Strobbe, N

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  19. Search for Supersymmetric Top-Quark Partners Using Support Vector Machines and Upgrade of the Hadron Calorimeter Front-End Readout Control System at CMS

    CERN Document Server

    Sahin, Mehmet Ozgur; Schleper, Peter

    2017-01-01

    In this thesis a search for direct pair production of supersymmetric top-quark partners aswell as work on the upgrade of the front-end readout controller of the Hadron Calorimeter(HCAL) of the Compact Muon Solenoid (CMS) experiment are presented.The most appealing extension of the Standard Model (SM) is supersymmetry (SUSY), relating the integer spin (bosons) and half-integer spin elementary particles (fermions). Supersymmetric top-quark partners (t) around and below the TeV energy scale offer a solution to thehierarchy problem. Furthermore, R-parity conserving SUSY models propose a cold dark matter candidate in the form of stable lightest supersymmetric particles, e.g. lightest neutralinos(χ0 ).The analysis performed in this thesis is a search for top-squark pair production in a final state consisting of a single isolated lepton, jets, among which at least one is tagged asbottom-quark jet, and large missing transverse energy at the CMS experiment at the CERNLarge Hadron Collider (LHC) with 8 TeV center-of-...

  20. Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    CERN Document Server

    Bilki, Burak

    2017-01-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I upgrade is being performed during the Extended Year End Technical Stop of 2016 â?? 2017. In the framework of the upgrade, the PMT boxes are being reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics is also being upgraded to QIE10-based electronics which will implement larger dynamic range and a 6-bit TDC to eliminate the background to have an effect on the trigger. Following this major upgrade, the Hadron Forward Calorimeters will be commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  1. CMS Hadronic EndCap Calorimeter Upgrade R&D Studies

    CERN Document Server

    Akgun, Ugur; Onel, Yasar

    2012-01-01

    Due to an expected increase in radiation damage in LHC, we propose to replace the active material of the CMS Hadronic EndCap calorimeters with radiation hard quartz plate. Quartz is proven to be radiation hard with radiation damage tests using electron, proton, neutron and gamma beams. However, the light produced in quartz is from Cerenkov process, which yields drastically fewer photons than scintillators. To increase the light collection efficiency we pursue two separate methods: First method: use wavelength shifting (WLS) fibers, which have been shown to collect efficiently the Cerenkov light generated in quartz plates. A quartz plate calorimeter prototype with WLS fibers has been constructed and tested at CERN that shows this method is feasible. Second proposed solution is to treat the quartz plates with radiation hard wavelength shifters, p-terphenyl, doped zinc oxide, or doped CdS. Another calorimeter prototype has been constructed with p-terphenyl deposited quartz plates, and showed superior calorimeter...

  2. A TTC to Data Acquisition interface for the ATLAS Tile Hadronic calorimeter at the LHC

    CERN Document Server

    Valero, Alberto; The ATLAS collaboration; Torres Pais, Jose Gabriel; Soret Medel, Jesús

    2017-01-01

    TileCal is the central tile hadronic calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN. It is a sampling calorimeter where scintillating tiles are embedded in steel absorber plates. The tiles are read-out using almost 10,000 photomultipliers which convert the light into an electrical signal. These signals are digitized and stored in pipelines memories in the front-end electronics. Upon the reception of a trigger signal, the PMT data is transferred to the Read-Out Drivers in the back-end electronics which process and transmits the processed data to the ATLAS Data AcQuisition (DAQ) system. The Timing, Trigger and Control (TTC) system is an optical network used to distribute the clock synchronized with the accelerator, the trigger signals and configuration commands to both the front-end and back-end electronics components. During physics operation, the TTC system is used to configure the electronics and to distribute trigger information used to synchronize the different parts of the ...

  3. Installation and Commissioning of the CMS Hadron Forward Calorimeters Phase I Upgrade

    CERN Document Server

    Onel, Yasar

    2017-01-01

    The final phase of the CMS Hadron Forward Calorimeters Phase I upgrade was performed during the Extended Year End Technical Stop of 2016-2017. In the framework of the upgrade, the PMT boxes were reworked to implement two channel readout in order to exploit the benefits of the multi-anode PMTs in background tagging and signal recovery. The front-end electronics was also being upgraded to QIE10-based electronics which will implement larger dynamic range and a 6-bit TDC to provide additional handles to eliminate the background. Following this major upgrade, the Hadron Forward Calorimeters are being commissioned for operation readiness in 2017. Here we describe the details and the components of the upgrade, and discuss the operational experience and results obtained during the upgrade and commissioning.

  4. What's new with the CMS hadron calorimeter

    CERN Document Server

    Hagopian, V

    2002-01-01

    The CMS Hadron Calorimeter is designed to measure hadron jets, single hadrons and single mu 's. The central barrel and the two end caps, made of brass and scintillators cover the ¿ eta ¿ range of 0.0 to 3.0. The two forward calorimeters made of iron and quartz fibers extend the ¿ eta ¿ range to 5.0. Scintillators are also placed outside of the magnet coil, within the muon system to measure the energy leakage from the central barrel. The construction of the calorimeter is about 50% complete. Several design changes were made to simplify the calorimeter and reduce the cost. The longitudinal segmentation of the central barrel and end caps was reduced by one unit. The quartz fiber diameter was doubled from 300 to 600 microns. Improvements were made to the hybrid photodetectors (HPD) and various other components. The special purpose ADC (QIE) and other electronics are in prototype stage. (3 refs).

  5. Performance of the ATLAS hadronic end-cap calorimeter in beam tests

    International Nuclear Information System (INIS)

    Dowler, B.; Pinfold, J.; Soukup, J.; Vincter, M.; Cheplakov, A.; Datskov, V.; Fedorov, A.; Javadov, N.; Kalinnikov, V.; Kakurin, S.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Lazarev, A.; Neganov, A.; Pisarev, I.; Serochkin, E.; Shilov, S.; Shalyugin, A.; Usov, Yu.; Ban, J.; Bruncko, D.; Chytracek, R.; Jusko, A.; Kladiva, E.; Strizenec, P.; Gaertner, V.; Hiebel, S.; Hohlfeld, M.; Jakobs, K.; Koepke, L.; Marschalkowski, E.; Meder, D.; Othegraven, R.; Schaefer, U.; Thomas, J.; Walkowiak, W.; Zeitnitz, C.; Leroy, C.; Mazini, R.; Mehdiyev, R.; Akimov, A.; Blagov, M.; Komar, A.; Snesarev, A.; Speransky, M.; Sulin, V.; Yakimenko, M.; Aderholz, M.; Brettel, H.; Cwienk, W.; Dulny, B.; Fent, J.; Fischer, A.; Haberer, W.; Huber, J.; Huber, R.; Karev, A.; Kiryunin, A.; Kobler, T.; Kurchaninov, L.; Laskus, H.; Lindenmayer, M.; Mooshofer, P.; Oberlack, H.; Salihagic, D.; Schacht, P.; Stenzel, H.; Striegel, D.; Tribanek, W.; Chekulaev, S.; Denisov, S.; Levitsky, M.; Minaenko, A.; Mitrofanov, G.; Moiseev, A.; Pleskatch, A.; Sytnik, V.; Benoit, P.; Hoyle, K.W.; Honma, A.; Maharaj, R.; Oram, C.J.; Pattyn, E.W.; Rosvick, M.; Sbarra, C.; Wellisch, H-P.; Wielers, M.; Birney, P.S.; Dobbs, M.; Fincke-Keeler, M.; Fortin, D.; Hodges, T.A.; Keeler, R.K.; Langstaff, R.; Lefebvre, M.; Lenckowski, M.; McPherson, R.; O'Neil, D.C.; Forbush, D.; Mockett, P.; Toevs, F.; Braun, H.M.; Thadome, J.

    2002-01-01

    Modules of the ATLAS liquid argon Hadronic End-cap Calorimeter (HEC) were exposed to beams of electrons, muons and pions in the energy range 6≤E≤200 GeV at the CERN SPS. A description of the HEC and of the beam test setup are given. Results on the energy response and resolution are presented and compared with simulations. The ATLAS energy resolution for jets in the end-cap region is inferred and meets the ATLAS requirements

  6. Performance of the Prototype Readout System for the CMS Endcap Hadron Calorimeter Upgrade

    Science.gov (United States)

    Chaverin, Nate; Dittmann, Jay; Hatakeyama, Kenichi; Pastika, Nathaniel; CMS Collaboration

    2016-03-01

    The Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) will upgrade the photodetectors and readout systems of the endcap hadron calorimeter during the technical stop scheduled for late 2016 and early 2017. A major milestone for this project was a highly successful testbeam run at CERN in August 2015. The testbeam run served as a full integration test of the electronics, allowing a study of the response of the preproduction electronics to the true detector light profile, as well as a test of the light yield of various new plastic scintillator materials. We present implications for the performance of the hadron calorimeter front-end electronics based on testbeam data, and we report on the production status of various components of the system in preparation for the upgrade.

  7. Channel control ASIC for the CMS hadron calorimeter front end readout module

    International Nuclear Information System (INIS)

    Ray Yarema et al.

    2002-01-01

    The Channel Control ASIC (CCA) is used along with a custom Charge Integrator and Encoder (QIE) ASIC to digitize signals from the hybrid photo diodes (HPDs) and photomultiplier tubes (PMTs) in the CMS hadron calorimeter. The CCA sits between the QIE and the data acquisition system. All digital signals to and from the QIE pass through the CCA chip. One CCA chip interfaces with two QIE channels. The CCA provides individually delayed clocks to each of the QIE chips in addition to various control signals. The QIE sends digitized PMT or HPD signals and time slice information to the CCA, which sends the data to the data acquisition system through an optical link

  8. An Updated Front-End Data Link Design for the Phase-2 Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Silverstein, Samuel; The ATLAS collaboration

    2017-01-01

    We present a new design for the advanced Link Daughter Board (DB) for the front-end electronics upgrade of the ATLAS hadronic Tile Calorimeter. The DB provides control, configuration and continuous ADC readout for the front-end, as well as bi-directional multi-GB/s optical links to the off-detector readout system. The DB will operate in high luminosity LHC conditions with limited detector access, so the design is fault tolerant with a high level of redundancy to avoid single-point failure modes. The DB is divided longitudinally, with an FPGA serving the ADC channels on its respective side. The new design is based on the new Xilinx Kintex Ultrascale+ FPGA family, which provides improved high-speed link timing performance as well as better signal compatibility with the CERN-developed GBTx link and timing distribution ASICs. Two GBTx ASICs each provide redundant phase-adjusted, LHC synchronous clocks, parallel control buses and remote JTAG configuration access to both FPGAs on the DB.

  9. Upgrade plans for hadron calorimeter in the CMS detector

    International Nuclear Information System (INIS)

    Dugad, Shashikant R.

    2010-01-01

    The Large Hadron Collider (LHC) is expected to undergo upgrades in two phases in next decade. Luminosity at the completion of the second phase is expected to increase by an order of magnitude to 10 35 /cm 2 s. The upgrade of the CMS Hadron Calorimeter (HCAL) is being planned to sustain an increased dose of radiation and challenges arising from occupancy rate due to higher luminosity. Replacement of existing photo readout device by silicon photomultipliers is being planned for the HCAL. Detailed studies performed on this device are presented. Plans on the upgrade of the front-end electronics, DAQ, trigger, and the active elements in some part of the detector will be discussed in detail.

  10. Cold electronics for the liquid argon hadronic end-cap calorimeter of ATLAS

    International Nuclear Information System (INIS)

    Ban, J.; Brettel, H.; Cwienk, W.D.; Fent, J.; Kurchaninov, L.; Ladygin, E.; Oberlack, H.; Schacht, P.; Stenzel, H.; Strizenec, P.

    2006-01-01

    This paper describes the on-detector electronics of the ATLAS hadronic end-cap calorimeter (HEC). The electronics is operated in liquid argon; therefore attention is paid to its performance at low temperatures. The core of the electronics are Gallium Arsenide (GaAs) preamplifiers. We present design, layout and results of various tests of the preamplifier chips and summing boards. The calibration and signal cables have been studied under laboratory conditions and the signal distortion is modeled. All parts of the electronics have been produced, tested and assembled on the calorimeter modules. The summary of the commissioning tests is presented

  11. The Compact Muon Solenoid (CMS) hadron calorimeter

    International Nuclear Information System (INIS)

    Hagopian, Vasken

    1999-01-01

    The Hadron Calorimeter of the CMS detector for the CERN LHC accelerator is designed to measure hadron jets as well as single hadrons. It has six segments. The central barrel made of brass and scintillators covers the vertical bar η vertical bar range of about 0 to 1.3. Two End Caps, also made of brass and scintillators extends the vertical bar η vertical bar range to 3.0. Two Forward calorimeters made of iron and quartz fibers cover the range 3.0 to 5.0. Since the barrel portion of the calorimeter is only 6.5 interaction lengths, the outer barrel will sample, by scintillators, outside the magnet coil and cryostat. Progress has been made on all subsystems and prototypes have been built. We now have a better understanding of magnetic field effects on calorimeters

  12. Front hadron calorimeter of the European hybrid spectrometer monitoring system

    International Nuclear Information System (INIS)

    Borotav, M.; Vlasov, E.V.; David, Zh. and others.

    1985-01-01

    A complex system for light control (SLC) of the front hadron calorimeter (FHC) of the European hybrid spectrometer is described. The FHC includes 200 plastic scintillators. The SLC permits to conduct autonomous correction of multiplication factor drift of photoelectron multipliers (PEM) and to identify failed elements. Control functions are exercised by two independent subsystems. The first one is a part of the general system of data acquisition. The second one - a system of on-line control of FHC state is intended for continuous successive by-channel analog-to-digital transformation of signals-responses on reper light pulses recorded from the PEM dinodes. The systems are presented in the CAMAC standard. The structural diagram of the system, functional correlation of modules and ideology of software are presented. On-line control permits to bring the detector in the mode corresponding to any of earlier conducted calibrations at the accuracy of 5%

  13. Estimation of radiation effects in the front-end electronics of an ILC electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Bartsch, V.; Postranecky, M.; Targett-Adams, C.; Warren, M.; Wing, M.

    2008-01-01

    The front-end electronics of the electromagnetic calorimeter of an International Linear Collider detector are situated in a radiation environment. This requires the effect of the radiation on the performance of the electronics, specifically FPGAs, to be examined. In this paper we study the flux, particle spectra and deposited doses at the front-end electronics of the electromagnetic calorimeter of a detector at the ILC. We also study the occupancy of the electromagnetic calorimeter. These estimates are compared with measurements, e.g. of the radiation damage of FPGAs, done elsewhere. The outcome of the study shows that the radiation doses and the annual flux is low enough to allow today's FPGAs to operate. The Single Event Upset rate, however, lies between 14 min and 12 h depending on the FPGA used and therefore needs to be considered in the design of the data acquisition system of the electromagnetic calorimeter. The occupancy is about 0.002 per bunch train not taking into account the effect of noise which depends on the choice of the detector

  14. Calibration of Tilecal hadronic calorimeter of the ATLAS

    International Nuclear Information System (INIS)

    Batkova, L.

    2009-01-01

    The aim of a precise calibration of a calorimeter is to get the best response relationship between the calorimeter and the energy of incident particles. Different types of particles interact through various types of interactions with the environment. Therefore, calorimeters are optimized to detect one type of particle (electromagnetic particles and hadrons). Within current high energy physics experiments, where the detectors reached gigantic proportions, calorimeters hold two important features: - serve to measure power showers by complete absorption method; - reconstruct a direction of showers of particles after their interaction with the environment of calorimeter. To deterioration of the resolving power of the hadronic calorimeter contributes incompensation of its response to hadrons and electromagnetic particles (e, μ). They record more energy from electrons as from pions of the same nominal power. During building of experiment of the ATLAS the prototypes of Tile calorimeter were calibrated using Cs and then were tested by means of calibration particle beams (e, μ, π). The work is aimed to evaluation of the response of the muon beam calibration experiment ATLAS. The scope of the work is to determine correction factors for the calibration constants obtained from the primary calibration of the calorimeter by cesium for end Tilecal calorimeter modules. Tile calorimeter modules consist of three layers A, BC and D. A correction factor for calibration constant for A layer was determined by electron beam firing angle less than 20 grad. Muons are used to determine correction factors for the remaining two layers of the end calorimeter module, where the electrons of given energy do not penetrate. (author)

  15. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  16. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Dulucq, Frédéric; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2009-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  17. SPIROC (SiPM Integrated Read-Out Chip) Dedicated very front-end electronics for an ILC prototype hadronic calorimeter with SiPM read-out

    CERN Document Server

    Bouchel, Michel; Fleury, Julien; de La Taille, Christophe; Martin-Chassard, Gisèle; Raux, Ludovic

    2007-01-01

    The SPIROC chip is a dedicated very front-end electronics for an ILC prototype hadronic calorimeter with Silicon photomultiplier (or MPPC) readout. This ASIC is due to equip a 10,000-channel demonstrator in 2009. SPIROC is an evolution of FLC_SiPM used for the ILC AHCAL physics prototype [1]. SPIROC was submitted in June 2007 and will be tested in September 2007. It embeds cutting edge features that fulfil ILC final detector requirements. It has been realized in 0.35m SiGe technology. It has been developed to match the requirements of large dynamic range, low noise, low consumption, high precision and large number of readout channels needed. SPIROC is an auto-triggered, bi-gain, 36-channel ASIC which allows to measure on each channel the charge from one photoelectron to 2000 and the time with a 100ps accurate TDC. An analogue memory array with a depth of 16 for each channel is used to store the time information and the charge measurement. A 12-bit Wilkinson ADC has been embedded to digitize the analogue memor...

  18. Design, performance, and calibration of CMS hadron-barrel calorimeter wedges

    International Nuclear Information System (INIS)

    Abdullin, S.; Abramov, V.; Goncharov, P.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A.; Acharya, B.; Banerjee, S.; Banerjee, S.; Chendvankar, S.; Dugad, S.; Kalmani, S.; Katta, S.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sudhakar, K.; Verma, P.; Adams, M.; Burchesky, K.; Qian, W.; Akchurin, N.; Carrell, K.; Guemues, K.; Thomas, R.; Akgun, U.; Ayan, S.; Duru, F.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Norbeck, E.; Olson, J.; Onel, Y.; Schmidt, I.; Anderson, E.W.; Hauptman, J.; Antchev, G.; Hazen, E.; Lawlor, C.; Machado, E.; Posch, C.; Rohlf, J.; Wu, S.X.; Aydin, S.; Dumanoglu, I.; Eskut, E.; Kayis-Topaksu, A.; Polatoz, A.; Onengut, G.; Ozdes-Koca, N.; Baarmand, M.; Ralich, R.; Vodopiyanov, I.; Baden, D.; Bard, R.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A.; Barnes, V.; Laasanen, A.; Pompos, A.; Bawa, H.; Beri, S.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, J.; Baiatian, G.; Sirunyan, A.; Bencze, G.; Vesztergombi, G.; Zalan, P.; Bodek, A.; Budd, H.; Chung, Y.; De Barbaro, P.; Haelen, T.; Camporesi, T.; Visser, T. de; Cankocak, K.; Cremaldi, L.; Reidy, J.; Sanders, D.A.; Cushman, P.; Sherwood, B.; Damgov, J.; Dimitrov, L.; Genchev, V.; Piperov, S.; Vankov, I.; Demianov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Petrushanko, S.; Sarycheva, L.; Vardanyan, I.; Elias, J.; Elvira, D.; Freeman, J.; Green, D.; Los, S.; O'Dell, V.; Ronzhin, A.; Sergeyev, S.; Suzuki, I.; Vidal, R.; Whitmore, J.; Emeliantchik, I.; Massolov, V.; Shumeiko, N.; Stefanovich, R.; Fisher, W.; Tully, C.; Gavrilov, V.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Stolin, V.; Ulyanov, A.; Gershtein, Y.; Golutvin, I.; Kalagin, V.; Kosarev, I.; Mescheryakov, G.; Smirnov, V.; Volodko, A.; Zarubin, A.; Grinev, B.; Lubinsky, V.; Senchishin, V.; Guelmez, E.; Hagopian, S.; Hagopian, V.; Johnson, K.; Heering, A.; Imboden, M.; Isiksal, E.; Karmgard, D.; Ruchti, R.; Kaya, M.; Lazic, D.; Levchuk, L.; Sorokin, P.; Litvintsev, D.; Litov, L.; Mans, J.; Ozkorucuklu, S.; Ozok, F.; Serin-Zeyrek, M.; Sever, R.; Zeyrek, M.; Paktinat, S.; Podrasky, V.; Sanzeni, C.; Winn, D.; Vlassov, E.

    2008-01-01

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the compact muon solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. The energy dependent time slewing effect was measured and tuned for optimal performance. (orig.)

  19. Design, performance, and calibration of CMS hadron-barrel calorimeter wedges

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Univ. of Maryland, College Park, MD (United States); Abramov, V.; Goncharov, P.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A. [IHEP, Protvino (Russian Federation); Acharya, B.; Banerjee, S.; Banerjee, S.; Chendvankar, S.; Dugad, S.; Kalmani, S.; Katta, S.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sudhakar, K.; Verma, P. [Tata Inst. of Fundamental Research, Mumbai (India); Adams, M.; Burchesky, K.; Qian, W. [Univ. of Illinois at Chicago, Chicago, IL (United States); Akchurin, N.; Carrell, K.; Guemues, K.; Thomas, R. [Texas Tech Univ., Dept. of Physics, Lubbock, TX (United States); Akgun, U.; Ayan, S.; Duru, F.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Norbeck, E.; Olson, J.; Onel, Y.; Schmidt, I. [Univ. of Iowa, Iowa City, IA (United States); Anderson, E.W.; Hauptman, J. [Iowa State Univ., Ames, IA (United States); Antchev, G.; Hazen, E.; Lawlor, C.; Machado, E.; Posch, C.; Rohlf, J.; Wu, S.X. [Boston Univ., Boston, MA (United States); Aydin, S.; Dumanoglu, I.; Eskut, E.; Kayis-Topaksu, A.; Polatoz, A.; Onengut, G.; Ozdes-Koca, N. [Cukurova Univ., Adana (Turkey); Baarmand, M.; Ralich, R.; Vodopiyanov, I. [Florida Inst. of Technology, Melbourne, FL (United States); Baden, D.; Bard, R.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A. [Univ. of Maryland, College Park, MD (United States); Barnes, V.; Laasanen, A.; Pompos, A. [Purdue Univ., West Lafayette, IN (United States); Bawa, H.; Beri, S.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, J. [Panjab Univ., Chandigarh (India); Baiatian, G.; Sirunyan, A. [Yerevan Physics Inst., Yerevan (Armenia); Bencze, G.; Vesztergombi, G.; Zalan, P. [KFKI-RMKI, Research Inst. for Particle and Nuclear Physics, Budapest (Hungary)] [and others

    2008-05-15

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the compact muon solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. The energy dependent time slewing effect was measured and tuned for optimal performance. (orig.)

  20. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, J. [Czech Technical University in Prague, CTU, Praha (Czech Republic); Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France)], E-mail: j.blaha@ipnl.in2p3.fr; Cartiglia, N. [Instituto Nazionale di Fisica Nucleare, INFN, Torino (Italy); Combaret, C. [Czech Technical University in Prague, CTU, Praha (Czech Republic); Fay, J. [Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France); Lustermann, W. [Eidgenossische Technische Hoschschule, ETH, Zuerich (Switzerland); Maurelli, G. [Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France); Nardulli, A. [Eidgenossische Technische Hoschschule, ETH, Zuerich (Switzerland); Obertino, M. [Instituto Nazionale di Fisica Nucleare, INFN, Torino (Italy)

    2007-10-15

    The Very-Front-End cards processing signal from photodetectors of the CMS electromagnetic calorimeter, have been put through extensive test program to guarantee their functionality and reliability. The characteristics of the VFE cards designed for the calorimeter barrel are presented. The results confirm the high quality of the cards production and show that the specifications are fully reached.

  1. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Blaha, J.; Cartiglia, N.; Combaret, C.; Fay, J.; Lustermann, W.; Maurelli, G.; Nardulli, A.; Obertino, M.

    2007-01-01

    The Very-Front-End cards processing signal from photodetectors of the CMS electromagnetic calorimeter, have been put through extensive test program to guarantee their functionality and reliability. The characteristics of the VFE cards designed for the calorimeter barrel are presented. The results confirm the high quality of the cards production and show that the specifications are fully reached

  2. Status of the ATLAS hadronic tile calorimeter

    International Nuclear Information System (INIS)

    Leitner, R.

    2005-01-01

    Short status of the Tile Calorimeter project is given. Major achievements in the mechanical construction of the detector modules, their instrumentation, cylinders assembly, as well as the principles of the detector front-end electronics, are described. The ideas of Tile Calorimeter module calibration are presented

  3. Search for supersymmetric top-quark partners using support vector machines and upgrade of the hadron calorimeter front-end readout control system at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Mehmet Oezguer

    2017-04-15

    In this thesis a search for direct pair production of supersymmetric top-quark partners as well as work on the upgrade of the front-end readout controller of the Hadron Calorimeter (HCAL) of the Compact Muon Solenoid (CMS) experiment are presented. The most appealing extension of the Standard Model (SM) is supersymmetry (SUSY), relating the integer spin (bosons) and half-integer spin elementary particles (fermions). Supersymmetric top-quark partners (t) around and below the TeV energy scale offer a solution to the hierarchy problem. Furthermore, R-parity conserving SUSY models propose a cold dark matter candidate in the form of stable lightest supersymmetric particles, e.g. lightest neutralinos (χ{sup 0}). The analysis performed in this thesis is a search for top-squark pair production in a final state consisting of a single isolated lepton, jets, among which at least one is tagged as bottom-quark jet, and large missing transverse energy at the CMS experiment at the CERN Large Hadron Collider (LHC) with 8 TeV center-of-mass energy. A new Support Vector Machines (SVM) High-Energy Physics interface (SVM-HINT) software is introduced to classify signal events originating from new physics processes and the SM background. SVM-HINT is enhanced with a novel statistical significance based optimization algorithm providing a state-of-the-art classification power. Monte Carlo simulations are used in the training and optimization procedure, and high signal purity search regions are determined in the search for top-squark pair production. The background event yields in each search region are predicted using a data-driven background estimation method. The results are interpreted within a simplified model assuming a branching ratio of 100% to t → tχ{sup 0}. No significant discrepancy between the data and the SM predictions has been observed. Exclusion limits were derived to constrain the m{sub t} and m{sub χ{sup 0}} of the investigated simplified model. The sensitivity of the

  4. Search for supersymmetric top-quark partners using support vector machines and upgrade of the hadron calorimeter front-end readout control system at CMS

    International Nuclear Information System (INIS)

    Sahin, Mehmet Oezguer

    2017-04-01

    In this thesis a search for direct pair production of supersymmetric top-quark partners as well as work on the upgrade of the front-end readout controller of the Hadron Calorimeter (HCAL) of the Compact Muon Solenoid (CMS) experiment are presented. The most appealing extension of the Standard Model (SM) is supersymmetry (SUSY), relating the integer spin (bosons) and half-integer spin elementary particles (fermions). Supersymmetric top-quark partners (t) around and below the TeV energy scale offer a solution to the hierarchy problem. Furthermore, R-parity conserving SUSY models propose a cold dark matter candidate in the form of stable lightest supersymmetric particles, e.g. lightest neutralinos (χ"0). The analysis performed in this thesis is a search for top-squark pair production in a final state consisting of a single isolated lepton, jets, among which at least one is tagged as bottom-quark jet, and large missing transverse energy at the CMS experiment at the CERN Large Hadron Collider (LHC) with 8 TeV center-of-mass energy. A new Support Vector Machines (SVM) High-Energy Physics interface (SVM-HINT) software is introduced to classify signal events originating from new physics processes and the SM background. SVM-HINT is enhanced with a novel statistical significance based optimization algorithm providing a state-of-the-art classification power. Monte Carlo simulations are used in the training and optimization procedure, and high signal purity search regions are determined in the search for top-squark pair production. The background event yields in each search region are predicted using a data-driven background estimation method. The results are interpreted within a simplified model assuming a branching ratio of 100% to t → tχ"0. No significant discrepancy between the data and the SM predictions has been observed. Exclusion limits were derived to constrain the m_t and m_χ_"0 of the investigated simplified model. The sensitivity of the previous searches with

  5. SIGNAL RECONSTRUCTION PERFORMANCE OF THE ATLAS HADRONIC TILE CALORIMETER

    CERN Document Server

    Do Amaral Coutinho, Y; The ATLAS collaboration

    2013-01-01

    "The Tile Calorimeter for the ATLAS experiment at the CERN Large Hadron Collider (LHC) is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are readout by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front-end electronics allows to read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read-out system is responsible for reconstructing the data in real-time fulfilling the tight time constraint imposed by the ATLAS first level trigger rate (100 kHz). The main component of the read-out system is the Digital Signal Processor (DSP) which, using an Optimal Filtering reconstruction algorithm, allows to compute for each channel the signal amplitude, time and quality factor at the required high rate. Currently the ATLAS detector and the LHC are undergoing an upgrade program tha...

  6. CMS Central Hadron Calorimeter

    OpenAIRE

    Budd, Howard S.

    2001-01-01

    We present a description of the CMS central hadron calorimeter. We describe the production of the 1996 CMS hadron testbeam module. We show the results of the quality control tests of the testbeam module. We present some results of the 1995 CMS hadron testbeam.

  7. Operational Experience with Radioactive Source Calibration of the CMS Hadron Endcap Calorimeter Wedges with Phase I Upgrade Electronics

    CERN Document Server

    Bilki, Burak

    2017-01-01

    The Phase I Upgrade of the CMS Hadron Endcap Calorimeters consists of new photodetectors and front-end electronics. The upgrade will allow the elimination of the high amplitude noise and drifting response of the Hybrid Photo-Diodes, at the same time enabling the mitigation of the radiation damage of the scintillators and the wavelength shifting fibers with a larger spectral acceptance of the Silicon Photomultipliers. The upgrade will also allow increasing the longitudinal segmentation of the readout to be beneficial for pile-up mitigation and recalibration due to depth-dependent radiation damage. As a realistic operational exercise, the responses of the Hadron Endcap Calorimeter wedges were calibrated with a 60Co radioactive source both with current and upgrade electronics. The exercise provided significant experience towards the full upgrade during the Year End Technical Stop 2017-2018. Here we describe the instrumentation details and the operational experiences related to the sourcing exercise.

  8. The upgrade of the laser calibration system for the ATLAS hadron calorimeter TileCal

    CERN Document Server

    Spalla, Margherita; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal), the central section of the hadronic calorimeter of the ATLAS experiment, is a key detector component to detect hadrons, jets and taus and to measure the missing transverse energy. TileCal is built of steel and scintillating tiles coupled to optical fibers and read‐out by photomultipliers (PMT). The performance of TileCal relies on a continuous, high resolution calibration of the individual response of the 10,000 channels forming the detector. The calibration is based on a three level architecture: a charge injection system used to monitor the full electronics chain including front-end amplifiers, digitizers and event builder blocks for each individual channel; a distributed optical system using laser pulses to excite all PMTs; and a mobile Cesium radiative source which is driven through the detector cell floating inside a pipe system. This architecture allows for a cascade calibration of the electronics, of the PMT and electronics, and of full chain including the active detec...

  9. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Blaha, J.

    2008-05-01

    A Very-Front-End (VFE) card is an important part of the on-detector read-out electronics of the CMS (Compact Muon Solenoid) electromagnetic calorimeter that is made of ∼ 76.000 radiation hard scintillating crystals PbWO 4 and operates on the Large Hadron Collider (LHC) at CERN. Almost 16.000 VFE cards that shape, amplify and digitize incoming signals from photodetectors generated by interacting particles. Since any maintenance of any part of the calorimeter is not possible during the 10-year lifetime of the experiment, the extensive screening program was employed throughout the whole manufacture process. As a part of readout electronics quality assurance program, the systems for burn-in and precise calibration of the VFE boards were developed and successfully used at IPN Lyon. In addition to functionality tests, all relevant electrical properties of each card were measured and analyzed in detail to obtain their full characterization and to build a database with all required parameters which will serve for the initial calibration of the whole calorimeter. In order to evaluate the calorimeter performance and also to deliver the most precise calibration constants, several fully equipped super-modules were extensively studied and calibrated during the test beam campaigns at CERN. As an important part of these tests, accurate studies of the electronics noise and relative gains, which are needed for measurement in high energy range, were carried out to optimize amplitude reconstruction procedure and thus improve the precision of the calorimeter energy determination. The heart of the thesis consists of the calibration of all VFE boards, including optimization of the laboratory calibration system and precise analysis of measured values to delivered desired calibration constants. The second half of the thesis is focused on the accurate evaluation and optimization of the read-out electronics in real data taking conditions. The results obtained in the laboratory at IPN Lyon

  10. A digital Front-End and Readout MIcrosystem for calorimetry at LHC

    CERN Multimedia

    2002-01-01

    % RD-16 A Digital Front-End and Readout Microsystem for Calorimetry at LHC \\\\ \\\\Front-end signal processing for calorimetric detectors is essential in order to achieve adequate selectivity in the trigger function of an LHC experiment, with data identification and compaction before readout being required in the harsh, high rate environment of a high luminosity hadron machine. Other crucial considerations are the extremely wide dynamic range and bandwidth requirements, as well as the volume of data to be transferred to following stages of the trigger and readout system. These requirements are best met by an early digitalization of the detector information, followed by integrated digital signal processing and buffering functions covering the trigger latencies.\\\\ \\\\The FERMI (Front-End Readout MIcrosystem) is a digital implementation of the front-end and readout electronic chain for calorimeters. It is based on dynamic range compression, high speed A to D converters, a fully programmable pipeline/digital filter c...

  11. Front-end electronics for the ALICE calorimeters

    CERN Document Server

    Wang, Ya-Ping; Muller, Hans; Cai, Xu; Zhou, Daicui; Yin, Zhong-Bao; Awes, Terry C.; Wang, Dong

    2010-01-01

    The ALICE calorimeters PHOS and EMCal are based on Avalanche Photo-Diode (APD) photosensors with Charge Sensitive Preamplifiers (CSP) for readout of the scintillating elements. The amplified signals are read out via 32-channel shaper/digitizer front-end electronics (FEE) with 14-bit effective dynamic range. The electronics is based on second order shapers with dual gain for each channel, getting digitized by ALTRO chips. Each APD channel is equipped with an individual 10-bit APD gain adjustment and 2×2 channel clusters generate a 100 ns shaped analog sums output (Fast OR) for the associated Trigger Region Units (TRU). The Fast OR signals are generated by first order shapers with a dynamic range of 12-bit given by the ADC in the TRU cards. Board controller firmware in the FPGA provides local monitoring and configuration of all parameters via the ALICE DCS system. The signal to noise ratio for MIP at 215 MeV is not, vert, similar7 per channel with a noise level of 30 MeV at room temperature for a dynamic range...

  12. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  13. CDF End Plug calorimeter Upgrade Project

    International Nuclear Information System (INIS)

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R ampersand D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R ampersand D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, γ and π 0 has been designed. Its performance requirements, R ampersand D results and mechanical design are discussed

  14. An Electronic Model of the ATLAS Phase-1 Upgrade Hadronic Endcap Calorimeter Front End Crate Baseplane

    CERN Document Server

    Porter, Ryan

    This thesis presents an electrical model of two pairs of interconnects of the ATLAS Phase-1 Upgrade Hadronic Endcap Front End Crate prototype baseplane. Stripline transmission lines of the baseplane are modeled using Keysight Technologies' Electromagnetic Professional's (EMPro) 3D electromagnetic simulation (Finite Element Method) and the connectors are modeled using built-in models in Keysight Technologies' Advanced Design System (ADS). The model is compared in both the time and frequency domain to measured Time Domain Reflectometer (TDR) traces and S-parameters. The S-parameters of the model are found to be within $5\\%$ of the measured S-parameters for transmission and reflection, and range from $25\\%$ below to $100\\%$ above for forward and backward crosstalk. To make comparisons with measurements, the cables used to connect the prototype HEC baseplane to the measurement system had to be included in the model. Plots of the S-parameters of a model without these cables are presented for one pair of interconne...

  15. The CALICE hadron calorimeters - beam test results and new developments

    International Nuclear Information System (INIS)

    Cvach, J.

    2009-01-01

    A prototype of a highly granular CALICE scintillator-steel hadron calorimeter using SiPMs as photodetectors has been tested in electron and hadron beams at CERN and Fermilab in the energy range 1-80 GeV. More than 7600 SiPMs - the highest number ever used - performed well over a period longer than 2 years and did not show an increase of noise. The electron data were used to validate the detector understanding and its calibration. The analysis of the first part of data from hadron beams leads to the energy resolution of 61% which can be further improved to 49% applying energy dependent weights. The data on the longitudinal and transverse shower shapes allow discrimination among hadronization models of GEANT4. Specifically QGSP B ERT and LHEP predictions were compared to the data. The beam test data allow in situ calibration possibilities to be evaluated. The next step in the calorimeter development for the ILD detector of the ILC, is the construction of a technical prototype - a calorimeter wedge segment of dimensions 80 x 110 x 230 cm 3 with most of the front-end and calibration electronics included in the detector volume. The electronics aims at several new goals - power pulsing, auto-triggering, analogue pipelining and ADC and TDC integration. We also present the alternative concept of a Digital Hadron Calorimeter (DHCAL) for use in a detector optimized for the application of Particle Flow Algorithms to the measurement of jet energies. We report on two lines of R being pursued by the CALICE Collaboration following different read-out and integration concepts. Both are based on glass resistive pad chambers with 1 cm 2 pad read-out, alternative amplification techniques like GEMs or Micromegas are also being considered. One series of studies applies a single threshold (1-bit) to the signal charges, providing digital readout with the front end part integrated on the pad board. We report on detailed measurements with a small scale prototype in the Fermilab test beam

  16. Production and quality control of optical elements for the end cap hadron calorimeter of the CMS setup

    CERN Document Server

    Abramov, V V; Korablev, A V; Korneev, Yu P; Krinitsyn, A N; Kryshkin, V I; Markov, A A; Talov, VV; Turchanovich, L K; Volkov, A A; Zaichenko, A A

    2005-01-01

    An end cap hadron calorimeter, in which scintillators with wavelength-shifting fibers are used as the active elements, has been designed for the compact muon spectrometer (CMS) now under construction at CERN. A total of 1368 optical elements containing 21 096 scintillators have already been manufactured. The production and quality control procedures for these optical elements are described. copy 2005 Pleiades Publishing, Inc.

  17. Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Anderson, E Walter; Antchev, Georgy; Arcidy, M; Ayan, S; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baden, Drew; Bakirci, Mustafa Numan; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barnes, Virgil E; Bawa, Harinder Singh; Baiatian, G; Bencze, Gyorgy; Beri, Suman Bala; Berntzon, Lisa; Bhatnagar, Vipin; Bhatti, Anwar; Bodek, Arie; Bose, Suvadeep; Bose, Tulika; Budd, Howard; Burchesky, Kyle; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Cerci, Salim; Chendvankar, Sanjay; Chung, Yeon Sei; Clarida, Warren; Cremaldi, Lucien Marcus; Cushman, Priscilla; Damgov, Jordan; De Barbaro, Pawel; Debbins, Paul; Deliomeroglu, Mehmet; Demianov, A; de Visser, Theo; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Dimitrov, Lubomir; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Efthymiopoulos, I; Elias, John E; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Fenyvesi, Andras; Fisher, Wade Cameron; Freeman, Jim; Ganguli, Som N; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Genchev, Vladimir; Gleyzer, Sergei V; Golutvin, Igor; Goncharov, Petr; Grassi, Tullio; Green, Dan; Gribushin, Andrey; Grinev, B; Gurtu, Atul; Murat Güler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Halyo, Valerie; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heering, Arjan Hendrix; Heister, Arno; Hunt, Adam; Ilyina, N; Ingram, D; Isiksal, Engin; Jarvis, Chad; Jeong, Chiyoung; Johnson, Kurtis F; Jones, John; Kaftanov, Vitali; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kodolova, Olga; Kohli, Jatinder Mohan; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krinitsyn, Alexander; Krishnaswamy, Marthi Ramaswamy; Krokhotin, Andrey; Kryshkin, V; Kuleshov, Sergey; Kumar, Arun; Kunori, Shuichi; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lee, Sang Joon; Levchuk, Leonid; Linn, Stephan; Litvintsev, Dmitri; Lobolo, L; Los, Serguei; Lubinsky, V; Lukanin, Vladimir; Ma, Yousi; Machado, Emanuel; Maity, Manas; Majumder, Gobinda; Mans, Jeremy; Marlow, Daniel; Markowitz, Pete; Martínez, German; Mazumdar, Kajari; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Miller, Michael; Möller, A; Mohammadi-Najafabadi, M; Moissenz, P; Mondal, Naba Kumar; Mossolov, Vladimir; Nagaraj, P; Narasimham, Vemuri Syamala; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Onengüt, G; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paktinat, S; Pal, Andras; Patil, Mandakini Ravindra; Penzo, Aldo; Petrushanko, Sergey; Petrosian, A; Pikalov, Vladimir; Piperov, Stefan; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Qian, Weiming; Ralich, Robert; Reddy, L; Reidy, Jim; Rogalev, Evgueni; Roh, Youn; Rohlf, James; Ronzhin, Anatoly; Ruchti, Randy; Ryazanov, Anton; Safronov, Grigory; Sanders, David A; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schmidt, Ianos; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Singh, B; Singh, Jas Bir; Sirunyan, Albert M; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shumeiko, Nikolai; Smirnov, Vitaly; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Stefanovich, R; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suzuki, Ichiro; Talov, Vladimir; Teplov, Konstantin; Thomas, Ray; Tonwar, Suresh C; Topakli, Huseyin; Tully, Christopher; Turchanovich, L; Ulyanov, A; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Vergili, Mehmet; Verma, Piyush; Vesztergombi, Gyorgy; Vidal, Richard; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Wang, Lei; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Whitmore, Juliana; Wu, Shouxiang; Yazgan, Efe; Yetkin, Taylan; Zálán, Peter; Zarubin, Anatoli; Zeyrek, Mehmet

    2008-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS.

  18. Design of a new front-end electronics test-bench for the upgraded ATLAS detector's Tile Calorimeter

    International Nuclear Information System (INIS)

    Kureba, C O; Govender, M; Hofsajer, I; Ruan, X; Sandrock, C; Spoor, M

    2015-01-01

    The year 2022 has been scheduled to see an upgrade of the Large Hadron Collider (LHC), in order to increase its instantaneous luminosity. The High Luminosity LHC, also referred to as the upgrade Phase-II, means an inevitable complete re-design of the read-out electronics in the Tile Calorimeter (TileCal) of the A Toroidal LHC Apparatus (ATLAS) detector. Here, the new read-out architecture is expected to have the front-end electronics transmit fully digitized information of the detector to the back-end electronics system. Fully digitized signals will allow more sophisticated reconstruction algorithms which will contribute to the required improved triggers at high pile-up. In Phase II, the current Mobile Drawer Integrity ChecKing (MobiDICK) test-bench will be replaced by the next generation test-bench for the TileCal superdrawers, the new Prometeo (A Portable ReadOut ModulE for Tilecal ElectrOnics). Prometeo is a portable, high-throughput electronic system for full certification of the front-end electronics of the ATLAS TileCal. It is designed to interface to the fast links and perform a series of tests on the data to assess the certification of the electronics. The Prometeo's prototype is being assembled by the University of the Witwatersrand and installed at CERN for further developing, tuning and tests. This article describes the overall design of the new Prometeo, and how it fits into the TileCal electronics upgrade. (paper)

  19. Hadron showers in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Lutz, Benjamin

    2010-11-01

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  20. Hadron showers in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Benjamin

    2010-11-15

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  1. Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; Davidek, M; David, T; Dawson, J; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovianov, J; Silva, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tr...

  2. An updated front-end data link design for the Phase-2 upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Silverstein, Samuel; The ATLAS collaboration

    2017-01-01

    We present a new design of the advanced Link Daughter Board (DB) for the front-end electronics upgrade of the ATLAS Tile Calorimeter (TileCal) for Phase-II. The new TileCal front-end comprises 1024 “mini-drawers” (MD) installed in 256 calorimeter modules. Each MD serves up to 12 PMT channels, with ADCs and calibration provided by one “main board” (MB) per MD. The DB is connected to the MB through a dense, high-speed FMC connector, and provides bi-directional multi-Gb/s optlcal links to the off-detector electronics for timing, control, and continuous high-speed readout of the ADC channels on the MB. The DB is designed for redundancy and fault-tolerance, and previous versions have already been successfully tested at CERN and elsewhere. The new revision includes Kintex Ultrascale+ FPGAs for improved link timing and radiation tolerance, an expanded role for the rad-tolerant GBTx ASICs, and a simpler design requiring fewer components and optical links.

  3. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    International Nuclear Information System (INIS)

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors

  4. The Front End Electronics of the Scintillator Pad Detector of LHCb Calorimeter

    CERN Document Server

    Gascon, David; Bota, S; Comerma, A; Diéguez, A; Garrido, L; Gaspar, A; Graciani, R; Graciani, E; Herms, A; Llorens, M; Luengo, S; Picatoste, E; Riera, J; Rosselló, M; Ruiz, H; Tortella, S; Vilasís, X

    2007-01-01

    In this paper the Front End electronics of the Scintillator Pad Detector (SPD) is outlined. The SPD is a sub-system of the Calorimeter of the LHCb experiment designed to discriminate between charged and neutral particles for the first level trigger. The system design is presented, describing its different functionalities implemented through three different cards and several ASICs. These functionalities are signal processing and digitization, data transmission, interface with control and timing systems of the experiment, low voltage power supply distribution and monitoring. Special emphasis is placed on installation and commissioning subjects such as cabling, grounding, shielding and power distribution.

  5. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  6. Progress in LAr EndCap Calorimetry: News from the Hadronic EndCap Group.

    CERN Multimedia

    Oram, C.J.

    With module production and testing completed for the Hadronic EndCap calorimeter, the attention of the HEC group is heavily directed towards wheel assembly in building 180. Three of the four HEC wheels are now assembled and rotated, and work is progressing on assembling the final wheel. This year has been a busy year for the installation of components in the EndCap C cryostat: the signal feedthrough installation was completed April 22nd, the pre-sampler shortly thereafter and the Electro-Magnetic EndCap August 13th. This allowed the HEC group to start transferring the HEC wheels from the T6A storage cradle into the cryostat. The operation started in mid-September and has progressed, on or ahead of schedule, since then with the major milestones being: Insertion of 67 ton front HEC wheel October 3rd Insertion of 90 ton rear HEC wheel October 22nd. The wheel alignment has proved to be excellent, with the position of the centre of the front(rear) wheel with respect to the nominal position being displaced b...

  7. Some hadron calorimeter properties relevant to storage rings

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.; Ellis, N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Eisenhandler, E.; Gibson, W.R.; Kalmus, P.I.P.; Thompson, G.; Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Hill, D.; Nandi, A.K.; Roberts, C.; Shah, T.P.

    1982-01-01

    At wide angles in a storage ring environment, a substantial part of the energy seen by a hadron calorimeter can be in the form of very low momentum particles such as jet fragments or resonance cascade decay products. Data are presented on the deviations from Gaussian resolution and linear response for such low momentum particles. The differing responses to incident e - , μ - , π +- , K +- , p and anti p at momenta below 10 GeV/c are also compared. In addition, the authors discuss the significance of angle effects for a 4π calorimeter, and the problems of combining data from calorimeters with different physical characteristics. Experimental data are presented on the difference in hadron response between a fine grain (electromagnetic) lead calorimeter and a coarser (hadron) iron calorimeter, and on the dependence of the response on the energy sharing between the two calorimeters. (Auth.)

  8. Radiation hardness on very front-end for SPD

    International Nuclear Information System (INIS)

    Cano, Xavier; Graciani, Ricardo; Gascon, David; Garrido, Lluis; Bota, Sebastia; Herms, Atila; Comerma, Albert; Riera, Jordi

    2005-01-01

    The calorimeter front-end electronics of the LHCb experiment will be located in a region, which is not protected from radiation. Therefore, all the electronics must be qualified to stand some defined radiation levels. The procedure, measurements and results of an irradiation test for every component of the very front-end SPD detector, which is part of the LHCb calorimeter are presented here. All the tested components, except a custom made ASIC, are commercially available

  9. Results from an expanded combined test of an EM LAr calorimeter with a hadronic scintillating-tile calorimeter

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Boldea, V.; Constantinescu, S.; Dita, S.; Pantea, V.

    1999-01-01

    The future ATLAS experiment at the CERN Large Hadron Collider (LHC) will include in the central ('barrel') region a calorimeter system composed of two separate units: a liquid argon (LAr) electromagnetic calorimeter and a scintillating-tile hadronic calorimeter. This system must be capable of identifying electrons, photons, and jets and of reconstructing their energies and angles, as well as of measuring missing transverse energy in the event. Over the past few years, several prototypes of the two calorimeters went through a series of separate tests, carried out at CERN SPS in beams of pions, muons and electrons at several values for incident momenta in the range 10 - 300 GeV/c. The barrel calorimeters were tested as well in a combined mode. An azimuthal sector of the ATLAS barrel calorimeter was reproduced by placing the hadronic device downstream of the electromagnetic calorimeter. The first combined test has been done in 1994 and a second one, with the same prototypes, in 1996. The experimental setup is shown. In order to try to understand the energy loss in dead material between the active part of the LAr and the Tile detectors in 1996 test, a layer of scintillator was installed, called the midsampler. It consists of five scintillators, 20 cm x 100 cm each, fastened directly to the front face of the Tile modules. The scintillator is 1 cm thick, and is readout using ten 1 mm WLS fibers on each of the long sides. Electrons were reconstructed in the EM calorimeter for two purposes: to estimate the electron response in the EM section for the evaluation of the e/h ratio and to measure the energy resolution and linearity in order to verify the quality of the response. The fitted energy resolution, corrected for a beam momentum spread of 0.3 %, is: σ E /E (12.15 ± 0.23)%/ √E + (0.0 ± 0.20) % + (374 ± 54) MeV/E. The linearity is, within errors, better than 1%. The energy resolution for hadrons is affected by several factors: sampling fluctuations, the electronic

  10. Operational Experience with Radioactive Source Calibration of the CMS Hadron Endcap Calorimeter Wedges with Phase I Upgrade Electronics

    CERN Document Server

    Bilki, Burak

    2017-01-01

    The Phase I Upgrade of the CMS Hadron Endcap Calorimeters consist of new photodetectors (Silicon Photomultipliers in place of Hybrid Photo-Diodes) and front-end electronics (QIE11). The upgrade will allow the elimination of the high amplitude noise and drifting response of the Hybrid Photo-Diodes, at the same time enabling the mitigation of the radiation damage of the scintillators and the wavelength shifting fibers with a larger spectral acceptance of the Silicon Photomultipliers. The upgrade will also allow to increase the longitudinal segmentation of the readout to be beneficial for pile-up mitigation and recalibration due to depth-dependent radiation damage.As a realistic operational exercise, the responses of the Hadron Endcap Calorimeter wedges are being calibrated with a $^{60}$Co radioactive source both with current and upgrade electronics. The exercise will provide a manifestation of the benefits of the upgrade. Here we describe the instrumentation details and the operational experiences related to t...

  11. Prometeo: A portable test-bench for the upgraded front-end electronics of the ATLAS Tile calorimeter

    CERN Document Server

    Bullock, D; The ATLAS collaboration; Hofsajer, I; Govender, M; Mellado, B; Moreno, P; Reed, R; Ruan, X; Sandrock, C; Solans, C; Suter, R; Usai, G; Valero, A

    2014-01-01

    Prometeo is the portable test-bench for the full certification of the front-end electronics of the ATLAS Tile calorimeter designed for the upgrade phase-II. It is a high throughput electronics system designed to simultaneously read-out all the samples from 12 channels at the LHC bunch crossing frequency and assess the quality of the data in real-time. The core of the system is a Xilinx Virtex 7 evaluation board extended with a dual QSFP FMC module to read-out and control the front-end boards. The rest of the functionalities of the system are provided by a HV mezzanine board that to turn on the gain of the photo-multipliers, an LED board that sends light to illuminate them, and a 12 channel ADC board that samples the analog output of the front-end. The system is connected by ethernet to a GUI client from which QA tests are performed on the electronics such as noise measurements and linearity response to an injected charge.

  12. Upgrading the Atlas Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    Tile Calorimeter is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2024, after the upgrade of the LHC the peak luminosity will increase by a factor of 5 compared to the design value, thus requiring an upgrade of the Tile Calorimeter readout electronics. Except the photomultipliers tubes (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at the front-end level and sending them with 10 Gb/s optical links to the back-end electronics. One demonstrator prototype module is planned to be inserted in Tile Calorimeter in 2015 that will include hybrid electronic components able to probe the new design.

  13. Last fibre for the CMS's forward hadronic calorimeter

    CERN Multimedia

    2004-01-01

    In February an important milestone was passed by the CMS's forward hadronic calorimeter project: the last of 450000 quartz fibres was inserted and the wedge preparation phase has now been completed. Ten thousand working hours were spent on inserting 450 000 quartz fibres into the CMS's forward hadronic calorimeter! Patience and meticulous attention to detail were the two qualities required by the five people who undertook this special job at CERN. On 6 February their task was completed. "The CMS's forward hadronic calorimeter (HF) covers the region immediately close to the LHC beam, 0.6 degrees to 6 degrees from the beam line," explains project coordinator Tiziano Camporesi. The detection of high energy jets in this angular region will be very important in helping to identify the signature of the Higgs boson or possibly any new boson produced in proton-proton collision in the LHC. Rita Fodor, 19, is working on one wedge of the CMS's forward hadronic calorimeter in building 186. She and her...

  14. Study of the hadron shower profiles with the ATLAS tile hadron calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Rusakovich, N.A.; Vinogradov, V.B.; Kul'chitskij, Yu.A.; Rumyantsev, V.S.; Nessi, M.

    1997-01-01

    The lateral and longitudinal profiles of the hadronic showers detected by ATLAS iron-scintillator tile hadron calorimeter with longitudinal tile configuration have been investigated. The results are based on 100 GeV pion beam data. Due to the beam scan provided many different beam impact locations with cells it is succeeded to obtain detailed picture of transverse shower behavior. The underlying radial energy densities for four depths and for overall calorimeter have been reconstructed. The three-dimensional hadronic shower parametrization has been suggested

  15. Track segments in hadronic showers in a highly granular scintillator-steel hadron calorimeter

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dannheim, D.; Dotti, A.; Folger, G.; Ivantchenko, V.; Klempt, W.; Kraaij, E.van der; Lucaci-Timoce, A.-I; Ribon, A.; Schlatter, D.; Uzhinskiy, V.; Cârloganu, C.; Gay, P.; Manen, S.; Royer, L.; Tytgat, M.; Zaganidis, N.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.-Y; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Feege, N.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Sudo, Y.; Yoshioka, T.; Dauncey, P.D.; Magnan, A.-M; Bartsch, V.; Wing, M.; Salvatore, F.; Gil, E.Cortina; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Negra, R.Della; Grenier, G.; Han, R.; Ianigro, J-C; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Donckt, M.Vander; Zoccarato, Y.; Alamillo, E.Calvo; Fouz, M.-C; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Lorenzo, S.Conforti di; Cornebise, P.; Doublet, Ph; Dulucq, F.; Fleury, J.; Frisson, T.; der Kolk, N.van; Li, H.; Martin-Chassard, G.; Richard, F.; Taille, Ch de la; Pöschl, R.; Raux, L.; Rouëné, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Musat, G.; Ruan, M.; Tran, T.H.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Takeshita, T.; Uozumi, S.; Jeans, D.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-01-01

    We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, providing sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.

  16. A new portable test bench for the ATLAS Tile Calorimeter front-end electronics certification

    International Nuclear Information System (INIS)

    Alves, J.; Carrio, F.; Moreno, P.; Usai, G.; Valero, A.; Kim, H.Y.; Minashvili, I.; Shalyugin, A.; Reed, R.; Schettino, V.; Souza, J.; Solans, C.

    2013-06-01

    This paper describes the upgraded portable test bench for the Tile Calorimeter of the ATLAS experiment at CERN. The previous version of the portable test bench was extensively used for certification and qualification of the front-end electronics during the commissioning phase as well as during the short maintenance periods of 2010 and 2011. The new version described here is designed to be an easily upgradable version of the 10-year-old system, able to evaluate the new technologies planned for the ATLAS upgrade as well as provide new functionalities to the present system. It will be used in the consolidation of electronics campaign during the long shutdown of the LHC in 2013-14 and during future maintenance periods. The system, based on a global re-design with state-of-the-art devices, is based on a back-end electronics crate instrumented with commercial and custom modules and a front-end GUI that is executed on an external portable computer and communicates with the controller in the crate through an Ethernet connection. (authors)

  17. Monte Carlo simulation of a gas-sampled hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C Y; Kunori, S; Rapp, P; Talaga, R; Steinberg, P; Tylka, A J; Wang, Z M

    1988-02-15

    A prototype of the OPAL barrel hadron calorimeter, which is a gas-sampled calorimeter using plastic streamer tubes, was exposed to pions at energies between 1 and 7 GeV. The response of the detector was simulated using the CERN GEANT3 Monte Carlo program. By using the observed high energy muon signals to deduce details of the streamer formation, the Monte Carlo program was able to reproduce the observed calorimeter response. The behavior of the hadron calorimeter when placed behind a lead glass electromagnetic calorimeter was also investigated.

  18. Electromagnetic response of a highly granular hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Blaha, J.; Blaising, J.J. [Savoie Univ., CNRS/IN2P3, Annecy-le-Vieux (FR). Lab. d' Annecy-le-Vieux de Physique des Particules] (and others)

    2010-12-15

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  19. Electromagnetic response of a highly granular hadronic calorimeter

    International Nuclear Information System (INIS)

    Adloff, C.; Blaha, J.; Blaising, J.J.

    2010-12-01

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  20. Single event effect hardness for the front-end ASICs in the DAMPE satellite BGO calorimeter

    Science.gov (United States)

    Gao, Shan-Shan; Jiang, Di; Feng, Chang-Qing; Xi, Kai; Liu, Shu-Bin; An, Qi

    2016-01-01

    The Dark Matter Particle Explorer (DAMPE) is a Chinese scientific satellite designed for cosmic ray studies with a primary scientific goal of indirect detection of dark matter particles. As a crucial sub-detector, the BGO calorimeter measures the energy spectrum of cosmic rays in the energy range from 5 GeV to 10 TeV. In order to implement high-density front-end electronics (FEE) with the ability to measure 1848 signals from 616 photomultiplier tubes on the strictly constrained satellite platform, two kinds of 32-channel front-end ASICs, VA160 and VATA160, are customized. However, a space mission period of more than 3 years makes single event effects (SEEs) become threats to reliability. In order to evaluate SEE sensitivities of these chips and verify the effectiveness of mitigation methods, a series of laser-induced and heavy ion-induced SEE tests were performed. Benefiting from the single event latch-up (SEL) protection circuit for power supply, the triple module redundancy (TMR) technology for the configuration registers and the optimized sequential design for the data acquisition process, 52 VA160 chips and 32 VATA160 chips have been applied in the flight model of the BGO calorimeter with radiation hardness assurance. Supported by Strategic Priority Research Program on Space Science of the Chinese Academy of Sciences (XDA04040202-4) and Fundamental Research Funds for the Central Universities (WK2030040048)

  1. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.J.

    1983-12-01

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (author)

  2. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.J.; Ellis, N.N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.J.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Barnes, G.; Bowcock, T.J.V.; Eisenhandler, E.; Gibson, W.R.; Honma, A.K.; Kalmus, P.I.P.; Keeler, R.K.; Pritchard, T.W.; Salvi, G.A.P.; Thompson, G.; Arnison, G.T.J.; Astbury, A.; Cash, A.R.; Grayer, G.H.; Haynes, W.J.; Hill, D.L.; Moore, D.R.; Nandi, A.K.; Percival, M.D.; Roberts, J.H.C.; Scott, W.G.; Shah, T.P.; Stanhope, R.J.; White, D.E.A.

    1985-01-01

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (orig.)

  3. Calibration of the CMS Hadron Calorimeter in Run 2

    CERN Document Server

    Chadeeva, Marina

    2017-01-01

    Various calibration techniques for the CMS Hadron calorimeter in Run2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3\\%. The {\\it in situ} energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Z$\\rightarrow ee$ process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4\\% in the barrel and 2.6\\% in the endcap region (at $\\vert \\eta \\vert < 2$) and is dominated by the systematic uncertainty due to pileup contributions.

  4. Calibration of the CMS hadron calorimeter in Run 2

    Science.gov (United States)

    Chadeeva, M.; Lychkovskaya, N.

    2018-03-01

    Various calibration techniques for the CMS Hadron calorimeter in Run 2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3%. The in situ energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Zarrow ee process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4% in the barrel and 2.6% in the endcap region (at the pseudorapidity range |η|<2) and is dominated by the systematic uncertainty due to pileup contributions.

  5. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    International Nuclear Information System (INIS)

    Eigen, G.; Price, T.; Watson, N. K.; Marshall, J. S.; Thomson, M. A.; Ward, D. R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Hostachy, J.-Y.; Morin, L.; Brianne, E.; Ebrahimi, A.; Gadow, K.

    2016-01-01

    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range of 10–80 GeV/ c . Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP-BERT and FTFP-BERT physics lists from GEANT4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h / e , are estimated using the extrapolation and decomposition of the longitudinal profiles.

  6. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    CERN Document Server

    Eigen, G.; Watson, N.K.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Hostachy, J.Y.; Morin, L.; Brianne, E.; Ebrahimi, A.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Schuwalow, S.; Tran, H.L.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Munwes, Y.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Doren, B.van; Wilson, G.W.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Bonnevaux, A.; Combaret, C.; Caponetto, L.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Steen, A.; Antequera, J.Berenguer; Alamillo, E.Calvo; Fouz, M.C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Markin, O.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Ilyin, A.; Mironov, D.; Mizuk, R.; Popova, E.; Gabriel, M.; Goecke, P.; Kiesling, C.; der Kolk, N.van; Simon, F.; Szalay, M.; Bilokin, S.; Bonis, J.; Cornebise, P.; Pöschl, R.; Richard, F.; Thiebault, A.; Zerwas, D.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.C.; Cizel, J.B.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; de Freitas, P.Mora; Musat, G.; Pavy, S.; Rubio-Roy, M.; Ruan, M.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; Raux, L.; Seguin-Moreau, N.; Taille, Ch.de la; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Kotera, K.; Ono, H.; Takeshita, T.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Jeans, D.; Komamiya, S.; Nakanishi, H.

    2016-06-23

    The spatial development of hadronic showers in the CALICE scintillator-steel analogue hadron calorimeter is studied using test beam data collected at CERN and FNAL for single positive pions and protons with initial momenta in the range from 10 to 80 GeV/c. Both longitudinal and radial development of hadron showers are parametrised with two-component functions. The parametrisation is fit to test beam data and simulations using the QGSP_BERT and FTFP_BERT physics lists from Geant4 version 9.6. The parameters extracted from data and simulated samples are compared for the two types of hadrons. The response to pions and the ratio of the non-electromagnetic to the electromagnetic calorimeter response, h/e, are estimated using the extrapolation and decomposition of the longitudinal profiles.

  7. The large hadron collider beauty experiment calorimeters

    International Nuclear Information System (INIS)

    Martens, A.; LHCb Collaboration; Martens, A.

    2010-01-01

    The Large Hadron Collider beauty experiment (LHCb), one of the four largest experiments at the LHC at CERN, is dedicated to precision studies of CP violation and other rare effects, in particular in the b and c quark sectors. It aims at precisely measuring the Standard Model parameters and searching for effects inconsistent with this picture. The LHCb calorimeter system comprises a scintillating pad detector, a pre-shower (PS), electromagnetic (ECAL) and hadronic calorimeters, all of these employing the principle of transporting the light from scintillating layers with wavelength shifting fibers to photomultipliers. The fast response of the calorimeters ensures their key role in the LHCb trigger, which has to cope with the LHC collision rate of 40MHz. After discussing the design and expected performance of the LHCb calorimeter system, one addresses the time and energy calibration issues. The results obtained with the calorimeter system from the first LHC data will be shown.

  8. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00304670; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  9. Perfomance of a compensating lead-scintillator hadronic calorimeter

    Science.gov (United States)

    Bernardi, E.; Drews, G.; Garcia, M. A.; Klanner, R.; Kötz, U.; Levman, G.; Lomperski, M.; Lüke, D.; Ros, E.; Selonke, F.; Tiecke, H.; Tsirou, M.; Vogel, W.

    1987-12-01

    We have built a sandwich calorimeter consisting of 10 mm thick lead plates and 2.5 mm thick scintillator sheets. The thickness ratio between lead and scintillator was optimized to achieve a good energy resolution for hadrons. We have exposed this calorimeter to electrons, hadrons and muons in the energy range between 3 and 75 GeV, obtaining an average energy resolution of {23%}/{E} for electrons and {44%}/{E} for hadrons. For energies above 10 GeV and after leakage corrections, the ratio of electron response to hardron response is 1.05.

  10. First Half Of CMS Hadron Calorimeter Completed

    CERN Multimedia

    2001-01-01

    CMS HCAL electronics coordinator John Elias from Fermilab inspecting the assembled first half of the calorimeter. The first half barrel of the CMS hadron calorimeter was completed last month and assembly work on the elements of the second half commenced just last week. This is not a simple task considering the fact that the constructed half-barrel consists of eighteen 30 tonne segments each made with 0.15 mm tolerance. But through the work of everyone on the CMS hadron calorimeter team it is all moving forward. In the LHC, detection of particles produced in collisions of two proton beams requires measurement of their energy. To do this, the particle energy has to be changed into a form that can be easily measured. This is achieved by stopping the initial particles in a dense medium, where they create a shower of secondary particles. While particles that interact through electromagnetic forces (electrons and positrons) create relatively small showers, the size of showers created by hadrons, particles that i...

  11. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    CERN Document Server

    Senkin, Sergey; The ATLAS collaboration

    2017-01-01

    We present a front-end readout system, an ASIC called FATALIC, proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on 130 nm CMOS technology, FATALIC performs the full signal processing, including amplification, shaping and digitisation.

  12. The LHCb hadron calorimeter

    International Nuclear Information System (INIS)

    Dzhelyadin, R.I.

    2002-01-01

    The Hadron Calorimeter (HCAL) is designed for the LHCb experiment. The main purpose of the detector is to provide data for the L0 hadron trigger. The HCAL is designed as consisting of two symmetric movable parts of about 500 ton in total getting in touch in operation position without non-instrumented zones. The lateral dimensions of an active area are X=8.4 m width, Y=6.8 m height, and is distanced from the interaction point at Z=13.33 m. Both halves are assembled from stacked up modules. An internal structure consisting of thin iron plates interspaced with scintillating tiles has been chosen. Attention is paid to optimize the detector according to the requirements of the experiment, reducing the spending needed for its construction. Different construction technologies are being discussed. The calorimeter properties have been extensively studied with a variety of prototype on the accelerator beam. The calibration with a radioactive source and module-0 construction experience is discussed

  13. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  14. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Rodriguez Bosca, Sergi; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The High-Luminosity phase of LHC (HL-LHC) expected to begin in year 2026 requires new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and for better performance under higher pileup. All the TileCal on- and off-detector electronics will be replaced during the shutdown of 2024-2025. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Change...

  15. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Rodriguez Bosca, Sergi; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The High-Luminosity phase of LHC (HL-LHC)expected to begin in year 2026 requires new electronics to meet the requirements of a 1 MHz trigger, higher ambient radiation, and for better performance under higher pileup. All the TileCal on- and off-detector electronics will be replaced during the shutdown of 2024-2025. PMT signals from every TileCal cell will be digitized and sent directly to the back-end electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes...

  16. An electron-hadron separator for digital sampling calorimeters

    International Nuclear Information System (INIS)

    Winter, K. de; Geiregat, D.; Vilain, P.; Wilquet, G.; Bergsma, F.; Binder, U.; Burkard, H.; Capone, A.; Ereditato, A.; Flegel, W.; Grote, H.; Nieuwenhuis, C.; Oeveras, H.; Palladino, V.; Panman, J.; Piredda, G.; Winter, K.; Zacek, G.; Zacek, V.; Bauche, T.; Beyer, R.; Blobel, V.; Buesser, F.W.; Foos, C.; Gerland, L.; Niebergall, F.; Staehelin, P.; Tadsen, A.; Gorbunov, P.; Grigoriev, E.; Khovansky, V.; Maslennikov, A.; Rosanov, A.; Lippich, W.; Nathaniel, A.; Staude, A.; De Pedis, D.; Di Capua, E.; Dore, U.; Loverre, P.F.; Rambaldi-Frenkel, A.; Santacesaria, R.; Zanello, D.

    1989-01-01

    A fast and effective algorithm for electromagnetic and hadronic shower separation has been developed for the digital sampling calorimeter of the CHARM II experiment. It is based on a generalization of the minimal spanning tree concept and can be easily applied to other existing calorimeters. In this particular application, which requires the highest efficiency for retaining electromagnetic showers, one gets, for 99% efficiency, a rejection factor of the order of 100 for hadronic showers. (orig.)

  17. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum fro...

  18. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum from elec...

  19. Prototype tests for a highly granular scintillator-based hadronic calorimeter

    OpenAIRE

    Liu, Yong; Collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future lepton collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "technological prototypes", that are scalable to the full linear collider detector. The Analogue Hadronic Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintill...

  20. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  1. CMS Hadronic Endcap Calorimeter Upgrade R&D Studies

    OpenAIRE

    Akgun, Ugur; Albayrak, Elif. A.; Onel, Yasar

    2012-01-01

    Due to an expected increase in radiation damage in LHC, we propose to replace the active material of the CMS Hadronic EndCap calorimeters with radiation hard quartz plate. Quartz is proven to be radiation hard with radiation damage tests using electron, proton, neutron and gamma beams. However, the light produced in quartz is from Cerenkov process, which yields drastically fewer photons than scintillators. To increase the light collection efficiency we pursue two separate methods: First metho...

  2. Prometeo: A portable test-bench for the upgraded front-end electronics of the ATLAS Tile calorimeter

    CERN Document Server

    Bullock, D; The ATLAS collaboration; Govender, M; Hofsajer, I; Mellado, B; Moreno, P; Reed, R; Ruan, X; Sandrock, C; Solans, C; Suter, R; Usai, G; Valero, A

    2014-01-01

    Prometeo is a portable test-bench for full certification of the front-end electronics of the ATLAS Tile calorimeter, designed for the upgrade phase-II. It is a high-throughput electronic system designed to simultaneously read out all the digitized samples from 12 channels at the LHC bunch crossing frequency and assess the quality of the data in real-time. The core of the system is a Xilinx Virtex 7 evaluation board extended with a dual QSFP FMC module to read out and control the on-detector electronics. The rest of the functionalities of the system are provided by a HV mezzanine board that supplied the HV to the photo-multipliers, an LED board that sends light to illuminate them, and a 12 channel ADC board that samples the analog trigger output of the front- end. The system is connected by ethernet to a GUI client from which QA tests are performed on the electronics such as noise measurements and linearity response to an injected charge.

  3. Algorithm of hadron energy reconstruction for combined calorimeters in the DELPHI detector

    International Nuclear Information System (INIS)

    Gotra, Yu.N.; Tsyganov, E.N.; Zimin, N.I.; Zinchenko, A.I.

    1989-01-01

    The algorithm of hadron energy reconstruction from responses of electromagnetic and hadron calorimeters is described. The investigations have been carried out using the full-scale prototype of the hadron calorimeter cylindrical part modules. The supposed algorithm allows one to improve energy resolution by 5-7% with conserving the linearly of reconstructed hadron energy. 5 refs.; 4 figs.; 1 tab

  4. An overview of CMS central hadron calorimeter

    CERN Document Server

    Katta, S

    2002-01-01

    The central hadron calorimeter for CMS detector is a sampling calorimeter with active medium as scintillator plates interleaved with brass absorber plates. It covers the central pseudorapidity region (¿ eta ¿<3.0). The design and construction aspects are reported. The status of construction and assembly of various subdetectors of HCAL are presented. (5 refs).

  5. Design, Construction and Commissioning of the Digital Hadron Calorimeter - DHCAL

    CERN Document Server

    Adams, C; Bilki, B.; Butler, J.; Corriveau, F.; Cundiff, T.; Drake, G.; Francis, K.; Furst, B.; Guarino, V.; Haberichter, B.; Hazen, E.; Hoff, J.; Holm, S.; Kreps, A.; DeLurgio, P.; Matijas, Z.; Monte, L.Dal; Mucia, N.; Norbeck, E.; Northacker, D.; Onel, Y.; Pollack, B.; Repond, J.; Schlereth, J.; Skrzecz, F.; Smith, J.R.; Trojand, D.; Underwood, D.; Velasco, M.; Walendziak, J.; Wood, K.; Wu, S.; Xia, L.; Zhang, Q.; Zhao, A.

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.

  6. Commissioning of CMS Forward Hadron Calorimeters with Upgraded Multi-anode PMTs and uTCA Readout

    CERN Document Server

    Tiras, Emrah; Onel, Yasar

    2016-01-01

    The high flux of charged particles interacting with the CMS Forward Hadron Calorimeter PMT windows introduced a significant background for the trigger and offline data analysis. During Long Shutdown 1, all of the original PMTs were replaced with multi-anode, thin window photomultiplier tubes. At the same time, the back-end electronic readout system was upgraded to uTCA readout. The experience with commissioning and calibration of the Forward Hadron Calorimeter is described as well as the uTCA system. The upgrade was successful and provided quality data for Run 2 data-analysis at 13 TeV.

  7. Design and performance studies of a hadronic calorimeter for a FCC-hh experiment

    Science.gov (United States)

    Faltova, J.

    2018-03-01

    The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

  8. Front-end electronics development for the SSC

    International Nuclear Information System (INIS)

    Levi, M.

    1990-12-01

    This is a status report on electronics development undertaken by the Front-End Electronics Collaboration. The overall goal of the collaboration remains the development by 1992 of complete, architecturally compatible, front end electronic systems for calorimeter, wire drift chamber, and silicon strip readout. We report here a few highlights to give a brief overview of the work underway. Performance requirements and capabilities, selected architectures, circuit designs and test results are presented. 13 refs., 21 figs., 1 tab

  9. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Cerda Alberich, Leonor; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region |η| < 1.7. Jointly with the other calorimeters it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sa...

  10. Hadron calorimeter towers with a high space resolution

    International Nuclear Information System (INIS)

    Bellettini, G.; Bertani, R.; Bradaschia, C.; Del Fabbro, R.; Scribano, A.; Terreni, G.

    1982-01-01

    The performances of a set of hadron calorimeter towers for measuring the hadron impact point are described. It is shown that an accuracy of 1-2 cm can be achieved with a proper treatment of the data. (orig.)

  11. Hadronic energy reconstruction in the CALICE combined calorimeter system

    Energy Technology Data Exchange (ETDEWEB)

    Israeli, Yasmine [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    Future linear electron-positron colliders, ILC and CLIC, aim for precision measurements and discoveries beyond and complementary to the program of the LHC. For this purpose, detectors with the capability for sophisticated reconstruction of final states with energy resolutions substantially beyond the current state of the art are being designed. The CALICE collaboration develops highly granular calorimeters for future colliders, among them silicon-tungsten electromagnetic calorimeters and hadronic calorimeters with scintillators read out by SiPMs. Such a combined system was tested with hadrons at CERN as well as at Fermilab. In this contribution, we report on the energy reconstruction in the combined setup, which requires different intercalibration factors to account for the varying longitudinal sampling of sub-detectors. Software compensation methods are applied to improve the energy resolution and to compensate for the different energy deposit of hadronic and electromagnetic showers.

  12. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    Science.gov (United States)

    Tortajada, Ignacio Asensi

    2018-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. The Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade, two of them based on ASICs, and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module is being developed using the new electronics while conserving compatibility with the current system. The status of the developments will be presented, including results from the several tests with particle beams.

  13. Performance of the ATLAS Tile calorimeter

    CERN Document Server

    Bertoli, Gabriele; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau­particles and missing transverse energy. TileCal is a scintillator­steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front­end electronics read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read­out system is responsible for reconstructing the data in real­time. The digitized signals are reconstructed with the Optimal Filtering algorithm, which computes for each channel the signal amplitude, time and quality factor at the required high rate. Each stage of the signal production from scintillation light to the signal reconstruc...

  14. CMS Hadron Endcap Calorimeter Upgrade Studies for Super-LHC

    International Nuclear Information System (INIS)

    Bilki, Burak

    2011-01-01

    When the Large Hadron Collider approaches Super-LHC conditions above a luminosity of 10 34 cm -2 s -1 , the scintillator tiles of the CMS Hadron Endcap calorimeters will lose their efficiencies. As a radiation hard solution, the scintillator tiles are planned to be replaced by quartz plates. In order to improve the efficiency of the photodetection, various methods were investigated including radiation hard wavelength shifters, p-terphenyl or 4% gallium doped zinc oxide. We constructed a 20 layer calorimeter prototype with pTp coated plates of size 20 cm x 20 cm, and tested the hadronic and the electromagnetic capabilities at the CERN H2 beam-line. The beam tests revealed a substantial light collection increase with pTp or ZnO:Ga deposited quartz plates. Here we report on the current R and D for a viable endcap calorimeter solution for CMS with beam tests and radiation damage studies.

  15. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  16. The CMS crystal calorimeter

    CERN Document Server

    Lustermann, W

    2004-01-01

    The measurement of the energy of electrons and photons with very high accuracy is of primary importance far the study of many physics processes at the Large Hadron Collider (LHC), in particular for the search of the Higgs Boson. The CMS experiment will use a crystal calorimeter with pointing geometry, almost covering 4p, as it offers a very good energy resolution. It is divided into a barrel composed of 61200 lead tungstate crystals, two end-caps with 14648 crystals and a pre-shower detector in front of the end-cap. The challenges of the calorimeter design arise from the high radiation environment, the 4 Tesla magnetic eld, the high bunch crossing rate of 40 MHz and the large dynamic range, requiring the development of fast, radiation hard crystals, photo-detectors and readout electronics. An overview of the construction and design of the calorimeter will be presented, with emphasis on some of the details required to meet the demanding performance goals. 19 Refs.

  17. Design, performance, and calibration of the CMS hadron-outer calorimeter

    International Nuclear Information System (INIS)

    Abdullin, S.; Gavrilov, V.; Ilyina, N.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stolin, V.; Ulyanov, A.; Abramov, V.; Goncharov, P.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A.; Acharya, B.; Aziz, T.; Banerjee, Sudeshna; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P.V.; Dugad, S.; Ganguli, S.N.; Guchait, M.; Gurtu, A.; Kalmani, S.; Krishnaswamy, M.R.; Maity, M.; Majumder, G.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Narasimham, V.S.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Sudhakar, K.; Tonwar, S.; Verma, P.; Adam, N.; Fisher, W.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Landsberg, G.; Marlow, D.; Tully, C.; Werner, J.; Adams, M.; Bard, R.; Burchesky, K.; Qian, W.; Akchurin, N.; Berntzon, L.; Carrell, K.; Guemues, K.; Jeong, C.; Kim, H.; Lee, S.W.; Popescu, S.; Roh, Y.; Spezziga, M.; Thomas, R.; Volobouev, I.; Wigmans, R.; Yazgan, E.; Akgun, U.; Albayrak, E.; Ayan, S.; Clarida, W.; Debbins, P.; Duru, F.; Ingram, D.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Schmidt, I.; Yetkin, T.; Anderson, E.W.; Hauptman, J.; Antchev, G.; Arcidy, M.; Hazen, E.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Posch, C.; Rohlf, J.; Sulak, L.; Varela, F.; Wu, S.X.; Aydin, S.; Bakirci, M.N.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis-Topaksu, A.; Onengut, G.; Ozkurt, H.; Polatoz, A.; Sogut, K.; Topakli, H.; Vergili, M.; Baarmand, M.; Mermerkaya, H.; Ralich, R.M.; Vodopiyanov, I.; Babich, K.; Golutvin, I.; Kalagin, V.; Kosarev, I.; Ladygin, V.; Mescheryakov, G.; Moissenz, P.; Petrosyan, A.; Rogalev, E.; Smirnov, V.; Vishnevskiy, A.; Volodko, A.; Zarubin, A.; Baden, D.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A.; Wang, L.; Wetstein, M.; Barnes, V.; Laasanen, A.; Pompos, A.; Bawa, H.; Beri, S.; Bhandari, V.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, B.; Singh, J.B.; Baiatian, G.; Sirunyan, A.; Bencze, G.; Laszlo, A.; Pal, A.; Vesztergombi, G.; Zalan, P.; Bhatti, A.; Bodek, A.; Budd, H.; Chung, Y.; Barbaro, P. de; Haelen, T.; Bose, T.; Esen, S.; Vanini, A.; Camporesi, T.; Visser, T. de; Efthymiopoulos, I.; Cankocak, K.; Cremaldi, L.; Reidy, J.; Sanders, D.A.; Cushman, P.; Ma, Y.; Sherwood, B.; Damgov, J.; Piperov, S.; Deliomeroglu, M.; Guelmez, E.; Isiksal, E.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Demianov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Petrushanko, S.; Sarycheva, L.; Teplov, K.; Vardanyan, I.; Diaz, J.; Gaultney, V.; Kramer, L.; Linn, S.; Lobolo, L.; Markowitz, P.; Martinez, G.; Dimitrov, L.; Genchev, V.; Vankov, I.; Elias, J.; Elvira, D.; Freeman, J.; Green, D.; Los, S.; Ronzhin, A.; Sergeyev, S.; Suzuki, I.; Vidal, R.; Whitmore, J.; Emeliantchik, I.; Mossolov, V.; Shumeiko, N.; Stefanovich, R.; Fenyvesi, A.; Gamsizkan, H.; Murat Gueler, A.; Ozkan, C.; Sekmen, S.; Serin, M.; Sever, R.; Zeyrek, M.; Gleyzer, S.; Hagopian, S.; Hagopian, V.; Johnson, K.; Grinev, B.; Lubinsky, V.; Senchishin, V.; Hashemi, M.; Mohammadi-Najafabadi, M.; Paktinat, S.; Heering, A.; Karmgard, D.; Ruchti, R.; Levchuk, L.; Sorokin, P.; Litvintsev, D.; Mans, J.; Penzo, A.; Podrasky, V.; Sanzeni, C.; Winn, D.; Vlassov, E.

    2008-01-01

    The Outer Hadron Calorimeter (HCAL HO) of the CMS detector is designed to measure the energy that is not contained by the barrel (HCAL HB) and electromagnetic (ECAL EB) calorimeters. Due to space limitation the barrel calorimeters do not contain completely the hadronic shower and an outer calorimeter (HO) was designed, constructed and inserted in the muon system of CMS to measure the energy leakage. Testing and calibration of the HO was carried out in a 300 GeV/c test beam that improved the linearity and resolution. HO will provide a net improvement in missing E T measurements at LHC energies. Information from HO will also be used for the muon trigger in CMS. (orig.)

  18. Design, performance, and calibration of the CMS hadron-outer calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S.; Gavrilov, V.; Ilyina, N.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stolin, V.; Ulyanov, A. [ITEP, Moscow (Russian Federation); Abramov, V.; Goncharov, P.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A. [IHEP, Protvino (Russian Federation); Acharya, B.; Aziz, T.; Banerjee, Sudeshna; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P.V.; Dugad, S.; Ganguli, S.N.; Guchait, M.; Gurtu, A.; Kalmani, S.; Krishnaswamy, M.R.; Maity, M.; Majumder, G.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Narasimham, V.S.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Sudhakar, K.; Tonwar, S.; Verma, P. [Tata Inst. of Fundamental Research, Mumbai (India); Adam, N.; Fisher, W.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Landsberg, G.; Marlow, D.; Tully, C.; Werner, J. [Princeton Univ., NJ (United States); Adams, M.; Bard, R.; Burchesky, K.; Qian, W. [Univ. of Illinois, Chicago, IL (United States); Akchurin, N.; Berntzon, L.; Carrell, K.; Guemues, K.; Jeong, C.; Kim, H.; Lee, S.W.; Popescu, S.; Roh, Y.; Spezziga, M.; Thomas, R.; Volobouev, I.; Wigmans, R.; Yazgan, E. [Texas Tech Univ., Lubbock, TX (United States); Akgun, U.; Albayrak, E.; Ayan, S.; Clarida, W.; Debbins, P.; Duru, F.; Ingram, D.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Schmidt, I.; Yetkin, T. [Univ. of Iowa, Iowa City, IA (United States); Anderson, E.W.; Hauptman, J. [Iowa State Univ., Ames, IA (United States); Antchev, G.; Arcidy, M.; Hazen, E.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Posch, C.; Rohlf, J.; Sulak, L.; Varela, F.; Wu, S.X. [Boston Univ., MA (United States); Aydin, S.; Bakirci, M.N.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis-Topaksu, A.; Onengut, G.; Ozkurt, H.; Polatoz, A.; Sogut, K. [and others

    2008-10-15

    The Outer Hadron Calorimeter (HCAL HO) of the CMS detector is designed to measure the energy that is not contained by the barrel (HCAL HB) and electromagnetic (ECAL EB) calorimeters. Due to space limitation the barrel calorimeters do not contain completely the hadronic shower and an outer calorimeter (HO) was designed, constructed and inserted in the muon system of CMS to measure the energy leakage. Testing and calibration of the HO was carried out in a 300 GeV/c test beam that improved the linearity and resolution. HO will provide a net improvement in missing E{sub T} measurements at LHC energies. Information from HO will also be used for the muon trigger in CMS. (orig.)

  19. The high resolution spaghetti hadron calorimeter

    International Nuclear Information System (INIS)

    Jenni, P.; Sonderegger, P.; Paar, H.P.; Wigmans, R.

    1987-01-01

    It is proposed to build a prototype for a hadron calorimeter with scintillating plastic fibres as active material. The absorber material is lead. Provided that these components are used in the appropriate volume ratio, excellent performance may be expected, e.g. an energy resolution of 30%/√E for jet detection. The proposed design offers additional advantages compared to the classical sandwich calorimeter structures in terms of granularity, hermiticity, uniformity, compactness, readout, radiation resistivity, stability and calibration. 22 refs.; 7 figs

  20. Design of a New Switching Power Supply for the ATLAS TileCal Front-End Electronics

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2012-01-01

    We present the design of an upgraded switching power supply for the front-end electronics of the ATLAS Hadron Tile Calorimeter. The new design features significant improvement in noise, improved fault detection, and improved reliability, while retaining the compact size, water-cooling, output control, and monitoring features. We discuss the steps taken to improve the design. We present the results from extensive radiation testing to qualify the design, including SEU sensitivity. We also present our reliability analysis. Production of 2400 new bricks for the detector is in progress, and we present preliminary results from the production checkout.

  1. Light-front field theory in the description of hadrons

    Directory of Open Access Journals (Sweden)

    Ji Chueng-Ryong

    2017-01-01

    Full Text Available We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  2. Light-front field theory in the description of hadrons

    Science.gov (United States)

    Ji, Chueng-Ryong

    2017-03-01

    We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  3. A low-power high dynamic range front-end ASIC for imaging calorimeters

    CERN Document Server

    Bagliesi, M G; Marrocchesi, P S; Meucci, M; Millucci, V; Morsani, F; Paoletti, R; Pilo, F; Scribano, A; Turini, N; Valle, G D

    2002-01-01

    High granularity calorimeters with shower imaging capabilities require dedicated front-end electronics. The ICON 4CH and VA4 PMT chip-set is suitable for very high dynamic range systems with strict noise requirements. The ICON 4CH is a 4 channel input, 12 channel output ASIC designed for use in a multi-anode photomultiplier system with very large dynamic range and low-noise requirements. Each of the four input signals to the ASIC is split equally into three branches by a current conveyor. Each of the three branches is scaled differently: 1:1, 1:8 and 1:80. The signal is read out by a 12 channel low noise/low power high dynamic range charge sensitive preamplifier-shaper circuit (VA4-PMT chip), with simultaneous sample- and-hold, multiplexed analog read-out, calibration facilities. Tests performed in our lab with a PMT are reported in terms of linearity, dynamic range and cross-talk of the system. (5 refs).

  4. Monte-Carlo simulation for the showers in the DELPHI (LEP) hadron calorimeter

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Tkachev, L.G.

    1984-01-01

    Monte-Carlo simulation for shower formation is performed for a hadron calorimeter consisting of iron layers with inserted plastic streamer tubes. It is shown that the dead zone effect localized on anode wires in the places of streamer formation changes essentially both the calorimeter response and the effective transversal size of the shower. The response variation with the value and direction of the magnetic field corresponding to DELPHI hadron calorimeter achieves 2O%, which causes the necessity of additional calorimeter calibration in the magnetic field

  5. Sources of compensation in hadronic calorimeters

    International Nuclear Information System (INIS)

    Goodman, M.S.; Gabriel, T.A.; Di Ciaccio, A.; Wilson, R.

    1988-12-01

    Monte Carlo simulations are presented using the CALOR code system to study the design of a large hybrid hadron calorimeter system employing a warm liquid active medium (tetramethylsilane, Si(CH 3 ) 4 ) and uranium plates in addition to a conventional Fe/plastic system. In the system described here, the uranium provides partial compensation by suppressing the electromagnetic cascade produced by incident electrons due to sampling inefficiencies. The results of the simulations also indicate that significant compensation is achieved (given small enough saturation) due to low energy recoil protons produced in collisions with low energy (1--20 MeV) cascade and fission neutrons in the active medium. Both compensation mechanisms are important to help balance the response of a calorimeter to incident electrons and hadrons, that is, to achieve a ratio of pulse heights (e/h ∼ 1) which will lead to the best energy resolution. 17 refs., 4 figs., 2 tabs

  6. Fast front-end electronics for COMPASS MWPCs

    CERN Document Server

    Colantoni, M L; Ferrero, A; Frolov, V; Grasso, A; Heinz, S; Maggiora, A; Maggiora, M G; Panzieri, D; Popov, A; Tchalyshev, V

    2000-01-01

    In the COMPASS experiment, under construction at CERN, about 23000 channels of MWPCs will be used. The very high rate of the muon and hadron beams, and the consequently high trigger rate, require front- end electronics with innovative conceptual design. A new MWPC front- end electronics that fulfills the main COMPASS requirement to have a fast DAQ with a minimum dead-time has been designed. The general concept of the front-end cards is described; the comparative tests of two front-end chips, and different fast gas mixtures, are also shown. The commissioning of the experiment will start in the summer 2000, and production running, using the muon beam, is foreseen for the year 2001. (8 refs).

  7. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H.P.; Bednar, P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.; Bosman, M.; Bromberg, C.; Budagov, J.; Burckhart-Chromek, D.; Caprini, M.

    2009-01-01

    We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was ∼70pe/GeV, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of σ/E=52.9%/√(E)+5.7% was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter.

  8. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adragna, P [Pisa University and INFN, Pisa (Italy); Alexa, C [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Anderson, K [University of Chicago, Chicago, Illinois (United States); Antonaki, A; Arabidze, A [University of Athens, Athens (Greece); Batkova, L [Comenius University, Bratislava (Slovakia); Batusov, V [JINR, Dubna (Russian Federation); Beck, H P [Laboratory for High Energy Physics, University of Bern (Switzerland); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas Kuutmann, E [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal, Clermont-Ferrand (France); Blanchot, G [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bogush, A [Institute of Physics, National Academy of Sciences, Minsk (Belarus); Bohm, C [Stockholm University, Stockholm (Sweden); Boldea, V [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, Michigan (United States); Budagov, J [JINR, Dubna (Russian Federation); Burckhart-Chromek, D [CERN, Geneva (Switzerland); Caprini, M [National Institute for Physics and Nuclear Engineering, Bucharest (Romania)

    2009-07-21

    We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was {approx}70pe/GeV, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of {sigma}/E=52.9%/{radical}(E)+5.7% was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter.

  9. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2023, after the upgrade of the LHC (High Luminosity LHC, phase 2) the peak luminosity will increase by a factor of 5 compared to the design value (1034 cm-2 s-1), thus requiring an upgrade of the TileCal readout electronics. Except the 9852 photomultipliers (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at 40 MHz at the front-end level and sending them with 10 Gbps optical links to the back-end electronics. Moreover, to increase reliability, redundancy will be introduced at different levels. Three different options are currently being investigated for the front-end electronics and extensive test beam studies are planned to select the best option. One demonstrator prototype module is also planned to be inserted in TileCal in 2014 that will include hybrid electronic components able to probe the new design, but still compatible with the presen...

  10. The ATLAS Liquid Argon Calorimeters: integration, installation and commissioning

    International Nuclear Information System (INIS)

    Tikhonov, Yu.

    2008-01-01

    The ATLAS liquid argon calorimeter system consists of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters positioned in three cryostats. Since May 2006 the LAr barrel calorimeter records regular calibration runs and takes cosmic muon data together with tile hadronic calorimeter in the ATLAS cavern. The cosmic runs with end-cap calorimeters started in April 2007. First results of these combined runs are presented

  11. Detector Upgrade R\\&D of the CMS Hadronic Endcap and Forward Calorimeters

    CERN Document Server

    Akgun, Ugur

    2010-01-01

    The CMS Hadronic Endcap (HE) and Hadronic Forward (HF) calorimeters cover the pseudorapidity range of from 1.4 to 5 on both sides of the CMS detector, contributing to superior jet and missing transverse energy resolutions. Here we discuss possible upgrade scenarios for both calorimeters. Recent studies revealed abnormally high amplitude signals due to punch through charged particles, mostly muons, producing Cherenkov photons at the HF calorimeter PMT window. Our studies show that these events can be eliminated either by using the timing properties, or replacing the HF PMTs with new generation four anode PMTs. As the integrated luminosity of the LHC increases, the scintillator tiles used in the CMS Hadronic Endcap calorimeter will lose their efficiency. This report outlines two possible radiation hard upgrade scenarios based on replacing the HE scintillators with quartz plates.

  12. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    OpenAIRE

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H.P.; Bednar, P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.

    2009-01-01

    We report test beam studies of {11\\,\\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\\sim 70$~pe/GeV, exceeding the design goal by {40\\,\\%}. Electron beams provided a calibration of the modules at t...

  13. Design of an FPGA-based embedded system for the ATLAS Tile Calorimeter front-end electronics test-bench

    CERN Document Server

    Carrio, F; The ATLAS collaboration; Moreno, P; Reed, R; Sandrock, C; Shalyugin, A; Schettino, V; Solans, C; Souza, J; Usai, G; Valero, A

    2013-01-01

    The portable test bench (VME based) used for the certification of the Tile calorimeter front-end electronics has been redesigned for the LHC Long Shutdown (2013-2014) improving its portability. The new version is based on a Xilinx Virtex 5 FPGA that implements an embedded system using a hard core PowerPC 440 microprocessor and custom IP cores. The PowerPC microprocessor runs a light Linux version and handles the IP cores written in VHDL that implement the different functionalities (TTC, G-Link, CAN-Bus) Description of the system and performance measurements of the different components will be shown.

  14. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    International Nuclear Information System (INIS)

    Nigmanov, T. S.; Gustafson, H. R.; Longo, M. J.; Rajaram, D.

    2006-01-01

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons produced in π, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The purpose of the calorimeters is to measure the production of forward-going photons and neutrons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. We collected data with a variety of targets with beam energies from 5 GeV/c up to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons and protons is discussed. The performance of the calorimeters was tested on a neutron sample

  15. Design of a New Switching Power Supply for the ATLAS TileCAL Front-End Electronics

    CERN Document Server

    Drake, G; The ATLAS collaboration

    2012-01-01

    We present the design of an upgraded switching power supply for the front-end electronics of the ATLAS hadron tile calorimeter (TileCAL) at the LHC. The new design features significant improvement in noise, improved fault detection, and improved reliability, while retaining the compact size, water-cooling, output control, and monitoring features in this 300 KHz design. We discuss the steps taken to improve the design. We present the results from extensive radiation testing to qualify the design, including SEU sensitivity. We also present our reliability analysis. Production of 2400 new bricks for the detector is currently in progress, and we present preliminary results from the production checkout.

  16. Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Ajaltouni, Ziad J; Alifanov, A; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K J; Astvatsaturov, A R; Aubert, Bernard; Augé, E; Autiero, D; Azuelos, Georges; Badaud, F; Baisin, L; Battistoni, G; Bazan, A; Bee, C P; Bellettini, Giorgio; Berglund, S R; Berset, J C; Blaj, C; Blanchot, G; Blucher, E; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bouhemaid, N; Brette, P; Bromberg, C; Brossard, M; Budagov, Yu A; Buono, S; Calôba, L P; Camin, D V; Canton, B; Casado, M P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chase, Robert L; Chekhtman, A; Chevaleyre, J C; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Cozzi, L; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; de La Taille, C; Del Prete, T; Depommier, P; de Saintignon, P; De Santo, A; Dinkespiler, B; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Fassnacht, P; Fedyakin, N N; Ferrari, A; Ferreira, P; Ferrer, A; Flaminio, Vincenzo; Fouchez, D; Fournier, D; Fumagalli, G; Gallas, E J; Gaspar, M; Gianotti, F; Gildemeister, O; Gingrich, D M; Glagolev, V V; Golubev, V B; Gómez, A; González, J; Gordon, H A; Grabskii, V; Hakopian, H H; Haney, M; Hellman, S; Henriques, A; Holmgren, S O; Honoré, P F; Hostachy, J Y; Huston, J; Ivanyushenkov, Yu M; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Khokhlov, Yu A; Klioukhine, V I; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Laborie, G; Lami, S; Lapin, V; Lebedev, A; Lefebvre, M; Le Flour, T; Leitner, R; León-Florián, E; Leroy, C; Le Van-Suu, A; Li, J; Liba, I; Linossier, O; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; Lund-Jensen, B; Mahout, G; Maio, A; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marroquin, F; Martin, L; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miotto, A; Miralles, L; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Muanza, G S; Nagy, E; Némécek, S; Nessi, Marzio; Nicoleau, S; Noppe, J M; Olivetto, C; Orteu, S; Padilla, C; Pallin, D; Pantea, D; Parrour, G; Pereira, A; Perini, L; Perlas, J A; Pétroff, P; Pilcher, J E; Pinfold, James L; Poggioli, Luc; Poirot, S; Polesello, G; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Resconi, S; Richards, R; Riu, I; Romanov, V; Ronceux, B; Rumyantsev, V; Rusakovitch, N A; Sala, P R; Sanders, H; Sauvage, G; Savard, P; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Scheel, C V; Schwemling, P; Schindling, J; Seguin-Moreau, N; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shchelchkov, A S; Shevtsov, V P; Shochet, M J; Sidorov, V; Simaitis, V J; Simion, S; Sissakian, A N; Solodkov, A A; Sonderegger, P; Soustruznik, K; Stanek, R; Starchenko, E A; Stephani, D; Stephens, R; Studenov, S; Suk, M; Surkov, A; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Tisserant, S; Tokár, S; Topilin, N D; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Wagner, D; White, Alan R; Wingerter-Seez, I; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zdrazil, M; Zitoun, R; Zolnierowski, Y

    1996-01-01

    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle $\\theta$ of about 11$^\\circ$ is well-described by the expression $\\sigma/E = ((46.5 \\pm 6.0)\\%/\\sqrt{E} +(1.2 \\pm 0.3)\\%) \\oplus (3.2 \\pm 0.4)~\\mbox{GeV}/E$. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied.

  17. An Upgraded Front-End Switching Power Supply Design For the ATLAS TileCAL Detector of the LHC

    CERN Document Server

    Drake, Gary; The ATLAS collaboration

    2011-01-01

    We present the design of an upgraded switching power supply brick for the front-end electronics of the ATLAS hadron tile calorimeter (TileCAL) at the LHC. The new design features significant improvement in noise, improved fault detection, and generally a more robust design, while retaining the compact size, water-cooling, output control, and monitoring features in this 300 KHz design. We discuss the improvements to the design, and the radiation testing that we have done to qualify the design. We also present our plans for the production of 2400 new bricks for installation on the detector in 2013.

  18. An Upgraded Front-End Switching Power Supply Design for the ATLAS TileCAL Detector of the LHC

    CERN Document Server

    Drake, G; The ATLAS collaboration; De Lurgio, P; Henriques, A; Minashvili, I; Nemecek, S; Price, L; Proudfoot, J; Stanek, R

    2011-01-01

    We present the design of an upgraded switching power supply brick for the front-end electronics of the ATLAS hadron tile calorimeter (TileCAL) at the LHC. The new design features significant improvement in noise, improved fault detection, and generally a more robust design, while retaining the compact size, water-cooling, output control, and monitoring features in this 300 KHz design. We discuss the improvements to the design, and the radiation testing that we have done to qualify the design. We also present our plans for the production of 2400 new bricks for installation on the detector in 2013.

  19. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Oreglia, M; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The main upgrade will occur for the High Luminosity LHC phase (phase 2) which is scheduled around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to use will be decided after extensive test beam studies. High speed optical links are used to read out all digitized data to the counting room. For the off-detector electronics a new back-end architecture is being developed, including the initial trigger processing and pipeline memories. A demonstrator prototype read-out for a slice of the ...

  20. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    Klimek, Pawel; The ATLAS collaboration

    2018-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. It also assists in muon identification. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. TileCal exploits several calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These systems together with data collected during proton-proton collisions provide extensive monitoring of the instrument and a means...

  1. Calibration and performance of the ATLAS Tile Calorimeter during the LHC Run 2

    Science.gov (United States)

    Cerda Alberich, L.

    2018-02-01

    The Tile Calorimeter (TileCal) is the hadronic sampling calorimeter of the ATLAS experiment at the Large Hadron Collider (LHC). TileCal uses iron absorbers and scintillators as active material and it covers the central region | η| < 1.7. Jointly with the other sub-detectors it is designed for measurements of hadrons, jets, tau-particles and missing transverse energy. It also assists in muon identification. TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source, a laser light system to check the PMT response, and a charge injection system (CIS) to check the front-end electronics. These calibration systems, in conjunction with data collected during proton-proton collisions, Minimum Bias (MB) events, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions and compared to Monte Carlo (MC) simulations. The response of high momentum isolated muons is also used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response. The calorimeter time resolution is studied with multijet events. A description of the different TileCal calibration systems and the results on the calorimeter performance during the LHC Run 2 are presented. The results on the pile-up noise and response uniformity studies are also discussed.

  2. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Hildebrand, Kevin; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). The PMT signals are digitized and stored on detector until a trigger is received. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade (2024-2025) will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals...

  3. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Hildebrand, Kevin; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter is the hadronic calorimeter covering the central region of the ATLAS detector at the Large Hadron Collider. It is a scintillator-steel sampling calorimeter read out via wavelength shifting fibers coupled to photomultiplier tubes (PMT). . The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade (2024-2025) will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. ...

  4. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    International Nuclear Information System (INIS)

    Machefert, F.

    2011-01-01

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the pre-shower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure this tolerance are also given. The second part of this document concerns both the identification of the photons with LHCb and the calibration of the calorimeters. The photon identification method is presented and the performances given. Finally, the absolute energy calibration of the PRS and ECAL, based on the data stored in 2010 is explained. (author)

  5. Development studies for the OPAL end cap electromagnetic calorimeter using vacuum photo triode instrumented leadglass

    International Nuclear Information System (INIS)

    Jeffreys, P.W.; Arnison, G.T.J.; Akrawy, M.

    1989-07-01

    A description is given of the OPAL end cap electromagnetic calorimeters which consist of leadglass instrumented with vacuum photo triodes. Test results are presented showing linearity, energy and position resolution measured in an electron beam whilst the calorimeter is subject to magnetic fields up to 1.0T. The response to hadrons is also discussed. Finally, radiation damage and recovery of the leadglass is reported. (author)

  6. Testbeam Studies of Production Modules of the ATLAS Tile Calorimeter

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Arabidze, A; Batkova, L; Batusov, V; Beck, H P; Bednar, P; Bergeaas Kuutmann, E; Biscarat, C; Blanchot, G; Bogush, A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, Yu A; Burckhart-Chromek, D; Caprini, M; Caloba, L; Calvet, D; Carli, T; Carvalho, J; Cascella, M; Castelo, J; Castillo, M V; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Corso-Radu, A; Cuenca, C; Damazio, D O; David, M; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Djobava, T; Dobson, M; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Efthymiopoulos, I; Eriksson, D; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Febbraro, R; Fedorko, I; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Francis, D; Fullana, E; Gadomski, S; Gameiro, S; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gorini, B; Grenier, P; Gris, P; Gruwé, M; Guarino, V; Guicheney, C; Sen-Gupta, A; Haeberli, C; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Holmgren, S; Hurwitz, M; Huston, J; Iglesias, C; Isaev, A; Jen-La Plante, I; Jon-And, K; Joos, M; Junk, T; Karyukhin, A; Kazarov, A; Khandanyan, H; Khramov, J; Khubua, J; Kolos, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Le Compte, T; Lefèvre, R; Lehmann, G; Leitner, R; Lembesi, M; Lesser, J; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lupi, A; Maidantchik, C; Maio, A; Makouski, M; Maliukov, S; Manousakis, A; Mapelli, L; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Mosidze, M; Némécek, S; Nessi, M; Nodulman, L; Nordkvist, B; Norniella, O; Onofre, A; Oreglia, M; Pallin, D; Pantea, D; Petersen, J; Pilcher, J E; Pina, J; Pinhão, J; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramstedt, M; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsev, V; Russakovich, N; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Satsunkevitch, I; Says, L-P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Da Silva, P; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Soloviev, I; Solovyanov, O; Sosebee, M; Spanó, F; Stanek, R; Starchenko, E; Starovoitov, P; Stavina, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tremblet, L; Tsiareshka, P; Tylmad, M; Underwood, D; Ünel, G; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2009-01-01

    We report test beam studies of {11\\,\\%} of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3~GeV to 350~GeV. Two independent studies showed that the light yield of the calorimeter was $\\sim 70$~pe/GeV, exceeding the design goal by {40\\,\\%}. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200~calorimeter cells the variation of the response was {2.4\\,\\%}. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5\\,\\% for 91~measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of {1.4\\,\\%} for the modules and projective angles studied. The respon...

  7. Calibration and performance of the ATLAS Tile Calorimeter during the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMTs). The TileCal is regularly monitored and calibrated by several different calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalising the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadron...

  8. Pion and proton showers in the CALICE scintillator-steel analogue hadron calorimeter

    CERN Document Server

    Bilki, B.; Xia, L.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Lima, J.G.R.; Salcido, R.; Zutshi, V.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Dannheim, D.; Folger, G.; Ivantchenko, V.; Klempt, W.; Lucaci-Timoce, A. -I.; Ribon, A.; Schlatter, D.; Sicking, E.; Uzhinskiy, V.; Giraud, J.; Grondin, D.; Hostachy, J. -Y.; Morin, L.; Brianne, E.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Tran, H.L.; Buhmann, P.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Norbeck, E.; Northacker, D.; van Doren, B.; Wilson, G.W.; Wing, M.; Combaret, C.; Caponetto, L.; Eté, R.; Grenier, G.; Han, R.; Ianigro, J.C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Antequera, J. Berenguer; Calvo Alamillo, E.; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Corriveau, F.; Bobchenko, B.; Chistov, R.; Chadeeva, M.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mironov, D.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Buzhan, P.; Ilyin, A.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Conforti Di Lorenzo, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Frisson, T.; Martin-Chassard, G.; Poschl, R.; Raux, L.; Richard, F.; Pöschl, R.; Rouëné, J.; Seguin-Moreau, N.; de la Taille, Ch.; Anduze, M.; Boudry, V.; Brient, J-C.; Clerc, C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Matthieu, A.; Mora de Freitas, P.; Musat, G.; Ruan, M.; Videau, H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Weber, S.

    2015-04-28

    Showers produced by positive hadrons in the highly granular CALICE scintillatorsteel analogue hadronic calorimeter were studied. The experimental data were collected at CERN and FNAL for single particles with initial momenta from 10 to 80 GeV/c. The calorimeter response and resolution and spatial characteristics of shower development for proton- and pion-induced showers for test beam data and simulations using GEANT4 version 9.6 are compared.

  9. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    CERN Document Server

    Chen, H; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is one of the two general-purpose detectors designed to study proton-proton collisions (14 TeV in the center of mass) produced at the Large Hadron Collider (LHC) and to explore the full physics potential of the LHC machine at CERN. The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS (and its LAr Calorimeters) has been operating and collecting p-p collisions at LHC since 2009. The on-detector electronics (front-end) part of the current readout electronics of the calorimeters measures the ionization current signals by means of preamplifiers, shapers and digitizers and then transfers the data to the off-detector electronics (back-end) for further elaboration, via optical links. Only the data selected by the level-1 calorimeter trigger system are transferred, achieving a bandwidth reduction to 1.6 Gbps. The analog trigger sum sig...

  10. CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD

    International Nuclear Information System (INIS)

    CHASE, B.; CITTERIO, M.; LANNI, F.; MAKOWIECKI, D.; RADEKA, S.; RESCIA, S.; TAKAI, H.

    1999-01-01

    The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail

  11. CHARACTERIZATION OF THE COHERENT NOISE, ELECTROMAGNETIC COMPATIBILITY AND ELECTROMAGNETIC INTERFERENCE OF THE ATLAS EM CALORIMETER FRONT END BOARD

    International Nuclear Information System (INIS)

    CHASE, R.L.; CITTERIO, M.; LANNI, F.; MAKOWIECKI, D.; RADEKA, V.; RESCIA, S.; TAKAI, H.; BAN, J.; PARSONS, J.; SIPPACH, W.

    2000-01-01

    The ATLAS Electromagnetic (EM) calorimeter (EMCAL) Front End Board (FEB) will be located in custom-designed enclosures solidly connected to the feedtroughs. It is a complex mixed signal board which includes the preamplifier, shaper, switched capacitor array analog memory unit (SCA), analog to digital conversion, serialization of the data and related control logic. It will be described in detail elsewhere in these proceedings. The electromagnetic interference (either pick-up from the on board digital activity, from power supply ripple or from external sources) which affects coherently large groups of channels (coherent noise) is of particular concern in calorimetry and it has been studied in detail

  12. Low voltage control for the liquid argon hadronic end-cap calorimeter of ATLAS

    CERN Document Server

    Brettel, H; Habring, J; Oberlack, H; Schacht, P

    2002-01-01

    At the ATLAS detector a SCADA system surveys and controls the sub- detectors. The link is realized by PVSS2 software and a CanBus hardware system. The low voltages for the Hadronic Endcaps of the liquid argon calorimeter are produced by DC/DC-converters in the power boxes and split into 320 channels corresponding to the pre- amplifier and summing boards in the cryostat. Six units of a prototype distribution board are currently under test. Each of it contains 2 ELMBs as CanBus interface, a FPGA of type QL3012 for digital control and 30 low voltage regulators for the individual fine adjustments of the outputs.

  13. The ATLAS hadronic tile calorimeter from construction toward physics

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Binet, S; Biscarat, C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, Yu A; Caloba, L; Calvet, D; Carvalho, J; Castelo, J; Castillo, M V; Sforza, M C; Cavasinni, V; Cerqueira, A S; Chadelas, R; Costanzo, D; Cogswell, F; Constantinescu, S; Crouau, M; Cuenca, C; Damazio, D O; Daudon, F; David, M; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Fedorko, I; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Fullana, E; Garde, V; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giangiobbe, V; Giokaris, N; Gomes, A; González, V; Grabskii, V; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Henriques, A; Higón, E; Holmgren, S O; Hurwitz, M; Huston, J; Iglesias, C; And, K J; Junk, T; Karyukhin, A N; Khubua, J; Klereborn, J; Korolkov, I Ya; Krivkova, P; Kulchitskii, Yu A; Kurochkin, Yu; Kuzhir, P; Lambert, D; Le Compte, T; Lefèvre, R; Leitner, R; Lembesi, M; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Amengual, J M L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Montarou, G; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I A; Miralles, L; Némécek, S; Nessi, M; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M J; Pantea, D; Pallin, D; Pilcher, J E; Pina, J; Pinhão, J; Podlyski, F; Portell, X; Poveda, J; Price, L E; Pribyl, L; Proudfoot, J; Ramstedt, M; Reinmuth, G; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Rumiantsau, V; Russakovich, N; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Satsunkevich, I S; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shevtsov, P; Shochet, M; Da Silva, P; Silva, J; Simaitis, V; Sissakian, A N; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Stanek, R; Starchenko, E A; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tsulaia, V; Underwood, D; Usai, G; Valkár, S; Valls, J A; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2006-01-01

    The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. The construction phase of the calorimeter is nearly complete, and most of the effort now is directed toward the final assembly and commissioning in the underground experimental hall. The layout of the calorimeter and the tasks carried out during construction are described, first with a brief reminder of the requirements that drove the calorimeter design. During the last few years a comprehensive test-beam program has been followed in order to establish the calorimeter electromagnetic energy scale, to study its uniformity, and to compare real data to Monte Carlo simulation. The test-beam setup and first results from the data are described. During the test-beam period in 2004, lasting several months, data have been acquired with a complete slice of the central ATLAS calorimeter. The data collected in the test-beam are crucial in order to study...

  14. The Response of CMS Combined Calorimeters to Single Hadrons, Electrons and Muons

    CERN Document Server

    Akchurin, Nural; Gumus, Kazim; Jeong Chi Young; Kim Hee Jong; Lee Sung Won; Roh, Youn; Volobouev, Igor; Wigmans, Richard

    2007-01-01

    We report on the response of the combined CMS electromagnetic (EB) and hadronic barrel (HB) calorimeters to hadrons, electrons and muons in a wide momentum range from 1 to 350 GeV/c. To our knowledge, this is the widest range of momenta in which any calorimeter system is studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. We analyze in detail the differences in total calorimeter response to charged pions, kaons, protons and antiprotons and discuss the underlying phenomena. These data will play a crucial role in the thorough understanding of jets in CMS.

  15. Characteristics of cell-structure hadron calorimeter on the base of plastic scintillator mouldings

    International Nuclear Information System (INIS)

    Bityukov, S.I.; Semenov, V.K.; Yablokov, A.P.

    1987-01-01

    Design features are considered and the results of measurements of the characteristics of a full-scale hadron calorimeter with 1 m 2 aperture, about 8 t in weight and the 10x10 cm cell are presented. The polysterene scintillator made by the moulding method has been used in the calorimeter. The calorimeter is aimed at measuring neutron energy in experiments with hyperon beams. The calorimeter possesses a good spatial (14 mm at 37.5 GeV energy) and energy (0.7/√E) resolution and permits to detect both charged and neutral hadrons in the wide energy range. The calorimeter is easily producible and reliable in operation. The calorimetr design permits to assemble detectors of a large aperture by joining of some modules with 1x1 m cross section

  16. First results obtained from the Cello liquid argon end cap calorimeters

    International Nuclear Information System (INIS)

    Le Diberder, F.

    1981-05-01

    The Cello liquid argon calorimeter is presented in the first part of this thesis. The cryogenic system has to supply three cryostats filled with liquid argon: one cylindrical cryostat of 25 m 3 volume contains 2x8 separate modules; each of the two symmetric end cap cryostats contains two half cylindrical modules. Each module in the end cap part consists of 42 layers of lead strips interleaved with 43 full plates. The strips are alternatively vertical, horizontal and circular. In front of the lead calorimeter are 4 planes of copper foils glued on epoxy for dE/dx measurement. The electronics, signal processing and data acquisition system are described. In the second part, the performance and analysis of data measured by the end cap calorimeters are reported: study of Bhabha scattering e + e - → e + e - ; preliminary results obtained in two photon physics e + e - → e + e - γγ → e + e - X [fr

  17. Measurement of the contribution of neutrons to hadron calorimeter signals

    International Nuclear Information System (INIS)

    Akchurin, N.; Berntzon, L.; Cardini, A.; Ferrari, R.; Gaudio, G.; Hauptman, J.; Kim, H.; La Rotonda, L.; Livan, M.; Meoni, E.; Paar, H.; Penzo, A.; Pinci, D.; Policicchio, A.; Popescu, S.; Susinno, G.; Roh, Y.; Vandelli, W.; Wigmans, R.

    2007-01-01

    The contributions of neutrons to hadronic signals from the DREAM calorimeter are measured by analyzing the time structure of these signals. The neutrons, which mainly originate from the evaporation stage of nuclear breakup in the hadronic shower development process, contribute through elastic scattering off protons in the plastic scintillating fibers which provide the dE/dx information in this calorimeter. This contribution is characterized by an exponential tail in the pulse shape, with a time constant of ∼25ns. The relative contribution of neutrons to the signals increases with the distance from the shower axis. As expected, the neutrons do not contribute to the DREAM Cherenkov signals

  18. New method of fast simulation for a hadron calorimeter response

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.; Sutiak, J.; Tokar, S.; Zenis, T.

    2003-01-01

    In this work we present the new method of a fast Monte-Carlo simulation of a hadron calorimeter response. It is based on the three-dimensional parameterization of the hadronic shower obtained from the ATLAS TILECAL test beam data and GEANT simulations. A new approach of including the longitudinal fluctuations of hadronic shower is described. The obtained results of the fast simulation are in good agreement with the TILECAL experimental data

  19. The effect of passive material on the detection of hadrons in calorimeter configurations for the SDC detector

    International Nuclear Information System (INIS)

    Kirk, T.B.W.; Trost, H.J.

    1991-01-01

    We have used a flexible geometry model of a calorimeter design for SDC to study the effect of passive material in front of the calorimeter and between the barrel and endcap modules on the apparent response to hadrons. The thicknesses of the passive materials have been chosen to closely resemble the currently projected wall thicknesses of the scintillating tile-fiber and liquid-argon calorimeter designs. The liquid-argon model contains about three times the amount of material in its shells compared to the tile-fiber model. The solenoid coil reduces the relative difference somewhat in the barrel region but constitutes only a minor correction in the transition region from barrel to endcap. Correspondingly, we find a significantly worse response for the liquid-argon case which we demonstrate using beams of single π minus particles of 10 GeV/c momentum. 13 refs., 6 figs

  20. Monte-Carlo simulation of hadronic shower Part 2: The PION calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Amatuni, Ts A; Mamidjanyan, E A; Sanossyan, Kh N

    1993-12-31

    Hadronic showers for four energy intervals from 0,5 to 5 TeV have been simulated using the MARS 10 code and the experimental energy and angle distributions of cosmic ray hadrons incident on the PION iron-ionization calorimeter. The longitudinal energy depositions are compared with the experimental results and satisfactory agreement is observed. The average characteristics of hadronic showers initiated by 0,3, 0,5, 1, 2,5, 10 and 20 TeV incident protons, neutrons and pions are studied and parametrizations for the longitudinal and transverse shower profiles are obtained. A new formula for the lateral profile is proposed. The leakage and albedo from the PION calorimeter and the energy spectra of the leakage and albedo particles are also estimated. 29 refs.

  1. Performance of the ATLAS Zero Degree Calorimeter

    CERN Document Server

    Leite, M; The ATLAS collaboration

    2013-01-01

    The ATLAS Zero Degree Calorimeter (ZDC) at the Large Hadron Collider (LHC) is a set of two sampling calorimeters modules symmetrically located at 140m from the ATLAS interaction point. The ZDC covers a pseudorapidity range of |eta| > 8.3 and it is both longitudinally and transversely segmented, thus providing energy and position information of the incident particles. The ZDC is installed between the two LHC beam pipes, in a configuration such that only the neutral particles produced at the interaction region can reach this calorimeter. The ZDC uses Tungsten plates as absorber material and rods made of quartz interspersed in the absorber as active media. The energetic charged particles crossing the quartz rods produces Cherenkov light which is then detected by photomultipliers and sent to the front end electronics for processing, in a total of 120 individual electronic channels. The Tungsten plates and quartz rods are arranged in a way to segment the calorimeters in 4 longitudinal sections. The first section (...

  2. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Akhmadaliev, S Z; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K; Andrieux, M L; Aubert, Bernard; Augé, E; Badaud, F; Baisin, L; Barreiro, F; Battistoni, G; Bazan, A; Bazizi, K; Bee, C P; Belorgey, J; Belymam, A; Benchekroun, D; Berglund, S R; Berset, J C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bonivento, W; Borgeaud, P; Borisov, O N; Bosman, M; Bouhemaid, N; Breton, D; Brette, P; Bromberg, C; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Camin, D V; Canton, B; Caprini, M; Carvalho, J; Casado, M P; Cases, R; Castillo, M V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chalifour, M; Chekhtman, A; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Citterio, M; Cleland, W E; Clément, C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Coulon, J P; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; Delagnes, E; de La Taille, C; Del Peso, J; Del Prete, T; de Saintignon, P; Di Girolamo, B; Dinkespiler, B; Dita, S; Djama, F; Dodd, J; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Eynard, G; Farida, F; Fassnacht, P; Fedyakin, N N; Fernández de Troconiz, J; Ferrari, A; Ferrer, A; Flaminio, Vincenzo; Fournier, D; Fumagalli, G; Gallas, E J; García, G; Gaspar, M; Gianotti, F; Gildemeister, O; Glagolev, V; Glebov, V Yu; Gómez, A; González, V; González de la Hoz, S; Gordeev, A; Gordon, H A; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hébrard, C; Henriques, A; Henry-Coüannier, F; Hervás, L; Higón, E; Holmgren, S O; Hostachy, J Y; Hoummada, A; Huet, M; Huston, J; Imbault, D; Ivanyushenkov, Yu M; Jacquier, Y; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karst, P; Karyukhin, A N; Khokhlov, Yu A; Khubua, J I; Klioukhine, V I; Kolachev, G M; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kozlov, V; Krivkova, P; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Kuzmin, M V; Labarga, L; Laborie, G; Lacour, D; Lami, S; Lapin, V; Le Dortz, O; Lefebvre, M; Le Flour, T; Leitner, R; Leltchouk, M; Le Van-Suu, A; Li, J; Liapis, C; Linossier, O; Lissauer, D; Lobkowicz, F; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; López-Amengual, J M; Lottin, J P; Lund-Jensen, B; Lundqvist, J M; Maio, A; Makowiecki, D S; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marrocchesi, P S; Marroquin, F; Martin, L; Martin, O; Martin, P; Maslennikov, A M; Massol, N; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mirea, A; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Mosidze, M D; Moynot, M; Muanza, G S; Nagy, E; Nayman, P; Némécek, S; Nessi, Marzio; Nicod, D; Nicoleau, S; Niculescu, M; Noppe, J M; Onofre, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Parrour, G; Parsons, J; Pascual, J I; Pereira, A; Perini, L; Perlas, J A; Perrodo, P; Petroff, P; Pilcher, J E; Pinhão, J; Plothow-Besch, Hartmute; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Puzo, P; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Rescia, S; Resconi, S; Richards, R; Richer, J P; Riu, I; Roda, C; Roldán, J; Romance, J B; Romanov, V; Romero, P; Rusakovitch, N A; Sala, P R; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sauvage, D; Sauvage, G; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shaldaev, E; Shchelchkov, A S; Shochet, M J; Sidorov, V; Silva, J; Simaitis, V J; Simion, S; Sissakian, A N; Soloviev, I V; Snopkov, R; Söderqvist, J; Solodkov, A A; Sonderegger, P; Soustruznik, K; Spanó, F; Spiwoks, R; Stanek, R; Starchenko, E A; Stavina, P; Stephens, R; Studenov, S; Suk, M; Surkov, A; Sykora, I; Taguet, J P; Takai, H; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Thion, J; Tikhonov, Yu A; Tisserand, V; Tisserant, S; Tokar, S; Topilin, N D; Trka, Z; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vincent, P; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Walter, C; White, A; Wielers, M; Wingerter-Seez, I; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zitoun, R; Zolnierowski, Y

    2000-01-01

    A new combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 10 to 300 GeV at an incident angle theta of about 12 degrees is well described by the expression sigma /E=((41.9+or-1.6)%/ square root E+(1.8+or-0.1)%)(+) (1.8+or-0.1)/E, where E is in GeV. The response to electrons and muons was evaluated. Shower profiles, shower leakage and the angular resolution of hadronic showers were also studied. Results are compared with those from the previous beam test. (22 refs).

  3. Hadron calorimeter module prototype for baryonic matter studies at Nuclotron

    OpenAIRE

    Gavrishchuk, O. P.; Ladygin, V. P.; Petukhov, Yu. P.; Sychkov, S. Ya

    2014-01-01

    The prototype of the hadron calorimeter module consisting of 66 scintillator/lead layers with the 15x15 cm^2 cross section and 5 nuclear interaction lengths has been designed and produced for the zero degree calorimeter of the BM@N experiment. The prototype has been tested with high energy muon beam of the U-70 accelerator at IHEP. The results of the beam test for different types of photo multipliers and light guides are presented. The results of the Monte-Carlo simulation of the calorimeter ...

  4. Hadronic vector boson decay and the art of calorimeter calibration

    Energy Technology Data Exchange (ETDEWEB)

    Lobban, Olga Barbara [Texas Tech Univ., Lubbock, TX (United States)

    2002-12-01

    Presented here are several studies involving the energy measurement of particles using calorimeters. The first study involves the effects of radiation damage on the response of a prototype calorimeter for the Compact Muon Solenoid experiment. We found that the effects of radiation damage on the calorimeter·s response arc dose dependent and that most of the damage will occur in the first year of running at the Large Hadron Collider. Another study involved the assessment of the Energy Flow Method an algorithm which combines the information from the calorimeter system is combined with that from the tracking system in an attmpt to improve the energy resolution for jet measurements. Using the Energy Flow method an improvement of $\\sim30\\%$ is found but this impovement decreases at high energies when the hadronic calorimeter resolution dominates the quality of the jet energy measurements. Finally, we developed a new method to calibrate a longitudinally segnmented calorimeter. This method eliminates problems with the traditional method used for the calorimeters at the Collider Detector at Fermilab. We applied this new method in the search for hadrunic decays of the $W$ and $Z$ bosons in a sample of dijet data taken during Tevatron Run IC. A signal of 9873±3950(sys) ±1130 events was found when the new calibration method was used. This corresponds to a cross section $\\sigma(p\\bar{p} \\to W,Z) \\cdot B(W,Z \\to jets) = 35.6 \\pm 14.2 ({\\rm sys}) \\pm 4.1 (\\rm{stat})$ nb.

  5. LHCb: First year of running for the LHCb calorimeter system

    CERN Multimedia

    Guz, Y

    2011-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva) [1, 2]. LHCb is a single-arm spectrometer with a forward angular coverage from approximately 10 mrad to 300 mrad. It comprises a calorimeter system composed of four subdetectors [3]. It selects transverse energy hadron, electron and photon candidates for the first trigger level (L0), which makes a decision 4µs after the interaction. It provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The set of constraints resulting from these functionalities defines the general structure and the main characteristics of the calorimeter system and its associated electronics. A classical structure of an electromagnetic calorimeter (ECAL) followed by a hadron calorimeter (HCAL) has been adopted. In addition the system includes in front of them the Scintillating Pad Detector (SPD) and Pre-Showe...

  6. Hadron shower decomposition in the highly granular CALICE analogue hadron calorimeter

    Czech Academy of Sciences Publication Activity Database

    Eigen, G.; Price, T.; Watson, N.K.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Lednický, Denis; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2016-01-01

    Roč. 11, Jul (2016), 1-37, č. článku P06013. ISSN 1748-0221 R&D Projects: GA MŠk LG14033; GA MŠk 7E12050 Institutional support: RVO:68378271 Keywords : hadron shower s * scintillator calorimeters * simulation of shower s Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.220, year: 2016

  7. The Time Structure of Hadronic Showers in Imaging Calorimeters with Scintillator and RPC Readout

    CERN Document Server

    Simon, Frank

    2013-01-01

    The intrinsic time structure of hadronic showers has been studied to evaluate its influence on the timing capability and on the required integration time of highly granular hadronic calorimeters in future collider experiments. The experiments have been carried with systems of 15 detector cells, using both scintillator tiles with SiPM readout and RPCs, read out with fast digitizers and deep buffers. These were installed behind the CALICE scintillator - Tungsten and RPC - Tungsten calorimeters as well as behind the CALICE semi-digital RPC - Steel calorimeter during test beam periods at the CERN SPS. We will discuss the technical aspects of these systems, and present results on the measurement of the time structure of hadronic showers in steel and tungsten calorimeters. These are compared to GEANT4 simulations, providing important information for the validation and the improvement of the physics models. In addition, a comparison of the observed time structure with scintillator and RPC active elements will be pre...

  8. Performance of the ATLAS hadronic Tile Calorimeter in Run-2 and its upgrade for the High Luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223789; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tauparticles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudo-rapidity up to 1.7, with almost 10000 channels measuring energies ranging from ∼30 MeV to ∼2 TeV. Each stage of the signal production, from scintillation light to the signal reconstruction, is monitored and calibrated. The performance of the Tile calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions, acquired during the operations of the LHC. Prompt isolated muons of high momentum from electroweak bosons decays are employed to study the energy response of the calorimeter at the electromagnetic scale. The calorimeter response to hadronic particles is evaluated with a sample of isolated hadrons. The modelling of the response by the Monte Carlo simulation is discussed. T...

  9. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Simard, O

    2015-01-01

    The ATLAS experiment is designed to study the proton-proton ($pp$) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region $|\\eta|< 3.2$, as well as for hadronic calorimetry in the range $1.5 < |\\eta| < 4.9$. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5~K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and t...

  10. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    CERN Document Server

    Simard, O; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η|< 3.2, as well as for hadronic calorimetry in the range 1.5<|η|<4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed for the coverage at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5K. The approximately 200K cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigg...

  11. Performance of a Highly Granular Scintillator-SiPM Based Hadron Calorimeter Prototype in Strong Magnetic Fields

    OpenAIRE

    Graf, Christian; collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future linear collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "engineering prototypes", that are scalable to the full linear collider detector. The Analog Hadron Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintillator t...

  12. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the luminosity will have increased 5-fold compared to the design luminosity (1034 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional luminosity increase by a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to u...

  13. Performance of a UA1 hadron calorimeter prototype

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.; Ellis, N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Eisenhandler, E.; Gibson, W.R.; Kalmus, P.I.P.; Thompson, G.; Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Hill, D.; Nandi, A.K.; Roberts, C.; Shah, T.P.

    1982-01-01

    The hadron calorimeter for the UA1 experiment at the CERN SPS proton-antiproton collider consists of a lead-scintillator sandwich plus an iron-scintillator sandwich with wavelength shifter readout. The authors have tested prototype modules in muon and hadron beams in the momentum range from 0.7 to 90 GeV/c. For several angles of incidence, the authors have studied the uniformity of the response to hadrons as a function of position. This has included regions where there is reduced sensitivity due to mechanical constraints and the presence of the wavelength shifter readout. The response, resolution and degree of shower containment were measured as a function of incident momentum. (Auth.)

  14. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    AUTHOR|(SzGeCERN)758889; The ATLAS collaboration

    2016-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to \\SI{14}{\\tera\\electronvolt} and instantaneous luminosities up to \\SI{d34}{\\per\\centi\\meter\\squared\\per\\second}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of \\SI{3000}{\\per\\femto\\barn}. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end (FE) electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate and the trigger latency which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new FE and a high bandwidth back-end (BE) system for receiving data from all \

  15. CMS hadronic forward calorimeter

    International Nuclear Information System (INIS)

    Merlo, J.P.

    1998-01-01

    Tests of quartz fiber prototypes, based on the detection of Cherenkov light from showering particles, demonstrate a detector possessing all of the desirable characteristics for a forward calorimeter. A prototype for the CMS experiment consists of 0.3 mm diameter fibers embedded in a copper matrix. The response to high energy (10-375 GeV) electrons, pions, protons and muons, the light yield, energy and position resolutions, and signal uniformity and linearity, are discussed. The signal generation mechanism gives this type of detector unique properties, especially for the detection of hadronic showers: Narrow, shallow shower profiles, hermeticity and extremely fast signals. The implications for measurements in the high-rate, high-radiation LHC environment are discussed. (orig.)

  16. LHCb : First years of running for the LHCb calorimeter system and preparation for run 2

    CERN Multimedia

    Chefdeville, Maximilien

    2015-01-01

    The LHCb experiment is dedicated to precision measurements of CP violation and rare decays of B hadrons at the Large Hadron Collider (LHC) at CERN (Geneva). It comprises a calorimeter system composed of four subdetectors: a Scintillating Pad Detector (SPD) and a Pre-Shower detector (PS) in front of an electromagnetic calorimeter (ECAL) which is followed by a hadron calorimeter (HCAL). They are used to select transverse energy hadron, electron and photon candidates for the first trigger level and they provides the identification of electrons, photons and hadrons as well as the measurement of their energies and positions. The calorimeter has been pre-calibrated before its installation in the pit. The calibration techniques have been tested with data taken in 2010 and used regularly during run 1. For run 2, new calibration methods have been devised to follow and correct online the calorimeter detector response. The design and construction characteristics of the LHCb calorimeter will be recalled. Strategies for...

  17. Experimental study of the effect of hadron shower leakage on the energy response and resolution of ATLAS hadron barrel prototype calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Vinogradov, V.B.; Kul'chitskij, Yu.A.; Rumyantsev, V.S.; Bogush, A.A.; Karapetyan, G.; Nessi, M.

    1996-01-01

    The hadronic shower longitudinal and lateral leakages and their effect on the pion response and energy resolution of ATLAS iron-scintillator barrel hadron prototype calorimeter have been investigated. The results are based on 100 GeV pion beam data at incidence angle Θ=10 deg. The fraction of the energy leaking out at the back of this calorimeter amounts to 1.8 % and agrees with the one for a conventional iron-scintillator calorimeter. Unexpected behaviour of the energy resolution as a function of leakage is observed: 6 % lateral leakage leads to 18 % improving of energy resolution in compare with the showers without leakage. 22 refs., 13 figs., 4 tabs

  18. SPD very front end electronics

    International Nuclear Information System (INIS)

    Luengo, S.; Gascon, D.; Comerma, A.; Garrido, L.; Riera, J.; Tortella, S.; Vilasis, X.

    2006-01-01

    The Scintillator Pad Detector (SPD) is part of the LHCb calorimetry system [D. Breton, The front-end electronics for LHCb calorimeters, Tenth International Conference on Calorimetry in Particle Physics, CALOR, Pasadena, 2002] that provides high-energy hadron, electron and photon candidates for the first level trigger. The SPD is designed to distinguish electrons from photons. It consists of a plastic scintillator layer, divided into about 6000 cells of different size to obtain better granularity near the beam [S. Amato, et al., LHCb technical design report, CERN/LHCC/2000-0036, 2000]. Charged particles will produce, and photons will not, ionization in the scintillator. This ionization generates a light pulse that is collected by a WaveLength Shifting (WLS) fiber that is coiled inside the scintillator cell. The light is transmitted through a clear fiber to the readout system that is placed at the periphery of the detector. Due to space constraints, and in order to reduce costs, these 6000 cells are divided in groups using a MAPMT [Z. Ajaltouni, et al., Nucl. Instr. and Meth. A 504 (2003) 9] of 64 channels that provides information to the VFE readout electronics. The SPD signal has rather large statistical fluctuations because of the low number (20-30) of photoelectrons per MIP. Therefore the signal is integrated over the whole bunch crossing length of 25 ns in order to have the maximum value. Since in average about 85% of the SPD signal is within 25 ns, 15% of a sample is subtracted from the following one using an operational amplifier. The SPD VFE readout system that will be presented consists of the following components. A specific ASIC [D. Gascon, et al., Discriminator ASIC for the VFE SPD of the LHCb Calorimeter, LHCB Technical Note, LHCB 2004-xx] integrates the signal, makes the signal-tail subtraction, and compares the level obtained to a programmable threshold (to distinguish electrons from photons). A FPGA programmes the ASIC threshold and the value for

  19. ALICE Zero Degree Calorimeter (ZDC), General Pictures.

    CERN Multimedia

    2003-01-01

    The ZDC Calorimeter for spectator neutrons is made by 44 slabs of W-alloy; each slab has 44 grooves where quartz fibres are placed. The charged particles of the hadronic shower generated by the neutrons make Cerenkov light in the fibres and the light is collected by photomultipliers. Photos from 1 to 9 show the front-face of the calorimeter. Photo n. 10 shows the rear of the calorimeter where the fibres are divided in several groups to go to the different PMs.

  20. Data acquisition system and link and data aggregator for the CALICE analogue hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, Julien; Adam, Lennart; Bauss, Bruno; Buescher, Volker; Chau, Phi; Degele, Reinhold; Geib, Karl-Heinrich; Krause, Sascha; Liu, Yong; Masetti, Lucia; Schaefer, Ulrich; Spreckels, Rouven; Tapprogge, Stefan; Wanke, Rainer [Johannes-Gutenberg Universitaet, Mainz (Germany); Collaboration: CALICE-D-Collaboration

    2015-07-01

    The Analogue Hadron Calorimeter (AHCAL) is one of the several calorimeter designs developed by the CALICE collaboration for future linear colliders. It is a high granularity sampling calorimeter with plastic scintillator tiles of 3 x 3 cm{sup 2}, adding up to ∝8'000'000 sensors. This large amount of channels requires a powerful data acquisition system (DAQ). In this DAQ system, the Link and Data Aggregator module (LDA) acts as an intermediate component to group together several layers units, dispatching control signals and merging data. A first LDA design (mini-LDA), intended to be flexible but limited to a small number of layers, has been successfully used during the end-of-the-year 2014 CERN Test Beam program. A second prototype (wing-LDA), compatible with a complete detector design, is operating during the Test Beam program of 2015. This talk will present the current status of the DAQ and the LDA, with recent results from Test Beam and future plans.

  1. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Berglund, E.; Bobbink, G.J.; Bos, K.; Boterenbrood, H.; Colijn, A.P.; de Jong, P.; de Nooij, L.; Deviveiros, P.O.; Doxiadis, A.D.; Ferrari, P.; Garitaonandia, H.; Geerts, D.A.A.; Gosselink, M.; Hartjes, F.; Hessey, N.P.; Igonkina, O.; Kayl, M.S.; Klous, S.; Kluit, P.; Koffeman, E.; Lee, H.; Lenz, T.; Linde, F.; Luijckx, G.; Massaro, G.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Reichold, A.; Rijpstra, M.; Ruckstuhl, N.; Snuverink, J.; Ta, D.; Tsiakiris, M.; Turlay, E.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Verkerke, W.; Vermeulen, J.C.; Vranjes Milosavljevic, M.; Vreeswijk, M.

    2013-01-01

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at

  2. Neutron and proton tests of different technologies for the upgrade of the cold readout electronics of the ATLAS Hadronic End-cap Calorimeter

    CERN Document Server

    INSPIRE-00030110

    2013-01-01

    The expected increase of total integrated luminosity by a factor ten at the HL-LHC compared to the design goals for LHC essentially eliminates the safety factor for radiation hardness realized at the current cold amplifiers of the ATLAS Hadronic End-cap Calorimeter (HEC). New more radiation hard technologies have been studied: SiGe bipolar, Si CMOS FET and GaAs FET transistors have been irradiated with neutrons up to an integrated fluence of 2.2 x 10^{16} n/cm^2 and with 200 MeV protons up to an integrated fluence of 2.6 x 10^{14} p/cm^2. Comparisons of transistor parameters such as the gain for both types of irradiations are presented.

  3. Research and Development for a Free-Running Readout System for the ATLAS LAr Calorimeters at the High Luminosity LHC

    CERN Document Server

    Hils, Maximilian; The ATLAS collaboration

    2015-01-01

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} \\text{cm}^{-2} \\text{s}^{-1}$. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5-7 times the design luminosity, with the goal of accumulating an integrated luminosity of $3000~\\text{fb}^{-1}$. In the HL-LHC phase, the increased radiation levels require a replacement of the front-end electronics of the LAr Calorimeters. Furthermore, the ATLAS trigger system is foreseen to increase the trigger accept rate by a factor 10 to 1 MHz and the trigger latency by a factor of 20 which requires a larger data volume to be buffered. Therefore, the LAr Calorimeter read-out will be exchanged with a new front-end and a high bandwidth back-end system for receiving data from all 186.000 channels at 40 MHz LHC bunch-crossing frequency and for off-detector buffering...

  4. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00127668; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 1034cm2s1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow ...

  5. Upgrade of the ATLAS hadronic Tile Calorimeter for the High luminosity LHC

    CERN Document Server

    Solodkov, Alexander; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5x10ˆ34 cm-2s-1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC starting in 2026. All signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will a...

  6. Comparison of iron and tungsten absorber structures for an analog hadron calorimeter

    International Nuclear Information System (INIS)

    Guenter, Clemens

    2015-05-01

    Future electron-positron-collider experiments will require unprecedented jet-energy resolution to complete their physics programs. This can only be achieved with novel approaches to calorimetry. One of these novel approaches is the Particle Flow Algorithm, which uses the best suited sub-detector to measure the energy of the particles produced by the electronpositron collision. The CALICE Collaboration evaluates different read-out technologies for Particle Flow Calorimeters. This thesis describes the comparison of two different absorber materials, iron and tungsten, for the CALICE Analog Hadron Calorimeter. It is described how test-beam data, that have been recorded in the range from 2 GeV to 10 GeV with the Analog Hadron Calorimeter are calibrated, and how samples are selected containing showers from just one particle type. The data are then compared to simulations, and the remaining disagreement between data and simulation is discussed. The validated simulations are then used to decompose the showers into different fractions. These fractions are compared for the two absorber materials to understand the impact of the absorber material choice on the calorimeter performance.

  7. The Time Structure of Hadronic Showers in Highly Granular Calorimeters with Tungsten and Steel Absorbers

    CERN Document Server

    Adloff, C.; Chefdeville, M.; Drancourt, C.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Koletsou, I.; Prast, J.; Vouters, G.; Repond, J.; Schlereth, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Eigen, G.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Arfaoui, A.; Benoit, M.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Carloganu, C.; Gay, P.; Manen, S.; Royer, L.; Cornett, U.; David, D.; Ebrahimi, A.; Falley, G.; Feege, N.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Karstensen, S.; Krivan, F.; Krüger, K.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Fagot, A.; Tytgat, M.; Zaganidis, N.; Hostachy, J.-Y.; Morin, L.; Garutti, E.; Laurien, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Briggl, K.; Eckert, P.; Harion, T.; Schultz-Coulon, H.-Ch.; Shen, W.; Stamen, R.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Bilki, B.; Norbeck, E.; Northacker, D.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Ueno, H.; Yoshioka, T.; Dauncey, P.D.; Cortina Gil, E.; Mannai, S.; Baulieu, G.; Calabria, P.; Caponetto, L.; Combaret, C.; Della Negra, R.; Ete, R.; Grenier, G.; Han, R.; Ianigro, J-C.; Kieffer, R.; Laktineh, I.; Lumb, N.; Mathez, H.; Mirabito, L.; Petrukhin, A.; Steen, A.; Tromeur, W.; Vander Donckt, M.; Zoccarato, Y.; Berenguer Antequera, J.; Calvo Alamillo, E.; Fouz, M.-C.; Puerta-Pelayo, J.; Corriveau, F.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kozlov, V.; Soloviev, Y.; Besson, D.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Popova, E.; Tikhomirov, V.; Gabriel, M.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Conforti di Lorenzo, S.; Cornebise, P.; Fleury, J.; Frisson, T.; van der Kolk, N.; Richard, F.; Pöschl, R.; Rouene, J.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Guliyev, E.; Haddad, Y.; Magniette, F.; Ruan, M.; Tran, T.H.; Videau, H.; Callier, S.; Dulucq, F.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Kotera, K.; Ono, H.; Takeshita, T.; Uozumi, S.; Chai, J.S.; Song, H.S.; Lee, S.H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2014-01-01

    The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.

  8. Research and development for a free-running readout system for the ATLAS LAr Calorimeters at the high luminosity LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hils, Maximilian, E-mail: maximilian.hils@tu-dresden.de

    2016-07-11

    The ATLAS Liquid Argon (LAr) Calorimeters were designed and built to measure electromagnetic and hadronic energy in proton–proton collisions produced at the Large Hadron Collider (LHC) at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10{sup 34} cm{sup −2} s{sup −1}. The High Luminosity LHC (HL-LHC) programme is now developed for up to 5–7 times the design luminosity, with the goal of accumulating an integrated luminosity of 3000 fb{sup −1}. In the HL-LHC phase, the increased radiation levels and an improved ATLAS trigger system require a replacement of the Front-end (FE) and Back-end (BE) electronics of the LAr Calorimeters. Results from research and development of individual components and their radiation qualification as well as the overall system design will be presented.

  9. Light-Front Dynamics in Hadron Physics

    NARCIS (Netherlands)

    Ji, C.R.; Bakker, B.L.G.; Choi, H.M.

    2013-01-01

    Light-front dynamics(LFD) plays an important role in the analyses of relativistic few-body systems. As evidenced from the recent studies of generalized parton distributions (GPDs) in hadron physics, a natural framework for a detailed study of hadron structures is LFD due to its direct application in

  10. Hadron Energy Reconstruction for ATLAS Barrel Combined Calorimeter Using Non-Parametrical Method

    CERN Document Server

    Kulchitskii, Yu A

    2000-01-01

    Hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter in the framework of the non-parametrical method is discussed. The non-parametrical method utilizes only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to fast energy reconstruction in a first level trigger. The reconstructed mean values of the hadron energies are within \\pm1% of the true values and the fractional energy resolution is [(58\\pm 3)%{\\sqrt{GeV}}/\\sqrt{E}+(2.5\\pm0.3)%]\\bigoplus(1.7\\pm0.2) GeV/E. The value of the e/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74\\pm0.04. Results of a study of the longitudinal hadronic shower development are also presented.

  11. The CDF central and endwall hadron calorimeter

    International Nuclear Information System (INIS)

    Bertolucci, S.; Cordelli, M.; Eposito, B.; Curatolo, M.; Giromini, P.; Miscetti, S.; Sansoni, A.; Barnes, V.E.; Di Virgilio, A.; Garfinkel, A.F.; Kuhlmann, S.E.; Laasanen, A.T.

    1988-01-01

    The CDF central and endwall hadron calorimeter covers the polar region between 30 0 and 150 0 and a full 2π in azimuth. It consists of 48 steel-scintillator central modules with 2.5 cm sampling and 48 steel-scintillator endwall modules with 5.0 cm sampling. A general description of the detector is given. Calibration techniques and performance are discussed. Some results of the test beam studies are shown. (orig.)

  12. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...

  13. Muon Identification with the ATLAS Tile Calorimeter Read-Out Driver for Level-2 Trigger Purposes

    CERN Document Server

    Ruiz-Martinez, A

    2008-01-01

    The Hadronic Tile Calorimeter (TileCal) at the ATLAS experiment is a detector made out of iron as passive medium and plastic scintillating tiles as active medium. The light produced by the particles is converted to electrical signals which are digitized in the front-end electronics and sent to the back-end system. The main element of the back-end electronics are the VME 9U Read-Out Driver (ROD) boards, responsible of data management, processing and transmission. A total of 32 ROD boards, placed in the data acquisition chain between Level-1 and Level-2 trigger, are needed to read out the whole calorimeter. They are equipped with fixed-point Digital Signal Processors (DSPs) that apply online algorithms on the incoming raw data. Although the main purpose of TileCal is to measure the energy and direction of the hadronic jets, taking advantage of its projective segmentation soft muons not triggered at Level-1 (with pT<5 GeV) can be recovered. A TileCal standalone muon identification algorithm is presented and i...

  14. The longitudinal development of showers induced by high-energy hadrons in an iron-sampling calorimeter

    CERN Document Server

    Milke, J; Apel, W D; Badea, F; Bekk, K; Bercuci, A; Bertaina, M; Blümer, H; Bozdog, H; Büttner, C; Chiavassa, A; Daumiller, K; Di Pierro, F; Dolla, P; Engel, R; Engler, J; Fessler, F; Ghia, P L; Gils, H J; Glasstetter, R; Haungs, A; Heck, D; Hörandel, J R; Kampert, K H; Klages, H O; Kolotaev, Yu; Maier, G; Mathes, H J; Mayer, H J; Mitrica, B; Morello, C; Müller, M; Navarra, G; Obenland, R; Oehlschläger, J; Ostapchenko, S; Over, S; Petcu, M; Plewnia, S; Rebel, H; Risse, A; Roth, M; Schieler, H; Scholz, J; Stümpert, M; Thouw, T; Toma, G; Trinchero, G C; Ulrich, H; Valchierotti, S; Van Buren, J; Walkowiak, W; Weindl, A; Wochele, J; Zabierowski, J; Zagromski, S; Zimmermann, D

    2005-01-01

    Occasionally cosmic-ray induced air showers result in single, unaccompanied hadrons at ground level. Such events are investigated with the 300 m2 hadron calorimeter of the KASCADE-Grande experiment. It is an iron sampling calorimeter with a depth of 11 hadronic interaction lengths read out by warm-liquid ionization chambers. The longitudinal shower development is discussed as function of energy up to 30 TeV and the results are compared with simulations using the GEANT/FLUKA code. In addition, results of test measurements at a secondary particle beam of the Super Proton Synchrotron at CERN up to 350 GeV are discussed.

  15. Validation of GEANT4 Monte Carlo Models with a Highly Granular Scintillator-Steel Hadron Calorimeter

    CERN Document Server

    Adloff, C.; Blaising, J.J.; Drancourt, C.; Espargiliere, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Schlereth, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Apostolakis, J.; Dotti, A.; Folger, G.; Ivantchenko, V.; Uzhinskiy, V.; Benyamna, M.; Cârloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Gottlicher, P.; Gunter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.Ch.; Shen, W.; Stamen, R.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Dauncey, P.D.; Magnan, A.M.; Bartsch, V.; Wing, M.; Salvatore, F.; Alamillo, E.Calvo; Fouz, M.C.; Puerta-Pelayo, J.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Tikhomirov, V.; Kiesling, C.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Fleury, J.; Frisson, T.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poschl, R.; Raux, L.; Rouene, J.; Seguin-Moreau, N.; Anduze, M.; Boudry, V.; Brient, J-C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Gotze, M.; Hartbrich, O.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2013-01-01

    Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel absorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8GeV to 100GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.

  16. Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodriguez, Diego; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendland, Dennis; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-03-02

    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of $\\sqrt{s}$ = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.

  17. Timing distribution and Data Flow for the ATLAS Tile Calorimeter Phase II Upgrade

    CERN Document Server

    AUTHOR|(SzGeCERN)713745; The ATLAS collaboration

    2016-01-01

    The Hadronic Tile Calorimeter (TileCal) detector is one of the several subsystems composing the ATLAS experiment at the Large Hadron Collider (LHC). The LHC upgrade program plans an increase of order five times the LHC nominal instantaneous luminosity culminating in the High Luminosity LHC (HL-LHC). In order to accommodate the detector to the new HL-LHC parameters, the TileCal read out electronics is being redesigned introducing a new read out strategy with a full-digital trigger system. In the new read out architecture, the front-end electronics allocates the MainBoards and the DaughterBoards. The MainBoard digitizes the analog signals coming from the PhotoMultiplier Tubes (PMTs), provides integrated data for minimum bias monitoring and includes electronics for PMT calibration. The DaughterBoard receives and distributes Detector Control System (DCS) commands, clock and timing commands to the rest of the elements of the front-end electronics, as well as, collects and transmits the digitized data to the back-e...

  18. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Reed, Robert; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the main hadronic calorimeter covering the central region of the ATLAS experiment at LHC. TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC operation (Phase 2 around 2023) where the peak luminosity will increase 5x compared to the design luminosity (10^{34} cm^{-2}s^{-1}) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims to replace the majority of the on- and off-detector electronics so that all calorimeter signals can be digitized and directly sent to the off-detector electronics in the counting room. This will reduce pile-up problems and allow more complex trigger algorithms. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to t...

  19. Upgrade of the ATLAS Tile Calorimeter

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the central hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase 2) where the peak luminosity will increase 5$\\times$ compared to the design luminosity ($10^{34} cm^{-2}s^{-1}$) but with maintained energy (i.e. 7+7 TeV). The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, c...

  20. The Upgraded Calibration System for the Scintillator-PMT Tile Hadronic Calorimeter of the ATLAS experiment at CERN/LHC

    CERN Document Server

    Chakraborty, Dhiman; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy in highest energy proton-proton and heavy-ion collisions at CERN’s Large Hadron Collider. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs) located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each read out by two PMTs in parallel. A multi-component calibration system is employed to calibrate and monitor the stability and performance of each part of the readout chain during data taking. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and ...

  1. The upgraded calibration system for the scintillator-PMT Tile Hadronic Calorimeter of the ATLAS experiment at CERN/LHC

    CERN Document Server

    Chakraborty, Dhiman; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy in highest energy proton-proton and heavy-ion collisions at CERN’s Large Hadron Collider. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs) located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each read out by two PMTs in parallel. A multi-component calibration system is employed to calibrate and monitor the stability and performance of each part of the readout chain during data taking. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and ...

  2. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00236332; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitized and then...

  3. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. Currently, an analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized and stored on detector and are only transferred off detector once the first trigger acceptance has been confirmed. The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and off-detector electronics. All signals will be digitiz...

  4. Studies of the ATLAS hadronic Calorimeter response to different particles at Test Beams

    CERN Document Server

    Zakareishvili, Tamar; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muons data allow to study the dependence of the response on the incident point and angle in the cell. The electron data are used to determine the linearity of the electron energy measurement. The hadron data will allow to tune the calorimeter response to pions and kaons modelling to improve the reconstruction of the jet energies. The results of the ongoing data analysis are discussed in the presentation.

  5. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and transmitted to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronics are based on the Advanced Telecommunications Computing Architecture (ATCA) standard and are equipped with high performance optical connectors. The system is designed to operate in a high radiation envi...

  6. Upgrade of the ATLAS Tile Calorimeter for the High Luminosity LHC

    CERN Document Server

    Tang, Fukun; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS cover-ing the central region of the ATLAS experiment. TileCal will undergo a major replacement of its on- and off-detector electronics in 2024 for the high luminosity program of the LHC. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies are being employed to determine which option will be selected. The off-detector electronic is based on the Advanced Telecommunications Computing Architecture (ATCA) standard and is equipped with high performance optical connectors. The system is designed to operate in a high radiation environmen...

  7. "Finger" structure of tiles in CMS Endcap Hadron Calorimeters

    CERN Document Server

    Afanasiev, Sergey; Danilov, Mikhail; Emeliantchik, Igor; Ershov, Yuri; Golutvin, Igor; Grinyov, B.V; Ibragimova, Elvira; Levchuk, Leonid; Litomin, Aliaksandr; Makankin, Alexander; Malakhov, Alexander; Moisenz, Petr; Nuritdinov, I; Popov, V.F; Rusinov, Vladimir; Shumeiko, Nikolai; Smirnov, Vitaly; Sorokin, Pavlo; Tarkovskiy, Evgueni; Tashmetov, A; Vasiliev, S.E; Yuldashev, Bekhzod; Zamyatin, Nikolay; Zhmurin, Petro

    2015-01-01

    Two CMS Endcap hadron calorimeters (HE) have been in operation for several years and contributed substantially to the success of the CMS Physics Program. The HE calorimeter suffered more from the radiation than it had been anticipated because of rapid degradation of scintillator segments (tiles) which have a high radiation flux of secondary particles. Some investigations of scintillators have shown that the degradation of plastic scintillator increases significantly at low dose rates. A proposal to upgrade up-grade the HE calorimeter has been prepared to provide a solution for survivability of the future LHC at higher luminosity and higher energy. A finger-strip plastic scintillator option has many advantages and is a lower cost alternative to keep the excellent HE performance at high luminosity. Measurements have been performed and this method has proved to be a good upgrade strategy.

  8. Search for New Physics in Top Quark Production and Upgrade of the CMS Hadron Calorimeter

    International Nuclear Information System (INIS)

    Yumiceva, Francisco

    2016-01-01

    Our goal is to measure precisely the properties of the heaviest subatomic particle ever discovered, the top quark. In the proton-proton collisions at the LHC, top quarks are produced copiously. The largest set of top quarks recorded by the CMS detector make it an ideal laboratory to measure properties such as its mass and the rate at which pair of top quarks are produced in association with energetic photons. Quantum electrodynamics, or QED, describes the emission of light by charged particles and is the most precise physics theory ever devised. Typically this means light emitted by electrons, but any charged particles will do, such as the top quark. Studies of the light-emitting properties of top quarks help us to refine our current theoretical predictions at the finest level, and provide additional tools to study in more detail the recently discovered Higgs boson particle. However, during this process, the studies may reveal interesting features not yet observed. Deviations from the standard predictions would be a strong sign of something entirely new. These new physics theories are motivated to answer the current big mysteries in the universe such as what is the nature of mass or what is dark matter. As the LHC increases the collision energy and its luminosity, the detectors need to be improved to cope with these high-luminosity scenarios. New sensors will be installed in the hadron calorimeter detectors along with new front and end electronics at the end of 2016. We are testing and calibrating the new front-end readout electronics that will allow us to have more options to reduce the noise on these detectors. In order to do this calibration, we have developed a system that can inject electric charge in the full range of the charge integrator chip, the QIE ASICs.

  9. Search for New Physics in Top Quark Production and Upgrade of the CMS Hadron Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Yumiceva, Francisco [Florida Inst. of Technology, Melbourne, FL (United States)

    2016-10-07

    Our goal is to measure precisely the properties of the heaviest subatomic particle ever discovered, the top quark. In the proton-proton collisions at the LHC, top quarks are produced copiously. The largest set of top quarks recorded by the CMS detector make it an ideal laboratory to measure properties such as its mass and the rate at which pair of top quarks are produced in association with energetic photons. Quantum electrodynamics, or QED, describes the emission of light by charged particles and is the most precise physics theory ever devised. Typically this means light emitted by electrons, but any charged particles will do, such as the top quark. Studies of the light-emitting properties of top quarks help us to refine our current theoretical predictions at the finest level, and provide additional tools to study in more detail the recently discovered Higgs boson particle. However, during this process, the studies may reveal interesting features not yet observed. Deviations from the standard predictions would be a strong sign of something entirely new. These new physics theories are motivated to answer the current big mysteries in the universe such as what is the nature of mass or what is dark matter. As the LHC increases the collision energy and its luminosity, the detectors need to be improved to cope with these high-luminosity scenarios. New sensors will be installed in the hadron calorimeter detectors along with new front and end electronics at the end of 2016. We are testing and calibrating the new front-end readout electronics that will allow us to have more options to reduce the noise on these detectors. In order to do this calibration, we have developed a system that can inject electric charge in the full range of the charge integrator chip, the QIE ASICs.

  10. Study of electromagnetic and hadronic showers with liquid-argon calorimeters

    International Nuclear Information System (INIS)

    Rauschnabel, K.

    1978-05-01

    High energy electrons, pions and protons have been detected by two liquid-argon calorimeters. Measurements of the linearity and energy resolution of the detectors have been performed. As one of the detectors consisted of 80 sections, the spatial development of hadronic cascades could be studied. The results are in reasonable agreement with Monte-Carlo simulations. The spatial and angular resolutions of the detector have been evaluated. Using their different longitudinal shower development, electrons and hadrons could be separated. (orig.) [de

  11. Monte-Carlo simulation of hadronic showers. Part 3: The ANI prototype calorimeter

    International Nuclear Information System (INIS)

    Amatuni, Ts.A.; Mamidjanyan, E.A.; Sanossyan, Kh.N.

    1992-01-01

    Hadronic showers initiated by 0.5, 1, 2, 4, 5, 7, 10, 12, 15, 20, 22 and 30 eV incident protons in the ANI prototype calorimeter are simulated. The energy deposition (longitudinal and lateral) for these showers are calculated. Lateral shower profiles for 0.5, 5 and 20 TeV primary energies are presented and parametrized. The leakage from the calorimeter is estimated. 19 refs

  12. Monte-Carlo simulation of hadronic showers. Part 3: The ANI prototype calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Amatuni, Ts A; Mamidjanyan, E A; Sanossyan, Kh N

    1993-12-31

    Hadronic showers initiated by 0.5, 1, 2, 4, 5, 7, 10, 12, 15, 20, 22 and 30 eV incident protons in the ANI prototype calorimeter are simulated. The energy deposition (longitudinal and lateral) for these showers are calculated. Lateral shower profiles for 0.5, 5 and 20 TeV primary energies are presented and parametrized. The leakage from the calorimeter is estimated. 19 refs.

  13. In-situ probe of the response of the Tile Calorimeter to isolated hadrons

    CERN Document Server

    Jennens, D; The ATLAS collaboration

    2013-01-01

    The Tile calorimeter is the hadronic central barrel of the calorimeter system of the ATLAS experiment for the LHC at CERN. It is based on a sampling technique where scintillating tiles are embedded in iron absorber plates. The tiles are grouped together in cells which are disposed in three different layers. The cells from the two innermost layers cover a $\\Delta\\eta \\times \\Delta\\phi $ range of 0.1 $\\times$ 0.1, while the outermost layer covers 0.2 $\\times$ 0.1. An in-situ method to probe the calorimeter response to single charged hadrons can be established by using the ratio of energy measured in the calorimeter cells over the momentum measured by the inner tracking system. This measurement can be used to place constraints on the systematic uncertainty for the jet and tau energy scales. Results from pp collision data from 2010 and 2011 will be shown and discussed as a function of different layer and barrel section. Finally, comparison to MC simulation will prove the good performance of the detector.

  14. Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    Commissioning studies of the CMS hadron calorimeter have identified sporadic uncharacteristic noise and a small number of malfunctioning calorimeter channels. Algorithms have been developed to identify and address these problems in the data. The methods have been tested on cosmic ray muon data, calorimeter noise data, and single beam data collected with CMS in 2008. The noise rejection algorithms can be applied to LHC collision data at the trigger level or in the offline analysis. The application of the algorithms at the trigger level is shown to remove 90% of noise events with fake missing transverse energy above 100 GeV, which is sufficient for the CMS physics trigger operation.

  15. The time structure of hadronic showers in calorimeters with gas and scintillator readout

    Energy Technology Data Exchange (ETDEWEB)

    Goecke, Philipp [Max-Planck-Institut fuer Physik, Munich (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    The focus of the CALICE collaboration is R and D of highly granular calorimeters. One of the possible applications is in a future TeV-scale linear e{sup +}e{sup -} collider for precision SM studies and for direct and indirect the search of new physics. For the hadronic sampling calorimeters subsystem, several absorbers and active material technologies are being investigated. In this frame, two similar experiments have been conducted to study the time structure of hadronic showers: FastRPC uses resistive plate chambers technology for the active layers whereas T3B is based on scintillating tiles coupled to SiPMs. The high sampling frequency of the readout, coupled to deep memory buffers, allows to carefully investigate the intrinsic time structure of hadronic showers with its prompt and delayed components. This study presents a detailed GEANT4 Montecarlo simulation of the FastRPC and T3B setups. It is aimed to reproduce test beam data acquired at CERN SPS where the setups were installed after 5λ of instrumented tungsten-based calorimeter prototypes. The main focus of the simulation lies on the physical processes involved in the time development of an hadronic showers, to asses the discrepancy that emerged in data for the two setups in the intermediate time range of 10 - 50 ns of shower development that can be explained with the neutron interactions in the medium.

  16. Data acquisition for the CALICE engineering prototype of the analog hadronic calorimeter for the international linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Irles, Adrian [Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    The engineering prototype of the Analogue Hadronic Calorimeter, developed by the CALICE collaboration for future linear colliders, consists in a set of high granularity layers of scintillator tiles readout by a silicon photo-multiplier (SiPM) and is housed in steel cassettes which can be interleaved with different absorber plates. The readout is done with a dedicated front-end SiPM readout system: the SPIROC ASIC. The current data acquisition (DAQ) framework used for the engineering prototype of the AHCAL is fruit of several years of improvement and exhaustive testing in the laboratory and in different test beams and has been designed to be scalable to the full detector size (∝8.10{sup 6} channels) making use of a new Link Data Aggregator. Current efforts in the DAQ development aims to gain in flexibility to include other subsystems in common test beams. The solution that is presented here is based on the use of the EUDAQ software which is a DAQ framework designed to be modular and portable and that has strong suppport from the ILC community.

  17. ATLAS barrel hadron tile calorimeter: spacers plates mass production

    International Nuclear Information System (INIS)

    Artikov, A.M.; Budagov, Yu.A.; Khubua, J.

    1999-01-01

    In this article we expose the main problems of the mass production of the so-called 'spacer plates' for the ATLAS Barrel Hadron Tile Calorimeter. We describe all practical solutions of these problems. Particularly we present the measurement procedures and calculation schemes we used for the spacers dimensions determination. The results of the calculations are presented

  18. Upgrade of the ATLAS Tile hadronic calorimeter for high-luminosity LHC run

    Energy Technology Data Exchange (ETDEWEB)

    Spoor, Matthew

    2017-02-11

    The ATLAS Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics for the Long Shutdown 3 that is planned for 2024 and 2025. All signals will be digitised and transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade and will be chosen after extensive test beam studies. A Hybrid Demonstrator module has been developed. The demonstrator is undergoing extensive testing and is planned for insertion in ATLAS.

  19. Upgrade of the ATLAS Tile hadronic calorimeter for high-luminosity LHC run

    International Nuclear Information System (INIS)

    Spoor, Matthew

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics for the Long Shutdown 3 that is planned for 2024 and 2025. All signals will be digitised and transferred directly to the off-detector electronics, where the signals are reconstructed, stored, and sent to the first level of trigger at a rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade and will be chosen after extensive test beam studies. A Hybrid Demonstrator module has been developed. The demonstrator is undergoing extensive testing and is planned for insertion in ATLAS.

  20. The time structure of hadronic showers in highly granular calorimeters with tungsten and steel absorbers

    Czech Academy of Sciences Publication Activity Database

    Adloff, C.; Blaising, J.J.; Chefdeville, M.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Denis; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2014-01-01

    Roč. 9, Jul (2014), s. 1-24 ISSN 1748-0221 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 Keywords : hadronic calorimeter s * hadronic showers * hadronic physics models * hilicon photomultiplier Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.399, year: 2014

  1. CrossRef Energy Reconstruction in a High Granularity Semi-Digital Hadronic Calorimeter for ILC Experiments

    CERN Document Server

    Mannai, S; Cortina, E; Laktineh, I

    2016-01-01

    Abstract: The Semi-Digital Hadronic CALorimeter (SDHCAL) is one of the two hadronic calorimeter options proposed by the International Large Detector (ILD) project for the future International Linear Collider (ILC) experiments. It is a sampling calorimeter with 48 active layers made of Glass Resistive Plate Chambers (GRPCs) and their embedded electronics. A fine lateral segmentation is obtained thanks to pickup pads of 1 cm2. This ensures the high granularity required for the application of the Particle Flow Algorithm (PFA) in order to improve the jet energy resolution in the ILC experiments. The performance of the SDHCAL technological prototype was tested successfully in several beam tests at CERN. The main point to be discussed here concerns the energy reconstruction in SDHCAL. Based on Monte Carlo simulation of the SDHCAL prototype using the GEANT4 package, we present different energy reconstruction methods to study the energy linearity and resolution of the detector response to single hadrons. In particula...

  2. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Moreno, P; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (phase 2) where the peak luminosity will increase 5x compared to the design luminosity (10^34 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity leveling. This upgrade is expected to happen around 2023. The TileCal upgrade aims at replacing the majority of the on- and off-detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 ...

  3. Low-energy neutron measurements in an iron calorimeter structure irradiated by 200 GeV/c hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Russ, J S [Carnegie-Mellon University, Pittsburgh, PA (United States); Stevenson, G R; Fasso, A; Nielsen, M C [CERN, Geneva (Switzerland); Furetta, C; Rancoita, P G; Vismara, I [INFN, Milan (Italy)

    1989-04-21

    Of serious concern in the design of detectors for the new high-luminosity hadron-hadron colliders are the radiation damage effects on silicon and other detectors of low-energy neutrons produced by spallation evaporation or fission processes. Because of the lack of experimental information on the number of neutrons with energies between 0.1 and 10 MeV in the cascades originating from high-energy hadrons, an experiment was carried out using activation detector techniques to measure the neutron fluence in a cascade initiated by 200 GeV hadrons in acalorimeter-like iron structure. It was found that at the maximum of the cascade one produces approximately 3 neutrons per GeV of incident energy: some 70% of these are of energies between 0.1 and 5 MeV, the remainder are fairly uniformly distributed in energy between 5 and several hundred MeV. The number of albedo neutrons leaving the front face of the calorimeter structure was about 0.3 neutrons per GeV of incident energy with in energy distribution similar to those at cascade maximum These data confirm that neutron-induced damage will he of concern in the design of detectors for the new colliders and that further measurements and calculations are necessary for a correct assessment of this damage. (author)

  4. Development of MicroMegas for a Digital Hadronic Calorimeter

    OpenAIRE

    Adloff, Catherine; Blaha, Jan; Espargiliere, Ambroise; Karyotakis, Yannis

    2009-01-01

    Recent developments on the MicroMegas prototypes built by use of the bulk technology with analog and digital readout electronics are presented. The main test beam results of a stack of several MicroMegas prototypes fully comply with the needs of a hadronic calorimeter for future particle physics experiments. A technical solution for a large scale prototype is also introduced.

  5. Upgrade of the ATLAS hadronic Tile calorimeter for the High luminosity LHC

    CERN Document Server

    Asensi Tortajada, Ignacio; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS detector at the LHC. It is a sampling calorimeter consisting of alternating thin steel plates and scintillating tiles. Wavelength shifting fibers coupled to the tiles collect the produced light and are read out by photomultiplier tubes. An analog sum of the processed signal of several photomultipliers serves as input to the first level of trigger. Photomultiplier signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed (at a rate of maximum 100 kHz). The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. In particular, TileCal will undergo a major replacement of its on- and of...

  6. Development and Test of the Cooling System for the ATLAS Hadron Tile Calorimeter

    CERN Document Server

    Schlager, Gerolf

    2002-01-01

    The ATLAS detector is a general-purpose experiment for proton-proton collisions designed to investigate the full range of physical processes at the Large Hadron Collider (LHC). The ATLAS Tile Hadron Calorimeter is designed to measure the energies of jets with a resolution of E/E = 50%/pE 3%, for j j<3. This thesis presents the detailed studies which were carried out with prototypes of the Tilecal cooling system during my year as technical student at CERN. The results will be used to validate and to determine the nal design of the cooling system of the ATLAS Tile calorimeter. The performance of the cooling unit built for the calibration of Tilecal modules was evaluated for various parameters like temperature stability and safety conditions during operation. Additionally I contributed to the analysis of the calorimeter response for di erent cooling temperatures. These results determined the constraints on the operation conditions of the cooling system in terms of temperature stability that will be needed d...

  7. Calibration and Performance of the ATLAS Tile Calorimeter During the Run 2 of the LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is a hadronic calorimeter covering the central region of the ATLAS experiment at the LHC. It is a non-compensating sampling calorimeter comprised of steel and scintillating plastic tiles which are read-out by photomultiplier tubes (PMT). The TileCal is regularly monitored and calibrated by several di erent calibration systems: a Cs radioactive source that illuminates the scintillating tiles directly, a laser light system to directly test the PMT response, and a charge injection system (CIS) for the front-end electronics. These calibrations systems, in conjunction with data collected during proton-proton collisions, provide extensive monitoring of the instrument and a means for equalizing the calorimeter response at each stage of the signal propagation. The performance of the calorimeter and its calibration has been established with cosmic ray muons and the large sample of the proton-proton collisions to study the energy response at the electromagnetic scale, probe of the hadroni...

  8. Design and Beam Test Results for the sPHENIX Electromagnetic and Hadronic Calorimeter Prototypes

    Energy Technology Data Exchange (ETDEWEB)

    Aidala, C.A.; et al.

    2017-04-05

    The sPHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) will perform high precision measurements of jets and heavy flavor observables for a wide selection of nuclear collision systems, elucidating the microscopic nature of strongly interacting matter ranging from nucleons to the strongly coupled quark-gluon plasma. A prototype of the sPHENIX calorimeter system was tested at the Fermilab Test Beam Facility as experiment T-1044 in the spring of 2016. The electromagnetic calorimeter (EMCal) prototype is composed of scintillating fibers embedded in a mixture of tungsten powder and epoxy. The hadronic calorimeter (HCal) prototype is composed of tilted steel plates alternating with plastic scintillator. Results of the test beam reveal the energy resolution for electrons in the EMCal is $2.8\\%\\oplus~15.5\\%/\\sqrt{E}$ and the energy resolution for hadrons in the combined EMCal plus HCal system is $13.5\\%\\oplus 64.9\\%/\\sqrt{E}$. These results demonstrate that the performance of the proposed calorimeter system is consistent with \\geant simulations and satisfies the sPHENIX specifications.

  9. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  10. Calibration and Monitoring systems of the ATLAS Tile Hadron Calorimeter

    CERN Document Server

    BOUMEDIENE, D; The ATLAS collaboration

    2012-01-01

    The TileCal is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. It is a sampling calorimeter with iron plates as absorber and plastic scintillating tiles as the active material. The scintillation light produced by the passage of charged particles is transmitted by wavelength shifting fibers to about 10000 photomultiplier tubes (PMTs). Integrated on the calorimeter there is a composite device that allows to monitor and/or equalize the signals at various stages of its formation. This device is based on signal generation from different sources: radioactive, LASER and charge injection and minimum bias events produces in proton-proton collisions. In this contribution is given a brief description of the different systems hardware and presented the latest results on their performance, like the determination of the conversion factors, linearity and stability.

  11. Iron liquid-argon and uranium liquid-argon calorimeters for hadron energy measurement

    CERN Document Server

    Fabjan, Christian Wolfgang; Lankford, A J; Rehak, P; Struczinski, W; Willis, W J

    1977-01-01

    The authors studied, with a specially designed hadron calorimeter, the contributions of different mechanisms affecting the energy resolution of such instruments. It is shown that in ordinary materials the resolution is dominated by 'nuclear fluctuations'. Measurements with a uranium calorimeter show that these fluctuations can be effectively compensated by the amplifying effect of nuclear fission in uranium. The resolution at low energies is good ( sigma =9.6% for 10 GeV/c pions) and improving with energy. (12 refs).

  12. A Serializer ASIC at 5 Gbps for Detector Front-end Electronics Readout

    CERN Document Server

    Gong, D; The ATLAS collaboration; Liu, T; Xiang, A; Ye, J

    2010-01-01

    High speed and ultra low power serial data transmission over fiber optics plays an essential roll in detector front-end electronics readout for experiments at the LHC. The ATLAS Liquid Argon Calorimeter front-end readout upgrade for the sLHC calls for an optical link system with a data bandwidth of 100 Gbps per each front-end board (FEB), a factor of 62 increase compared with the present optical link system. The transmitter of this optical link will have to withstand the radiation environment where the front-end crates are situated, and stay within the current power dissipation budget limited by the present FEB cooling capacity. To meet these challenges, we developed a 16:1 serializer based on a commercial 0.25 μm silicon-on-sapphire (SOS) CMOS technology. This serializer, designed to work at 5 Gbps, is a key component in an optical link system. Test results of this ASIC will be reported. A system design for the 100 Gbps optical link system will also be presented, with discussions about key components identi...

  13. A Study of Hadronic Calibration Schemes for Pion Test Beam Data in the ATLAS Forward Calorimeter

    CERN Document Server

    McCarthy, Thomas G

    The ATLAS forward calorimeters constitute a small though important fraction of the detector's calorimeter system, designed in part to accurately and precisely measure the energy of particles and jets of particles originating from the collisions of high-energy protons at the detector's centre. The application of hadronic weights, a practice common in high-energy calorimetry, provides a means of compensation for the fraction of energy which is deposited by particles in the detector, but which is invisible to the detector due to the nature of hadronic showers. Explored here are various schemes of extracting hadronic weights, as well as the application of such weights, based on pion data from the 2003 ATLAS forward calorimeter test beam. During the collection of test beam data, beams of both pions and electrons of known energy, ranging from 10 to 200 GeV, were fired at specific points of an isolated detector in order to understand its response. The improvement in noise-subtracted energy resolution with respect to...

  14. Assembly of the CMS HF (hadron forward) calorimeter, April 2003 to June 2005

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2005-01-01

    The forward calorimeters (HF) of the CMS hadron calorimeter system are located 11.2 m from the interaction point. Each HF module is composed by 18 wedges, made of steel absorbers and radiation-hard quartz fibers. The photogallery shows the wedges (Figs. 1-3, April 2003), the assembly of one HF module (Figs. 4-9, May and June 2004) and the assembly of the other (Figs. 10-11, June 2005)

  15. Construction and commissioning of a hadronic test-beam calorimeter to validate the particle-flow concept at the ILC

    International Nuclear Information System (INIS)

    Groll, M.

    2007-06-01

    This thesis discusses research and development studies performed for a hadronic calorimeter concept for the International Linear Collider (ILC). The requirements for a detector for the ILC are de ned by the particle-ow concept in which the overall detector performance for jet reconstruction is optimised by reconstructing each particle individually. The calorimeter system has to have unprecedented granularity to ful l the task of shower separation. The validation of the shower models used to simulate the detector performance is mandatory for the design and optimisation of the ILC detector. The construction and operation of a highly granular test-beam system will serve as a tool for this validation. This motivates the urgent need of research and development on calorimeter prototypes. One possible realisation of the hadronic calorimeter is based on a sampling structure of steel and plastic scintillator with analogue readout, where the sensitive scintillator layers are divided into tiles. A newly developed silicon based photo-detector (SiPM) o ers the possibilities to design such a system. The SiPM is a multi-pixel avalanche photo-diode operated in Geiger mode. Due to its small dimensions it is possible to convert the light produced in the calorimeter to an electronic signal already inside the calorimeter volume. The basic developments on scintillator, tile and photo-detector studies provide the basis for prototype construction. The main part of this thesis will discuss the construction and rst commissioning of an analogue hadronic calorimeter prototype consisting of 8000 channels read out with SiPMs. The smallest calorimeter unit is the tile system including the SiPM. The production and characterisation chain of this unit is an essential step in the construction of a large scale prototype. These basic units are arranged on readout layers, which are already a multi-channel system of 200 channels. In addition, the new photo-detector requires dedicated readout

  16. Construction and commissioning of a hadronic test-beam calorimeter to validate the particle-flow concept at the ILC

    Energy Technology Data Exchange (ETDEWEB)

    Groll, M.

    2007-06-15

    This thesis discusses research and development studies performed for a hadronic calorimeter concept for the International Linear Collider (ILC). The requirements for a detector for the ILC are de ned by the particle-ow concept in which the overall detector performance for jet reconstruction is optimised by reconstructing each particle individually. The calorimeter system has to have unprecedented granularity to ful l the task of shower separation. The validation of the shower models used to simulate the detector performance is mandatory for the design and optimisation of the ILC detector. The construction and operation of a highly granular test-beam system will serve as a tool for this validation. This motivates the urgent need of research and development on calorimeter prototypes. One possible realisation of the hadronic calorimeter is based on a sampling structure of steel and plastic scintillator with analogue readout, where the sensitive scintillator layers are divided into tiles. A newly developed silicon based photo-detector (SiPM) o ers the possibilities to design such a system. The SiPM is a multi-pixel avalanche photo-diode operated in Geiger mode. Due to its small dimensions it is possible to convert the light produced in the calorimeter to an electronic signal already inside the calorimeter volume. The basic developments on scintillator, tile and photo-detector studies provide the basis for prototype construction. The main part of this thesis will discuss the construction and rst commissioning of an analogue hadronic calorimeter prototype consisting of 8000 channels read out with SiPMs. The smallest calorimeter unit is the tile system including the SiPM. The production and characterisation chain of this unit is an essential step in the construction of a large scale prototype. These basic units are arranged on readout layers, which are already a multi-channel system of 200 channels. In addition, the new photo-detector requires dedicated readout

  17. Dead Time in the LAr Calorimeter Front-End Readout

    CERN Document Server

    Gingrich, D M

    2002-01-01

    We present readout time, latency, buffering, and dead-time calculations for the switched capacitor array controllers of the LAr calorimeter. The dead time is compared with algorithms for the dead-time generation in the level-1 central trigger processor.

  18. Design and construction of a hadron calorimeter for the European hybrid spectrometer

    International Nuclear Information System (INIS)

    Schmiedmayer, H.J.

    1983-01-01

    The Intermedia Neutral Particle Calorimeter is an iron (5 cm)-scintillator (0.8 cm) sampling calorimeter. The read-out is done in three groups comprising 4 scintillators separated by 5 cm of iron. The signal can also be used for triggering. The device has been tested for linearity and long-time stability muon-calibrated and inserted into the spectrometer EHS. Finally a simulation model for hadron showers was developed which fits data from the literature in the 20-200 GeV range. (G.Q.)

  19. Plastic tube hadron calorimeter: study of operation properties and particle separation

    International Nuclear Information System (INIS)

    Akopdzhanov, G.A.; Belousov, V.I.; Blik, A.M.; Romanovski, V.I.

    1988-01-01

    The DELPHI hadron calorimeter prototype plastic tubes were tested to show a long-term stability of the prototype operating with the gas mixture carbon dioxide isobutane. The operating properties of the prototype are investigated and presented as well as the results on particles separation. 5 refs.; 11 figs.; 9 tabs

  20. Testing hadronic interaction models using a highly granular silicon-tungsten calorimeter

    Czech Academy of Sciences Publication Activity Database

    Bilki, B.; Repond, J.; Schlereth, J.; Cvach, Jaroslav; Gallus, Petr; Havránek, Miroslav; Janata, Milan; Kvasnička, Jiří; Lednický, Richard; Marčišovský, Michal; Polák, Ivo; Popule, Jiří; Tomášek, Lukáš; Tomášek, Michal; Růžička, Pavel; Šícho, Petr; Smolík, Jan; Vrba, Václav; Zálešák, Jaroslav

    2015-01-01

    Roč. 794, Sep (2015), s. 240-254 ISSN 0168-9002 R&D Projects: GA MŠk LG14033 Institutional support: RVO:68378271 Keywords : electromagnetic silicon tungsten calorimeter * highly granular detectors * hadronic showers * data and simulations Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.200, year: 2015

  1. Front-End Electronics in calorimetry: from LHC to ILC

    International Nuclear Information System (INIS)

    De La Taille, Ch.

    2009-09-01

    This report summarizes the electronics developments for liquid argon calorimeter read-out at LHC and the development carried out in the framework of the CALICE collaboration for those of the future linear collider (ILC). It also includes chips designed for multi-anode photomultipliers (MaPMT) used in the OPERA experiment or on ATLAS luminometer, which also find applications in medical imaging. Started in the early 90's, the development for ATLAS calorimetry was extremely challenging in terms of readout speed, radiation tolerance and measurement accuracy. The high speed has required a new approach using current-sensitive preamplifiers instead of charge sensitive ones and the redefinition of noise performance in terms of ENI. The preamplifiers developed at Orsay and the monolithic shapers are described in Chapter 1, including considerations of digital filtering, which was a new technique in our field. Chapter 2 is dedicated to the calibration system, designed and built by Orsay, for which the high performance and accuracy necessitated in-depth studies. The 3. chapter closes the studies for ATLAS with a summary of the detector measurements which had to be carried out on the 200 000 channels in order to understand and model the detector and achieve everywhere the accuracy and uniformity at per-cent level. These developments for ATLAS ended in 2004, although parallel work was also carried out for the NA48 and DO calorimeters which are not detailed here. The next generation of collider will require a new generation of calorimeters, much more granular, referred to as 'imaging calorimetry' with embedded read-out electronics. The ASICs developed for this purpose in the framework of the CALICE collaboration are described in Chapter 4. They integrate all the functionalities of amplification, digitization and read-out making them complex 'System-On-Chip' circuits extremely efficient that find many other applications. A family of 3 chips reads out the Si-W electromagnetic

  2. Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques

    CERN Document Server

    Adloff, C.; Blaising, J.J.; Drancourt, C.; Espargiliere, A.; Gaglione, R.; Geffroy, N.; Karyotakis, Y.; Prast, J.; Vouters, G.; Francis, K.; Repond, J.; Smith, J.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Watson, N.K.; Goto, T.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Carloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G.C.; Dyshkant, A.; Lima, J.G.R.; Zutshi, V.; Hostachy, J.Y.; Morin, L.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Gottlicher, P.; Gunter, C.; Hermberg, B.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.I.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Feege, N.; Garutti, E.; Marchesini, I.; Ramilli, M.; Eckert, P.; Harion, T.; Kaplan, A.; Schultz-Coulon, H.Ch; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Wilson, G.W.; Kawagoe, K.; Dauncey, P.D.; Magnan, A.M.; Wing, M.; Salvatore, F.; Calvo Alamillo, E.; Fouz, M.C.; Puerta-Pelayo, J.; Balagura, V.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Kiesling, C.; Pfau, S.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Bulanek, B.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.; Takeshita, T.; Uozumi, S.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2012-01-01

    SPS. The energy resolution for single hadrons is determined to be approximately 58%/ √E/GeV. This resolution is improved to approximately 45%/ √E/GeV with software compensation techniques. These techniques take advantage of the event-by-event information about the substructure of hadronic showers which is provided by the imaging capabilities of the calorimeter. The energy reconstruction is improved either with corrections based on the local energy density or by applying a single correction factor to the event energy sum derived from a global measure of the shower energy density. The application of the compensation algorithms to GEANT4 simulations yield resolution improvements comparable to those observed for real data.

  3. Comparison of two highly granular hadronic calorimeter concepts

    International Nuclear Information System (INIS)

    Neubueser, Coralie

    2016-11-01

    The CALICE collaboration develops hadron calorimeter technologies with high granularity for future electron-positron linear colliders. These technologies differ in active material, granularity and their readout and thus their energy reconstruction schemes. The Analogue Hadron Calorimeter (AHCAL), based on scintillator tiles with Silicon Photomultiplier readout, measures the signal amplitude of the energy deposition in the cells of at most 3 x 3 cm"2 size. The Digital, Resistive Plate Chamber (RPC) based, HCAL (DHCAL) detects hits above a certain threshold by firing pad sensors of 1 x 1 cm"2. A 2 bit readout is provided by the, also RPC based, Semi-Digital HCAL (SDHCAL), which counts hits above three different thresholds per 1 x 1 cm"2 pad. All three calorimeter concepts have been realised in 1 m"3 prototypes with interleaved steel absorber and tested at various test beams. The differences in active medium, granularity and readout have different impacts on the energy resolution and need to be studied independently. This analysis concentrates on the comparison between these technologies by investigating the impact of the different energy reconstruction schemes on the energy resolution of the AHCAL testbeam data and simulation. Additionally, a so-called software compensation algorithm is developed to weight hits dependent on their energy content and correct for the difference in the response to the electromagnetic and hadronic sub-showers (e/h≠1) and thus reduce the influence of fluctuations in the π"0 generation. The comparison of the energy resolutions revealed that it is mandatory for the AHCAL with 3 x 3 cm"2 cell size to have analogue signal readout, to apply the software compensation algorithm and thus achieve the best possible energy resolution. The effect of the granularity is studied with a simulation of the AHCAL with 1 x 1 cm"2 cell size, and it has been found that to achieve the best possible energy resolution the semi-digital energy reconstruction is

  4. Commissioning of an LED calibration and monitoring system for the prototype of a hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Wattimena, N.

    2006-12-15

    The anticipated physics program for the International Linear Collider (ILC) requires a highly granular hadronic calorimeter. One option for such a tracking calorimeter is a scintillator-steel sandwich structure placed inside the magnetic coil. The development of hadronic showers will be studied with a physics prototype, in order to improve current models. This prototype, currently being built within the collaboration for a CAlorimeter for the LInear Collider Experiment (CALICE) at the Deutsches Elektronen-Synchrotron (DESY) also serves to test a new semiconductor based photodetector the so called silicon photomultiplier. The calibration of these new photodetectors requires to take into account their nonlinear response.The response function, describing this behaviour, is investigated in this thesis. A calibration and monitoring system, needed to correct for the temperature and voltage dependence of the silicon photomultiplier signals and to observe changes of their response over time, is optimised and tested. (orig.)

  5. Commissioning of an LED calibration and monitoring system for the prototype of a hadronic calorimeter

    International Nuclear Information System (INIS)

    Wattimena, N.

    2006-12-01

    The anticipated physics program for the International Linear Collider (ILC) requires a highly granular hadronic calorimeter. One option for such a tracking calorimeter is a scintillator-steel sandwich structure placed inside the magnetic coil. The development of hadronic showers will be studied with a physics prototype, in order to improve current models. This prototype, currently being built within the collaboration for a CAlorimeter for the LInear Collider Experiment (CALICE) at the Deutsches Elektronen-Synchrotron (DESY) also serves to test a new semiconductor based photodetector the so called silicon photomultiplier. The calibration of these new photodetectors requires to take into account their nonlinear response.The response function, describing this behaviour, is investigated in this thesis. A calibration and monitoring system, needed to correct for the temperature and voltage dependence of the silicon photomultiplier signals and to observe changes of their response over time, is optimised and tested. (orig.)

  6. First half-barrel of the CMS hadron calorimeter successfully asembled

    CERN Multimedia

    2001-01-01

    The first half barrel of the CMS hadron calorimeter has been assembled in the CMS construction hall in Cessy (neighbouring France), called SX5, in October 2001. The picture sequence shows the insertion of the last (the keystone) wedge. It is lifted up to the top of the structure and carefully inserted into the half barrel. Photos 6 and 7 show the HB- in SX5.

  7. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    Czech Academy of Sciences Publication Activity Database

    Akhmadaliev, S.; Albiol, F.; Amaral, P.; Lokajíček, Miloš; Němeček, Stanislav

    2000-01-01

    Roč. 449, - (2000), s. 461-477 ISSN 0168-9002 R&D Projects: GA MPO RP-4210/69 Institutional research plan: CEZ:AV0Z1010920 Keywords : liquid argon * calorimeter * hadronic scintillating- tile * CERN SPS * ATLAS * LHC * energy resolution * pions Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 0.964, year: 2000

  8. Low-energetic hadron interactions in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Feege, Nils

    2011-12-01

    The CALICE collaboration develops imaging calorimeters for precision measurements at a future electron-positron linear collider. These calorimeters feature a fine granularity in both longitudinal and transverse direction, which is needed to fulfill the shower separation requirement of Particle Flow reconstruction algorithms. CALICE has constructed prototypes for several design options for electromagnetic and hadron calorimeters and has successfully operated these detectors during combined test-beam programs at DESY, CERN, and Fermilab since 2005. The focus of this dissertation is on the prototype for a hadron calorimeter with analog readout (AHCAL), which is a 1m 3 scintillator-steel sampling calorimeter with 38 sensitive layers and a depth of 5.3 nuclear interaction lengths. Each scintillator layer is pieced together from separate tiles with embedded silicon photomultipliers (SiPMs) for measuring the scintillation light. With a total of 7608 readout channels, the AHCAL prototype represents the first large-scale application of SiPMs. This thesis covers the commissioning and operation of the AHCAL and other detectors for several months at the Fermilab Test-beam Facility in 2008 and 2009 and the analysis of electron and pion data collected during these measurements. The analysis covers energies from 1 GeV to 30 GeV and is the first analysis of AHCAL data at energies below 8 GeV. Because the purity of the recorded data is not sufficient for analysis, event selection procedures for electrons and pions at these energies and a method to estimate the purities of these data samples are developed. The calibration of detectors employing SiPMs requires parameters that change with operating voltage and temperature. The correction of these parameters for the effects of temperature variations during data collection and their portability to different operating conditions are evaluated using the AHCAL as an example. This is important for the use of this technology in a collider

  9. Low-energetic hadron interactions in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Feege, Nils

    2011-12-15

    The CALICE collaboration develops imaging calorimeters for precision measurements at a future electron-positron linear collider. These calorimeters feature a fine granularity in both longitudinal and transverse direction, which is needed to fulfill the shower separation requirement of Particle Flow reconstruction algorithms. CALICE has constructed prototypes for several design options for electromagnetic and hadron calorimeters and has successfully operated these detectors during combined test-beam programs at DESY, CERN, and Fermilab since 2005. The focus of this dissertation is on the prototype for a hadron calorimeter with analog readout (AHCAL), which is a 1m{sup 3} scintillator-steel sampling calorimeter with 38 sensitive layers and a depth of 5.3 nuclear interaction lengths. Each scintillator layer is pieced together from separate tiles with embedded silicon photomultipliers (SiPMs) for measuring the scintillation light. With a total of 7608 readout channels, the AHCAL prototype represents the first large-scale application of SiPMs. This thesis covers the commissioning and operation of the AHCAL and other detectors for several months at the Fermilab Test-beam Facility in 2008 and 2009 and the analysis of electron and pion data collected during these measurements. The analysis covers energies from 1 GeV to 30 GeV and is the first analysis of AHCAL data at energies below 8 GeV. Because the purity of the recorded data is not sufficient for analysis, event selection procedures for electrons and pions at these energies and a method to estimate the purities of these data samples are developed. The calibration of detectors employing SiPMs requires parameters that change with operating voltage and temperature. The correction of these parameters for the effects of temperature variations during data collection and their portability to different operating conditions are evaluated using the AHCAL as an example. This is important for the use of this technology in a

  10. Design of the new front-end electronics for the readout of the upgraded CMS electromagnetic calorimeter for the HL-LHC

    CERN Document Server

    Cometti, Simona

    2017-01-01

    The Compact Muon Solenoid detector was originally designed to operate for about ten years, for LHC instantaneous luminosities up to $1 \\cdot 10^{34}$ cm$^{-2}$ s$^{-1}$ and integrated luminosity of 500 fb$^{-1}$. The High Luminosity LHC will increase the instantaneous luminosity by about a factor of 5 from current levels and CMS will accumulate an integrated luminosity of 3000 fb$^{-1}$ by about 2035. With such high luminosity the electromagnetic calorimeter of CMS will have to cope with a challenging increase in the number of interactions per bunch crossing and in radiation levels. The front-end readout electronics will be completely redesigned, with the goals of providing precision timing, low noise and added flexibility in the trigger system. It will use a faster pre-amplifier, increase the sampling frequency from 40 MS/s to 160 MS/s and implement a trigger system that resides entirely off-detector.

  11. Hadron and electron response of uranium/liquid argon calorimeter modules for the D0 detector

    International Nuclear Information System (INIS)

    Abolins, M.; Astur, R.; Edmunds, D.; Linnemann, J.T.; Mooney, P.; Owen, D.P.; Pi, B.; Pope, B.G.; Weerts, H.; Ahn, S.C.; Demarteau, M.; Forden, G.E.; Good, M.L.; Grannis, P.D.; Guida, J.A.; Heuring, T.; Marx, M.; McCarthy, R.; Ng, K.K.; Paterno, M.; Schamberger, R.D.; Timko, M.; Aronson, S.H.; Featherly, J.; Gibbard, B.G.; Gordon, H.A.; Guida, J.M.; Guryn, W.; Kahn, S.; Protopopescu, S.; Yamin, P.; Bartlett, J.F.; Bross, A.D.; Christenson, J.H.; Cooper, W.E.; Fisk, H.E.; Haggerty, H.; Ito, A.S.; Johnson, M.E.; Jonckheere, A.M.; Merritt, K.W.; Raja, R.; Smith, R.P.; Treadwell, E.; Blazey, G.C.; Borders, J.; Draper, P.; Durston, S.; Ferbel, T.; Hirosky, R.; Kewley, D.; Libonate, S.; Lobkowicz, F.; Franzini, P.; Tuts, P.M.; Gerecht, J.; Kononenko, W.; Selove, W.; Wang, H.; Hadley, N.J.; Hagopian, S.; Linn, S.; Piekarz, H.; Wahl, H.D.; Yousseff, S.; Klopfenstein, C.; Madaras, R.J.; Spadafora, A.L.; Stevenson, M.L.; Wenzel, W.A.; Kotcher, J.; Kourlas, J.; Nemethy, P.; Nesic, D.; Sculli, J.; Martin, H.J.; Zieminski, A.; Roberts, K.; Wimpenny, S.J.; White, A.P.; Womersley, W.J.

    1989-01-01

    We present the results of tests on two types of uranium/liquid calorimeter modules, one electromagnetic and one hadronic, constructed for the DO detector at the Fermilab Tevatron Collider. For electrons and hardons with energies between 10 and 150 GeV, we present measurements of energy resolution, linearity of response, electromagnetic to hadronic response ratio (e/π), and longitudinal hadronic shower development. We have also investigated the effects of adding small amounts of methane to the liquid argon. (orig.)

  12. The ATLAS Liquid Argon Electromagnetic EndCap Calorimeter Construction and tests

    CERN Document Server

    Rodier, S; Del Peso, J

    2003-01-01

    This thesis has been carried out within the ATLAS collaboration. ATLAS is one of the two multipurpose experiments approved for data taking at the Large Hadron Collider (LHC) at CERN. The main goals of this experiment are, to find the Higgs boson, the missing piece in the otherwise so succesful Standard Model of Particle Physics, and to look for physics beyond the Standard Model up to a scale of 1TeV. For this purpose, electromagnetic (EM) calorimetry play a key role. The ATLAS Collaboration has chosen a Liquid Argon (LAr) option with lead as passive material. The liquid Argon Calorimeter is divided into two main subdetectors, the barrel and the end caps (EC). The design and construction of the LAr EM EC calorimeter is the responsability of the groups at Centre de Physique de Marseille (CPPM) and the Universidad Autonoma de Madrid (UAM)following the guideline developed by the research and development working, group 3 for LHC detectors (RD3). The sharing of responsabilities is such that CPPM provides spacers an...

  13. MARK II end cap calorimeter electronics

    International Nuclear Information System (INIS)

    Jared, R.C.; Haggerty, J.S.; Herrup, D.A.; Kirsten, F.A.; Lee, K.L.; Olson, S.R.; Wood, D.R.

    1985-10-01

    An end cap calorimeter system has been added to the MARK II detector in preparation for its use at the SLAC Linear Collider. The calorimeter uses 8744 rectangular proportional counter tubes. This paper describes the design features of the data acquisition electronics that has been installed on the calorimeter. The design and use of computer-based test stands for the amplification and signal-shaping components is also covered. A portion of the complete system has been tested in a beam at SLAC. In these initial tests, using only the calibration provided by the test stands, a resolution of 18%/√E was achieved

  14. Design and expected performance of a fast scintillator hadron calorimeter

    International Nuclear Information System (INIS)

    Palmer, R.B.; Ghosh, A.K.

    1983-01-01

    A typical pulse from the 807 calorimeter is shown. This was generated by 4 GeV electrons but the pulses from hadrons and at different energies are not significantly different. The width and shape of this pulse comes from the convolution of a number of sources: (a) The time spread of energy deposition by a shower including time of flight of slow protons and neutrons, (b) scintillator phosphor rise and decay times, (c) shifter rise and decay times, (d) phototube response, (e) time delays in the light collection from different parts of the calorimeter and time dispersion in transmission. The objective of the first phase of this study was to isolate these spearate contributions, estimate how they could be speeded up and find what costs are involved. In the second phase we constructed an extremely crude calorimeter whose pulses should have the same characteristic as in a real device. With this we have observed signals whose mean width was 7 nsec and whose width at 10% of maximum height was 15 nsec. Clipping could reduce these widths to 6 and 12 nsec respectively. We conclude that gate times of less than 20 nsec would be appropriate for such a calorimeter

  15. Non-compensation of the ATLAS barrel tile hadron module-0 calorimeter

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.A.; Vinogradov, V.B.

    1999-01-01

    The detailed experimental information about the electron and pion responses, the electron energy resolution and the elh ratio as a function of incident energy E, impact point Z and incidence angle Θ of the Module-0 of the ATLAS iron-scintillator barrel hadron calorimeter with the longitudinal tile configuration is presented. The results are based on the electron and pion beams data for E = 10, 20, 60, 80, 100 and 180 GeV at η = - 0.25 and -0.55, which have been obtained during the test beam period in 1996. The results are compared with the existing experimental data of TILECAL 1m prototype modules, various iron-scintillator calorimeters and with some Monte Carlo calculations

  16. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, Thiago; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner, P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The TileCal hadronic calorimeter provides a muon signal which can be used to assist in muon tagging at the ATLAS level-one trigger. Originally, the muon signal was conceived to be combined with the RPC trigger in order to reduce unforeseen high trigger rates due to cavern background. Nevertheless, the combined trigger cannot significantly deteriorate the muon detection performance at the barrel region. This paper presents preliminary studies concerning the impact in muon identification at the ATLAS level-one trigger, through the use of Monte Carlo simulations with single muons with 40 GeV/c momentum. Further, different trigger scenarios were proposed, together with an approach for matching both TileCal and RPC geometries.

  17. Construction and commissioning of the CALICE analog hadron calorimeter prototype

    International Nuclear Information System (INIS)

    Adloff, C.; Karyotakis, Y.

    2010-03-01

    An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highlysegmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/ monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab. (orig.)

  18. Construction and commissioning of the CALICA analog hadron calorimeter prototype

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Karyotakis, Y. [Universite de Savoie, Annecy-le-Vieux (France). Laboratoire d' Annecy-le-Vieux de Physique des Particules, CNRS/IN2P3; Repond, J. [Argonne National Laboratory, Argonne, IL (US)] (and others)

    2010-03-15

    An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highlysegmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/ monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab. (orig.)

  19. Construction and Commissioning of the CALICE Analog Hadron Calorimeter Prototype

    CERN Document Server

    Adloff, C.; Repond, J.; Brandt, A.; Brown, H.; De, K.; Medina, C.; Smith, J.; Li, J.; Sosebee, M.; White, A.; Yu, J.; Buanes, T.; Eigen, G.; Mikami, Y.; Miller, O.; Watson, N.K.; Wilson, J.A.; Goto, T.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Oreglia, M.; Benyamna, M.; Carloganu, C.; Gay, P.; Ha, J.; Blazey, G.C.; Chakraborty, D.; Dyshkant, A.; Francis, K.; Hedin, D.; Lima, G.; Zutshi, V.; Babkin, V.A.; Bazylev, S.N.; Fedotov, Yu I.; Slepnev, V.M.; Tiapkin, I.A.; Volgin, S.V.; Hostachy, J.Y.; Morin, L.; D'Ascenzo, N.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Feege, N.; Gadow, K.; Garutti, E.; Gottlicher, P.; Jung, T.; Karstensen, S.; Korbel, V.; Lucaci-Timoce, A.I.; Lutz, B.; Meyer, N.; Morgunov, V.; Reinecke, M.; Schatzel, S.; Schmidt, S.; Sefkow, F.; Smirnov, P.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Groll, M.; Heuer, R.D.; Richter, S.; Samson, J.; Kaplan, A.; Schultz-Coulon, H.Ch; Shen, W.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kim, E.J.; Kim, G.; Kim, D.W.; Lee, K.; Lee, S.C.; Kawagoe, K.; Tamura, Y.; Ballin, J.A.; Dauncey, P.D.; Magnan, A.M.; Yilmaz, H.; Zorba, O.; Bartsch, V.; Postranecky, M.; Warren, M.; Wing, M.; Faucci Giannelli, M.; Green, M.G.; Salvatore, F.; Kieffer, R.; Laktineh, I.; Fouz, M.C.; Bailey, D.S.; Barlow, R.J.; Thompson, R.J.; Batouritski, M.; Dvornikov, O.; Shulhevich, Yu; Shumeiko, N.; Solin, A.; Starovoitov, P.; Tchekhovski, V.; Terletski, A.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Markin, O.; Mizuk, R.; Morgunov, V.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Andreev, V.; Kirikova, N.; Komar, A.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Terkulov, A.; Buzhan, P.; Dolgoshein, B.; Ilyin, A.; Kantserov, V.; Kaplin, V.; Karakash, A.; Popova, E.; Smirnov, S.; Baranova, N.; Boos, E.; Gladilin, L.; Karmanov, D.; Korolev, M.; Merkin, M.; Savin, A.; Voronin, A.; Topkar, A.; Frey, A.; Kiesling, C.; Lu, S.; Prothmann, K.; Seidel, K.; Simon, F.; Soldner, C.; Weuste, L.; Bouquet, B.; Callier, S.; Cornebise, P.; Dulucq, F.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poeschl, R.; Raux, L.; Ruan, M.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.C.; Gaycken, G.; Cornat, R.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Rouge, A.; Vanel, J.Ch; Videau, H.; Park, K.H.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Arestov, Yu; Ammosov, V.; Chuiko, B.; Gapienko, V.; Gilitski, Y.; Koreshev, V.; Semak, A.; Sviridov, Yu; Zaets, V.; Belhorma, B.; Belmir, M.; Baird, A.; Halsall, R.N.; Nam, S.W.; Park, I.H.; Yang, J.; Chai, J.S.; Kim, J.T.; Kim, G.B.; Kim, Y.; Kang, J.; Kwon, Y.J.; Kim, I.; Lee, T.; Park, J.; Sung, J.; Itoh, S.; Kotera, K.; Nishiyama, M.; Takeshita, T.; Weber, S.; Zeitnitz, C.

    2010-01-01

    An analog hadron calorimeter (AHCAL) prototype of 5.3 nuclear interaction lengths thickness has been constructed by members of the CALICE Collaboration. The AHCAL prototype consists of a 38-layer sandwich structure of steel plates and highly-segmented scintillator tiles that are read out by wavelength-shifting fibers coupled to SiPMs. The signal is amplified and shaped with a custom-designed ASIC. A calibration/monitoring system based on LED light was developed to monitor the SiPM gain and to measure the full SiPM response curve in order to correct for non-linearity. Ultimately, the physics goals are the study of hadron shower shapes and testing the concept of particle flow. The technical goal consists of measuring the performance and reliability of 7608 SiPMs. The AHCAL was commissioned in test beams at DESY and CERN. The entire prototype was completed in 2007 and recorded hadron showers, electron showers and muons at different energies and incident angles in test beams at CERN and Fermilab.

  20. End-Users, Front Ends and Librarians.

    Science.gov (United States)

    Bourne, Donna E.

    1989-01-01

    The increase in end-user searching, the advantages and limitations of front ends, and the role of the librarian in end-user searching are discussed. It is argued that librarians need to recognize that front ends can be of benefit to themselves and patrons, and to assume the role of advisors and educators for end-users. (37 references) (CLB)

  1. Performance of the ATLAS Hadronic Tile Calorimeter in Run-2 and its Upgrade for the High Luminosity LHC

    CERN Document Server

    Solovyanov, Oleg; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the Tile calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high moment...

  2. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 $pp$-collision data with the ATLAS detector

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koehler, Nicolas Maximilian; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wolf, Tim Michael Heinz; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2017-01-13

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb$^{-1}$ of proton--proton collision data at $\\sqrt{s}=7$ TeV from 2010 and 0.1 nb$^{-1}$ of data at $\\sqrt{s}=8$ TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5\\% discrepancy in the modelling, using Geant4 physics lists, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta are derived based on these studies. The uncer...

  3. Proposal for Research and Development of a Hadron Calorimeter for High Magnetic Fields

    CERN Multimedia

    2002-01-01

    RD43 : We intend to pursue the R\\&D necessary to demonstrate that a Cu-scintillator hadron calorimeter can operate reliably and well at the LHC at large pseudorapidities (\\mid $\\eta$\\mid~$\\leq$~2.6) and in a high magnetic field (4~T). The chosen technique consists of embedding a wavelength shifting (WLS) fibre in a scintillator plate in the form of a $\\sigma$. A clear fibre, spliced on to the WLS fibre, transports the shifted light to a photodetector. This technique was chosen by the SDC Collaboration for their electromagnetic and hadronic calorimetry. R\\&D efforts will concentrate on radiation tolerant scintillator/WLS combinations, transducers that can provide gain and operate in high magnetic fields, the effect on the performance of dead material (e.g. coil of~$\\leq$~1 $\\lambda $) placed after 5-7 $\\lambda $, the effect on performance of a high resolution electromagnetic calorimeter, the design of a hermetic mechanical structure, the issues of calibration and monitoring.

  4. The monitoring and data quality assessment of the ATLAS liquid argon calorimeter

    International Nuclear Information System (INIS)

    Simard, Olivier

    2015-01-01

    The ATLAS experiment is designed to study the proton-proton (pp) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, as well as for hadronic calorimetry in the range 1.5 < |η| < 4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5 K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and timing boards. In the first three years of LHC operation, approximately 27 fb −1 of pp collision data were collected at centre-of-mass energies of 7-8 TeV. Throughout this period, the calorimeter consistently operated with performances very close to specifications, with high data-taking efficiency. This is in large part due to a sophisticated data monitoring procedure designed to quickly identify issues that would degrade the detector performance, to ensure that only the best quality data are used for physics analysis. After a description of the detector design, main characteristics and operation principles, this paper details the data quality assessment procedures developed during the 2011 and 2012 LHC data-taking periods, when more than 98% of the luminosity recorded by ATLAS had high quality LAr calorimeter data suitable for physics analysis

  5. Robustness studies of the photomultipliers reading out TileCal, the central hadron calorimeter of the ATLAS experiment

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. The detector readout geometry will not be changed for the Phase II of the High Luminosity Large Hadron Collider (HL-LHC) operation. A challenging goal is to understand whether the full sample of PMTs installed at the beginning of the ATLAS detector operation can be used until completion of the HL-LHC program or not. For this reason, a reliable study of the PMT robustness against ageing is required. Detailed studies modelling the PMT response variation as a function of the integrated anode charge were done. The PMT response evoluti...

  6. Calibration of the hadronic calorimeter prototype for a future lepton collider

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Sarah; Garutti, Erika [Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, D-22761 Hamburg (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    The CALICE AHCAL technological prototype is a hadronic calorimeter prototype for a future e{sup +}e{sup -} - collider. It is designed as a sampling calorimeter alternating steel absorber plates and active readout layers, segmented in single plastic scintillator tiles of 3 x 3 x 0.3 cm{sup 3} volume. Each tile is individually coupled to a silicon photomultiplier, read out by a dedicated ASIC with energy measurement and time stamping capability. The high granularity is meant to enable imaging and separation of single showers, for a Particle Flow approach to the jet energy measurement. The prototype aims to establish a scalable solution for an ILC detector. A total of 3456 calorimeter cells need to be inter-calibrated, for this the response to muons is used. The calibration procedure is presented, and the statistic and systematic uncertainties are discussed, which have a direct impact on the constant term of the calorimeter energy resolution. Additionally, the MIP yield in number of fired SiPM pixels can be compared betw een the muon calibration and a test bench calibrations obtained using a Sr sourc e on the single tiles before the assembly of the calorimeter. A good correlation would enable pre-calibation of the single channels on the test bench to be port able to the assemble detector. This hypothesis is checked with the present work.

  7. Characterization of the 10-stages R5900 Hamamatsu photomultipliers for the hadronic ATLAS calorimeter

    International Nuclear Information System (INIS)

    Montarou, G.; Bouhemaid, N.; Grenier, Ph.; Crouau, M.; Muanza, G.S.; Poirot, S.; Vazeille, F.; Gil Botella, I.; Hoz, S.G. de la

    1997-01-01

    The measurements carried out, at Clermont on the R5900 Hamamatsu photomultipliers for the ATLAS hadronic calorimeter are summarised. The TILECAL specifications are given. Amplification measurements, dark current measurements, linearity, magnetic sensitivity and the voltage divider optimisation are presented. (K.A.)

  8. ATLAS Tile Calorimeter Readout Electronics Upgrade Program for the High Luminosity LHC

    CERN Document Server

    Cerqueira, A S

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The ATLAS upgrade program is divided in three phases: The Phase~0 occurs during 2013-2014, Phase~1 during 2018-1019 and finally Phase~2, which is foreseen for 2022-2023, whereafter the peak luminosity will reach 5-7 x 10$^{34}$ cm$^2$s$^{-1}$ (HL-LHC). The main TileCal upgrade is focused on the Phase~2 period. The upgrade aims at replacing the majority of the on- and off-detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. All new electronics must be able to cope with the increased radiation levels. An ambitious upgrade development program is pursued to study different electronics options. Three options are presently being investigated for the front-end electronic upgrade. The first option is an improved version of the present system built using comm...

  9. Light-Front Dynamics in Hadron Physics

    International Nuclear Information System (INIS)

    Ji, C.-R.; Bakker, B.L.G.; Choi, H.-M.

    2013-01-01

    Light-front dynamics(LFD) plays an important role in the analyses of relativistic few-body systems. As evidenced from the recent studies of generalized parton distributions (GPDs) in hadron physics, a natural framework for a detailed study of hadron structures is LFD due to its direct application in Minkowski space as well as its distinct feature of accounting for the vacuum fluctuations in quantum field theories. In the last few years, however, it has been emphasized that treacherous points such as LF singularities and zero-modes should be taken into account for successful LFD applications to hadron phenomenology. In this paper, we discuss a typical example of the contemporary relativistic hadron physics in which the fundamental issues should be taken into account for the successful application of LFD. In particular, we focus on the kinematic issue of GPDs in deeply virtual Compton scattering (DVCS). Although this fundamental issue has been glossed over in the literature, it must be taken care of for the correct analysis of DVCS data. (author)

  10. Construction and Performance of an Iron-Scintillator Hadron Calorimeter with Longitudinal Tile Configuration

    CERN Multimedia

    2002-01-01

    % RD34 \\\\ \\\\ In a scintillator tile calorimeter with wavelength shifting fiber readout significant simplifications of the construction and the assembly are possible if the tiles are oriented $^{\\prime\\prime}$longitudinally$^{\\prime\\prime}$, i.e.~in a r-$\\phi$ planes for a barrel configuration. For a hybrid calorimeter consisting of a scintillator tile hadron compartment and a sufficiently containing liquid argon electromagnetic (EM) compartment, as proposed for the ATLAS detector, good jet resolution is predicted by simulations, which is not affected by this particular orientation of the tiles. \\\\ \\\\The aim of the proposed development program is to construct a calorimeter test module with longitudinal tiles and to check the simulation results by test beam measurements. In addition several component tests and further simulations and engineering studies are needed to optimize the design of a large calorimeter structure to be used in collider experiments. The construction of a test module will also provide valua...

  11. Two new wheels for ATLAS

    CERN Multimedia

    2002-01-01

    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  12. The contribution to the calibration of LAr calorimeters at the ATLAS experiment

    International Nuclear Information System (INIS)

    Pecsy, M.

    2011-01-01

    The presented thesis brings various contributions to the testing and validation of the ATLAS detector calorimeter calibration. Since the ATLAS calorimeter is non-compensating, the sophisticated software calibration of the calorimeter response is needed. One of the ATLAS official calibration methods is the local hadron calibration. This method is based on detailed simulations providing information about the true deposited energy in calorimeter. Such calibration consists of several independent steps, starting with the basic electromagnetic scale signal calibration and proceeding to the particle energy calibration. Calibration starts from the topological clusters reconstruction and calibration at EM scale. These clusters are classified as EM or hadronic and the hadronic ones receive weights to correct for the invisible energy deposits of hadrons. To get the nal reconstructed energy the out-of-cluster and dead material corrections are applied in next steps. The tests of calorimeter response with the rst real data from cosmic-ray muons and the LHC collisions data are presented in the thesis. The detailed studies of the full hadronic calibration performance in the special combined end-cap calorimeter beam test 2004 are presented as well. To optimise the performance of the calibration, the Monte-Carlo based studies are necessary. Two alternative methods of cluster classification are discussed, and the software tool of particle track extrapolation has been developed. (author)

  13. A high-granularity scintillator hadronic-calorimeter with SiPM readout for a linear collider detector

    International Nuclear Information System (INIS)

    Andreev, V.; Balagura, V; Bobchenko, B.

    2004-01-01

    We report upon the design, construction and operation of a prototype for a high-granularity tile hadronic calorimeter for a future international linear collider(ILC) detector. Scintillating tiles are read out via wavelength-shifting fibers which guides the scintillation light to a novel photodetector, the Silicon Photomultiplier. The prototype has been tested at DESY using a positron test beam. The results are compared with a reference prototype equipped with multichannel vacuum photomultipliers. Detector calibration, noise, linearity and stability are discussed, and the energy response in a 1-6 GeV positron beam is compared with simulation. The work presented serves to establish the application of SiPM for calorimetry, and leads to the choice of this device for the construction of a 1m 3 calorimeter prototype for tests in hadron beams. (orig.)

  14. A measurement of the calorimeter response to single hadrons and determination of the jet energy scale uncertainty using LHC Run-1 pp-collision data with the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Aaboud, M. [Univ. Mohamed Premier et LPTPM, Oujda (Morocco). Faculte des Sciences; Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: ATLAS Collaboration; and others

    2017-01-15

    A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb{sup -1} of proton-proton collision data at √(s) = 7 TeV from 2010 and 0.1 nb{sup -1} of data at √(s) = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of Geant4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2-5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS. (orig.)

  15. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    CERN Document Server

    Burghgrave, Blake; The ATLAS collaboration

    2016-01-01

    We present an overview of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database during a brief calibration loop between when a run ends and bulk processing begins. Bulk processed data is reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and MC production campaigns. Conditions data are stored in 3 databases: Online DB, Offline DB for data and a special DB for Monte Carlo. Database upd...

  16. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00354209; The ATLAS collaboration

    2017-01-01

    An overview is presented of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database (DB) during a brief calibration loop between the end of a run and the beginning of bulk processing of data collected in it. Bulk processed data are reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and Monte Carlo (MC) production campaigns. Conditions data are stored in 3 databases: Online DB, Offline D...

  17. A Complete Readout Chain of the ATLAS Tile Calorimeter for the HL-LHC: from FATALIC Front-End Electronics to Signal Reconstruction

    CERN Document Server

    Senkin, Sergey; The ATLAS collaboration

    2017-01-01

    The ATLAS Collaboration has started a vast programme of upgrades in the context of high-luminosity LHC (HL-LHC) foreseen in 2024. We present here one of the front-end readout options, an ASIC called FATALIC, which is proposed for the high-luminosity phase LHC upgrade of the ATLAS Tile Calorimeter. Based on a 130 nm CMOS technology, FATALIC performs the complete signal processing, including amplification, shaping and digitisation. Hereby we describe the full characterisation of FATALIC and also the signal reconstruction up to the observables of interest for physics: the energy and the arrival time of the particle. The Optimal Filtering signal reconstruction method is adapted to fully exploit the FATALIC three-range layout. Additionally, we present the performance in terms of resolution of the whole chain measured using the charge injection system designed for calibration. Finally, the results of the signal reconstruction used on real data collected during a preliminary beam test at CERN are discussed.

  18. Status of the ATLAS Liquid Argon Calorimeter and its performance after one year of LHC operation

    CERN Document Server

    "Hoffman, J A; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region η<3.2, as well as for hadronic calorimetry from η=1.4 to η=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes with thin...

  19. Interactions of Particles with Momenta of 1–10 GeV in a Highly Granular Hadronic Calorimeter with Tungsten Absorbers

    CERN Document Server

    Lam, Ching Bon; van Eijk, Bob

    Linear electron-positron colliders are proposed to complement and extend the physics programme of the Large Hadron Collider at CERN. In order to satisfy the physics goal requirements at linear colliders, detector concepts based on the Particle Flow approach are developed. Central to this approach are a high resolution tracker and a highly granular calorimeter which provide excellent jet energy resolution and background separation. The Compact Linear Collider (CLIC) is an electron-positron collider under study, aiming at centre-of-mass energies up to 3TeV. For the barrel hadronic calorimeter of experiments at CLIC, a detector with tungsten absorber plates is considered, as it is able to contain shower jets while keeping the diameter of the surrounding solenoid magnet limited. A highly granular analogue hadron calorimeter with tungsten absorbers was built by the CALICE collaboration. This thesis presents the analysis of the low-momentum data (1 GeV $\\leq$ p $\\leq$ 10 GeV) recorded in 2010 at the CERN Proton Syn...

  20. Light Cone 2017 : Frontiers in Light Front Hadron Physics : Theory and Experiment.

    CERN Document Server

    2018-01-01

    LC2017 belongs to a series of Light-Cone conferences, which started in 1991. Light Cone conferences are held each year under the auspices of the International Light Cone Advisory Committee (ILCAC) (http://www.ilcacinc.org). The main objective of the Light Cone conference series is to provide a timely update of the progress in light-front theory and its phenomenological applications. Light-front theory provides a suitable framework to calculate observables such as scattering amplitudes, decay rates, spin effects, parton distributions, and other hadronic observables. One of the themes of the conference will be the interface between theory and experiment in hadron physics. The main topics of the program are: o Hadron Physics at present and future colliders o Light Front Field Theory in QED and QCD o AdS/QCD, D Branes and Strings o Hadron Structure : TMDs, GPDs and PDFs o Lattice QCD o QCD at high temperature and density o Higher order QCD corrections

  1. Study of Various Photomultiplier Tubes for Window Events: Upgrade R\\&D for CMS Hadron Forward Calorimeters

    CERN Document Server

    Bilki, Burak

    2010-01-01

    The PMTs of the CMS Hadron Forward calorimeter were found to generate a large amount of signal when their windows were traversed by energetic charged particles. This signal, which is due to \\u{C}erenkov light production at the PMT window, could interfere with the calorimeter signal and mislead the measurements. In order to find a viable solution to this problem, the response of different types of PMTs to muons traversing their windows at different orientations is measured at the H2 beam-line at CERN. Certain kinds of PMTs with thinner windows show significantly lower response to direct muon incidence. For one specific type -the four anode PMT- a simple and powerful algorithm to identify such events and recover the PMT signal using the signals of the quadrants without window hits is also presented. For the measurement of PMT responses to \\u{C}erenkov light, the Hadron Forward calorimeter signal was mimicked by two different setups in electron beams and the PMT performances were compared with each other. Superi...

  2. A front-end electronic system for large arrays of bolometers

    Science.gov (United States)

    Arnaboldi, C.; Carniti, P.; Cassina, L.; Gotti, C.; Liu, X.; Maino, M.; Pessina, G.; Rosenfeld, C.; Zhu, B. X.

    2018-02-01

    CUORE is an array of thermal calorimeters composed of 988 crystals held at about 10 mK, whose absorbed energy is read out with semiconductor thermistors. The composition of the crystal is TeO2, and the aim is the study of the double beta decay of 130Te on very long and stable runs. CUPID-0 is an array of 26 Zn82Se crystals with double thermistor readout to study the double beta decay of 82Se. In the present paper, we present an overview of the entire front-end electronic readout chain, from the preamplifier to the anti-aliasing filter. This overview includes motivations, design strategies, circuit implementation and performance results of the electronic system, including other auxiliary yet important elements like power supplies and the slow control communication system. The stringent requirements of stability on the very long experimental runs that are foreseen during CUORE and CUPID-0 operation, are achieved thanks to novel solutions of the front-end preamplifier and of the detector bias circuit setup.

  3. Calorimeter Simulation with Hadrons in CMS

    Energy Technology Data Exchange (ETDEWEB)

    Piperov, Stefan; /Sofiya, Inst. Nucl. Res. /Fermilab

    2008-11-01

    CMS is using Geant4 to simulate the detector setup for the forthcoming data from the LHC. Validation of physics processes inside Geant4 is a major concern in view of getting a proper description of jets and missing energy for signal and background events. This is done by carrying out an extensive studies with test beam using the prototypes or real detector modules of the CMS calorimeter. These data are matched with Geant4 predictions using the same framework that is used for the entire CMS detector. Tuning of the Geant4 models is carried out and steps to be used in reproducing detector signals are defined in view of measurements of energy response, energy resolution, transverse and longitudinal shower profiles for a variety of hadron beams over a broad energy spectrum between 2 to 300 GeV/c. The tuned Monte Carlo predictions match many of these measurements within systematic uncertainties.

  4. Construction and beam-tests of silicon-tungsten and scintillator-SiPM modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Chang, Yung-wei

    2018-01-01

    A High Granularity Calorimeter (HGCAL) is being designed to replace the existing endcap calorimeters in CMS for the HL-LHC era. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments, with silicon sensors being chosen for the high-pseudorapidity regions due to their radiation tolerance. The remainder of the HGCAL, in the lower radiation environment, will use plastic scintillator with on-tile SiPM readout. Prototype hexagonal silicon modules, featuring a new Skiroc2-CMS front-end chip, together with a modified version of the scintillator-SiPM CALICE AHCAL, have been built and tested in beams at CERN in 2017. In this poster, we present measurements of noise, calibration, shower shapes and performance with electrons, pions and muons.

  5. Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD

    Science.gov (United States)

    Brodsky, Stanley J.

    2018-05-01

    Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining q \\bar{q} potential κ ^4 ζ ^2, where ζ ^2 is the light-front radial variable related in momentum space to the q \\bar{q} invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS_5, the space of isometries of the conformal group—if one modifies the action of AdS_5 by the dilaton e^{κ ^2 z^2} in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale κ underlying confinement and hadron masses can be connected to the parameter Λ_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling α _s(Q^2) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale Q_0 which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.

  6. The e/h ratio of the ATLAS hadronic tile calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Vinogradov, V.B.; Kul'chitskij, Yu.A.; Kuz'min, M.V.

    2002-01-01

    We have determined the e/h ratios of the Module-0 of the ATLAS iron-scintillator barrel hadron tile calorimeter for five values of pseudorapidity η in the range of -0.55 ≤ η ≤ -0.15 for the beam energy range from 10 to 300 GeV on the basis of the July 1999 test beam data. These e/h ratios demonstrate independence from |η| value. The mean value is e/h = 1.362 + 0.006. The results are compared with the existing experimental data and with some Monte Carlo calculations

  7. Moving one of the ATLAS end-cap calorimeters

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the end-cap calorimeters for the ATLAS experiment is moved using a set of rails. This calorimeter will measure the energy of particles that are produced close to the axis of the beam when two protons collide. It is kept cool inside a cryostat to allow the detector to work at maximum efficiency.

  8. Validation of the ATLAS hadronic calibration with the LAr End-Cap beam tests data

    International Nuclear Information System (INIS)

    Barillari, Teresa

    2009-01-01

    The high granularity of the ATLAS calorimeter and the large number of expected particles per event require a clustering algorithm that is able to suppress noise and pile-up efficiently. Therefore the cluster reconstruction is the essential first step in the hadronic calibration. The identification of electromagnetic components within a hadronic cluster using cluster shape variables is the next step in the hadronic calibration procedure. Finally the energy density of individual cells is used to assign the proper weight to correct for the invisible energy deposits of hadrons due to the non-compensating nature of the ATLAS calorimeter and to correct for energy losses in material non instrumented with read-out. The weighting scheme employs the energy density in individual cells. Therefore the validation of the Monte Carlo simulation, which is used to define the weighting parameters and energy correction algorithms, is an essential step in the hadronic calibration procedure. Pion data, obtained in a beam test corresponding to the pseudorapidity region 2.5 < |η| < 4.0 in ATLAS and in the energy range 40 GeV ≤ E ≤ 200 GeV, have been compared with Monte Carlo simulations, using the full ATLAS hadronic calibration procedure.

  9. Design, Performance, and Calibration of CMS Hadron Endcap Calorimeters

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Laszlo, Andras; Pal, Andras; Vesztergombi, Gyorgy; Zálán, Peter; Fenyvesi, Andras; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sharma, Seema; Sudhakar, Katta; Verma, Piyush; Hashemi, Majid; Mohammadi-Najafabadi, M; Paktinat, S; Babich, Kanstantsin; Golutvin, Igor; Kalagin, Vladimir; Kamenev, Alexey; Konoplianikov, V; Kosarev, Ivan; Moissenz, K; Moissenz, P; Oleynik, Danila; Petrosian, A; Rogalev, Evgueni; Semenov, Roman; Sergeyev, S; Shmatov, Sergey; Smirnov, Vitaly; Vishnevskiy, Alexander; Volodko, Anton; Zarubin, Anatoli; Druzhkin, Dmitry; Ivanov, Alexander; Kudinov, Vladimir; Orlov, Alexandre; Smetannikov, Vladimir; Gavrilov, Vladimir; Gershtein, Yuri; Ilyina, N; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Ulyanov, A; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Teplov, V; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Kalinin, Alexey; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; de Visser, Theo; Vlassov, E; Aydin, Sezgin; Bakirci, Mustafa Numan; Cerci, Salim; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Koylu, S; Kurt, Pelin; Onengüt, G; Ozkurt, Halil; Polatoz, A; Sogut, Kenan; Topakli, Huseyin; Vergili, Mehmet; Yetkin, Taylan; Cankoc, K; Esendemir, Akif; Gamsizkan, Halil; Güler, M; Ozkan, Cigdem; Sekmen, Sezen; Serin-Zeyrek, M; Sever, Ramazan; Yazgan, Efe; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grynev, B; Lyubynskiy, Vadym; Senchyshyn, Vitaliy; Hauptman, John M; Abdullin, Salavat; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Los, Serguei; ODell, V; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Arcidy, M; Hazen, Eric; Heering, Arjan Hendrix; Lawlor, C; Lazic, Dragoslav; Machado, Emanuel; Rohlf, James; Varela, F; Wu, Shouxiang; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Mans, Jeremy; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gusum, K; Kim, Heejong; Spezziga, Mario; Thomas, Ray; Wigmans, Richard; Baarmand, Marc M; Mermerkaya, Hamit; Ralich, Robert; Vodopiyanov, Igor; Kramer, Laird; Linn, Stephan; Markowitz, Pete; Cushman, Priscilla; Ma, Yousi; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Tully, Christopher; Bodek, Arie; De Barbaro, Pawel; Budd, Howard; Chung, Yeon Sei; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T

    2008-01-01

    Detailed measurements have been made with the CMS hadron calorimeter endcaps (HE) in response to beams of muons, electrons, and pions. Readout of HE with custom electronics and hybrid photodiodes (HPDs) shows no change of performance compared to readout with commercial electronics and photomultipliers. When combined with lead-tungstenate crystals, an energy resolution of 8\\% is achieved with 300 GeV/c pions. A laser calibration system is used to set the timing and monitor operation of the complete electronics chain. Data taken with radioactive sources in comparison with test beam pions provides an absolute initial calibration of HE to approximately 4\\% to 5\\%.

  10. Recent advances in precision laser cutting for the ATLAS hadron calorimeter absorbers production

    International Nuclear Information System (INIS)

    Alikov, B.; Budagov, Yu.

    1995-01-01

    The optimised precision laser cutting technology for high tolerances ATLAS hadron calorimeter absorber plates production is described. Some recent results of laser cut absorber plates dimension measurements are presented. The plates have been manufactured by 'Universalmash' (S.-Petersburg) and RCTL RAS (Shatura). It has been shown that the proved accuracy of the laser machines is not worse than 45 microns. 9 figs

  11. Construction and Tests of the Mechanical Structure for a Semi-Digital Hadronic Calorimeter Prototype within the CALICE Collaboration

    International Nuclear Information System (INIS)

    Berenguer, J.

    2014-01-01

    The assembly of a mechanical structure used for a semi-digital hadronic calorimeter prototype, conceived and developed by the SDHCAL group within the CALICE collaboration, is presented in this note. CALICE is an international R and D collaboration dedicated to the development of calorimeters for future linear collider experiments. The design, assembly and quality control of this mechanical structure were entirely carried out at CIEMAT. This document contains a description of the prototype and its detectors, focusing on the design and assembly of the mechanical structure, which acts as well as the calorimeter absorber.. (Author)

  12. Testing Hadronic Interaction Models using a Highly Granular Silicon-Tungsten Calorimeter

    CERN Document Server

    Bilki, B.; Schlereth, J.; Xia, L.; Deng, Z.; Li, Y.; Wang, Y.; Yue, Q.; Yang, Z.; Eigen, G.; Mikami, Y.; Price, T.; Watson, N.K.; Thomson, M.A.; Ward, D.R.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Carloganu, C.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Lima, J.G.R.; Salcido, P.; Zutshi, V.; Boisvert, V.; Green, B.; Misiejuk, A.; Salvatore, F.; Kawagoe, K.; Miyazaki, Y.; Sudo, Y.; Suehara, T.; Tomita, T.; Ueno, H.; Yoshioka, T.; Apostolakis, J.; Folger, G.; Ivantchenko, V.; Ribon, A.; Uzhinskiy, V.; Cauwenbergh, S.; Tytgat, M.; Zaganidis, N.; Hostachy, J.Y.; Morin, L.; Gadow, K.; Göttlicher, P.; Günter, C.; Krüger, K.; Lutz, B.; Reinecke, M.; Sefkow, F.; Feege, N.; Garutti, E.; Laurien, S.; Lu, S.; Marchesini, I.; Matysek, M.; Ramilli, M.; Kaplan, A.; Norbeck, E.; Northacker, D.; Onel, Y.; Kim, E.J.; van Doren, B.; Wilson, G.W.; Wing, M.; Bobchenko, B.; Chadeeva, M.; Chistov, R.; Danilov, M.; Drutskoy, A.; Epifantsev, A.; Markin, O.; Mizuk, R.; Novikov, E.; Popov, V.; Rusinov, V.; Tarkovsky, E.; Besson, D.; Popova, E.; Gabriel, M.; Kiesling, C.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Callier, S.; Conforti di Lorenzo, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci-Giannelli, M.; Fleury, J.; Frisson, T.; Kégl, B.; van der Kolk, N.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Pöschl, R.; Raux, L.; Rouëne, J.; Seguin-Moreau, N.; Anduze, M.; Balagura, V.; Becheva, E.; Boudry, V.; Brient, J.-C.; Cornat, R.; Frotin, M.; Gastaldi, F.; Magniette, F.; Matthieu, A.; Mora de Freitas, P.; Videau, H.; Augustin, J.-E.; David, J.; Ghislain, P.; Lacour, D.; Lavergne, L.; Zacek, J.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kvasnicka, J.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Jeans, D.; Götze, M.

    2015-09-11

    A detailed study of hadronic interactions is presented using data recorded with the highly granular CALICE silicon-tungsten electromagnetic calorimeter. Approximately 600,000 selected negatively changed pion events at energies between 2 and 10 GeV have been studied. The predictions of several physics models available within the GEANT4 simulation tool kit are compared to this data. Although a reasonable overall description of the data is observed, there are significant quantitative discrepancies in the longitudinal and transverse distributions of reconstructed energy.

  13. Preliminary study on field buses for the control system of the high voltage of the ATLAS hadronic calorimeter

    International Nuclear Information System (INIS)

    Drevet, F.; Chadelas, R.; Montarou, G.

    1996-01-01

    We present here after a preliminary study on field buses for the control system of the high voltage of the photomultipliers of the TILECAL calorimeter. After some generalities, different commercial buses are reviewed (CAN, ARCET, WorldFIP, Profibus and LonWorks). The Profibus and LonWorks solution are more extensively studies as a possible solution for the high voltage system of the TILE hadronic calorimeter. (authors)

  14. Upgrade of the ATLAS Tile Calorimeter Electronics

    International Nuclear Information System (INIS)

    Carrió, F

    2015-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The bulk of its upgrade will occur for the High Luminosity LHC phase (Phase-II) where the peak luminosity will increase 5 times compared to the design luminosity (10 34 cm −2 s −1 ) but with maintained energy (i.e. 7+7 TeV). An additional increase of the average luminosity with a factor of 2 can be achieved by luminosity levelling. This upgrade is expected to happen around 2024. The TileCal upgrade aims at replacing the majority of the on- and off- detector electronics to the extent that all calorimeter signals will be digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. 10 Gbps optical links are used to read out all digitized data to the counting room while 5 Gbps down-links are used for synchronization, configuration and detector control. For the off-detector electronics a pre-processor (sROD) is being developed, which takes care of the initial trigger processing while temporarily storing the main data flow in pipeline and derandomizer memories. One demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, is planned to be inserted in ATLAS this year

  15. Calculated performance of iron--argon and iron--plastic calorimeters for incident hadrons with energies of 5 to 75 GeV

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Schmidt, W.

    1976-02-01

    The calculated responses of iron--argon and iron--plastic calorimeters for incident hadrons with energies of 5 to 75 GeV are presented. The responses calculated are energy resolution vs energy, energy resolution vs the thickness of the sampling plates, the angular and spatial root-mean-square deviations (i.e., the ability to determine the incident particle's entrance angle and impact point), and the spatial properties of the average and individual hadronic cascades. Some comparisons are made with experimental data; however, the main purpose of this paper is to provide specific design information for these types of calorimeters

  16. Arrival of the last cryostat for the ATLAS LAr calorimeter at CERN

    CERN Multimedia

    Aleksa, M; Oberlack, H

    On Wednesday, 4th June the last cryostat for the ATLAS LAr calorimeter (end-cap A) arrived at CERN and was immediately unloaded from the truck in building 180 (see Figures 1 and 2), where the integration of the LAr calorimeters into their cryostats takes place. The transport from the Italian company SIMIC, where both end-cap calorimeters have been produced took longer than expected due to delays because of the G8 summit. Thanks to the great effort by the CERN Host State office and the French-German steering group that supplies the end-cap cryostat as an in-kind contribution to the LAr collaboration, an exceptional convoy was finally available and the cryostat could make its way to CERN. Fig.1 (left): Truck with the end-cap cryostat. Fig.2 (right): Unloading the cryostat in bldg. 180. Each end-cap cryostat will contain an electromagnetic calorimeter wheel, two wheels of a hadronic calorimeter, and a forward calorimeter. The design of the cryostat as a double vessel structure made of Aluminum fulfills t...

  17. Shower characteristics of particles with momenta up to 100 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    CERN Document Server

    AUTHOR|(CDS)2073690

    2015-01-01

    We present a study of showers initiated by 1–100 GeV positrons, pions, kaons, and protons in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were taken at the CERN PS and SPS. The analysis includes measurements of the calorimeter response to each particle type and studies of the longitudinal and radial shower development. The results are compared to several Geant4 simulation models.

  18. Digital Hadron Calorimetry

    Science.gov (United States)

    Bilki, Burak

    2018-03-01

    The Particle Flow Algorithms attempt to measure each particle in a hadronic jet individually, using the detector providing the best energy/momentum resolution. Therefore, the spatial segmentation of the calorimeter plays a crucial role. In this context, the CALICE Collaboration developed the Digital Hadron Calorimeter. The Digital Hadron Calorimeter uses Resistive Plate Chambers as active media and has a 1-bit resolution (digital) readout of 1 × 1 cm2 pads. The calorimeter was tested with steel and tungsten absorber structures, as well as with no absorber structure, at the Fermilab and CERN test beam facilities over several years. In addition to conventional calorimetric measurements, the Digital Hadron Calorimeter offers detailed measurements of event shapes, rigorous tests of simulation models and various tools for improved performance due to its very high spatial granularity. Here we report on the results from the analysis of pion and positron events. Results of comparisons with the Monte Carlo simulations are also discussed. The analysis demonstrates the unique utilization of detailed event topologies.

  19. ELECTRONICS FOR CALORIMETERS AT LHC

    International Nuclear Information System (INIS)

    Radeka, V.

    2001-01-01

    Some principal design features of front-end electronics for calorimeters in experiments at the LHC will be highlighted. Some concerns arising in the transition from the research and development and design phase to the construction will be discussed. Future challenges will be indicated

  20. The ATLAS Tile Calorimeter gets into shape!

    CERN Multimedia

    2002-01-01

    The last of the 64 modules for one of the ATLAS Hadron tile calorimeter barrels has just arrived at CERN. This arrival puts an end to two and a half years work assembling and testing all the modules in the Institut de Física d'Altes Energies (IFAE), in Barcelona.

  1. A design of scintillator tiles read out by surface-mounted SiPMs for a future hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong; Bauss, Bruno; Buescher, Volker; Caudron, Julien; Chau, Phi; Degele, Reinhold; Geib, Karl-Heinrich; Masetti, Lucia; Schaefer, Ulrich; Tapprogge, Stefan; Wanke, Rainer [Institut fuer Physik and PRISMA Detector Lab, Johannes Gutenberg-Universitaet Mainz (Germany)

    2015-07-01

    Precision calorimetry using highly granular sampling calorimeters is being developed based on the particle flow concept within the CALICE collaboration. One design option of a hadron calorimeter is based on silicon photomultipliers (SiPMs) to detect photons generated in plastic scintillator tiles. Driven by the need of automated mass assembly of around ten millions of channels stringently required by the high granularity, we developed a design of scintillator tiles directly coupled with surface-mounted SiPMs. A cavity is created in the center of the bottom surface of each tile to provide enough room for the whole SiPM package and to improve collection of the light produced by incident particles penetrating the tile at different positions. The cavity design has been optimized using a GEANT4-based full simulation model to achieve high response to Minimum Ionizing Particles (MIPs) and also good areal uniformity. Cosmic-ray measurements confirms high 1-MIP response for scintillator tiles with an optimized cavity design. Uniformity measurements by scanning the tile area using focused electrons from a beta source show excellent response uniformity. This optimized design is well beyond the requirements for a precision hadron calorimeter.

  2. Performance of CMS hadron calorimeter timing and synchronization using test beam, cosmic ray, and LHC beam data

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    This paper discusses the design and performance of the time measurement technique and of the synchronization systems of the CMS hadron calorimeter. Timing performance results are presented from the Cosmic Run At Four Tesla and LHC beam runs taken in the Autumn of 2008. For hadronic showers of energy greater than 100 GeV, the timing resolution is measured to be about 1.2 ns. The inter-channel synchronization is measured to be within 2 ns.

  3. Performance of a liquid argon preshower detector integrated with an Accordion calorimeter

    International Nuclear Information System (INIS)

    Aubert, B.; Bazan, A.; Beaugiraud, B.; Colas, J.; Leflour, T.; Maire, M.; Vialle, J.P.; Wingerter-Seez, I.; Zolnierowski, Y.P.; Gordon, H.A.; Radeka, V.; Rahm, D.; Stephani, D.; Bulgakov, N.; Chevalley, J.L.; Fabjan, C.W.; Fournier, D.; Gildemeister, O.; Jenni, P.; Nessi, M.; Nessi-Tedaldi, F.; Pepe, M.; Richter, W.; Soderqvist, J.; Vuillemin, V.; Baze, J.M.; Gosset, L.; Lavocat, P.; Lottin, J.P.; Mansoulie, B.; Meyer, J.P.; Renardy, J.F.; Teiger, J.; Zaccone, H.; Battistoni, G.; Camin, D.V.; Cavalli, D.; Costa, G.; Cravero, A.; Ferrari, A.; Gianotti, F.; Mandelli, L.; Mazzanti, M.; Perini, L.; Pessina, G.; Sciamanna, M.; Auge, E.; Chase, R.; Chollet, J.C.; La Taille, C. de; Fayard, L.; Hrisoho, A.; Jean, P.; Le Meur, G.; Merkel, B.; Noppe, J.M.; Parrour, G.; Petroff, P.; Repellin, J.P.; Schaffer, A.; Seguin, N.; Unal, G.; Fuglesang, C.; Lefebvre, M.

    1993-01-01

    A prototype liquid argon preshower detector with a strip granularity of 2.5 mm has been tested at the CERN SPS in front of a liquid argon Accordion calorimeter. For charged tracks a signal-to-noise ratio of 9.4 and a space resolution of 340 μm were measured; the rejection power against overlapping photons produced in the decay of 50 GeV π 0 's is larger than 3; the precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 7 mrad above 40 GeV; the calorimeter performance behind the preshower (≅4X 0 ) is fully preserved. These results make such a detector attractive for future operation at the CERN Large Hadron Collider. (orig.)

  4. Development of ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00069444; The ATLAS collaboration

    2017-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile- up is expected to increase to up to 200 events per proton bunch-crossing. To be able to retain interesting physics events at electroweak energy scales, increased trigger rates are foreseen for the ATLAS detector. At the hardware selection stage acceptance rates of up to 1 MHz are planned, combined with longer latencies up to 40 micro-seconds in order to read out the necessary data from all detector channels. The current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities. For these reasons a replacement of the LAr front-end and off-detector readout systems is foreseen for all 182,500 readout channels, with the exception of the cold pre-amplifier and summing devices of the hadronic LAr Calorimeter. The new low-power electronics must be able to capture the triangular dete...

  5. Processing and Quality Monitoring for the ATLAS Tile Hadronic Calorimeter Data

    Science.gov (United States)

    Burghgrave, Blake; ATLAS Collaboration

    2017-10-01

    An overview is presented of Data Processing and Data Quality (DQ) Monitoring for the ATLAS Tile Hadronic Calorimeter. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. Data quality in physics runs is monitored extensively and continuously. Any problems are reported and immediately investigated. The DQ efficiency achieved was 99.6% in 2012 and 100% in 2015, after the detector maintenance in 2013-2014. Changes to detector status or calibrations are entered into the conditions database (DB) during a brief calibration loop between the end of a run and the beginning of bulk processing of data collected in it. Bulk processed data are reviewed and certified for the ATLAS Good Run List if no problem is detected. Experts maintain the tools used by DQ shifters and the calibration teams during normal operation, and prepare new conditions for data reprocessing and Monte Carlo (MC) production campaigns. Conditions data are stored in 3 databases: Online DB, Offline DB for data and a special DB for Monte Carlo. Database updates can be performed through a custom-made web interface.

  6. Study of position resolution and electron-hadron separation of electromagnetic calorimeter with a silicon structure

    International Nuclear Information System (INIS)

    Gorodnichev, V.B.; Kachanov, V.A.; Khodyrev, V.Yu.; Kurchaninov, L.L.; Rykali, V.V.; Solovianov, V.L.; Ukhalov, M.N.

    1993-01-01

    The maximum shower silicon strip detectors embedded in a module of sandwich-type electromagnetic calorimeter have been tested. The position resolution at different depths of the silicon structure has been measured. The results on electron-hadron separation obtained as a byproduct in this study are presented, and possibility of their improvement is discussed. 8 refs., 10 figs., 1 tab

  7. FERMI: a digital Front End and Readout MIcrosystem for high resolution calorimetry

    International Nuclear Information System (INIS)

    Alexanian, H.; Appelquist, G.; Bailly, P.

    1995-01-01

    We present a digital solution for the front-end electronics of high resolution calorimeters at future colliders. It is based on analogue signal compression, high speed A/D converters, a fully programmable pipeline and a digital signal processing (DSP) chain with local intelligence and system supervision. This digital solution is aimed at providing maximal front-end processing power by performing waveform analysis using DSP methods. For the system integration of the multichannel device a multi-chip, silicon-on-silicon multi-chip module (MCM) has been adopted. This solution allows a high level of integration of complex analogue and digital functions, with excellent flexibility in mixing technologies for the different functional blocks. This type of multichip integration provides a high degree of reliability and programmability at both the function and the system level, with the additional possibility of customising the microsystem to detector-specific requirements. For enhanced reliability in high radiation environments, fault tolerance strategies, i.e. redundancy, reconfigurability, majority voting and coding for error detection and correction, are integrated into the design. ((orig.))

  8. A Silicon Hadron Calorimeter Module Operated in a Strong Magnetic Field with VLSI Readout for LHC

    CERN Multimedia

    2002-01-01

    % RD35 \\\\ \\\\ On the basis of a cost optimized Silicon production technology we proposed to build a hadron calorimeter active plane. \\\\ \\\\The production of detectors is closely followed and final quality control is performed according to specifications. \\\\ \\\\The technology designed for the cheap pad detector production is applied for the coarse strip detector manufacturing. These strip detectors will be used in the preshower of the electromagnetic calorimeter of CMS. \\footnote{Research & Prod. Assoc. ELMA, RSFSR} \\footnote{Byelorussian State Univ. Minsk} \\footnote{Research & Prod. Comp. SIAPS, RSFSR} \\footnote{Joffe Physical-Technical Inst. RSFSR} \\footnote{Ansaldo Richerche spa, Genoa} \\footnote{SGS-THOMSON, Castelletto, Milan}

  9. Bon voyage to the hadronic calorimeter

    CERN Multimedia

    2006-01-01

    It was a grand entourage for the first half of the CMS hadronic forward calorimeter (HF) that was escorted to Cessy, France by the police on 11 July. The impressive trailer carrying the 7-m-long and 4-m-wide element was pushed and pulled by two specially designed trucks. It took the 64-m-long convoy around 5 hours to travel the 15 km to its final destination. The days leading up to this operation involved intensive checks to the balance and pressure of the hydraulic system of the trailer's wheels. As one side of the HF is slightly heavier than the other, it is crucial to take this into account when transporting such a massive object (each half of the HF weighs 260 tonnes). However, once these checks were complete, the transport was safely underway. The second half of the HF also received a police escort on 18 July as it made its way to the assembly hall at Point 5. The HF will be the first major detector to be lowered into the CMS cavern via the gantry crane in the coming months.

  10. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  11. Considerations on the design of front-end electronics for silicon calorimetry for the SSC

    International Nuclear Information System (INIS)

    Wintenberg, A.L.; Bauer, M.L.; Britton, C.L.; Kennedy, E.J.; Todd, R.A.; Berridge, S.C.; Bugg, W.M.

    1990-01-01

    Some considerations are described for the design of a silicon-based sampling calorimetry detector for the Superconducting Super Collider (SSC). The use of silicon as the detection medium allows fast, accurate, and fine-grained energy measurements - but for optimal performance, the front-end electronics must be matched to the detector characteristics and have the speed required by the high SSC interaction rates. The relation between the signal-to-noise rtio of the calorimeter electronics and the charge collection time, the preamplifier power dissipation, detector capacitance and leakage, charge gain, and signal shaping and sampling was studied. The electrostatic transformer connection was analyzed and found to be unusable for a tightly arranged calorimeter because of stray capacitance effects. The method of deconvolutional sampling was developed as a means for pileup correction following synchronous sampling and analog storage

  12. Custom integrated front-end circuit for the CMS electromagnetic calorimeter

    CERN Document Server

    Walder, J P; Denes, P; Mathez, H; Pangaud, P

    2001-01-01

    A wide dynamic range multi-gain transimpedance amplifier custom integrated circuit has been developed for the readout of avalanche photodiode and vacuum photodiode in the CMS electromagnetic calorimeter for LHC experiment. The 92 db input dynamic range is divided into four ranges of 12 bits each in order to provide 40 MHz analog sampled data to a 12 bits ADC. This concept, which has been integrated in rad-hard full complementary bipolar technology, will be described. Experimental results obtained in lab and under irradiation will be presented along with test strategy being used for mass production. 6 Refs.

  13. Theory and Experiment for Hadrons on the Light-Front

    CERN Document Server

    Salme, Giovanni

    2016-01-01

    LC2015 belongs to a Conference series that started in 1991 under the supervision of the International Light Cone Advisory Committee (ILCAC), with the aim of promoting the research towards a rigorous description of hadrons and nuclei, based on Light-Cone quantization methods. A strong relation with the experimental activity was always pursued and it will be emphasized in the next edition, in order to meet one of the main goals of the whole Light-Cone community "to assist in the development of crucial experimental tests of hadron facilities". The scientific program will feature invited as well as contributed talks, selected in collaboration with the Scientific Advisory Committee and the ILCAC. The main topics to be addressed are: * Hadron physics at present and future facilities; * Nonperturbative methods in quantum field theory * AdS/CFT: theory and applications * Light-front theories in QCD and QED * Relativistic methods for nuclear and hadronic structures * Few-body problems onto the Light cone * Lattice gau...

  14. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Central Calorimeter (HB/HE/HO) Photodetectors The main activity of the HCAL group during the present shutdown is the replacement of a small fraction of the Central Calorimeter (HB/HE/HO) photodetectors -- the Hybrid Photo-Detectors (HPDs). During the MTCC of 2006 it was established that all HPDs exhibit a low rate of discharge generating large random pulses. This behaviour persists at the full CMS field. However, at relatively low fields (0.5 Tesla) this discharge rate increases dramatically and becomes very large for a fraction of the HPDs. The HO HPDs which sit in the gap of the return yoke are thus adversly affected. These discharge pulses have been labelled "HPD noise" (which must be distinguished from low level electronic noise which manifests itself as pedestal noise for all HPD readout channels). Additional intermediate level noise can be generated by ion-feedback arising from thermal and field emission electrons. Ion feedback noise never exceeds the equivalent of few 10s of GeV, the...

  15. The First End-Cap Cryostat is being Tested at Cold

    CERN Multimedia

    Aleksa, M

    The integration of the LAr end-cap detector wheels - one electromagnetic calorimeter wheel and two hadronic calorimeter wheels - was finished at the end of 2003 (see Fig. 1). Fig. 1: ECC cryostat after the insertion of the second hadronic end-cap wheel (Dec. 2003), and before the insertion of the forward calorimeter. After the insertion of the forward calorimeter, in summer 2004, the cryostat was closed and welded. Cool-down of the End-Cap C Cryostat: On Nov. 26, 2004, the cool-down of the cryostat started in B180 using forced convection of gaseous N2 in the heat exchangers and He gas in the cryostat (see Fig. 2). The cool-down speed during this time was on average 0.2K/h, hence arriving at a temperature of approximately 120K after about 6 weeks. The speed of the cool down was limited by stringent requirements on the temperature gradients in the detector wheels, which were established from mechanical constraints. The most severe limit was the maximum allowed temperature difference of 6K for the el...

  16. The ZEUS uranium-scintillator calorimeter for HERA

    International Nuclear Information System (INIS)

    Hilger, E.

    1987-01-01

    The high resolution calorimeter for the ZEUS detector at HERA is presented. The choice of a sandwich calorimeter from depleted uranium plates and plastic scintillator was made to accomplish compensation and thus the best possible energy resolution for hadrons and jets. The calorimeter is segmented transversely into towers and longitudinally into an electromagnetic and one or two hadronic sections. It is divided in a forward, barrel and rear part which surround hermetically the interaction region and the inner detectors. The expected energy resolutions are for electrons σ(E)/E = 0.15/√E, and for hadrons σ(E)/E = 0.35/√E, with a constant term of maximum 2% added in quadrature. First results from calorimeter test measurements are presented. (orig.)

  17. Performance of the ATLAS Tile Calorimeter

    Science.gov (United States)

    Hrynevich, A.

    2017-06-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC . Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV . Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response and its modelling by the Monte Carlo simulations. The calorimeter time resolution is studied with multijet events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  18. A Real Time Electronics Emulator with Realistic Data Generation for Reception Tests of the CMS ECAL Front-End Boards

    CERN Document Server

    Romanteau, T; Collard, Caroline; Debraine, A; Decotigny, D; Dobrzynski, L; Karar, A; Regnault, N

    2005-01-01

    The CMS [1] electromagnetic calorimeter (ECAL) [2] uses 3 132 Front-End boards (FE) performing both trigger and data readout functions. Prior to their integration at CERN, the FE boards have to be validated by dedicated test bench systems. The final one, called "XFEST" (eXtended Front-End System Test) and for which the present developments have been performed, is located at Laboratoire Leprince-Ringuet. In this contribution, a solution is described to efficiently test a large set of complex electronics boards characterized by a large number of input ports and a high throughput data rate. To perform it, an algorithm to simulate the Very Front End signals has been emulated. The project firmwares use VHDL embedded into XILINX Field Programmable Gate Array circuits (FPGA). This contribution describes the solutions developed in order to create a realistic digital input patterns real-time emul ator working at 40 MHz. The implementation of a real time comparison of the FE output streams as well as the test bench wil...

  19. Challenges of particle flow reconstruction in the CMS High-Granularity Calorimeter at the High-Luminosity LHC

    CERN Document Server

    Chlebana, Frank

    2016-01-01

    The challenges of the High-Luminosity LHC (HL-LHC) are driven by the large number of overlapping proton-proton collisions (pileup) in each bunch-crossing and the extreme radiation dose to detectors positioned at high pseudorapidity. To overcome this challenge CMS is designing and implementing an endcap electromagnetic+hadronic sampling calorimeter employing silicon pad devices in the electromagnetic and front hadronic sections, comprising over 6 million channels, and highly-segmented plastic scintillators in the rear part of the hadronic section. This High-Granularity Calorimeter (HGCAL) will be the first of its kind used in a colliding beam experiment. Clustering deposits of energy over many cells and layers is a complex and challenging computational task, particularly in the high-pileup and high-event-rate environment of HL-LHC. These challenges and their solutions will be discussed in detail, as well as their implementation in the HGCAL offline reconstruction. Baseline detector performance results will be ...

  20. Transport of the Hadronic Forward (HF) calorimeter from building 186 (CERN Meyrin site) to the CMS construction hall at point 5, Cessy, France.

    CERN Multimedia

    Florelle Antoine

    2006-01-01

    The two halves of the Forward Hadronic Calorimeter (HF) were transported from the CERN Meyrin site to the surface assembly hall at LHC Point 5 in Cessy, France, during the first part of July. Transporting these 300 tonne objects involved the construction around them of a 65-metre long trailer, simultaneously pushed and pulled by two trucks at either end. The main road between St. Genis and Cessy was closed during these operations and a police escort was provided for the ~5 hour journeys. The two HF halves will be the first major elements to be lowered by the gantry crane into the underground experimental cavern around the end of July or beginning of August.

  1. An IPMI-compliant control system for the ATLAS TileCal Phase-II Upgrade PreProcessor module

    CERN Document Server

    Zuccarello, Pedro Diego; The ATLAS collaboration

    2016-01-01

    Abstract–The electronics of the hadronic calorimeter of the ATLAS detector (TileCal) is being redesigned as part of the works that will lead to the High Luminosity Large Hadron Collider (HL-LHC). TileCal electronics is divided in front and back-end subsystems. While the front-end is inside the detector, the back-end is located off-detector inserted in an ATCA shelf. The main objective of this paper is to describe the work being carried out in the hardware management aspects of the back-end electronics of TileCal.

  2. Performance of the CMS Hadron Calorimeter with Cosmic Ray Muons and LHC Beam Data

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.

  3. Robustness studies of the photomultipliers reading out TileCal, the central hadron calorimeter of the ATLAS experiment

    CERN Document Server

    Di Gregorio, Giulia; The ATLAS collaboration

    2018-01-01

    TileCal, the hadron calorimeter of the ATLAS experiment in LHC, is a 10000 channel detector readout by photomultipliers (PMTs). A challenging goal is to understand whether the full sample of PMTs installed at the beginning of the ATLAS detector operation can be used until completion of the High-Luminosity Large Hadron Collider (HL-LHC) program or not. For this reason, a reliable study of the PMT robustness against ageing is required. Detailed studies modelling the PMT response variation as a function of the integrated anode charge were done.

  4. Study of hadrons energy resolution in a liquid argon calorimeter for the H1 experiment and study of supersymmetric particles detection at Hera

    International Nuclear Information System (INIS)

    Besancon, M.

    1989-08-01

    Tests of liquid Argon calorimeters have been carried out at CERN in 1986 and 1987 in order to study the properties of the forthcoming H1 detector calorimeter installed at the HERA collider. In the first part of this work, from data analysis, several weighting methods of the measured charge for hadronic showers are proposed and discussed. These weighting methods allow to correct the non compensation of liquid Argon calorimeters and so to optimize the hadrons energy resolution. The problem of electrons and pions identification is also met. In the second part, selectron and squark production is considered in the electrons protons collisions of HERA. Signal extraction from standard background is studied with the help of a simulation of supersymmetric and deep inelastic scattering processes as well as a rough simulation of the H1 detector [fr

  5. Readout Electronics Upgrades of the ATLAS Liquid Argon Calorimeter

    CERN Document Server

    Anelli, Christopher Ryan; The ATLAS collaboration

    2018-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. First prototypes of the front-end electronics components show good promise to match the stringent specifications. The off-detector electronics will make use of FPGAs connected through high-speed links to perform energy reconstruction, data reduction and buffering. Results of tests of the first prototypes of front-end components will be presented, along with design studies on the performance of the off-detector readout system.

  6. SLD liquid argon calorimeter

    International Nuclear Information System (INIS)

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z 0 decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z 0 events) is discussed

  7. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  8. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  9. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  10. The CMS Hadron Forward Calorimeter Upgrade during Phase I

    CERN Document Server

    Gulmez, Erhan

    2014-01-01

    The CMS Hadron Forward Calorimeter will be upgraded during phase 1. The upgrade will include the replacement of the current PMTs with the 4-anode ones and the readout electronics. Currently, stray muons hitting the PMT windows produce Cherenkov light causing erroneous signals. These signals are detrimental to the triggering and physic results, since such signals mimic very high energy events. The new 4-anode PMTs are selected because of their thin windows to reduce the Cherenkov light production. Additional anodes also provide information to eliminate such signals. These new PMTs have been tested extensively to understand their characteristics and to develop the algorithms to eliminate the unwanted signals. Eventually, the current read out will be replaced with two-channel readout electronics for each PMT. The overall expected improvement on the physics results will also be discussed.

  11. ATLAS Tile Calorimeter central barrel assembly and installation.

    CERN Multimedia

    nikolai topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  12. Mechanical construction and installation of the ATLAS tile calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J [IFIC, Centro Mixto Universidad de Valencia-CSIC, E46100 Burjassot, Valencia (Spain); Adragna, P; Bosi, F [Pisa University and INFN, Pisa (Italy); Alexa, C; Boldea, V [Institute of Atomic Physics, Bucharest (Romania); Alves, R [LIP and FCTUC University of Coimbra (Portugal); Amaral, P; Andresen, X; Behrens, A; Blocki, J [CERN, Geneva (Switzerland); Ananiev, A [LIP and IDMEC-IST, Lisbon (Portugal); Anderson, K [University of Chicago, Chicago, Illinois (United States); Antonaki, A [University of Athens, Athens (Greece); Batusov, V [JINR, Dubna (Russian Federation); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas, E; Bohm, C [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand (France); Blanch, O; Blanchot, G [Institut de Fisica d' Altes Energies, Universitat Autònoma de Barcelona, Barcelona (Spain); others, and

    2013-11-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.

  13. Mechanical construction and installation of the ATLAS tile calorimeter

    International Nuclear Information System (INIS)

    Abdallah, J; Adragna, P; Bosi, F; Alexa, C; Boldea, V; Alves, R; Amaral, P; Andresen, X; Behrens, A; Blocki, J; Ananiev, A; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Bohm, C; Biscarat, C; Blanch, O; Blanchot, G

    2013-01-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight

  14. ATLAS Barrel Hadron Calorimeter: general manufacturing concepts for 300000 absorber plates mass production

    International Nuclear Information System (INIS)

    Alikov, B.A.; Budagov, Yu.A.; Bylinkin, P.M

    1998-01-01

    We summarize a 4-year (1994-1997) experience of design and research efforts which led us to the solution of 2 important tasks of a principal significance for precision assembly of one of major elements of ATLAS, - its Hadron Barrel Tile Calorimeter. These tasks were: - to develop the high tolerances (50-100 microns) technology for about 300000 units of calorimeter nuclear absorber plates mass production, - to choose the best manufacturer(s) able to satisfy shop drawings demands in a reasonable balance with some other significant criteria: production period, price acceptable geography location (transport expenses), available storage area and access ways, reliable quality control etc. For the best absorbers producers our final choice was the TATRA PLANT (Czech Republic) for 1.6 m long plates stamping (40800 units) with Argonne punching die and the MINSK TRACTOR PLANT (Belarus Republic) for smaller size plates stamping (about 240000 units). We exclude noticeable (more than 1% of the day production) tolerances violations by the specially developed QUALITY CONTROL Program

  15. Time Calibration of the ATLAS Hadronic Tile Calorimeter using the Laser System

    CERN Document Server

    Clément, C; Solovyanov, O; Vivarelli, I

    2008-01-01

    The ATLAS Tile Calorimeter (TileCal) will be used to measure i) the energy of hadronic showers and ii) the Time of Flight (ToF) of particles passing through it. To allow for optimal reconstruction of the energy deposited in the calorimeter with optimal filtering, the phase between the signal sampling clock and the maximum of the incoming pulses needs to be minimised and the residual difference needs to be measured for later use for both energy and time of flight measurements. In this note we present the timing equalisation of all TileCal read out channels using the TileCal laser calibration system and a measurement of the time differences between the 4 TileCal TTC partitions. The residual phases after timing equalisation have been measured. Several characteristics of the laser calibration system relevant for timing have also been studied and a solution is proposed to take into account the time difference between the high and low gain paths. Finally we discuss the sources of uncertainties on the timing of the ...

  16. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  17. R&D; studies on the hadronic calorimeter and physics simulations on the Standard Model and minimal supersymmetric Standard Model Higgs bosons in the CMS experiment

    CERN Document Server

    Duru, Firdevs

    2007-01-01

    This thesis consists of two main parts: R&D; studies done on the Compact Muon Solenoid (CMS) Hadronic Calorimeter (HCAL) and physics simulations on the Higgs boson for a Minimal Supersymmetric Standard Model (MSSM) and a Standard Model (SM) channel. In the first part, the air core light guides used in the read-out system of the Hadronic Forward (HF) calorimeter and the reflective materials used in them are studied. Then, tests and simulations were performed to find the most efficient way to collect Cerenkov light from the quartz plates, which are proposed as a substitute for the scintillator tiles in the Hadronic Endcap (HE) calorimeter due to radiation damage problems. In the second part physics simulations and their results are presented. The MSSM channel H/A[arrow right]ττ [arrow right]l l v v v v is studied to investigate the jet and missing transverse energy (MET) reconstruction of the CMS detector. The effects of the jet and MET corrections on the Higgs boson mass reconstruction are investigated. ...

  18. The spaghetti calorimeter. Research, development, application

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, C V

    1994-12-22

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from {Sigma} decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at {sigma}/E=12.9%/{radical}E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/{radical}E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam {Sigma}{sup -}particles via its decay {Sigma}{sup -}{yields}n{pi}{sup -}. Details of the calibration of SPACAL with electrons and protons are presented. (orig.).

  19. The spaghetti calorimeter. Research, development, application

    International Nuclear Information System (INIS)

    Scheel, C.V.

    1994-01-01

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from Σ decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at σ/E=12.9%/√E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/√E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam Σ - particles via its decay Σ - →nπ - . Details of the calibration of SPACAL with electrons and protons are presented. (orig.)

  20. Feature-extraction algorithms for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Guliyev, E.; Lemmens, P. J. J.; Loehner, H.; Poelman, T. P.; Tambave, G.; Yu, B

    2009-01-01

    The feature-extraction algorithms are discussed which have been developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA detector at the future FAIR facility. Performance parameters have been derived in test measurements with cosmic rays, particle and photon

  1. Development of Radhard VLSI electronics for SSC calorimeters

    International Nuclear Information System (INIS)

    Dawson, J.W.; Nodulman, L.J.

    1989-01-01

    A new program of development of integrated electronics for liquid argon calorimeters in the SSC detector environment is being started at Argonne National Laboratory. Scientists from Brookhaven National Laboratory and Vanderbilt University together with an industrial participants are expected to collaborate in this work. Interaction rates, segmentation, and the radiation environment dictate that front-end electronics of SSC calorimeters must be implemented in the form of highly integrated, radhard, analog, low noise, VLSI custom monolithic devices. Important considerations are power dissipation, choice of functions integrated on the front-end chips, and cabling requirements. An extensive level of expertise in radhard electronics exists within the industrial community, and a primary objective of this work is to bring that expertise to bear on the problems of SSC detector design. Radiation hardness measurements and requirements as well as calorimeter design will be primarily the responsibility of Argonne scientists and our Brookhaven and Vanderbilt colleagues. Radhard VLSI design and fabrication will be primarily the industrial participant's responsibility. The rapid-cycling synchrotron at Argonne will be used for radiation damage studies involving response to neutrons and charged particles, while damage from gammas will be investigated at Brookhaven. 10 refs., 6 figs., 2 tabs

  2. Construction of a technological semi-digital hadronic calorimeter using GRPC

    International Nuclear Information System (INIS)

    Laktineh, I

    2011-01-01

    A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1 m 3 has been conceived within the CALICE collaboration in order to validate this option. The prototype intends to be as close as possible to the one proposed in the ILD Letter Of Intent. Few units made of 1m 2 GRPC fully equipped with semi-digital readout electronics and new gas distribution design were produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to TestBeams at CERN for final validation.

  3. Construction of a technological semi-digital hadronic calorimeter using GRPC

    Science.gov (United States)

    Laktineh, I.

    2011-04-01

    A high-granularity semi-digital Hadronic calorimeter using GRPC as sensitive medium is one of the two HCAL options considered by the ILD collaboration to be proposed for the detector of the future International Linear Collider project. A prototype of 1m3 has been conceived within the CALICE collaboration in order to validate this option. The prototype intends to be as close as possible to the one proposed in the ILD Letter Of Intent. Few units made of 1m2 GRPC fully equipped with semi-digital readout electronics and new gas distribution design were produced and successfully tested. In 2010 we intend to produce 40 similar units to be inserted in a self-supporting mechanical structure. The prototype will then be exposed to TestBeams at CERN for final validation.

  4. MMIC front-ends for optical communication systems

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad

    1993-01-01

    Two different types of optical front-end MMIC amplifiers for a 2.5-Gb/s coherent heterodyne optical receiver are presented. A bandwidth of 6-12 GHz has been obtained for a tuned front-end and 3-13 GHz for a distributed front-end. An input noise current density of 5-15 pA/√Hz has been obtained for...

  5. The performance of the DELPHI hadron calorimeter at LEP

    International Nuclear Information System (INIS)

    Ajinenko, I.; Beloous, K.; Chudoba, J.

    1996-01-01

    The DELPHI Hadron Calorimeter was conceived more than ten years ago, as an instrument to measure the energy of hadrons and hadronic jets from e + e - collisions at the CERN collider LEP. In addition it was expected to provide a certain degree of discrimination between pions and muons. The detector is a rather simple and relatively inexpensive device consisting of around 20,000 limited streamer plastic tubes, with inductive pad read-out, embedded in the iron yoke of the 1.2 T DELPHI magnet. Its depth is at minimum 6.6 nuclear interaction lengths. The electronics necessary for the pad readout was designed to have an adequate performance for a reasonable cost. This detector has proved over six years of operation to have an entirely satisfactory performance and great reliability; for example less than 1% of the streamer tubes have failed and electronic problems remain at the per mil level. During the past two years an improvement program has been under way. It has been found possible to use the streamer tubes as strips, hence giving better granularity and particle tracking, by reading out the cathode of individual tubes. The constraints on this were considerable because of the inaccessibility of the detectors in the magnet yoke. However, a cheap and feasible solution has been found. The cathode readout leads to an improved energy resolution, better μ identification, a better π/μ separation and to possibilities of neutral particle separation. The simultaneous anode read-out of several planes of the endcaps of the detector will provide a fast trigger in the forward/backward direction which is an important improvement for LEP200. On the barrel the system will provide a cosmic trigger which is very useful for calibration as counting rates at LEP200 will be very low

  6. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  7. Some possible improvements in scintillation calorimeters

    International Nuclear Information System (INIS)

    Lorenz, E.

    1985-03-01

    Two ideas for improvements of scintillation calorimeters will be presented: a) improved readout of scintillating, totally active electromagnetic calorimeters with combinations of silicon photodiodes and fluorescent panel collectors, b) use of time structure analysis on calorimetry, both for higher rate applications and improved resolution for hadron calorimeters. (orig.)

  8. Performance of the SLD Warm Iron Calorimeter prototype

    International Nuclear Information System (INIS)

    Callegari, G.; Piemontese, L.; De Sangro, R.; Peruzzi, I.; Piccolo, M.; Busza, W.; Friedman, J.; Johnson, A.; Kendall, H.; Kistiakowsky, V.

    1986-03-01

    A prototype hadron calorimeter, of similar design to the Warm Iron Calorimeter (WIC) planned for the SLD experiment, has been built and its performance has been studied in a test beam. The WIC is an iron sampling calorimeter whose active elements are plastic streamer tubes similar to those used for the Mont-Blanc proton decay experiment. The construction and operation of the tubes will be briefly described together with their use in an iron calorimeter - muon tracker. Efficiency, resolution and linearity have been measured in a hadron/muon beam up to 11 GeV. The measured values correspond to the SLD design goals

  9. Energy Measurement with the ATLAS Electromagnetic Calorimeter at the Per Mill Accuracy Level

    CERN Document Server

    Teischinger, Florian; Fabjan, Christian

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. It is made up of various sub-detectors to measure the properties of all the particles produced at the proton-proton collision. Over the last three years of running around 20 x 10^14 collisions of proton data have been recorded. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry and for hadronic calorimetry in the end-caps. The Inner Detector, on the other hand, measures the transverse momentum of charged particles down to a momentum of 0.5 GeV. This thesis deals with the absolute measurement of the energy in the electromagnetic calorimeter and the improvement of the systematic uncertainties. A method using the ratio of the energy E in the calorimeter and the momentum measurement p in the Inner Detector (E/p) was used to extract the energy scale of the electromagnetic LAr calorimeter for electrons and positrons. To investigate and further reduce the syst...

  10. High-voltage test and training of plastic streamer tubes for the DELPHI hadron calorimeter

    International Nuclear Information System (INIS)

    Alekseev, G.D.; Cellar, S.; Khomenko, B.A.; Korytov, A.V.; Kulinich, P.A.; Micelmacher, G.V.; Sedykh, Yu.V.; Toledo, R.

    1987-01-01

    The results of high-voltage test and training of plastic streamer tubes of the DELPHI hadron calorimeter are presented. The testing technique is considered in detail. The equipment for high-voltage training consists of a mini-computer, CAMAC-electronics, a controllable high-voltage supply and a digital ampermeter. The experimental results shows that high-voltage training of streamer tubes improves their characteristics. The value of dark current decreased up to 1 μA. The operational voltage range increased by a value more than 300 V

  11. Commissioning of the readout electronics for the prototypes of a hadronic calorimeter and a tailcatcher and muon tracker

    International Nuclear Information System (INIS)

    Lutz, B.

    2006-12-01

    The goal of the CALICE collaboration is to develop and design a highly granular calorimeter for an experiment at the future international linear collider. In an integrated study all parts of the calorimeter are considered. Within this project a hadronic calorimeter prototype, built at DESY, and a tailcatcher and muon tracker prototype, built at NIU and Fermilab, are developed. The subject of this thesis is the combined readout electronics for these prototypes. In a set of measurements it is demonstrated that the individual components answer their purposes. This includes the classification of noise, linearity and signal to noise ratio of the amplifier and a study of the differential nonlinearity of the analog to digital converter in the data acquisition. In addition to these measurements of common parameters, some attributes are measured that are special to the use of the combined system, including the influence of the limited time resolution of the hold signal and the consequences of signals with variable input signal shape. Furthermore, an algorithm is developed for the determination of the SiPM gain from single photoelectron spectra that are recorded with the detector readout electronics. Particular effort is made to ensure that the developed method can be run independently from human intervention, as a 8000 channel system demands. The accuracy and stability of the gain measurement is checked with actual data from the first available hadronic calorimeter modules and a set of requirements for a measurement of 1% accuracy is fixed. Finally, the established gain measurement is used in the calibration of modules with cosmic muons. And the temperature dependence of the SiPM gain is verified. (orig.)

  12. Commissioning of the readout electronics for the prototypes of a hadronic calorimeter and a tailcatcher and muon tracker

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, B.

    2006-12-15

    The goal of the CALICE collaboration is to develop and design a highly granular calorimeter for an experiment at the future international linear collider. In an integrated study all parts of the calorimeter are considered. Within this project a hadronic calorimeter prototype, built at DESY, and a tailcatcher and muon tracker prototype, built at NIU and Fermilab, are developed. The subject of this thesis is the combined readout electronics for these prototypes. In a set of measurements it is demonstrated that the individual components answer their purposes. This includes the classification of noise, linearity and signal to noise ratio of the amplifier and a study of the differential nonlinearity of the analog to digital converter in the data acquisition. In addition to these measurements of common parameters, some attributes are measured that are special to the use of the combined system, including the influence of the limited time resolution of the hold signal and the consequences of signals with variable input signal shape. Furthermore, an algorithm is developed for the determination of the SiPM gain from single photoelectron spectra that are recorded with the detector readout electronics. Particular effort is made to ensure that the developed method can be run independently from human intervention, as a 8000 channel system demands. The accuracy and stability of the gain measurement is checked with actual data from the first available hadronic calorimeter modules and a set of requirements for a measurement of 1% accuracy is fixed. Finally, the established gain measurement is used in the calibration of modules with cosmic muons. And the temperature dependence of the SiPM gain is verified. (orig.)

  13. End-cap calorimeter performance and identification of the t-channel single top quark process with the ATLAS detector

    CERN Document Server

    Cojocaru, Claudiu D

    2008-01-01

    The LHC collider will provide proton-proton collisions with 14 TeV centre of mass energy and an expected peak luminosity of 10 34 cm -2 s -1 . ATLAS is one of the multipurpose detectors that will be used for particles detection and measurement of properties. The first part of this thesis focuses on the study of the response of the ATLAS electromagnetic and hadronic end-cap calorimeters (EMEC and HEC, respectively) in a beam test performed in the summer of 2002. For the EMEC, the dependence of the measured signal versus the beam energy was found to be linear and an electromagnetic conversion constant [Special characters omitted.] = (0.446 ± 0.009) MeV/nA was calculated. The energy resolution for the EMEC was [Special characters omitted.] = [Special characters omitted.] ⊕ (0.4 ± 0.1)%, while for the HEC it was [Special characters omitted.] = [Special characters omitted.] ⊕ (3.0 ± 0.2)%, where the reconstructed energy, E reco , is in GeV. These results feed back into the tuning of the calorimeter Monte Ca...

  14. A high granularity plastic scintillator tile hadronic calorimeter with APD readout for a linear collider detector

    Czech Academy of Sciences Publication Activity Database

    Andreev, V.; Cvach, Jaroslav; Danilov, M.; Devitsin, E.; Dodonov, V.; Eigen, G.; Garutti, E.; Gilitzky, Yu.; Groll, M.; Heuer, R.D.; Janata, Milan; Kacl, Ivan; Korbel, V.; Kozlov, V. Yu; Meyer, H.; Morgunov, V.; Němeček, Stanislav; Pöschl, R.; Polák, Ivo; Raspereza, A.; Reiche, S.; Rusinov, V.; Sefkow, F.; Smirnov, P.; Terkulov, A.; Valkár, Š.; Weichert, Jan; Zálešák, Jaroslav

    2006-01-01

    Roč. 564, - (2006), s. 144-154 ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LC527; GA MŠk(CZ) 1P05LA259; GA ČR(CZ) GA202/05/0653 Institutional research plan: CEZ:AV0Z10100502 Keywords : hadronic calorimeter * plastic scintillator tile * APD readout * linear collider detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.185, year: 2006

  15. RPC performance vs. front-end electronics

    International Nuclear Information System (INIS)

    Cardarelli, R.; Aielli, G.; Camarri, P.; Di Ciaccio, A.; Di Stante, L.; Liberti, B.; Pastori, E.; Santonico, R.; Zerbini, A.

    2012-01-01

    Moving the amplification from the gas to the front-end electronics was a milestone in the development of Resistive Plate Chambers. Here we discuss the historical evolution of RPCs and we show the results obtained with newly developed front-end electronics with threshold in the fC range.

  16. Data Quality system of the ATLAS hadronic Tile calorimeter

    International Nuclear Information System (INIS)

    Nemecek, Stanislav

    2012-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. It is subdivided into a large central barrel and two smaller lateral extended barrels. Each barrel consists of 64 wedges, made of iron plates and scintillating tiles. Two edges of each scintillating tile are air-coupled to wave-length shifting (WLS) fibres which collect the scintillating light and transmit it to photo-multipliers. The total number of channels is about 10000. An essential part of the TileCal detector is the Data Quality (DQ) system. The DQ system is designed to check the status of the electronic channels. It is designed to provide information at two levels - online and offline. The online TileCal DQ system monitors continuously the data while they are recorded and provides a fast feedback. The offline DQ system allows a detailed study, if needed it provides corrections to be applied to the recorded data and it allows to validate the data for physics analysis. In addition to the check of physics data the TileCal DQ systems also operate with calibration data. The TileCal calibration system provides well defined signals and the response to the calibration signals allows checking the behaviour of the electronic channels in detail. The Monitoring and Calibration Web System supports data quality analyses at the level of channels. All online, offline and calibration versions of the TileCal DQ system also provide automatic tests, the results of which allow fast and robust feedback.

  17. Plans for checking hadronic energy depositions in the ATLAS calorimeters with early LHC data using charged particles

    CERN Document Server

    Davidson, N; The ATLAS collaboration

    2009-01-01

    The first data from the ATLAS detector at the Large Hadron Collider (LHC) is due to be collected later this year. This first phase will play a vital role in understanding the detector and its response, in-situ. Jet reconstruction is important for identifying new physics as well as making precision measurements of standard model physics. The fine granularity of the ATLAS calorimeters can be used to gain information about a jet's shape and the classification of energy deposits, which allows a better estimate of the jet energy to be made and in particular correction for the non-compensating nature of the calorimeter using so-called calibration weights. The classification algorithm and weights are presently calculated using simulation. In this presentation we describe an important step in the validation of ATLAS's jet calibration using charged tracks reconstructed in the inner detector and their inter-calibration with the clusters reconstructed in the calorimeters.

  18. Muon front end for the neutrino factory

    CERN Document Server

    Rogers, C T; Prior, G; Gilardoni, S; Neuffer, D; Snopok, P; Alekou, A; Pasternak, J

    2013-01-01

    In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  19. Radioactive source calibration technique for the CMS hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, E.; Lawlor, C.; Rohlf, J.W. E-mail: rohlf@bu.edu; Wu, S.X.; Baumbaugh, A.; Elias, J.E.; Freeman, J.; Green, D.; Lazic, D.; Los, S.; Ronzhin, A.; Sergueev, S.; Shaw, T.; Vidal, R.; Whitmore, J.; Zimmerman, T.; Adams, M.; Burchesky, K.; Qian, W.; Baden, A.; Bard, R.; Breden, H.; Grassi, T.; Skuja, A.; Fisher, W.; Mans, J.; Tully, C.; Barnes, V.; Laasanen, A.; Barbaro, P. de; Budd, H

    2003-10-01

    Relative calibration of the scintillator tiles used in the hadronic calorimeter for the Compact Muon Solenoid detector at the CERN Large Hadron Collider is established and maintained using a radioactive source technique. A movable source can be positioned remotely to illuminate each scintillator tile individually, and the resulting photo-detector current is measured to provide the relative calibration. The unique measurement technique described here makes use of the normal high-speed data acquisition system required for signal digitization at the 40 MHz collider frequency. The data paths for collider measurements and source measurements are then identical, and systematic uncertainties associated with having different signal paths are avoided. In this high-speed mode, the source signal is observed as a Poisson photo-electron distribution with a mean that is smaller than the width of the electronics noise (pedestal) distribution. We report demonstration of the technique using prototype electronics for the complete readout chain and show the typical response observed with a 144 channel test beam system. The electronics noise has a root-mean-square of 1.6 least counts, and a 1 mCi source produces a shift of the mean value of 0.1 least counts. Because of the speed of the data acquisition system, this shift can be measured to a statistical precision better than a fraction of a percent on a millisecond time scale. The result is reproducible to better than 2% over a time scale of 1 month.

  20. STATUS OF THE ATLAS LIQUID ARGON CALORIMETER AND ITS PERFORMANCE

    CERN Document Server

    Berillari, T; The ATLAS collaboration

    2011-01-01

    The liquid argon (LAr) calorimeters are used in ATLAS for all electromagnetic and for hadron calorimetry. The LAr calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic, hadronic and forward calorimeters. The latest status of the detector as well as problems and solutions addressed during the last years will be presented. Aspects of operation of a large detector over a long time period will be summarized and selected topics showing the performance of the detector will be shown.

  1. Solid-State Photomultiplier with Integrated Front End Electronics

    Science.gov (United States)

    Christian, James; Stapels, Christopher; Johnson, Erik; Mukhopadhyay, Sharmistha; Jie Chen, Xiao; Miskimen, Rory

    2009-10-01

    The instrumentation cost of physics experiments has been reduced per channel, by the use of solid-state detectors, but these cost-effective techniques have not been translated to scintillation-based detectors. When considering photodetectors, the cost per channel is determined by the use of high-voltage, analog-to-digital converters, BNC cables, and any other ancillary devices. The overhead associated with device operation limits the number of channels for the detector system, while potentially limiting the scope of physics that can be explored. The PRIMEX experiment at JLab, which is being designed to measure the radiative widths of the η and η' pseudo-scalar mesons for a more comprehensive understanding of QCD at low energies, is an example where CMOS solid-state photomultipliers (SSPMs) can be implemented. The ubiquitous nature of CMOS allows for on-chip signal processing to provide front-end electronics within the detector package. We present the results of the device development for the PRIMEX calorimeter, discussing the characteristics of SSPMs, the potential cost savings, and experimental results of on-chip signal processing.

  2. Hadron spectroscopy and dynamics from light-front holography and conformal symmetry

    Directory of Open Access Journals (Sweden)

    de Téramond Guy F.

    2014-06-01

    Full Text Available To a first semiclassical approximation one can reduce the multi-parton light-front problem in QCD to an effective one-dimensional quantum field theory, which encodes the fundamental conformal symmetry of the classical QCD Lagrangian. This procedure leads to a relativistic light-front wave equation for arbitrary spin which incorporates essential spectroscopic and non-perturbative dynamical features of hadron physics. The mass scale for confinement and higher dimensional holographic mapping to AdS space are also emergent properties of this framework.

  3. Muon front end for the neutrino factory

    Directory of Open Access Journals (Sweden)

    C. T. Rogers

    2013-04-01

    Full Text Available In the neutrino factory, muons are produced by firing high-energy protons onto a target to produce pions. The pions decay to muons and pass through a capture channel known as the muon front end, before acceleration to 12.6 GeV. The muon front end comprises a variable frequency rf system for longitudinal capture and an ionization cooling channel. In this paper we detail recent improvements in the design of the muon front end.

  4. Feedback from operational experience in front-end transportation

    International Nuclear Information System (INIS)

    Mondonel, J.L.; Parison, C.

    1998-01-01

    Transport forms an integral part of the nuclear fuel cycle, representing the strategic link between each stage of the cycle. In a way there is a transport cycle that parallels the nuclear fuel cycle. This concerns particularly the front-end of the cycle whose steps - mining conversion, enrichment and fuel fabrication - require numerous transports. Back-end shipments involve a handful of countries, but front-end transports involve all five continents, and many exotic countries. All over Europe such transports are routinely performed with an excellent safety track record. Transnucleaire dominates the French nuclear transportation market and carries out both front and back-end transports. For instance in 1996 more than 28,400 front-end packages were transported as well as more than 3,600 back-end packages. However front-end transport is now a business undergoing much change. A nuclear transportation company must now cope with an evolving picture including new technical requirements, new transportation schemes and new business conditions. This paper describes the latest evolutions in terms of front-end transportation and the way this activity is carried out by Transnucleaire, and goes on to discuss future prospects. (authors)

  5. ATLAS Tile calorimeter calibration and monitoring systems

    Science.gov (United States)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  6. The Phase-2 Electronics Upgrade of the ATLAS Liquid Argon Calorimeter System

    CERN Document Server

    Vachon, Brigitte; The ATLAS collaboration

    2018-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile- up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and back- end readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the back-end for further processing. Results from the design studies on the performance of the components of the readou...

  7. Ultra-Fast Hadronic Calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Dmitri [Fermilab; Lukić, Strahinja [VINCA Inst. Nucl. Sci., Belgrade; Mokhov, Nikolai [Fermilab; Striganov, Sergei [Fermilab; Ujić, Predrag [VINCA Inst. Nucl. Sci., Belgrade

    2017-12-18

    Calorimeters for particle physics experiments with integration time of a few ns will substantially improve the capability of the experiment to resolve event pileup and to reject backgrounds. In this paper time development of hadronic showers induced by 30 and 60 GeV positive pions and 120 GeV protons is studied using Monte Carlo simulation and beam tests with a prototype of a sampling steel-scintillator hadronic calorimeter. In the beam tests, scintillator signals induced by hadronic showers in steel are sampled with a period of 0.2 ns and precisely time-aligned in order to study the average signal waveform at various locations w.r.t. the beam particle impact. Simulations of the same setup are performed using the MARS15 code. Both simulation and test beam results suggest that energy deposition in steel calorimeters develop over a time shorter than 3 ns providing opportunity for ultra-fast calorimetry. Simulation results for an "ideal" calorimeter consisting exclusively of bulk tungsten or copper are presented to establish the lower limit of the signal integration window.

  8. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  9. Performance of the ATLAS Liquid Argon Calorimeter after three years of LHC operation and plans for a future upgrade

    International Nuclear Information System (INIS)

    Nikiforou, Nikiforos

    2013-06-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon sampling calorimeters are used for all electromagnetic calorimetry as well as hadronic calorimetry in the end-caps. After installation in 2004-2006, the calorimeters were extensively commissioned over the three-year period prior to first collisions in 2009, using cosmic rays and single LHC beams. Since then, approximately 27 fb -1 of data have been collected at an unprecedented center of mass energy. During all these stages, the calorimeter and its electronics have been operating almost optimally, with a performance very close to specifications. This paper covers all aspects of these first years of operation. The excellent performance achieved is especially presented in the context of the discovery of the elusive Higgs boson. The future plans to preserve this performance until the end of the LHC program are also presented. (authors)

  10. The Laser calibration of the ATLAS Tile Calorimeter during the LHC run 1

    CERN Document Server

    INSPIRE-00305555

    2016-10-12

    This article describes the Laser calibration system of the Atlas hadronic Tile Calorimeter that has been used during the run 1 of the LHC. First, the stability of the system associated readout electronics is studied. It is found to be stable with variations smaller than 0.6 %. Then, the method developed to compute the calibration constants, to correct for the variations of the gain of the calorimeter photomultipliers, is described. These constants were determined with a statistical uncertainty of 0.3 % and a systematic uncertainty of 0.2 % for the central part of the calorimeter and 0.5 % for the end-caps. Finally, the detection and correction of timing mis-configuration of the Tile Calorimeter using the Laser system are also presented.

  11. Hadron shower profile and direction measurements in a segmented calorimeter

    International Nuclear Information System (INIS)

    Auchincloss, P.; Blair, R.; Haber, C.

    1982-01-01

    Recently a test measurement was made to see how well the direction of the shower induced by neutrino interactions could be determined in the lab-E detector at Fermilab. While the calorimeter in lab-E has very coarse sampling compared to the detectors described at this workshop, the method used to sample the shower could be employed in other more finely segmented detectors. The shower angle resolution obtained (36 mr.FWHM) is largely constrained by the sampling. In this test pulse heights in 2mm. steps across the hadron shower at five points along the shower were recorded. This was done with 20 wires and 20 fast ADC's. A standard MWPC system intended to accomplish the same task would have required about 250 wires and 250 ADC channels. This considerable saving in system complexity should be possible for any system where finely segmented pulse height measurements are required

  12. Beam Tests on the ATLAS Tile Calorimeter Demonstrator Module

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new read-out system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the electronics – the Demonstrator - has been tested exposing a module of the calorimeter to particles at the Super Proton Synchrotron (SPS) accelerator of CERN. Data were collected with beams of muons, electrons and hadrons and muons, at various incident energies and impact angles. The measurements aim to check the calibration and to determine the performance the detector exploiting the features of the interactions of the muons, electrons and hadrons with matter. We present the current status and results where the new Demonstrator new electronics were situated in calorimeter modules and exposed to beams of muons, electrons and hadrons with different energies and impact angles.

  13. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  14. Intercalibration of the longitudinal segments of a calorimeter system

    International Nuclear Information System (INIS)

    Albrow, M.; Aota, S.; Apollinari, G.; Asakawa, T.; Bailey, M.; Barbaro, P. de; Barnes, V.; Benjamin, D.; Blusk, S.; Bodek, A.; Bolla, G.; Budd, H.; Cauz, D.; Demortier, L.; Fukui, Y.; Gotra, Y.; Hahn, S.; Handa, T.; Hatakeyama, K.; Ikeda, H.; Introzzi, G.; Iwai, J.; Kim, S.H.; Koengeter, A.; Kowald, W.; Laasanen, A.; Lamoureux, J.; Lindgren, M.; Liu, J.; Lobban, O.; Melese, P.; Minato, H.; Murgia, S.; Nakada, H.; Patrick, J.; Pauletta, G.; Sakumoto, W.; Santi, L.; Seiya, Y.; Solodsky, A.; Spiegel, L.; Thomas, T.; Vilar, R.; Walsh, A.M.; Wigmans, R.

    2002-01-01

    Three different methods of setting the hadronic energy scale of a longitudinally segmented calorimeter system are compared with each other. The merits of these methods have been studied with test beam data from the CDF Plug Upgrade Calorimeter. It turns out that one of the (commonly used) calibration methods introduces a number of undesirable side effects, such as an increased hadronic signal nonlinearity and trigger biases resulting from the fact that the reconstructed energy of hadrons depends on the starting point of their showers. These problems can be avoided when a different calibration method is used. The results of this study are applied to determine the e/h values of the calorimeter and its segments

  15. Front-End Electronics and Feature-Extraction Algorithm for the PANDA Electromagnetic Calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Guliyev, E.; Lemmens, P. J. J.; Löhner, H.; Poelman, T. P.; Tambave, G.; Wang, YF; Hu, T

    2011-01-01

    The PANDA collaboration at FAIR, Germany, will employ antiproton annihilations to investigate yet undiscovered charm-mesons and glueballs aiming to unravel the origin of hadronic masses. A multi-purpose detector for tracking, calorimetry and particle identification is presently being developed to

  16. Calibration and Performance of the ATLAS Tile Calorimeter during the LHC Run 2

    CERN Document Server

    Faltova, Jana; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter is established with the large sample of the proton-proton collisions. Isolated hadrons a...

  17. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    HB installation and commissioning has been completed. The commissioning of HO and HF- is in progress. HE-will be lowered in early 2008 and will be comissioned at that time. HCAL DAQ With the completion of HCAL Barrel commissioning, the HCAL Online Software group has deployed a large number of significant updates to the software. These updates bring the HCAL software closer to final operations. At the core level, the HCAL software has been ported to the latest complete XDAQ release (3.11/Release 4). In parallel, significant effort has been made on zero suppression, front-end configuration, online databases, and monitoring. A major effort since the last CMS Week has been made to enable zero-suppression in HCAL - an effort which involves the DPG, the online SW group, and the firmware/ electronics team. The zero-suppression algorithm was specified by the DPG group based on simulation work, implemented and tested by the firmware team, and supported by the software team. Zero-suppression will be deployed for t...

  18. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    CERN Document Server

    Mazza, Gianni

    2017-01-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with 13 bit resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  19. Study of micro pixel photon counters for a high granularity scintillator-based hadron calorimeter

    International Nuclear Information System (INIS)

    D'Ascenzo, N.; Eggemann, A.; Garutti, E.

    2007-11-01

    A new Geiger mode avalanche photodiode, the Micro Pixel Photon Counter (MPPC), was recently released by Hamamatsu. It has a high photo-detection efficiency in the 420 nm spectral region. This product can represent an elegant candidate for the design of a high granularity scintillator based hadron calorimeter for the International Linear Collider. In fact, the direct readout of the blue scintillation photons with a MPPC is a feasible techological solution. The readout of a plastic scintillator by a MPPC, both mediated by the traditional wavelength shifting fiber, and directly coupled, has been systematically studied. (orig.)

  20. Transport of the first half of the CMS hadronic forward calorimeter (HF) from building 186 (CERN Meyrin site) to the CMS construction hall at point 5, Cessy, France.

    CERN Multimedia

    Florelle Antoine

    2006-01-01

    The two halves of the Forward Hadronic Calorimeter (HF) were transported from the CERN Meyrin site to the surface assembly hall at LHC Point 5 in Cessy, France, during the first part of July. Transporting these 300 tonne objects involved the construction around them of a 65-metre long trailer, simultaneously pushed and pulled by two trucks at either end. The main road between St. Genis and Cessy was closed during these operations and a police escort was provided for the ~5 hour journeys. The two HF halves will be the first major elements to be lowered by the gantry crane into the underground experimental cavern around the end of July or beginning of August.

  1. Electron response and e/h ratio of ATLAS barrel hadron prototype calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Vinogradov, V.B.; Arkadov, V.V.; Karapetyan, G.V.

    1995-01-01

    The detailed information about electron response, electron energy resolution and e/h ratio as a function of incident energy E, impact point Z and incidence angle Θ of ATLAS iron-scintillator hadron prototype calorimeter with longitudinal tile configuration is presented. These results are based on electron and pion beams data of E=20, 50, 100, 150, 300 GeV at Θ=10 deg, 20 deg, 30 deg, which were obtained during test beam period in July 1995. The obtained calibration constant is used for muon response converting from pC to GeV. The results are compared with existing experimental data and with some Monte Carlo calculations. For some E, Θ, Z values the compensation (e/h=1) is observed. 23 refs., 18 figs., 9 tabs

  2. Development of the ATLAS Liquid Argon Calorimeter Readout Electronics for the HL-LHC

    CERN Document Server

    Andeen, Timothy; The ATLAS collaboration

    2018-01-01

    The high-luminosity LHC will provide 5-7 times higher luminosites than the orignal design. An improved readout system of the ATLAS Liquid Argon Calorimeter is needed to readout the 182,500 calorimeter cells at 40 MHz with 16 bit dynamic range in these conditions. Low-noise, low-power, radiation-tolerant and high-bandwidth electronics components are being developed in 65 and 130 nm CMOS technologies. First prototypes of the front-end electronics components show good promise to match the stringent specifications. The off-detector electronics will make use of FPGAs connected through high-speed links to perform energy reconstruction, data reduction and buffering. Results of tests of the first prototypes of front-end components will be presented, along with design studies on the performance of the off-detector readout system.

  3. The Phase-2 Electronics Upgrade of the ATLAS Liquid Argon Calorimeter System

    CERN Document Server

    Vachon, Brigitte; The ATLAS collaboration

    2018-01-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS Liquid Argon (LAr) Calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the LAr front-end and back-end readout system is foreseen for the 182,500 readout channels. The system will follow a free-running architecture, where the calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40MHz to the backend, which performs the energy and time reconstruction, send inputs to the trigger, and buffers the data until trigge...

  4. LHCb Calorimeter modules arrive at CERN

    CERN Multimedia

    2002-01-01

    Two of the three components of the LHCb Calorimeter system have started to arrive from Russia. Members of the LHCb Calorimeter group with the ECAL and HCAL modules that have just arrived at CERN. The first two of the 56 Hadron Calorimeter (HCAL) modules and 1200 of the 3300 modules of the Electromagnetic Calorimeter (ECAL) have reached CERN from Russia. The third part of the system, the Preshower detector, is still being prepared in Russia. The calorimeter system identifies and triggers on high-energy particles, namely electrons, hadrons and photons by measuring their positions and energies. The HCAL is going to be a pure trigger device. The ECAL will also be used in the triggering, but in addition it will reconstruct neutral pions and photons from B meson decays. One of the major aims of the LHCb experiment is to study CP violation through B meson decays including Bs mesons with high statistics in different decay modes. CP violation (violation of charge and parity) is necessary to explain why the Universe...

  5. Study of the forward photons productions in pp collisions at sqrt{s} = 7 TeV with the ZDC detector of the ATLAS experiment

    CERN Document Server

    Monzani, Simone

    The Zero Degree Calorimeters (ZDC) of the ATLAS experiment at the Large Hadron Collider (LHC) are compact hadronic calorimeters that are located exactly on the incident beam axis on either side of the interaction point (IP) in the ATLAS Detector, 140 m downstream from the IP. They thus observe forward going neutral particles that are produced in heavy ion (HI), pA or pp collisions. The ZDC uses Tungsten plates as absorber material and quartz rods interspersed in the absorber as active media. The energetic charged particles crossing the quartz rods produce Cherenkov light, which is then detected by photomultipliers and sent to the front end electronics for processing. The ZDC are longitudinally seg- mented in 4 modules and some modules are also equipped with transverse position sensitivity. The rst section (the one closer to the interaction point) acts as an electromagnetic calorimeter, while the remaining 3 act as a hadronic calorimeter. Both ZDC arms have the rst hadronic module transv...

  6. Design and Prototyping of a High Granularity Scintillator Calorimeter

    International Nuclear Information System (INIS)

    Zutshi, Vishnu

    2016-01-01

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  7. Design and Prototyping of a High Granularity Scintillator Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Zutshi, Vishnu [Northern Illinois Univ., DeKalb, IL (United States). Dept. of Physics

    2016-03-27

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  8. The upgraded CDF front end electronics for calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Drake, G.; Frei, D.; Hahn, S.R.; Nelson, C.A.; Segler, S.L.; Stuermer, W.

    1991-11-01

    The front end electronics used in the calorimetry of the CDF detector has been upgraded to meet system requirements for higher expected luminosity. A fast digitizer utilizing a 2 {mu}Sec, 16 bit ADC has been designed and built. Improvements to the front end trigger circuitry have been implemented, including the production of 900 new front end modules. Operational experience with the previous system is presented, with discussion of the problems and performance goals.

  9. The upgraded CDF front end electronics for calorimetry

    International Nuclear Information System (INIS)

    Drake, G.; Frei, D.; Hahn, S.R.; Nelson, C.A.; Segler, S.L.; Stuermer, W.

    1991-11-01

    The front end electronics used in the calorimetry of the CDF detector has been upgraded to meet system requirements for higher expected luminosity. A fast digitizer utilizing a 2 μSec, 16 bit ADC has been designed and built. Improvements to the front end trigger circuitry have been implemented, including the production of 900 new front end modules. Operational experience with the previous system is presented, with discussion of the problems and performance goals

  10. Electronics and triggering challenges for the CMS High Granularity Calorimeter

    CERN Document Server

    Lobanov, Artur

    2017-01-01

    The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0-10 pC), low noise (~2000e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~10mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing all the data from the HGCAL imposes equally large ch...

  11. Adaptive RF front-ends for hand-held applications

    CERN Document Server

    van Bezooijen, Andre; van Roermund, Arthur

    2010-01-01

    The RF front-end - antenna combination is a vital part of a mobile phone because its performance is very relevant to the link quality between hand-set and cellular network base-stations. The RF front-end performance suffers from changes in operating environment, like hand-effects, that are often unpredictable. ""Adaptive RF Front-Ends for Hand-Held Applications"" presents an analysis on the impact of fluctuating environmental parameters. In order to overcome undesired behavior two different adaptive control methods are treated that make RF frond-ends more resilient: adaptive impedance control,

  12. The computer simulation of the hadron calorimeter of the tagged neutrino facilities experiment with the help of 'GHEISHA' program

    International Nuclear Information System (INIS)

    Kadykov, M.G.; Kukhtin, V.V.; Peshekhonov, D.V.; Smirnov, G.I.

    1989-01-01

    The results of the simulation characteristics of the hadron calorimeter using the programm package 'GHEISHA' are presented. The dependence on energy resolution on both initial particle energy and active layer width were investigated. Linearity was tested over an energy range of 5-40 GeV. The results of the simulation are compared with the experimental data. 8 refs.; 7 figs

  13. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  14. Performance of the Tile PreProcessor Demonstrator for the ATLAS Tile Calorimeter Phase II Upgrade

    OpenAIRE

    Carrio Argos, Fernando; Valero, Alberto

    2015-01-01

    The Tile Calorimeter PreProcessor (TilePPr) demonstrator is a high performance double AMC board based on FPGA resources and QSFP modules. This board has been designed in the framework of the ATLAS Tile Calorimeter (TileCal) Demonstrator Project for the Phase II Upgrade as the first stage of the back-end electronics. The TilePPr demonstrator has been conceived for receiving and processing the data coming from the front-end electronics of the TileCal Demonstrator module, as well as for configur...

  15. Improvement in separation of isolated muons and pions at low pT in ATLAS hadron calorimeter using artificial neural networks technique

    International Nuclear Information System (INIS)

    Astvatsaturov, A.; Budagov, Yu.; Chirikov-Zorin, I.; Shigaev, V.; Paplevka, A.; Sushkov, S.; Bosman, M.; Nessi, M.

    1995-01-01

    Advantages of artificial neural networks techniques in handling data from highly granulated ATLAS hadron calorimeter (HC) are shown in application to isolated π/μ separation task in the range 3 T T muons have a significant probability to be absorbed in the calorimeter and therefore they cannot be reliably registered by the muon detector. The comparative analysis of main characteristics is presented for several neural net discriminators and a linear threshold discriminator operating on energy deposition in the last depth of HC. The analysis is based on MC data obtained with ATLAS simulation programs. 9 refs., 12 figs

  16. Pion showers in highly granular calorimeters

    Indian Academy of Sciences (India)

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA ...

  17. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Hrynevich, Aliaksei; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadr...

  18. Operation and performance of the ATLAS Tile Calorimeter in Run 1

    CERN Document Server

    Aaboud, Morad; ATLAS Collaboration; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Abhayasinghe, Deshan Kavishka; Abidi, Syed Haider; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adelman, Jahred; Adersberger, Michael; Adiguzel, Aytul; Adye, Tim; Affolder, Tony; Afik, Yoav; Agheorghiesei, Catalin; Aguilar-Saavedra, Juan Antonio; Ahmadov, Faig; Aielli, Giulio; Akatsuka, Shunichi; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akilli, Ece; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albicocco, Pietro; Alconada Verzini, Maria Josefina; Alderweireldt, Sara; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allaire, Corentin; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Álvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Ambroz, Luca; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amoroso, Simone; Amrouche, Cherifa Sabrina; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anelli, Christopher Ryan; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anisenkov, Alexey; Annovi, Alberto; Antel, Claire; Anthony, Matthew; Antonelli, Mario; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Araujo Ferraz, Victor; Araujo Pereira, Rodrigo; Arce, Ayana; Ardell, Rose Elisabeth; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Armbruster, Aaron James; Armitage, Lewis James; Armstrong III, Alexander; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Asimakopoulou, Eleni Myrto; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkin, Ryan Justin; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Bagnaia, Paolo; Bahmani, Marzieh; Bahrasemani, Sina; Bailey, Adam; Baines, John; Bajic, Milena; Bakalis, Christos; Baker, Oliver Keith; Bakker, Pepijn Johannes; Bakshi Gupta, Debottam; Baldin, Evgenii; Balek, Petr; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Bandyopadhyay, Anjishnu; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barbe, William Mickael; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barkeloo, Jason Tyler Colt; Barklow, Timothy; Barlow, Nick; Barnea, Rotem; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batlamous, Souad; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bauer, Kevin Thomas; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Beck, Helge Christoph; Becker, Kathrin; Becker, Maurice; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beermann, Thomas; Begalli, Marcia; Begel, Michael; Behera, Arabinda; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Bergsten, Laura Jean; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernardi, Gregorio; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertram, Iain Alexander; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Bethani, Agni; Bethke, Siegfried; Betti, Alessandra; Bevan, Adrian John; Beyer, Julien-christopher; Bianchi, Riccardo-Maria; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Bierwagen, Katharina; Biesuz, Nicolo Vladi; Biglietti, Michela; Billoud, Thomas Remy Victor; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Biswal, Jyoti Prakash; Bittrich, Carsten; Bjergaard, David Martin; Black, James; Black, Kevin; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boerner, Daniela; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bolz, Arthur Eugen; Bomben, Marco; Bona, Marcella; Bonilla, Johan Sebastian; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Bouaouda, Khalil; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozson, Adam James; Bracinik, Juraj; Brahimi, Nihal; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Braren, Frued; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Brickwedde, Bernard; Briglin, Daniel Lawrence; Britton, Dave; Britzger, Daniel; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brost, Elizabeth; Broughton, James; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Bruno, Salvatore; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burch, Tyler James; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Buschmann, Eric; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabras, Grazia; Cabrera Urbán, Susana; Caforio, Davide; Cai, Huacheng; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Calvetti, Milene; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Cao, Yumeng; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrá, Sonia; Carrillo-Montoya, German D; Carrio Argos, Fernando; Casadei, Diego; Casado, Maria Pilar; Casha, Albert Francis; Casolino, Mirkoantonio; Casper, David William; Castelijn, Remco; Castillo, Florencia Luciana; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Celebi, Emre; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Wing Sheung; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, David; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Cheng; Chen, Chunhui; Chen, Hucheng; Chen, Jing; Chen, Jue; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Chen, Yu-Heng; Cheng, Hok Chuen; Cheng, Huajie; Cheplakov, Alexander; Cheremushkina, Evgeniya; Cherkaoui El Moursli, Rajaa; Cheu, Elliott; Cheung, Kingman; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chiu, I-huan; Chiu, Yu Him Justin; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Yun Sang; Christodoulou, Valentinos; Chu, Ming Chung; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Cinca, Diane; Cindro, Vladimir; Cioară, Irina Antonela; Ciocio, Alessandra; Ciodaro Xavier, Thiago; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Clark, Allan G; Clark, Michael; Clark, Philip James; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coimbra, Artur Emanuel; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Constantinescu, Serban; Conventi, Francesco; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Corradi, Massimo; Corrigan, Eric Edward; Corriveau, François; Cortes-Gonzalez, Arely; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Crane, Jonathan; Cranmer, Kyle; Crawley, Samuel Joseph; Creager, Rachael; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cukierman, Aviv Ruben; Curatolo, Maria; Cúth, Jakub; Czekierda, Sabina; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Eramo, Louis; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dahbi, Salah-eddine; Dai, Tiesheng; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Damp, Johannes Frederic; Dandoy, Jeffrey; Daneri, Maria Florencia; Dang, Nguyen Phuong; Dann, Nick; Danninger, Matthias; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dartsi, Olympia; Dattagupta, Aparajita; Daubney, Thomas; Davey, Will; David, Claire; Davidek, Tomas; Davis, Douglas; Davydov, Yuri; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vasconcelos Corga, Kevin; De Vivie De Regie, Jean-Baptiste; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Del Gaudio, Michela; Del Peso, Jose; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delporte, Charles; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Devesa, Maria Roberta; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Bello, Francesco Armando; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Petrillo, Karri Folan; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Dias do Vale, Tiago; Diaz, Marco Aurelio; Dickinson, Jennet; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobre, Monica; Dodsworth, David; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dreyer, Etienne; Dreyer, Timo; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Dubinin, Filipp; Dubreuil, Arnaud; Duchovni, Ehud; Duckeck, Guenter; Ducourthial, Audrey; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dülsen, Carsten; Dumancic, Mirta; Dumitriu, Ana Elena; Duncan, Anna Kathryn; Dunford, Monica; Duperrin, Arnaud; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Duvnjak, Damir; Dyndal, Mateusz; Dysch, Samuel; Dziedzic, Bartosz Sebastian; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; El Kosseifi, Rima; Ellajosyula, Venugopal; Ellert, Mattias; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Ennis, Joseph Stanford; Epland, Matthew Berg; Erdmann, Johannes; Ereditato, Antonio; Errede, Steven; Escalier, Marc; Escobar, Carlos; Esposito, Bellisario; Estrada Pastor, Oscar; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Fabiani, Veronica; Facini, Gabriel; Faisca Rodrigues Pereira, Rui Miguel; Fakhrutdinov, Rinat; Falciano, Speranza; Falke, Peter Johannes; Falke, Saskia; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feickert, Matthew; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Minyu; Fenton, Michael James; Fenyuk, Alexander; Feremenga, Last; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Cora; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores, Lucas Macrorie; Flores Castillo, Luis; Fomin, Nikolai; Forcolin, Giulio Tiziano; Formica, Andrea; Förster, Fabian Alexander; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Freund, Benjamin; Spolidoro Freund, Werner; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fusayasu, Takahiro; Fuster, Juan; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadow, Philipp; Gagliardi, Guido; Gagnon, Louis Guillaume; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gamboa Goni, Rodrigo; Gan, KK; Ganguly, Sanmay; Gao, Yanyan; Gao, Yongsheng; García, Carmen; García Navarro, José Enrique; García Pascual, Juan Antonio; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gasnikova, Ksenia; Gaudiello, Andrea; Gaudio, Gabriella; Gavrilenko, Igor; Gavrilyuk, Alexander; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gee, Norman; Geisen, Jannik; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gessner, Gregor; Ghasemi, Sara; Ghasemi Bostanabad, Meisam; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giangiacomi, Nico; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugliarelli, Gilberto; Giugni, Danilo; Giuli, Francesco; Giulini, Maddalena; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gkountoumis, Panagiotis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Gama, Rafael; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; Gonnella, Francesco; Gonski, Julia; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gottardo, Carlo Alberto; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Goy, Corinne; Gozani, Eitan; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Graham, Emily Charlotte; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Chloe; Gray, Heather; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Grud, Christopher; Grummer, Aidan; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guerguichon, Antinea; Guescini, Francesco; Guest, Daniel; Gugel, Ralf; Gui, Bin; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Wen; Guo, Yicheng; Guo, Ziyu; Gupta, Ruchi; Gurbuz, Saime; Gurriana, Luis; Gustavino, Giuliano; Gutelman, Benjamin Jacque; Gutierrez, Phillip; Gutschow, Christian; Guyot, Claude; Guzik, Marcin Pawel; Gwenlan, Claire; Gwilliam, Carl; Hönle, Andreas; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Han, Kunlin; Han, Liang; Han, Shuo; Hanagaki, Kazunori; Hance, Michael; Handl, David Michael; Haney, Bijan; Hankache, Robert; Hanke, Paul; Hansen, Eva; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Harkusha, Siarhei; Harrison, Paul Fraser; Hartmann, Nikolai Marcel; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havener, Laura Brittany; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayden, Daniel; Hayes, Christopher; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Heath, Matthew Peter; Hedberg, Vincent; Heelan, Louise; Heer, Sebastian; Heidegger, Kim Katrin; Heilman, Jesse; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Held, Alexander; Hellesund, Simen; Hellman, Sten; Helsens, Clement; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herr, Holger; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Herwig, Theodor Christian; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higashino, Satoshi; Higón-Rodriguez, Emilio; Hildebrand, Kevin; Hill, Ewan; Hill, John; Hill, Kurt Keys; Hiller, Karl Heinz; Hillier, Stephen; Hils, Maximilian; Hinchliffe, Ian; Hirose, Minoru; Hirschbuehl, Dominic; Hiti, Bojan; Hladik, Ondrej; Hlaluku, Dingane Reward; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Hohov, Dmytro; Holmes, Tova Ray; Holzbock, Michael; Homann, Michael; Honda, Shunsuke; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horn, Philipp; Horton, Arthur James; Horyn, Lesya Anna; Hostachy, Jean-Yves; Hostiuc, Alexandru; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hrdinka, Julia; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huebner, Michael; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Huhtinen, Mika; Hunter, Robert Francis Holub; Huo, Peng; Hupe, Andre Marc; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Hyneman, Rachel; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idrissi, Zineb; Iengo, Paolo; Ignazzi, Rosanna; Igonkina, Olga; Iguchi, Ryunosuke; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Iltzsche, Franziska; Introzzi, Gianluca; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Isacson, Max Fredrik; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivina, Anna; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jacka, Petr; Jackson, Paul; Jacobs, Ruth Magdalena; Jain, Vivek; Jäkel, Gunnar; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Javurkova, Martina; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jelinskas, Adomas; Jen-La Plante, Imai; Jenni, Peter; Jeong, Jihyun; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Morales, Fabricio Andres; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, Christian; Johnson, William Joseph; Jon-And, Kerstin; Jones, Roger; Jones, Samuel David; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Junggeburth, Johannes Josef; Juste Rozas, Aurelio; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanjir, Luka; Kano, Yuya; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kar, Deepak; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karpov, Sergey; Karpova, Zoya; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kay, Ellis; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kellermann, Edgar; Kempster, Jacob Julian; Kendrick, James; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khodinov, Alexander; Khoo, Teng Jian; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kiehn, Moritz; Kilby, Callum; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; Kirchmeier, David; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitali, Vincent; Kivernyk, Oleh; Kladiva, Eduard; Klapdor-Kleingrothaus, Thorwald; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klingl, Tobias; Klioutchnikova, Tatiana; Klitzner, Felix Fidelio; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolb, Mathis; Koletsou, Iro; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinides, Vasilis; Konstantinidis, Nikolaos; Konya, Balazs; Kopeliansky, Revital; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kourlitis, Evangelos; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitrii; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Krauss, Dominik; Kremer, Jakub Andrzej; Kretzschmar, Jan; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Jiri; Kroll, Joe; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kulinich, Yakov Petrovich; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kupfer, Tobias; Kuprash, Oleg; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; La Ruffa, Francesco; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lack, David Philip John; Lacker, Heiko; Lacour, Didier; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, Jörn Christian; Langenberg, Robert Johannes; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Lapertosa, Alessandro; Laplace, Sandrine; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Lau, Tak Shun; Laudrain, Antoine; Law, Alexander; Laycock, Paul; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne; Lee, Claire Alexandra; Lee, Graham Richard; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehmann Miotto, Giovanna; Leight, William Axel; Leisos, Antonios; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Lerner, Giuseppe; Leroy, Claude; Les, Robert; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Dave; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Liang; Li, Qi; Li, Quanyin; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lie, Ki; Liem, Sebastian; Limosani, Antonio; Lin, Chiao-ying; Lin, Kuan-yu; Lin, Tai-Hua; Linck, Rebecca Anne; Lindquist, Brian Edward; Lionti, Anthony; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Little, Jared David; Liu, Bingxuan; Liu, Bo; Liu, Hao; Liu, Hongbin; Liu, Jesse; Liu, Jianbei; Liu, Kun; Liu, Minghui; Liu, Peilian; Liu, Yang; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo, Cheuk Yee; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loesle, Alena; Loew, Kevin Michael; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez, Jorge; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lou, Xuanhong; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lozano Bahilo, Jose Julio; Lu, Haonan; Lu, Nan; Lu, Yun-Ju; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Luise, Ilaria; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lutz, Margaret Susan; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyu, Feng; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Mader, Wolfgang; Madsen, Alexander; Madysa, Nico; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magerl, Veronika; Maidantchik, Carmen; Maier, Thomas; Maio, Amélia; Majersky, Oliver; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mankinen, Katja Hannele; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantoani, Matteo; Manzoni, Stefano; Marceca, Gino; March, Luis; Marchese, Luigi; Marchiori, Giovanni; Marcisovsky, Michal; Marin Tobon, Cesar Augusto; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marshall, Zach; Martensson, Mikael; Marti-Garcia, Salvador; Martin, Christopher Blake; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Mason, Lara Hannan; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Thomas; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McKay, Madalyn; McLean, Kayla; McMahon, Steve; McNamara, Peter Charles; McNicol, Christopher John; McPherson, Robert; Mdhluli, Joyful Elma; Meadows, Zachary Alden; Meehan, Samuel; Megy, Theo; Mehlhase, Sascha; Mehta, Andrew; Meideck, Thomas; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Mellenthin, Johannes Donatus; Melo, Matej; Meloni, Federico; Melzer, Alexander; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Merlassino, Claudia; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Millar, Declan Andrew; Miller, David; Miller, Robert; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mirto, Alessandro; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mkrtchyan, Tigran; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, Alice Polyxeni; Morris, John; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Mosulishvili, Nugzar; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murin, Pavel; Murray, Bill; Murrone, Alessia; Muškinja, Miha; Mwewa, Chilufya; Myagkov, Alexey; Myers, John; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Napolitano, Fabrizio; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Michael Edward; Nemecek, Stanislav; Nemethy, Peter; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Newman, Paul; Ng, Tsz Yu; Ng, Sam Yanwing; Nguyen, Duong Hai; Nguyen, Hoang Dai Nghia; Nguyen Manh, Tuan; Nibigira, Emery; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforou, Nikiforos; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishu, Nishu; Nisius, Richard; Nitsche, Isabel; Nitta, Tatsumi; Nobe, Takuya; Nodulman, Lawrence; Noguchi, Yohei; Nomachi, Masaharu; Nomidis, Ioannis; Nomura, Marcelo Ayumu; Nooney, Tamsin; Nordberg, Markus; Nordkvist, Bjoern; Norjoharuddeen, Nurfikri; Novak, Tadej; Novgorodova, Olga; Novotny, Radek; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes De Moura Junior, Natanael; Nurse, Emily; Nuti, Francesco; O'Connor, Kelsey; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Oh, Alexander; Oh, Seog; Ohm, Christian; Oide, Hideyuki; Okawa, Hideki; Okazaki, Yuta; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver, Jason; Olsson, Joakim; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oppen, Henrik; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orgill, Emily Claire; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacey, Holly Ann; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganini, Michela; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panizzo, Giancarlo; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parida, Bibhuti; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasner, Jacob Martin; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pasuwan, Patrawan; Pataraia, Sophio; Pater, Joleen; Pathak, Atanu; Pauly, Thilo; Pearson, Benjamin; Pedersen, Maiken; Pedraza Diaz, Lucia; Pedraza Lopez, Sebastian; Pedro, Rute; Pedro Martins, Filipe Manuel; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Peralva, Bernardo; Perego, Marta Maria; Pereira Peixoto, Ana Paula; Perepelitsa, Dennis; Peri, Francesco; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettee, Mariel; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Pham, Thu; Phillips, Forrest Hays; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pinamonti, Michele; Pinfold, James; Pitt, Michael; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Podberezko, Pavel; Poettgen, Ruth; Poggi, Riccardo; Poggioli, Luc; Pogrebnyak, Ivan; Pohl, David-leon; Pokharel, Ishan; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Ponomarenko, Daniil; Pontecorvo, Ludovico; Popeneciu, Gabriel Alexandru; Portillo Quintero, Dilia María; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potti, Harish; Poulsen, Trine; Poveda, Joaquin; Powell, Thomas Dennis; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proklova, Nadezda; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puigdengoles, Carles; Puri, Akshat; Puzo, Patrick; Qian, Jianming; Qin, Yang; Quadt, Arnulf; Queitsch-Maitland, Michaela; Qureshi, Anum; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rashid, Tasneem; Raspopov, Sergii; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravina, Baptiste; Ravinovich, Ilia; Rawling, Jacob Henry; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Resseguie, Elodie Deborah; Rettie, Sebastien; Reynolds, Elliot; Rezanova, Olga; Reznicek, Pavel; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ripellino, Giulia; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rivera Vergara, Juan Cristobal; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Roberts, Rhys Thomas; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocco, Elena; Roda, Chiara; Rodina, Yulia; Rodriguez Bosca, Sergi; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Rodríguez Vera, Ana María; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Röhrig, Rainer; Roland, Christophe Pol A; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossini, Lorenzo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Rothberg, Joseph; Rousseau, David; Roy, Debarati; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Rüttinger, Elias Michael; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Sabatini, Paolo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Sahu, Arunika; Sahu, Sushmita; Saimpert, Matthias; Saito, Masahiko; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakharov, Alexander; Salamani, Dalila; Salamanna, Giuseppe; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sampsonidou, Despoina; Sánchez, Javier; Sanchez Pineda, Arturo Rodolfo; Sandaker, Heidi; Sander, Christian Oliver; Sanders, Harold; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sano, Yuta; Sansoni, Andrea; Santoni, Claudio; Santos, Helena; Santoyo Castillo, Itzebelt; Sapronov, Andrey; Saraiva, João; Sargsyan, Laura; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savard, Pierre; Savic, Natascha; Sawada, Ryu; Sawyer, Craig; Sawyer, Lee; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaeffer, Jan; Schaepe, Steffen; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharmberg, Nicolas; Schegelsky, Valery; Scheirich, Daniel; Schenck, Ferdinand; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schildgen, Lara Katharina; Schillaci, Zachary Michael; Schioppa, Enrico Junior; Schioppa, Marco; Schleicher, Katharina; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schulte, Alexandra; Schultz-Coulon, Hans-Christian; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Sciandra, Andrea; Sciolla, Gabriella; Scornajenghi, Matteo; Scuri, Fabrizio; Scutti, Federico; Scyboz, Ludovic Michel; Searcy, Jacob; Sebastiani, Cristiano David; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seiss, Todd; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Semprini-Cesari, Nicola; Sen, Sourav; Senkin, Sergey; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Severini, Horst; Šfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shahinian, Jeffrey David; Shaikh, Nabila Wahab; Shalyugin, Andrey; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Sharma, Abhishek; Sharma, Abhishek; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shen, Yu-Ting; Sherafati, Nima; Sherman, Alexander David; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shipsey, Ian Peter Joseph; Shirabe, Shohei; Shiyakova, Mariya; Shlomi, Jonathan; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silva Jr, Manuel; Silverstein, Samuel; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simon, Manuel; Simonenko, Alexander; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Siral, Ismet; Sivoklokov, Serguei; Sivolella Gomes, Andressa; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smiesko, Juraj; Smirnov, Nikita; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Soffa, Aaron Michael; Soffer, Abner; Søgaard, Andreas; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solin, Alexandre; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Weimin; Sopczak, Andre; Sopkova, Filomena; Sosa, David; Sotiropoulou, Calliope Louisa; Sottocornola, Simone; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spiteri, Dwayne Patrick; Spousta, Martin; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanitzki, Marcel Michael; Stapf, Birgit Sylvia; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Stark, Simon Holm; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Stegler, Martin; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Thomas James; Stewart, Graeme; Stockton, Mark; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Stupak, John; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultan, D M S; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sydorenko, Alexander; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Tahirovic, Elvedin; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takasugi, Eric Hayato; Takeda, Kosuke; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tang, Fukun; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarek Abouelfadl Mohamed, Ahmed; Tarem, Shlomit; Tarna, Grigore; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Alan James; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Tee, Amy Selvi; Teixeira-Dias, Pedro; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Thais, Savannah Jennifer; Theveneaux-Pelzer, Timothée; Thiele, Fabian; Thomas, Juergen; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tian, Yun; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorova-Nova, Sharka; Todt, Stefanie; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomiwa, Kehinde Gbenga; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Tosciri, Cecilia; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Treado, Colleen Jennifer; Trefzger, Thomas; Tresoldi, Fabio; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trovatelli, Monica; Trovato, Fabrizio; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsai, Fang-ying; Tseng, Jeffrey; Tsiareshka, Pavel; Tsirintanis, Nikolaos; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tylmad, Maja; Tzovara, Eftychia; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Uno, Kenta; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vadla, Knut Oddvar Hoie; Vaidya, Amal; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valente, Marco; Valentinetti, Sara; Valero, Alberto; Valéry, Loïc; Vallance, Robert Adam; Vallier, Alexis; Valls Ferrer, Juan Antonio; Van Daalen, Tal Roelof; Van Den Wollenberg, Wouter; van der Graaf, Harry; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vari, Riccardo; Varnes, Erich; Varni, Carlo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Furelos, David; Vazquez Schroeder, Tamara; Veatch, Jason; Vecchio, Valentina; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Vergel Infante, Carlos Miguel; Verkerke, Wouter; Vermeulen, Ambrosius Thomas; Vermeulen, Jos; Vetterli, Michel; Viaux Maira, Nicolas; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Viret, Sébastien; Vishwakarma, Akanksha; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von Buddenbrock, Stefan; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wagner-Kuhr, Jeannine; Wahlberg, Hernan; Wahrmund, Sebastian; Wakamiya, Kotaro; Walbrecht, Verena Maria; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Ann Miao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Peilong; Wang, Qing; Wang, Renjie; Wang, Rongkun; Wang, Rui; Wang, Song-Ming; Wang, Wei; Wang, Weitao; Wang, Wenxiao; Wang, Yufeng; Wang, Zirui; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Weatherly, Pierce; Webb, Aaron Foley; Webb, Samuel; Weber, Christian; Weber, Michele; Weber, Sebastian Mario; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weirich, Marcel; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Weston, Thomas; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Aaron; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Whitmore, Ben William; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Wilkins, Lewis Joseph; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winkels, Emma; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wobisch, Markus; Wolf, Anton; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Vincent Wai Sum; Woods, Natasha Lee; Worm, Steven; Wosiek, Barbara; Woźniak, Krzysztof; Wraight, Kenneth; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xia, Ligang; Xu, Da; Xu, Hanlin; Xu, Lailin; Xu, Tairan; Xu, Wenhao; Yabsley, Bruce; Yacoob, Sahal; Yajima, Kazuki; Yallup, David; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamanaka, Takashi; Yamane, Fumiya; Yamatani, Masahiro; Yamazaki, Tomohiro; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Siqi; Yang, Yi-lin; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yigitbasi, Efe; Yildirim, Eda; Yorita, Kohei; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Yu, Jaehoon; Yu, Jie; Yue, Xiaoguang; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, Georgios; Zaffaroni, Ettore; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zambito, Stefano; Zanzi, Daniele; Zaripovas, Donatas Ramilas; Zeißner, Sonja Verena; Zeitnitz, Christian; Zemaityte, Gabija; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zgubič, Miha; Zhang, Dengfeng; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Peng; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Yu; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhou, Bing; Zhou, Chen; Zhou, Li; Zhou, Maosen; Zhou, Mingliang; Zhou, Ning; Zhou, You; Zhu, Cheng Guang; Zhu, Heling; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zhulanov, Vladimir; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; Zoch, Knut; Zorbas, Theodore Georgio; Zou, Rui; zur Nedden, Martin; Zwalinski, Lukasz

    2018-01-01

    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter's performance during the years 2008-2012 using cosmic-ray muon events and proton-proton collision data at centre-of-mass energies of 7 and 8 TeV with a total integrated luminosity of nearly 30 fb$^{-1}$. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The combination of energy calibration methods and time calibration proved excellent performance, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton-proton collisions is presented. The results demonstrate excellent performance in a...

  19. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    Science.gov (United States)

    Rutherfoord, John; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 1034 cm-2 s-1. The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.

  20. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40 MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  1. Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    Marx, M.D.; Rijssenbeek, M.

    1990-01-01

    This report discusses the following topics: the central calorimeter; and installation; commissioning; and calorimeter beam tests; the central drift chamber; cosmic ray and beam tests; chamber installation and commissioning; and software development; and SSC activities: the EMPACT project

  2. The front-end data conversion and readout electronics for the CMS ECAL upgrade

    Science.gov (United States)

    Mazza, G.; Cometti, S.

    2018-03-01

    The High Luminosity LHC (HL-LHC) will require a significant upgrade of the readout electronics for the CMS Electromagnetic Calorimeter (ECAL). The Very Front-End (VFE) output signal will be sampled at 160 MS/s (i.e. four times the current sampling rate) with a 13 bits resolution. Therefore, a high-speed, high-resolution ADC is required. Moreover, each readout channel will produce 2.08 Gb/s, thus requiring a fast data transmission circuitry. A new readout architecture, based on two 12 bit, 160 MS/s ADCs, lossless data compression algorithms and fast serial links have been developed for the ECAL upgrade. These functions will be integrated in a single ASIC which is currently under design in a commercial CMOS 65 nm technology using radiation damage mitigation techniques.

  3. Generators, Calorimeter Trigger and J/ψ production at LHCb

    CERN Document Server

    Robbe, P

    This document presents results related to the preparation of the physics program ofLHCb: generator software development, calorimeter trigger commissioning and measurement of J/psi production. A detailed simulation is mandatory to developthe analysis tools needed for this program and a detailed generator framework hasbeen implemented which describes for example B mixing and CP violation in B decays in the LHCb hadronic environment. For hadronic decay modes, the trigger of the experiment is based at the first level on information provided by the calorimeters, and in particular the hadronic calorimeter. The large J/psi production cross-section at the LHC allows to perform, with the first data recorded, a measurement of the J/psi differential cross-section and to confront it with theoretical models to test QCD in the heavy quark sector.

  4. Search for pair-produced long-lived neutral particles decaying in the ATLAS hadronic calorimeter in $pp$ collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boddy, Christopher Richard; Boehler, Michael; Boek, Thorsten Tobias; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bundock, Aaron Colin; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Chen, Yujiao; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiefari, Giovanni; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Chouridou, Sofia; Chow, Bonnie Kar Bo; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuciuc, Constantin-Mihai; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Daniells, Andrew Christopher; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Do Valle Wemans, André; Dobos, Daniel; Doglioni, Caterina; Doherty, Tom; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Dwuznik, Michal; Dyndal, Mateusz; Ebke, Johannes; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Florez Bustos, Andres Carlos; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Franconi, Laura; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Glonti, George; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goeringer, Christian; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Grebenyuk, Oleg; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Groth-Jensen, Jacob; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guicheney, Christophe; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Hall, David; Halladjian, Garabed; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Erik; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; La Rosa, Alessandro; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laier, Heiko; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Lester, Christopher Michael; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeno, Mayuko; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marques, Carlos; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Mechnich, Joerg; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Thibaut; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pearce, James; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Perrino, Roberto; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Poddar, Sahill; Podlyski, Fabrice; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Przysiezniak, Helenka; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Randle-Conde, Aidan Sean; Rangel-Smith, Camila; Rao, Kanury; Rauscher, Felix; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Ridel, Melissa; Rieck, Patrick; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sauvage, Gilles; Sauvan, Emmanuel; Savard, Pierre; Savu, Dan Octavian; Sawyer, Craig; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scott, Bill; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellers, Graham; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosebee, Mark; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Topilin, Nikolai; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Virzi, Joseph; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chao; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittig, Tobias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wright, Michael; Wu, Mengqing; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yanush, Serguei; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Lei; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Lei; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Zinonos, Zinonas; Ziolkowski, Michael; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zutshi, Vishnu; Zwalinski, Lukasz

    2015-04-09

    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3 fb$^{-1}$ of data collected in proton--proton collisions at $\\sqrt{s}$ = 8 TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeV to 900 GeV, and a long-lived neutral particle mass from 10 GeV to 150 GeV.

  5. Non-compensation of the ATLAS barrel combined calorimeter prototype

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.A.; Kuz'min, M.V.

    1998-01-01

    The e / π ratio for the ATLAS Barrel Combined Calorimeter Prototype, composed from electromagnetic LArg calorimeter and hadronic Tile calorimeter was investigated. Response of Combined Calorimeter on pions and electrons in the energy region of 20-300 GeV was studied. Found e / h = 1.37 ± 0.01 ± 0.02 is in good agreement with the results from previous Combined Calorimeter tests but has more precisions

  6. Managing Controversies in the Fuzzy Front End

    DEFF Research Database (Denmark)

    Christiansen, John K.; Gasparin, Marta

    2016-01-01

    This research investigates the controversies that emerge in the fuzzy front end (FFE) and how they are closed so the innovation process can move on. The fuzzy front has been characterized in the literature as a very critical phase, but controversies in the FFE have not been studied before....... The analysis investigates the microprocesses around the controversies that emerge during the fuzzy front end of four products. Five different types of controversies are identified: profit, production, design, brand and customers/market. Each controversy represents a threat, but also an opportunity to search...

  7. VHDL Implementation of Feature-Extraction Algorithm for the PANDA Electromagnetic Calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Guliyev, E.; Lemmens, P. J. J.; Löhner, H.; Tambave, G.

    2010-01-01

    The feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA detector at the future FAIR facility, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The use of modified firmware with the running on-line

  8. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.

    2012-01-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an

  9. Proportional wire calorimeters at ISABELLE

    International Nuclear Information System (INIS)

    Matthews, J.A.J.

    1979-01-01

    Gas calorimeters have recently increased in popularity because they provide a simple method of achieving a high degree of calorimeter segmentation with only a modest loss in energy resolution compared with liquid argon or scintillator calorimeters. High radiation levels at ISABELLE will result in gas calorimeter lifetimes similar to those of MWPCs, although the intermediate speed of these devices may cause some resolution degradation due to signal pileup. Schemes for calibration and monitoring gas calorimeters in situ must be evolved and will presumably utilize a combination of pulsers, imbedded 55 Fe sources, etc. Most of the recent development work on gas calorimeters has been centered on electromagnetic (em) calorimetry for large detectors at CESR and PEP. Data on the performance of gas calorimeters are given and compared with the liquid argon results of Hitlin et al. The hadronic gas calorimeter results of Anderson et al. are shown along with typical energy resolution results from various scintillator and liquid argon steel calorimeters

  10. Performance of the TGT liquid argon calorimeter and trigger system

    Science.gov (United States)

    Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Ban, J.; Bruncko, D.; Jusko, A.; Kocper, B.; Aderholz, M.; Brettel, H.; Dulny, B.; Dydak, F.; Fent, J.; Huber, J.; Jakobs, K.; Oberlack, H.; Schacht, P.; Bogolyubsky, M. Y.; Chekulaev, S. V.; Kiryunin, A. E.; Kurchaninov, L. L.; Levitsky, M. S.; Maksimov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.

    1996-02-01

    A novel concept of a liquid argon calorimeter, the "Thin Gap Turbine" (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a "circular data store" and standalone readout and play-back capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given.

  11. Performance of the TGT liquid argon calorimeter and trigger system

    International Nuclear Information System (INIS)

    Braunschweig, W.; Geuling, E.; Schoentag, M.

    1996-03-01

    A novel concept of a liquid argon calorimeter, the thin gap turbine (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a circular data store and standalone readout and playback capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given. (orig.)

  12. Performance of the TGT liquid argon calorimeter and trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Braunschweig, W.; Geulig, E.; Schoentag, M.; Siedling, R.; Wlochal, M.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Ban, J.; Bruncko, D.; Jusko, A.; Kocper, B.; Aderholz, M.; Brettel, H.; Dulny, B.; Dydak, F.; Fent, J.; Huber, J.; Jakobs, K.; Oberlack, H.; Schacht, P.; Bogolyubsky, M.Y.; Chekulaev, S.V.; Kiryunin, A.E.; Kurchaninov, L.L.; Levitsky, M.S.; Maksimov, V.V.; Minaenko, A.A.; Moiseev, A.M.; Semenov, P.A.; Tikhonov, V.V. [Tech. Hochschule Aachen (Germany). 1. Phys. Inst.]|[CERN, Geneva (Switzerland)]|[Joint Institute for Nuclear Research, Dubna (Russian Federation)]|[Institut fuer Hochenergiephysik der Universitaet Heidelberg, Heidelberg (Germany)]|[Institute of Experimental Physics, Slovak Academy of Sciences, Kosice (Slovakia)]|[Max-Planck-Institut fuer Physik, Muenchen (Germany)]|[Institute for High Energy Physics, Protvino (Russian Federation)

    1996-08-21

    A novel concept of a liquid argon calorimeter, the ``thin gap turbine`` (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a ``circular data store`` and standalone readout and play-back capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given. (orig.).

  13. Performance of the TGT liquid argon calorimeter and trigger system

    International Nuclear Information System (INIS)

    Braunschweig, W.; Geulig, E.; Schoentag, M.

    1996-01-01

    A novel concept of a liquid argon calorimeter, the 'Thin Gap Turbine' (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a 'circular data store' and standalone readout and playback capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given. 12 refs., 21 figs., 6 tabs

  14. Performance of the TGT liquid argon calorimeter and trigger system

    International Nuclear Information System (INIS)

    Braunschweig, W.; Geulig, E.; Schoentag, M.; Siedling, R.; Wlochal, M.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Putzer, A.; Rensch, B.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Ban, J.; Bruncko, D.; Jusko, A.; Kocper, B.; Aderholz, M.; Brettel, H.; Dulny, B.; Dydak, F.; Fent, J.; Huber, J.; Jakobs, K.; Oberlack, H.; Schacht, P.; Bogolyubsky, M.Y.; Chekulaev, S.V.; Kiryunin, A.E.; Kurchaninov, L.L.; Levitsky, M.S.; Maksimov, V.V.; Minaenko, A.A.; Moiseev, A.M.; Semenov, P.A.; Tikhonov, V.V.

    1996-01-01

    A novel concept of a liquid argon calorimeter, the ''thin gap turbine'' (TGT) calorimeter, is presented. A TGT test module, equipped with specially developed cold front-end electronics in radiation hard GaAs technology, has been operated in a particle beam. Results on its performance are given. A 40 MHz FADC system with a ''circular data store'' and standalone readout and play-back capability has been developed to test the properties of the TGT detector for trigger purposes. Results on trigger efficiency, response and energy resolution are given. (orig.)

  15. Studies on surface-mounted SiPMs in 2015 testbeam of a highly granular hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Sascha [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Collaboration: CALICE-D-Collaboration

    2016-07-01

    To achieve excellent jet energy resolution, a highly granular hadronic calorimeter is being developed within the CALICE collaboration. Therefore, about 8 million detector units consisting of scintillator tiles and silicon photomultipliers (SiPMs) will be installed in the final HCAL design. The usage of surface-mounted (SMD) SiPMs allows an automated mass assembly. During CERN SPS testbeam 2015, data for a prototype consisting of up to 11 layers of HCAL base units (HBU) was collected using electron, muon and pion beams. One of the layers was equipped with the first SMD HBU. Results and performance, especially of the SMD HBU are presented.

  16. ATLAS Tile Calorimeter extended barrel Side A assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  17. ATLAS Tile Calorimeter extended barrel side C, assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  18. Electronics development for the ATLAS liquid argon calorimeter trigger and readout for future LHC running

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Walter

    2017-02-11

    The upgrade of the LHC will provide 7 times greater instantaneous and 10 times greater total luminosities than assumed in the original design of the ATLAS Liquid Argon (LAr) Calorimeters. Radiation tolerance criteria and an improved trigger system with higher acceptance rate and longer latency require an upgrade of the LAr readout electronics. In the first upgrade phase in 2019–2020, a trigger readout with up to 10 times higher granularity will be implemented. This allows an improved reconstruction of electromagnetic and hadronic showers and will reduce the background for electron, photon and energy-flow signals at the first trigger level. The analog and digital signal processing components are currently in their final design stages and a fully functional demonstrator system is operated and tested on the LAr Calorimeters. In a second upgrade stage in 2024–2026, the readout of all 183,000 LAr Calorimeter cells will be performed without trigger selection at 40 MHz sampling rate and 16 bit dynamic range. Calibrated energies of all cells will be available at the second trigger level operating at 1 MHz, in order to allow further mitigation of pile-up effects in energy reconstruction. Radiation tolerant, low-power front-end electronics optimized for high pile-up conditions are currently being developed, including pre-amplifier, ADC and serializer components in 65–180 nm technology. This contribution will give an overview of the future LAr readout electronics and present research results from the two upgrade programs.

  19. The ATLAS Tile Calorimeter Performance at LHC

    CERN Document Server

    Molander, S; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment at LHC. The TileCal pays a major role in detecting hadrons, jets, hadronic decays of tau leptons and measuring the missing transverse energy. Due to the very good signal to noise ratio it assists the muon spectrometer in the identification and reconstruction of muons, which are also a tool for the in situ energy scale validation. The results presented here stem from the data collection in dedicated calibration runs, in cosmic rays data-taking and in LHC collisions along 3 years of operation. The uniformity, stability and precision of the energy scale, the time measurement capabilities and the robustness of the performance against pile-up are exposed through the usage of hadronic and muon final states and confirm the design expectations.

  20. Hadrons in a highly granular silicon-tungsten electromagnetic calorimeter - Top quark production at the International Linear Collider

    International Nuclear Information System (INIS)

    Doublet, P.

    2011-10-01

    The International Linear Collider (ILC) is a proposed e + e - collider with a center-of-mass energy of 500 GeV or more, aimed at precision measurements, e.g. of a light Higgs boson that could be discovered soon at the Large Hadron Collider. Its detectors foresee the use of fine grained calorimeters to achieve the desired accuracy. This thesis presents the study of the response to hadrons of a highly granular silicon-tungsten electromagnetic calorimeter (SiW ECAL), and the study of top quark pair production at the ILC. The SiW ECAL prototype developed by the CALICE collaboration was tested with beams of charged particles at FNAL in May and July 2008. After selecting single negatively charged pions entering the ECAL, its fine granularity is used to introduce a classification among four types of events, used to describe hadronic interactions. Motivated by extra-dimensional models which may explain the A FB b LEP anomaly by modifying the couplings of third generation quarks to the Z boson, the semileptonic decay of the top quark is studied with a full simulation of the proposed ILD detector for the ILC at center-of-mass energy of √(s)=500 GeV and integrated luminosity L=500 fb -1 . Detector performances permit to reach efficiencies larger than 70% in finding those events with a purity larger than 95%. This translates into a relative accuracy of about 1% on both the left-right asymmetry of top production A LR 0,t and the top forward-backward asymmetry A FB t with electrons polarized at 80% and no polarization of the positrons. The relative uncertainties in the left and right couplings of the top quark to the Z boson could be as good as 0.9% and 1.5%. (author)

  1. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  2. Calibration and Performance of the ATLAS Tile Calorimeter During the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00221190; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) covers the central part of the ATLAS experiment and provides important information for the reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling hadronic calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by charged particles in tiles is transmitted by wavelength-shifting fibres to photomultipliers, where it is converted to electric pulses and further processed by the on-detector electronics located in the outermost part of the calorimeter. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalize the calorimeter response at each stage of the signal production, from scintillation light to digitisation. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton col...

  3. Concepts for a Muon Accelerator Front-End

    Energy Technology Data Exchange (ETDEWEB)

    Stratakis, Diktys [Fermilab; Berg, Scott [Brookhaven; Neuffer, David [Fermilab

    2017-03-16

    We present a muon capture front-end scheme for muon based applications. In this Front-End design, a proton bunch strikes a target and creates secondary pions that drift into a capture channel, decaying into muons. A series of rf cavities forms the resulting muon beams into a series of bunches of differerent energies, aligns the bunches to equal central energies, and initiates ionization cooling. We also discuss the design of a chicane system for the removal of unwanted secondary particles from the muon capture region and thus reduce activation of the machine. With the aid of numerical simulations we evaluate the performance of this Front-End scheme as well as study its sensitivity against key parameters such as the type of target, the number of rf cavities and the gas pressure of the channel.

  4. Test beam studies for the atlas tile calorimeter readout electronics

    CERN Document Server

    Rodriguez Perez, Andrea; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system for the Tile hadronic calorimeter (TileCal) of the ATLAS experiment is needed. A prototype of the upgrade TileCal electronics has been tested using the beam from the Super Proton Synchrotron (SPS) accelerator at CERN. Data were collected with beams of muons, electrons and hadrons at various incident energies and impact angles. The muon data allow to study the response dependence on the incident point and angle in a cell and inter-calibration of the response between cells. The electron data are used to determine the linearity of the electron energy measurement. The hadron data allow to determined the calorimeter response to pions, kaons and protons and tune the calorimeter simulation to that data. The results of the ongoing data analyses are discussed in the presentation.

  5. Calibration and monitoring of the ATLAS Tile calorimeter

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). PMT signals are then digitized at 40~MHz and stored on detector and are only transferred off detector once the first level trigger acceptance has been confirmed. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator b...

  6. Electromagnetic shower detector-calorimeters

    International Nuclear Information System (INIS)

    Appel, J.A.

    1975-01-01

    A brief review of the state-of-the-art of electromagnetic calorimeters is presented. The choice of detector based on the experimental requirements in cost, spatial resolution, energy resolution, and hadron rejection is discussed

  7. Beam tests of the ZEUS barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Bienz, T; Caldwell, A; Chen, L; Derrick, M; Gialas, I; Hamri, A; Imlay, R; Kartik, S; Kim, H J; Kinnel, T; Kreutzmann, H; Li, C G; Lim, J N; Loveless, R; Lu, B; Mallik, U; McLean, K W; McNeil, R; Metcalf, W; Musgrave, B; Oh, B Y; Park, S; Parsons, J A; Reeder, D; Repond, J; Ritz, S; Roco, M T.P.; Sandler, P H; Sciulli, F; Smith, W H; Talaga, R L; Tzanakos, G; Wai, L; Wang, M Z; Whitmore, J; Wu, J; Yang, S [Argonne National Lab., IL (United States) Columbia Univ., New York, NY (United States) Nevis Labs., Irvington-on-Hudson, NY (United States) Univ. of Iowa, Iowa City, IA (United States) Louisiana State Univ., Baton Rouge, LA (United States) Ohio State Univ., Columbus, OH (United States) Pennsylvania State Univ., University Park, PA (United States) Virginia Polytechnic Inst., and State Univ., Blacksburg, VA (United States) Univ. of Wisconsin, Madison, WI (United States)

    1993-11-15

    A fully compensating uranium-scintillator calorimeter was constructed for the ZEUS detector at HERA. Several of the barrel calorimeter modules were subjected to beam tests at Fermilab before shipping them to DESY for installation. The calibrations of the modules used beams of electrons and hadrons, measuring the uniformity of the response, and checking the resolution. The runs also provided opportunity to test a large fraction of the actual ZEUS calorimeter readout system in an integrated beam environment more than one year before HERA turn on. The experiment utilized two computer controlled mechanical structures, one of which was capable of holding up to four modules in order to study shower containment, and a magnetic spectrometer with a high resolution beam tracking system. During two running periods, beams of 6 to 110 GeV containing e, [mu], [pi], and anti p were used. The results show energy resolutions of 35%/[radical]E for hadrons and 19%/[radical]E for electrons, uniformities at the 1% level, energy nonlinearity less than 1%, and equal response for electrons and hadrons. (orig.)

  8. Summary report of neutral detector subgroup

    International Nuclear Information System (INIS)

    Akerlof, C.; Bensinger, J.; Donaldson, G.

    1977-01-01

    The advantages and disadvantages of calorimeters for use at ISABELLE are discussed including hadron calorimeters, liquid argon calorimeters, uranium scintillator calorimeters, electromagnetic shower detectors, and iron plate calorimeters. A calorimeter is described that is suitable for electromagnetic and hadronic events and is constructed with a front section of narrow Pb strips to start and develop the electromagnetic shower. A section of U towers to contain hadronic showers follows. This calorimeter would shield out U radioactivity and measure the energy and position of all particles except neutrinos and muons

  9. ATLAS calorimeters: Run-2 performances and Phase-II upgrades

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} cm^{-2} s^{-1}$. A Liquid Argon-lead sampling (LAr) calorimeter is employed as electromagnetic and hadronic calorimeters, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. This presentation gives first an overview of the detector operation and data quality, as well as of the achieved performances of the ATLAS calorimetry system. Additionally the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) are presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to $L \\simeq 7.5 × 10^{34} cm^{-2} s^{-1}$ and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope with longer latenc...

  10. RF front-end world class designs

    CERN Document Server

    Love, Janine

    2009-01-01

    All the design and development inspiration and direction a harware engineer needs in one blockbuster book! Janine Love site editor for RF Design Line,columnist, and author has selected the very best RF design material from the Newnes portfolio and has compiled it into this volume. The result is a book covering the gamut of RF front end design from antenna and filter design fundamentals to optimized layout techniques with a strong pragmatic emphasis. In addition to specific design techniques and practices, this book also discusses various approaches to solving RF front end design problems and h

  11. Performance of the ATLAS Calorimeters and Commissioning for LHC Run-2

    CERN Document Server

    Rossetti, Valerio; The ATLAS collaboration

    2015-01-01

    The ATLAS general-purpose experiment at the Large Hadron Collider (LHC) is equipped with electromagnetic and hadronic liquid-argon (LAr) calorimeters and a hadronic scintillator-steel sampling calorimeter (TileCal) for measuring energy and direction of final state particles in the pseudorapidity range $|\\eta| < 4.9$. The calibration and performance of the calorimetry system was established during beam tests, cosmic ray muon measurements and in particular the first three years of pp collision data-taking. During this period, referred to as Run-1, approximately 27~fb$^{-1}$ of data have been collected at the center-of-mass energies of 7 and 8~TeV. Results on the calorimeter operation, monitoring and data quality, as well as their performance will be presented, including the calibration and stability of the electromagnetic scale, response uniformity and time resolution. These results demonstrate that the LAr and Tile calorimeters perform excellently within their design requirements. The calorimetry system thu...

  12. The ATLAS liquid argon calorimeter: upgrade plans for the HL-LHC

    CERN Document Server

    Novgorodova, Olga; The ATLAS collaboration

    2015-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10$^{34}$ cm$^{-2}$s$^{-1}$. Liquid argon (LAr) sampling calorimeters are employed for electromagnetic and hadronic calorimetry. The LAr has to withstand a High Luminosity LHC (HL-LHC) operation of the collider and associated detectors at luminosities of up to (5-7)$\\times$10$^{34}$ cm$^{-2}$s$^{-1}$, with the goal of accumulating an integrated luminosity of 3000 fb$^{-1}$. This is well beyond the values for which the detectors were designed. The electromagnetic and hadronic calorimeters will be able to tolerate the increased particle flux, but the performance of the forward calorimeter (FCal) will be affected. Two possible solutions for keeping the current performance are being discussed. The electronics readout will also need to withstand a 3-5 times larger radiation environment. In the hadronic endcap calorimeter (HEC) cold GaAs preampl...

  13. arXiv Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    INSPIRE-00664095

    2018-02-26

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5–1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including ...

  14. Forward production of J//psi/ in hadronic interactions and calibration of a large BGO electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Kaaret, P.E.

    1989-06-01

    In the first part of this thesis, we describe an analysis of J//psi/ produced in the forward direction in the reaction πN → μ + μ/sup /minus//X. The data for this analysis were collected by Fermilab experiment E615. We measured the cross section for J//psi/ production and the angular distribution of muons from J//psi/ decay. We found evidence for longitudinal polarization of J//psi/ produced in the kinematic limit where the J//psi/ carries a large fraction of the incident pion's longitudinal momentum. This is the first experimental observation of longitudinal polarization of J//psi/ produced in hadronic interactions. In the second part of this thesis, we describe the construction and calibration of a large Bismuth Germanante (BGO) electromagnetic calorimeter designed to study e + e/sup /minus// collisions at center-of-mass energies near the Z 0 mass. The calorimeter is a subdetector of the L3 detector and will be installed in the Large Electron Positron collider (LEP) of the European Organization for Nuclear Research. We present the results of a calibration of the calorimeter in an electron test beam at electron energies of 2, 10, and 50 GeV. We show that the accuracy of the calibration is 0.8% at 2 GeV, improving to better than 0.5% at 10 GeV and above. 65 refs., 72 figs., 21 tabs

  15. AIDA: concerted calorimeter development

    CERN Multimedia

    Felix Sefkow

    2013-01-01

    AIDA – the EU-funded project bringing together more than 80 institutes worldwide – aims at developing new detector solutions for future accelerators. Among the highlights reported at AIDA’s recent annual meeting in Frascati was the completion of an impressive calorimeter test beam programme, conducted by the CALICE collaboration over the past two years at CERN’s PS and SPS beam lines.   The CALICE tungsten calorimeter prototype under test at CERN. This cubic-metre hadron calorimeter prototype has almost 500,000 individually read-out electronics channels – more than all the calorimeters of ATLAS and CMS put together. Calorimeter development in AIDA is mainly motivated by experiments at possible future electron-positron colliders, namely ILC or CLIC. The physics requirements of such future machines demand extremely high-performance calorimetry. This is best achieved using a finely segmented system that reconstructs events using the so-called pa...

  16. Study of a Novel Concept for a Liquid Argon Calorimeter \

    CERN Multimedia

    2002-01-01

    % RD33 \\\\ \\\\ The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter prototype is proposed as a generic R\\&D project for a novel concept of calorimetry in proton-proton and electron-positron collider detectors: the $^{\\prime$Thin Gap Turbine$^{\\prime}$ (TGT). The TGT calorimeter has a modular construction, is flexible in its longitudinal and transverse granularity, and offers a uniform energy response and resolution, independent of the production angle of incident particles. An important aspect of the project is the development of fast, radiation-hard front-end electronics which is operating in the cold.

  17. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1991-07-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN-SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  18. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1992-01-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  19. Development of a custom monolithic device for data acquisition from a scintillating calorimeter at the superconducting super collider

    International Nuclear Information System (INIS)

    Ekenberg, T.; Dawson, J.W.; Talaga, R.L.; Stevens, A.E.; Haberichter, W.N.

    1991-01-01

    A clock-driven continuous sequential write/random read data acquisition architecture for a scintillating calorimeter at the SSC is presented. Simplicity of design and operation as well as potentially dead time-less operation are the motivations of this effort. The architecture minimizes the number of fast control signals, thereby reducing pickup from digital control lines by sensitive analog circuits in the front-end device. This architecture also reduces the logic necessary on the front-end device improving reliability and easing design and operation. Operation and design of the front-end device are discussed. 3 refs., 7 figs

  20. Performances of the ATLAS Hadronic Tile Calorimeter Modules for Electrons and Pions

    CERN Document Server

    Kulchitskii, Yu A

    2004-01-01

    With the aim of establishing of an electromagnetic energy scale of the ATLAS Tile calorimeter and understanding of performance of the calorimeter to electrons 12 \\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron calibration constants and electron energy resolutions some of these barrel and extended barrel modules at energies E = 10, 20, 50, 100 and 180 GeV for the cell-scan at $\\theta = 20^o$, the $\\eta$ scan and the tile scan at $90^o$. The average values of these constants are equal to $\\langle R_e \\rangle =1.157\\pm0.002$ pC/GeV for the cell-scan at $\\theta = 20^o$, $\\langle R_e \\rangle =1.143\\pm0.005$ pC/GeV for the $\\eta$-scan and $\\langle R_e\\rangle =1.196\\pm0.005$ pC/GeV for the tile-scan at $\\theta = 90^o$. The RMS values are the following: for the cell-scan is $RMS=2.6\\pm0.1$ \\%, for t...

  1. The H1 lead/scintillating-fibre calorimeter

    International Nuclear Information System (INIS)

    Appuhn, R.D.; Arndt, C.; Barrelet, E.

    1996-08-01

    The backward region of the H1 detector has been upgraded in order to provide improved measurement of the scattered electron in deep inelastic scattering events. The centerpiece of the upgrade is a high-resolution lead/scintillating-fibre calorimeter. The main design goals of the calorimeter are: good coverage of the region close to the beam pipe, high angular resolution and energy resolution of better than 2% for 30 GeV electrons. The calorimeter should be capable of providing coarse hadronic energy measurement and precise time information to suppress out-of-time background events at the first trigger level. It must be compact due to space restrictions. These requirements were fulfilled by constructing two separate calorimeter sections. The inner electromagnetic section is made of 0.5 mm scintillating plastic fibres embedded in a lead matrix. Its lead-to-fibre ratio is 2.3:1 by volume. The outer hadronic section consists of 1.0 mm diameter fibres with a lead-to-fibre ratio of 3.4:1. The mechanical construction of the new calorimeter and its assembly in the H1 detector are described. (orig.)

  2. The H1 lead/scintillating-fibre calorimeter

    International Nuclear Information System (INIS)

    Appuhn, R.-D.; Arndt, C.; Barrelet, E.

    1997-01-01

    The backward region of the H1 detector has been upgraded in order to provide improved measurement of the scattered electron in deep inelastic scattering events. The centerpiece of the upgrade is a high-resolution lead/scintillating-fibre calorimeter. The main design goals of the calorimeter are: good coverage of the region close to the beam pipe, high angular resolution and energy resolution of better than 2% for 30 GeV electrons. The calorimeter should be capable of providing coarse hadronic energy measurement and precise time information to suppress out-of-time background events at the first trigger level. It must be compact due to space restrictions. These requirements were fulfilled by constructing two separate calorimeter sections. The inner electromagnetic section is made of 0.5 mm scintillating plastic fibres embedded in a lead matrix. Its lead-to-fibre ratio is 2.3:1 by volume. The outer hadronic section consists of 1.0 mm diameter fibres with a lead-to-fibre ratio of 3.4:1. The mechanical construction of the new calorimeter and its assembly in the H1 detector are described. (orig.)

  3. Electromagnetic calorimeter for the HADES@FAIR experiment

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Ondřej; Blume, C.; Czyzycki, W.; Epple, E.; Fabbietti, L.; Galatyuk, T.; Golubeva, M.; Guber, F.; Hlaváč, S.; Ivashkin, A.; Kajetanowicz, M.; Kardan, B.; Koenig, W.; Kugler, Andrej; Lapidus, K.; Lisowski, E.; Pietraszko, J.; Reshetin, A.; Rost, A.; Salabura, P.; Sobolev, Yuri, G.; Tlustý, Pavel; Traxler, M.

    2014-01-01

    Roč. 9, MAY (2014), C05002 ISSN 1748-0221. [13th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD 2013). Siena, 7.10.2013-10.10.2013] R&D Projects: GA ČR GA13-06759S; GA MŠk LG12007 Institutional support: RVO:61389005 Keywords : Cherenkov detectors * calorimeters * front-end electronics for detector readout Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.399, year: 2014

  4. Development of a portable graphite calorimeter for photons and electrons

    International Nuclear Information System (INIS)

    McEwen, M.R.; Duane, S.

    1999-01-01

    The aim of this project is to develop a calorimeter for use in both electron and photon beams. The calorimeter should be more robust than the present NPL primary standard X-ray calorimeter and is designed to be sufficiently portable to enable measurements at clinical accelerators away from NPL. Although intended for therapy-level dosimetry, the new calorimeter can also be used for high-dose measurements at industrial facilities. The system consists of a front end (the calorimeter itself), means for thermal isolation and temperature control, and a measurement system based on thermistors in a DC Wheatstone bridge. The early part of the project focused on the development of a temperature control system sensitive enough to allow measurements of temperature rises of the order of 1 mK. The control system responds to the calorimeter, phantom and air temperatures and maintains the temperature of the calorimeter to within ± 0.2 mK over several hours. Initial operation at NPL in 6, 10 and 16 MV X-ray beams show that the system is capable of measurements of 1 Gy at 2 Gy/min with a random uncertainty of ± 0.5% (1 standard deviation). (author)

  5. Radiation-Hard Quartz Cerenkov Calorimeters

    International Nuclear Information System (INIS)

    Akgun, U.; Onel, Y.

    2006-01-01

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment

  6. Upgrading the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F

    2013-01-01

    This work summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2022. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  7. Indico front-end: From spaghetti to lasagna

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    We will present how we transitioned from legacy spaghetti UI code to a more coherent, easier to understand and maintain ecosystem of front-end technologies and facilities with a strong emphasis in reusable components. In particular, we will share with you: 1) how we use Sass to maintain our home-baked CSS, 2) how we survive in 2017 without front-end Javascript frameworks, and 3) how we use template macros and WTForms for generating consistent HTML transparently.

  8. Characterization of 900 four-anode photomultiplier tubes for use in 2013 hadronic forward calorimeter upgrade.

    CERN Document Server

    AUTHOR|(CDS)2081071

    The first 900 four-anode Photomultiplier Tubes (PMTs) have been evaluated for use in the 2013 Hadronic Forward (HF) calorimeter upgrade. HF is a part of the Compact Muon Solenoid (CMS), which is one of the two large general-purpose particle detectors of the Large Hadron Collider (LHC) at CERN in Geneva, Switzerland. HF requires 1728 PMTs. These small tubes are the sensitive light detectors that provide the output signals of HF. Before installing PMTs in HF, their quality control demands need to be satisfied. These tests, done at the University of Iowa, are designed in three categories to test seventeen different parameters for each PMT. The three most basic and most important groups of parameters are: dark current, gain (anode and cathode), and timing. There are secondary tests which are performed on a smaller percentage of the PMTs such as surface uniformity, double pulse and single photo-electron resolution. The PMTs that meet the specifications of HF will be sent to CERN where they are expected to be in us...

  9. ASIC Wafer Test System for the ATLAS Semiconductor Tracker Front-End Chip

    International Nuclear Information System (INIS)

    Anghinolfi, F.; Bialas, W.; Busek, N.; Ciocio, A.; Cosgrove, D.; Fadeyev, V.; Flacco, C.; Gilchriese, M.; Grillo, A.A.; Haber, C.; Kaplon, J.; Lacasta, C.; Murray, W.; Niggli, H.; Pritchard, T.; Rosenbaum, F.; Spieler, H.; Stezelberger, T.; Vu, C.; Wilder, M.; Yaver, H.; Zetti, F.

    2002-01-01

    An ASIC wafer test system has been developed to provide comprehensive production screening of the ATLAS Semiconductor Tracker front-end chip (ABCD3T). The ABCD3T[1] features a 128-channel analog front-end, a digital pipeline, and communication circuitry, clocked at 40 MHz, which is the bunch crossing frequency at the LHC (Large Hadron Collider). The tester measures values and tolerance ranges of all critical IC parameters, including DC parameters, electronic noise, time resolution, clock levels and clock timing. The tester is controlled by an FPGA (ORCA3T) programmed to issue the input commands to the IC and to interpret the output data. This allows the high-speed wafer-level IC testing necessary to meet the production schedule. To characterize signal amplitudes and phase margins, the tester utilizes pin-driver, delay, and DAC chips, which control the amplitudes and delays of signals sent to the IC under test. Output signals from the IC under test go through window comparator chips to measure their levels. A probe card has been designed specifically to reduce pick-up noise that can affect the measurements. The system can operate at frequencies up to 100 MHz to study the speed limits of the digital circuitry before and after radiation damage. Testing requirements and design solutions are presented

  10. Upgrade plans for the ATLAS Forward Calorimeter at the HL-LHC

    International Nuclear Information System (INIS)

    Rutherfoord, John

    2012-01-01

    Although data-taking at CERN's Large Hadron Collider (LHC) is expected to continue for a number of years, plans are already being developed for operation of the LHC and associated detectors at an increased instantaneous luminosity about 5 times the original design value of 10 34 cm −2 s −1 . The increased particle flux at this high luminosity (HL) will have an impact on many sub-systems of the ATLAS detector. In particular, in the liquid argon forward calorimeter (FCal), which was designed for operation at LHC luminosities, the associated increase in the ionization load at HL-LHC luminosities creates a number of problems which can degrade its performance. These include space-charge effects in the liquid argon gaps, excessive drop in potential across the gaps due to large HV supply currents through the protection resistors, and an increase in temperature which may cause the liquid argon to boil. One solution, which would require opening both End-Cap cryostats, is the construction and installation of new FCals with narrower liquid argon gaps, lowering the values of the protection resistors, and the addition of cooling loops. A second proposed solution, which does not require opening the cryostat cold volume, is the addition of a small, warm calorimeter in front of each existing FCal, resulting in a reduction of the particle flux to levels at which the existing FCal can operate normally.

  11. Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    Science.gov (United States)

    Quast, Thorben

    2018-02-01

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5-1.0 cm2 interspersed with absorbers. Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end ASIC (designed by the CALICE collaboration for ILC). In 2017, the setup has been extended with CALICE's AHCAL prototype, a scinitillator based sampling calorimeter, and it was further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end ASIC was used for the first time. We highlight final results from our studies in 2016, including position resolution as well as precision timing-measurements. Furthermore, the extended setup in 2017 is discussed and first results from beam tests with electrons and pions are shown.

  12. Beam Tests on the ATLAS Tile Calorimeter Demonstrator Module

    CERN Document Server

    Valdes Santurio, Eduardo; The ATLAS collaboration

    2018-01-01

    The Large Hadron Collider (LHC) Phase II upgrade aims to increase the accelerator luminosity by a factor of 5-10. Due to the expected higher radiation levels and the aging of the current electronics, a new readout system of the ATLAS experiment hadronic calorimeter (TileCal) is needed. A prototype of the electronics – the Demonstrator - has been tested exposing a module of the calorimeter to particles at the Super Proton Synchrotron (SPS) accelerator of CERN. Data were collected with beams of muons, electrons and hadrons and muons, at various incident energies and impact angles. The measurements aim to check the calibration and to determine the performance the detector exploiting the features of the interactions of the muons, electrons and hadrons with matter. The results of the ongoing data analysis are discussed in the presentation.

  13. Effects of high-energy particle showers on the embedded front-end electronics of an electromagnetic calorimeter for a future lepton collider

    CERN Document Server

    Adloff, C.; Repond, J.; Smith, J.; Trojand, D.; Xia, L.; Baldolemar, E.; Li, J.; Park, S.T.; Sosebee, M.; White, A.P.; Yu, J.; Mikami, Y.; Watson, N.K.; Mavromanolakis, G.; Thomson, M.A.; Ward, D.R.; Yan, W.; Benchekroun, D.; Hoummada, A.; Khoulaki, Y.; Benyamna, M.; Carloganu, C.; Fehr, F.; Gay, P.; Manen, S.; Royer, L.; Blazey, G.C.; Dyshkant, A.; Zutshi, V.; Hostachy, J.Y.; Morin, L.; Cornett, U.; David, D.; Fabbri, R.; Falley, G.; Gadow, K.; Garutti, E.; Gottlicher, P.; Gunter, C.; Karstensen, S.; Krivan, F.; Lucaci-Timoce, A.I.; Lu, S.; Lutz, B.; Marchesini, I.; Meyer, N.; Morozov, S.; Morgunov, V.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Vargas-Trevino, A.; Wattimena, N.; Wendt, O.; Feege, N.; Haller, J.; Richter, S.; Samson, J.; Eckert, P.; Kaplan, A.; Schultz-Coulon, H.Ch.; Shen, W.; Stamen, R.; Tadday, A.; Bilki, B.; Norbeck, E.; Onel, Y.; Kawagoe, K.; Uozumi, S.; Dauncey, P.D.; Magnan, A.M.; Bartsch, V.; Salvatore, F.; Laktineh, I.; Calvo Alamillo, E.; Fouz, M.C.; Puerta-Pelayo, J.; Frey, A.; Kiesling, C.; Simon, F.; Bonis, J.; Bouquet, B.; Callier, S.; Cornebise, P.; Doublet, Ph.; Dulucq, F.; Faucci Giannelli, M.; Fleury, J.; Li, H.; Martin-Chassard, G.; Richard, F.; de la Taille, Ch.; Poschl, R.; Raux, L.; Seguin-Moreau, N.; Wicek, F.; Anduze, M.; Boudry, V.; Brient, J.C.; Jeans, D.; Mora de Freitas, P.; Musat, G.; Reinhard, M.; Ruan, M.; Videau, H.; Marcisovsky, M.; Sicho, P.; Vrba, V.; Zalesak, J.; Belhorma, B.; Ghazlane, H.

    2011-01-01

    Application Specific Integrated Circuits, ASICs, similar to those envisaged for the readout electronics of the central calorimeters of detectors for a future lepton collider have been exposed to high-energy electromagnetic showers. A salient feature of these calorimeters is that the readout electronics will be embedded into the calorimeter layers. In this article it is shown that interactions of shower particles in the volume of the readout electronics do not alter the noise pattern of the ASICs. No signal at or above the MIP level has been observed during the exposure. The upper limit at the 95% confidence level on the frequency of faked signals is smaller than 1x10^{-5} for a noise threshold of about 60% of a MIP. For ASICs with similar design to those which were tested, it can thus be largely excluded that the embedding of the electronics into the calorimeter layers compromises the performance of the calorimeters.

  14. Idea management in support of pharmaceutical front end innovation

    DEFF Research Database (Denmark)

    Aagaard, Annabeth

    2012-01-01

    The pharmaceutical industry faces continuing pressures from rising R&D costs and depreciating value of patents, as patent lives is eroded by testing procedures and pressures from public authorities to cut health care costs. These challenges have increased the focus on shortening development times......, which again put pressure on the efficiency of front end innovation (FEI). In the attempt to overcome these various challenges pharmaceutical companies are looking for new models to support FEI. This paper explores in what way idea management can be applied as a tool in facilitation of front end...... innovation in practice. First I show through a literature study, how idea management and front end innovation are related and may support each other. Hereafter I apply an exploratory case study of front end innovation in eight medium to large pharmaceutical companies in examination of how idea management...

  15. Front-end electronics for the upgraded GMRT

    International Nuclear Information System (INIS)

    Raut, Anil N; Bhalerao, Vilas; Kumar, A Praveen

    2013-01-01

    This paper first describes briefly the existing front-end receiver in use at the GMRT observatory and then details the ongoing development of next generation receiver systems for the upgraded GMRT. It covers the design of the new, two stage, room temperature, low noise amplifiers with better noise performance and matching, and improved dynamic range that are being implemented for the 130–260 MHz, 250–500 MHz and 550–900 MHz bands of the upgraded GMRT front-end systems.

  16. Test beam results from the D0 end electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Roe, N.A.

    1991-11-01

    Test beam results are presented for the DO end electromagnetic calorimeter. Data were taken with electrons and pions ranging in energy from 5 GeV to 150 GeV. Results from the analysis of the test beam data are presented on energy resolution and linearity, stability and uniformity of response, position resolution and electron-pion separation

  17. Ultra-wideband wireless receiver front-end for high-speed indoor applications

    Directory of Open Access Journals (Sweden)

    Zhe-Yang Huang

    2014-12-01

    Full Text Available Low-noise, ultra-wideband (UWB wireless receiver front-end circuits were presented in this study. A two-stage common-source low-noise amplifier with wideband input impedance matching network, an active-balun and a double-balanced down-conversion mixer were adopted in the UWB wireless receiver front-end. The proposed wireless receiver front-end circuits were implemented in 0.18 μm radio-frequency-CMOS process. The maximum down-conversion power gain of the front-end is 25.8 dB; minimum single-sideband noise figure of the front-end is 4.9 dB over complete UWB band ranging from 3.1 to 10.6 GHz. Power consumption including buffers is 39.2 mW.

  18. Trigger-less readout system with pulse pile-up recovery for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Kavatsyuk, M.; Tambave, G.; Hevinga, M.; Lemmens, P. J. J.; Schakel, P.; Schreuder, F.; Speelman, R.; Löhner, H.

    2013-01-01

    A simple, efficient, and robust on-line data-processing scheme was developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt. The implementation of the processing algorithm in FPGA enables the construction of an almost dead-time

  19. arXiv Energy Reconstruction of Hadrons in highly granular combined ECAL and HCAL systems

    CERN Document Server

    Israeli, Yasmine

    2018-05-03

    This paper discusses the hadronic energy reconstruction of two combined electromagnetic and hadronic calorimeter systems using physics prototypes of the CALICE collaboration: the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) and the scintillator-SiPM based analog hadron calorimeter (AHCAL); and the scintillator-tungsten electromagnetic calorimeter (ScECAL) and the AHCAL. These systems were operated in hadron beams at CERN and FNAL, permitting the study of the performance in combined ECAL and HCAL systems. Two techniques for the energy reconstruction are used, a standard reconstruction based on calibrated sub-detector energy sums, and one based on a software compensation algorithm making use of the local energy density information provided by the high granularity of the detectors. The software compensation-based algorithm improves the hadronic energy resolution by up to 30% compared to the standard reconstruction. The combined system data show comparable energy resolutions to the one achieved for da...

  20. Programmer's guide to FFE: a fast front-end data-acquisition program

    International Nuclear Information System (INIS)

    Million, D.L.

    1983-05-01

    The Large Coil Test Facility project of the Fusion Energy Division has a data acquisition system which includes a large host computer and several small, peripheral front-end computers. The front-end processors handle details of data acquisition under the control of the host and pass data back to the host for storage. Some of the front ends are known as fast front ends and are required to collect a maximum of 64,000 samples each second. This speed and other hardware constraints resulted in a need for a stand-alone, assembly language task which could be downline loaded from the host system into the fast front ends. FFE (Fast Front End) was written to satisfy this need. It was written in the PDP-11 MACRO-11 assembly language for an LSI-11/23 processor. After the host loads the task into the front end, it controls the data acquisition process with a series of commands and parameters. This Programmer's Guide describes the structure and operation of FFE in detail from a programming point of view. A companion User's guide provides more information on the use of the program from the host system

  1. Data acquisition system for LHCb calorimeter

    International Nuclear Information System (INIS)

    Dai Gang; Gong Guanghua; Shao Beibei

    2007-01-01

    LHCb Calorimeter system is mainly used to identify and measure the energy of the photon, electron, hadron produced by the collision of proton. TELL1 is a common data acquisition platform based on FPGA for LHCb experiment. It is used to adopt custom data acquisition and process method for every detector and provide the data standard for the CPU matrix. This paper provides a novel DAQ and data process model in VHDL for Calorimeter. According to this model. We have built an effective Calorimeter DAQ system, which would be used in LHCb Experiment. (authors)

  2. Energy reconstruction of hadrons in highly granular combined ECAL and HCAL systems

    Science.gov (United States)

    Israeli, Y.

    2018-05-01

    This paper discusses the hadronic energy reconstruction of two combined electromagnetic and hadronic calorimeter systems using physics prototypes of the CALICE collaboration: the silicon-tungsten electromagnetic calorimeter (Si-W ECAL) and the scintillator-SiPM based analog hadron calorimeter (AHCAL); and the scintillator-tungsten electromagnetic calorimeter (ScECAL) and the AHCAL. These systems were operated in hadron beams at CERN and FNAL, permitting the study of the performance in combined ECAL and HCAL systems. Two techniques for the energy reconstruction are used, a standard reconstruction based on calibrated sub-detector energy sums, and one based on a software compensation algorithm making use of the local energy density information provided by the high granularity of the detectors. The software compensation-based algorithm improves the hadronic energy resolution by up to 30% compared to the standard reconstruction. The combined system data show comparable energy resolutions to the one achieved for data with showers starting only in the AHCAL and therefore demonstrate the success of the inter-calibration of the different sub-systems, despite of their different geometries and different readout technologies.

  3. Resistive Plate Chamber Digitization in a Hadronic Shower Environment

    CERN Document Server

    Deng, Z.

    2016-06-28

    The CALICE Semi-Digital Hadron Calorimeter (SDHCAL) technological prototype is a sampling calorimeter using Glass Resistive Plate Chamber detectors with a three-threshold readout as the active medium. This technology is one of the two options proposed for the hadron calorimeter of the International Large Detector for the International Linear Collider. The prototype was exposed to beams of muons, electrons and pions of different energies at the CERN Super Proton Synchrotron. To be able to study the performance of such a calorimeter in future experiments it is important to ensure reliable simulation of its response. In this paper we present our prototype simulation performed with GEANT4 and the digitization procedure achieved with an algorithm called SimDigital. A detailed description of this algorithm is given and the methods to determinate its parameters using muon tracks and electromagnetic showers are explained. The comparison with hadronic shower data shows a good agreement up to 50 GeV. Discrepancies are ...

  4. ELECTROMAGNET CALORIMETER (ECAL)

    CERN Multimedia

    R. Rusack

    Installation is under way of the last piece of the electromagnetic calorimeter. This is the preshower (ES) that sits in front of the two endcap calorimeters. The construction of the ES was completed in December and went through a detailed set of tests in December and January. The two preshower detectors have a total of 4300 silicon sensors with 137,000 strips. After final assembly and system testing in January, only two of the strips were found to be defective. Once CMS was fully opened a new support structure (‘Gazprom’) was put into place underneath the beam pipe, to support the Surkov platform, on which the preshower installation takes place. In the early hours of 26th February the first two Dees, which form the ‘ES+’ endcap,  were transported to P5 , a journey that took two and a half hours. The Dees, still inside environmental protection boxes, were then lowered  underground and moved to the ‘+’ end of CMS. Installation start...

  5. Shower development of particles with momenta from 15 GeV to 150 GeV in the CALICE scintillator-tungsten hadronic calorimeter

    CERN Document Server

    Chefdeville, M.; Repond, J.; Schlereth, J.; Xia, L.; Eigen, G.; Marshall, J.S.; Thomson, M.A.; Ward, D.R.; Alipour Tehrani, N.; Apostolakis, J.; Dannheim, D.; Elsener, K.; Folger, G.; Grefe, C.; Ivantchenko, V.; Killenberg, M.; Klempt, W.; van der Kraaij, E.; Linssen, L.; Lucaci-Timoce, A.-I.; Münnich, A.; Poss, S.; Ribon, A.; Roloff, P.; Sailer, A.; Schlatter, D.; Sicking, E.; Strube, J.; Uzhinskiy, V.; Chang, S.; Khan, A.; Kim, D.H.; Kong, D.J.; Oh, Y.D.; Blazey, G.C.; Dyshkant, A.; Francis, K.; Zutshi, V.; Giraud, J.; Grondin, D.; Hostachy, J.-Y.; Brianne, E.; Cornett, U.; David, D.; Falley, G.; Gadow, K.; Göttlicher, P.; Günter, C.; Hartbrich, O.; Hermberg, B.; Irles, A.; Karstensen, S.; Krivan, F.; Krüger, K.; Kvasnicka, J.; Lu, S.; Lutz, B.; Morozov, S.; Morgunov, V.; Neubüser, C.; Provenza, A.; Reinecke, M.; Sefkow, F.; Smirnov, P.; Terwort, M.; Tran, H.L.; Vargas-Trevino, A.; Garutti, E.; Laurien, S.; Matysek, M.; Ramilli, M.; Schröder, S.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Schultz-Coulon, H. -Ch.; Shen, W.; Stamen, R.; Bilki, B.; Onel, Y.; Kawagoe, K.; Hirai, H.; Sudo, Y.; Suehara, T.; Sumida, H.; Takada, S.; Tomita, T.; Yoshioka, T.; Wing, M.; Calvo Alamillo, E.; Fouz, M. -C.; Marin, J.; Puerta-Pelayo, J.; Verdugo, A.; Bobchenko, B.; Chadeeva, M.; Danilov, M.; Markin, O.; Mizuk, R.; Novikov, E.; Rusinov, V.; Tarkovsky, E.; Kirikova, N.; Kozlov, V.; Smirnov, P.; Soloviev, Y.; Besson, D.; Buzhan, P.; Popova, E.; Gabriel, M.; Kiesling, C.; van der Kolk, N.; Seidel, K.; Simon, F.; Soldner, C.; Szalay, M.; Tesar, M.; Weuste, L.; Amjad, M.S.; Bonis, J.; Cornebise, P.; Richard, F.; Pöschl, R.; Rouëné, J.; Thiebault, A.; Anduze, M.; Balagura, V.; Boudry, V.; Brient, J-C.; Cizel, J-B.; Cornat, R.; Frotin, M.; Gastaldi, F.; Haddad, Y.; Magniette, F.; Nanni, J.; Pavy, S.; Rubio-Roy, M.; Shpak, K.; Tran, T.H.; Videau, H.; Yu, D.; Callier, S.; Conforti di Lorenzo, S.; Dulucq, F.; Fleury, J.; Martin-Chassard, G.; de la Taille, Ch.; Raux, L.; Seguin-Moreau, N.; Cvach, J.; Gallus, P.; Havranek, M.; Janata, M.; Kovalcuk, M.; Lednicky, D.; Marcisovsky, M.; Polak, I.; Popule, J.; Tomasek, L.; Tomasek, M.; Ruzicka, P.; Sicho, P.; Smolik, J.; Vrba, V.; Zalesak, J.; Ieki, S.; Kamiya, Y.; Ootani, W.; Shibata, N.; Chen, S.; Jeans, D.; Komamiya, S.; Kozakai, C.; Nakanishi, H.; Götze, M.; Sauer, J.; Weber, S.; Zeitnitz, C.

    2015-12-10

    We present a study of showers initiated by electrons, pions, kaons, and protons with momenta from 15 GeV to 150 GeV in the highly granular CALICE analogue scintillator-tungsten hadronic calorimeter. The data were recorded at the CERN Super Proton Synchrotron in 2011. The analysis includes measurements of the calorimeter response to each particle type as well as measurements of the energy resolution and studies of the longitudinal and radial shower development for selected particles. The results are compared to Geant4 simulations (version 9.6.p02). In the study of the energy resolution we include previously published data with beam momenta from 1 GeV to 10 GeV recorded at the CERN Proton Synchrotron in 2010.

  6. The CMS Barrel Calorimeter Response to Particle Beams from 2 to 350 GeV/c

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Adzic, Petar; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Alemany-Fernandez, Reyes; Almeida, Nuno; Anagnostou, Georgios; Andelin, Daniel; Anderson, E Walter; Anfreville, Marc; Anicin, Ivan; Antchev, Georgy; Antunovic, Zeljko; Arcidiacono, Roberta; Arenton, Michael Wayne; Auffray, Etiennette; Argiro, Stefano; Askew, Andrew; Atramentov, Oleksiy; Ayan, S; Arcidy, M; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baccaro, Stefania; Baden, Drew; Baffioni, Stephanie; Bakirci, Mustafa Numan; Balazs, Michael; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barge, Derek; Barnes, Virgil E; Barney, David; Barone, Luciano; Bartoloni, Alessandro; Baty, Clement; Bawa, Harinder Singh; Baiatian, G; Bandurin, Dmitry; Beauceron, Stephanie; Bell, Ken W; Bencze, Gyorgy; Benetta, Robert; Bercher, Michel; Beri, Suman Bala; Bernet, Colin; Berntzon, Lisa; Berthon, Ursula; Besançon, Marc; Betev, Botjo; Beuselinck, Raymond; Bhatnagar, Vipin; Bhatti, Anwar; Biino, Cristina; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bodek, Arie; Bornheim, Adolf; Bose, Suvadeep; Bose, Tulika; Bourotte, Jean; Brett, Angela Mary; Brown, Robert M; Britton, David; Budd, Howard; Bühler, M; Burchesky, Kyle; Busson, Philippe; Camanzi, Barbara; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Carrera, E; Cartiglia, Nicolo; Cavallari, Francesca; Cerci, Salim; Cerutti, cM; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chen, E Augustine; Chen, Wan-Ting; Chen, Zheng-Yu; Chendvankar, Sanjay; Chipaux, Rémi; Choudhary, Brajesh C; Choudhury, Rajani Kant; Chung, Yeon Sei; Clarida, Warren; Cockerill, David J A; Combaret, Christophe; Conetti, Sergio; Cossutti, Fabio; Cox, Bradley; Cremaldi, Lucien Marcus; Cushman, Priscilla; Cussans, David; Dafinei, Ioan; Damgov, Jordan; Da Silva Di Calafiori, Diogo Raphael; Daskalakis, Georgios; Davatz, Giovanna; David, A; De Barbaro, Pawel; Debbins, Paul; Deiters, Konrad; Dejardin, Marc; Djordjevic, Milos; Deliomeroglu, Mehmet; Della Negra, Rodolphe; Della Ricca, Giuseppe; Del Re, Daniele; Demianov, A; De Min, Alberto; Denegri, Daniel; Depasse, Pierre; de Visser, Theo; Descamps, Julien; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Diemoz, Marcella; Di Marco, Emanuele; Dimitrov, Lubomir; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Duboscq, Jean Etienne; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Dutta, Dipanwita; Dzelalija, Mile; Efthymiopoulos, I; Elias, John E; Peisert, A; El-Mamouni, H; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Evangelou, Ioannis; Evans, David; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Fenyvesi, Andras; Ferri, Federico; Fisher, Wade Cameron; Flower, Paul S; Franci, Daniele; Franzoni, Giovanni; Freeman, Jim; Freudenreich, Klaus; Funk, Wolfgang; Ganjour, Serguei; Gargiulo, Corrado; Gascon, Susan; Gataullin, Marat; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Geerebaert, Yannick; Genchev, Vladimir; Gentit, François-Xavier; Gerbaudo, Davide; Gershtein, Yuri; Ghezzi, Alessio; Ghodgaonkar, Manohar; Gilly, Jean; Givernaud, Alain; Gleyzer, Sergei V; Gninenko, Sergei; Go, Apollo; Gobbo, Benigno; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Goncharov, Petr; Gong, Datao; Govoni, Pietro; Grant, Nicholas; Gras, Philippe; Grassi, Tullio; Green, Dan; Greenhalgh, R J S; Gribushin, Andrey; Grinev, B; Guevara Riveros, Luz; Guillaud, Jean-Paul; Gurtu, Atul; Murat Guler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Haguenauer, Maurice; Halyo, Valerie; Hamel de Monchenault, Gautier; Hansen, Sten; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heath, Helen F; Heering, Arjan Hendrix; Heister, Arno; Heltsley, Brian; Hill, Jack; Hintz, Wieland; Hirosky, Robert; Hobson, Peter R; Honma, Alan; Hou, George Wei-Shu; Hsiung, Yee; Hunt, Adam; Husejko, Michal; Ille, Bernard; Ilyina, N; Imlay, Richard; Ingram, D; Ingram, Quentin; Isiksal, Engin; Jarry, Patrick; Jarvis, Chad; Jeong, Chiyoung; Jessop, Colin; Johnson, Kurtis F; Jones, John; Jovanovic, Dragoslav; Kaadze, Ketino; Kachanov, Vassili; Kaftanova, V; Kailas, Swaminathan; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kataria, Sushil Kumar; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Kennedy, Bruce W; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kloukinas, Kostas; Kodolova, Olga; Kohli, Jatinder Mohan; Kokkas, Panagiotis; Kolberg, Ted; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krasnikov, Nikolai; Krinitsyn, Alexander; Krokhotin, Andrey; Krpic, Dragomir; Kryshkin, V; Kubota, Yuichi; Kubrik, A; Kuleshov, Sergey; Kumar, Arun; Kumar, P; Kunori, Shuichi; Kuo, Chen-Cheng; Kurt, Pelin; Kyberd, Paul; Kyriakis, Aristotelis; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Ledovskoy, Alexander; Lee, Sang Joon; Leshev, Georgi; Lethuillier, Morgan; Levchuk, Leonid; Lin, Sheng-Wen; Lin, Willis; Linn, Stephan; Lintern, A L; Litvine, Vladimir; Litvintsev, Dmitri; Litov, Leander; Lobolo, L; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Los, Serguei; Lubinsky, V; Luckey, Paul David; Lukanin, Vladimir; Lustermann, Werner; Lynch, Clare; Ma, Yousi; Machado, Emanuel; Mahlke-Krüger, H; Maity, Manas; Majumder, Gobinda; Malberti, Martina; Malclès, Julie; Maletic, Dimitrije; Mandjavidze, Irakli; Mans, Jeremy; Manthos, Nikolaos; Maravin, Yurii; Marchica, Carmelo; Marinelli, Nancy; Markou, Athanasios; Markou, Christos; Marlow, Daniel; Markowitz, Pete; Marone, Matteo; Martínez, German; Mathez, Hervé; Matveev, Viktor; Mavrommatis, Charalampos; Maurelli, Georges; Mazumdar, Kajari; Meridiani, Paolo; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Mikhailin, V; Milenovic, Predrag; Miller, Michael; Milleret, Gérard; Miné, Philippe; Möller, A; Mohammadi-Najafabadi, M; Mohanty, Ajit Kumar; Moissenz, P; Mondal, Naba Kumar; Moortgat, Filip; Mossolov, Vladimir; Mur, Michel; Musella, Pasquale; Musienko, Yuri; Nagaraj, P; Nardulli, Alessandro; Nash, Jordan; Nédélec, Patrick; Negri, Pietro; Newman, Harvey B; Nikitenko, Alexander; Norbeck, Edwin; Nessi-Tedaldi, Francesca; Obertino, Maria Margherita; Olson, Jonathan; Onel, Yasar; Onengüt, G; Organtini, Giovanni; Orimoto, Toyoko; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paganoni, Marco; Paganini, Pascal; Paktinat, S; Pal, Andras; Palma, Alessandro; Panev, Bozhidar; Pant, Lalit Mohan; Papadakis, Antonakis; Papadakis, Ioannis; Papadopoulos, Ioannis; Paramatti, Riccardo; Parracho, P; Pastrone, Nadia; Patil, Mandakini Ravindra; Patterson, Juliet Ritchie; Pauss, Felicitas; Penzo, Aldo; Petrakou, Eleni; Petrushanko, Sergey; Petrosian, A; Phillips II, David; Pikalov, Vladimir; Piperov, Stefan; Piroué, Pierre; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Ptochos, Fotios; Puljak, Ivica; Pullia, Antonino; Punz, Thomas; Puzovic, Jovan; Qian, Weiming; Ragazzi, Stefano; Rahatlou, Shahram; Ralich, Robert; Rande, J; Razis, Panos A; Redaelli, Nicola; Reddy, L; Reidy, Jim; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Ribeiro, Pedro Quinaz; Röser, Ulf; Rogalev, Evgueni; Rogan, Christopher; Roh, Youn; Rohlf, James; Romanteau, Thierry; Rondeaux, Françoise; Ronquest, Michael; Ronzhin, Anatoly; Rosowsky, André; Rovelli, Chiara; Ruchti, Randy; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Ryazanov, Anton; Safronov, Grigory; Sala, Leonardo; Salerno, Roberto; Sanders, David A; Santanastasio, Francesco; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schinzel, Dietrich; Schmidt, Ianos; Seez, Christopher; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Sharp, Peter; Shepherd-Themistocleous, Claire; Siamitros, Christos; Sillou, Daniel; Singh, Jas Bir; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Silva, J; Silva, Pedro; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shiu, Jing-Ge; Shivpuri, Ram Krishen; Shukla, Prashant; Shumeiko, Nikolai; Smirnov, Vitaly; Smith, Brian; Smith, Vincent J; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Sproston, Martin; Stefanovich, R; Stockli, F; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suter, Henry; Suzuki, Ichiro; Swain, John; Tabarellide Fatis, T; Talov, Vladimir; Takahashi, Maiko; Tcheremoukhine, Alexandre; Teller, Olivier; Teplov, Konstantin; Theofilatos, Konstantinos; Thiebaux, Christophe; Thomas, Ray; Timciuc, Vladlen; Timlin, Claire; Titov, Maksym; Tobias, A; Tonwar, Suresh C; Topakli, Huseyin; Topkar, Anita; Triantis, Frixos A; Troshin, Sergey; Tully, Christopher; Turchanovich, L; Tyurin, Nikolay; Ueno, Koji; Ulyanov, A; Uzunian, Andrey; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Varela, Joao; Vasil ev, A; Velasco, Mayda; Vergili, Mehmet; Verma, Piyush; Verrecchia, Patrice; Vesztergombi, Gyorgy; Veverka, Jan; Vichoudis, Paschalis; Vidal, Richard; Virdee, Tejinder; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Von Gunten, Hans Peter; Wang, Lei; Wang, Minzu; Wardrope, David; Weber, Markus; Weng, Joanna; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Williams, Jennifer C; Whitmore, Juliana; Won, Steven; Wu, Shouxiang; Yang, Yong; Yaselli, Ignacio; Yazgan, Efe; Yetkin, Taylan; Yohay, Rachel; Zabi, Alexandre; Zálán, Peter; Zamiatin, Nikolai; Zarubin, Anatoli; Zelepoukine, Serguei; Zeyrek, Mehmet; Zhang, Jia-Wen; Zhang, Lin; Zhu, Kejun; Zhu, Ren-Yuan

    2008-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7$\\pm$1.6$\\%$ and the constant term is 7.4$\\pm$0.8$\\%$. The corrected mean response remains constant within 1.3$\\%$ rms.

  7. Calibration of the ATLAS calorimeters and discovery potential for massive top quark resonances at the LHC

    CERN Document Server

    Bergeaas Kuutmann, E; Jon-And, K; Hellman, S

    2010-01-01

    ATLAS is a multi-purpose detector which has recently started to take data at the LHC at CERN. This thesis describes the tests and calibrations of the central calorimeters of ATLAS and outlines a search for heavy top quark pair resonances.The calorimeter tests were performed before the ATLAS detector was assembled at the LHC, in such a way that particle beams of known energy were targeted at the calorimeter modules. In one of the studies presented here, modules of the hadronic barrel calorimeter, TileCal, were exposed to beams of pions of energies between 3 and 9 GeV. It is shown that muons from pion decays in the beam can be separated from the pions, and that the simulation of the detector correctly describes the muon behaviour. In the second calorimeter study, a scheme for local hadronic calibration is developed and applied to single pion test beam data in a wide range of energies, measured by the combination of the electromagnetic barrel calorimeter and the TileCal hadronic calorimeter. The calibration meth...

  8. Align the Front End First.

    Science.gov (United States)

    Perry, Jim

    1995-01-01

    Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)

  9. ATLAS Calorimeters: Run-2 performance and Phase-II upgrade

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimter. This presentation will give first an overview of the detector operation and data quality, as well as the achieved performance of the ATLAS calorimetry system. Additionally, the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) will be presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 10^{34} cm^{−2} s^{−1} and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope wit...

  10. Light-Front Holography and the Light-Front Schrodinger Equation

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; de Teramond, Guy

    2012-08-15

    One of the most important nonperturbative methods for solving QCD is quantization at fixed light-front time {tau} = t+z=c - Dirac's 'Front Form'. The eigenvalues of the light-front QCD Hamiltonian predict the hadron spectrum and the eigensolutions provide the light-front wavefunctions which describe hadron structure. More generally, we show that the valence Fock-state wavefunctions of the light-front QCD Hamiltonian satisfy a single-variable relativistic equation of motion, analogous to the nonrelativistic radial Schrodinger equation, with an effective confining potential U which systematically incorporates the effects of higher quark and gluon Fock states. We outline a method for computing the required potential from first principles in QCD. The holographic mapping of gravity in AdS space to QCD, quantized at fixed light-front time, yields the same light front Schrodinger equation; in fact, the soft-wall AdS/QCD approach provides a model for the light-front potential which is color-confining and reproduces well the light-hadron spectrum. One also derives via light-front holography a precise relation between the bound-state amplitudes in the fifth dimension of AdS space and the boost-invariant light-front wavefunctions describing the internal structure of hadrons in physical space-time. The elastic and transition form factors of the pion and the nucleons are found to be well described in this framework. The light-front AdS/QCD holographic approach thus gives a frame-independent first approximation of the color-confining dynamics, spectroscopy, and excitation spectra of relativistic light-quark bound states in QCD.

  11. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    by J. Spalding and A. Skuja

    2010-01-01

    Operations and Maintenance All HCAL sub-detectors participated throughout the recent data taking with 7 TeV collisions. A timing scan of HF was performed to optimize the timing across the detectors and to set the overall time position of the ~10-ns wide signals within the 25-ns integration time slice. This position was chosen to ensure that the trigger primitives in physics events are generated synchronously at the desired bunch crossing, while also providing discrimination between the calorimeter signals and anomalous signals due to interactions within the photomultiplier tubes. This timing discrimination is now used in the standard filter algorithms for anomalous signals. For HB and HE, once the statistics needed to assess the timing of a sufficient number of channels was accumulated, it was verified that the time settings determined with cosmic, splash events and initial collision data were appropriate for the 7 TeV collision data taking. A further fine-tuning of the HB and HE time settings will be perfo...

  12. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    All the HCAL calorimeters are ready for data-taking in 2011 and participated fully in the cosmic running and initial beam operations in the last few weeks. Several improvements were made during the winter technical stop, including replacement of the light-guide sleeves in HF, improvements to the low voltage power connections, and separation of HF from HB and HE in the DAQ partitions. During the 2010 running a form of anomalous noise in the HF was identified as being caused by scintillation when charged particles pass through a portion of the air light-guide sleeve. This portion was constructed from a non-conductive mirror-like material called “HEM”. To suppress these anomalous signals, during the recent winter technical stop all sleeves in the detector were replaced with sleeves made of Tyvek. The detector has been recommissioned with all channels fully operational. Recalibration of the detector will be required due to the differing reflectivity of the new sleeves compared with the HEM sl...

  13. FACILITATING RADICAL FRONT-END INNOVATION THROUGH TARGETED HR PRACTICES

    DEFF Research Database (Denmark)

    Aagaard, Annabeth

    2017-01-01

    This study examines how radical front end innovation can be actively facilitated through selected and targeted HR practices and bundles of HR practices. The empirical field is an explorative case study of front end innovation and HR practices in the pharmaceutical industry, with an in-depth case ...

  14. Prospects for and tests of hadron calorimetry with silicon

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E. [Univ. of Oregon, OR (United States). Dept. of Physics; Gabriel, Tony A. [Oak Ridge National Lab., TN (United States); Rancoita, P. G. [INFN, Milan (Italy)

    1989-03-01

    Hadron calorimetry with silicon may provide crucial capabilities in experiments at the high luminosity, high energy colliders of the future, particularly due to silicon's fast intrinsic speed and absolute calibration. The important underlying processes of our understanding of hadron calorimeters are reviewed to set the framework for the presentation of recent calculations of the expected performance of silicon detector based hadron calorimeters. Such devices employing uranium are expected to achieve the compensation condition (that is, the ratio of the most probable electron signal to hadron signal (e/h) is approx.1.0) based on the understanding that has been derived from the uranium-liquid argon and uranium-plastic scintillator systems. In fact, even lead-silicon calorimeters are found to achieve the attractive value for the e/h ratio of 1.16 at 10 GeV. An experimental test of these predictions is underway at CERN by the SICAPO Collaboration. 64 refs., 19 figs.

  15. Prospects for and tests of hadron calorimetry with silicon

    International Nuclear Information System (INIS)

    Brau, J.E.; Gabriel, T.A.; Rancoita, P.G.

    1989-03-01

    Hadron calorimetry with silicon may provide crucial capabilities in experiments at the high luminosity, high energy colliders of the future, particularly due to silicon's fast intrinsic speed and absolute calibration. The important underlying processes of our understanding of hadron calorimeters are reviewed to set the framework for the presentation of recent calculations of the expected performance of silicon detector based hadron calorimeters. Such devices employing uranium are expected to achieve the compensation condition (that is, the ratio of the most probable electron signal to hadron signal (e/h) is ∼1.0) based on the understanding that has been derived from the uranium-liquid argon and uranium-plastic scintillator systems. In fact, even lead-silicon calorimeters are found to achieve the attractive value for the e/h ratio of 1.16 at 10 GeV. An experimental test of these predictions is underway at CERN by the SICAPO Collaboration. 64 refs., 19 figs

  16. CMOS front-end electronics for radiation sensors

    CERN Document Server

    AUTHOR|(CDS)2071026

    2015-01-01

    This book offers a comprehensive treatment of front-end electronics for radiation detection. It discusses the fundamental principles of signal processing for radiation detectors and describes circuits at the level of functional building blocks, omitting transistor-level implementation. It also covers important system-level topics commonly found in the world of front-end electronics for radiation sensors. The book develops the topics in detail, with a constant focus on practical problems. It also provides real implementation examples that offer insights and stimuli for more experienced engineers already working in the field.

  17. Calibration of the ATLAS hadronic barrel calorimeter TileCal using 2008, 2009 and 2010 cosmic-ray muon data

    CERN Document Server

    Weng, Z

    2012-01-01

    The ATLAS iron-scintillator hadronic calorimeter (TileCal) provides precision measurements of jets and missing transverse energy produced in the LHC proton-proton collisions. Results assessing the calorimeter calibration obtained using cosmic ray muons collected in 2008, 2009 and 2010 are presented. The analysis was based on the comparison between experimental and simulated data, and addresses three issues. First the average non-uniformity of the response of the cells within a layer was estimated to be about ±2% . Second, the average response of different layers is found to be not inter-calibrated, considering the sources of error. The largest difference between the responses of two layers is ±4% . Finally, the differences between the energy scales of each layer obtained in this analysis and the value set at test beams using electrons was found to range between -3% and +1%. The sources of uncertainties in the response measurements are strongly correlated, including the uncertainty in the simulation. The tot...

  18. Family reunion for the UA2 calorimeter

    CERN Multimedia

    Abha Eli Phoboo

    2015-01-01

    After many years in CERN’s Microcosm exhibition, the last surviving UA2 central calorimeter module has been moved to Hall 175, the technical development laboratory of the ATLAS Tile Hadronic Calorimeter (Tilecal). The UA2 and ATLAS calorimeters are cousins, as both were designed by Otto Gildemeister. Now side by side, the calorimeters illustrate the progress made in sampling organic scintillator calorimeters over the past 35 years.   The ATLAS Tile Calorimeter prototypes (left) and the UA2 central calorimeter (right) in Hall 175. (Image: Mario Campanelli/ATLAS.) From 1981 to 1990, the UA2 experiment was one of the two detectors on CERN’s flagship accelerator, the SPS. At the heart of the UA2 detector was the central calorimeter. It was made up of 24 slices – each weighing four tonnes – arranged like orange segments around the collision point. These calorimeter slices played a central role in the research carried out by UA2 for the discovery of W bosons...

  19. Jet energy measurements with the ZEUS prototype calorimeter

    International Nuclear Information System (INIS)

    Kroeger, W.

    1993-01-01

    The uranium scintillator calorimeter of the ZEUS detector is designed to achieve an excellent energy calibration and the best possible energy resolution for jets. Therefore the response of the prototype calorimeter to jets has been measured using an interaction trigger. The mean response and energy resolution was measured for jets of 50 GeV - 100 GeV and compared to the one for pions. Within the ZEUS detector dead material is placed in front of the calorimeter. The influence of 4 cm and 10 cm thick aluminium absorbers in front of the calorimeter was measured. The charged multiplicity was measured in front and behind the aluminium absorber. With these multiplicities the energy loss in the absorber is corrected. The correction has been done so that the mean response with absorber is equal to the mean response without absorber. The improvement of the energy resolution is investigated. The measured results are compared with Monte Carlo simulations. (orig.) [de

  20. Electronics and triggering challenges for the CMS High Granularity Calorimeter

    Science.gov (United States)

    Lobanov, A.

    2018-02-01

    The High Granularity Calorimeter (HGCAL), presently being designed by the CMS collaboration to replace the CMS endcap calorimeters for the High Luminosity phase of LHC, will feature six million channels distributed over 52 longitudinal layers. The requirements for the front-end electronics are extremely challenging, including high dynamic range (0.2 fC-10 pC), low noise (~2000 e- to be able to calibrate on single minimum ionising particles throughout the detector lifetime) and low power consumption (~20 mW/channel), as well as the need to select and transmit trigger information with a high granularity. Exploiting the intrinsic precision-timing capabilities of silicon sensors also requires careful design of the front-end electronics as well as the whole system, particularly clock distribution. The harsh radiation environment and requirement to keep the whole detector as dense as possible will require novel solutions to the on-detector electronics layout. Processing the data from the HGCAL imposes equally large challenges on the off-detector electronics, both for the hardware and incorporated algorithms. We present an overview of the complete electronics architecture, as well as the performance of prototype components and algorithms.

  1. The Phase-2 electronics upgrade of the ATLAS liquid argon calorimeter system

    Science.gov (United States)

    Vachon, B.

    2018-03-01

    The LHC high-luminosity upgrade in 2024-2026 requires the associated detectors to operate at luminosities about 5-7 times larger than assumed in their original design. The pile-up is expected to increase to up to 200 events per proton bunch-crossing. The current readout of the ATLAS liquid argon calorimeters does not provide sufficient buffering and bandwidth capabilities to accommodate the hardware triggers requirements imposed by these harsh conditions. Furthermore, the expected total radiation doses are beyond the qualification range of the current front-end electronics. For these reasons an almost complete replacement of the front-end and off-detector readout system is foreseen for the 182,468 readout channels. The new readout system will be based on a free-running architecture, where calorimeter signals are amplified, shaped and digitized by on-detector electronics, then sent at 40 MHz to the off-detector electronics for further processing. Results from the design studies on the performance of the components of the readout system are presented, as well as the results of the tests of the first prototypes.

  2. Construction and beam-tests of silicon-tungsten prototype modules for the CMS High Granularity Calorimeter for HL-LHC

    CERN Document Server

    Quast, Thorben

    2017-01-01

    As part of its HL-LHC upgrade program, CMS is developing a High Granularity Calorimeter (HGCAL) to replace the existing endcap calorimeters. The HGCAL will be realised as a sampling calorimeter, including an electromagnetic compartment comprising 28 layers of silicon pad detectors with pad areas of 0.5 - 1.0 cm$^2$ interspersed with absorbers.Prototype modules, based on 6-inch hexagonal silicon pad sensors with 128 channels, have been constructed and include many of the features required for this challenging detector. In 2016, beam tests of sampling configurations made from these modules have been conducted both at FNAL and at CERN using the Skiroc2 front-end chip (designed for the CALICE experiment for ILC). This year, the setup is extended with CALICE's AHCAL prototype and it is further tested in dedicated beam tests at CERN. There, the new Skiroc2-CMS front-end chip is used for the first time.We present final results from our studies in 2016, including noise performance, calibration with MIPs, energy and p...

  3. Upgrade of the ATLAS Tile Calorimeter Electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2014-01-01

    This presentation summarizes the status of the on-detector and off-detector electronics developments for the Phase II Upgrade of the ATLAS Tile Calorimeter at the LHC scheduled around 2024. A demonstrator prototype for a slice of the calorimeter including most of the new electronics is planned to be installed in ATLAS in middle 2014 during the Long Shutdown. For the on-detector readout, three different front-end boards (FEB) alternatives are being studied: a new version of the 3-in-1 card, the QIE chip and a dedicated ASIC called FATALIC. The MainBoard will provide communication and control to the FEBs and the DaughterBoard will transmit the digitized data to the off-detector electronics in the counting room, where the sROD will perform processing tasks on them.

  4. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1980-01-01

    Attention is given to sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers. A very cursory overview is presented of some fundamental aspects of sampling calorimeters. First the properties of shower development are described for both the electromagnetic and hadronic cases. Then examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described

  5. Closing LHCb's calorimeter around the beam-pipe

    CERN Multimedia

    Kristic, R

    2008-01-01

    Photos 1 and 2 show the pre-shower, lead absorber and the scintillating pad detector layers moving in towards the beam-pipe. Photos 3,4 and 5 show the hadron calorimeter with both halves closed around the beam-pipe, to the left of the picture and, in the centre, half of the electromagnetic calorimeter closed in towards the beam-pipe.

  6. Prototype calorimeters for the NA3 experiment

    CERN Multimedia

    1975-01-01

    The NA3 Experiment was set-up on the North Area of the SPS by the CERN/ Ecole Polytechnique/College de France/ Orsay/Saclay Collaboration, to study high transverse momentum leptons and hadrons from hadron collisions. The calorimeters measured the energy of hadrons (prototype on the right) and leptons (prototype on the left). They used a new type of plastic scintillator (plexipop). (see CERN Courier of November 1975) energy (prototype on the right)

  7. The SDC central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Proudfoot, J.

    1992-01-01

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design.

  8. The SDC central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Proudfoot, J.; The SDC Collaboration

    1992-11-01

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R&D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design.

  9. MAC calorimeters and applications

    International Nuclear Information System (INIS)

    MAC Collaboration.

    1982-03-01

    The MAC detector at PEP features a large solid-angle electromagnetic/hadronic calorimeter system, augmented by magnetic charged-particle tracking, muon analysis and scintillator triggering. Its implementation in the context of electron-positron annihilation physics is described, with emphasis on the utilization of calorimetry

  10. Status of the Atlas Calorimeters: their performance after two years of LHC operation and plans for future upgrades

    CERN Document Server

    Solans, CA; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the Large Hadron Collider (LHC) at CERN. Its calorimeter system measures the energy and direction of final state particles with pseudo rapidity $|eta| < 4.9$. Accurate identification and measurement of the characteristics of electromagnetic objects (electrons/photons) are performed by liquid argon (LAr)-lead sampling calorimeters in the region $|eta| < 3.2$, using an innovative accordion geometry that provides a fast, uniform azimuthal response without gaps. The hadronic calorimeters measure the properties of hadrons, jets, and tau leptons, and also contribute to the measurement of the missing transverse energy and identification of muons. This is done in the region $|eta| < 1.7$ with a scintillator-steel sampling calorimeter, and in the region $1.4 < |eta| < 3.2$ with a copper-LAr sampling calorimeter. The coverage is extended to $|eta| < 4.9$ by an integrated forward calorimeter (FCal...

  11. Measuring Hadronic Jets at the ILC - From Particle Flow Calorimetry to the Higgs Self-Coupling

    CERN Document Server

    Hermberg, Benjamin

    2015-01-01

    This work deals with the development of a technical prototype of a highly segmented hadron calorimeter for precision measurements at the future International Linear Col- lider (ILC). The precision measurements at the ILC pose special challenges for both the detector technology as well as for the reconstruction methods. In this thesis two aspects to hadronic final states are examined. The first part deals with a prototype of a highly segmented hadronic calorimeter and the second part with kinematic Fits for the deter- mination of the Higgs self-coupling in decays of the Higgs boson into b quarks. The challenge for the examined prototype of the hadronic calorimeter is the demon- stration of the technical feasibility of a real detector. The ILC is pursuing the Particle Flow concept, as a consequence, it follows for the calorimeter a high granularity and an integrated readout electronics. Two important aspects of the calorimeter prototype are the channel-wise adjustable trigger threshold and the power-pulsing fun...

  12. Design and construction of the ZEUS barrel calorimeter

    International Nuclear Information System (INIS)

    Repond, J.

    1990-01-01

    The mechanical design and construction techniques of the barrel calorimeter for the ZEUS detector are presented. The calorimeter uses alternate layers of depleted uranium and scintillator with one radiation length sampling. The unit cell has e/h = 1 which yields an optimal energy resolution for hadronic jets. We discuss the placing of the structural components and cracks between modules. Details of the construction and assembly effort needed to realize the total calorimeter are reported. 4 figs., 1 tab

  13. The ATLAS Tile Calorimeter

    CERN Document Server

    Henriques Correia, Ana Maria

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics.

  14. The ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Henriques, A.

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)

  15. Irradiation studies of multimode optical fibres for use in ATLAS front-end links

    International Nuclear Information System (INIS)

    Mahout, G.; Pearce, M.; Andrieux, M-L.; Arvidsson, C-B.; Charlton, D.G.; Dinkespiler, B.; Dowell, J.D.; Gallin-Martel, L.; Homer, R.J.; Jovanovic, P.; Kenyon, I.R.; Kuyt, G.; Lundquist, J.; Mandic, I.; Martin, O.; Shaylor, H.R.; Stroynowski, R.; Troska, J.; Wastie, R.L.; Weidberg, A.R.; Wilson, J.A.; Ye, J.

    2000-01-01

    The radiation tolerance of three multimode optical fibres has been investigated to establish their suitability for the use in the front-end data links of the ATLAS experiment. Both gamma and neutron irradiation studies are reported. A step-index fibre with a pure silica core showed an induced attenuation of ∼0.05 dB/m at 330 kGy(Si) and 1x10 15 n(1 MeV Si)/cm 2 and is suitable for use with the inner detector links which operate at 40-80 Mb/s. A graded-index fibre with a predominantly germanium-doped core exhibits an induced attenuation of ∼0.1 dB/m at 800 Gy(Si) and 2x10 13 n(1 MeV Si)/cm 2 and is suitable for the calorimeter links which operate at 1.6 Gb/s. Measurements of the dose rate dependence of the induced attenuation indicate that the attenuation in ATLAS will be lower

  16. Test beam results from the D0 liquid argon end calorimeter electromagnetic module

    International Nuclear Information System (INIS)

    Spadafora, A.L.

    1991-08-01

    Results are presented from a test beam study of the D0 liquid argon end calorimeter electromagnetic module prior to its installation at the Fermilab Tevatron Collider. Using electron beams with energies ranging from 10--150 GeV we have obtained an energy resolution of 15.7%/√E(GeV) with a small constant term of 0.3% and a linearity of better than ±0.5%. The position resolution of the calorimeter is found to approximately 1 mm for 100 GeV electrons. 7 refs., 8 figs., 3 tabs

  17. Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    1993-01-01

    The work was directed in two complementary directions, the D0 experiment at Fermilab, and the GEM detector for the SSC. Efforts have been towards the data taking and analysis with the newly commissioned D0 detector at Fermilab in the bar pp Collider run that started in May 1992 and ended on June 1, 1993. We involved running and calibration of the calorimeter and tracking chambers, the second level trigger development, and various parts of the data analysis, as well as studies for the D0 upgrade planned in the second half of this decade. Another major accomplishment was the ''delivery'' of the Technical Design Report for the GEM SSC detector. Efforts to the overall detector and magnet design, design of the facilities, installation studies, muon system coordination, muon chamber design and tests, muon system simulation studies, and physics simulation studies. In this document we describe these activities separately

  18. Light-Front QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.

    2004-11-30

    In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.

  19. Light-Front Holography, Light-Front Wavefunctions, and Novel QCD Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    Light-Front Holography is one of the most remarkable features of the AdS/CFT correspondence. In spite of its present limitations it provides important physical insights into the nonperturbative regime of QCD and its transition to the perturbative domain. This novel framework allows hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space to be mapped to frame-independent light-front wavefunctions of hadrons in physical space-time. The model leads to an effective confining light-front QCD Hamiltonian and a single-variable light-front Schroedinger equation which determines the eigenspectrum and the light-front wavefunctions of hadrons for general spin and orbital angular momentum. The coordinate z in AdS space is uniquely identified with a Lorentz-invariant coordinate {zeta} which measures the separation of the constituents within a hadron at equal light-front time and determines the off-shell dynamics of the bound-state wavefunctions, and thus the fall-off as a function of the invariant mass of the constituents. The soft-wall holographic model modified by a positive-sign dilaton metric, leads to a remarkable one-parameter description of nonperturbative hadron dynamics - a semi-classical frame-independent first approximation to the spectra and light-front wavefunctions of meson and baryons. The model predicts a Regge spectrum of linear trajectories with the same slope in the leading orbital angular momentum L of hadrons and the radial quantum number n. The hadron eigensolutions projected on the free Fock basis provides the complete set of valence and non-valence light-front Fock state wavefunctions {Psi}{sub n/H} (x{sub i}, k{sub {perpendicular}i}, {lambda}{sub i}) which describe the hadron's momentum and spin distributions needed to compute the direct measures of hadron structure at the quark and gluon level, such as elastic and transition form factors, distribution amplitudes, structure functions, generalized parton distributions and transverse

  20. MMIC tuned front-end for a coherent optical receiver

    DEFF Research Database (Denmark)

    Petersen, Anders Kongstad; Jagd, A. M.; Ebskamp, F.

    1993-01-01

    A low-noise transformer tuned optical front-end for a coherent optical receiver is described. The front-end is based on a GaInAs/InP p-i-n photodiode and a full custom designed GaAs monolithic microwave integrated circuit (MMIC). The measured equivalent input noise current density is between 5-16 p...