WorldWideScience

Sample records for hadamard transform imaging

  1. Hadamard Transforms

    CERN Document Server

    Agaian, Sos; Egiazarian, Karen; Astola, Jaakko

    2011-01-01

    The Hadamard matrix and Hadamard transform are fundamental problem-solving tools in a wide spectrum of scientific disciplines and technologies, such as communication systems, signal and image processing (signal representation, coding, filtering, recognition, and watermarking), digital logic (Boolean function analysis and synthesis), and fault-tolerant system design. Hadamard Transforms intends to bring together different topics concerning current developments in Hadamard matrices, transforms, and their applications. Each chapter begins with the basics of the theory, progresses to more advanced

  2. Fast delta Hadamard transform

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Weston, G.S.

    1981-01-01

    In many fields (e.g., spectroscopy, imaging spectroscopy, photoacoustic imaging, coded aperture imaging) binary bit patterns known as m sequences are used to encode (by multiplexing) a series of measurements in order to obtain a larger throughput. The observed measurements must be decoded to obtain the desired spectrum (or image in the case of coded aperture imaging). Decoding in the past has used a technique called the fast Hadamard transform (FHT) whose chief advantage is that it can reduce the computational effort from N 2 multiplies of N log 2 N additions or subtractions. However, the FHT has the disadvantage that it does not readily allow one to sample more finely than the number of bits used in the m sequence. This can limit the obtainable resolution and cause confusion near the sample boundaries (phasing errors). Both 1-D and 2-D methods (called fast delta Hadamard transforms, FDHT) have been developed which overcome both of the above limitations. Applications of the FDHT are discussed in the context of Hadamard spectroscopy and coded aperture imaging with uniformly redundant arrays. Special emphasis has been placed on how the FDHT can unite techniques used by both of these fields into the same mathematical basis

  3. Single-pixel imaging by Hadamard transform and its application for hyperspectral imaging

    Science.gov (United States)

    Mizutani, Yasuhiro; Shibuya, Kyuki; Taguchi, Hiroki; Iwata, Tetsuo; Takaya, Yasuhiro; Yasui, Takeshi

    2016-10-01

    In this paper, we report on comparisons of single-pixel imagings using Hadamard Transform (HT) and the ghost imaging (GI) in the view point of the visibility under weak light conditions. For comparing the two methods, we have discussed about qualities of images based on experimental results and numerical analysis. To detect images by the TH method, we have illuminated the Hadamard-pattern mask and calculated by orthogonal transform. On the other hand, the GH method can detect images by illuminating random patterns and a correlation measurement. For comparing two methods under weak light intensity, we have controlled illuminated intensities of a DMD projector about 0.1 in signal-to-noise ratio. Though a process speed of the HT image was faster then an image via the GI, the GI method has an advantage of detection under weak light condition. An essential difference between the HT and the GI method is discussed about reconstruction process. Finally, we also show a typical application of the single-pixel imaging such as hyperspectral images by using dual-optical frequency combs. An optical setup consists of two fiber lasers, spatial light modulated for generating patten illumination, and a single pixel detector. We are successful to detect hyperspectrul images in a range from 1545 to 1555 nm at 0.01nm resolution.

  4. Optical image encryption using fresnel zone plate mask based on fast walsh hadamard transform

    Science.gov (United States)

    Khurana, Mehak; Singh, Hukum

    2018-05-01

    A new symmetric encryption technique using Fresnel Zone Plate (FZP) based on Fast Walsh Hadamard Transform (FWHT) is proposed for security enhancement. In this technique, bits of plain image is randomized by shuffling the bits randomly. The obtained scrambled image is then masked with FZP using symmetric encryption in FWHT domain to obtain final encrypted image. FWHT has been used in the cryptosystem so as to protect image data from the quantization error and for reconstructing the image perfectly. The FZP used in proposed scheme increases the key space and makes it robust to many traditional attacks. The effectiveness and robustness of the proposed cryptosystem has been analyzed on the basis of various parameters by simulating on MATLAB 8.1.0 (R2012b). The experimental results are provided to highlight suitability of the proposed cryptosystem and prove that the system is secure.

  5. Application of Hadamard transform in IMS

    International Nuclear Information System (INIS)

    Sha Miaomiao; Liu Weihao; Chen Yong; Jiang Dazhen

    2008-01-01

    Hadamard transform can improve the SNR by increasing the ion duty cycle in IMS. In this paper, the ion spectral signals were processed by Hadamard transform based on the IMS detector hardware platform. The results showed that Hadamard transform can greatly improve the SNR of the IMS detector in contrast with traditional method. (authors)

  6. Computationally Efficient Robust Color Image Watermarking Using Fast Walsh Hadamard Transform

    Directory of Open Access Journals (Sweden)

    Suja Kalarikkal Pullayikodi

    2017-10-01

    Full Text Available Watermark is the copy deterrence mechanism used in the multimedia signal that is to be protected from hacking and piracy such a way that it can later be extracted from the watermarked signal by the decoder. Watermarking can be used in various applications such as authentication, video indexing, copyright protection and access control. In this paper a new CDMA (Code Division Multiple Access based robust watermarking algorithm using customized 8 × 8 Walsh Hadamard Transform, is proposed for the color images and detailed performance and robustness analysis have been performed. The paper studies in detail the effect of spreading code length, number of spreading codes and type of spreading codes on the performance of the watermarking system. Compared to the existing techniques the proposed scheme is computationally more efficient and consumes much less time for execution. Furthermore, the proposed scheme is robust and survives most of the common signal processing and geometric attacks.

  7. Time-resolved crystallography using the Hadamard Transform

    Science.gov (United States)

    Yorke, Briony A.; Beddard, Godfrey S.; Owen, Robin L.; Pearson, Arwen R.

    2014-01-01

    A new method for performing time-resolved X-ray crystallographic experiments based on the Hadamard Transform is proposed and demonstrated. The time-resolution is defined by the underlying periodicity of the probe pulse sequence and the signal to noise is greatly improved compared to the fastest experiments depending on a single pulse. This approach is general and equally applicable to any spectroscopic or imaging measurement where the probe can be encoded. PMID:25282611

  8. A practical Hadamard transform spectrometer for astronomical application

    Science.gov (United States)

    Tai, M. H.

    1977-01-01

    The mathematical properties of Hadamard matrices and their application to spectroscopy are discussed. A comparison is made between Fourier and Hadamard transform encoding in spectrometry. The spectrometer is described and its laboratory performance evaluated. The algorithm and programming of inverse transform are given. A minicomputer is used to recover the spectrum.

  9. Discrete canonical transforms that are Hadamard matrices

    International Nuclear Information System (INIS)

    Healy, John J; Wolf, Kurt Bernardo

    2011-01-01

    The group Sp(2,R) of symplectic linear canonical transformations has an integral kernel which has quadratic and linear phases, and which is realized by the geometric paraxial optical model. The discrete counterpart of this model is a finite Hamiltonian system that acts on N-point signals through N x N matrices whose elements also have a constant absolute value, although they do not form a representation of that group. Those matrices that are also unitary are Hadamard matrices. We investigate the manifolds of these N x N matrices under the Sp(2,R) equivalence imposed by the model, and find them to be on two-sided cosets. By means of an algorithm we determine representatives that lead to collections of mutually unbiased bases.

  10. Signal-to-noise ratio analysis and evaluation of the Hadamard imaging technique

    Science.gov (United States)

    Jobson, D. J.; Katzberg, S. J.; Spiers, R. B., Jr.

    1977-01-01

    The signal-to-noise ratio performance of the Hadamard imaging technique is analyzed and an experimental evaluation of a laboratory Hadamard imager is presented. A comparison between the performances of Hadamard and conventional imaging techniques shows that the Hadamard technique is superior only when the imaging objective lens is required to have an effective F (focus) number of about 2 or slower.

  11. Discrete Hadamard transformation algorithm's parallelism analysis and achievement

    Science.gov (United States)

    Hu, Hui

    2009-07-01

    With respect to Discrete Hadamard Transformation (DHT) wide application in real-time signal processing while limitation in operation speed of DSP. The article makes DHT parallel research and its parallel performance analysis. Based on multiprocessor platform-TMS320C80 programming structure, the research is carried out to achieve two kinds of parallel DHT algorithms. Several experiments demonstrated the effectiveness of the proposed algorithms.

  12. Optimized Fast Walsh–Hadamard Transform on GPUs for non-binary LDPC decoding

    OpenAIRE

    Andrade, Joao; Falcao, Gabriel; Silva, Vitor

    2014-01-01

    The Fourier Transform Sum-Product Algorithm (FT-SPA) used in non-binary Low-Density Parity-Check (LDPC) decoding makes extensive use of the Walsh–Hadamard Transform (WHT). We have developed a massively parallel Fast Walsh–Hadamard Transform (FWHT) which exploits the Graphics Processing Unit (GPU) pipeline and memory hierarchy, thereby minimizing the level of memory bank conflicts and maximizing the number of returned instructions per clock cycle for different generations of graphics processor...

  13. Real-time ultrasound image classification for spine anesthesia using local directional Hadamard features.

    Science.gov (United States)

    Pesteie, Mehran; Abolmaesumi, Purang; Ashab, Hussam Al-Deen; Lessoway, Victoria A; Massey, Simon; Gunka, Vit; Rohling, Robert N

    2015-06-01

    Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography. Recently, due to the drawbacks of the ionizing radiation of such imaging modalities, there has been a growing interest in using ultrasound imaging as an alternative. However, the complex spinal anatomy with different wave-like structures, affected by speckle noise, makes the accurate identification of the appropriate injection plane difficult. The aim of this study was to propose an automated system that can identify the optimal plane for epidural steroid injections and facet joint injections. A multi-scale and multi-directional feature extraction system to provide automated identification of the appropriate plane is proposed. Local Hadamard coefficients are obtained using the sequency-ordered Hadamard transform at multiple scales. Directional features are extracted from local coefficients which correspond to different regions in the ultrasound images. An artificial neural network is trained based on the local directional Hadamard features for classification. The proposed method yields distinctive features for classification which successfully classified 1032 images out of 1090 for epidural steroid injection and 990 images out of 1052 for facet joint injection. In order to validate the proposed method, a leave-one-out cross-validation was performed. The average classification accuracy for leave-one-out validation was 94 % for epidural and 90 % for facet joint targets. Also, the feature extraction time for the proposed method was 20 ms for a native 2D ultrasound image. A real-time machine learning system based on the local directional Hadamard features extracted by the sequency-ordered Hadamard transform for

  14. FINGERPRINT VERIFICATION IN PERSONAL IDENTIFICATION BY APPLYING LOCAL WALSH HADAMARD TRANSFORM AND GABOR COEFFICIENTS

    Directory of Open Access Journals (Sweden)

    K N Pushpalatha

    2017-05-01

    Full Text Available In an era of advanced computer technology world where innumerable services such as access to bank accounts, or access to secured data or entry to some national important organizations require authentication of genuine individual. Among all biometric personal identification systems, fingerprint recognition system is most accurate and economical technology. In this paper we have proposed fingerprint recognition system using Local Walsh Hadamard Transform (LWHT with Phase Magnitude Histograms (PMHs for feature extraction. Fingerprints display oriented texture-like patterns. Gabor filters have the property of capturing global and local texture information from blur or unclear images and filter bank provides the orientation features which are robust to image distortion and rotation. The LWHT algorithm is compared with other two approaches viz., Gabor Coefficients and Directional Features. The three methods are compared using FVC 2006 Finger print database images. It is found from the observation that the values of TSR, FAR and FRR have improved results compared to existing algorithm.

  15. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications

    Science.gov (United States)

    Ermeydan, Esra Şengün; ćankaya, Ilyas

    2018-01-01

    Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.

  16. Hadamard Transform Time-of-Flight Mass Spectrometry

    Science.gov (United States)

    2004-11-30

    computer. This rather slow process -. 12 allowed us to evaluate different methods of -M processing the data prior to performing the 4- - inverse transform . The...DSK6713 is capable of • o , , performing the inverse transform and this would 0 & 10 Time (ms,)’ 5 20 25 be the preferred mode of operation since...treating the raw data prior to performing the -20"d Loutled patern inverse transform . We expected that noise associated 0-with the pulsing of the Bradbury

  17. ECG based Atrial Fibrillation detection using Sequency Ordered Complex Hadamard Transform and Hybrid Firefly Algorithm

    Directory of Open Access Journals (Sweden)

    Padmavathi Kora

    2017-06-01

    Full Text Available Electrocardiogram (ECG, a non-invasive diagnostic technique, used for detecting cardiac arrhythmia. From last decade industry dealing with biomedical instrumentation and research, demanding an advancement in its ability to distinguish different cardiac arrhythmia. Atrial Fibrillation (AF is an irregular rhythm of the human heart. During AF, the atrial moments are quicker than the normal rate. As blood is not completely ejected out of atria, chances for the formation of blood clots in atrium. These abnormalities in the heart can be identified by the changes in the morphology of the ECG. The first step in the detection of AF is preprocessing of ECG, which removes noise using filters. Feature extraction is the next key process in this research. Recent feature extraction methods, such as Auto Regressive (AR modeling, Magnitude Squared Coherence (MSC and Wavelet Coherence (WTC using standard database (MIT-BIH, yielded a lot of features. Many of these features might be insignificant containing some redundant and non-discriminatory features that introduce computational burden and loss of performance. This paper presents fast Conjugate Symmetric Sequency Ordered Complex Hadamard Transform (CS-SCHT for extracting relevant features from the ECG signal. The sparse matrix factorization method is used for developing fast and efficient CS-SCHT algorithm and its computational performance is examined and compared to that of the HT and NCHT. The applications of the CS-SCHT in the ECG-based AF detection is also discussed. These fast CS-SCHT features are optimized using Hybrid Firefly and Particle Swarm Optimization (FFPSO to increase the performance of the classifier.

  18. Determination of residence times of ions in a resistive glass selected ion flow-drift tube using the Hadamard transformation.

    Science.gov (United States)

    Spesyvyi, Anatolii; Španěl, Patrik

    2015-09-15

    Selected ion flow tube mass spectrometry, SIFT-MS, used for trace gas analyses has certain fundamental limitations that could be alleviated by adding a facility that allows reaction times and ion interaction energies to be varied. Thus, a selected ion flow-drift tube, SIFDT, has been created to explore the influence of an embedded electric field on these parameters and on reaction processes. The new SIFTD instrument was constructed using a miniature resistive glass drift tube. Arrival times of ions, t, analysed by a downstream quadrupole mass spectrometer over the m/z range 10-100 were studied by modulating the injected ion current using a gate lens. Single pulse modulation was compared with pseudorandom time multiplexing exploiting the Hadamard transformation. A simple model involving analysis of ethanol and water vapour mixture in air was used to explore the advantages of the SIFDT concept to SIFT-MS analysis. It is shown that the resistive glass drift tube is suitable for SIFDT experiments. The Hadamard transformation can be used to routinely determine reagent ion residence time in the flow-drift tube and also to observe differences in arrival times for different product ions. Two-dimensional data combining arrival time and mass spectra can be obtained rapidly. The calculated ion drift velocities vary with the reduced field strength, E/N, and the calculated ion mobilities agree with theoretical and previous literature values. This study has provided evidence that the SIFDT-MS technique can be implemented in a miniature and low-cost instrument and two- or three-dimensional data can be obtained (product ion count rates as functions of m/z, t and E/N) using the Hadamard transformation thus providing exciting possibilities for further analytical additions and extensions of the SIFT-MS technique. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Applications of Hadamard transform-gas chromatography/mass spectrometry to the detection of acetone in healthy human and diabetes mellitus patient breath.

    Science.gov (United States)

    Fan, Gang-Ting; Yang, Chien-Lin; Lin, Cheng-Huang; Chen, Chien-Chung; Shih, Chung-Hung

    2014-03-01

    The Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was successfully employed to detect acetone, a biomarker for diabetes mellitus (DM) prediction, in human breath. Samples of exhaled breath were collected from four DM patients (one type-I and three type-II) and eight volunteers (nondiabetic healthy subjects), respectively. The gas samples, without any pretreatment, were simultaneously injected into a GC column through a Hadamard-injector based on Hadamard codes. Under optimized conditions, when cyclic S-matrix orders of 255, 1023 and 2047 were used, the S/N ratios of the acetone signals were substantially improved by 8.0-, 16.0- and 22.6-fold, respectively; these improvements are in good agreement with theoretically calculated values. We found that the breath acetone concentration levels in the four DM patients and the eight volunteers ranged from 1 to 10 ppmv and 0.1 to 1 ppmv, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Mathematical Discovery: Hadamard Resurected

    Science.gov (United States)

    Liljedahl, Peter

    2004-01-01

    In 1943 Jacques Hadamard gave a series of lectures on mathematical invention at the Ecole Libre des Hautes Etudes in New York City. These talks were subsequently published as The Psychology of Mathematical Invention in the Mathematical Field (Hadamard, 1945). In this article I present a study that mirrors the work of Hadamard. Results both…

  1. Probabilistic implementation of Hadamard and unitary gates

    International Nuclear Information System (INIS)

    Song Wei; Yang Ming; Cao Zhuoliang

    2004-01-01

    We show that the Hadamard and unitary gates could be implemented by a unitary evolution together with a measurement for any unknown state chosen from a set A={ vertical bar Ψi>, vertical bar Ψ-bar i>} (i=1,2) if and only if vertical bar Ψ1>, vertical bar Ψ2>, vertical bar Ψ-bar 1>, vertical bar Ψ-bar 2> are linearly independent. We also derive the best transformation efficiencies

  2. COMPARATIVE ANALYSIS OF APPLICATION EFFICIENCY OF ORTHOGONAL TRANSFORMATIONS IN FREQUENCY ALGORITHMS FOR DIGITAL IMAGE WATERMARKING

    Directory of Open Access Journals (Sweden)

    Vladimir A. Batura

    2014-11-01

    Full Text Available The efficiency of orthogonal transformations application in the frequency algorithms of the digital watermarking of still images is examined. Discrete Hadamard transform, discrete cosine transform and discrete Haar transform are selected. Their effectiveness is determined by the invisibility of embedded in digital image watermark and its resistance to the most common image processing operations: JPEG-compression, noising, changing of the brightness and image size, histogram equalization. The algorithm for digital watermarking and its embedding parameters remain unchanged at these orthogonal transformations. Imperceptibility of embedding is defined by the peak signal to noise ratio, watermark stability– by Pearson's correlation coefficient. Embedding is considered to be invisible, if the value of the peak signal to noise ratio is not less than 43 dB. Embedded watermark is considered to be resistant to a specific attack, if the Pearson’s correlation coefficient is not less than 0.5. Elham algorithm based on the image entropy is chosen for computing experiment. Computing experiment is carried out according to the following algorithm: embedding of a digital watermark in low-frequency area of the image (container by Elham algorithm, exposure to a harmful influence on the protected image (cover image, extraction of a digital watermark. These actions are followed by quality assessment of cover image and watermark on the basis of which efficiency of orthogonal transformation is defined. As a result of computing experiment it was determined that the choice of the specified orthogonal transformations at identical algorithm and parameters of embedding doesn't influence the degree of imperceptibility for a watermark. Efficiency of discrete Hadamard transform and discrete cosine transformation in relation to the attacks chosen for experiment was established based on the correlation indicators. Application of discrete Hadamard transform increases

  3. A novel image encryption scheme based on Kepler’s third law and random Hadamard transform

    Science.gov (United States)

    Luo, Yu-Ling; Zhou, Rong-Long; Liu, Jun-Xiu; Qiu, Sen-Hui; Cao, Yi

    2017-12-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61661008 and 61603104), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant Nos. 2015GXNSFBA139256 and 2016GXNSFCA380017), the Funding of Overseas 100 Talents Program of Guangxi Provincial Higher Education, China, the Research Project of Guangxi University of China (Grant No. KY2016YB059), the Guangxi Key Laboratory of Multi-source Information Mining & Security, China (Grant No. MIMS15-07), the Doctoral Research Foundation of Guangxi Normal University, the Guangxi Provincial Experiment Center of Information Science, and the Innovation Project of Guangxi Graduate Education (Grant No. YCSZ2017055).

  4. Experimental demonstration of a Hadamard gate for coherent state qubits

    Energy Technology Data Exchange (ETDEWEB)

    Tipsmark, Anders; Laghaout, Amine; Andersen, Ulrik L. [Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark); Dong, Ruifang [Quantum Frequency Standards Division, National Time Service Center (NTSC), Chinese Academy of Sciences, 710600 Lintong, Shaanxi (China); Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark); Marek, Petr [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic); Jezek, Miroslav [Department of Optics, Palacky University, 17. listopadu 12, CZ-77146 Olomouc (Czech Republic); Department of Physics, Technical University of Denmark, Fysikvej, DK-2800 Kgs. Lyngby (Denmark)

    2011-11-15

    We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The scheme is based on linear optical components, nonclassical resources, and the joint projective action of a photon counter and a homodyne detector. We experimentally characterize the gate for the coherent states of the computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere.

  5. Experimental demonstration of a Hadamard gate for coherent state qubits

    DEFF Research Database (Denmark)

    Tipsmark, Anders; Dong, Ruifang; Laghaout, Amine

    2011-01-01

    We discuss and make an experimental test of a probabilistic Hadamard gate for coherent state qubits. The scheme is based on linear optical components, nonclassical resources, and the joint projective action of a photon counter and a homodyne detector. We experimentally characterize the gate for t...... for the coherent states of the computational basis by full tomographic reconstruction of the transformed output states. Based on the parameters of the experiment, we simulate the fidelity for all coherent state qubits on the Bloch sphere....

  6. Geometrical Image Transforms

    OpenAIRE

    Havelka, Jan

    2008-01-01

    Tato diplomová práce se zabývá akcelerací geometrických transformací obrazu s využitím GPU a architektury NVIDIA (R) CUDA TM. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Jedním z výsledků je demonstrační aplikace pro porovnání výkonnosti obou architektur: CPU, a GPU v kombinaci s CPU. Pro referenční implementaci jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of geometrical image transfo...

  7. MERSENNE AND HADAMARD MATRICES CALCULATION BY SCARPIS METHOD

    Directory of Open Access Journals (Sweden)

    N. A. Balonin

    2014-05-01

    Full Text Available Purpose. The paper deals with the problem of basic generalizations of Hadamard matrices associated with maximum determinant matrices or not optimal by determinant matrices with orthogonal columns (weighing matrices, Mersenne and Euler matrices, ets.; calculation methods for the quasi-orthogonal local maximum determinant Mersenne matrices are not studied enough sufficiently. The goal of this paper is to develop the theory of Mersenne and Hadamard matrices on the base of generalized Scarpis method research. Methods. Extreme solutions are found in general by minimization of maximum for absolute values of the elements of studied matrices followed by their subsequent classification according to the quantity of levels and their values depending on orders. Less universal but more effective methods are based on structural invariants of quasi-orthogonal matrices (Silvester, Paley, Scarpis methods, ets.. Results. Generalizations of Hadamard and Belevitch matrices as a family of quasi-orthogonal matrices of odd orders are observed; they include, in particular, two-level Mersenne matrices. Definitions of section and layer on the set of generalized matrices are proposed. Calculation algorithms for matrices of adjacent layers and sections by matrices of lower orders are described. Approximation examples of the Belevitch matrix structures up to 22-nd critical order by Mersenne matrix of the third order are given. New formulation of the modified Scarpis method to approximate Hadamard matrices of high orders by lower order Mersenne matrices is proposed. Williamson method is described by example of one modular level matrices approximation by matrices with a small number of levels. Practical relevance. The efficiency of developing direction for the band-pass filters creation is justified. Algorithms for Mersenne matrices design by Scarpis method are used in developing software of the research program complex. Mersenne filters are based on the suboptimal by

  8. Integral transformations applied to image encryption

    International Nuclear Information System (INIS)

    Vilardy, Juan M.; Torres, Cesar O.; Perez, Ronal

    2017-01-01

    In this paper we consider the application of the integral transformations for image encryption through optical systems, a mathematical algorithm under Matlab platform using fractional Fourier transform (FrFT) and Random Phase Mask (RPM) for digital images encryption is implemented. The FrFT can be related to others integral transforms, such as: Fourier transform, Sine and Cosine transforms, Radial Hilbert transform, fractional Sine transform, fractional Cosine transform, fractional Hartley transform, fractional Wavelet transform and Gyrator transform, among other transforms. The encryption scheme is based on the use of the FrFT, the joint transform correlator and two RPMs, which provide security and robustness to the implemented security system. One of the RPMs used during encryption-decryption and the fractional order of the FrFT are the keys to improve security and make the system more resistant against security attacks. (paper)

  9. Combined Sparsifying Transforms for Compressive Image Fusion

    Directory of Open Access Journals (Sweden)

    ZHAO, L.

    2013-11-01

    Full Text Available In this paper, we present a new compressive image fusion method based on combined sparsifying transforms. First, the framework of compressive image fusion is introduced briefly. Then, combined sparsifying transforms are presented to enhance the sparsity of images. Finally, a reconstruction algorithm based on the nonlinear conjugate gradient is presented to get the fused image. The simulations demonstrate that by using the combined sparsifying transforms better results can be achieved in terms of both the subjective visual effect and the objective evaluation indexes than using only a single sparsifying transform for compressive image fusion.

  10. Automated image enhancement using power law transformations

    Indian Academy of Sciences (India)

    We propose a scheme for automating power law transformations which are used for image enhancement. The scheme we propose does not require the user to choose the exponent in the power law transformation. This method works well for images having poor contrast, especially to those images in which the peaks ...

  11. The necessity of the Hadamard condition

    International Nuclear Information System (INIS)

    Fewster, Christopher J; Verch, Rainer

    2013-01-01

    Hadamard states are generally considered as the physical states for linear quantized fields on curved spacetimes, for several good reasons. Here, we provide a new motivation for the Hadamard condition: for ‘ultrastatic slab spacetimes’ with compact Cauchy-surface, we show that the Wick squares of all time-derivatives of the quantized Klein–Gordon field have finite fluctuations only if the Wick-ordering is defined with respect to a Hadamard state. This provides a converse to an important result of Brunetti and Fredenhagen. The recently proposed ‘S-J (Sorkin–Johnston) states’ are shown, generically, to give infinite fluctuations for the Wick square of the time-derivative of the field, further limiting their utility as reasonable states. Motivated by the S-J construction, we also study the general question of extending states that are pure (or given by density matrices relative to a pure state) on a double-cone region of Minkowski space. We prove a result for general quantum field theories showing that such states cannot be extended to any larger double cone without encountering singular behaviour at the spacelike boundary of the inner region. In the context of the Klein–Gordon field this shows that even if an S-J state is Hadamard within the double cone, this must fail at the boundary. (paper)

  12. Technique for image interpolation using polynomial transforms

    NARCIS (Netherlands)

    Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.

    1993-01-01

    We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is

  13. Medical Image Denoising Using Mixed Transforms

    Directory of Open Access Journals (Sweden)

    Jaleel Sadoon Jameel

    2018-02-01

    Full Text Available  In this paper,  a mixed transform method is proposed based on a combination of wavelet transform (WT and multiwavelet transform (MWT in order to denoise medical images. The proposed method consists of WT and MWT in cascade form to enhance the denoising performance of image processing. Practically, the first step is to add a noise to Magnetic Resonance Image (MRI or Computed Tomography (CT images for the sake of testing. The noisy image is processed by WT to achieve four sub-bands and each sub-band is treated individually using MWT before the soft/hard denoising stage. Simulation results show that a high peak signal to noise ratio (PSNR is improved significantly and the characteristic features are well preserved by employing mixed transform of WT and MWT due to their capability of separating noise signals from image signals. Moreover, the corresponding mean square error (MSE is decreased accordingly compared to other available methods.

  14. Optimized nonorthogonal transforms for image compression.

    Science.gov (United States)

    Guleryuz, O G; Orchard, M T

    1997-01-01

    The transform coding of images is analyzed from a common standpoint in order to generate a framework for the design of optimal transforms. It is argued that all transform coders are alike in the way they manipulate the data structure formed by transform coefficients. A general energy compaction measure is proposed to generate optimized transforms with desirable characteristics particularly suited to the simple transform coding operation of scalar quantization and entropy coding. It is shown that the optimal linear decoder (inverse transform) must be an optimal linear estimator, independent of the structure of the transform generating the coefficients. A formulation that sequentially optimizes the transforms is presented, and design equations and algorithms for its computation provided. The properties of the resulting transform systems are investigated. In particular, it is shown that the resulting basis are nonorthogonal and complete, producing energy compaction optimized, decorrelated transform coefficients. Quantization issues related to nonorthogonal expansion coefficients are addressed with a simple, efficient algorithm. Two implementations are discussed, and image coding examples are given. It is shown that the proposed design framework results in systems with superior energy compaction properties and excellent coding results.

  15. Modified CT imaging by reduction factor transformations

    International Nuclear Information System (INIS)

    Doehring, W.; Linke, G.

    1981-01-01

    The possibilities of CT image modification which had existed so far for given matrix of attenuation values (window setting, highlighting, black-and-white or colour reversal and logarithmic distortion of the video signal) are supplemented by the method of attenuation value transformation. As a specific case a linear interval by interval attenuation value transformation is described. First of all, the intirety of the measured CT values is transformed into the corresponding CT quotients (CTQ) and then subdivided into 5 optional intervals. Each one freely selected CTQ value can be allocated to the first and to the last interval; the intermediate 3 intervals can be linearly transformed at random. The article discusses the influence of such a manipulation on CT image reproduction; this is of particular importance for the image visualisation of the results of quantitative organ analyses by means of computed tomography. The presented paper also points to the possibility of effecting further attenuation value transformations. (orig.) [de

  16. Mathematical transforms and image compression: A review

    Directory of Open Access Journals (Sweden)

    Satish K. Singh

    2010-07-01

    Full Text Available It is well known that images, often used in a variety of computer and other scientific and engineering applications, are difficult to store and transmit due to their sizes. One possible solution to overcome this problem is to use an efficient digital image compression technique where an image is viewed as a matrix and then the operations are performed on the matrix. All the contemporary digital image compression systems use various mathematical transforms for compression. The compression performance is closely related to the performance by these mathematical transforms in terms of energy compaction and spatial frequency isolation by exploiting inter-pixel redundancies present in the image data. Through this paper, a comprehensive literature survey has been carried out and the pros and cons of various transform-based image compression models have also been discussed.

  17. Image compression using the W-transform

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, W.D. Jr. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-12-31

    The authors present the W-transform for a multiresolution signal decomposition. One of the differences between the wavelet transform and W-transform is that the W-transform leads to a nonorthogonal signal decomposition. Another difference between the two is the manner in which the W-transform handles the endpoints (boundaries) of the signal. This approach does not restrict the length of the signal to be a power of two. Furthermore, it does not call for the extension of the signal thus, the W-transform is a convenient tool for image compression. They present the basic theory behind the W-transform and include experimental simulations to demonstrate its capabilities.

  18. Boundary value problem for Caputo-Hadamard fractional differential equations

    Directory of Open Access Journals (Sweden)

    Yacine Arioua

    2017-09-01

    Full Text Available The aim of this work is to study the existence and uniqueness solutions for boundary value problem of nonlinear fractional differential equations with Caputo-Hadamard derivative in bounded domain. We used the standard and Krasnoselskii's fixed point theorems. Some new results of existence and uniqueness solutions for Caputo-Hadamard fractional equations are obtained.

  19. Medical image compression with fast Hartley transform

    International Nuclear Information System (INIS)

    Paik, C.H.; Fox, M.D.

    1988-01-01

    The purpose of data compression is storage and transmission of images with minimization of memory for storage and bandwidth for transmission, while maintaining robustness in the presence of transmission noise or storage medium errors. Here, the fast Hartley transform (FHT) is used for transformation and a new thresholding method is devised. The FHT is used instead of the fast Fourier transform (FFT), thus providing calculation at least as fast as that of the fastest algorithm of FFT. This real numbered transform requires only half the memory array space for saving of transform coefficients and allows for easy implementation on very large-scale integrated circuits because of the use of the same formula for both forward and inverse transformation and the conceptually straightforward algorithm. Threshold values were adaptively selected according to the correlation factor of each block of equally divided blocks of the image. Therefore, this approach provided a coding scheme that included maximum information with minimum image bandwidth. Overall, the results suggested that the Hartley transform adaptive thresholding approach results in improved fidelity, shorter decoding time, and greater robustness in the presence of noise than previous approaches

  20. High-SNR spectrum measurement based on Hadamard encoding and sparse reconstruction

    Science.gov (United States)

    Wang, Zhaoxin; Yue, Jiang; Han, Jing; Li, Long; Jin, Yong; Gao, Yuan; Li, Baoming

    2017-12-01

    The denoising capabilities of the H-matrix and cyclic S-matrix based on the sparse reconstruction, employed in the Pixel of Focal Plane Coded Visible Spectrometer for spectrum measurement are investigated, where the spectrum is sparse in a known basis. In the measurement process, the digital micromirror device plays an important role, which implements the Hadamard coding. In contrast with Hadamard transform spectrometry, based on the shift invariability, this spectrometer may have the advantage of a high efficiency. Simulations and experiments show that the nonlinear solution with a sparse reconstruction has a better signal-to-noise ratio than the linear solution and the H-matrix outperforms the cyclic S-matrix whether the reconstruction method is nonlinear or linear.

  1. Digital Image Watermarking in Transform Domains

    International Nuclear Information System (INIS)

    EL-Shazly, E.H.M.

    2012-01-01

    Fast development of internet and availability of huge digital content make it easy to create, modify and copy digital media such as audio, video and images. This causes a problem for owners of that content and hence a need to copy right protection tool was essential. First, encryption was proposed but it ensures protection during transmission only and once decryption occurred any one can modify the data. at that point watermarking was introduced as a solution to such problem. Watermarking is a process of inserting a low energy signal in to a high energy one so that it doesn't affect the main signal features. A good digital image watermarking technique should satisfy four requirements: 1) Embedding of a watermark should not degrade the host image visual quality (imperceptibility). 2) The embedded watermark should stick to the host image so that it couldn’t be removed by common image processing operation and could be extracted from the attacked watermarked image (robustness). 3) Knowing the embedding and extraction procedures is sufficient but not enough to extract the watermark; extra keys should be needed (security). 4) The watermarking technique should allow embedding and extraction of more than one watermark each independent of the other (capacity). This thesis presents a watermarking scheme that full fill the mentioned four requirements by jointing transform domains with Fractional Fourier Transform Domain (FracFT). More work on cascaded Discrete Wavelet Transform DWT with FracFT was done to develop a joint transform simply called Fractional Wavelet Transform (FWT). The proposed schemes were tested with different image processing attacks to verify its robustness. Finally, the watermarked image is transmitted over simulated MC CDMA channel to prove robustness in real transmission conditions case.

  2. Image encryption using the fractional wavelet transform

    International Nuclear Information System (INIS)

    Vilardy, Juan M; Useche, J; Torres, C O; Mattos, L

    2011-01-01

    In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.

  3. Temporal contrast enhancement and parametric imaging for the visualisation of time patterns in dynamic scintigraphic imaging

    International Nuclear Information System (INIS)

    Deconinck, F.; Bossuyt, A.; Lepoudre, R.

    1982-01-01

    Image contrast, photon noise and sampling frequency limit the visual extraction of relevant temporal information in scintigraphic image series. When the Unitation is mainly due to low temporal contrast, temporal contrast enhancement will strongly improve the perceptibility of time patterns in the series. When the limitation is due to photon noise and limited temporal sampling, parametric imaging by means of the Hadamard transform can visualise temporal patterns. (WU)

  4. Medical images storage using discrete cosine transform

    International Nuclear Information System (INIS)

    Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled

    2010-01-01

    The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images

  5. Brain's tumor image processing using shearlet transform

    Science.gov (United States)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  6. Optical image encryption using multilevel Arnold transform and noninterferometric imaging

    Science.gov (United States)

    Chen, Wen; Chen, Xudong

    2011-11-01

    Information security has attracted much current attention due to the rapid development of modern technologies, such as computer and internet. We propose a novel method for optical image encryption using multilevel Arnold transform and rotatable-phase-mask noninterferometric imaging. An optical image encryption scheme is developed in the gyrator transform domain, and one phase-only mask (i.e., phase grating) is rotated and updated during image encryption. For the decryption, an iterative retrieval algorithm is proposed to extract high-quality plaintexts. Conventional encoding methods (such as digital holography) have been proven vulnerably to the attacks, and the proposed optical encoding scheme can effectively eliminate security deficiency and significantly enhance cryptosystem security. The proposed strategy based on the rotatable phase-only mask can provide a new alternative for data/image encryption in the noninterferometric imaging.

  7. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  8. On the hadamard products of Schlicht functions and applications

    Directory of Open Access Journals (Sweden)

    H. S. Al-Amiri

    1985-01-01

    and strongly starlike with respect to symmetric points is invariant under the Hadamard product with the class of convex functions. The influence of certain operators over these classes is also investigated.

  9. Some Hermite–Hadamard Type Inequalities for Geometrically Quasi ...

    Indian Academy of Sciences (India)

    Abstract. In the paper, we introduce a new concept 'geometrically quasi-convex function' and establish some Hermite–Hadamard type inequalities for functions whose derivatives are of geometric quasi-convexity.

  10. Interframe transform coding of picture data

    Science.gov (United States)

    Ahmed, N.; Natarajan, T. R.

    1976-01-01

    This semi-tutorial paper describes the process of using orthogonal transforms for the purposes of encoding TV picture data. Results pertaining to a 6:1 data compression experiment using the Walsh-Hadamard transform are included.

  11. Hadamard Multipliers and Abel Dual of Hardy Spaces

    Directory of Open Access Journals (Sweden)

    Paweł Mleczko

    2016-01-01

    Full Text Available The paper is devoted to the study of Hadamard multipliers of functions from the abstract Hardy classes generated by rearrangement invariant spaces. In particular the relation between the existence of such multiplier and the boundedness of the appropriate convolution operator on spaces of measurable functions is presented. As an application, the description of Hadamard multipliers into H∞ is given and the Abel type theorem for mentioned Hardy spaces is proved.

  12. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  13. Fourier transform based scalable image quality measure.

    Science.gov (United States)

    Narwaria, Manish; Lin, Weisi; McLoughlin, Ian; Emmanuel, Sabu; Chia, Liang-Tien

    2012-08-01

    We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.

  14. Subband/Transform MATLAB Functions For Processing Images

    Science.gov (United States)

    Glover, D.

    1995-01-01

    SUBTRANS software is package of routines implementing image-data-processing functions for use with MATLAB*(TM) software. Provides capability to transform image data with block transforms and to produce spatial-frequency subbands of transformed data. Functions cascaded to provide further decomposition into more subbands. Also used in image-data-compression systems. For example, transforms used to prepare data for lossy compression. Written for use in MATLAB mathematical-analysis environment.

  15. Hadamard states from light-like hypersurfaces

    CERN Document Server

    Dappiaggi, Claudio; Pinamonti, Nicola

    2017-01-01

    This book provides a rather self-contained survey of the construction of Hadamard states for scalar field theories in a large class of notable spacetimes, possessing a (conformal) light-like boundary. The first two sections focus on explaining a few introductory aspects of this topic and on providing the relevant geometric background material. The notions of asymptotically flat spacetimes and of expanding universes with a cosmological horizon are analysed in detail, devoting special attention to the characterization of asymptotic symmetries. In the central part of the book,  the quantization of a real scalar field theory on such class of backgrounds is discussed within the framework of algebraic quantum field theory.  Subsequently it is explained how it is possible to encode the information of the observables of the theory in a second, ancillary counterpart, which is built directly on the conformal (null) boundary.  This procedure, dubbed bulk-to-boundary correspondence, has the net advantage of allowing t...

  16. Bayesian image restoration for medical images using radon transform

    International Nuclear Information System (INIS)

    Shouno, Hayaru; Okada, Masato

    2010-01-01

    We propose an image reconstruction algorithm using Bayesian inference for Radon transformed observation data, which often appears in the field of medical image reconstruction known as computed tomography (CT). In order to apply our Bayesian reconstruction method, we introduced several hyper-parameters that control the ratio between prior information and the fidelity of the observation process. Since the quality of the reconstructed image is influenced by the estimation accuracy of these hyper-parameters, we propose an inference method for them based on the marginal likelihood maximization principle as well as the image reconstruction method. We are able to demonstrate a reconstruction result superior to that obtained using the conventional filtered back projection method. (author)

  17. Hadamard-type fractional differential equations, inclusions and inequalities

    CERN Document Server

    Ahmad, Bashir; Ntouyas, Sotiris K; Tariboon, Jessada

    2017-01-01

    This book focuses on the recent development of fractional differential equations, integro-differential equations, and inclusions and inequalities involving the Hadamard derivative and integral. Through a comprehensive study based in part on their recent research, the authors address the issues related to initial and boundary value problems involving Hadamard type differential equations and inclusions as well as their functional counterparts. The book covers fundamental concepts of multivalued analysis and introduces a new class of mixed initial value problems involving the Hadamard derivative and Riemann-Liouville fractional integrals. In later chapters, the authors discuss nonlinear Langevin equations as well as coupled systems of Langevin equations with fractional integral conditions. Focused and thorough, this book is a useful resource for readers and researchers interested in the area of fractional calculus.

  18. A Workshop on Algebraic Design Theory and Hadamard Matrices

    CERN Document Server

    2015-01-01

    This volume develops the depth and breadth of the mathematics underlying the construction and analysis of Hadamard matrices and their use in the construction of combinatorial designs. At the same time, it pursues current research in their numerous applications in security and cryptography, quantum information, and communications. Bridges among diverse mathematical threads and extensive applications make this an invaluable source for understanding both the current state of the art and future directions. The existence of Hadamard matrices remains one of the most challenging open questions in combinatorics. Substantial progress on their existence has resulted from advances in algebraic design theory using deep connections with linear algebra, abstract algebra, finite geometry, number theory, and combinatorics. Hadamard matrices arise in a very diverse set of applications. Starting with applications in experimental design theory and the theory of error-correcting codes, they have found unexpected and important ap...

  19. Image encryption with chaotic map and Arnold transform in the gyrator transform domains

    Science.gov (United States)

    Sang, Jun; Luo, Hongling; Zhao, Jun; Alam, Mohammad S.; Cai, Bin

    2017-05-01

    An image encryption method combing chaotic map and Arnold transform in the gyrator transform domains was proposed. Firstly, the original secret image is XOR-ed with a random binary sequence generated by a logistic map. Then, the gyrator transform is performed. Finally, the amplitude and phase of the gyrator transform are permutated by Arnold transform. The decryption procedure is the inverse operation of encryption. The secret keys used in the proposed method include the control parameter and the initial value of the logistic map, the rotation angle of the gyrator transform, and the transform number of the Arnold transform. Therefore, the key space is large, while the key data volume is small. The numerical simulation was conducted to demonstrate the effectiveness of the proposed method and the security analysis was performed in terms of the histogram of the encrypted image, the sensitiveness to the secret keys, decryption upon ciphertext loss, and resistance to the chosen-plaintext attack.

  20. A fourier transform quality measure for iris images

    CSIR Research Space (South Africa)

    Makinana, S

    2014-08-01

    Full Text Available to ensure that good quality images are selected for feature extraction, in order to improve iris recognition system. In addition, this research proposes a measure of iris image quality using a Fourier Transform. The experimental results demonstrate...

  1. Some Hermite–Hadamard type inequalities for geometrically quasi ...

    Indian Academy of Sciences (India)

    Hermite–Hadamard's integral inequality; geometrically quasi-convex function. 2010 Mathematics Subject Classification. Primary: 26A51, 26D15; Secondary: ... If f : I ⊆ R → R is a convex function on [a,b] and a,b ∈ I with a

  2. On Hadamard-Type Inequalities Involving Several Kinds of Convexity

    Directory of Open Access Journals (Sweden)

    Dragomir SeverS

    2010-01-01

    Full Text Available We do not only give the extensions of the results given by Gill et al. (1997 for log-convex functions but also obtain some new Hadamard-type inequalities for log-convex -convex, and -convex functions.

  3. Rectification of aerial images using piecewise linear transformation

    International Nuclear Information System (INIS)

    Liew, L H; Lee, B Y; Wang, Y C; Cheah, W S

    2014-01-01

    Aerial images are widely used in various activities by providing visual records. This type of remotely sensed image is helpful in generating digital maps, managing ecology, monitoring crop growth and region surveying. Such images could provide insight into areas of interest that have lower altitude, particularly in regions where optical satellite imaging is prevented due to cloudiness. Aerial images captured using a non-metric cameras contain real details of the images as well as unexpected distortions. Distortions would affect the actual length, direction and shape of objects in the images. There are many sources that could cause distortions such as lens, earth curvature, topographic relief and the attitude of the aircraft that is used to carry the camera. These distortions occur differently, collectively and irregularly in the entire image. Image rectification is an essential image pre-processing step to eliminate or at least reduce the effect of distortions. In this paper, a non-parametric approach with piecewise linear transformation is investigated in rectifying distorted aerial images. The non-parametric approach requires a set of corresponding control points obtained from a reference image and a distorted image. The corresponding control points are then applied with piecewise linear transformation as geometric transformation. Piecewise linear transformation divides the image into regions by triangulation. Different linear transformations are employed separately to triangular regions instead of using a single transformation as the rectification model for the entire image. The result of rectification is evaluated using total root mean square error (RMSE). Experiments show that piecewise linear transformation could assist in improving the limitation of using global transformation to rectify images

  4. Imaging malignant and apparent malignant transformation of benign gynaecological disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.Y.; Poder, L.; Qayyum, A.; Wang, Z.J.; Yeh, B.M. [Department of Radiology, University of California San Francisco, San Francisco, CA (United States); Coakley, F.V., E-mail: Fergus.Coakley@radiology.ucsf.ed [Department of Radiology, University of California San Francisco, San Francisco, CA (United States)

    2010-12-15

    Common benign gynaecological diseases, such as leiomyoma, adenomyosis, endometriosis, and mature teratoma, rarely undergo malignant transformation. Benign transformations that may mimic malignancy include benign metastasizing leiomyoma, massive ovarian oedema, decidualization of endometrioma, and rupture of mature teratoma. The aim of this review is to provide a contemporary overview of imaging findings in malignant and apparent malignant transformation of benign gynaecological disease.

  5. Retina-like sensor image coordinates transformation and display

    Science.gov (United States)

    Cao, Fengmei; Cao, Nan; Bai, Tingzhu; Song, Shengyu

    2015-03-01

    For a new kind of retina-like senor camera, the image acquisition, coordinates transformation and interpolation need to be realized. Both of the coordinates transformation and interpolation are computed in polar coordinate due to the sensor's particular pixels distribution. The image interpolation is based on sub-pixel interpolation and its relative weights are got in polar coordinates. The hardware platform is composed of retina-like senor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes the real-time image acquisition, coordinate transformation and interpolation.

  6. Fractional Hartley transform applied to optical image encryption

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, C [Grupo GIFES. Universidad de La Guajira. Riohacha (Colombia); Torres, C; Mattos, L, E-mail: carlosj114@gmail.com [Grupo LOI. Universidad Popular del Cesar. Valledupar (Colombia)

    2011-01-01

    A new method for image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as addictional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. Computer simulations are also perfomed to confirm the possibility of proposed method.

  7. Optical image encryption with redefined fractional Hartley transform

    Science.gov (United States)

    Zhao, Daomu; Li, Xinxin; Chen, Linfei

    2008-11-01

    A new method for optical image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform. We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as additional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. The optical realization is then proposed and computer simulations are also performed to confirm the possibility of the proposed method.

  8. Fractional Hartley transform applied to optical image encryption

    Science.gov (United States)

    Jimenez, C.; Torres, C.; Mattos, L.

    2011-01-01

    A new method for image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as addictional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. Computer simulations are also perfomed to confirm the possibilty of proposed method.

  9. Multispectral image pansharpening based on the contourlet transform

    Energy Technology Data Exchange (ETDEWEB)

    Amro, Israa; Mateos, Javier, E-mail: iamro@correo.ugr.e, E-mail: jmd@decsai.ugr.e [Departamento de Ciencias de la Computacion e I.A., Universidad de Granada, 18071 Granada (Spain)

    2010-02-01

    Pansharpening is a technique that fuses the information of a low resolution multispectral image (MS) and a high resolution panchromatic image (PAN), usually remote sensing images, to provide a high resolution multispectral image. In the literature, this task has been addressed from different points of view being one of the most popular the wavelets based algorithms. Recently, the contourlet transform has been proposed. This transform combines the advantages of the wavelets transform with a more efficient directional information representation. In this paper we propose a new pansharpening method based on contourlets, compare with its wavelet counterpart and assess its performance numerically and visually.

  10. A robust image watermarking in contourlet transform domain

    Science.gov (United States)

    Sharma, Rajat; Gupta, Abhishek Kumar; Singh, Deepak; Verma, Vivek Singh; Bhardwaj, Anuj

    2017-10-01

    A lot of work has been done in the field of image watermarking to overcome the problems of rightful ownership, copyright protection etc. In order to provide a robust solution of such issues, the authors propose a hybrid approach that involves contourlet, lifting wavelet, and discrete cosine transform. The first level coefficients of the original image which are obtained using contourlet transform are further decomposed using one level lifting wavelet transform. After that, these coefficients are modified using discrete cosine transform. Whereas, second level subband of contourlet transform coefficients are used to obtain block wise modification parameter based on edge detection and entropy calculations. Watermark bits are embedded by quantizing the discrete cosine transform coefficient blocks obtained using HL sub-band of first level lifting wavelet transform coefficients. The experimental results reveal that the proposed scheme has high robustness and imperceptibility.

  11. Aliasless fresnel transform image reconstruction in phase scrambling fourier transform technique by data interpolation

    International Nuclear Information System (INIS)

    Yamada, Yoshifumi; Liu, Na; Ito, Satoshi

    2006-01-01

    The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)

  12. Digital Correlation based on Wavelet Transform for Image Detection

    International Nuclear Information System (INIS)

    Barba, L; Vargas, L; Torres, C; Mattos, L

    2011-01-01

    In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.

  13. Quaternion Fourier transforms for signal and image processing

    CERN Document Server

    Ell, Todd A; Sangwine, Stephen J

    2014-01-01

    Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book's attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.

  14. Image Registration Using Redundant Wavelet Transforms

    National Research Council Canada - National Science Library

    Brown, Richard

    2001-01-01

    .... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...

  15. Hadamard Kernel SVM with applications for breast cancer outcome predictions.

    Science.gov (United States)

    Jiang, Hao; Ching, Wai-Ki; Cheung, Wai-Shun; Hou, Wenpin; Yin, Hong

    2017-12-21

    Breast cancer is one of the leading causes of deaths for women. It is of great necessity to develop effective methods for breast cancer detection and diagnosis. Recent studies have focused on gene-based signatures for outcome predictions. Kernel SVM for its discriminative power in dealing with small sample pattern recognition problems has attracted a lot attention. But how to select or construct an appropriate kernel for a specified problem still needs further investigation. Here we propose a novel kernel (Hadamard Kernel) in conjunction with Support Vector Machines (SVMs) to address the problem of breast cancer outcome prediction using gene expression data. Hadamard Kernel outperform the classical kernels and correlation kernel in terms of Area under the ROC Curve (AUC) values where a number of real-world data sets are adopted to test the performance of different methods. Hadamard Kernel SVM is effective for breast cancer predictions, either in terms of prognosis or diagnosis. It may benefit patients by guiding therapeutic options. Apart from that, it would be a valuable addition to the current SVM kernel families. We hope it will contribute to the wider biology and related communities.

  16. Discrete Orthogonal Transforms and Neural Networks for Image Interpolation

    Directory of Open Access Journals (Sweden)

    J. Polec

    1999-09-01

    Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.

  17. Image Retrieval Algorithm Based on Discrete Fractional Transforms

    Science.gov (United States)

    Jindal, Neeru; Singh, Kulbir

    2013-06-01

    The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.

  18. Transformation invariant image indexing and retrieval for image databases

    NARCIS (Netherlands)

    Gevers, Th.; Smeulders, A.W.M.

    1994-01-01

    This paper presents a novel design of an image database system which supports storage, indexing and retrieval of images by content. The image retrieval methodology is based on the observation that images can be discriminated by the presence of image objects and their spatial relations. Images in the

  19. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  20. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)

    1998-12-31

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  1. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    International Nuclear Information System (INIS)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P.

    1998-01-01

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  2. DATA HIDING IN ENCRYPTED IMAGES USING ARNOLD TRANSFORM

    Directory of Open Access Journals (Sweden)

    S. Siva Shankar

    2016-08-01

    Full Text Available Digital image steganography has several applications in information security and communication. Data hiding in encrypted images ensure that both the cover image and the secret message can be recovered at the receiver end. This work presents a novel data hiding and image encryption scheme using random diffusion and Two dimensional Arnold cat mapping transform. The secret message bits are placed in the least significant bit positions of the cover image. Then a shared key is used to generate random 8 bit random integer stream and is added to the stego image in the random diffusion step. Arnold cat mapping transformation is done to scramble the pixels. The two steps of random diffusion and Arnold transform mapping are done alternatively several times to completely encrypt the image contents. The process is reversed at the receiver end to get both the secret message and the cover image with little loss. The random diffusion step overcomes the limited period of the Arnold transform. The embedding capacity of one bit per pixel is achieved. Security analysis is carried out which shows that the encryption is highly secure. The number of collisions is low thus preventing brute force attacks. The original cover image is recoverable with minimal losses.

  3. Imaging features of maxillary osteoblastoma and its malignant transformation

    International Nuclear Information System (INIS)

    Ueno, Hiroshi; Ariji, Ei-ichiro; Tanaka, Takemasa; Kanda, Shigenobu; Mori, Shin-ichiro; Goto, Masaaki; Mizuno, Akio; Okabe, Haruo; Nakamura, Takashi

    1994-01-01

    We report two cases of osteoblastoma, one of them an unusual case in a 32-year-old woman in whom a maxillary tumor was confidently diagnosed as an osteoblastoma at the time of primary excision and subsequently transformed into an osteosarcoma 7 years after the onset of clinical symptoms. The other patient developed osteosarcoma arising in the maxilla, which was diagnosed 3 years after the primary excision and is very suggestive of malignant transformation in osteoblastoma. We present the radiological features, including computed tomographic and magnetic resonance imaging studies, of this unusual event of transformed tumor and compare imaging features of benign and dedifferentiated counterparts of this rare tumor complex. (orig.)

  4. Application and Analysis of Wavelet Transform in Image Edge Detection

    Institute of Scientific and Technical Information of China (English)

    Jianfang gao[1

    2016-01-01

    For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection.

  5. Image Enhancement In HSI Space Using Wavelet Transform

    Science.gov (United States)

    Bansal, Sonia; Malhotra, Deepti

    2010-11-01

    Image processing modifies images to improve them (enhancement, restoration), extract information (analysis, recognition), and change their structure (composition, image editing). Image Enhancement is simple and most appealing area among all the digital image processing techniques. The main purpose of image enhancement is to bring out detail that is hidden in an image or to increase contrast in a low contrast image [1]. The color restoration functions of some real color image enhancement algorithms are greatly at random and not proved , and the real color images enhanced which are based on illumination-reflectance model have the loss of details and the `halos', we proposed a new algorithm to overcome these disadvantages. Firstly, we transform the real color image from RGB space to HSI space which is approximately orthonormal system. Secondly, the illumination and the reflectance of value are separated by homomorphic filtering based on illumination-reflectance model. We have discovered that the high dynamic range of image including high bright lights is mainly caused by the reflectance. Thirdly, the details of reflectance are preserved by wavelet transform. Fourthly, the dynamic range of reflectance is compressed by Butterworth filtering. Lastly, the energy of the saturation of real color image in HSI space is attenuated according to the spectral sensitivity of most human vision.

  6. REMOTELY SENSEDC IMAGE COMPRESSION BASED ON WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Heung K. Lee

    1996-06-01

    Full Text Available In this paper, we present an image compression algorithm that is capable of significantly reducing the vast mount of information contained in multispectral images. The developed algorithm exploits the spectral and spatial correlations found in multispectral images. The scheme encodes the difference between images after contrast/brightness equalization to remove the spectral redundancy, and utilizes a two-dimensional wavelet trans-form to remove the spatial redundancy. The transformed images are than encoded by hilbert-curve scanning and run-length-encoding, followed by huffman coding. We also present the performance of the proposed algorithm with KITSAT-1 image as well as the LANDSAT MultiSpectral Scanner data. The loss of information is evaluated by peak signal to noise ratio (PSNR and classification capability.

  7. Robust Image Hashing Using Radon Transform and Invariant Features

    Directory of Open Access Journals (Sweden)

    Y.L. Liu

    2016-09-01

    Full Text Available A robust image hashing method based on radon transform and invariant features is proposed for image authentication, image retrieval, and image detection. Specifically, an input image is firstly converted into a counterpart with a normalized size. Then the invariant centroid algorithm is applied to obtain the invariant feature point and the surrounding circular area, and the radon transform is employed to acquire the mapping coefficient matrix of the area. Finally, the hashing sequence is generated by combining the feature vectors and the invariant moments calculated from the coefficient matrix. Experimental results show that this method not only can resist against the normal image processing operations, but also some geometric distortions. Comparisons of receiver operating characteristic (ROC curve indicate that the proposed method outperforms some existing methods in classification between perceptual robustness and discrimination.

  8. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  9. ANALYSIS OF SST IMAGES BY WEIGHTED ENSEMBLE TRANSFORM KALMAN FILTER

    OpenAIRE

    Sai , Gorthi; Beyou , Sébastien; Memin , Etienne

    2011-01-01

    International audience; This paper presents a novel, efficient scheme for the analysis of Sea Surface Temperature (SST) ocean images. We consider the estimation of the velocity fields and vorticity values from a sequence of oceanic images. The contribution of this paper lies in proposing a novel, robust and simple approach based onWeighted Ensemble Transform Kalman filter (WETKF) data assimilation technique for the analysis of real SST images, that may contain coast regions or large areas of ...

  10. Mammographic image enhancement using wavelet transform and homomorphic filter

    Directory of Open Access Journals (Sweden)

    F Majidi

    2015-12-01

    Full Text Available Mammography is the most effective method for the early diagnosis of breast cancer diseases. As mammographic images contain low signal to noise ratio and low contrast, it becomes too difficult for radiologists to analyze mammogram. To deal with the above stated problems, it is very important to enhance the mammographic images using image processing methods. This paper introduces a new image enhancement approach for mammographic images which uses the modified mathematical morphology, wavelet transform and homomorphic filter to suppress the noise of images. For performance evaluation of the proposed method, contrast improvement index (CII and edge preservation index (EPI are adopted. Experimental results on mammographic images from Pejvak Digital Imaging Center (PDIC show that the proposed algorithm improves the two indexes, thereby achieving the goal of enhancing mammographic images.

  11. Automated image enhancement using power law transformations

    Indian Academy of Sciences (India)

    1Birla Institute of Technology & Science (BITS), Pilani 333 031, India .... Our algorithm has the advantage that it is very simple to implement and .... Education. Jun J, Jun C and Xinglin C 2008 CISP, vol. 3, Congress on Image and Signal ...

  12. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  13. Locating An IRIS From Image Using Canny And Hough Transform

    Directory of Open Access Journals (Sweden)

    Poorvi Bhatt

    2017-11-01

    Full Text Available Iris recognition a relatively new biometric technology has great advantages such as variability stability and security thus it is the most promising for high security environments. The proposed system here is a simple system design and implemented to find the iris from the image using Hough Transform Algorithm. Canny Edge detector has been used to get edge image to use it as an input to the Hough Transform. To get the general idea of Hough Transform the Hough Transform for circle is also implemented. RGB value of 3-D accumulator array of peaks of inner circle and outer circle has been performed. And at the end some suggestions are made to improve the system and performance gets discussed.

  14. A VLSI image processor via pseudo-mersenne transforms

    International Nuclear Information System (INIS)

    Sei, W.J.; Jagadeesh, J.M.

    1986-01-01

    The computational burden on image processing in medical fields where a large amount of information must be processed quickly and accurately has led to consideration of special-purpose image processor chip design for some time. The very large scale integration (VLSI) resolution has made it cost-effective and feasible to consider the design of special purpose chips for medical imaging fields. This paper describes a VLSI CMOS chip suitable for parallel implementation of image processing algorithms and cyclic convolutions by using Pseudo-Mersenne Number Transform (PMNT). The main advantages of the PMNT over the Fast Fourier Transform (FFT) are: (1) no multiplications are required; (2) integer arithmetic is used. The design and development of this processor, which operates on 32-point convolution or 5 x 5 window image, are described

  15. SAR image formation with azimuth interpolation after azimuth transform

    Science.gov (United States)

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  16. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    Science.gov (United States)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  17. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  18. Human Body Image Edge Detection Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    李勇; 付小莉

    2003-01-01

    Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.

  19. Image processing tensor transform and discrete tomography with Matlab

    CERN Document Server

    Grigoryan, Artyom M

    2012-01-01

    Focusing on mathematical methods in computer tomography, Image Processing: Tensor Transform and Discrete Tomography with MATLAB(R) introduces novel approaches to help in solving the problem of image reconstruction on the Cartesian lattice. Specifically, it discusses methods of image processing along parallel rays to more quickly and accurately reconstruct images from a finite number of projections, thereby avoiding overradiation of the body during a computed tomography (CT) scan. The book presents several new ideas, concepts, and methods, many of which have not been published elsewhere. New co

  20. Infrared Image Segmentation by Combining Fractal Geometry with Wavelet Transformation

    Directory of Open Access Journals (Sweden)

    Xionggang Tu

    2014-11-01

    Full Text Available An infrared image is decomposed into three levels by discrete stationary wavelet transform (DSWT. Noise is reduced by wiener filter in the high resolution levels in the DSWT domain. Nonlinear gray transformation operation is used to enhance details in the low resolution levels in the DSWT domain. Enhanced infrared image is obtained by inverse DSWT. The enhanced infrared image is divided into many small blocks. The fractal dimensions of all the blocks are computed. Region of interest (ROI is extracted by combining all the blocks, which have similar fractal dimensions. ROI is segmented by global threshold method. The man-made objects are efficiently separated from the infrared image by the proposed method.

  1. Trade-off capacities of the quantum Hadamard channels

    International Nuclear Information System (INIS)

    Bradler, Kamil; Hayden, Patrick; Touchette, Dave; Wilde, Mark M.

    2010-01-01

    Coding theorems in quantum Shannon theory express the ultimate rates at which a sender can transmit information over a noisy quantum channel. More often than not, the known formulas expressing these transmission rates are intractable, requiring an optimization over an infinite number of uses of the channel. Researchers have rarely found quantum channels with a tractable classical or quantum capacity, but when such a finding occurs, it demonstrates a complete understanding of that channel's capabilities for transmitting classical or quantum information. Here we show that the three-dimensional capacity region for entanglement-assisted transmission of classical and quantum information is tractable for the Hadamard class of channels. Examples of Hadamard channels include generalized dephasing channels, cloning channels, and the Unruh channel. The generalized dephasing channels and the cloning channels are natural processes that occur in quantum systems through the loss of quantum coherence or stimulated emission, respectively. The Unruh channel is a noisy process that occurs in relativistic quantum information theory as a result of the Unruh effect and bears a strong relationship to the cloning channels. We give exact formulas for the entanglement-assisted classical and quantum communication capacity regions of these channels. The coding strategy for each of these examples is superior to a naieve time-sharing strategy, and we introduce a measure to determine this improvement.

  2. Finding a Hadamard matrix by simulated annealing of spin vectors

    Science.gov (United States)

    Bayu Suksmono, Andriyan

    2017-05-01

    Reformulation of a combinatorial problem into optimization of a statistical-mechanics system enables finding a better solution using heuristics derived from a physical process, such as by the simulated annealing (SA). In this paper, we present a Hadamard matrix (H-matrix) searching method based on the SA on an Ising model. By equivalence, an H-matrix can be converted into a seminormalized Hadamard (SH) matrix, whose first column is unit vector and the rest ones are vectors with equal number of -1 and +1 called SH-vectors. We define SH spin vectors as representation of the SH vectors, which play a similar role as the spins on Ising model. The topology of the lattice is generalized into a graph, whose edges represent orthogonality relationship among the SH spin vectors. Starting from a randomly generated quasi H-matrix Q, which is a matrix similar to the SH-matrix without imposing orthogonality, we perform the SA. The transitions of Q are conducted by random exchange of {+, -} spin-pair within the SH-spin vectors that follow the Metropolis update rule. Upon transition toward zeroth energy, the Q-matrix is evolved following a Markov chain toward an orthogonal matrix, at which the H-matrix is said to be found. We demonstrate the capability of the proposed method to find some low-order H-matrices, including the ones that cannot trivially be constructed by the Sylvester method.

  3. Medical image compression by using three-dimensional wavelet transformation

    International Nuclear Information System (INIS)

    Wang, J.; Huang, H.K.

    1996-01-01

    This paper proposes a three-dimensional (3-D) medical image compression method for computed tomography (CT) and magnetic resonance (MR) that uses a separable nonuniform 3-D wavelet transform. The separable wavelet transform employs one filter bank within two-dimensional (2-D) slices and then a second filter bank on the slice direction. CT and MR image sets normally have different resolutions within a slice and between slices. The pixel distances within a slice are normally less than 1 mm and the distance between slices can vary from 1 mm to 10 mm. To find the best filter bank in the slice direction, the authors use the various filter banks in the slice direction and compare the compression results. The results from the 12 selected MR and CT image sets at various slice thickness show that the Haar transform in the slice direction gives the optimum performance for most image sets, except for a CT image set which has 1 mm slice distance. Compared with 2-D wavelet compression, compression ratios of the 3-D method are about 70% higher for CT and 35% higher for MR image sets at a peak signal to noise ratio (PSNR) of 50 dB. In general, the smaller the slice distance, the better the 3-D compression performance

  4. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  5. PT-symmetric planar devices for field transformation and imaging

    International Nuclear Information System (INIS)

    Valagiannopoulos, C A; Monticone, F; Alù, A

    2016-01-01

    The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imaging. (paper)

  6. Image Compression using Haar and Modified Haar Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Mohannad Abid Shehab Ahmed

    2013-04-01

    Full Text Available Efficient image compression approaches can provide the best solutions to the recent growth of the data intensive and multimedia based applications. As presented in many papers the Haar matrix–based methods and wavelet analysis can be used in various areas of image processing such as edge detection, preserving, smoothing or filtering. In this paper, color image compression analysis and synthesis based on Haar and modified Haar is presented. The standard Haar wavelet transformation with N=2 is composed of a sequence of low-pass and high-pass filters, known as a filter bank, the vertical and horizontal Haar filters are composed to construct four 2-dimensional filters, such filters applied directly to the image to speed up the implementation of the Haar wavelet transform. Modified Haar technique is studied and implemented for odd based numbers i.e. (N=3 & N=5 to generate many solution sets, these sets are tested using the energy function or numerical method to get the optimum one.The Haar transform is simple, efficient in memory usage due to high zero value spread (it can use sparse principle, and exactly reversible without the edge effects as compared to DCT (Discrete Cosine Transform. The implemented Matlab simulation results prove the effectiveness of DWT (Discrete Wave Transform algorithms based on Haar and Modified Haar techniques in attaining an efficient compression ratio (C.R, achieving higher peak signal to noise ratio (PSNR, and the resulting images are of much smoother as compared to standard JPEG especially for high C.R. A comparison between standard JPEG, Haar, and Modified Haar techniques is done finally which approves the highest capability of Modified Haar between others.

  7. Construction of symmetric Hadamard matrices of order 4v for v = 47, 73, 113

    Directory of Open Access Journals (Sweden)

    Balonin N. A.

    2018-01-01

    Full Text Available We continue our systematic search for symmetric Hadamard matrices based on the so called propus construction. In a previous paper this search covered the orders 4v with odd v ≤ 41. In this paper we cover the cases v = 43, 45, 47, 49, 51. The odd integers v < 120 for which no symmetric Hadamard matrices of order 4v are known are the following: 47, 59, 65, 67, 73, 81, 89, 93, 101, 103, 107, 109, 113, 119. By using the propus construction, we found several symmetric Hadamard matrices of order 4v for v = 47, 73, 113.

  8. Hyperspectral imaging using the single-pixel Fourier transform technique

    Science.gov (United States)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  9. The fuzzy Hough Transform-feature extraction in medical images

    International Nuclear Information System (INIS)

    Philip, K.P.; Dove, E.L.; Stanford, W.; Chandran, K.B.; McPherson, D.D.; Gotteiner, N.L.

    1994-01-01

    Identification of anatomical features is a necessary step for medical image analysis. Automatic methods for feature identification using conventional pattern recognition techniques typically classify an object as a member of a predefined class of objects, but do not attempt to recover the exact or approximate shape of that object. For this reason, such techniques are usually not sufficient to identify the borders of organs when individual geometry varies in local detail, even though the general geometrical shape is similar. The authors present an algorithm that detects features in an image based on approximate geometrical models. The algorithm is based on the traditional and generalized Hough Transforms but includes notions from fuzzy set theory. The authors use the new algorithm to roughly estimate the actual locations of boundaries of an internal organ, and from this estimate, to determine a region of interest around the organ. Based on this rough estimate of the border location, and the derived region of interest, the authors find the final estimate of the true borders with other image processing techniques. The authors present results that demonstrate that the algorithm was successfully used to estimate the approximate location of the chest wall in humans, and of the left ventricular contours of a dog heart obtained from cine-computed tomographic images. The authors use this fuzzy Hough Transform algorithm as part of a larger procedures to automatically identify the myocardial contours of the heart. This algorithm may also allow for more rapid image processing and clinical decision making in other medical imaging applications

  10. Analytical upper bound on optimum joint decoding capacity of Wyner GCMAC using hadamard inequality

    KAUST Repository

    Shakir, Muhammad

    2011-11-01

    This paper presents an original analytical expression for an upper bound on the optimum joint decoding capacity of Wyner circular Gaussian cellular multiple access channel (C-GCMAC) for uniformly distributed mobile terminals (MTs) across the cells. This upper bound is referred to as Hadamard upper bound (HUB) and is a novel application of the Hadamard inequality established by exploiting the Hadamard operation between the channel fading and channel path gain matrices. In this context, we employ an approximation approach based on the estimation of probability density function (PDF) of Hadamard product of two matrices. A closed-form expression has been derived to capture the effect of variable user density in adjacent cells on optimal joint decoding capacity. The results of this paper demonstrate that the analytical HUB based on the proposed approximation approach converges to the theoretical results for medium range of signal to noise ratios and shows a comparable tighter bound on optimum joint decoding capacity. © 2011 IEEE.

  11. On the optimum joint decoding capacity of wyner circular GCMAC by exploiting hadamard inequality

    KAUST Repository

    Shakir, Muhammad; Durrani, Tariq Salim; Alouini, Mohamed-Slim

    2010-01-01

    inequality established by exploiting the Hadamard operation between the channel fading (G) and channel slow gain (Ω) matrices. This paper demonstrates that the theoretical upper bound converges to the actual capacity for negligible channel slow gain among

  12. Fourier transform digital holographic adaptive optics imaging system

    Science.gov (United States)

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  13. Transformation of Image Positions, Rotations, and Sizes into Shift Parameters

    DEFF Research Database (Denmark)

    Skov Jensen, A.; Lindvold, L.; Rasmussen, E.

    1987-01-01

    An optical image processing system is described that converts orientation and size to shift properties and simultaneously preserves the positional information as a shift. The system is described analytically and experimentally. The transformed image can be processed further with a classical...... correlator working with a rotational and size-invariant. multiplexed match filter. An optical robot vision system designed on this concept would be able to look at several objects simultaneously and determine their shape, size, orientation, and position with two measurements on the input scene at different...

  14. Non-rigid registration of tomographic images with Fourier transforms

    International Nuclear Information System (INIS)

    Osorio, Ar; Isoardi, Ra; Mato, G

    2007-01-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time

  15. The gridding method for image reconstruction by Fourier transformation

    International Nuclear Information System (INIS)

    Schomberg, H.; Timmer, J.

    1995-01-01

    This paper explores a computational method for reconstructing an n-dimensional signal f from a sampled version of its Fourier transform f. The method involves a window function w and proceeds in three steps. First, the convolution g = w * f is computed numerically on a Cartesian grid, using the available samples of f. Then, g = wf is computed via the inverse discrete Fourier transform, and finally f is obtained as g/w. Due to the smoothing effect of the convolution, evaluating w * f is much less error prone than merely interpolating f. The method was originally devised for image reconstruction in radio astronomy, but is actually applicable to a broad range of reconstructive imaging methods, including magnetic resonance imaging and computed tomography. In particular, it provides a fast and accurate alternative to the filtered backprojection. The basic method has several variants with other applications, such as the equidistant resampling of arbitrarily sampled signals or the fast computation of the Radon (Hough) transform

  16. A new optical encryption system for image transformation

    Science.gov (United States)

    Yao, Shuyu; Chen, Linfei; Chang, Guojun; He, Bingyu

    2017-12-01

    This paper introduces a new optical image encryption system based on Fresnel diffraction and phase iterative algorithm, which can realize the conversion between different images. The method is based on the optical system of free space transmission, and uses the iterative phase retrieval algorithm to encode an image into two phase masks and a ciphertext. Unlike the existed methods, the ciphertext is a visible image, which can be used to achieve the conversion of one image to another image. In order to enhance the security, two phase masks are combined into a wide-scale phase mask by the double image cross pixel scrambling approach. In the decryption process, the wide-scale phase mask is re-decrypted into two random phase masks using a random shift matrix. The ciphertext and the first phase mask are placed on the input plane and the second random phase mask is placed on the transformation plane. The Fresnel diffraction principle can be used to obtain the plaintext information on the output plane. Theoretical analysis and simulation results show that the encryption system is feasible and quite safe.

  17. Fast ghost imaging and ghost encryption based on the discrete cosine transform

    International Nuclear Information System (INIS)

    Tanha, Mehrdad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza

    2013-01-01

    We introduce the discrete cosine transform as an advanced compression tool for images in computational ghost imaging. A novel approach to fast imaging and encryption, the discrete cosine transform, promotes the security level of ghost images and reduces the image retrieval time. To discuss the advantages of this technique we compare experimental outcomes with simulated ones. (paper)

  18. Adaptive geodesic transform for segmentation of vertebrae on CT images

    Science.gov (United States)

    Gaonkar, Bilwaj; Shu, Liao; Hermosillo, Gerardo; Zhan, Yiqiang

    2014-03-01

    Vertebral segmentation is a critical first step in any quantitative evaluation of vertebral pathology using CT images. This is especially challenging because bone marrow tissue has the same intensity profile as the muscle surrounding the bone. Thus simple methods such as thresholding or adaptive k-means fail to accurately segment vertebrae. While several other algorithms such as level sets may be used for segmentation any algorithm that is clinically deployable has to work in under a few seconds. To address these dual challenges we present here, a new algorithm based on the geodesic distance transform that is capable of segmenting the spinal vertebrae in under one second. To achieve this we extend the theory of the geodesic distance transforms proposed in1 to incorporate high level anatomical knowledge through adaptive weighting of image gradients. Such knowledge may be provided by the user directly or may be automatically generated by another algorithm. We incorporate information 'learnt' using a previously published machine learning algorithm2 to segment the L1 to L5 vertebrae. While we present a particular application here, the adaptive geodesic transform is a generic concept which can be applied to segmentation of other organs as well.

  19. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    Science.gov (United States)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  20. Using appreciative inquiry to transform student nurses’ image of nursing

    Directory of Open Access Journals (Sweden)

    Motshedisi E. Chauke

    2015-08-01

    Full Text Available Introduction: Literature provides adequate evidence of a poor perception of nursing within the profession, resulting in high rates of attrition of student nurses and newly qualified nurses. The nursing profession, in particular nurse educators, has an ethical and professional responsibility to find innovative strategies to promote the positive image of nursing amongst student nurses. Purpose: The purpose of the study was to explore the potential of appreciative inquiry (AI as an intervention teaching strategy to transform student nurses’ image of nursing. Design: A quantitative, quasi-experimental, explorative-descriptive design comprising the pretest, appreciative inquiry as intervention, and the post-test was used. Methods: Convenience sampling was used to select third and fourthyear college and university student nurses in the Gauteng province of South Africa for the pre- and the post-test respectively. Data were collected by means of a questionnaire and analysed by SPSS version 20.0. Findings: The pretest results revealed a mix of positive and negative perceptions of the image of nursing amongst student nurses. The negative perceptions of the image of nursing that needed intervention included the working conditions of nurses, and the perception of nursing as a profession that was not respected and appreciated. The post-test results showed a significant and positive change in the student nurses’ perception of the image of nursing as a respected and appreciated profession. Although AI resulted in a negative to positive change in some aspects of student nurses’ image of nursing, the negative perceptions of the working conditions of nurses remained and became more negative. The positive image of gender in nursing was enhanced following the implementation of AI. Conclusion: Appreciative inquiry demonstrated potential as a teaching strategy to produce a positive nursing image change and positive orientation towards nursing amongst student

  1. Using appreciative inquiry to transform student nurses' image of nursing.

    Science.gov (United States)

    Chauke, Motshedisi E; Van Der Wal, Dirk; Botha, Annalie

    2015-08-19

    Literature provides adequate evidence of a poor perception of nursing within the profession, resulting in high rates of attrition of student nurses and newly qualified nurses. The nursing profession, in particular nurse educators, has an ethical and professional responsibility to find innovative strategies to promote the positive image of nursing amongst student nurses. The purpose of the study was to explore the potential of appreciative inquiry (AI) as an intervention teaching strategy to transform student nurses' image of nursing. A quantitative, quasi-experimental, explorative-descriptive design comprising the pretest, appreciative inquiry as intervention, and the post-test was used. Convenience sampling was used to select third and fourth year college and university student nurses in the Gauteng province of South Africa for the pre- and the post-test respectively. Data were collected by means of a questionnaire and analysed by SPSS version 20.0. The pretest results revealed a mix of positive and negative perceptions of the image of nursing amongst student nurses. The negative perceptions of the image of nursing that needed intervention included the working conditions of nurses, and the perception of nursing as a profession that was not respected and appreciated. The post-test results showed a significant and positive change in the student nurses' perception of the image of nursing as a respected and appreciated profession. Although AI resulted in a negative to positive change in some aspects of student nurses' image of nursing, the negative perceptions of the working conditions of nurses remained and became more negative. The positive image of gender in nursing was enhanced following the implementation of AI. Appreciative inquiry demonstrated potential as a teaching strategy to produce a positive nursing image change and positive orientation towards nursing amongst student nurses.

  2. Weighted ensemble transform Kalman filter for image assimilation

    Directory of Open Access Journals (Sweden)

    Sebastien Beyou

    2013-01-01

    Full Text Available This study proposes an extension of the Weighted Ensemble Kalman filter (WEnKF proposed by Papadakis et al. (2010 for the assimilation of image observations. The main focus of this study is on a novel formulation of the Weighted filter with the Ensemble Transform Kalman filter (WETKF, incorporating directly as a measurement model a non-linear image reconstruction criterion. This technique has been compared to the original WEnKF on numerical and real world data of 2-D turbulence observed through the transport of a passive scalar. In particular, it has been applied for the reconstruction of oceanic surface current vorticity fields from sea surface temperature (SST satellite data. This latter technique enables a consistent recovery along time of oceanic surface currents and vorticity maps in presence of large missing data areas and strong noise.

  3. TEXTURE-AWARE DENSE IMAGE MATCHING USING TERNARY CENSUS TRANSFORM

    Directory of Open Access Journals (Sweden)

    H. Hu

    2016-06-01

    Full Text Available Textureless and geometric discontinuities are major problems in state-of-the-art dense image matching methods, as they can cause visually significant noise and the loss of sharp features. Binary census transform is one of the best matching cost methods but in textureless areas, where the intensity values are similar, it suffers from small random noises. Global optimization for disparity computation is inherently sensitive to parameter tuning in complex urban scenes, and must compromise between smoothness and discontinuities. The aim of this study is to provide a method to overcome these issues in dense image matching, by extending the industry proven Semi-Global Matching through 1 developing a ternary census transform, which takes three outputs in a single order comparison and encodes the results in two bits rather than one, and also 2 by using texture-information to self-tune the parameters, which both preserves sharp edges and enforces smoothness when necessary. Experimental results using various datasets from different platforms have shown that the visual qualities of the triangulated point clouds in urban areas can be largely improved by these proposed methods.

  4. Edge Detection on Images of Pseudoimpedance Section Supported by Context and Adaptive Transformation Model Images

    Directory of Open Access Journals (Sweden)

    Kawalec-Latała Ewa

    2014-03-01

    Full Text Available Most of underground hydrocarbon storage are located in depleted natural gas reservoirs. Seismic survey is the most economical source of detailed subsurface information. The inversion of seismic section for obtaining pseudoacoustic impedance section gives the possibility to extract detailed subsurface information. The seismic wavelet parameters and noise briefly influence the resolution. Low signal parameters, especially long signal duration time and the presence of noise decrease pseudoimpedance resolution. Drawing out from measurement or modelled seismic data approximation of distribution of acoustic pseuoimpedance leads us to visualisation and images useful to stratum homogeneity identification goal. In this paper, the improvement of geologic section image resolution by use of minimum entropy deconvolution method before inversion is applied. The author proposes context and adaptive transformation of images and edge detection methods as a way to increase the effectiveness of correct interpretation of simulated images. In the paper, the edge detection algorithms using Sobel, Prewitt, Robert, Canny operators as well as Laplacian of Gaussian method are emphasised. Wiener filtering of image transformation improving rock section structure interpretation pseudoimpedance matrix on proper acoustic pseudoimpedance value, corresponding to selected geologic stratum. The goal of the study is to develop applications of image transformation tools to inhomogeneity detection in salt deposits.

  5. TRANSFORMATION ALGORITHM FOR IMAGES OBTAINED BY OMNIDIRECTIONAL CAMERAS

    Directory of Open Access Journals (Sweden)

    V. P. Lazarenko

    2015-01-01

    Full Text Available Omnidirectional optoelectronic systems find their application in areas where a wide viewing angle is critical. However, omnidirectional optoelectronic systems have a large distortion that makes their application more difficult. The paper compares the projection functions of traditional perspective lenses and omnidirectional wide angle fish-eye lenses with a viewing angle not less than 180°. This comparison proves that distortion models of omnidirectional cameras cannot be described as a deviation from the classic model of pinhole camera. To solve this problem, an algorithm for transforming omnidirectional images has been developed. The paper provides a brief comparison of the four calibration methods available in open source toolkits for omnidirectional optoelectronic systems. Geometrical projection model is given used for calibration of omnidirectional optical system. The algorithm consists of three basic steps. At the first step, we calculate he field of view of a virtual pinhole PTZ camera. This field of view is characterized by an array of 3D points in the object space. At the second step the array of corresponding pixels for these three-dimensional points is calculated. Then we make a calculation of the projection function that expresses the relation between a given 3D point in the object space and a corresponding pixel point. In this paper we use calibration procedure providing the projection function for calibrated instance of the camera. At the last step final image is formed pixel-by-pixel from the original omnidirectional image using calculated array of 3D points and projection function. The developed algorithm gives the possibility for obtaining an image for a part of the field of view of an omnidirectional optoelectronic system with the corrected distortion from the original omnidirectional image. The algorithm is designed for operation with the omnidirectional optoelectronic systems with both catadioptric and fish-eye lenses

  6. Variable Rate, Adaptive Transform Tree Coding Of Images

    Science.gov (United States)

    Pearlman, William A.

    1988-10-01

    A tree code, asymptotically optimal for stationary Gaussian sources and squared error distortion [2], is used to encode transforms of image sub-blocks. The variance spectrum of each sub-block is estimated and specified uniquely by a set of one-dimensional auto-regressive parameters. The expected distortion is set to a constant for each block and the rate is allowed to vary to meet the given level of distortion. Since the spectrum and rate are different for every block, the code tree differs for every block. Coding simulations for target block distortion of 15 and average block rate of 0.99 bits per pel (bpp) show that very good results can be obtained at high search intensities at the expense of high computational complexity. The results at the higher search intensities outperform a parallel simulation with quantization replacing tree coding. Comparative coding simulations also show that the reproduced image with variable block rate and average rate of 0.99 bpp has 2.5 dB less distortion than a similarly reproduced image with a constant block rate equal to 1.0 bpp.

  7. Compton camera imaging and the cone transform: a brief overview

    Science.gov (United States)

    Terzioglu, Fatma; Kuchment, Peter; Kunyansky, Leonid

    2018-05-01

    While most of Radon transform applications to imaging involve integrations over smooth sub-manifolds of the ambient space, lately important situations have appeared where the integration surfaces are conical. Three of such applications are single scatter optical tomography, Compton camera medical imaging, and homeland security. In spite of the similar surfaces of integration, the data and the inverse problems associated with these modalities differ significantly. In this article, we present a brief overview of the mathematics arising in Compton camera imaging. In particular, the emphasis is made on the overdetermined data and flexible geometry of the detectors. For the detailed results, as well as other approaches (e.g. smaller-dimensional data or restricted geometry of detectors) the reader is directed to the relevant publications. Only a brief description and some references are provided for the single scatter optical tomography. This work was supported in part by NSF DMS grants 1211463 (the first two authors), 1211521 and 141877 (the third author), as well as a College of Science of Texas A&M University grant.

  8. Wiener discrete cosine transform-based image filtering

    Science.gov (United States)

    Pogrebnyak, Oleksiy; Lukin, Vladimir V.

    2012-10-01

    A classical problem of additive white (spatially uncorrelated) Gaussian noise suppression in grayscale images is considered. The main attention is paid to discrete cosine transform (DCT)-based denoising, in particular, to image processing in blocks of a limited size. The efficiency of DCT-based image filtering with hard thresholding is studied for different sizes of overlapped blocks. A multiscale approach that aggregates the outputs of DCT filters having different overlapped block sizes is proposed. Later, a two-stage denoising procedure that presumes the use of the multiscale DCT-based filtering with hard thresholding at the first stage and a multiscale Wiener DCT-based filtering at the second stage is proposed and tested. The efficiency of the proposed multiscale DCT-based filtering is compared to the state-of-the-art block-matching and three-dimensional filter. Next, the potentially reachable multiscale filtering efficiency in terms of output mean square error (MSE) is studied. The obtained results are of the same order as those obtained by Chatterjee's approach based on nonlocal patch processing. It is shown that the ideal Wiener DCT-based filter potential is usually higher when noise variance is high.

  9. Generation of Custom DSP Transform IP Cores: Case Study Walsh-Hadamard Transform

    Science.gov (United States)

    2002-09-01

    mathematics and hardware design What I know: Finite state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing...state machine Pipelining Systolic array … What I know: Linear algebra Digital signal processing Adaptive filter theory … A math guy A hardware engineer...Synthesis Technology Libary Bit-width (8) HF factor (1,2,3,6) VF factor (1,2,4, ... 32) Xilinx FPGA Place&Route Xilinx FPGA Place&Route Performance

  10. Quantum states and the Hadamard form. III. Constraints in cosmological space-times

    International Nuclear Information System (INIS)

    Najmi, A.; Ottewill, A.C.

    1985-01-01

    We examine the constraints on the construction of Fock spaces for scalar fields in spatially flat Robertson-Walker space-times imposed by requiring that the vacuum state of the theory have a two-point function possessing the Hadamard singularity structure required by standard renormalization theory. It is shown that any such vacuum state must be a second-order adiabatic vacuum. We discuss the global requirements on the two-point function for it to possess the Hadamard form at all times if it possesses it at one time

  11. The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states

    Science.gov (United States)

    Finster, Felix; Murro, Simone; Röken, Christian

    2016-07-01

    We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.

  12. The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states

    International Nuclear Information System (INIS)

    Finster, Felix; Murro, Simone; Röken, Christian

    2016-01-01

    We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.

  13. The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states

    Energy Technology Data Exchange (ETDEWEB)

    Finster, Felix, E-mail: finster@ur.de, E-mail: simone.murro@ur.de, E-mail: Christian.Roeken@mathematik.ur.de; Murro, Simone, E-mail: finster@ur.de, E-mail: simone.murro@ur.de, E-mail: Christian.Roeken@mathematik.ur.de; Röken, Christian, E-mail: finster@ur.de, E-mail: simone.murro@ur.de, E-mail: Christian.Roeken@mathematik.ur.de [Fakultät für Mathematik, Universität Regensburg, D-93040 Regensburg (Germany)

    2016-07-15

    We give a non-perturbative construction of the fermionic projector in Minkowski space coupled to a time-dependent external potential which is smooth and decays faster than quadratically for large times. The weak and strong mass oscillation properties are proven. We show that the integral kernel of the fermionic projector is of the Hadamard form, provided that the time integral of the spatial sup-norm of the potential satisfies a suitable bound. This gives rise to an algebraic quantum field theory of Dirac fields in an external potential with a distinguished pure quasi-free Hadamard state.

  14. High-Throughput Screening Using Fourier-Transform Infrared Imaging

    Directory of Open Access Journals (Sweden)

    Erdem Sasmaz

    2015-06-01

    Full Text Available Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

  15. Parallel processing approach to transform-based image coding

    Science.gov (United States)

    Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.

    1991-06-01

    This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.

  16. Fast downscaled inverses for images compressed with M-channel lapped transforms.

    Science.gov (United States)

    de Queiroz, R L; Eschbach, R

    1997-01-01

    Compressed images may be decompressed and displayed or printed using different devices at different resolutions. Full decompression and rescaling in space domain is a very expensive method. We studied downscaled inverses where the image is decompressed partially, and a reduced inverse transform is used to recover the image. In this fashion, fewer transform coefficients are used and the synthesis process is simplified. We studied the design of fast inverses, for a given forward transform. General solutions are presented for M-channel finite impulse response (FIR) filterbanks, of which block and lapped transforms are a subset. Designs of faster inverses are presented for popular block and lapped transforms.

  17. A Study of Color Transformation on Website Images for the Color Blind

    OpenAIRE

    Siew-Li Ching; Maziani Sabudin

    2010-01-01

    In this paper, we study on color transformation method on website images for the color blind. The most common category of color blindness is red-green color blindness which is viewed as beige color. By transforming the colors of the images, the color blind can improve their color visibility. They can have a better view when browsing through the websites. To transform colors on the website images, we study on two algorithms which are the conversion techniques from RGB colo...

  18. Fourier Transform Infrared Imaging analysis of dental pulp inflammatory diseases.

    Science.gov (United States)

    Giorgini, E; Sabbatini, S; Conti, C; Rubini, C; Rocchetti, R; Fioroni, M; Memè, L; Orilisi, G

    2017-05-01

    Fourier Transform Infrared microspectroscopy let characterize the macromolecular composition and distribution of tissues and cells, by studying the interaction between infrared radiation and matter. Therefore, we hypothesize to exploit this analytical tool in the analysis of inflamed pulps, to detect the different biochemical features related to various degrees of inflammation. IR maps of 13 irreversible and 12 hyperplastic pulpitis, together with 10 normal pulps, were acquired, compared with histological findings and submitted to multivariate (HCA, PCA, SIMCA) and statistical (one-way ANOVA) analysis. The fit of convoluted bands let calculate meaningful band area ratios (means ± s.d., P < 0.05). The infrared imaging analysis pin-pointed higher amounts of water and lower quantities of type I collagen in all inflamed pulps. Specific vibrational markers were defined for irreversible pulpitis (Lipids/Total Biomass, PhII/Total Biomass, CH 2 /CH 3 , and Ty/AII) and hyperplastic ones (OH/Total Biomass, Collagen/Total Biomass, and CH 3 Collagen/Total Biomass). The study confirmed that FTIR microspectroscopy let discriminate tissues' biological features. The infrared imaging analysis evidenced, in inflamed pulps, alterations in tissues' structure and composition. Changes in lipid metabolism, increasing amounts of tyrosine, and the occurrence of phosphorylative processes were highlighted in irreversible pulpitis, while high amounts of water and low quantities of type I collagen were detected in hyperplastic samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Research on Methods of Infrared and Color Image Fusion Based on Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Zhao Rentao

    2014-06-01

    Full Text Available There is significant difference in the imaging features of infrared image and color image, but their fusion images also have very good complementary information. In this paper, based on the characteristics of infrared image and color image, first of all, wavelet transform is applied to the luminance component of the infrared image and color image. In multi resolution the relevant regional variance is regarded as the activity measure, relevant regional variance ratio as the matching measure, and the fusion image is enhanced in the process of integration, thus getting the fused images by final synthesis module and multi-resolution inverse transform. The experimental results show that the fusion image obtained by the method proposed in this paper is better than the other methods in keeping the useful information of the original infrared image and the color information of the original color image. In addition, the fusion image has stronger adaptability and better visual effect.

  20. Hermite-Hadamard type inequality for φ{sub h}-convex stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Sarıkaya, Mehmet Zeki, E-mail: sarikayamz@gmail.com [Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce (Turkey); Kiriş, Mehmet Eyüp, E-mail: kiris@aku.edu.tr [Department of Mathematics, Institute of Science and Arts, Afyon Kocatepe University, Afyonkarahisar (Turkey); Çelik, Nuri, E-mail: ncelik@bartin.edu.tr [Department of Statistics, Faculty of Science, Bartın University, Bartın-Turkey (Turkey)

    2016-04-18

    The main aim of the present paper is to introduce φ{sub h}-convex stochastic processes and we investigate main properties of these mappings. Moreover, we prove the Hadamard-type inequalities for φ{sub h}-convex stochastic processes. We also give some new general inequalities for φ{sub h}-convex stochastic processes.

  1. Hermite-Hadamard type inequalities for GA-s-convex functions

    Directory of Open Access Journals (Sweden)

    İmdat İşcan

    2014-10-01

    Full Text Available In this paper, The author introduces the concepts of the GA-s-convex functions in the first sense and second sense and establishes some integral inequalities of Hermite-Hadamard type related to the GA-s-convex functions. Some applications to special means of real numbers are also given.

  2. Self-orthogonal codes from some bush-type Hadamard matrices ...

    African Journals Online (AJOL)

    By means of a construction method outlined by Harada and Tonchev, we determine some non-binary self-orthogonal codes obtained from the row span of orbit matrices of Bush-type Hadamard matrices that admit a xed-point-free and xed-block-free automorphism of prime order. We show that the code [20; 15; 4]5 obtained ...

  3. A note on "The Cartan-Hadamard conjecture and the Little Prince"

    OpenAIRE

    Michalakis, Spyridon

    2017-01-01

    We provide elementary proofs of Lemmas 7.1 and 7.4 appearing in "The Cartan-Hadamard conjecture and the Little Prince", by B. Kloeckner and G. Kuperberg. The Lemmas play an important role in the derivation of novel isoperimetric inequalities. The original proofs relied on Sage, a symbolic algebra package, to factor certain algebraic varieties into irreducible components.

  4. Robust Hadamard gate for optical and ion trap holonomic quantum computers

    OpenAIRE

    Kuvshinov, V. I.; Kuzmin, A. V.

    2005-01-01

    We consider one possible implementation of Hadamard gate for optical and ion trap holonomic quantum computers. The expression for its fidelity determining the gate stability with respect to the errors in the single-mode squeezing parameter control is analytically derived. We demonstrate by means of this expression the cancellation of the squeezing control errors up to the fourth order on their magnitude.

  5. Analytical upper bound on optimum joint decoding capacity of Wyner GCMAC using hadamard inequality

    KAUST Repository

    Shakir, Muhammad; Durrani, Tariq Salim; Alouini, Mohamed-Slim

    2011-01-01

    an approximation approach based on the estimation of probability density function (PDF) of Hadamard product of two matrices. A closed-form expression has been derived to capture the effect of variable user density in adjacent cells on optimal joint decoding

  6. Hadamard upper bound on optimum joint decoding capacity of Wyner Gaussian cellular MAC

    KAUST Repository

    Shakir, Muhammad

    2011-09-01

    This article presents an original analytical expression for an upper bound on the optimum joint decoding capacity of Wyner circular Gaussian cellular multiple access channel (C-GCMAC) for uniformly distributed mobile terminals (MTs). This upper bound is referred to as Hadamard upper bound (HUB) and is a novel application of the Hadamard inequality established by exploiting the Hadamard operation between the channel fading matrix G and the channel path gain matrix Ω. This article demonstrates that the actual capacity converges to the theoretical upper bound under the constraints like low signal-to-noise ratios and limiting channel path gain among the MTs and the respective base station of interest. In order to determine the usefulness of the HUB, the behavior of the theoretical upper bound is critically observed specially when the inter-cell and the intra-cell time sharing schemes are employed. In this context, we derive an analytical form of HUB by employing an approximation approach based on the estimation of probability density function of trace of Hadamard product of two matrices, i.e., G and Ω. A closed form of expression has been derived to capture the effect of the MT distribution on the optimum joint decoding capacity of C-GCMAC. This article demonstrates that the analytical HUB based on the proposed approximation approach converges to the theoretical upper bound results in the medium to high signal to noise ratio regime and shows a reasonably tighter bound on optimum joint decoding capacity of Wyner GCMAC.

  7. Optimized curve design for image analysis using localized geodesic distance transformations

    Science.gov (United States)

    Braithwaite, Billy; Niska, Harri; Pöllänen, Irene; Ikonen, Tiia; Haataja, Keijo; Toivanen, Pekka; Tolonen, Teemu

    2015-03-01

    We consider geodesic distance transformations for digital images. Given a M × N digital image, a distance image is produced by evaluating local pixel distances. Distance Transformation on Curved Space (DTOCS) evaluates shortest geodesics of a given pixel neighborhood by evaluating the height displacements between pixels. In this paper, we propose an optimization framework for geodesic distance transformations in a pattern recognition scheme, yielding more accurate machine learning based image analysis, exemplifying initial experiments using complex breast cancer images. Furthermore, we will outline future research work, which will complete the research work done for this paper.

  8. Off-diagonal coefficients of the DeWitt-Schwinger and Hadamard representations of the Feynman propagator

    International Nuclear Information System (INIS)

    Decanini, Yves; Folacci, Antoine

    2006-01-01

    Having in mind applications to gravitational wave theory (in connection with the radiation reaction problem), stochastic semiclassical gravity (in connection with the regularization of the noise kernel) and quantum field theory in higher-dimensional curved spacetime (in connection with the Hadamard regularization of the stress-energy tensor), we improve the DeWitt-Schwinger and Hadamard representations of the Feynman propagator of a massive scalar field theory defined on an arbitrary gravitational background by deriving higher-order terms for the covariant Taylor series expansions of the geometrical coefficients--i.e., the DeWitt and Hadamard coefficients--that define them

  9. Medical Image Fusion Algorithm Based on Nonlinear Approximation of Contourlet Transform and Regional Features

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2017-01-01

    Full Text Available According to the pros and cons of contourlet transform and multimodality medical imaging, here we propose a novel image fusion algorithm that combines nonlinear approximation of contourlet transform with image regional features. The most important coefficient bands of the contourlet sparse matrix are retained by nonlinear approximation. Low-frequency and high-frequency regional features are also elaborated to fuse medical images. The results strongly suggested that the proposed algorithm could improve the visual effects of medical image fusion and image quality, image denoising, and enhancement.

  10. Reversible Integer Wavelet Transform for the Joint of Image Encryption and Watermarking

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-01-01

    Full Text Available In recent years, signal processing in the encrypted domain has attracted considerable research interest, especially embedding watermarking in encrypted image. In this work, a novel joint of image encryption and watermarking based on reversible integer wavelet transform is proposed. Firstly, the plain-image is encrypted by chaotic maps and reversible integer wavelet transform. Then the lossless watermarking is embedded in the encrypted image by reversible integer wavelet transform and histogram modification. Finally an encrypted image containing watermarking is obtained by the inverse integer wavelet transform. What is more, the original image and watermarking can be completely recovered by inverse process. Numerical experimental results and comparing with previous works show that the proposed scheme possesses higher security and embedding capacity than previous works. It is suitable for protecting the image information.

  11. An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2015-01-01

    Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.

  12. Using the generalized Radon transform for detection of curves in noisy images

    DEFF Research Database (Denmark)

    Toft, Peter Aundal

    1996-01-01

    In this paper the discrete generalized Radon transform will be investigated as a tool for detection of curves in noisy digital images. The discrete generalized Radon transform maps an image into a parameter domain, where curves following a specific parameterized curve form will correspond to a peak...

  13. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging.

    Science.gov (United States)

    Zhang, Shuanghui; Liu, Yongxiang; Li, Xiang; Bi, Guoan

    2016-04-28

    This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP) estimation and the maximum likelihood estimation (MLE) are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT) and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  14. Improvements in image quality with pseudo-parallel imaging in the phase-scrambling fourier transform technique

    International Nuclear Information System (INIS)

    Ito, Satoshi; Kawawa, Yasuhiro; Yamada, Yoshifumi

    2010-01-01

    The signal obtained in the phase-scrambling Fourier transform (PSFT) imaging technique can be transformed to the signal described by the Fresnel transform of the objects, in which the amplitude of the PSFT presents some kind of blurred image of the objects. Therefore, the signal can be considered to exist in the object domain as well as the Fourier domain of the object. This notable feature makes it possible to assign weights to the reconstructed images by applying a weighting function to the PSFT signal after data acquisition, and as a result, pseudo-parallel image reconstruction using these aliased image data with different weights on the images is feasible. In this study, the improvements in image quality with such pseudo-parallel imaging were examined and demonstrated. The weighting function of the PSFT signal that provides a given weight on the image is estimated using the obtained image data and is iteratively updated after sensitivity encoding (SENSE)-based image reconstruction. Simulation studies showed that reconstruction errors were dramatically reduced and that the spatial resolution was also improved in almost all image spaces. The proposed method was applied to signals synthesized from MR image data with phase variations to verify its effectiveness. It was found that the image quality was improved and that images almost entirely free of aliasing artifacts could be obtained. (author)

  15. Implementation of Texture Based Image Retrieval Using M-band Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    LiaoYa-li; Yangyan; CaoYang

    2003-01-01

    Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing.The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.

  16. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    Science.gov (United States)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  17. Assessment of illumination conditions in a single-pixel imaging configuration

    Science.gov (United States)

    Garoi, Florin; Udrea, Cristian; Damian, Cristian; Logofǎtu, Petre C.; Colţuc, Daniela

    2016-12-01

    Single-pixel imaging based on multiplexing is a promising technique, especially in applications where 2D detectors or raster scanning imaging are not readily applicable. With this method, Hadamard masks are projected on a spatial light modulator to encode an incident scene and a signal is recorded at the photodiode detector for each of these masks. Ultimately, the image is reconstructed on the computer by applying the inverse transform matrix. Thus, various algorithms were optimized and several spatial light modulators already characterized for such a task. This work analyses the imaging quality of such a single-pixel arrangement, when various illumination conditions are used. More precisely, the main comparison is made between coherent and incoherent ("white light") illumination and between two multiplexing methods, namely Hadamard and Scanning. The quality of the images is assessed by calculating their SNR, using two relations. The results show better images are obtained with "white light" illumination for the first method and coherent one for the second.

  18. LOW COMPLEXITY HYBRID LOSSY TO LOSSLESS IMAGE CODER WITH COMBINED ORTHOGONAL POLYNOMIALS TRANSFORM AND INTEGER WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    R. Krishnamoorthy

    2012-05-01

    Full Text Available In this paper, a new lossy to lossless image coding scheme combined with Orthogonal Polynomials Transform and Integer Wavelet Transform is proposed. The Lifting Scheme based Integer Wavelet Transform (LS-IWT is first applied on the image in order to reduce the blocking artifact and memory demand. The Embedded Zero tree Wavelet (EZW subband coding algorithm is used in this proposed work for progressive image coding which achieves efficient bit rate reduction. The computational complexity of lower subband coding of EZW algorithm is reduced in this proposed work with a new integer based Orthogonal Polynomials transform coding. The normalization and mapping are done on the subband of the image for exploiting the subjective redundancy and the zero tree structure is obtained for EZW coding and so the computation complexity is greatly reduced in this proposed work. The experimental results of the proposed technique also show that the efficient bit rate reduction is achieved for both lossy and lossless compression when compared with existing techniques.

  19. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    Science.gov (United States)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  20. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  1. Existence and Hadamard well-posedness of a system of simultaneous generalized vector quasi-equilibrium problems

    Directory of Open Access Journals (Sweden)

    Wenyan Zhang

    2017-03-01

    Full Text Available Abstract An existence result for the solution set of a system of simultaneous generalized vector quasi-equilibrium problems (for short, (SSGVQEP is obtained, which improves Theorem 3.1 of the work of Ansari et al. (J. Optim. Theory Appl. 127:27-44, 2005. Moreover, a definition of Hadamard-type well-posedness for (SSGVQEP is introduced and sufficient conditions for Hadamard well-posedness of (SSGVQEP are established.

  2. Blind Forensics of Successive Geometric Transformations in Digital Images Using Spectral Method: Theory and Applications.

    Science.gov (United States)

    Chen, Chenglong; Ni, Jiangqun; Shen, Zhaoyi; Shi, Yun Qing

    2017-06-01

    Geometric transformations, such as resizing and rotation, are almost always needed when two or more images are spliced together to create convincing image forgeries. In recent years, researchers have developed many digital forensic techniques to identify these operations. Most previous works in this area focus on the analysis of images that have undergone single geometric transformations, e.g., resizing or rotation. In several recent works, researchers have addressed yet another practical and realistic situation: successive geometric transformations, e.g., repeated resizing, resizing-rotation, rotation-resizing, and repeated rotation. We will also concentrate on this topic in this paper. Specifically, we present an in-depth analysis in the frequency domain of the second-order statistics of the geometrically transformed images. We give an exact formulation of how the parameters of the first and second geometric transformations influence the appearance of periodic artifacts. The expected positions of characteristic resampling peaks are analytically derived. The theory developed here helps to address the gap left by previous works on this topic and is useful for image security and authentication, in particular, the forensics of geometric transformations in digital images. As an application of the developed theory, we present an effective method that allows one to distinguish between the aforementioned four different processing chains. The proposed method can further estimate all the geometric transformation parameters. This may provide useful clues for image forgery detection.

  3. The Cortex Transform as an image preprocessor for sparse distributed memory: An initial study

    Science.gov (United States)

    Olshausen, Bruno; Watson, Andrew

    1990-01-01

    An experiment is described which was designed to evaluate the use of the Cortex Transform as an image processor for Sparse Distributed Memory (SDM). In the experiment, a set of images were injected with Gaussian noise, preprocessed with the Cortex Transform, and then encoded into bit patterns. The various spatial frequency bands of the Cortex Transform were encoded separately so that they could be evaluated based on their ability to properly cluster patterns belonging to the same class. The results of this study indicate that by simply encoding the low pass band of the Cortex Transform, a very suitable input representation for the SDM can be achieved.

  4. Image reconstruction from pairs of Fourier-transform magnitude

    International Nuclear Information System (INIS)

    Hunt, B.R.; Overman, T.L.; Gough, P.

    1998-01-01

    The retrieval of phase information from only the magnitude of the Fourier transform of a signal remains an important problem for many applications. We present an algorithm for phase retrieval when there exist two related sets of Fourier-transform magnitude data. The data are assumed to come from a single object observed in two different polarizations through a distorting medium, so the phase component of the Fourier transform of the object is corrupted. Phase retrieval is accomplished by minimization of a suitable criterion function, which can take three different forms. copyright 1998 Optical Society of America

  5. Hermite-Hadamard Type Integral Inequalities for Functions Whose Second-Order Mixed Derivatives Are Coordinated (s,m-P-Convex

    Directory of Open Access Journals (Sweden)

    Yu-Mei Bai

    2018-01-01

    Full Text Available We establish some new Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are coordinated (s,m-P-convex. An expression form of Hermite-Hadamard type integral inequalities via the beta function and the hypergeometric function is also presented. Our results provide a significant complement to the work of Wu et al. involving the Hermite-Hadamard type inequalities for coordinated (s,m-P-convex functions in an earlier article.

  6. Regular Discrete Cosine Transform and its Application to Digital Images Representation

    Directory of Open Access Journals (Sweden)

    Yuri A. Gadzhiev

    2011-11-01

    Full Text Available Discrete cosine transform dct-i, unlike dct-ii, does not concentrate the energy of a transformed vector sufficiently well, so it is not used practically for the purposes of digital image compression. By performing regular normalization of the basic cosine transform matrix, we obtain a discrete cosine transform which has the same cosine basis as dct-i, coincides as dct-i with its own inverse transform, but unlike dct-i, it does not reduce the proper ability of cosine transform to the energy concentration. In this paper we consider briefly the properties of this transform, its possible integer implementation for the case of 8x8-matrix, its applications to the image itself and to the preliminary rgb colour space transformations, further more we investigate some models of quantization, perform an experiment for the estimation of the level of digital images compression and the quality achieved by use of this transform. This experiment shows that the transform can be sufficiently effective for practical use, but the question of its comparative effectiveness with respect to dct-ii remains open.

  7. On the optimum joint decoding capacity of wyner circular GCMAC by exploiting hadamard inequality

    KAUST Repository

    Shakir, Muhammad

    2010-09-01

    This paper presents an original expression of the theoretical upper bound for the optimum joint decoding capacity of Wyner Circular Gaussian Cellular Multiple Access Channel (C-GCMAC). This upper bound is a novel application of the Hadamard inequality established by exploiting the Hadamard operation between the channel fading (G) and channel slow gain (Ω) matrices. This paper demonstrates that the theoretical upper bound converges to the actual capacity for negligible channel slow gain among the mobile terminals and the base stations for the entire range of Signal to Noise Ratios (SNRs). The behaviour of the theoretical bound is critically observed when the intercell and the intra-cell time sharing schemes are employed. © 2010 IEEE.

  8. An analog of Hölder's inequality for the spectral radius of Hadamard products

    KAUST Repository

    Li, Muxingzi

    2017-12-03

    We prove new inequalities related to the spectral radius ρ of Hadamard products (denoted by ◦ ) of complex matrices. Let p, q ∈ [1 , ∞ ] satisfy 1/p + 1/q = 1, we show an analog of Hölder’s inequality on the space of n × n complex matrices ρ ( A ◦ B ) ≤ ρ ( | A |^( ◦ p) ) ^(1/p) ρ ( | B |^( ◦ q) ) ^(1/q)  for all A, B ∈ C n × n , where |·| denotes entry-wise absolute values, and ( · ) ^ (◦ p) represents the entry-wise Hadamard power. We derive a sharper inequality for the special case p = q = 2. Given A, B ∈ C ^(n × n) , for some β ∈ (0 , 1] depending on A and B , ρ ( A ◦ B ) ≤ βρ ( | A ◦ A | ) ^(1/2) ρ ( | B ◦ B | )^ (1/2) . Analysis for another special case p = 1 and q = ∞ is also included.

  9. Hadamard States for the Klein-Gordon Equation on Lorentzian Manifolds of Bounded Geometry

    Science.gov (United States)

    Gérard, Christian; Oulghazi, Omar; Wrochna, Michał

    2017-06-01

    We consider the Klein-Gordon equation on a class of Lorentzian manifolds with Cauchy surface of bounded geometry, which is shown to include examples such as exterior Kerr, Kerr-de Sitter spacetime and the maximal globally hyperbolic extension of the Kerr outer region. In this setup, we give an approximate diagonalization and a microlocal decomposition of the Cauchy evolution using a time-dependent version of the pseudodifferential calculus on Riemannian manifolds of bounded geometry. We apply this result to construct all pure regular Hadamard states (and associated Feynman inverses), where regular refers to the state's two-point function having Cauchy data given by pseudodifferential operators. This allows us to conclude that there is a one-parameter family of elliptic pseudodifferential operators that encodes both the choice of (pure, regular) Hadamard state and the underlying spacetime metric.

  10. A Calibration Method for Nonlinear Mismatches in M-Channel Time-Interleaved Analog-to-Digital Converters Based on Hadamard Sequences

    Directory of Open Access Journals (Sweden)

    Husheng Liu

    2016-11-01

    Full Text Available The time-interleaved analog-to-digital converter (TIADC is an architecture used to achieve a high sampling rate and high dynamic performance. However, estimation and compensation methods are required to maintain the dynamic performance of the constituent analog-to-digital converters (ADCs due to channel mismatches. This paper proposes a blind adaptive method to calibrate the nonlinear mismatches in M-channel TIADCs (M-TIADCs. The nonlinearity-induced error signal is reconstructed by the proposed multiplier Hadamard transform (MHT structure, and the nonlinear parameters are estimated by the filtered-X least-mean square (FxLMS algorithm. The performance of cascade calibration is also analyzed. The numerical simulation results show that the proposed method consumes much less hardware resources while maintaining the calibration performance.

  11. The Fermionic Signature Operator and Hadamard States in the Presence of a Plane Electromagnetic Wave

    Science.gov (United States)

    Finster, Felix; Reintjes, Moritz

    2017-05-01

    We give a non-perturbative construction of a distinguished state for the quantized Dirac field in Minkowski space in the presence of a time-dependent external field of the form of a plane electromagnetic wave. By explicit computation of the fermionic signature operator, it is shown that the Dirac operator has the strong mass oscillation property. We prove that the resulting fermionic projector state is a Hadamard state.

  12. Remote Sensing Image Enhancement Based on Non-subsampled Shearlet Transform and Parameterized Logarithmic Image Processing Model

    Directory of Open Access Journals (Sweden)

    TAO Feixiang

    2015-08-01

    Full Text Available Aiming at parts of remote sensing images with dark brightness and low contrast, a remote sensing image enhancement method based on non-subsampled Shearlet transform and parameterized logarithmic image processing model is proposed in this paper to improve the visual effects and interpretability of remote sensing images. Firstly, a remote sensing image is decomposed into a low-frequency component and high frequency components by non-subsampled Shearlet transform.Then the low frequency component is enhanced according to PLIP (parameterized logarithmic image processing model, which can improve the contrast of image, while the improved fuzzy enhancement method is used to enhance the high frequency components in order to highlight the information of edges and details. A large number of experimental results show that, compared with five kinds of image enhancement methods such as bidirectional histogram equalization method, the method based on stationary wavelet transform and the method based on non-subsampled contourlet transform, the proposed method has advantages in both subjective visual effects and objective quantitative evaluation indexes such as contrast and definition, which can more effectively improve the contrast of remote sensing image and enhance edges and texture details with better visual effects.

  13. FFT-enhanced IHS transform method for fusing high-resolution satellite images

    Science.gov (United States)

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2007-01-01

    Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  14. Non-moving Hadamard matrix diffusers for speckle reduction in laser pico-projectors

    Science.gov (United States)

    Thomas, Weston; Middlebrook, Christopher

    2014-12-01

    Personal electronic devices such as cell phones and tablets continue to decrease in size while the number of features and add-ons keep increasing. One particular feature of great interest is an integrated projector system. Laser pico-projectors have been considered, but the technology has not been developed enough to warrant integration. With new advancements in diode technology and MEMS devices, laser-based projection is currently being advanced for pico-projectors. A primary problem encountered when using a pico-projector is coherent interference known as speckle. Laser speckle can lead to eye irritation and headaches after prolonged viewing. Diffractive optical elements known as diffusers have been examined as a means to lower speckle contrast. This paper presents a binary diffuser known as a Hadamard matrix diffuser. Using two static in-line Hadamard diffusers eliminates the need for rotation or vibration of the diffuser for temporal averaging. Two Hadamard diffusers were fabricated and contrast values measured showing good agreement with theory and simulated values.

  15. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  16. Multispectral data compression through transform coding and block quantization

    Science.gov (United States)

    Ready, P. J.; Wintz, P. A.

    1972-01-01

    Transform coding and block quantization techniques are applied to multispectral aircraft scanner data, and digitized satellite imagery. The multispectral source is defined and an appropriate mathematical model proposed. The Karhunen-Loeve, Fourier, and Hadamard encoders are considered and are compared to the rate distortion function for the equivalent Gaussian source and to the performance of the single sample PCM encoder.

  17. Quantum image encryption based on generalized affine transform and logistic map

    Science.gov (United States)

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-07-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  18. Quaternion-based transformation for extraction of image-generating Doppler for ISAR

    CSIR Research Space (South Africa)

    Abdul Gaffar, MY

    2008-10-01

    Full Text Available contributing motion that is useful to the ISAR imaging process; the contributing motion consists of the Doppler generating axis and the effective angle of rotation. This letter presents a quaternion-based transformation that converts measured attitude...

  19. Perceptual quality of color images of natural scenes transformed in CIELUV color space

    NARCIS (Netherlands)

    Fedorovskaya, E.A.; Blommaert, F.J.J.; Ridder, de H.; Eschbach, R.; Braun, K.

    1997-01-01

    Transformations of digitized color images in perceptually-uniform CIELUV color space and their perceptual relevance were investigated. Chroma veriation was chosen as the first step of a series of investigations into possible transformations (including lightness, hue-angle, chroma, ect.) To obtain

  20. Perceptual quality of color images of natural scenes transformed in CIELUV color space

    NARCIS (Netherlands)

    Fedorovskaya, E.A.; Blommaert, F.J.J.; Ridder, de H.

    1993-01-01

    Transformations of digitized color images in perceptually-uniform CIELUV color space and their perceptual relevance were investigated. Chroma variation was chosen as the first step of a series of investigations into possible transformations (including lightness, hue-angle, chroma, etc.). To obtain

  1. Three-dimensional object recognitions from two-dimensional images using wavelet transforms and neural networks

    Science.gov (United States)

    Deschenes, Sylvain; Sheng, Yunlong; Chevrette, Paul C.

    1998-03-01

    3D object classification from 2D IR images is shown. The wavelet transform is used for edge detection. Edge tracking is used for removing noise effectively int he wavelet transform. The invariant Fourier descriptor is used to describe the contour curves. Invariance under out-of-plane rotation is achieved by the feature space trajectory neural network working as a classifier.

  2. Imaging properties of the mesooptical Fourier transform microscope for nuclear research emulsion

    International Nuclear Information System (INIS)

    Bencze, Gy.L.; Soroko, L.M.

    1987-01-01

    The optical signal transformation in the Mesooptical Fourier Transform Microscope (MFTM) for nuclear emulsion is treated in terms of Fourier Optics. A continuous conversion of the traditional optical microscope into the MFTM is followed. The images of dot-like and straight line objects given by the MFTM are discussed

  3. A REVIEW WAVELET TRANSFORM AND FUZZY K-MEANS BASED IMAGE DE-NOISING METHOD

    OpenAIRE

    Nidhi Patel*, Asst. Prof. Pratik Kumar Soni

    2017-01-01

    The research area of image processing technique using fuzzy k-means and wavelet transform. The enormous amount of data necessary for images is a main reason for the growth of many areas within the research field of computer imaging such as image processing and compression. In order to get this in requisites of the concerned research work, wavelet transforms and k-means clustering is applied. This can be done in order to discover more possible combinations that may lead to the finest de-noisin...

  4. Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    K. Parvathi

    2009-01-01

    Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.

  5. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques

    Science.gov (United States)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi

    2018-04-01

    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  6. Two-dimensional 220 MHz Fourier transform EPR imaging

    International Nuclear Information System (INIS)

    Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello

    1998-01-01

    In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)

  7. Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.

    Science.gov (United States)

    Reena Benjamin, J; Jayasree, T

    2018-02-01

    In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.

  8. Transformation

    DEFF Research Database (Denmark)

    Bock, Lars Nicolai

    2011-01-01

    Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....

  9. TRANSFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  10. Conservative image transformations with restoration and scale-space properties

    NARCIS (Netherlands)

    Weickert, J.A.; Haar Romenij, ter B.M.; Viergever, M.A.; Delogne, P.

    1996-01-01

    Many image processing applications require to solve problems such as denoising with edge enhancement, preprocessing for segmentation, or the completion of interrupted lines. This may be accomplished by applying a suitable nonlinear anisotropic diffusion process to the image. Its diffusion tensor is

  11. Comparative performance evaluation of transform coding in image pre-processing

    Science.gov (United States)

    Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha

    2017-07-01

    We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.

  12. Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting

    Institute of Scientific and Technical Information of China (English)

    WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng

    2003-01-01

    To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.

  13. The reduction of motion artifacts in digital subtraction angiography by geometrical image transformation

    International Nuclear Information System (INIS)

    Fitzpatrick, J.M.; Pickens, D.R.; Mandava, V.R.; Grefenstette, J.J.

    1988-01-01

    In the diagnosis of arteriosclerosis, radio-opaque dye is injected into the interior of the arteries to make them visible. Because of its increased contrast sensitivity, digital subtraction angiography has the potential for providing diagnostic images of arteries with reduced dye volumes. In the conventional technique, a mask image, acquired before the introduction of the dye, is subtracted from the contrast image, acquired after the dye is introduced, to produce a difference image in which only the dye in the arteries is visible. The usefulness of this technique has been severely limited by the image degradation caused by patient motion during image acquisition. This motion produces artifacts in the difference image that obscure the arteries. One technique for dealing with the problem is to reduce the degradation by means of image registration. The registration is carried out by means of a geometrical transformation of the mask image before subtraction so that it is in registration with the contrast image. This paper describes a technique for determining an optimal transformation. The authors employ a one-to-one elastic mapping and the Jacobian of that mapping to produce a geometrical image transformation. They choose a parameterized class of such mappings and use a heuristic search algorithm to optimize the parameters to minimize the severity of the motion artifacts. To increase the speed of the optimization process they use a statistical image comparison technique that provides a quick approximate evaluation of each image transformation. They present the experimental results of the application of their registration system to mask-contrast pairs, for images acquired from a specially designed phantom, and for clinical images

  14. Alternatives to the discrete cosine transform for irreversible tomographic image compression

    International Nuclear Information System (INIS)

    Villasenor, J.D.

    1993-01-01

    Full-frame irreversible compression of medical images is currently being performed using the discrete cosine transform (DCT). Although the DCT is the optimum fast transform for video compression applications, the authors show here that it is out-performed by the discrete Fourier transform (DFT) and discrete Hartley transform (DHT) for images obtained using positron emission tomography (PET) and magnetic resonance imaging (MRI), and possibly for certain types of digitized radiographs. The difference occurs because PET and MRI images are characterized by a roughly circular region D of non-zero intensity bounded by a region R in which the Image intensity is essentially zero. Clipping R to its minimum extent can reduce the number of low-intensity pixels but the practical requirement that images be stored on a rectangular grid means that a significant region of zero intensity must remain an integral part of the image to be compressed. With this constraint imposed, the DCT loses its advantage over the DFT because neither transform introduces significant artificial discontinuities. The DFT and DHT have the further important advantage of requiring less computation time than the DCT

  15. Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

    Directory of Open Access Journals (Sweden)

    Reza Pourreza

    2010-09-01

    Full Text Available Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable available sub-vessel. To verify the detected sub-vessel, the maximum is compared with a predefined threshold. The verified sub-vessels are reconstructed using the Radon transform information. All detected and reconstructed sub-vessels are finally combined to make the final vessel tree. Results: The algorithm’s performance was evaluated numerically by applying it to 40 images of DRIVE database, a standard retinal image database. The vessels were extracted manually by two physicians. This database was used to test and compare the available and proposed algorithms for vessel detection in color fundus images. By comparing the output of the algorithm with the manual results, the two parameters TPR and FPR were calculated for each image and the average of TPRs and FPRs were used to plot the ROC curve. Discussion and Conclusion: Comparison of the ROC curve of this algorithm with other algorithms demonstrated the high achieved accuracy. Beside the high accuracy, the Radon transform which is integral-based makes the algorithm robust against noise.

  16. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    Science.gov (United States)

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  17. Implementation of the 2-D Wavelet Transform into FPGA for Image

    Science.gov (United States)

    León, M.; Barba, L.; Vargas, L.; Torres, C. O.

    2011-01-01

    This paper presents a hardware system implementation of the of discrete wavelet transform algoritm in two dimensions for FPGA, using the Daubechies filter family of order 2 (db2). The decomposition algorithm of this transform is designed and simulated with the Hardware Description Language VHDL and is implemented in a programmable logic device (FPGA) XC3S1200E reference, Spartan IIIE family, by Xilinx, take advantage the parallels properties of these gives us and speeds processing that can reach them. The architecture is evaluated using images input of different sizes. This implementation is done with the aim of developing a future images encryption hardware system using wavelet transform for security information.

  18. Implementation of the 2-D Wavelet Transform into FPGA for Image

    Energy Technology Data Exchange (ETDEWEB)

    Leon, M; Barba, L; Vargas, L; Torres, C O, E-mail: madeleineleon@unicesar.edu.co [Laboratorio de Optica e Informatica, Universidad Popular del Cesar, Sede balneario Hurtado, Valledupar, Cesar (Colombia)

    2011-01-01

    This paper presents a hardware system implementation of the of discrete wavelet transform algorithm in two dimensions for FPGA, using the Daubechies filter family of order 2 (db2). The decomposition algorithm of this transform is designed and simulated with the Hardware Description Language VHDL and is implemented in a programmable logic device (FPGA) XC3S1200E reference, Spartan IIIE family, by Xilinx, take advantage the parallels properties of these gives us and speeds processing that can reach them. The architecture is evaluated using images input of different sizes. This implementation is done with the aim of developing a future images encryption hardware system using wavelet transform for security information.

  19. An Image Matching Method Based on Fourier and LOG-Polar Transform

    Directory of Open Access Journals (Sweden)

    Zhijia Zhang

    2014-04-01

    Full Text Available This Traditional template matching methods are not appropriate for the situation of large angle rotation between two images in the online detection for industrial production. Aiming at this problem, Fourier transform algorithm was introduced to correct image rotation angle based on its rotatary invariance in time-frequency domain, orienting image under test in the same direction with reference image, and then match these images using matching algorithm based on log-polar transform. Compared with the current matching algorithms, experimental results show that the proposed algorithm can not only match two images with rotation of arbitrary angle, but also possess a high matching accuracy and applicability. In addition, the validity and reliability of algorithm was verified by simulated matching experiment targeting circular images.

  20. A new Watermarking System based on Discrete Cosine Transform (DCT) in color biometric images.

    Science.gov (United States)

    Dogan, Sengul; Tuncer, Turker; Avci, Engin; Gulten, Arif

    2012-08-01

    This paper recommend a biometric color images hiding approach An Watermarking System based on Discrete Cosine Transform (DCT), which is used to protect the security and integrity of transmitted biometric color images. Watermarking is a very important hiding information (audio, video, color image, gray image) technique. It is commonly used on digital objects together with the developing technology in the last few years. One of the common methods used for hiding information on image files is DCT method which used in the frequency domain. In this study, DCT methods in order to embed watermark data into face images, without corrupting their features.

  1. Research on Copy-Move Image Forgery Detection Using Features of Discrete Polar Complex Exponential Transform

    Science.gov (United States)

    Gan, Yanfen; Zhong, Junliu

    2015-12-01

    With the aid of sophisticated photo-editing software, such as Photoshop, copy-move image forgery operation has been widely applied and has become a major concern in the field of information security in the modern society. A lot of work on detecting this kind of forgery has gained great achievements, but the detection results of geometrical transformations of copy-move regions are not so satisfactory. In this paper, a new method based on the Polar Complex Exponential Transform is proposed. This method addresses issues in image geometric moment, focusing on constructing rotation invariant moment and extracting features of the rotation invariant moment. In order to reduce rounding errors of the transform from the Polar coordinate system to the Cartesian coordinate system, a new transformation method is presented and discussed in detail at the same time. The new method constructs a 9 × 9 shrunk template to transform the Cartesian coordinate system back to the Polar coordinate system. It can reduce transform errors to a much greater degree. Forgery detection, such as copy-move image forgery detection, is a difficult procedure, but experiments prove our method is a great improvement in detecting and identifying forgery images affected by the rotated transform.

  2. TRANSFORMER

    Science.gov (United States)

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  3. Analytic image reconstruction in PVI using the 3D radon transform

    International Nuclear Information System (INIS)

    Staxyk, M.W.; Rogers, J.G.

    1992-01-01

    This paper reports that algorithms have been derived for three dimensional image reconstruction in positron volume imaging (PVI) using the inversion of the three dimensional Radon Transform (RT). The RT is formed by histogramming events into the planes in which they lie rather than along lines as in the X-ray Transform (XT). The authors show the transformation between the RT and the XT and using this relationship they describe a fast backprojection method for the RT in which the computation time is found to be up to 20 times faster with the new algorithm. Monte Carlo simulations show that statistical noise levels in images reconstructed from complete projections with the new RT algorithm are comparable to those obtained using the Fourier Transform (FT) inversion of the XT

  4. A Precise Lane Detection Algorithm Based on Top View Image Transformation and Least-Square Approaches

    Directory of Open Access Journals (Sweden)

    Byambaa Dorj

    2016-01-01

    Full Text Available The next promising key issue of the automobile development is a self-driving technique. One of the challenges for intelligent self-driving includes a lane-detecting and lane-keeping capability for advanced driver assistance systems. This paper introduces an efficient and lane detection method designed based on top view image transformation that converts an image from a front view to a top view space. After the top view image transformation, a Hough transformation technique is integrated by using a parabolic model of a curved lane in order to estimate a parametric model of the lane in the top view space. The parameters of the parabolic model are estimated by utilizing a least-square approach. The experimental results show that the newly proposed lane detection method with the top view transformation is very effective in estimating a sharp and curved lane leading to a precise self-driving capability.

  5. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    Science.gov (United States)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  6. Hyperspectral Image Classification Using Kernel Fukunaga-Koontz Transform

    Directory of Open Access Journals (Sweden)

    Semih Dinç

    2013-01-01

    images. In experiment section, the improved performance of HSI classification technique, K-FKT, has been tested comparing other methods such as the classical FKT and three types of support vector machines (SVMs.

  7. Transforming the image of nursing: the evidence for assurance.

    Science.gov (United States)

    Wocial, Lucia D; Sego, Kelly; Rager, Carrie; Laubersheimer, Shellee; Everett, Linda Q

    2014-01-01

    A nurse's uniform influences perceptions about nursing practice and thus contributes significantly to the overall image of a nurse. A nurse's uniform also can represent the brand of an organization, the tangible and intangible attributes that distinguish an organization from its competitors. The rebranding of a major health care system provided a unique opportunity to refine the "image of nurses" within the organization. This article describes the planning, evidence gathering, and implementation of a major initiative to promote professional nursing practice.

  8. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    Science.gov (United States)

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fourier-transform ghost imaging with pure far-field correlated thermal light

    International Nuclear Information System (INIS)

    Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming

    2007-01-01

    Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed

  10. "Drinking Deeply with Delight": An Investigation of Transformative Images in Isaiah 1 and 65-66

    Science.gov (United States)

    Radford, Peter

    2016-01-01

    This project examines the images used in the beginning and ending chapters of Isaiah. The purpose of this project is to trace the transformation of specific images from their introduction in Isaiah 1 to their re-interpretation in Isaiah 65-66. While this analysis uses the verbal parallels (shared vocabulary) as a starting point, the present…

  11. Evaluation of the distortions of the digital chest image caused by the data compression

    International Nuclear Information System (INIS)

    Ando, Yutaka; Kunieda, Etsuo; Ogawa, Koichi; Tukamoto, Nobuhiro; Hashimoto, Shozo; Aoki, Makoto; Kurotani, Kenichi.

    1988-01-01

    The image data compression methods using orthogonal transforms (Discrete cosine transform, Discrete fourier transform, Hadamard transform, Haar transform, Slant transform) were analyzed. From the points of the error and the speed of the data conversion, the discrete cosine transform method (DCT) is superior to the other methods. The block quantization by the DCT for the digital chest image was used. The quality of data compressed and reconstructed images by the score analysis and the ROC curve analysis was examined. The chest image with the esophageal cancer and metastatic lung tumors was evaluated at the 17 checkpoints (the tumor, the vascular markings, the border of the heart and ribs, the mediastinal structures and et al). By our score analysis, the satisfactory ratio of the data compression is 1/5 and 1/10. The ROC analysis using normal chest images superimposed by the artificial coin lesions was made. The ROC curve of the 1/5 compressed ratio is almost as same as the original one. To summarize our study, the image data compression method using the DCT is thought to be useful for the clinical use and the 1/5 compression ratio is a tolerable ratio. (author)

  12. Evaluation of the distortions of the digital chest image caused by the data compression

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yutaka; Kunieda, Etsuo; Ogawa, Koichi; Tukamoto, Nobuhiro; Hashimoto, Shozo; Aoki, Makoto; Kurotani, Kenichi

    1988-08-01

    The image data compression methods using orthogonal transforms (Discrete cosine transform, Discrete fourier transform, Hadamard transform, Haar transform, Slant transform) were analyzed. From the points of the error and the speed of the data conversion, the discrete cosine transform method (DCT) is superior to the other methods. The block quantization by the DCT for the digital chest image was used. The quality of data compressed and reconstructed images by the score analysis and the ROC curve analysis was examined. The chest image with the esophageal cancer and metastatic lung tumors was evaluated at the 17 checkpoints (the tumor, the vascular markings, the border of the heart and ribs, the mediastinal structures and et al). By our score analysis, the satisfactory ratio of the data compression is 1/5 and 1/10. The ROC analysis using normal chest images superimposed by the artificial coin lesions was made. The ROC curve of the 1/5 compressed ratio is almost as same as the original one. To summarize our study, the image data compression method using the DCT is thought to be useful for the clinical use and the 1/5 compression ratio is a tolerable ratio.

  13. W-transform method for feature-oriented multiresolution image retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, M.K.; Lin, B. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-07-01

    Image database management is important in the development of multimedia technology. Since an enormous amount of digital images is likely to be generated within the next few decades in order to integrate computers, television, VCR, cables, telephone and various imaging devices. Effective image indexing and retrieval systems are urgently needed so that images can be easily organized, searched, transmitted, and presented. Here, the authors present a local-feature-oriented image indexing and retrieval method based on Kwong, and Tang`s W-transform. Multiresolution histogram comparison is an effective method for content-based image indexing and retrieval. However, most recent approaches perform multiresolution analysis for whole images but do not exploit the local features present in the images. Since W-transform is featured by its ability to handle images of arbitrary size, with no periodicity assumptions, it provides a natural tool for analyzing local image features and building indexing systems based on such features. In this approach, the histograms of the local features of images are used in the indexing, system. The system not only can retrieve images that are similar or identical to the query images but also can retrieve images that contain features specified in the query images, even if the retrieved images as a whole might be very different from the query images. The local-feature-oriented method also provides a speed advantage over the global multiresolution histogram comparison method. The feature-oriented approach is expected to be applicable in managing large-scale image systems such as video databases and medical image databases.

  14. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    Science.gov (United States)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  15. Inverse transformation algorithm of transient electromagnetic field and its high-resolution continuous imaging interpretation method

    International Nuclear Information System (INIS)

    Qi, Zhipeng; Li, Xiu; Lu, Xushan; Zhang, Yingying; Yao, Weihua

    2015-01-01

    We introduce a new and potentially useful method for wave field inverse transformation and its application in transient electromagnetic method (TEM) 3D interpretation. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. The continuous imaging of TEM can be accomplished using the imaging methods in seismic interpretation after the diffusion equation is transformed into a fictitious wave equation. The interpretation method based on the imaging of a fictitious wave field could be used as a fast 3D inversion method. Moreover, the fictitious wave field possesses some wave field features making it possible for the application of a wave field interpretation method in TEM to improve the prospecting resolution.Wave field transformation is a key issue in the migration imaging of a fictitious wave field. The equation in the wave field transformation belongs to the first class Fredholm integration equation, which is a typical ill-posed equation. Additionally, TEM has a large dynamic time range, which also facilitates the weakness of this ill-posed problem. The wave field transformation is implemented by using pre-conditioned regularized conjugate gradient method. The continuous imaging of a fictitious wave field is implemented by using Kirchhoff integration. A synthetic aperture and deconvolution algorithm is also introduced to improve the interpretation resolution. We interpreted field data by the method proposed in this paper, and obtained a satisfying interpretation result. (paper)

  16. Use of the Discrete Cosine Transform for the restoration of an image sequence

    International Nuclear Information System (INIS)

    Acheroy, M.P.J.

    1985-01-01

    The Discrete Cosine Transform (DCT) is recognized as an important tool for image compression techniques. Its use in image restoration is, however, not well known. It is the aim of this paper to provide a restoration method for a sequence of images using the DCT as well for the deblurring as for the noise reduction. It is shown that the DCT can play an interesting role in the deconvolution problem for linear imaging systems with finite, invariant and symmetric impulse response. It is further shown that the noise reduction can be performed onto an image sequence using a time adaptive Kalman filter in the domain of the Karhunen-Loeve transform which is approximated by the DCT

  17. A progressive data compression scheme based upon adaptive transform coding: Mixture block coding of natural images

    Science.gov (United States)

    Rost, Martin C.; Sayood, Khalid

    1991-01-01

    A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.

  18. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    Science.gov (United States)

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  19. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    Science.gov (United States)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  20. Multi-Resolution Wavelet-Transformed Image Analysis of Histological Sections of Breast Carcinomas

    Directory of Open Access Journals (Sweden)

    Hae-Gil Hwang

    2005-01-01

    Full Text Available Multi-resolution images of histological sections of breast cancer tissue were analyzed using texture features of Haar- and Daubechies transform wavelets. Tissue samples analyzed were from ductal regions of the breast and included benign ductal hyperplasia, ductal carcinoma in situ (DCIS, and invasive ductal carcinoma (CA. To assess the correlation between computerized image analysis and visual analysis by a pathologist, we created a two-step classification system based on feature extraction and classification. In the feature extraction step, we extracted texture features from wavelet-transformed images at 10× magnification. In the classification step, we applied two types of classifiers to the extracted features, namely a statistics-based multivariate (discriminant analysis and a neural network. Using features from second-level Haar transform wavelet images in combination with discriminant analysis, we obtained classification accuracies of 96.67 and 87.78% for the training and testing set (90 images each, respectively. We conclude that the best classifier of carcinomas in histological sections of breast tissue are the texture features from the second-level Haar transform wavelet images used in a discriminant function.

  1. Abstract generalized vector quasi-equilibrium problems in noncompact Hadamard manifolds

    Directory of Open Access Journals (Sweden)

    Haishu Lu

    2017-05-01

    Full Text Available Abstract This paper deals with the abstract generalized vector quasi-equilibrium problem in noncompact Hadamard manifolds. We prove the existence of solutions to the abstract generalized vector quasi-equilibrium problem under suitable conditions and provide applications to an abstract vector quasi-equilibrium problem, a generalized scalar equilibrium problem, a scalar equilibrium problem, and a perturbed saddle point problem. Finally, as an application of the existence of solutions to the generalized scalar equilibrium problem, we obtain a weakly mixed variational inequality and two mixed variational inequalities. The results presented in this paper unify and generalize many known results in the literature.

  2. Digital staining for histopathology multispectral images by the combined application of spectral enhancement and spectral transformation.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2011-01-01

    In this paper we introduced a digital staining method for histopathology images captured with an n-band multispectral camera. The method consisted of two major processes: enhancement of the original spectral transmittance and the transformation of the enhanced transmittance to its target spectral configuration. Enhancement is accomplished by shifting the original transmittance with the scaled difference between the original transmittance and the transmittance estimated with m dominant principal component (PC) vectors;the m-PC vectors were determined from the transmittance samples of the background image. Transformation of the enhanced transmittance to the target spectral configuration was done using an nxn transformation matrix, which was derived by applying a least square method to the enhanced and target spectral training data samples of the different tissue components. Experimental results on the digital conversion of a hematoxylin and eosin (H&E) stained multispectral image to its Masson's trichrome stained (MT) equivalent shows the viability of the method.

  3. A spatial-spectral approach for deriving high signal quality eigenvectors for remote sensing image transformations

    DEFF Research Database (Denmark)

    Rogge, Derek; Bachmann, Martin; Rivard, Benoit

    2014-01-01

    Spectral decorrelation (transformations) methods have long been used in remote sensing. Transformation of the image data onto eigenvectors that comprise physically meaningful spectral properties (signal) can be used to reduce the dimensionality of hyperspectral images as the number of spectrally...... distinct signal sources composing a given hyperspectral scene is generally much less than the number of spectral bands. Determining eigenvectors dominated by signal variance as opposed to noise is a difficult task. Problems also arise in using these transformations on large images, multiple flight...... and spectral subsampling to the data, which is accomplished by deriving a limited set of eigenvectors for spatially contiguous subsets. These subset eigenvectors are compiled together to form a new noise reduced data set, which is subsequently used to derive a set of global orthogonal eigenvectors. Data from...

  4. Role of intensity transformation function for enhancement of bone scintigraphic images.

    Science.gov (United States)

    Pandey, Anil Kumar; Dhiman, Vishali; Sharma, Akshima; ArunRaj, Sreedharan Thankarajan; Baghel, Vivek; Patel, Chetan; Sharma, Param Dev; Bal, Chandrasekhar; Kumar, Rakesh

    2018-03-29

    The bone scintigraphic image might exceed the dynamic range (the ratio between the highest and the lowest brightness a monitor is capable of displaying) of display monitor. In this case, a high intensity area, and loss of the details of other structures in the displayed image makes the clinical interpretation a challenging task. We have investigated the role of intensity transformation function for enhancement of these types of images. Methods: Forty high dynamic range bone scintigraphic images were processed using intensity transformation (IT) function. The IT function has two parameters: threshold and slope. Keeping the threshold equal to mean counts of the image, the value of slope was varied from 1 to 20. In-house application program written in MATLAB R2013b was used to process images. Twenty output images corresponding to one input image were visually inspected by two experienced nuclear medicine (NM) physicians to select diagnostic quality images, and from their selection the standardized slope (value of slope parameter) that produced maximum numbers of diagnostic images was determined. They also rated the image quality of input and output images (at standardized slope) on scale 1 to 5 [where 1 is for poor and 5 if for the excellent diagnostic quality]. Student's t-test was used to test the significance of difference between the mean image quality score assigned to input and processed images at significance level α = 0.05. Results: The application of IT functions with standardized parameters significantly improved the quality of high dynamic range bone scintigraphic images ( P enhancement. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  5. Vividness and Transformation of Mental Images in Karate

    Directory of Open Access Journals (Sweden)

    Maria Guarnera

    2016-07-01

    Full Text Available Background: Systematic reviews have shown that imagery improves performance in motor tasks. Objective: In order to observe the function of imagery in sport, this study investigated modifications in Imagery Ability, in terms of  both controllability (i.e., the accurateness with which an image can be operated mentally and vividness (i.e., the precision richness of an image, in competitive  and recreational karateka. Method: Thirty volunteers karateka  completed the Vividness of Visual Imagery Questionnaire, the Vividness of Movement Imagery Questionnaire-2, and the Subtraction of parts Task. Results: Competitive athletes reported higher scores on imagery ability than recreational athletes. No correlations were found between the variables of Vividness and the Subtraction of parts Task for any of the two groups. All analyses were two-tailed with α at .05. Conclusion: The study has risen the investigation in the particular ambit of imagery ability, providing an additional support for the multidimensional nature of mental imagery and for its usefulness in athletes.  Keywords: imagery, motor tasks, karate, static vividness

  6. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    Science.gov (United States)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  7. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    Science.gov (United States)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  8. Image security based on iterative random phase encoding in expanded fractional Fourier transform domains

    Science.gov (United States)

    Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian

    2018-06-01

    A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.

  9. Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors.

    Science.gov (United States)

    Urani, C; Corvi, R; Callegaro, G; Stefanini, F M

    2013-09-01

    In vitro cell transformation assays (CTAs) have been shown to model important stages of in vivo carcinogenesis and have the potential to predict carcinogenicity in humans. Advantages of CTAs are their ability of revealing both genotoxic and non-genotoxic carcinogens while reducing both experimental costs and the number of animals used. The endpoint of the CTA is foci formation, and requires classification under light microscopy based on morphology. Thus current limitations for the wide adoption of the assay partially depend on a fair degree of subjectivity in foci scoring. An objective evaluation may be obtained after separating foci from background monolayer in the digital image, and quantifying values of statistical descriptors which are selected to capture eye-scored morphological features. The aim of this study was to develop statistical descriptors to be applied to transformed foci of BALB/c 3T3, which cover foci size, multilayering and invasive cell growth into the background monolayer. Proposed descriptors were applied to a database of 407 foci images to explore the numerical features, and to illustrate open problems and potential solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Color image encryption using random transforms, phase retrieval, chaotic maps, and diffusion

    Science.gov (United States)

    Annaby, M. H.; Rushdi, M. A.; Nehary, E. A.

    2018-04-01

    The recent tremendous proliferation of color imaging applications has been accompanied by growing research in data encryption to secure color images against adversary attacks. While recent color image encryption techniques perform reasonably well, they still exhibit vulnerabilities and deficiencies in terms of statistical security measures due to image data redundancy and inherent weaknesses. This paper proposes two encryption algorithms that largely treat these deficiencies and boost the security strength through novel integration of the random fractional Fourier transforms, phase retrieval algorithms, as well as chaotic scrambling and diffusion. We show through detailed experiments and statistical analysis that the proposed enhancements significantly improve security measures and immunity to attacks.

  11. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  12. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  13. Quantum Color Image Encryption Algorithm Based on A Hyper-Chaotic System and Quantum Fourier Transform

    Science.gov (United States)

    Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong

    2016-12-01

    To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.

  14. The Performance and Scientific Rationale for an Infrared Imaging Fourier Transform Spectrograph on a Large Space Telescope

    National Research Council Canada - National Science Library

    Graham, James R; Abrams, Mark; Bennett, C; Carr, J; Cook, K; Dey, A; Najita, J; Wishnow, E

    1998-01-01

    .... We consider the relationship between pixel size, spectral resolution, and diameter of the beam splitter for imaging and nonimaging Fourier transform spectrographs and give the condition required...

  15. Advances in hyperspectral remote sensing I: The visible Fourier transform hyperspectral imager

    Directory of Open Access Journals (Sweden)

    J. Bruce Rafert

    2015-05-01

    Full Text Available We discuss early hyperspectral research and development activities during the 1990s that led to the deployment of aircraft and satellite payloads whose heritage was based on the use of visible, spatially modulated, imaging Fourier transform spectrometers, beginning with early experiments at the Florida Institute of Technology, through successful launch and deployment of the Visible Fourier Transform Hyperspectral Imager on MightySat II.1 on 19 July 2000. In addition to a brief chronological overview, we also discuss several of the most interesting optical engineering challenges that were addressed over this timeframe, present some as-yet un-exploited features of field-widened (slit-less SMIFTS instruments, and present some images from ground-based, aircraft-based and satellite-based instruments that helped provide the impetus for the proliferation and development of entire new families of instruments and countless new applications for hyperspectral imaging.

  16. Gaseous effluent monitoring and identification using an imaging Fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Hernandez, J.

    1993-10-01

    We are developing an imaging Fourier transform spectrometer for chemical effluent monitoring. The system consists of a 2-D infrared imaging array in the focal plane of a Michelson interferometer. Individual images are coordinated with the positioning of a moving mirror in the Michelson interferometer. A three dimensional data cube with two spatial dimensions and one interferogram dimension is then Fourier transformed to produce a hyperspectral data cube with one spectral dimension and two spatial dimensions. The spectral range of the instrument is determined by the choice of optical components and the spectral range of the focal plane array. Measurements in the near UV, visible, near IR, and mid-IR ranges are possible with the existing instrument. Gaseous effluent monitoring and identification measurements will be primarily in the ``fingerprint`` region of the spectrum, ({lambda} = 8 to 12 {mu}m). Initial measurements of effluent using this imaging interferometer in the mid-IR will be presented.

  17. Remote Sensing Image Fusion Based on the Combination Grey Absolute Correlation Degree and IHS Transform

    Directory of Open Access Journals (Sweden)

    Hui LIN

    2014-12-01

    Full Text Available An improved fusion algorithm for multi-source remote sensing images with high spatial resolution and multi-spectral capacity is proposed based on traditional IHS fusion and grey correlation analysis. Firstly, grey absolute correlation degree is used to discriminate non-edge pixels and edge pixels in high-spatial resolution images, by which the weight of intensity component is identified in order to combine it with high-spatial resolution image. Therefore, image fusion is achieved using IHS inverse transform. The proposed method is applied to ETM+ multi-spectral images and panchromatic image, and Quickbird’s multi-spectral images and panchromatic image respectively. The experiments prove that the fusion method proposed in the paper can efficiently preserve spectral information of the original multi-spectral images while enhancing spatial resolution greatly. By comparison and analysis, the proposed fusion algorithm is better than traditional IHS fusion and fusion method based on grey correlation analysis and IHS transform.

  18. Rotated Walsh-Hadamard Spreading with Robust Channel Estimation for a Coded MC-CDMA System

    Directory of Open Access Journals (Sweden)

    Raulefs Ronald

    2004-01-01

    Full Text Available We investigate rotated Walsh-Hadamard spreading matrices for a broadband MC-CDMA system with robust channel estimation in the synchronous downlink. The similarities between rotated spreading and signal space diversity are outlined. In a multiuser MC-CDMA system, possible performance improvements are based on the chosen detector, the channel code, and its Hamming distance. By applying rotated spreading in comparison to a standard Walsh-Hadamard spreading code, a higher throughput can be achieved. As combining the channel code and the spreading code forms a concatenated code, the overall minimum Hamming distance of the concatenated code increases. This asymptotically results in an improvement of the bit error rate for high signal-to-noise ratio. Higher convolutional channel code rates are mostly generated by puncturing good low-rate channel codes. The overall Hamming distance decreases significantly for the punctured channel codes. Higher channel code rates are favorable for MC-CDMA, as MC-CDMA utilizes diversity more efficiently compared to pure OFDMA. The application of rotated spreading in an MC-CDMA system allows exploiting diversity even further. We demonstrate that the rotated spreading gain is still present for a robust pilot-aided channel estimator. In a well-designed system, rotated spreading extends the performance by using a maximum likelihood detector with robust channel estimation at the receiver by about 1 dB.

  19. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Nasreddine Taleb

    2010-09-01

    Full Text Available Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT. An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  20. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    Science.gov (United States)

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  1. A method based on IHS cylindrical transform model for quality assessment of image fusion

    Science.gov (United States)

    Zhu, Xiaokun; Jia, Yonghong

    2005-10-01

    Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.

  2. Generalization of the fejer-hadamard type inequalities for p-convex functions via k-fractional integrals

    Directory of Open Access Journals (Sweden)

    Ghulam Farid

    2017-10-01

    Full Text Available The aim of this paper is to obtain some more general fractional integral inequalities of Fejer Hadamard type for p-convex functions via Riemann-Liouville k-fractional integrals. Also in particular fractional inequalities for p-convex functions via Riemann-Liouville fractional integrals have been deduced.

  3. Image denoising by sparse 3-D transform-domain collaborative filtering.

    Science.gov (United States)

    Dabov, Kostadin; Foi, Alessandro; Katkovnik, Vladimir; Egiazarian, Karen

    2007-08-01

    We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2-D image fragments (e.g., blocks) into 3-D data arrays which we call "groups." Collaborative filtering is a special procedure developed to deal with these 3-D groups. We realize it using the three successive steps: 3-D transformation of a group, shrinkage of the transform spectrum, and inverse 3-D transformation. The result is a 3-D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.

  4. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Science.gov (United States)

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  5. A Novel Image Encryption Scheme Based on Self-Synchronous Chaotic Stream Cipher and Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Chunlei Fan

    2018-06-01

    Full Text Available In this paper, a novel image encryption scheme is proposed for the secure transmission of image data. A self-synchronous chaotic stream cipher is designed with the purpose of resisting active attack and ensures the limited error propagation of image data. Two-dimensional discrete wavelet transform and Arnold mapping are used to scramble the pixel value of the original image. A four-dimensional hyperchaotic system with four positive Lyapunov exponents serve as the chaotic sequence generator of the self-synchronous stream cipher in order to enhance the security and complexity of the image encryption system. Finally, the simulation experiment results show that this image encryption scheme is both reliable and secure.

  6. Quantum color image watermarking based on Arnold transformation and LSB steganography

    Science.gov (United States)

    Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping; Luo, Gaofeng

    In this paper, a quantum color image watermarking scheme is proposed through twice-scrambling of Arnold transformations and steganography of least significant bit (LSB). Both carrier image and watermark images are represented by the novel quantum representation of color digital images model (NCQI). The image sizes for carrier and watermark are assumed to be 2n×2n and 2n‑1×2n‑1, respectively. At first, the watermark is scrambled into a disordered form through image preprocessing technique of exchanging the image pixel position and altering the color information based on Arnold transforms, simultaneously. Then, the scrambled watermark with 2n‑1×2n‑1 image size and 24-qubit grayscale is further expanded to an image with size 2n×2n and 6-qubit grayscale using the nearest-neighbor interpolation method. Finally, the scrambled and expanded watermark is embedded into the carrier by steganography of LSB scheme, and a key image with 2n×2n size and 3-qubit information is generated at the meantime, which only can use the key image to retrieve the original watermark. The extraction of watermark is the reverse process of embedding, which is achieved by applying a sequence of operations in the reverse order. Simulation-based experimental results involving different carrier and watermark images (i.e. conventional or non-quantum) are simulated based on the classical computer’s MATLAB 2014b software, which illustrates that the present method has a good performance in terms of three items: visual quality, robustness and steganography capacity.

  7. STEGO TRANSFORMATION OF SPATIAL DOMAIN OF COVER IMAGE ROBUST AGAINST ATTACKS ON EMBEDDED MESSAGE

    Directory of Open Access Journals (Sweden)

    Kobozeva A.

    2014-04-01

    Full Text Available One of the main requirements to steganografic algorithm to be developed is robustness against disturbing influences, that is, to attacks against the embedded message. It was shown that guaranteeing the stego algorithm robustness does not depend on whether the additional information is embedded into the spatial or transformation domain of the cover image. Given the existing advantages of the spatial domain of the cover image in organization of embedding and extracting processes, a sufficient condition for ensuring robustness of such stego transformation was obtained in this work. It was shown that the amount of brightness correction related to the pixels of the cover image block is similar to the amount of correction related to the maximum singular value of the corresponding matrix of the block in case of embedding additional data that ensures robustness against attacks on the embedded message. Recommendations were obtained for selecting the size of the cover image block used in stego transformation as one of the parameters determining the calculation error of stego message. Given the inversely correspondence between the stego capacity of the stego channel being organized and the size of the cover image block, l=8 value was recommended.

  8. Attenuated total reflection-Fourier transform infrared imaging of large areas using inverted prism crystals and combining imaging and mapping.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2008-10-01

    Attenuated total reflection-Fourier transform infrared (ATR-FT-IR) imaging is a very useful tool for capturing chemical images of various materials due to the simple sample preparation and the ability to measure wet samples or samples in an aqueous environment. However, the size of the array detector used for image acquisition is often limited and there is usually a trade off between spatial resolution and the field of view (FOV). The combination of mapping and imaging can be used to acquire images with a larger FOV without sacrificing spatial resolution. Previous attempts have demonstrated this using an infrared microscope and a Germanium hemispherical ATR crystal to achieve images of up to 2.5 mm x 2.5 mm but with varying spatial resolution and depth of penetration across the imaged area. In this paper, we demonstrate a combination of mapping and imaging with a different approach using an external optics housing for large ATR accessories and inverted ATR prisms to achieve ATR-FT-IR images with a large FOV and reasonable spatial resolution. The results have shown that a FOV of 10 mm x 14 mm can be obtained with a spatial resolution of approximately 40-60 microm when using an accessory that gives no magnification. A FOV of 1.3 mm x 1.3 mm can be obtained with spatial resolution of approximately 15-20 microm when using a diamond ATR imaging accessory with 4x magnification. No significant change in image quality such as spatial resolution or depth of penetration has been observed across the whole FOV with this method and the measurement time was approximately 15 minutes for an image consisting of 16 image tiles.

  9. Optical image encryption using QR code and multilevel fingerprints in gyrator transform domains

    Science.gov (United States)

    Wei, Yang; Yan, Aimin; Dong, Jiabin; Hu, Zhijuan; Zhang, Jingtao

    2017-11-01

    A new concept of GT encryption scheme is proposed in this paper. We present a novel optical image encryption method by using quick response (QR) code and multilevel fingerprint keys in gyrator transform (GT) domains. In this method, an original image is firstly transformed into a QR code, which is placed in the input plane of cascaded GTs. Subsequently, the QR code is encrypted into the cipher-text by using multilevel fingerprint keys. The original image can be obtained easily by reading the high-quality retrieved QR code with hand-held devices. The main parameters used as private keys are GTs' rotation angles and multilevel fingerprints. Biometrics and cryptography are integrated with each other to improve data security. Numerical simulations are performed to demonstrate the validity and feasibility of the proposed encryption scheme. In the future, the method of applying QR codes and fingerprints in GT domains possesses much potential for information security.

  10. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    Science.gov (United States)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  11. Optimal transformation for correcting partial volume averaging effects in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Soltanian-Zadeh, H.; Windham, J.P.; Yagle, A.E.

    1993-01-01

    Segmentation of a feature of interest while correcting for partial volume averaging effects is a major tool for identification of hidden abnormalities, fast and accurate volume calculation, and three-dimensional visualization in the field of magnetic resonance imaging (MRI). The authors present the optimal transformation for simultaneous segmentation of a desired feature and correction of partial volume averaging effects, while maximizing the signal-to-noise ratio (SNR) of the desired feature. It is proved that correction of partial volume averaging effects requires the removal of the interfering features from the scene. It is also proved that correction of partial volume averaging effects can be achieved merely by a linear transformation. It is finally shown that the optimal transformation matrix is easily obtained using the Gram-Schmidt orthogonalization procedure, which is numerically stable. Applications of the technique to MRI simulation, phantom, and brain images are shown. They show that in all cases the desired feature is segmented from the interfering features and partial volume information is visualized in the resulting transformed images

  12. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications

    Science.gov (United States)

    Paramanandham, Nirmala; Rajendiran, Kishore

    2018-01-01

    A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.

  13. Confocal non-line-of-sight imaging based on the light-cone transform

    Science.gov (United States)

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  14. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    Science.gov (United States)

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  15. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    Science.gov (United States)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  16. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  17. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.

  18. System for imaging plutonium through heavy shielding

    International Nuclear Information System (INIS)

    Kuckertz, T.H.; Cannon, T.M.; Fenimore, E.E.; Moss, C.E.; Nixon, K.V.

    1984-04-01

    A single pinhole can be used to image strong self-luminescent gamma-ray sources such as plutonium on gamma scintillation (Anger) cameras. However, if the source is weak or heavily shielded, a poor signal to noise ratio can prevent acquisition of the image. An imaging system designed and built at Los Alamos National Laboratory uses a coded aperture to image heavily shielded sources. The paper summarizes the mathematical techniques, based on the Fast Delta Hadamard transform, used to decode raw images. Practical design considerations such as the phase of the uniformly redundant aperture and the encoded image sampling are discussed. The imaging system consists of a custom designed m-sequence coded aperture, a Picker International Corporation gamma scintillation camera, a LeCroy 3500 data acquisition system, and custom imaging software. The paper considers two sources - 1.5 mCi 57 Co unshielded at a distance of 27 m and 220 g of bulk plutonium (11.8% 240 Pu) with 0.3 cm lead, 2.5 cm steel, and 10 cm of dense plastic material at a distance of 77.5 cm. Results show that the location and geometry of a source hidden in a large sealed package can be determined without having to open the package. 6 references, 4 figures

  19. Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform

    Directory of Open Access Journals (Sweden)

    Xi Qiao

    2017-09-01

    Full Text Available Sea cucumbers usually live in an environment where lighting and visibility are generally not controllable, which cause the underwater image of sea cucumbers to be distorted, blurred, and severely attenuated. Therefore, the valuable information from such an image cannot be fully extracted for further processing. To solve the problems mentioned above and improve the quality of the underwater images of sea cucumbers, pre-processing of a sea cucumber image is attracting increasing interest. This paper presents a new method based on contrast limited adaptive histogram equalization and wavelet transform (CLAHE-WT to enhance the sea cucumber image quality. CLAHE was used to process the underwater image for increasing contrast based on the Rayleigh distribution, and WT was used for de-noising based on a soft threshold. Qualitative analysis indicated that the proposed method exhibited better performance in enhancing the quality and retaining the image details. For quantitative analysis, the test with 120 underwater images showed that for the proposed method, the mean square error (MSE, peak signal to noise ratio (PSNR, and entropy were 49.2098, 13.3909, and 6.6815, respectively. The proposed method outperformed three established methods in enhancing the visual quality of sea cucumber underwater gray image.

  20. Sufficient conditions for Hadamard well-posedness of a coupled thermo-chemo-poroelastic system

    Directory of Open Access Journals (Sweden)

    Tetyana Malysheva

    2016-01-01

    Full Text Available This article addresses the well-posedness of a coupled parabolic-elliptic system modeling fully coupled thermal, chemical, hydraulic, and mechanical processes in porous formations that impact drilling and borehole stability. The underlying thermo-chemo-poroelastic model is a system of time-dependent parabolic equations describing thermal, solute, and fluid diffusions coupled with Navier-type elliptic equations that attempt to capture the elastic behavior of rock around a borehole. An existence and uniqueness theory for a corresponding initial-boundary value problem is an open problem in the field. We give sufficient conditions for the well-posedness in the sense of Hadamard of a weak solution to a fully coupled parabolic-elliptic initial-boundary value problem describing homogeneous and isotropic media.

  1. Fast Estimation Method of Space-Time Two-Dimensional Positioning Parameters Based on Hadamard Product

    Directory of Open Access Journals (Sweden)

    Haiwen Li

    2018-01-01

    Full Text Available The estimation speed of positioning parameters determines the effectiveness of the positioning system. The time of arrival (TOA and direction of arrival (DOA parameters can be estimated by the space-time two-dimensional multiple signal classification (2D-MUSIC algorithm for array antenna. However, this algorithm needs much time to complete the two-dimensional pseudo spectral peak search, which makes it difficult to apply in practice. Aiming at solving this problem, a fast estimation method of space-time two-dimensional positioning parameters based on Hadamard product is proposed in orthogonal frequency division multiplexing (OFDM system, and the Cramer-Rao bound (CRB is also presented. Firstly, according to the channel frequency domain response vector of each array, the channel frequency domain estimation vector is constructed using the Hadamard product form containing location information. Then, the autocorrelation matrix of the channel response vector for the extended array element in frequency domain and the noise subspace are calculated successively. Finally, by combining the closed-form solution and parameter pairing, the fast joint estimation for time delay and arrival direction is accomplished. The theoretical analysis and simulation results show that the proposed algorithm can significantly reduce the computational complexity and guarantee that the estimation accuracy is not only better than estimating signal parameters via rotational invariance techniques (ESPRIT algorithm and 2D matrix pencil (MP algorithm but also close to 2D-MUSIC algorithm. Moreover, the proposed algorithm also has certain adaptability to multipath environment and effectively improves the ability of fast acquisition of location parameters.

  2. High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength

    International Nuclear Information System (INIS)

    Schaffert, Stefan; Pfau, Bastian; Günther, Christian M; Schneider, Michael; Korff Schmising, Clemens von; Eisebitt, Stefan; Geilhufe, Jan

    2013-01-01

    Exploiting x-ray magnetic circular dichroism at the L-edges of 3d transition metals, Fourier transform holography has become a standard technique to investigate magnetic samples with sub-100 nm spatial resolution. Here, magnetic imaging in the 21 nm wavelength regime using M-edge circular dichroism is demonstrated. Ultrafast pulses in this wavelength regime are increasingly available from both laser- and accelerator-driven soft x-ray sources. We explain the adaptations concerning sample preparation and data evaluation compared to conventional holography in the 1 nm wavelength range. We find the correction of the Fourier transform hologram to in-plane Fourier components to be critical for high-quality reconstruction and demonstrate 70 nm spatial resolution in magnetization imaging with this approach. (paper)

  3. Determination of mango fruit from binary image using randomized Hough transform

    Science.gov (United States)

    Rizon, Mohamed; Najihah Yusri, Nurul Ain; Abdul Kadir, Mohd Fadzil; bin Mamat, Abd. Rasid; Abd Aziz, Azim Zaliha; Nanaa, Kutiba

    2015-12-01

    A method of detecting mango fruit from RGB input image is proposed in this research. From the input image, the image is processed to obtain the binary image using the texture analysis and morphological operations (dilation and erosion). Later, the Randomized Hough Transform (RHT) method is used to find the best ellipse fits to each binary region. By using the texture analysis, the system can detect the mango fruit that is partially overlapped with each other and mango fruit that is partially occluded by the leaves. The combination of texture analysis and morphological operator can isolate the partially overlapped fruit and fruit that are partially occluded by leaves. The parameters derived from RHT method was used to calculate the center of the ellipse. The center of the ellipse acts as the gripping point for the fruit picking robot. As the results, the rate of detection was up to 95% for fruit that is partially overlapped and partially covered by leaves.

  4. ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-09-01

    Full Text Available Inverse synthetic aperture radar (ISAR imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID technique. In this paper, a novel parameters estimation algorithm of the multi-component PPS with order three (cubic phase signal-CPS based on the modified discrete polynomial-phase transform (MDPT is proposed, and the corresponding new ISAR imaging algorithm is presented consequently. This algorithm is efficient and accurate to generate a focused ISAR image, and the results of real data demonstrate the effectiveness of it.

  5. A two-step Hilbert transform method for 2D image reconstruction

    International Nuclear Information System (INIS)

    Noo, Frederic; Clackdoyle, Rolf; Pack, Jed D

    2004-01-01

    The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fan-beam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained

  6. An optimized color transformation for the analysis of digital images of hematoxylin & eosin stained slides

    Directory of Open Access Journals (Sweden)

    Mark D Zarella

    2015-01-01

    Full Text Available Hematoxylin and eosin (H&E staining is ubiquitous in pathology practice and research. As digital pathology has evolved, the reliance of quantitative methods that make use of H&E images has similarly expanded. For example, cell counting and nuclear morphometry rely on the accurate demarcation of nuclei from other structures and each other. One of the major obstacles to quantitative analysis of H&E images is the high degree of variability observed between different samples and different laboratories. In an effort to characterize this variability, as well as to provide a substrate that can potentially mitigate this factor in quantitative image analysis, we developed a technique to project H&E images into an optimized space more appropriate for many image analysis procedures. We used a decision tree-based support vector machine learning algorithm to classify 44 H&E stained whole slide images of resected breast tumors according to the histological structures that are present. This procedure takes an H&E image as an input and produces a classification map of the image that predicts the likelihood of a pixel belonging to any one of a set of user-defined structures (e.g., cytoplasm, stroma. By reducing these maps into their constituent pixels in color space, an optimal reference vector is obtained for each structure, which identifies the color attributes that maximally distinguish one structure from other elements in the image. We show that tissue structures can be identified using this semi-automated technique. By comparing structure centroids across different images, we obtained a quantitative depiction of H&E variability for each structure. This measurement can potentially be utilized in the laboratory to help calibrate daily staining or identify troublesome slides. Moreover, by aligning reference vectors derived from this technique, images can be transformed in a way that standardizes their color properties and makes them more amenable to image

  7. An optimized color transformation for the analysis of digital images of hematoxylin & eosin stained slides.

    Science.gov (United States)

    Zarella, Mark D; Breen, David E; Plagov, Andrei; Garcia, Fernando U

    2015-01-01

    Hematoxylin and eosin (H&E) staining is ubiquitous in pathology practice and research. As digital pathology has evolved, the reliance of quantitative methods that make use of H&E images has similarly expanded. For example, cell counting and nuclear morphometry rely on the accurate demarcation of nuclei from other structures and each other. One of the major obstacles to quantitative analysis of H&E images is the high degree of variability observed between different samples and different laboratories. In an effort to characterize this variability, as well as to provide a substrate that can potentially mitigate this factor in quantitative image analysis, we developed a technique to project H&E images into an optimized space more appropriate for many image analysis procedures. We used a decision tree-based support vector machine learning algorithm to classify 44 H&E stained whole slide images of resected breast tumors according to the histological structures that are present. This procedure takes an H&E image as an input and produces a classification map of the image that predicts the likelihood of a pixel belonging to any one of a set of user-defined structures (e.g., cytoplasm, stroma). By reducing these maps into their constituent pixels in color space, an optimal reference vector is obtained for each structure, which identifies the color attributes that maximally distinguish one structure from other elements in the image. We show that tissue structures can be identified using this semi-automated technique. By comparing structure centroids across different images, we obtained a quantitative depiction of H&E variability for each structure. This measurement can potentially be utilized in the laboratory to help calibrate daily staining or identify troublesome slides. Moreover, by aligning reference vectors derived from this technique, images can be transformed in a way that standardizes their color properties and makes them more amenable to image processing.

  8. The Multiscale Bowler-Hat Transform for Vessel Enhancement in 3D Biomedical Images

    OpenAIRE

    Sazak, Cigdem; Nelson, Carl J.; Obara, Boguslaw

    2018-01-01

    Enhancement and detection of 3D vessel-like structures has long been an open problem as most existing image processing methods fail in many aspects, including a lack of uniform enhancement between vessels of different radii and a lack of enhancement at the junctions. Here, we propose a method based on mathematical morphology to enhance 3D vessel-like structures in biomedical images. The proposed method, 3D bowler-hat transform, combines sphere and line structuring elements to enhance vessel-l...

  9. A Novel Image Encryption Based on Algebraic S-box and Arnold Transform

    Science.gov (United States)

    Farwa, Shabieh; Muhammad, Nazeer; Shah, Tariq; Ahmad, Sohail

    2017-09-01

    Recent study shows that substitution box (S-box) only cannot be reliably used in image encryption techniques. We, in this paper, propose a novel and secure image encryption scheme that utilizes the combined effect of an algebraic substitution box along with the scrambling effect of the Arnold transform. The underlying algorithm involves the application of S-box, which is the most imperative source to create confusion and diffusion in the data. The speciality of the proposed algorithm lies, firstly, in the high sensitivity of our S-box to the choice of the initial conditions which makes this S-box stronger than the chaos-based S-boxes as it saves computational labour by deploying a comparatively simple and direct approach based on the algebraic structure of the multiplicative cyclic group of the Galois field. Secondly the proposed method becomes more secure by considering a combination of S-box with certain number of iterations of the Arnold transform. The strength of the S-box is examined in terms of various performance indices such as nonlinearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. We prove through the most significant techniques used for the statistical analyses of the encrypted image that our image encryption algorithm satisfies all the necessary criteria to be usefully and reliably implemented in image encryption applications.

  10. Automatic detection of micro-aneurysms in retinal images based on curvelet transform and morphological operations

    Science.gov (United States)

    Mohammad Alipour, Shirin Hajeb; Rabbani, Hossein

    2013-09-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes that changes the blood vessels of the retina and distorts patient vision that finally in high stages can lead to blindness. Micro-aneurysms (MAs) are one of the first pathologies associated with DR. The number and the location of MAs are very important in grading of DR. Early diagnosis of micro-aneurysms (MAs) can reduce the incidence of blindness. As MAs are tiny area of blood protruding from vessels in the retina and their size is about 25 to 100 microns, automatic detection of these tiny lesions is still challenging. MAs occurring in the macula can lead to visual loss. Also the position of a lesion such as MAs relative to the macula is a useful feature for analysis and classification of different stages of DR. Because MAs are more distinguishable in fundus fluorescin angiography (FFA) compared to color fundus images, we introduce a new method based on curvelet transform and morphological operations for MAs detection in FFA images. As vessels and MAs are the bright parts of FFA image, firstly extracted vessels by curvelet transform are removed from image. Then morphological operations are applied on resulted image for detecting MAs.

  11. The wavelet transform and the suppression theory of binocular vision for stereo image compression

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, W.D. Jr [Argonne National Lab., IL (United States); Kenyon, R.V. [Illinois Univ., Chicago, IL (United States)

    1996-08-01

    In this paper a method for compression of stereo images. The proposed scheme is a frequency domain approach based on the suppression theory of binocular vision. By using the information in the frequency domain, complex disparity estimation techniques can be avoided. The wavelet transform is used to obtain a multiresolution analysis of the stereo pair by which the subbands convey the necessary frequency domain information.

  12. Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.

    Science.gov (United States)

    Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping

    2018-04-27

    Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

  13. A high-speed computerized tomography image reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1983-01-01

    The nescessity for developing real-time computerized tomography (CT) aiming at the dynamic observation of organs such as hearts has lately been advocated. It is necessary for its realization to reconstruct the images which are markedly faster than present CTs. Although various reconstructing methods have been proposed so far, the method practically employed at present is the filtered backprojection (FBP) method only, which can give high quality image reconstruction, but takes much computing time. In the past, the two-dimensional Fourier transform (TFT) method was regarded as unsuitable to practical use because the quality of images obtained was not good, in spite of the promising method for high speed reconstruction because of its less computing time. However, since it was revealed that the image quality by TFT method depended greatly on interpolation accuracy in two-dimensional Fourier space, the authors have developed a high-speed calculation algorithm that can obtain high quality images by pursuing the relationship between the image quality and the interpolation method. In this case, radial data sampling points in Fourier space are increased to β-th power of 2 times, and the linear or spline interpolation is used. Comparison of this method with the present FBP method resulted in the conclusion that the image quality is almost the same in practical image matrix, the computational time by TFT method becomes about 1/10 of FBP method, and the memory capacity also reduces by about 20 %. (Wakatsuki, Y.)

  14. Content Preserving Watermarking for Medical Images Using Shearlet Transform and SVD

    Science.gov (United States)

    Favorskaya, M. N.; Savchina, E. I.

    2017-05-01

    Medical Image Watermarking (MIW) is a special field of a watermarking due to the requirements of the Digital Imaging and COmmunications in Medicine (DICOM) standard since 1993. All 20 parts of the DICOM standard are revised periodically. The main idea of the MIW is to embed various types of information including the doctor's digital signature, fragile watermark, electronic patient record, and main watermark in a view of region of interest for the doctor into the host medical image. These four types of information are represented in different forms; some of them are encrypted according to the DICOM requirements. However, all types of information ought to be resulted into the generalized binary stream for embedding. The generalized binary stream may have a huge volume. Therefore, not all watermarking methods can be applied successfully. Recently, the digital shearlet transform had been introduced as a rigorous mathematical framework for the geometric representation of multi-dimensional data. Some modifications of the shearlet transform, particularly the non-subsampled shearlet transform, can be associated to a multi-resolution analysis that provides a fully shift-invariant, multi-scale, and multi-directional expansion. During experiments, a quality of the extracted watermarks under the JPEG compression and typical internet attacks was estimated using several metrics, including the peak signal to noise ratio, structural similarity index measure, and bit error rate.

  15. Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm.

    Science.gov (United States)

    Sethi, Gaurav; Saini, B S

    2015-12-01

    This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.

  16. A comparison of orthogonal transformations for digital speech processing.

    Science.gov (United States)

    Campanella, S. J.; Robinson, G. S.

    1971-01-01

    Discrete forms of the Fourier, Hadamard, and Karhunen-Loeve transforms are examined for their capacity to reduce the bit rate necessary to transmit speech signals. To rate their effectiveness in accomplishing this goal the quantizing error (or noise) resulting for each transformation method at various bit rates is computed and compared with that for conventional companded PCM processing. Based on this comparison, it is found that Karhunen-Loeve provides a reduction in bit rate of 13.5 kbits/s, Fourier 10 kbits/s, and Hadamard 7.5 kbits/s as compared with the bit rate required for companded PCM. These bit-rate reductions are shown to be somewhat independent of the transmission bit rate.

  17. The Hadamard construction of Green's functions on a curved space-time: physics and explicit rigorous results

    International Nuclear Information System (INIS)

    John, R.W.

    1987-01-01

    First, in connection with their construction due to Hadamard, the mathematical and physical meaning of covariant Green's functions in relativistic gravitational fields - according to Einstein: on curved space-time - is discussed. Then, in the case of a general static spherically symmetric space-time the construction equations for a scalar Green's function are cast into symmetry-adapted form providing a convenient starting point for an explicit calculation of the Hadamard building elements. In applying the obtained basic scheme to a special one-parameter family of model metrics one succeeds in advancing to the explicit exact calculation of tail-term coefficients of a massless Green's function which are simultaneously coefficients in the Schwinger-De Witt expansion of the Feynman propagator for the corresponding massive Klein-Gordon equation on curved space-time. (author)

  18. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  19. Impact damage imaging in a curved composite panel with wavenumber index via Riesz transform

    Science.gov (United States)

    Chang, Huan-Yu; Yuan, Fuh-Gwo

    2018-03-01

    The barely visible impact damages reduce the strength of composite structures significantly; however, they are difficult to be detected during regular visual inspection. A guided wave based damage imaging condition method is developed and applied on a curved composite panel, which is a part of an aileron from a retired Boeing C-17 Globemaster III. Ultrasonic guided waves are excited by a piezoelectric transducer (PZT) and then captured by a laser Doppler vibrometer (LDV). The wavefield images are constructed by measuring the out-of-plane velocity point by point within interrogation region, and the anomalies at the damage area can be observed with naked eye. The discontinuities of material properties leads to the change of wavenumber while the wave propagating through the damaged area. These differences in wavenumber can be observed by deriving instantaneous wave vector via Riesz transform (RT), and then be shown and highlighted with the proposed imaging condition named wavenumber index (WI). RT can be introduced as a two-dimensional (2-D) generalization of Hilbert transform (HT) to derive instantaneous phases, amplitudes, orientations of a guided-wave field. WI employs the instantaneous wave vector and weighted instantaneous wave energy computed from the instantaneous amplitudes, yielding high sensitivity and sharp damage image with computational efficiency. The BVID of the composite structure becomes therefore "visible" with the developed technique.

  20. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  1. Hemorrhagic transformation in ischemic posterior infarction by magnetic resonance imaging (MRI); Kernspintomographische Untersuchung der haemmorrhagischen Transformation ischaemischer Posteriorinfarkte

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, M.; Niehaus, L.; Lehmann, R. [Humboldt-Universitaet, Berlin (Germany). Medizinische Fakultaet Charite

    2000-08-01

    Purpose: To describe the incidence, time course, and clinical correlates of hemorrhagic transformation (HT) of ischemic stroke in the posterior cerebral artery territory. Methods: Within 42 months 48 patients with 52 occipital lobe infarctions were examined by T{sub 1}- and T{sub 2}-weighted MR imaging. The extent and distribution of secondary hemorrhage were analysed at different intervals after stroke. Volume of ischemic and hemorrhagic infarction was measured planimetrically. Results: HT was observed in 71% of the infarcts between the 5{sup th} day and up to 1 year after stroke. HT was most frequently (88%) observed in the 2{sup nd} and 3{sup rd} month. HT was present in 55% of small infarcts (<10 cm{sup 3}), in 88% of medium size (10-50 cm{sup 3}), and in all large (>50 cm{sup 3}) infarcts. In 92% HT presented with petechial bleedings within the cortex (64%) or less frequently (28%) in subcortical structures. The latter types of HT showed no progression and did not increase the clinical deficits. Space-occupying bleedings occurred in only two large defects. Conclusions: In ischemic posterior infarction, HT can frequently be detected within the first three months after stroke and is predominantly of the petechial type and seems not to be relevant with regard to clinical deficits. (orig.) [German] Ziel: MR-tomographische Untersuchung ischaemischer Posteriorinfarkte zur Erfassung der Haeufigkeit, des zeitlichen Verlaufs und der klinischen Bedeutung einer haemorrhagischen Transformation (HT). Methodik: Ueber einen Zeitraum von 42 Monaten wurden 48 Patienten mit 52 Territorialinfarkten im Versorgungsgebiet der Arteria cerebri posterior im MRT (T{sub 1}/T{sub 2}-gewichtete Spinecho-Sequenzen) untersucht. 77 MRT-Untersuchungen aus 5 verschiedenen Untersuchungszeitraeumen wurden hinsichtlich Lokalisation und Ausdehnung einer sekundaeren HT und etwaiger Veraenderungen im Verlauf analysiert. Die Infarkt- und Haemorrhagievolumina wurden planimetrisch gemessen. Ergebnisse

  2. Warped Discrete Cosine Transform-Based Low Bit-Rate Block Coding Using Image Downsampling

    Directory of Open Access Journals (Sweden)

    Ertürk Sarp

    2007-01-01

    Full Text Available This paper presents warped discrete cosine transform (WDCT-based low bit-rate block coding using image downsampling. While WDCT aims to improve the performance of conventional DCT by frequency warping, the WDCT has only been applicable to high bit-rate coding applications because of the overhead required to define the parameters of the warping filter. Recently, low bit-rate block coding based on image downsampling prior to block coding followed by upsampling after the decoding process is proposed to improve the compression performance for low bit-rate block coders. This paper demonstrates that a superior performance can be achieved if WDCT is used in conjunction with image downsampling-based block coding for low bit-rate applications.

  3. Sum of top-hat transform based algorithm for vessel enhancement in MRA images

    Science.gov (United States)

    Ouazaa, Hibet-Allah; Jlassi, Hajer; Hamrouni, Kamel

    2018-04-01

    The Magnetic Resonance Angiography (MRA) is rich with information's. But, they suffer from poor contrast, illumination and noise. Thus, it is required to enhance the images. But, these significant information can be lost if improper techniques are applied. Therefore, in this paper, we propose a new method of enhancement. We applied firstly the CLAHE method to increase the contrast of the image. Then, we applied the sum of Top-Hat Transform to increase the brightness of vessels. It is performed with the structuring element oriented in different angles. The methodology is tested and evaluated on the publicly available database BRAINIX. And, we used the measurement methods MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio) and SNR (Signal to Noise Ratio) for the evaluation. The results demonstrate that the proposed method could efficiently enhance the image details and is comparable with state of the art algorithms. Hence, the proposed method could be broadly used in various applications.

  4. Inferring river bathymetry via Image-to-Depth Quantile Transformation (IDQT)

    Science.gov (United States)

    Legleiter, Carl

    2016-01-01

    Conventional, regression-based methods of inferring depth from passive optical image data undermine the advantages of remote sensing for characterizing river systems. This study introduces and evaluates a more flexible framework, Image-to-Depth Quantile Transformation (IDQT), that involves linking the frequency distribution of pixel values to that of depth. In addition, a new image processing workflow involving deep water correction and Minimum Noise Fraction (MNF) transformation can reduce a hyperspectral data set to a single variable related to depth and thus suitable for input to IDQT. Applied to a gravel bed river, IDQT avoided negative depth estimates along channel margins and underpredictions of pool depth. Depth retrieval accuracy (R25 0.79) and precision (0.27 m) were comparable to an established band ratio-based method, although a small shallow bias (0.04 m) was observed. Several ways of specifying distributions of pixel values and depths were evaluated but had negligible impact on the resulting depth estimates, implying that IDQT was robust to these implementation details. In essence, IDQT uses frequency distributions of pixel values and depths to achieve an aspatial calibration; the image itself provides information on the spatial distribution of depths. The approach thus reduces sensitivity to misalignment between field and image data sets and allows greater flexibility in the timing of field data collection relative to image acquisition, a significant advantage in dynamic channels. IDQT also creates new possibilities for depth retrieval in the absence of field data if a model could be used to predict the distribution of depths within a reach.

  5. Automatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method

    Directory of Open Access Journals (Sweden)

    Hamid Reza Pourreza

    2009-03-01

    Full Text Available Introduction: Diabetic retinopathy (DR is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA in color fundus images, which plays a key role in computer-assisted early diagnosis of diabetic retinopathy. Materials and Methods: The algorithm can be divided into three main steps. The purpose of the first step or pre-processing is background normalization and contrast enhancement of the images. The second step aims to detect candidates, i.e., all patterns possibly corresponding to MA, which is achieved using a local radon transform, Then, features are extracted, which are used in the last step to automatically classify the candidates into real MA or other objects using the SVM method. A database of 100 annotated images was used to test the algorithm. The algorithm was compared to manually obtained gradings of these images. Results: The sensitivity of diagnosis for DR was 100%, with specificity of 90% and the sensitivity of precise MA localization was 97%, at an average number of 5 false positives per image. Discussion and Conclusion: Sensitivity and specificity of this algorithm make it one of the best methods in this field. Using the local radon transform in this algorithm eliminates the noise sensitivity for MA detection in retinal image analysis.

  6. A Robust Transform Estimator Based on Residual Analysis and Its Application on UAV Aerial Images

    Directory of Open Access Journals (Sweden)

    Guorong Cai

    2018-02-01

    Full Text Available Estimating the transformation between two images from the same scene is a fundamental step for image registration, image stitching and 3D reconstruction. State-of-the-art methods are mainly based on sorted residual for generating hypotheses. This scheme has acquired encouraging results in many remote sensing applications. Unfortunately, mainstream residual based methods may fail in estimating the transform between Unmanned Aerial Vehicle (UAV low altitude remote sensing images, due to the fact that UAV images always have repetitive patterns and severe viewpoint changes, which produce lower inlier rate and higher pseudo outlier rate than other tasks. We performed extensive experiments and found the main reason is that these methods compute feature pair similarity within a fixed window, making them sensitive to the size of residual window. To solve this problem, three schemes that based on the distribution of residuals are proposed, which are called Relational Window (RW, Sliding Window (SW, Reverse Residual Order (RRO, respectively. Specially, RW employs a relaxation residual window size to evaluate the highest similarity within a relaxation model length. SW fixes the number of overlap models while varying the length of window size. RRO takes the permutation of residual values into consideration to measure similarity, not only including the number of overlap structures, but also giving penalty to reverse number within the overlap structures. Experimental results conducted on our own built UAV high resolution remote sensing images show that the proposed three strategies all outperform traditional methods in the presence of severe perspective distortion due to viewpoint change.

  7. Application of the fractional Fourier transform to image reconstruction in MRI.

    Science.gov (United States)

    Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo

    2012-07-01

    The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Copyright © 2011 Wiley Periodicals, Inc.

  8. Analysis on imaging features of mammography in computer radiography and investigation on gray scale transform and energy subtraction

    International Nuclear Information System (INIS)

    Feng Shuli

    2003-01-01

    In this dissertation, a novel transform method based on human visual response features for gray scale mammographic imaging in computer radiography (CR) is presented. The parameters for imaging quality on CR imaging for mammography were investigated experimentally. In addition, methods for image energy subtraction and a novel method of image registration for mammography of CR imaging are presented. Because the images are viewed and investigated by humans, the method of displaying differences in gray scale images is more convenient if the gray scale differences are displayed in a manner commensurate with human visual response principles. Through transformation of image gray scale with this method, the contrast of the image will be enhanced and the capability for humans to extract the useful information from the image will be increased. Tumors and microcalcifications are displayed in a form for humans to view more simply after transforming the image. The method is theoretically and experimentally investigated. Through measurement of the parameters of a geometrically blurred image, MTF, DQE, and ROC on CR imaging, and also comparison with the imaging quality of screen-film systems, the results indicate that CR imaging qualities in DQE and ROC are better than those of screen-film systems. In geometric blur of the image and MTF, the differences in image quality between CR and the screen-film system are very small. The results suggest that the CR system can replace the screen-film system for mammography imaging. In addition, the results show that the optimal imaging energy for CR mammography is about 24 kV. This condition indicates that the imaging energy of the CR system is lower than that of the screen-film system and, therefore, the x-ray dose to the patient for mammography with the CR system is lower than that with the screen-film system. Based on the difference of penetrability of x ray with different wavelength, and the fact that the part of the x-ray beam will pass

  9. Generalised model-independent characterisation of strong gravitational lenses. II. Transformation matrix between multiple images

    Science.gov (United States)

    Wagner, J.; Tessore, N.

    2018-05-01

    We determine the transformation matrix that maps multiple images with identifiable resolved features onto one another and that is based on a Taylor-expanded lensing potential in the vicinity of a point on the critical curve within our model-independent lens characterisation approach. From the transformation matrix, the same information about the properties of the critical curve at fold and cusp points can be derived as we previously found when using the quadrupole moment of the individual images as observables. In addition, we read off the relative parities between the images, so that the parity of all images is determined when one is known. We compare all retrievable ratios of potential derivatives to the actual values and to those obtained by using the quadrupole moment as observable for two- and three-image configurations generated by a galaxy-cluster scale singular isothermal ellipse. We conclude that using the quadrupole moments as observables, the properties of the critical curve are retrieved to a higher accuracy at the cusp points and to a lower accuracy at the fold points; the ratios of second-order potential derivatives are retrieved to comparable accuracy. We also show that the approach using ratios of convergences and reduced shear components is equivalent to ours in the vicinity of the critical curve, but yields more accurate results and is more robust because it does not require a special coordinate system as the approach using potential derivatives does. The transformation matrix is determined by mapping manually assigned reference points in the multiple images onto one another. If the assignment of the reference points is subject to measurement uncertainties under the influence of noise, we find that the confidence intervals of the lens parameters can be as large as the values themselves when the uncertainties are larger than one pixel. In addition, observed multiple images with resolved features are more extended than unresolved ones, so that

  10. Human visual system-based color image steganography using the contourlet transform

    Science.gov (United States)

    Abdul, W.; Carré, P.; Gaborit, P.

    2010-01-01

    We present a steganographic scheme based on the contourlet transform which uses the contrast sensitivity function (CSF) to control the force of insertion of the hidden information in a perceptually uniform color space. The CIELAB color space is used as it is well suited for steganographic applications because any change in the CIELAB color space has a corresponding effect on the human visual system as is very important for steganographic schemes to be undetectable by the human visual system (HVS). The perceptual decomposition of the contourlet transform gives it a natural advantage over other decompositions as it can be molded with respect to the human perception of different frequencies in an image. The evaluation of the imperceptibility of the steganographic scheme with respect to the color perception of the HVS is done using standard methods such as the structural similarity (SSIM) and CIEDE2000. The robustness of the inserted watermark is tested against JPEG compression.

  11. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    Science.gov (United States)

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  12. Comparison of Image Transform-Based Features for Visual Speech Recognition in Clean and Corrupted Videos

    Directory of Open Access Journals (Sweden)

    Seymour Rowan

    2008-01-01

    Full Text Available Abstract We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.

  13. Comparison of Image Transform-Based Features for Visual Speech Recognition in Clean and Corrupted Videos

    Directory of Open Access Journals (Sweden)

    Ji Ming

    2008-03-01

    Full Text Available We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.

  14. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain

    Science.gov (United States)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian

    2018-01-01

    In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.

  15. Parallelization of one image compression method. Wavelet, Transform, Vector Quantization and Huffman Coding

    International Nuclear Information System (INIS)

    Moravie, Philippe

    1997-01-01

    Today, in the digitized satellite image domain, the needs for high dimension increase considerably. To transmit or to stock such images (more than 6000 by 6000 pixels), we need to reduce their data volume and so we have to use real-time image compression techniques. The large amount of computations required by image compression algorithms prohibits the use of common sequential processors, for the benefits of parallel computers. The study presented here deals with parallelization of a very efficient image compression scheme, based on three techniques: Wavelets Transform (WT), Vector Quantization (VQ) and Entropic Coding (EC). First, we studied and implemented the parallelism of each algorithm, in order to determine the architectural characteristics needed for real-time image compression. Then, we defined eight parallel architectures: 3 for Mallat algorithm (WT), 3 for Tree-Structured Vector Quantization (VQ) and 2 for Huffman Coding (EC). As our system has to be multi-purpose, we chose 3 global architectures between all of the 3x3x2 systems available. Because, for technological reasons, real-time is not reached at anytime (for all the compression parameter combinations), we also defined and evaluated two algorithmic optimizations: fix point precision and merging entropic coding in vector quantization. As a result, we defined a new multi-purpose multi-SMIMD parallel machine, able to compress digitized satellite image in real-time. The definition of the best suited architecture for real-time image compression was answered by presenting 3 parallel machines among which one multi-purpose, embedded and which might be used for other applications on board. (author) [fr

  16. Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer

    Directory of Open Access Journals (Sweden)

    Jiyun Shi, Tracy W.B. Liu, Juan Chen, David Green, David Jaffray, Brian C. Wilson, Fan Wang, Gang Zheng

    2011-01-01

    Full Text Available Porphyrin based photosensitizers are useful agents for photodynamic therapy (PDT and fluorescence imaging of cancer. Porphyrins are also excellent metal chelators forming highly stable metallo-complexes making them efficient delivery vehicles for radioisotopes. Here we investigated the possibility of incorporating 64Cu into a porphyrin-peptide-folate (PPF probe developed previously as folate receptor (FR targeted fluorescent/PDT agent, and evaluated the potential of turning the resulting 64Cu-PPF into a positron emission tomography (PET probe for cancer imaging. Noninvasive PET imaging followed by radioassay evaluated the tumor accumulation, pharmacokinetics and biodistribution of 64Cu-PPF. 64Cu-PPF uptake in FR-positive tumors was visible on small-animal PET images with high tumor-to-muscle ratio (8.88 ± 3.60 observed after 24 h. Competitive blocking studies confirmed the FR-mediated tracer uptake by the tumor. The ease of efficient 64Cu-radiolabeling of PPF while retaining its favorable biodistribution, pharmacokinetics and selective tumor uptake, provides a robust strategy to transform tumor-targeted porphyrin-based photosensitizers into PET imaging probes.

  17. Exploration on practice teaching reform of Photoelectric Image Processing course under applied transformation

    Science.gov (United States)

    Cao, Binfang; Li, Xiaoqin; Liu, Changqing; Li, Jianqi

    2017-08-01

    With the further applied transformation of local colleges, teachers are urgently needed to make corresponding changes in the teaching content and methods from different courses. The article discusses practice teaching reform of the Photoelectric Image Processing course in the Optoelectronic Information Science and Engineering major. The Digital Signal Processing (DSP) platform is introduced to the experimental teaching. It will mobilize and inspire students and also enhance their learning motivation and innovation through specific examples. The course via teaching practice process has become the most popular course among students, which will further drive students' enthusiasm and confidence to participate in all kinds of electronic competitions.

  18. Alcoholism detection in magnetic resonance imaging by Haar wavelet transform and back propagation neural network

    Science.gov (United States)

    Yu, Yali; Wang, Mengxia; Lima, Dimas

    2018-04-01

    In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.

  19. Adaptive Gain and Analog Wavelet Transform for Low-Power Infrared Image Sensors

    Directory of Open Access Journals (Sweden)

    P. Villard

    2012-01-01

    Full Text Available A decorrelation and analog-to-digital conversion scheme aiming to reduce the power consumption of infrared image sensors is presented in this paper. To exploit both intraframe redundancy and inherent photon shot noise characteristics, a column based 1D Haar analog wavelet transform combined with variable gain amplification prior to A/D conversion is used. This allows to use only an 11-bit ADC, instead of a 13-bit one, and to save 15% of data transfer. An 8×16 pixels test circuit demonstrates this functionality.

  20. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    Science.gov (United States)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  1. New properties of the V-line Radon transform and their imaging applications

    International Nuclear Information System (INIS)

    Truong, T T; Nguyen, M K

    2015-01-01

    This paper reports on new aspects of the so-called V-line Radon transforms (RTs) complementing those reported in an earlier work. These new properties are nicely uncovered and described with Cartesian coordinates. In particular, we show that the V-line RT belongs to the class of RTs on curves in the plane which can be mapped onto the standard RT on straight lines and thereby are fully characterizable and invertible. Next, we show that the effect of geometric inversion on the V-line RT is to produce a new RT on a pair of supplementary circular arcs, which provides a new access to image reconstruction in the so-called Norton's modality of Compton scatter tomography, a front runner in the race for alternatives to current emission imaging. (paper)

  2. Macro Photography for Reflectance Transformation Imaging: A Practical Guide to the Highlights Method

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2014-11-01

    Full Text Available Reflectance Transformation Imaging (RTI is increasingly being used for art documentation and analysis and it can be successful also for the examination of features on the order of hundreds of microns. This paper evaluates some macro scale photography methods specifically for RTI employing the Highlights method for documenting sub-millimeter details. This RTI technique consists in including one reflective sphere in the scene photographed so that the processing software can calculate for each photo the direction of the light source from its reflection on the sphere. RTI documentation can be performed also with an RTI dome, but the Highlights method is preferred because is more mobile and more affordable. This technique is demonstrated in the documentation of some prints ranging from the XV to the XX century from to the Ingels collection in Sweden. The images are here examined and discussed, showing the application of macro RTI for identifying features of prints.

  3. Application of Fourier transform-second-harmonic generation imaging to the rat cervix.

    Science.gov (United States)

    Lau, T Y; Sangha, H K; Chien, E K; McFarlin, B L; Wagoner Johnson, A J; Toussaint, K C

    2013-07-01

    We present the application of Fourier transform-second-harmonic generation (FT-SHG) imaging to evaluate the arrangement of collagen fibers in five nonpregnant rat cervices. Tissue slices from the mid-cervix and near the external orifice of the cervix were analyzed in both two-dimensions (2D) and three-dimensions (3D). We validate that the cervical microstructure can be quantitatively assessed in three dimensions using FT-SHG imaging and observe collagen fibers oriented both in and out-of-plane in the outermost and the innermost layers, which cannot be observed using 2D FT-SHG analysis alone. This approach has the potential to be a clinically applicable method for measuring progressive changes in collagen organization during cervical remodeling in humans. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  4. Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Pinamonti, Nicola [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Moretti, Valter [Trento Univ. (Italy). Dipt. di Matematica; Ist. Nazionale di Alta Matematica, Unita locale di Trento (Italy); Ist. Nazionale di Fisica, Povo (Italy)

    2008-12-15

    In a recent paper, we proved that a large class of spacetimes, not necessarily homogeneous or isotropic and relevant at a cosmological level, possesses a preferred codimension one submanifold, i.e., the past cosmological horizon, on which it is possible to encode the information of a scalar field theory living in the bulk. Such bulk-to-boundary reconstruction procedure entails the identification of a preferred quasifree algebraic state for the bulk theory, enjoying remarkable properties concerning invariance under isometries (if any) of the bulk and energy positivity, and reducing to well-known vacua in standard situations. In this paper, specialising to open FRW models, we extend previously obtained results and we prove that the preferred state is of Hadamard form, hence the backreaction on the metric is finite and the state can be used as a starting point for renormalisation procedures. That state could play a distinguished role in the discussion of the evolution of scalar fluctuations of the metric, an analysis often performed in the development of any model describing the dynamic of an early Universe which undergoes an inflationary phase of rapid expansion in the past. (orig.)

  5. Performance analysis of stationary Hadamard matrix diffusers in free-space optical communication links

    Science.gov (United States)

    Burrell, Derek J.; Middlebrook, Christopher T.

    2017-08-01

    Wireless communication systems that employ free-space optical links in place of radio/microwave technologies carry substantial benefits in terms of data throughput, network security and design efficiency. Along with these advantages comes the challenge of counteracting signal degradation caused by atmospheric turbulence in free-space environments. A fully coherent laser source experiences random phase delays along its traversing path in turbulent conditions forming a speckle pattern and lowering the received signal-to-noise ratio upon detection. Preliminary research has shown that receiver-side speckle contrast may be significantly reduced and signal-to-noise ratio increased accordingly through the use of a partially coherent light source. While dynamic diffusers and adaptive optics solutions have been proven effective, they also add expense and complexity to a system that relies on accessibility and robustness for successful implementation. A custom Hadamard diffractive matrix design is used to statically induce partial coherence in a transmitted beam to increase signal-to-noise ratio for experimental turbulence scenarios. Atmospheric phase screens are generated using an open-source software package and subsequently loaded into a spatial light modulator using nematic liquid crystals to modulate the phase.

  6. Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Pinamonti, Nicola

    2008-12-01

    In a recent paper, we proved that a large class of spacetimes, not necessarily homogeneous or isotropic and relevant at a cosmological level, possesses a preferred codimension one submanifold, i.e., the past cosmological horizon, on which it is possible to encode the information of a scalar field theory living in the bulk. Such bulk-to-boundary reconstruction procedure entails the identification of a preferred quasifree algebraic state for the bulk theory, enjoying remarkable properties concerning invariance under isometries (if any) of the bulk and energy positivity, and reducing to well-known vacua in standard situations. In this paper, specialising to open FRW models, we extend previously obtained results and we prove that the preferred state is of Hadamard form, hence the backreaction on the metric is finite and the state can be used as a starting point for renormalisation procedures. That state could play a distinguished role in the discussion of the evolution of scalar fluctuations of the metric, an analysis often performed in the development of any model describing the dynamic of an early Universe which undergoes an inflationary phase of rapid expansion in the past. (orig.)

  7. Evaluation of alias-less reconstruction by pseudo-parallel imaging in a phase-scrambling fourier transform technique

    International Nuclear Information System (INIS)

    Ito, Satoshi; Kawawa, Yasuhiro; Yamada, Yoshifumi

    2010-01-01

    We propose an image reconstruction technique in which parallel image reconstruction is performed based on the sensitivity encoding (SENSE) algorithm using only a single set of signals. The signal obtained in the phase-scrambling Fourier transform (PSFT) imaging technique can be transformed to the signal described by the Fresnel transform of the objects, which is known as the diffracted wave-front equation of the object in acoustics or optics. Since the Fresnel transform is a convolution integral on the object space, the space where the PSFT signal exists can be considered as both in the Fourier domain and in the object domain. This notable feature indicates that weighting functions corresponding to the sensitivity of radiofrequency (RF) coils can be approximately given in the PSFT signal space. Therefore, we can obtain two folded images from a single set of signals with different weighting functions, and image reconstruction based on the SENSE parallel imaging algorithm is possible using a series of folded images. Simulation and experimental studies showed that almost alias-free images can be synthesized using a single signal that does not satisfy the sampling theorem. (author)

  8. RESEARCH ON COORDINATE TRANSFORMATION METHOD OF GB-SAR IMAGE SUPPORTED BY 3D LASER SCANNING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    P. Wang

    2018-04-01

    Full Text Available In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D plane coordinate system with the common three-dimensional (3D terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  9. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    Science.gov (United States)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  10. Vocal Tract Images Reveal Neural Representations of Sensorimotor Transformation During Speech Imitation

    Science.gov (United States)

    Carey, Daniel; Miquel, Marc E.; Evans, Bronwen G.; Adank, Patti; McGettigan, Carolyn

    2017-01-01

    Abstract Imitating speech necessitates the transformation from sensory targets to vocal tract motor output, yet little is known about the representational basis of this process in the human brain. Here, we address this question by using real-time MR imaging (rtMRI) of the vocal tract and functional MRI (fMRI) of the brain in a speech imitation paradigm. Participants trained on imitating a native vowel and a similar nonnative vowel that required lip rounding. Later, participants imitated these vowels and an untrained vowel pair during separate fMRI and rtMRI runs. Univariate fMRI analyses revealed that regions including left inferior frontal gyrus were more active during sensorimotor transformation (ST) and production of nonnative vowels, compared with native vowels; further, ST for nonnative vowels activated somatomotor cortex bilaterally, compared with ST of native vowels. Using test representational similarity analysis (RSA) models constructed from participants’ vocal tract images and from stimulus formant distances, we found that RSA searchlight analyses of fMRI data showed either type of model could be represented in somatomotor, temporal, cerebellar, and hippocampal neural activation patterns during ST. We thus provide the first evidence of widespread and robust cortical and subcortical neural representation of vocal tract and/or formant parameters, during prearticulatory ST. PMID:28334401

  11. Improving scale invariant feature transform with local color contrastive descriptor for image classification

    Science.gov (United States)

    Guo, Sheng; Huang, Weilin; Qiao, Yu

    2017-01-01

    Image representation and classification are two fundamental tasks toward version understanding. Shape and texture provide two key features for visual representation and have been widely exploited in a number of successful local descriptors, e.g., scale invariant feature transform (SIFT), local binary pattern descriptor, and histogram of oriented gradient. Unlike these gradient-based descriptors, this paper presents a simple yet efficient local descriptor, named local color contrastive descriptor (LCCD), which captures the contrastive aspects among local regions or color channels for image representation. LCCD is partly inspired by the neural science facts that color contrast plays important roles in visual perception and there exist strong linkages between color and shape. We leverage f-divergence as a robust measure to estimate the contrastive features between different spatial locations and multiple channels. Our descriptor enriches local image representation with both color and contrast information. Due to that LCCD does not explore any gradient information, individual LCCD does not yield strong performance. But we verified experimentally that LCCD can compensate strongly SIFT. Extensive experimental results on image classification show that our descriptor improves the performance of SIFT substantially by combination on three challenging benchmarks, including MIT Indoor-67 database, SUN397, and PASCAL VOC 2007.

  12. Robust Digital Image Watermarking Against Cropping Using Sudoku Puzzle in Spatial and Transform Domain

    Directory of Open Access Journals (Sweden)

    shadi saneie

    2016-10-01

    Full Text Available With rapid development of digital technology, protecting information such as copyright, content ownership confirmation has become more important. In image watermarking, information of the image is inserted such that the visual quality of the image is not reduced and the receiver is able to get the required information. Some attacks such as image cropping, destroy the watermark’s information. In this article, a new watermarking scheme is proposed which is robust against tough cropping. In the proposed scheme, classic Sudoku table which is a 9*9 table, has been used. One feature of Sudoku table is that Sudoku's limitations cause uniform scattering of symbols or numbers throughout the table. In the proposed scheme, Sudoku table and both watermarking approaches based on spatial domain and transform domain such as DCT and DWT are used. Lack of using of soduko solution at the stage of extraction and finding correct solution to obtain watermark, is innovation of this scheme. Robustness of watermarking against cropping attack is up to 92%, which shows good and effective performance of the proposed scheme.

  13. Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images

    Science.gov (United States)

    Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun

    2014-01-01

    We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.

  14. Beyond MOS and fibers: Optical Fourier-transform Imaging Unit for Cananea Observatory (OFIUCO)

    Science.gov (United States)

    Nieto-Suárez, M. A.; Rosales-Ortega, F. F.; Castillo, E.; García, P.; Escobedo, G.; Sánchez, S. F.; González, J.; Iglesias-Páramo, J.; Mollá, M.; Chávez, M.; Bertone, E.; et al.

    2017-11-01

    Many physical processes in astronomy are still hampered by the lack of spatial and spectral resolution, and also restricted to the field-of-view (FoV) of current 2D spectroscopy instruments available worldwide. It is due to that, many of the ongoing or proposed studies are based on large-scale imaging and/or spectroscopic surveys. Under this philosophy, large aperture telescopes are dedicated to the study of intrinsically faint and/or distance objects, covering small FoVs, with high spatial resolution, while smaller telescopes are devoted to wide-field explorations. However, future astronomical surveys, should be addressed by acquiring un-biases, spatially resolved, high-quality spectroscopic information for a wide FoV. Therefore, and in order to improve the current instrumental offer in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE); and to explore a possible instrument for the future Telescopio San Pedro Mártir (6.5m), we are currently integrating at INAOE an instrument prototype that will provide us with un-biased wide-field (few arcmin) spectroscopic information, and with the flexibility of operating at different spectral resolutions (R 1-20000), with a spatial resolution limited by seeing, and therefore, to be used in a wide range of astronomical problems. This instrument called OFIUCO: Optical Fourier-transform Imaging Unit for Cananea Observatory, will make use of the Fourier Transform Spectroscopic technique, which has been proved to be feasible in the optical wavelength range (350-1000 nm) with designs such as SITELLE (CFHT). We describe here the basic technical description of a Fourier transform spectrograph with important modifications from previous astronomical versions, as well as the technical advantages and weakness, and the science cases in which this instrument can be implemented.

  15. Nonrigid synthetic aperture radar and optical image coregistration by combining local rigid transformations using a Kohonen network.

    Science.gov (United States)

    Salehpour, Mehdi; Behrad, Alireza

    2017-10-01

    This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.

  16. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    Science.gov (United States)

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  17. Combining Haar Wavelet and Karhunen Loeve Transforms for Medical Images Watermarking

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Hajjaji

    2014-01-01

    Full Text Available This paper presents a novel watermarking method, applied to the medical imaging domain, used to embed the patient’s data into the corresponding image or set of images used for the diagnosis. The main objective behind the proposed technique is to perform the watermarking of the medical images in such a way that the three main attributes of the hidden information (i.e., imperceptibility, robustness, and integration rate can be jointly ameliorated as much as possible. These attributes determine the effectiveness of the watermark, resistance to external attacks, and increase the integration rate. In order to improve the robustness, a combination of the characteristics of Discrete Wavelet and Karhunen Loeve Transforms is proposed. The Karhunen Loeve Transform is applied on the subblocks (sized 8×8 of the different wavelet coefficients (in the HL2, LH2, and HH2 subbands. In this manner, the watermark will be adapted according to the energy values of each of the Karhunen Loeve components, with the aim of ensuring a better watermark extraction under various types of attacks. For the correct identification of inserted data, the use of an Errors Correcting Code (ECC mechanism is required for the check and, if possible, the correction of errors introduced into the inserted data. Concerning the enhancement of the imperceptibility factor, the main goal is to determine the optimal value of the visibility factor, which depends on several parameters of the DWT and the KLT transforms. As a first step, a Fuzzy Inference System (FIS has been set up and then applied to determine an initial visibility factor value. Several features extracted from the Cooccurrence matrix are used as an input to the FIS and used to determine an initial visibility factor for each block; these values are subsequently reweighted in function of the eigenvalues extracted from each subblock. Regarding the integration rate, the previous works insert one bit per coefficient. In our

  18. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  19. The phenomenon of literature images transformation into musical images and paradigmal images of corresponding epochs (philosophy of history analysis

    Directory of Open Access Journals (Sweden)

    M. V. Masayev

    2014-01-01

    The author comes to the conclusion that the images of the M. A. Sholokhov’s novels «Quit Waves of Don» and «Newly­ploughed virgin soil» and short story «Destiny of the man» having become musical images of the I. I. Dzerzhinsky’s operas «Quit Waves of Don», «Newly­ploughed virgin soil», «Destiny of the man» and «Grigoriy Melekhov», turned into real paradigmal symbols of the epochs of the civil war, collectivization and the Great Patriotic War.

  20. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images.

    Science.gov (United States)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Onozato, Yusuke; Cho, Sang Yong; Kishi, Kazuma; Dobashi, Suguru; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2014-11-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  1. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images

    International Nuclear Information System (INIS)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo

    2014-01-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. (author)

  2. Properties of octagonal distance transformation (ODT) and its application to recognition of rib images of chest radiograms

    International Nuclear Information System (INIS)

    Ban, Tatsuya; Yokoi, Shigeki; Toriwaki, Jun-ichiro; Fukumura, Teruo.

    1980-01-01

    Digital image processing and image pattern recognition have lately become important, and are utilized in every field. The processing techniques common to these applications include smoothing, thinning, threshold processing, distance transformation, edge detection, etc. This paper describes the distance transformation, specifically the transformation based on octagonal distance (ODT). As the distance transformation, diamond distance or square distance has been employed so far, but these have the disadvantage of great deviation from the Euclid distance, and the octagonal distance transformation is considered to prevent such deviation. First, the basic concept and the definition of symbols are given, the octagonal distance skeleton (ODS) is defined, and the possibility of restoring original figure from the ODS is indicated. Next, the sequential algorithm is given, which executes the ODT and the inverse transformation to restore the original figure from the ODS by scanning on the figure 4 times. As an example of the application, the identification of rib images in chest radiograms is adopted, and the capability of reducing the effect of blood vessel images and noises by combining ODT with thinning or other processing, without quadratic function approximation, is described. (J.P.N.)

  3. On the stress–energy tensor of quantum fields in curved spacetimes—comparison of different regularization schemes and symmetry of the Hadamard/Seeley–DeWitt coefficients

    International Nuclear Information System (INIS)

    Hack, Thomas-Paul; Moretti, Valter

    2012-01-01

    We review a few rigorous and partly unpublished results on the regularization of the stress–energy in quantum field theory on curved spacetimes: (1) the symmetry of the Hadamard/Seeley–DeWitt coefficients in smooth Riemannian and Lorentzian spacetimes, (2) the equivalence of the local ζ-function and the Hadamard-point-splitting procedure in smooth static spacetimes and (3) the equivalence of the DeWitt–Schwinger- and the Hadamard-point-splitting procedure in smooth Riemannian and Lorentzian spacetimes. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical in honour of Stuart Dowker’s 75th birthday devoted to ‘Applications of zeta functions and other spectral functions in mathematics and physics’. (paper)

  4. Spread spectrum image data hiding in the encrypted discrete cosine transform coefficients

    Science.gov (United States)

    Zhang, Xiaoqiang; Wang, Z. Jane

    2013-10-01

    Digital watermarking and data hiding are important tools for digital rights protection of media data. Spread spectrum (SS)-based watermarking and data-hiding approaches are popular due to their outstanding robustness, but their security might not be sufficient. To improve the security of SS, a SS-based image data-hiding approach is proposed by encrypting the discrete cosine transform coefficients of the host image with the piecewise linear chaotic map, before the operation of watermark embedding. To evaluate the performance of the proposed approach, simulations and analyses of its robustness and security are carried out. The average bit-error-rate values on 100 real images from the Berkeley segmentation dataset under the JPEG compression, additive Gaussian noise, salt and pepper noise, and cropping attacks are reported. Experimental results show that the proposed approach can maintain the high robustness of traditional SS schemes and, meanwhile, also improve the security. The proposed approach can extend the key space of traditional SS schemes from 10 to 10 and thus can resist brute-force attack and unauthorized detection watermark attack.

  5. Automatic detection of karstic sinkholes in seismic 3D images using circular Hough transform

    International Nuclear Information System (INIS)

    Parchkoohi, Mostafa Heydari; Farajkhah, Nasser Keshavarz; Delshad, Meysam Salimi

    2015-01-01

    More than 30% of hydrocarbon reservoirs are reported in carbonates that mostly include evidence of fractures and karstification. Generally, the detection of karstic sinkholes prognosticate good quality hydrocarbon reservoirs where looser sediments fill the holes penetrating hard limestone and the overburden pressure on infill sediments is mostly tolerated by their sturdier surrounding structure. They are also useful for the detection of erosional surfaces in seismic stratigraphic studies and imply possible relative sea level fall at the time of establishment. Karstic sinkholes are identified straightforwardly by using seismic geometric attributes (e.g. coherency, curvature) in which lateral variations are much more emphasized with respect to the original 3D seismic image. Then, seismic interpreters rely on their visual skills and experience in detecting roughly round objects in seismic attribute maps. In this paper, we introduce an image processing workflow to enhance selective edges in seismic attribute volumes stemming from karstic sinkholes and finally locate them in a high quality 3D seismic image by using circular Hough transform. Afterwards, we present a case study from an on-shore oilfield in southwest Iran, in which the proposed algorithm is applied and karstic sinkholes are traced. (paper)

  6. Digital double random amplitude image encryption method based on the symmetry property of the parametric discrete Fourier transform

    Science.gov (United States)

    Bekkouche, Toufik; Bouguezel, Saad

    2018-03-01

    We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.

  7. Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Pinamonti, Nicola

    2009-07-01

    The discovery of the radiation properties of black holes prompted the search for a natural candidate quantum ground state for a massless scalar field theory on Schwarzschild spacetime, here considered in the Eddington-Finkelstein representation. Among the several available proposals in the literature, an important physical role is played by the so-called Unruh state which is supposed to be appropriate to capture the physics of a black hole formed by spherically symmetric collapsing matter. Within this respect, we shall consider a massless Klein-Gordon field and we shall rigorously and globally construct such state, that is on the algebra of Weyl observables localised in the union of the static external region, the future event horizon and the non-static black hole region. Eventually, out of a careful use of microlocal techniques, we prove that the built state fulfils, where defined, the so-called Hadamard condition; hence, it is perturbatively stable, in other words realizing the natural candidate with which one could study purely quantum phenomena such as the role of the back reaction of Hawking's radiation. From a geometrical point of view, we shall make a profitable use of a bulk-to-boundary reconstruction technique which carefully exploits the Killing horizon structure as well as the conformal asymptotic behaviour of the underlying background. From an analytical point of view, our tools will range from Hoermander's theorem on propagation of singularities, results on the role of passive states, and a detailed use of the recently discovered peeling behaviour of the solutions of the wave equation in Schwarzschild spacetime. (orig.)

  8. Local causal structures, Hadamard states and the principle of local covariance in quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio [Erwin Schroedinger Institut fuer Mathematische Physik, Wien (Austria); Pinamonti, Nicola [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Porrmann, Martin [KwaZulu-Natal Univ. (South Africa). Quantum Research Group, School of Physics; National Institute for Theoretical Physics, Durban (South Africa)

    2010-01-15

    In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M{sup '} and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M{sup '}. (orig.)

  9. Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, Claudio; Pinamonti, Nicola [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik; Moretti, Valter [Trento Univ., Povo (Italy). Dipt. di Matematica; Istituto Nazionale di Fisica Nucleare, Povo (Italy); Istituto Nazionale di Alta Matematica ' ' F. Severi' ' , GNFM, Sesto Fiorentino (Italy)

    2009-07-15

    The discovery of the radiation properties of black holes prompted the search for a natural candidate quantum ground state for a massless scalar field theory on Schwarzschild spacetime, here considered in the Eddington-Finkelstein representation. Among the several available proposals in the literature, an important physical role is played by the so-called Unruh state which is supposed to be appropriate to capture the physics of a black hole formed by spherically symmetric collapsing matter. Within this respect, we shall consider a massless Klein-Gordon field and we shall rigorously and globally construct such state, that is on the algebra of Weyl observables localised in the union of the static external region, the future event horizon and the non-static black hole region. Eventually, out of a careful use of microlocal techniques, we prove that the built state fulfils, where defined, the so-called Hadamard condition; hence, it is perturbatively stable, in other words realizing the natural candidate with which one could study purely quantum phenomena such as the role of the back reaction of Hawking's radiation. From a geometrical point of view, we shall make a profitable use of a bulk-to-boundary reconstruction technique which carefully exploits the Killing horizon structure as well as the conformal asymptotic behaviour of the underlying background. From an analytical point of view, our tools will range from Hoermander's theorem on propagation of singularities, results on the role of passive states, and a detailed use of the recently discovered peeling behaviour of the solutions of the wave equation in Schwarzschild spacetime. (orig.)

  10. Local causal structures, Hadamard states and the principle of local covariance in quantum field theory

    International Nuclear Information System (INIS)

    Dappiaggi, Claudio; Pinamonti, Nicola

    2010-01-01

    In the framework of the algebraic formulation, we discuss and analyse some new features of the local structure of a real scalar quantum field theory in a strongly causal spacetime. In particular we use the properties of the exponential map to set up a local version of a bulk-to-boundary correspondence. The bulk is a suitable subset of a geodesic neighbourhood of any but fixed point p of the underlying background, while the boundary is a part of the future light cone having p as its own tip. In this regime, we provide a novel notion for the extended *-algebra of Wick polynomials on the said cone and, on the one hand, we prove that it contains the information of the bulk counterpart via an injective *-homomorphism while, on the other hand, we associate to it a distinguished state whose pull-back in the bulk is of Hadamard form. The main advantage of this point of view arises if one uses the universal properties of the exponential map and of the light cone in order to show that, for any two given backgrounds M and M ' and for any two subsets of geodesic neighbourhoods of two arbitrary points, it is possible to engineer the above procedure such that the boundary extended algebras are related via a restriction homomorphism. This allows for the pull-back of boundary states in both spacetimes and, thus, to set up a machinery which permits the comparison of expectation values of local field observables in M and M ' . (orig.)

  11. High-accuracy optical extensometer based on coordinate transform in two-dimensional digital image correlation

    Science.gov (United States)

    Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan

    2018-01-01

    In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.

  12. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    Science.gov (United States)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  13. Digital tool for detecting diabetic retinopathy in retinography image using gabor transform

    Science.gov (United States)

    Morales, Y.; Nuñez, R.; Suarez, J.; Torres, C.

    2017-01-01

    Diabetic retinopathy is a chronic disease and is the leading cause of blindness in the population. The fundamental problem is that diabetic retinopathy is usually asymptomatic in its early stage and, in advanced stages, it becomes incurable, hence the importance of early detection. To detect diabetic retinopathy, the ophthalmologist examines the fundus by ophthalmoscopy, after sends the patient to get a Retinography. Sometimes, these retinography are not of good quality. This paper show the implementation of a digital tool that facilitates to ophthalmologist provide better patient diagnosis suffering from diabetic retinopathy, informing them that type of retinopathy has and to what degree of severity is find . This tool develops an algorithm in Matlab based on Gabor transform and in the application of digital filters to provide better and higher quality of retinography. The performance of algorithm has been compared with conventional methods obtaining resulting filtered images with better contrast and higher.

  14. Subwavelength Fourier-transform imaging without a lens or a beamsplitter

    International Nuclear Information System (INIS)

    Liu Rui-Feng; Yuan Xin-Xing; Fang Yi-Zhen; Zhang Pei; Zhou Yu; Gao Hong; Li Fu-Li

    2014-01-01

    The fourier-transform patterns of an object are usually observed in the far-field region or obtained in the near-field region with the help of lenses. Here we propose and experimentally demonstrate a scheme of Fourier-transform patterns in the Fresnel diffraction region with thermal light. In this scheme, neither a lens nor a beamsplitter is used, and only one single charge coupled device (CCD) is employed. It means that dividing one beam out of a light source into signal and reference beams is not as necessary as the one done by the use of a beamsplitter in usual ghost interference experiments. Moreover, the coincidence measurement of two point detectors is not necessary and data recorded on a single CCD are sufficient for reconstructing the ghost diffraction patterns. The feature of the scheme promises a great potential application in the fields of X-ray and neutron diffraction imaging processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  15. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms

    Science.gov (United States)

    Belazi, Akram; Abd El-Latif, Ahmed A.; Diaconu, Adrian-Viorel; Rhouma, Rhouma; Belghith, Safya

    2017-01-01

    In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.

  16. Practical protocols for fast histopathology by Fourier transform infrared spectroscopic imaging

    Science.gov (United States)

    Keith, Frances N.; Reddy, Rohith K.; Bhargava, Rohit

    2008-02-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation.

  17. MR image features predicting hemorrhagic transformation in acute cerebral infarction: a multimodal study

    International Nuclear Information System (INIS)

    Liu, Chunming; Xu, Liang; Dong, Longchun; Liu, Zhenxing; Yang, Jun; Liu, Jun; Dong, Zhengchao; Khursheed, Aiman

    2015-01-01

    The aims of this study were to observe magnetic resonance imaging (MRI) features and the frequency of hemorrhagic transformation (HT) in patients with acute cerebral infarction and to identify the risk factors of HT. We first performed multimodal MRI (anatomical, diffusion weighted, and susceptibility weighted) scans on 87 patients with acute cerebral infarction within 24 hours after symptom onset and documented the image findings. We then performed follow-up examinations 3 days to 2 weeks after the onset or whenever the conditions of the patients worsened within 3 days. We utilized univariate statistics to identify the correlations between HT and image features and used multivariate logistical regression to correct for confounding factors to determine relevant independent image features of HT. HT was observed in 17 out of total 87 patients (19.5 %). The infarct size (p = 0.021), cerebral microbleeds (CMBs) (p = 0.004), relative apparent diffusion (rADC) (p = 0.023), and venous anomalies (p = 0.000) were significantly related with HT in the univariate statistics. Multivariate analysis demonstrated that CMBs (odd ratio (OR) = 0.082; 95 % confidence interval (CI) = 0.011-0.597; p = 0.014), rADC (OR = 0.000; 95 % CI = 0.000-0.692; p = 0.041), and venous anomalies (OR = 0.066; 95 % CI = 0.011-0.403; p = 0.003) were independent risk factors for HT. The frequency of HT is 19.5 % in this study. CMBs, rADC, and venous anomalies are independent risk factors for HT of acute cerebral infarction. (orig.)

  18. MR image features predicting hemorrhagic transformation in acute cerebral infarction: a multimodal study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunming; Xu, Liang; Dong, Longchun; Liu, Zhenxing; Yang, Jun; Liu, Jun [Tianjin Union Medicine Centre, Department of Radiology, Tianjin (China); Dong, Zhengchao [Columbia University, Translational Imaging and MRI Unit, Department of Psychiatry, New York, NY (United States); New York State Psychiatric Institute, New York, NY (United States); Khursheed, Aiman [Tianjin Medical University, International Medical School, Tianjin (China)

    2015-11-15

    The aims of this study were to observe magnetic resonance imaging (MRI) features and the frequency of hemorrhagic transformation (HT) in patients with acute cerebral infarction and to identify the risk factors of HT. We first performed multimodal MRI (anatomical, diffusion weighted, and susceptibility weighted) scans on 87 patients with acute cerebral infarction within 24 hours after symptom onset and documented the image findings. We then performed follow-up examinations 3 days to 2 weeks after the onset or whenever the conditions of the patients worsened within 3 days. We utilized univariate statistics to identify the correlations between HT and image features and used multivariate logistical regression to correct for confounding factors to determine relevant independent image features of HT. HT was observed in 17 out of total 87 patients (19.5 %). The infarct size (p = 0.021), cerebral microbleeds (CMBs) (p = 0.004), relative apparent diffusion (rADC) (p = 0.023), and venous anomalies (p = 0.000) were significantly related with HT in the univariate statistics. Multivariate analysis demonstrated that CMBs (odd ratio (OR) = 0.082; 95 % confidence interval (CI) = 0.011-0.597; p = 0.014), rADC (OR = 0.000; 95 % CI = 0.000-0.692; p = 0.041), and venous anomalies (OR = 0.066; 95 % CI = 0.011-0.403; p = 0.003) were independent risk factors for HT. The frequency of HT is 19.5 % in this study. CMBs, rADC, and venous anomalies are independent risk factors for HT of acute cerebral infarction. (orig.)

  19. Ambiguity attacks on robust blind image watermarking scheme based on redundant discrete wavelet transform and singular value decomposition

    Directory of Open Access Journals (Sweden)

    Khaled Loukhaoukha

    2017-12-01

    Full Text Available Among emergent applications of digital watermarking are copyright protection and proof of ownership. Recently, Makbol and Khoo (2013 have proposed for these applications a new robust blind image watermarking scheme based on the redundant discrete wavelet transform (RDWT and the singular value decomposition (SVD. In this paper, we present two ambiguity attacks on this algorithm that have shown that this algorithm fails when used to provide robustness applications like owner identification, proof of ownership, and transaction tracking. Keywords: Ambiguity attack, Image watermarking, Singular value decomposition, Redundant discrete wavelet transform

  20. Devil’s Vortex Phase Structure as Frequency Plane Mask for Image Encryption Using the Fractional Mellin Transform

    Directory of Open Access Journals (Sweden)

    Sunanda Vashisth

    2014-01-01

    Full Text Available A frequency plane phase mask based on Devil’s vortex structure has been used for image encryption using the fractional Mellin transform. The phase key for decryption is obtained by an iterative phase retrieval algorithm. The proposed scheme has been validated for grayscale secret target images, by numerical simulation. The efficacy of the scheme has been evaluated by computing mean-squared-error between the secret target image and the decrypted image. Sensitivity analysis of the decryption process to variations in various encryption parameters has been carried out. The proposed encryption scheme has been seen to exhibit reasonable robustness against occlusion attack.

  1. Enhancement of security using structured phase masked in optical image encryption on Fresnel transform domain

    Science.gov (United States)

    Yadav, Poonam Lata; Singh, Hukum

    2018-05-01

    To enhance the security in optical image encryption system and to protect it from the attackers, this paper proposes new digital spiral phase mask based on Fresnel Transform. In this cryptosystem the Spiral Phase Mask (SPM) used is a hybrid of Fresnel Zone Plate (FZP) and Radial Hilbert Mask (RHM) which makes the key strong and enhances the security. The different keys used for encryption and decryption purposed make the system much more secure. Proposed scheme uses various structured phase mask which increases the key space also it increases the number of parameters which makes it difficult for the attackers to exactly find the key to recover the original image. We have also used different keys for encryption and decryption purpose to make the system much more secure. The strength of the proposed cryptosystem has been analyzed by simulating on MATLAB 7.9.0(R2008a). Mean Square Errors (MSE) and Peak Signal to Noise Ratio (PSNR) are calculated for the proposed algorithm. The experimental results are provided to highlight the effectiveness and sustainability of proposed cryptosystem and to prove that the cryptosystem is secure for usage.

  2. Shift-invariant discrete wavelet transform analysis for retinal image classification.

    Science.gov (United States)

    Khademi, April; Krishnan, Sridhar

    2007-12-01

    This work involves retinal image classification and a novel analysis system was developed. From the compressed domain, the proposed scheme extracts textural features from wavelet coefficients, which describe the relative homogeneity of localized areas of the retinal images. Since the discrete wavelet transform (DWT) is shift-variant, a shift-invariant DWT was explored to ensure that a robust feature set was extracted. To combat the small database size, linear discriminant analysis classification was used with the leave one out method. 38 normal and 48 abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, central vein and artery occlusion, histoplasmosis, arteriosclerotic retinopathy, hemi-central retinal vein occlusion and more) were used and a specificity of 79% and sensitivity of 85.4% were achieved (the average classification rate is 82.2%). The success of the system can be accounted to the highly robust feature set which included translation, scale and semi-rotational, features. Additionally, this technique is database independent since the features were specifically tuned to the pathologies of the human eye.

  3. Fourier transform infrared spectroscopy microscopic imaging classification based on spatial-spectral features

    Science.gov (United States)

    Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin

    2018-04-01

    The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.

  4. Image encryption based on fractal-structured phase mask in fractional Fourier transform domain

    Science.gov (United States)

    Zhao, Meng-Dan; Gao, Xu-Zhen; Pan, Yue; Zhang, Guan-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-04-01

    We present an optical encryption approach based on the combination of fractal Fresnel lens (FFL) and fractional Fourier transform (FrFT). Our encryption approach is in fact a four-fold encryption scheme, including the random phase encoding produced by the Gerchberg–Saxton algorithm, a FFL, and two FrFTs. A FFL is composed of a Sierpinski carpet fractal plate and a Fresnel zone plate. In our encryption approach, the security is enhanced due to the more expandable key spaces and the use of FFL overcomes the alignment problem of the optical axis in optical system. Only using the perfectly matched parameters of the FFL and the FrFT, the plaintext can be recovered well. We present an image encryption algorithm that from the ciphertext we can get two original images by the FrFT with two different phase distribution keys, obtained by performing 100 iterations between the two plaintext and ciphertext, respectively. We test the sensitivity of our approach to various parameters such as the wavelength of light, the focal length of FFL, and the fractional orders of FrFT. Our approach can resist various attacks.

  5. Cleopatra – a Queen, a Lover, a Mother: Transformations of the Image

    Directory of Open Access Journals (Sweden)

    Lidia WIŚNIEWSKA

    2012-06-01

    Full Text Available Transformations are not only conditioned by facts encompassing narrower or wider panoramas: from concentrating on death and one (political role (the ode of Horace, through recalling Cleopatra’s mature life and love (the drama of Shakespeare, to creating an image embracing the heroine’s whole life with its numerous roles, but as a mother and a daughter in the first place, because even her lovers resemble a father and a child (the fictional biography of Karen Essex. Above all, they appear to be more connected with different attitudes towards universal references lying within human cognitive abilities. Horace’s didactic opposition of contradictory patterns leads to the victory of one of them — and it is a linear pattern, as an equivalent of modern myth, which is accepted by the author himself. In Shakespeare, it takes a form of tragedy resulting from the fragmentary character of each pattern, one of which introduces change (archaic myth and the other constancy (modern myth, and from a painful attempt to combine them. In Essex, the vision of the world in which archaic myth, strongly represented by a child, triumphs is utopian. Irrespective of the differences, all the works realize the essential role played by images developed by heroes, and especially by authors, in human cognition.

  6. Infrared and Visible Image Fusion Based on Different Constraints in the Non-Subsampled Shearlet Transform Domain

    Science.gov (United States)

    Huang, Yan; Bi, Duyan; Wu, Dongpeng

    2018-01-01

    There are many artificial parameters when fuse infrared and visible images, to overcome the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and visible images that is based on different constraints in non-subsampled shearlet transform (NSST) domain is proposed. There are high bands and low bands of images that are decomposed by the NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient constraint, the fused image can obtain more details; fusing the low bands by the constraint of saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is used to update the coefficient. The fused images and the quantitative results demonstrate that our method is more effective in reserving details and highlighting the targets when compared with other state-of-the-art methods. PMID:29641505

  7. Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

    Directory of Open Access Journals (Sweden)

    Shuanghui Zhang

    2016-04-01

    Full Text Available This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for ISAR imaging within the Bayesian framework to achieve better focused radar image. In the proposed method of ISAR imaging, the phase errors are jointly estimated based on the minimum entropy criterion to accomplish autofocusing. The maximum a posterior (MAP estimation and the maximum likelihood estimation (MLE are utilized to estimate the model parameters to avoid manually tuning process. Additionally, the fast Fourier Transform (FFT and Hadamard product are used to minimize the required computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm outperforms the traditional sparse ISAR imaging algorithms in terms of resolution improvement and noise suppression.

  8. Transform- and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging.

    Science.gov (United States)

    Jiang, Shaowei; Liao, Jun; Bian, Zichao; Guo, Kaikai; Zhang, Yongbing; Zheng, Guoan

    2018-04-01

    A whole slide imaging (WSI) system has recently been approved for primary diagnostic use in the US. The image quality and system throughput of WSI is largely determined by the autofocusing process. Traditional approaches acquire multiple images along the optical axis and maximize a figure of merit for autofocusing. Here we explore the use of deep convolution neural networks (CNNs) to predict the focal position of the acquired image without axial scanning. We investigate the autofocusing performance with three illumination settings: incoherent Kohler illumination, partially coherent illumination with two plane waves, and one-plane-wave illumination. We acquire ~130,000 images with different defocus distances as the training data set. Different defocus distances lead to different spatial features of the captured images. However, solely relying on the spatial information leads to a relatively bad performance of the autofocusing process. It is better to extract defocus features from transform domains of the acquired image. For incoherent illumination, the Fourier cutoff frequency is directly related to the defocus distance. Similarly, autocorrelation peaks are directly related to the defocus distance for two-plane-wave illumination. In our implementation, we use the spatial image, the Fourier spectrum, the autocorrelation of the spatial image, and combinations thereof as the inputs for the CNNs. We show that the information from the transform domains can improve the performance and robustness of the autofocusing process. The resulting focusing error is ~0.5 µm, which is within the 0.8-µm depth-of-field range. The reported approach requires little hardware modification for conventional WSI systems and the images can be captured on the fly without focus map surveying. It may find applications in WSI and time-lapse microscopy. The transform- and multi-domain approaches may also provide new insights for developing microscopy-related deep-learning networks. We have made

  9. Structural-functional lung imaging using a combined CT-EIT and a Discrete Cosine Transformation reconstruction method.

    Science.gov (United States)

    Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-05-16

    Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications.

  10. Digital hologram transformations for RGB color holographic display with independent image magnification and translation in 3D.

    Science.gov (United States)

    Makowski, Piotr L; Zaperty, Weronika; Kozacki, Tomasz

    2018-01-01

    A new framework for in-plane transformations of digital holograms (DHs) is proposed, which provides improved control over basic geometrical features of holographic images reconstructed optically in full color. The method is based on a Fourier hologram equivalent of the adaptive affine transformation technique [Opt. Express18, 8806 (2010)OPEXFF1094-408710.1364/OE.18.008806]. The solution includes four elementary geometrical transformations that can be performed independently on a full-color 3D image reconstructed from an RGB hologram: (i) transverse magnification; (ii) axial translation with minimized distortion; (iii) transverse translation; and (iv) viewing angle rotation. The independent character of transformations (i) and (ii) constitutes the main result of the work and plays a double role: (1) it simplifies synchronization of color components of the RGB image in the presence of mismatch between capture and display parameters; (2) provides improved control over position and size of the projected image, particularly the axial position, which opens new possibilities for efficient animation of holographic content. The approximate character of the operations (i) and (ii) is examined both analytically and experimentally using an RGB circular holographic display system. Additionally, a complex animation built from a single wide-aperture RGB Fourier hologram is presented to demonstrate full capabilities of the developed toolset.

  11. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    Science.gov (United States)

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  12. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  13. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Directory of Open Access Journals (Sweden)

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  14. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    Science.gov (United States)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  15. Determination of residence times of ions in a resistive glass selected ion flow-drift tube using the Hadamard transformation

    Czech Academy of Sciences Publication Activity Database

    Spesyvyi, Anatolii; Španěl, Patrik

    2015-01-01

    Roč. 29, č. 17 (2015), s. 1563-1570 ISSN 0951-4198 R&D Projects: GA ČR GA13-28882S Institutional support: RVO:61388955 Keywords : mass-spectrometry * SIFT-MS * mobility spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.226, year: 2015

  16. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

    Science.gov (United States)

    Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

    2018-02-12

    We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

  17. Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform

    Science.gov (United States)

    Binol, Hamidullah; Bal, Abdullah

    2016-05-01

    A novel hyperspectral target detection technique based on Fukunaga-Koontz transform (FKT) is presented. FKT offers significant properties for feature selection and ordering. However, it can only be used to solve multi-pattern classification problems. Target detection may be considered as a two-class classification problem, i.e., target versus background clutter. Nevertheless, background clutter typically contains different types of materials. That's why; target detection techniques are different than classification methods by way of modeling clutter. To avoid the modeling of the background clutter, we have improved one-class FKT (OC-FKT) for target detection. The statistical properties of target training samples are used to define tunnel-like boundary of the target class. Non-target samples are then created synthetically as to be outside of the boundary. Thus, only limited target samples become adequate for training of FKT. The hyperspectral image experiments confirm that the proposed OC-FKT technique provides an effective means for target detection.

  18. Cryo-EM image alignment based on nonuniform fast Fourier transform.

    Science.gov (United States)

    Yang, Zhengfan; Penczek, Pawel A

    2008-08-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.

  19. Cryo-EM image alignment based on nonuniform fast Fourier transform

    International Nuclear Information System (INIS)

    Yang Zhengfan; Penczek, Pawel A.

    2008-01-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis

  20. Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Lassi Rieppo

    Full Text Available Fourier Transform Infrared (FT-IR spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG contents of articular cartilage (AC. However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR and principal component regression (PCR methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O-stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used.

  1. ORBS: A data reduction software for the imaging Fourier transform spectrometers SpIOMM and SITELLE

    Science.gov (United States)

    Martin, T.; Drissen, L.; Joncas, G.

    2012-09-01

    SpIOMM (Spectromètre-Imageur de l'Observatoire du Mont Mégantic) is still the only operational astronomical Imaging Fourier Transform Spectrometer (IFTS) capable of obtaining the visible spectrum of every source of light in a field of view of 12 arc-minutes. Even if it has been designed to work with both outputs of the Michelson interferometer, up to now only one output has been used. Here we present ORBS (Outils de Réduction Binoculaire pour SpIOMM/SITELLE), the reduction software we designed in order to take advantage of the two output data. ORBS will also be used to reduce the data of SITELLE (Spectromètre-Imageur pour l' Étude en Long et en Large des raies d' Émissions) { the direct successor of SpIOMM, which will be in operation at the Canada-France- Hawaii Telescope (CFHT) in early 2013. SITELLE will deliver larger data cubes than SpIOMM (up to 2 cubes of 34 Go each). We thus have made a strong effort in optimizing its performance efficiency in terms of speed and memory usage in order to ensure the best compliance with the quality characteristics discussed with the CFHT team. As a result ORBS is now capable of reducing 68 Go of data in less than 20 hours using only 5 Go of random-access memory (RAM).

  2. Application of Riesz transforms to the isotropic AM-PM decomposition of geometrical-optical illusion images.

    Science.gov (United States)

    Sierra-Vázquez, Vicente; Serrano-Pedraza, Ignacio

    2010-04-01

    The existence of a special second-order mechanism in the human visual system, able to demodulate the envelope of visual stimuli, suggests that spatial information contained in the image envelope may be perceptually relevant. The Riesz transform, a natural isotropic extension of the Hilbert transform to multidimensional signals, was used here to demodulate band-pass filtered images of well-known visual illusions of length, size, direction, and shape. We show that the local amplitude of the monogenic signal or envelope of each illusion image conveys second-order information related to image holistic spatial structure, whereas the local phase component conveys information about the spatial features. Further low-pass filtering of the illusion image envelopes creates physical distortions that correspond to the subjective distortions perceived in the illusory images. Therefore the envelope seems to be the image component that physically carries the spatial information about these illusions. This result contradicts the popular belief that the relevant spatial information to perceive geometrical-optical illusions is conveyed only by the lower spatial frequencies present in their Fourier spectrum.

  3. Quantitative evaluation of temporal partial coherence using 3D Fourier transforms of through-focus TEM images

    International Nuclear Information System (INIS)

    Kimoto, Koji; Sawada, Hidetaka; Sasaki, Takeo; Sato, Yuta; Nagai, Takuro; Ohwada, Megumi; Suenaga, Kazu; Ishizuka, Kazuo

    2013-01-01

    We evaluate the temporal partial coherence of transmission electron microscopy (TEM) using the three-dimensional (3D) Fourier transform (FT) of through-focus images. Young's fringe method often indicates the unexpected high-frequency information due to non-linear imaging terms. We have already used the 3D FT of axial (non-tilted) through-focus images to reduce the effect of non-linear terms on the linear imaging term, and demonstrated the improvement of monochromated lower-voltage TEM performance [Kimoto et al., Ultramicroscopy 121 (2012) 31–39]. Here we apply the 3D FT method with intentionally tilted incidence to normalize various factors associated with a TEM specimen and an imaging device. The temporal partial coherence of two microscopes operated at 30, 60 and 80 kV is evaluated. Our method is applicable to such cases where the non-linear terms become more significant in lower acceleration voltage or aberration-corrected high spatial resolution TEM. - Highlights: • We assess the temporal partial coherence of TEM using a 3-dimensional (3D) Fourier transform (FT) of through-focus images. • We apply the 3D FT method with intentionally tilted incidence to normalize various factors associated with a TEM specimen and an imaging device. • The spatial frequency at which information transfer decreases to 1/e 2 (13.5%) is determined for two lower-voltage TEM systems

  4. The role of embodied simulation in mental transformation of whole-body images: evidence from Parkinson's disease.

    Science.gov (United States)

    Conson, Massimiliano; Trojano, Luigi; Vitale, Carmine; Mazzarella, Elisabetta; Allocca, Roberto; Barone, Paolo; Grossi, Dario; Santangelo, Gabriella

    2014-02-01

    It has been repeatedly demonstrated that mentally performing an action and mentally transforming body-parts entail simulation of one's own body movements, consistent with predictions of embodied cognition theories. However, the involvement of embodied simulation in mental transformation of whole-body images is still disputed. Here, we assessed own body transformation in Parkinson's disease (PD) patients with symptoms most affecting the left or the right body side. PD patients were required to perform left-right judgments on front-facing or back-facing human figures, and a letter rotation task. Results demonstrated that PD patients were selectively impaired in judging the side of back-facing human figures corresponding to their own most affected side, but performed as well as healthy subjects on mental transformation of front-facing bodies and on letter rotation. These findings demonstrate a parallel impairment between motor and mental simulation mechanisms in PD patients, thus highlighting the specific contribution of embodied cognition to mental transformation of whole-body images. Copyright © 2014. Published by Elsevier B.V.

  5. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  6. Adapting the Computed Tomography Criteria of Hemorrhagic Transformation to Stroke Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Lars Neeb

    2013-08-01

    Full Text Available Background: The main safety aspect in the use of stroke thrombolysis and in clinical trials of new pharmaceutical or interventional stroke therapies is the incidence of hemorrhagic transformation (HT after treatment. The computed tomography (CT-based classification of the European Cooperative Acute Stroke Study (ECASS distinguishes four categories of HTs. An HT can range from a harmless spot of blood accumulation to a symptomatic space-occupying parenchymal bleeding associated with a massive deterioration of symptoms and clinical prognosis. In magnetic resonance imaging (MRI HTs are often categorized using the ECASS criteria although this classification has not been validated in MRI. We developed MRI-specific criteria for the categorization of HT and sought to assess its diagnostic reliability in a retrospective study. Methods: Consecutive acute ischemic stroke patients, who had received a 3-tesla MRI before and 12-36 h after thrombolysis, were screened retrospectively for an HT of any kind in post-treatment MRI. Intravenous tissue plasminogen activator was given to all patients within 4.5 h. HT categorization was based on a simultaneous read of 3 different MRI sequences (fluid-attenuated inversion recovery, diffusion-weighted imaging and T2* gradient-recalled echo. Categorization of HT in MRI accounted for the various aspects of the imaging pattern as the shape of the bleeding area and signal intensity on each sequence. All data sets were independently categorized in a blinded fashion by 3 expert and 3 resident observers. Interobserver reliability of this classification was determined for all observers together and for each group separately by calculating Kendall's coefficient of concordance (W. Results: Of the 186 patients screened, 39 patients (21% had an HT in post-treatment MRI and were included for the categorization of HT by experts and residents. The overall agreement of HT categorization according to the modified classification was

  7. Prospects for the design of an ultraviolet imaging Fourier transform spectrometer

    Science.gov (United States)

    Lemaire, Philippe

    2017-11-01

    Recent results from solar observations in the far and extremeultraviolet (FUV/EUV) obtained from SOHO (SOlar and Heliospheric Observatory) and TRACE (Transition Region Camera) show the extreme variability of the solar atmosphere. Within the limited resolution of the instruments (1-2 arcseconds) horizontal and vertical velocities up-to 100 to 400 km s-1 have been measured. With an horizontal velocity of 100 km s-1 an one arsecond structure crosses the one arcsecond slit width of a classical slit spectrometer in less than 10 seconds. In the future, with higher angular resolution (e.g. 0.1 arcsecond), the capability to study small structures will be greatly reduced by a classical slit spectrometer. To be able to characterize the small scale solar atmospheric structures formed in the 104 K to 106 K temperature range (which emit in the 30 to 180 nm wavelength range) a spectrometer without slit (or with wide slit) is required. At the same time to obtain an accurate measurement of the doppler velocity an high spectral resolution is needed. The two requirements, high spectral resolution and large slit, are difficult to be simultaneously fulfilled with a classical slit spectrometer within the limited volume of a space instrumentation. Also, we propose to use an Imaging Fourier Transform Spectrometer (IFTS) to provide simultaneously a bidimensionnal field and an accurate determination of line profiles and positions. The development of Fourier Transform Spectrometers (FTS), although popular in the infrared, has been very limited in the UV/FUV by the lack of very high quality beam splitter. Since 10 years, the use of diffraction gratings as beam splitters has been suggested and few intruments have been built ([Chak 94]; [Clea 92]; [File 00]). These instruments illustrate some applications in the new wavelength domain opened by using a beam splitter grating, but do not yet provide the full capabilities of an FTS. In this paper we present several optical schemes which can

  8. Calculation Scheme Based on a Weighted Primitive: Application to Image Processing Transforms

    Directory of Open Access Journals (Sweden)

    Gregorio de Miguel Casado

    2007-01-01

    Full Text Available This paper presents a method to improve the calculation of functions which specially demand a great amount of computing resources. The method is based on the choice of a weighted primitive which enables the calculation of function values under the scope of a recursive operation. When tackling the design level, the method shows suitable for developing a processor which achieves a satisfying trade-off between time delay, area costs, and stability. The method is particularly suitable for the mathematical transforms used in signal processing applications. A generic calculation scheme is developed for the discrete fast Fourier transform (DFT and then applied to other integral transforms such as the discrete Hartley transform (DHT, the discrete cosine transform (DCT, and the discrete sine transform (DST. Some comparisons with other well-known proposals are also provided.

  9. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  10. Complementary Walsh-Hadamard coded optical CDMA coder/decoders structured over arrayed-waveguide grating routers

    Science.gov (United States)

    Huang, Jen-Fa; Yang, Chao-Chin; Tseng, Shin-Pin

    2004-01-01

    In this paper, an optical code-division multiple-access (OCDMA) system with complementary Walsh-Hadamard coded optical encoder/decoder configuration structured over arrayed-waveguide grating (AWG) routers is examined. In the proposed system, each network user requires only two AWG routers to accomplish spectral encoding and decoding for complementary keying, thus, resulting a simpler and low cost system. Performance of the proposed system is analyzed by taking the effect of phase-induced intensity noise into account. The result indicates that the established system not only preserves the capability of suppressing multiple-access interference (MAI), but also improves bit-error-rate performance as compared to the conventional coders employing simple on-off keying.

  11. Optical Bench Breadboard Of An Imaging Fourier Transform Spectrometer (iFTS) For Climate Observations.

    Science.gov (United States)

    Singh, G.; McElroy, C. T.; Vaziri, Z.; Barton, D.; Blair, G.; Grandmont, F. J.

    2017-12-01

    The fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) states that the warming of zonal mean surface temperature at higher latitudes exceeds the global average temperature change. This poses a great problem as the warming leads to the thawing of the permafrost in the Arctic region that acts as an envelope to trap greenhouse gases such as carbon dioxide and methane. Therefore, there is an urgent need to develop scientific instruments that can be flown in space over the Arctic to provide atmospheric information to quantify the evolution and transport of these gases. The Laboratory for Atmospheric Remote Sounding from Space (LARSS) at York University is developing an imaging Fourier transform spectrometer (IFTS) for climate observations by atmospheric sounding. The spectrometer has two individual channels, one centred at 1650 nm to measure the atmospheric column of carbon dioxide and methane, and another centred at 762 nm to measure the temperature-pressure profile by making measurements of the O2A band. A Commercial-Off-The-Shelf (COTS) modulator has been purchased from ABB Inc. of Quebec City. Interferometers are widely used in many scientific laboratories to measure concentrations of different constituents in a given sample. The performance of these instruments is highly dependent on environmental effects and various properties of the input beam such as coherence, polarity, etc. Thus, the use of such instruments to measure atmospheric concentration is complicated and challenging. The immediate goal of this project is to develop an IFTS system which can measure backscattered radiation in a laboratory environment and develop design elements that will make it operable in the space environment. Progress on the project and information concerning some of the issues listed above will be discussed. The developments which flow from this research project will support efforts by Environment and Climate Change Canada, the Canadian Space

  12. Simultaneous UV Imaging and Raman Spectroscopy for the Measurement of Solvent-Mediated Phase Transformations During Dissolution Testing

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Wu, Jian; Naelapää, Kaisa

    2014-01-01

    The current work reports the simultaneous use of UV imaging and Raman spectroscopy for detailed characterization of drug dissolution behavior including solid-state phase transformations during dissolution. The dissolution of drug substances from compacts of sodium naproxen in 0.1 HCl as well as t...... of UV imaging and Raman spectroscopy offers a detailed characterization of drug dissolution behavior in a time-effective and sample-sparing manner. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1149-1156, 2014....

  13. Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera

    Science.gov (United States)

    Jhan, Jyun-Ping; Rau, Jiann-Yeou; Haala, Norbert

    2018-03-01

    Utilizing miniature multispectral (MS) or hyperspectral (HS) cameras by mounting them on an Unmanned Aerial System (UAS) has the benefits of convenience and flexibility to collect remote sensing imagery for precision agriculture, vegetation monitoring, and environment investigation applications. Most miniature MS cameras adopt a multi-lens structure to record discrete MS bands of visible and invisible information. The differences in lens distortion, mounting positions, and viewing angles among lenses mean that the acquired original MS images have significant band misregistration errors. We have developed a Robust and Adaptive Band-to-Band Image Transform (RABBIT) method for dealing with the band co-registration of various types of miniature multi-lens multispectral cameras (Mini-MSCs) to obtain band co-registered MS imagery for remote sensing applications. The RABBIT utilizes modified projective transformation (MPT) to transfer the multiple image geometry of a multi-lens imaging system to one sensor geometry, and combines this with a robust and adaptive correction (RAC) procedure to correct several systematic errors and to obtain sub-pixel accuracy. This study applies three state-of-the-art Mini-MSCs to evaluate the RABBIT method's performance, specifically the Tetracam Miniature Multiple Camera Array (MiniMCA), Micasense RedEdge, and Parrot Sequoia. Six MS datasets acquired at different target distances and dates, and locations are also applied to prove its reliability and applicability. Results prove that RABBIT is feasible for different types of Mini-MSCs with accurate, robust, and rapid image processing efficiency.

  14. Realization of quantum Fourier transform over ZN

    International Nuclear Information System (INIS)

    Fu Xiang-Qun; Bao Wan-Su; Li Fa-Da; Zhang Yu-Chao

    2014-01-01

    Since the difficulty in preparing the equal superposition state of amplitude is 1/√N, we construct a quantile transform of quantum Fourier transform (QFT) over Z N based on the elementary transforms, such as Hadamard transform and Pauli transform. The QFT over Z N can then be realized by the quantile transform, and used to further design its quantum circuit and analyze the requirements for the quantum register and quantum gates. However, the transform needs considerable quantum computational resources and it is difficult to construct a high-dimensional quantum register. Hence, we investigate the design of t-bit quantile transform, and introduce the definition of t-bit semiclassical QFT over Z N . According to probability amplitude, we prove that the transform can be used to realize QFT over Z N and further design its quantum circuit. For this transform, the requirements for the quantum register, the one-qubit gate, and two-qubit gate reduce obviously when compared with those for the QFT over Z N . (general)

  15. Extraction of Nucleolus Candidate Zone in White Blood Cells of Peripheral Blood Smear Images Using Curvelet Transform

    Directory of Open Access Journals (Sweden)

    Ramin Soltanzadeh

    2012-01-01

    Full Text Available The main part of each white blood cell (WBC is its nucleus which contains chromosomes. Although white blood cells (WBCs with giant nuclei are the main symptom of leukemia, they are not sufficient to prove this disease and other symptoms must be investigated. For example another important symptom of leukemia is the existence of nucleolus in nucleus. The nucleus contains chromatin and a structure called the nucleolus. Chromatin is DNA in its active form while nucleolus is composed of protein and RNA, which are usually inactive. In this paper, to diagnose this symptom and in order to discriminate between nucleoli and chromatins, we employ curvelet transform, which is a multiresolution transform for detecting 2D singularities in images. For this reason, at first nuclei are extracted by means of K-means method, then curvelet transform is applied on extracted nuclei and the coefficients are modified, and finally reconstructed image is used to extract the candidate locations of chromatins and nucleoli. This method is applied on 100 microscopic images and succeeds with specificity of 80.2% and sensitivity of 84.3% to detect the nucleolus candidate zone. After nucleolus candidate zone detection, new features that can be used to classify atypical and blast cells such as gradient of saturation channel are extracted.

  16. High-Spatial- and High-Temporal-Resolution Dynamic Contrast-enhanced MR Breast Imaging with Sweep Imaging with Fourier Transformation: A Pilot Study

    Science.gov (United States)

    Benson, John C.; Idiyatullin, Djaudat; Snyder, Angela L.; Snyder, Carl J.; Hutter, Diane; Everson, Lenore I.; Eberly, Lynn E.; Nelson, Michael T.; Garwood, Michael

    2015-01-01

    Purpose To report the results of sweep imaging with Fourier transformation (SWIFT) magnetic resonance (MR) imaging for diagnostic breast imaging. Materials and Methods Informed consent was obtained from all participants under one of two institutional review board–approved, HIPAA-compliant protocols. Twelve female patients (age range, 19–54 years; mean age, 41.2 years) and eight normal control subjects (age range, 22–56 years; mean age, 43.2 years) enrolled and completed the study from January 28, 2011, to March 5, 2013. Patients had previous lesions that were Breast Imaging Reporting and Data System 4 and 5 based on mammography and/or ultrasonographic imaging. Contrast-enhanced SWIFT imaging was completed by using a 4-T research MR imaging system. Noncontrast studies were completed in the normal control subjects. One of two sized single-breast SWIFT-compatible transceiver coils was used for nine patients and five controls. Three patients and five control subjects used a SWIFT-compatible dual breast coil. Temporal resolution was 5.9–7.5 seconds. Spatial resolution was 1.00 mm isotropic, with later examinations at 0.67 mm isotropic, and dual breast at 1.00 mm or 0.75 mm isotropic resolution. Results Two nonblinded breast radiologists reported SWIFT image findings of normal breast tissue, benign fibroadenomas (six of six lesions), and malignant lesions (10 of 12 lesions) concordant with other imaging modalities and pathologic reports. Two lesions in two patients were not visualized because of coil field of view. The images yielded by SWIFT showed the presence and extent of known breast lesions. Conclusion The SWIFT technique could become an important addition to breast imaging modalities because it provides high spatial resolution at all points during the dynamic contrast-enhanced examination. © RSNA, 2014 PMID:25247405

  17. Image Transform Based on the Distribution of Representative Colors for Color Deficient

    Science.gov (United States)

    Ohata, Fukashi; Kudo, Hiroaki; Matsumoto, Tetsuya; Takeuchi, Yoshinori; Ohnishi, Noboru

    This paper proposes the method to convert digital image containing distinguishing difficulty sets of colors into the image with high visibility. We set up four criteria, automatically processing by a computer, retaining continuity in color space, not making images into lower visible for people with normal color vision, and not making images not originally having distinguishing difficulty sets of colors into lower visible. We conducted the psychological experiment. We obtained the result that the visibility of a converted image had been improved at 60% for 40 images, and we confirmed the main criterion of the continuity in color space was kept.

  18. Automated segmentation and isolation of touching cell nuclei in cytopathology smear images of pleural effusion using distance transform watershed method

    Science.gov (United States)

    Win, Khin Yadanar; Choomchuay, Somsak; Hamamoto, Kazuhiko

    2017-06-01

    The automated segmentation of cell nuclei is an essential stage in the quantitative image analysis of cell nuclei extracted from smear cytology images of pleural fluid. Cell nuclei can indicate cancer as the characteristics of cell nuclei are associated with cells proliferation and malignancy in term of size, shape and the stained color. Nevertheless, automatic nuclei segmentation has remained challenging due to the artifacts caused by slide preparation, nuclei heterogeneity such as the poor contrast, inconsistent stained color, the cells variation, and cells overlapping. In this paper, we proposed a watershed-based method that is capable to segment the nuclei of the variety of cells from cytology pleural fluid smear images. Firstly, the original image is preprocessed by converting into the grayscale image and enhancing by adjusting and equalizing the intensity using histogram equalization. Next, the cell nuclei are segmented using OTSU thresholding as the binary image. The undesirable artifacts are eliminated using morphological operations. Finally, the distance transform based watershed method is applied to isolate the touching and overlapping cell nuclei. The proposed method is tested with 25 Papanicolaou (Pap) stained pleural fluid images. The accuracy of our proposed method is 92%. The method is relatively simple, and the results are very promising.

  19. A Panchromatic Imaging Fourier Transform Spectrometer for the NASA Geostationary Coastal and Air Pollution Events Mission

    Science.gov (United States)

    Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David

    2011-01-01

    This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the ultraviolet-visible and infrared spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and infrared. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson

  20. The discrete Fourier transform theory, algorithms and applications

    CERN Document Server

    Sundaraajan, D

    2001-01-01

    This authoritative book provides comprehensive coverage of practical Fourier analysis. It develops the concepts right from the basics and gradually guides the reader to the advanced topics. It presents the latest and practically efficient DFT algorithms, as well as the computation of discrete cosine and Walsh-Hadamard transforms. The large number of visual aids such as figures, flow graphs and flow charts makes the mathematical topic easy to understand. In addition, the numerous examples and the set of C-language programs (a supplement to the book) help greatly in understanding the theory and

  1. Evolved Multiresolution Transforms for Optimized Image Compression and Reconstruction Under Quantization

    National Research Council Canada - National Science Library

    Moore, Frank

    2005-01-01

    ...) First, this research demonstrates that a GA can evolve a single set of coefficients describing a single matched forward and inverse transform pair that can be used at each level of a multiresolution...

  2. Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.

    2018-01-01

    In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.

  3. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    Science.gov (United States)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction

  4. Automatic Lumbar Vertebrae Segmentation in Fluoroscopic Images Via Optimised Concurrent Hough Transform

    National Research Council Canada - National Science Library

    Zheng, Yalin

    2001-01-01

    .... Digital videofluoroscopy (DVF) was widely used to obtain images for motion studies. This can provide motion sequences of the lumbar spine, but the images obtained often suffer due to noise, exacerbated by the very low radiation dosage...

  5. A Novel Image Tag Completion Method Based on Convolutional Neural Transformation

    KAUST Repository

    Geng, Yanyan; Zhang, Guohui; Li, Weizhi; Gu, Yi; Liang, Ru-Ze; Liang, Gaoyuan; Wang, Jingbin; Wu, Yanbin; Patil, Nitin; Wang, Jing-Yan

    2017-01-01

    In the problems of image retrieval and annotation, complete textual tag lists of images play critical roles. However, in real-world applications, the image tags are usually incomplete, thus it is important to learn the complete tags for images. In this paper, we study the problem of image tag complete and proposed a novel method for this problem based on a popular image representation method, convolutional neural network (CNN). The method estimates the complete tags from the convolutional filtering outputs of images based on a linear predictor. The CNN parameters, linear predictor, and the complete tags are learned jointly by our method. We build a minimization problem to encourage the consistency between the complete tags and the available incomplete tags, reduce the estimation error, and reduce the model complexity. An iterative algorithm is developed to solve the minimization problem. Experiments over benchmark image data sets show its effectiveness.

  6. A Novel Image Tag Completion Method Based on Convolutional Neural Transformation

    KAUST Repository

    Geng, Yanyan

    2017-10-24

    In the problems of image retrieval and annotation, complete textual tag lists of images play critical roles. However, in real-world applications, the image tags are usually incomplete, thus it is important to learn the complete tags for images. In this paper, we study the problem of image tag complete and proposed a novel method for this problem based on a popular image representation method, convolutional neural network (CNN). The method estimates the complete tags from the convolutional filtering outputs of images based on a linear predictor. The CNN parameters, linear predictor, and the complete tags are learned jointly by our method. We build a minimization problem to encourage the consistency between the complete tags and the available incomplete tags, reduce the estimation error, and reduce the model complexity. An iterative algorithm is developed to solve the minimization problem. Experiments over benchmark image data sets show its effectiveness.

  7. The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna

    NARCIS (Netherlands)

    Weimar Acerbi, F.; Clevers, J.G.P.W.; Schaepman, M.E.

    2006-01-01

    Multi-sensor image fusion using the wavelet approach provides a conceptual framework for the improvement of the spatial resolution with minimal distortion of the spectral content of the source image. This paper assesses whether images with a large ratio of spatial resolution can be fused, and

  8. Comparison of hyperspectral transformation accuracies of multispectral Landsat TM, ETM+, OLI and EO-1 ALI images for detecting minerals in a geothermal prospect area

    Science.gov (United States)

    Hoang, Nguyen Tien; Koike, Katsuaki

    2018-03-01

    Hyperspectral remote sensing generally provides more detailed spectral information and greater accuracy than multispectral remote sensing for identification of surface materials. However, there have been no hyperspectral imagers that cover the entire Earth surface. This lack points to a need for producing pseudo-hyperspectral imagery by hyperspectral transformation from multispectral images. We have recently developed such a method, a Pseudo-Hyperspectral Image Transformation Algorithm (PHITA), which transforms Landsat 7 ETM+ images into pseudo-EO-1 Hyperion images using multiple linear regression models of ETM+ and Hyperion band reflectance data. This study extends the PHITA to transform TM, OLI, and EO-1 ALI sensor images into pseudo-Hyperion images. By choosing a part of the Fish Lake Valley geothermal prospect area in the western United States for study, the pseudo-Hyperion images produced from the TM, ETM+, OLI, and ALI images by PHITA were confirmed to be applicable to mineral mapping. Using a reference map as the truth, three main minerals (muscovite and chlorite mixture, opal, and calcite) were identified with high overall accuracies from the pseudo-images (> 95% and > 42% for excluding and including unclassified pixels, respectively). The highest accuracy was obtained from the ALI image, followed by ETM+, TM, and OLI images in descending order. The TM, OLI, and ALI images can be alternatives to ETM+ imagery for the hyperspectral transformation that aids the production of pseudo-Hyperion images for areas without high-quality ETM+ images because of scan line corrector failure, and for long-term global monitoring of land surfaces.

  9. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels

    Science.gov (United States)

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  10. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels.

    Science.gov (United States)

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  11. Nonlinear image encryption using a fully phase nonzero-order joint transform correlator in the Gyrator domain

    Science.gov (United States)

    Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet

    2017-02-01

    A novel nonlinear image encryption scheme based on a fully phase nonzero-order joint transform correlator architecture (JTC) in the Gyrator domain (GD) is proposed. In this encryption scheme, the two non-overlapping data distributions of the input plane of the JTC are fully encoded in phase and this input plane is transformed using the Gyrator transform (GT); the intensity distribution captured in the GD represents a new definition of the joint Gyrator power distribution (JGPD). The JGPD is modified by two nonlinear operations with the purpose of retrieving the encrypted image, with enhancement of the decrypted signal quality and improvement of the overall security. There are three keys used in the encryption scheme, two random phase masks and the rotation angle of the GT, which are all necessary for a proper decryption. Decryption is highly sensitivity to changes of the rotation angle of the GT as well as to little changes in other parameters or keys. The proposed encryption scheme in the GD still preserves the shift-invariance properties originated in the JTC-based encryption in the Fourier domain. The proposed encryption scheme is more resistant to brute force attacks, chosen-plaintext attacks, known-plaintext attacks, and ciphertext-only attacks, as they have been introduced in the cryptanalysis of the JTC-based encryption system. Numerical results are presented and discussed in order to verify and analyze the feasibility and validity of the novel encryption-decryption scheme.

  12. Noise Reduction planar bone imaging nuclear medicine with the use of wavelet transform: an assessment of its quality

    International Nuclear Information System (INIS)

    Casas Cardoso, Maria del Carmen; Perez Diaz, Marlen; Casas Cardoso, Gladis; Lorenzo Ginori, Juan; Paz Viera, Juan Enrique; Roque Diaz, Reinaldo; Cardenas Barreras, Julian

    2009-01-01

    Diagnostic imaging of Nuclear Medicine (MN), is highly used in Oncology, as it constitutes a noninvasive technique that allows early detection of tumors and assessment of therapeutic response of patients under treatment. However, particularly planar scintigraphy images, can be prone to problems of detectability of small lesions, because they are contaminated with noise, a phenomenon which is accentuated by the inability to increase the dose of the radiopharmaceutical or time acquisition of images of the patient over 'certain levels'. The aim of this work is to improve the detectability of tumors of bone. We describe an algorithm for random noise reduction using the wavelet transform (TW). The quality of the resulting images are evaluated through quantitative metrics such as Signal to Noise Ratio (SNR), the Mean Square Error (NMSEA) and Structural Similarity Index (SSIM). It also includes a subjective assessment of image quality by expert criteria, using a variant of the methodology FROC (Free-Response ROC). It was found that some of the filters designed in the wavelet domain, significantly improve the quality of planar bone imaging in terms of increased signal to noise ratio without implying notable structural distortions, which facilitates clinical diagnosis. (author)

  13. Automated processing of shoeprint images based on the Fourier transform for use in forensic science.

    Science.gov (United States)

    de Chazal, Philip; Flynn, John; Reilly, Richard B

    2005-03-01

    The development of a system for automatically sorting a database of shoeprint images based on the outsole pattern in response to a reference shoeprint image is presented. The database images are sorted so that those from the same pattern group as the reference shoeprint are likely to be at the start of the list. A database of 476 complete shoeprint images belonging to 140 pattern groups was established with each group containing two or more examples. A panel of human observers performed the grouping of the images into pattern categories. Tests of the system using the database showed that the first-ranked database image belongs to the same pattern category as the reference image 65 percent of the time and that a correct match appears within the first 5 percent of the sorted images 87 percent of the time. The system has translational and rotational invariance so that the spatial positioning of the reference shoeprint images does not have to correspond with the spatial positioning of the shoeprint images of the database. The performance of the system for matching partial-prints was also determined.

  14. Encoding and decoding of digital spiral imaging based on bidirectional transformation of light's spatial eigenmodes.

    Science.gov (United States)

    Zhang, Wuhong; Chen, Lixiang

    2016-06-15

    Digital spiral imaging has been demonstrated as an effective optical tool to encode optical information and retrieve topographic information of an object. Here we develop a conceptually new and concise scheme for optical image encoding and decoding toward free-space digital spiral imaging. We experimentally demonstrate that the optical lattices with ℓ=±50 orbital angular momentum superpositions and a clover image with nearly 200 Laguerre-Gaussian (LG) modes can be well encoded and successfully decoded. It is found that an image encoded/decoded with a two-index LG spectrum (considering both azimuthal and radial indices, ℓ and p) possesses much higher fidelity than that with a one-index LG spectrum (only considering the ℓ index). Our work provides an alternative tool for the image encoding/decoding scheme toward free-space optical communications.

  15. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra

    Directory of Open Access Journals (Sweden)

    A. Kleinert

    2014-12-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging Fourier transform spectrometer that is capable of operating on various high-altitude research aircraft. It measures the atmospheric emission in the thermal infrared spectral region in limb and nadir geometry. GLORIA consists of a classical Michelson interferometer combined with an infrared camera. The infrared detector has a usable area of 128 × 128 pixels, measuring up to 16 384 interferograms simultaneously. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration and algorithm development. The optical setup with extremely high optical throughput requires the development of new methods and algorithms for spectral and radiometric calibration. Due to the vast amount of data there is a high demand for scientifically intelligent optimisation of the data processing. This paper outlines the characterisation and processing steps required for the generation of radiometrically and spectrally calibrated spectra. Methods for performance optimisation of the processing algorithm are presented. The performance of the data processing and the quality of the calibrated spectra are demonstrated for measurements collected during the first deployments of GLORIA on aircraft.

  16. COMPRESSING BIOMEDICAL IMAGE BY USING INTEGER WAVELET TRANSFORM AND PREDICTIVE ENCODER

    OpenAIRE

    Anushree Srivastava*, Narendra Kumar Chaurasia

    2016-01-01

    Image compression has become an important process in today’s world of information exchange. It helps in effective utilization of high speed network resources. Medical image compression has an important role in medical field because they are used for future reference of patients. Medical data is compressed in such a way so that the diagnostics capabilities are not compromised or no medical information is lost. Medical imaging poses the great challenge of having compression algorithms that redu...

  17. Relationship between increasing concentrations of two carcinogens and statistical image descriptors of foci morphology in the cell transformation assay.

    Science.gov (United States)

    Callegaro, Giulia; Corvi, Raffaella; Salovaara, Susan; Urani, Chiara; Stefanini, Federico M

    2017-06-01

    Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl 2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. A Fast Enhanced Secure Image Chaotic Cryptosystem Based on Hybrid Chaotic Magic Transform

    Directory of Open Access Journals (Sweden)

    Srinivas Koppu

    2017-01-01

    Full Text Available An enhanced secure image chaotic cryptosystem has been proposed based on hybrid CMT-Lanczos algorithm. We have achieved fast encryption and decryption along with privacy of images. The pseudorandom generator has been used along with Lanczos algorithm to generate root characteristics and eigenvectors. Using hybrid CMT image, pixels are shuffled to accomplish excellent randomness. Compared with existing methods, the proposed method had more robustness to various attacks: brute-force attack, known cipher plaintext, chosen-plaintext, security key space, key sensitivity, correlation analysis and information entropy, and differential attacks. Simulation results show that the proposed methods give better result in protecting images with low-time complexity.

  19. Fourier-transform imaging of cotton and botanical and field trash mixtures

    Science.gov (United States)

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  20. Using trainable segmentation and watershed transform for identifying unilocular and multilocular cysts from ultrasound images of ovarian tumour

    Science.gov (United States)

    Ibrahim, Dheyaa Ahmed; Al-Assam, Hisham; Du, Hongbo; Jassim, Sabah

    2017-05-01

    Ovarian masses are categorised into different types of malignant and benign. In order to optimize patient treatment, it is necessary to carry out pre-operational characterisation of the suspect ovarian mass to determine its category. Ultrasound imaging has been widely used in differentiating malignant from benign cases due to its safe and non-intrusive nature, and can be used for determining the number of cysts in the ovary. Presently, the gynaecologist is tasked with manually counting the number of cysts shown on the ultrasound image. This paper proposes, a new approach that automatically segments the ovarian masses and cysts from a static B-mode image. Initially, the method uses a trainable segmentation procedure and a trained neural network classifier to accurately identify the position of the masses and cysts. After that, the borders of the masses can be appraised using watershed transform. The effectiveness of the proposed method has been tested by comparing the number of cysts identified by the method against the manual examination by a gynaecologist. A total of 65 ultrasound images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual counting method for accurately determining the number of cysts in a US ovarian image.

  1. Asymmetric double-image encryption method by using iterative phase retrieval algorithm in fractional Fourier transform domain

    Science.gov (United States)

    Sui, Liansheng; Lu, Haiwei; Ning, Xiaojuan; Wang, Yinghui

    2014-02-01

    A double-image encryption scheme is proposed based on an asymmetric technique, in which the encryption and decryption processes are different and the encryption keys are not identical to the decryption ones. First, a phase-only function (POF) of each plain image is retrieved by using an iterative process and then encoded into an interim matrix. Two interim matrices are directly modulated into a complex image by using the convolution operation in the fractional Fourier transform (FrFT) domain. Second, the complex image is encrypted into the gray scale ciphertext with stationary white-noise distribution by using the FrFT. In the encryption process, three random phase functions are used as encryption keys to retrieve the POFs of plain images. Simultaneously, two decryption keys are generated in the encryption process, which make the optical implementation of the decryption process convenient and efficient. The proposed encryption scheme has high robustness to various attacks, such as brute-force attack, known plaintext attack, cipher-only attack, and specific attack. Numerical simulations demonstrate the validity and security of the proposed method.

  2. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.

    Science.gov (United States)

    Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W

    2009-03-01

    This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.

  3. Latent fingerprint wavelet transform image enhancement technique for optical coherence tomography

    CSIR Research Space (South Africa)

    Makinana, S

    2016-09-01

    Full Text Available (FMR) and Equal Error Rate (EER) were used. The results of these two measures gives the FMR of 3% and EER of 1.9% for denoised images which is better than non-denoised images where the EER is 8.7%....

  4. Fourier transform imaging of impurities in the unit cells of crystals: Mn in GaAs

    Science.gov (United States)

    Lee, T.-L.; Bihler, C.; Schoch, W.; Limmer, W.; Daeubler, J.; Thieß, S.; Brandt, M. S.; Zegenhagen, J.

    2010-06-01

    The lattice sites of Mn in ferromagnetic (Ga,Mn)As thin films were imaged using the x-ray standing wave technique. The model-free images, obtained straightforwardly by Fourier inversion, disclose immediately that the Mn mostly substitutes the Ga with a small fraction residing on minority sites. The images further reveal variations in the Mn concentrations of the different sites upon post-growth treatments. Subsequent model refinement based on the directly reconstructed images resolves with high precision the complete Mn site distributions. It is found that post-growth annealing increases the fraction of substitutional Mn at the expense of interstitial Mn whereas hydrogenation has little influence on the Mn site distribution. Our study offers an element-specific high-resolution imaging approach for accurately determining the detailed site distributions of dilute concentrations of atoms in crystals.

  5. Partial Fingerprint Image Enhancement using Region Division Technique and Morphological Transform

    International Nuclear Information System (INIS)

    Ahmad, A.; Arshad, I.; Raja, G.

    2015-01-01

    Fingerprints are the most renowned biometric trait for identification and verification. The quality of fingerprint image plays a vital role in feature extraction and matching. Existing algorithms work well for good quality fingerprint images and fail for partial fingerprint images as they are obtained from excessively dry fingers or affected by disease resulting in broken ridges. We propose an algorithm to enhance partial fingerprint images using morphological operatins with region division technique. The proposed method divides low quality image into six regions from top to bottom. Morphological operations choose an appropriate Structuring Element (SE) that joins broken ridges and thus enhance the image for further processing. The proposed method uses SE line with suitable angle theta and radius r in each region based on the orientation of the ridges. The algorithm is applied to 14 low quality fingerprint images from FVC-2002 database. Experimental results show that percentage accuracy has been improved using the proposed algorithm. The manual markup has been reduced and accuracy of 76.16% with Equal Error Rate (EER) of 3.16% is achieved. (author)

  6. Image secure transmission for optical orthogonal frequency-division multiplexing visible light communication systems using chaotic discrete cosine transform

    Science.gov (United States)

    Wang, Zhongpeng; Zhang, Shaozhong; Chen, Fangni; Wu, Ming-Wei; Qiu, Weiwei

    2017-11-01

    A physical encryption scheme for orthogonal frequency-division multiplexing (OFDM) visible light communication (VLC) systems using chaotic discrete cosine transform (DCT) is proposed. In the scheme, the row of the DCT matrix is permutated by a scrambling sequence generated by a three-dimensional (3-D) Arnold chaos map. Furthermore, two scrambling sequences, which are also generated from a 3-D Arnold map, are employed to encrypt the real and imaginary parts of the transmitted OFDM signal before the chaotic DCT operation. The proposed scheme enhances the physical layer security and improves the bit error rate (BER) performance for OFDM-based VLC. The simulation results prove the efficiency of the proposed encryption method. The experimental results show that the proposed security scheme not only protects image data from eavesdroppers but also keeps the good BER and peak-to-average power ratio performances for image-based OFDM-VLC systems.

  7. Quantitation of pulmonary nodule's border structure by means of Fourier transform by using chest X-ray CT images

    International Nuclear Information System (INIS)

    Shikata, Hidenori; Masuyama, Hiroshi; Kido, Shoji

    1998-01-01

    In order to evaluate quantitatively the border structure of pulmonary nodules by using chest X-ray CT images, we investigated whether the sum of high-frequency elements of the power spectrum in a Fourier-transformed nodule's contour line becomes a valuable measure of the border structure of pulmonary nodules. We expect that this measure clearly reflects the radiologic characteristics of a nodule, that is, the contour line is clear or unclear in benign or malignant nodules, respectively. We evaluated and analyzed images statistically for 31 patients (15 benign, 16 malignant), and we were able to recognize a measurable difference between the benign and malignant cases. We conclude that we can evaluate the border structure of a nodule by our proposed measure, and that this measure is valuable for quantitative differential diagnosis. (author)

  8. Algorithm for three dimension reconstruction of magnetic resonance tomographs and X-ray images based on Fast Fourier Transform

    International Nuclear Information System (INIS)

    Bueno, Josiane M.; Traina, Agma Juci M.; Cruvinel, Paulo E.

    1995-01-01

    This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author)

  9. A novel image fusion algorithm based on 2D scale-mixing complex wavelet transform and Bayesian MAP estimation for multimodal medical images

    Directory of Open Access Journals (Sweden)

    Abdallah Bengueddoudj

    2017-05-01

    Full Text Available In this paper, we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform (2D-SMCWT. The fusion of the detail 2D-SMCWT coefficients is performed via a Bayesian Maximum a Posteriori (MAP approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients. For the approximation coefficients, a new fusion rule based on the Principal Component Analysis (PCA is applied. We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method. The obtained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics. Robustness of the proposed method is further tested against different types of noise. The plots of fusion metrics establish the accuracy of the proposed fusion method.

  10. kCCA Transformation-Based Radiometric Normalization of Multi-Temporal Satellite Images

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-03-01

    Full Text Available Radiation normalization is an essential pre-processing step for generating high-quality satellite sequence images. However, most radiometric normalization methods are linear, and they cannot eliminate the regular nonlinear spectral differences. Here we introduce the well-established kernel canonical correlation analysis (kCCA into radiometric normalization for the first time to overcome this problem, which leads to a new kernel method. It can maximally reduce the image differences among multi-temporal images regardless of the imaging conditions and the reflectivity difference. It also perfectly eliminates the impact of nonlinear changes caused by seasonal variation of natural objects. Comparisons with the multivariate alteration detection (CCA-based normalization and the histogram matching, on Gaofen-1 (GF-1 data, indicate that the kCCA-based normalization can preserve more similarity and better correlation between an image-pair and effectively avoid the color error propagation. The proposed method not only builds the common scale or reference to make the radiometric consistency among GF-1 image sequences, but also highlights the interesting spectral changes while eliminates less interesting spectral changes. Our method enables the application of GF-1 data for change detection, land-use, land-cover change detection etc.

  11. ATTENUATION OF DIFFRACTED MULTIPLES WITH AN APEX-SHIFTED TANGENT-SQUARED RADON TRANSFORM IN IMAGE SPACE

    Directory of Open Access Journals (Sweden)

    Alvarez Gabriel

    2006-12-01

    Full Text Available In this paper, we propose a method to attenuate diffracted multiples with an apex-shifted tangent-squared Radon transform in angle domain common image gathers (ADCIG . Usually, where diffracted multiples are a problem, the wave field propagation is complex and the moveout of primaries and multiples in data space is irregular. The method handles the complexity of the wave field propagation by wave-equation migration provided that migration velocities are reasonably accurate. As a result, the moveout of the multiples is well behaved in the ADCIGs. For 2D data, the apex-shifted tangent-squared Radon transform maps the 2D space image into a 3D space-cube model whose dimensions are depth, curvature and apex-shift distance.
    Well-corrected primaries map to or near the zero curvature plane and specularly-reflected multiples map to or near the zero apex-shift plane. Diffracted multiples map elsewhere in the cube according to their curvature and apex-shift distance. Thus, specularly reflected as well as diffracted multiples can be attenuated simultaneously. This approach is illustrated with a segment of a 2D seismic line over a large salt body in the Gulf of Mexico. It is shown that ignoring the apex shift compromises the attenuation of the diffracted multiples, whereas the approach proposed attenuates both the specularly-reflected and the diffracted multiples without compromising the primaries.

  12. An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS.

    Science.gov (United States)

    Li, Zhongyu; Wu, Junjie; Huang, Yulin; Yang, Haiguang; Yang, Jianyu

    2017-01-23

    Bistatic forward-looking SAR (BFSAR) is a kind of bistatic synthetic aperture radar (SAR) system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I) large and unknown range cell migration (RCM) (including range walk and high-order RCM); (II) the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler) are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS) technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.

  13. An Adaptive Moving Target Imaging Method for Bistatic Forward-Looking SAR Using Keystone Transform and Optimization NLCS

    Directory of Open Access Journals (Sweden)

    Zhongyu Li

    2017-01-01

    Full Text Available Bistatic forward-looking SAR (BFSAR is a kind of bistatic synthetic aperture radar (SAR system that can image forward-looking terrain in the flight direction of an aircraft. Until now, BFSAR imaging theories and methods for a stationary scene have been researched thoroughly. However, for moving-target imaging with BFSAR, the non-cooperative movement of the moving target induces some new issues: (I large and unknown range cell migration (RCM (including range walk and high-order RCM; (II the spatial-variances of the Doppler parameters (including the Doppler centroid and high-order Doppler are not only unknown, but also nonlinear for different point-scatterers. In this paper, we put forward an adaptive moving-target imaging method for BFSAR. First, the large and unknown range walk is corrected by applying keystone transform over the whole received echo, and then, the relationships among the unknown high-order RCM, the nonlinear spatial-variances of the Doppler parameters, and the speed of the mover, are established. After that, using an optimization nonlinear chirp scaling (NLCS technique, not only can the unknown high-order RCM be accurately corrected, but also the nonlinear spatial-variances of the Doppler parameters can be balanced. At last, a high-order polynomial filter is applied to compress the whole azimuth data of the moving target. Numerical simulations verify the effectiveness of the proposed method.

  14. Transforming thymidine into a magnetic resonance imaging probe for monitoring gene expression.

    Science.gov (United States)

    Bar-Shir, Amnon; Liu, Guanshu; Liang, Yajie; Yadav, Nirbhay N; McMahon, Michael T; Walczak, Piotr; Nimmagadda, Sridhar; Pomper, Martin G; Tallman, Keri A; Greenberg, Marc M; van Zijl, Peter C M; Bulte, Jeff W M; Gilad, Assaf A

    2013-01-30

    Synthetic chemistry has revolutionized the understanding of many biological systems. Small compounds that act as agonists and antagonists of proteins, and occasionally as imaging probes, have contributed tremendously to the elucidation of many biological pathways. Nevertheless, the function of thousands of proteins is still elusive, and designing new imaging probes remains a challenge. Through screening and characterization, we identified a thymidine analogue as a probe for imaging the expression of herpes simplex virus type-1 thymidine kinase (HSV1-TK). To detect the probe, we used chemical exchange saturation transfer magnetic resonance imaging (CEST-MRI), in which a dynamic exchange process between an exchangeable proton and the surrounding water protons is used to amplify the desired contrast. Initially, five pyrimidine-based molecules were recognized as putative imaging agents, since their exchangeable imino protons resonate at 5-6 ppm from the water proton frequency and their detection is therefore less affected by endogenous CEST contrast or confounded by direct water saturation. Increasing the pK(a) value of the imino proton by reduction of its 5,6-double bond results in a significant reduction of the exchange rate (k(ex)) between this proton and the water protons. This reduced k(ex) of the dihydropyrimidine nucleosides fulfills the "slow to intermediate regime" condition for generating high CEST-MRI contrast. Consequently, we identified 5-methyl-5,6-dihydrothymidine as the optimal probe and demonstrated its feasibility for in vivo imaging of HSV1-TK. In light of these findings, this new approach can be generalized for designing specific probes for the in vivo imaging of a variety of proteins and enzymes.

  15. Comments on "Image denoising by sparse 3-D transform-domain collaborative filtering".

    Science.gov (United States)

    Hou, Yingkun; Zhao, Chunxia; Yang, Deyun; Cheng, Yong

    2011-01-01

    In order to resolve the problem that the denoising performance has a sharp drop when noise standard deviation reaches 40, proposed to replace the wavelet transform by the DCT. In this comment, we argue that this replacement is unnecessary, and that the problem can be solved by adjusting some numerical parameters. We also present this parameter modification approach here. Experimental results demonstrate that the proposed modification achieves better results in terms of both peak signal-to-noise ratio and subjective visual quality than the original method for strong noise.

  16. Image of the Other: examples from the French history (context and transformations)

    OpenAIRE

    Sitek, Pavel

    2010-01-01

    Following text deals with the problems of relationships between the French society and “the other”. The emphasis is put on the context and discourses of political elites during the 19th and 20th century that influenced the creations and the transformations of structured representations not only of “the other” but also of “itself”. “The other” was connected to different menaces and anxiety about “(national) identity”, with a cultural and social thread. In this article we propose three examples...

  17. All-dielectric meta-holograms with holographic images transforming longitudinally

    KAUST Repository

    Wang, Qiu; Xu, Quan; Zhang, Xueqian; Tian, Chunxiu; Xu, Yuehong; Gu, Jianqiang; Tian, Zhen; Ouyang, Chunmei; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2017-01-01

    Metasurfaces are unique subwavelength geometries capable of engineering electromagnetic waves at will, delivering new opportunities for holography. Most previous meta-holograms, so-called phase-only meta-holograms, modulate only the amplitude distribution of a virtual object, and require optimizing techniques to improve the image quality. However, the phase distribution of the reconstructed image is usually overlooked in previous studies, leading to inevitable information loss. Here, we demonstrate all-dielectric meta-holograms that allow tailoring of both the phase and amplitude distributions of virtual objects. Several longitudinal manipulations of the holographic images are theoretically and experimentally demonstrated, including shifting, stretching, and rotating, enabling a large depth of focus. Furthermore, a new meta-hologram with a three-dimensional holographic design method is demonstrated with an even enhanced depth of focus. The proposed meta-holograms offer more freedom in holographic design and open new avenues for designing complex three-dimensional holography.

  18. All-dielectric meta-holograms with holographic images transforming longitudinally

    KAUST Repository

    Wang, Qiu

    2017-11-22

    Metasurfaces are unique subwavelength geometries capable of engineering electromagnetic waves at will, delivering new opportunities for holography. Most previous meta-holograms, so-called phase-only meta-holograms, modulate only the amplitude distribution of a virtual object, and require optimizing techniques to improve the image quality. However, the phase distribution of the reconstructed image is usually overlooked in previous studies, leading to inevitable information loss. Here, we demonstrate all-dielectric meta-holograms that allow tailoring of both the phase and amplitude distributions of virtual objects. Several longitudinal manipulations of the holographic images are theoretically and experimentally demonstrated, including shifting, stretching, and rotating, enabling a large depth of focus. Furthermore, a new meta-hologram with a three-dimensional holographic design method is demonstrated with an even enhanced depth of focus. The proposed meta-holograms offer more freedom in holographic design and open new avenues for designing complex three-dimensional holography.

  19. Combining a wavelet transform with a channelized Hotelling observer for tumor detection in 3D PET oncology imaging

    Science.gov (United States)

    Lartizien, Carole; Tomei, Sandrine; Maxim, Voichita; Odet, Christophe

    2007-03-01

    This study evaluates new observer models for 3D whole-body Positron Emission Tomography (PET) imaging based on a wavelet sub-band decomposition and compares them with the classical constant-Q CHO model. Our final goal is to develop an original method that performs guided detection of abnormal activity foci in PET oncology imaging based on these new observer models. This computer-aided diagnostic method would highly benefit to clinicians for diagnostic purpose and to biologists for massive screening of rodents populations in molecular imaging. Method: We have previously shown good correlation of the channelized Hotelling observer (CHO) using a constant-Q model with human observer performance for 3D PET oncology imaging. We propose an alternate method based on combining a CHO observer with a wavelet sub-band decomposition of the image and we compare it to the standard CHO implementation. This method performs an undecimated transform using a biorthogonal B-spline 4/4 wavelet basis to extract the features set for input to the Hotelling observer. This work is based on simulated 3D PET images of an extended MCAT phantom with randomly located lesions. We compare three evaluation criteria: classification performance using the signal-to-noise ratio (SNR), computation efficiency and visual quality of the derived 3D maps of the decision variable λ. The SNR is estimated on a series of test images for a variable number of training images for both observers. Results: Results show that the maximum SNR is higher with the constant-Q CHO observer, especially for targets located in the liver, and that it is reached with a smaller number of training images. However, preliminary analysis indicates that the visual quality of the 3D maps of the decision variable λ is higher with the wavelet-based CHO and the computation time to derive a 3D λ-map is about 350 times shorter than for the standard CHO. This suggests that the wavelet-CHO observer is a good candidate for use in our guided

  20. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    Science.gov (United States)

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  1. Limitations on continuous variable quantum algorithms with Fourier transforms

    International Nuclear Information System (INIS)

    Adcock, Mark R A; Hoeyer, Peter; Sanders, Barry C

    2009-01-01

    We study quantum algorithms implemented within a single harmonic oscillator, or equivalently within a single mode of the electromagnetic field. Logical states correspond to functions of the canonical position, and the Fourier transform to canonical momentum serves as the analogue of the Hadamard transform for this implementation. This continuous variable version of quantum information processing has widespread appeal because of advanced quantum optics technology that can create, manipulate and read Gaussian states of light. We show that, contrary to a previous claim, this implementation of quantum information processing has limitations due to a position-momentum trade-off of the Fourier transform, analogous to the famous time-bandwidth theorem of signal processing.

  2. Improvement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images

    Directory of Open Access Journals (Sweden)

    Fatemeh Pak

    2015-05-01

    Full Text Available Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of mammographic images and help physicians reduce false positive rate (FPR. Materials and Methods In this study, a method was proposed for improving the quality of mammographic images to help radiologists establish a prompt and accurate diagnosis. The proposed approach included three major parts including pre-processing, feature extraction, and classification. In the pre-processing stage, the region of interest was determined and the image quality was improved by non-subsampled contourlet transform and super-resolution algorithm. In the feature extraction stage, some features of image components were extracted and skewness of each feature was calculated. Finally, a support vector machine was utilized to classify the features and determine the probability of benignity or malignancy of the disease. Results Based on the obtained results using Mammographic Image Analysis Society (MIAS database, the mean accuracy was estimated at 87.26% and maximum accuracy was 96.29%. Also, the mean and minimum FPRs were estimated at 9.55% and 2.87%, respectively.     Conclusion The results obtained using MIAS database indicated the superiority of the proposed method to other techniques. The reduced FPR in the proposed method was a significant finding in the present article.

  3. High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via Hadamard-encoded intermolecular multiple-quantum coherence.

    Directory of Open Access Journals (Sweden)

    Honghao Cai

    Full Text Available BACKGROUND AND PURPOSE: Nuclear magnetic resonance (NMR spectroscopy has become an important technique for tissue studies. Since tissues are in semisolid-state, their high-resolution (HR spectra cannot be obtained by conventional NMR spectroscopy. Because of this restriction, extraction and high-resolution magic angle spinning (HR MAS are widely applied for HR NMR spectra of tissues. However, both of the methods are subject to limitations. In this study, the feasibility of HR (1H NMR spectroscopy based on intermolecular multiple-quantum coherence (iMQC technique is explored using fish muscle, fish eggs, and a whole fish as examples. MATERIALS AND METHODS: Intact salmon muscle tissues, intact eggs from shishamo smelt and a whole fish (Siamese algae eater are studied by using conventional 1D one-pulse sequence, Hadamard-encoded iMQC sequence, and HR MAS. RESULTS: When we use the conventional 1D one-pulse sequence, hardly any useful spectral information can be obtained due to the severe field inhomogeneity. By contrast, HR NMR spectra can be obtained in a short period of time by using the Hadamard-encoded iMQC method without shimming. Most signals from fatty acids and small metabolites can be observed. Compared to HR MAS, the iMQC method is non-invasive, but the resolution and the sensitivity of resulting spectra are not as high as those of HR MAS spectra. CONCLUSION: Due to the immunity to field inhomogeneity, the iMQC technique can be a proper supplement to HR MAS, and it provides an alternative for the investigation in cases with field distortions and with samples unsuitable for spinning. The acquisition time of the proposed method is greatly reduced by introduction of the Hadamard-encoded technique, in comparison with that of conventional iMQC method.

  4. Mechanistic insights into nanotoxicity determined by synchrotron radiation-based Fourier-transform infrared imaging and multivariate analysis.

    Science.gov (United States)

    Riding, Matthew J; Trevisan, Júlio; Hirschmugl, Carol J; Jones, Kevin C; Semple, Kirk T; Martin, Francis L

    2012-12-01

    Our ability to identify the mechanisms by which carbon-based nanomaterials (CBNs) exert toxicity in cells is constrained by the lack of standardized methodologies to assay endpoint effects. Herein we describe a method of mechanistically identifying the effects of various CBN types in both prokaryotic and eukaryotic cells using multi-beam synchrotron radiation-based Fourier-transform infrared imaging (SR-FTIRI) at diffraction-limited resolution. This technique overcomes many of the inherent difficulties of assaying nanotoxicity and demonstrates exceptional sensitivity in identifying the effects of CBNs in cells at environmentally-relevant concentrations. We identify key mechanisms of nanotoxicity as the alteration of Amide and lipid biomolecules, but propose more specific bioactivity of CBNs occurs as a result of specific interactions between CBN structural conformation and cellular characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Radiomics Evaluation of Histological Heterogeneity Using Multiscale Textures Derived From 3D Wavelet Transformation of Multispectral Images.

    Science.gov (United States)

    Chaddad, Ahmad; Daniel, Paul; Niazi, Tamim

    2018-01-01

    Colorectal cancer (CRC) is markedly heterogeneous and develops progressively toward malignancy through several stages which include stroma (ST), benign hyperplasia (BH), intraepithelial neoplasia (IN) or precursor cancerous lesion, and carcinoma (CA). Identification of the malignancy stage of CRC pathology tissues (PT) allows the most appropriate therapeutic intervention. This study investigates multiscale texture features extracted from CRC pathology sections using 3D wavelet transform (3D-WT) filter. Multiscale features were extracted from digital whole slide images of 39 patients that were segmented in a pre-processing step using an active contour model. The capacity for multiscale texture to compare and classify between PTs was investigated using ANOVA significance test and random forest classifier models, respectively. 12 significant features derived from the multiscale texture (i.e., variance, entropy, and energy) were found to discriminate between CRC grades at a significance value of p  pathology grade.

  6. Appearance and characterization of fruit image textures for quality sorting using wavelet transform and genetic algorithms.

    Science.gov (United States)

    Khoje, Suchitra

    2018-02-01

    Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit

  7. A Hybrid Technique for De-Noising Multi-Modality Medical Images by Employing Cuckoo’s Search with Curvelet Transform

    Directory of Open Access Journals (Sweden)

    Qaisar Javaid

    2018-01-01

    Full Text Available De-noising of the medical images is very difficult task. To improve the overall visual representation we need to apply a contrast enhancement techniques, this representation provide the physicians and clinicians a good and recovered diagnosis results. Various de-noising and contrast enhancements methods are develops. However, some of the methods are not good in providing the better results with accuracy and efficiency. In our paper we de-noise and enhance the medical images without any loss of information. We uses the curvelet transform in combination with ridglet transform along with CS (Cuckoo Search algorithm. The curvlet transform adapt and represents the sparse pixel informations with all edges. The edges play very important role in understanding of the images. Curvlet transform computes the edges very efficiently where the wavelets are failed. We used the CS to optimize the de-noising coefficients without loss of structural and morphological information. Our designed method would be accurate and efficient in de-noising the medical images. Our method attempts to remove the multiplicative and additive noises. Our proposed method is proved to be an efficient and reliable in removing all kind of noises from the medical images. Result indicates that our proposed approach is better than other approaches in removing impulse, Gaussian, and speckle noises.

  8. Fourier transform infrared imaging showing reduced unsaturated lipid content in the hippocampus of a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Leskovjan, Andreana C; Kretlow, Ariane; Miller, Lisa M

    2010-04-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p avoiding progression of the disease.

  9. SU-F-J-27: Segmentation of Prostate CBCT Images with Implanted Calypso Transponders Using Double Haar Wavelet Transform

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y [Shandong Communication and Media College, Jinan, Shandong (China); Saleh, Z; Tang, X [Memorial Sloan Kettering Cancer Center, West Harrison, NY (United States); Song, Y; Obcemea, C [Memorial Sloan-Kettering Cancer Center, Sleepy Hollow, NY (United States); Chan, M [Memorial Sloan-Kettering Cancer Center, Basking Ridge, NJ (United States); Li, X [Memorial Sloan Kettering Cancer Center, Rockville Centre, NY (United States); Happersett, L [Memorial Sloan Kettering Cancer Center, New York, NY (United States); Shi, C [Saint Vincent Medical Center, Bridgeport, CT (United States); Qian, X [North Shore Long Island Jewish health System, North New Hyde Park, NY (United States)

    2016-06-15

    Purpose: Segmentation of prostate CBCT images is an essential step towards real-time adaptive radiotherapy. It is challenging For Calypso patients, as more artifacts are generated by the beacon transponders. We herein propose a novel wavelet-based segmentation algorithm for rectum, bladder, and prostate of CBCT images with implanted Calypso transponders. Methods: Five hypofractionated prostate patients with daily CBCT were studied. Each patient had 3 Calypso transponder beacons implanted, and the patients were setup and treated with Calypso tracking system. Two sets of CBCT images from each patient were studied. The structures (i.e. rectum, bladder, and prostate) were contoured by a trained expert, and these served as ground truth. For a given CBCT, the moving window-based Double Haar transformation is applied first to obtain the wavelet coefficients. Based on a user defined point in the object of interest, a cluster algorithm based adaptive thresholding is applied to the low frequency components of the wavelet coefficients, and a Lee filter theory based adaptive thresholding is applied to the high frequency components. For the next step, the wavelet reconstruction is applied to the thresholded wavelet coefficients. A binary/segmented image of the object of interest is therefore obtained. DICE, sensitivity, inclusiveness and ΔV were used to evaluate the segmentation result. Results: Considering all patients, the bladder has the DICE, sensitivity, inclusiveness, and ΔV ranges of [0.81–0.95], [0.76–0.99], [0.83–0.94], [0.02–0.21]. For prostate, the ranges are [0.77–0.93], [0.84–0.97], [0.68–0.92], [0.1–0.46]. For rectum, the ranges are [0.72–0.93], [0.57–0.99], [0.73–0.98], [0.03–0.42]. Conclusion: The proposed algorithm appeared effective segmenting prostate CBCT images with the present of the Calypso artifacts. However, it is not robust in two scenarios: 1) rectum with significant amount of gas; 2) prostate with very low contrast. Model

  10. A Method for Estimating View Transformations from Image Correspondences Based on the Harmony Search Algorithm

    Directory of Open Access Journals (Sweden)

    Erik Cuevas

    2015-01-01

    Full Text Available In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC algorithm and the evolutionary method harmony search (HS. With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.

  11. Monitoring of multiple solid-state transformations at tablet surfaces using multi-series near-infrared hyperspectral imaging and multivariate curve resolution

    DEFF Research Database (Denmark)

    Alexandrino, Guilherme L; Khorasani, Milad Rouhi; Amigo Rubio, Jose Manuel

    2015-01-01

    The assessment of the solid-state stability of active pharmaceutical ingredient (API) and/or excipients in solid dosage forms during manufacturing and storage is mandatory for safeguarding quality of the final products. In this work, the solid-state transformations in tablets prepared as blends...... of piroxicam monohydrate (API), polyvinylpyrrolidone and the lactose forms monohydrate or anhydrate were studied when the tablets were exposed to the 23-120°C range. Multi-series near-infrared hyperspectral images were obtained from the surface of each sample for unveiling the local evolution of the solid......-state transformations. The preprocessed spectra from the images (dataset) were arranged in augmented matrices, according to the composition of the tablets, and the profile of the overlapped compounds (relative concentration) along the solid-state transformations in the pixels was resolved by using multivariate curve...

  12. Learning Trajectory for Transforming Teachers' Knowledge for Teaching Mathematics and Science with Digital Image and Video Technologies in an Online Learning Experience

    Science.gov (United States)

    Niess, Margaret L.; Gillow-Wiles, Henry

    2014-01-01

    This qualitative cross-case study explores the influence of a designed learning trajectory on transforming teachers' technological pedagogical content knowledge (TPACK) for teaching with digital image and video technologies. The TPACK Learning Trajectory embeds tasks with specific instructional strategies within a social metacognitive…

  13. Three-dimensional Fourier transformation constructive interference in steady state magnetic resonance imaging of the inner ear in patients with unilateral and bilateral Meniere's disease

    NARCIS (Netherlands)

    Mateijsen, DJM; Van Hengel, PWJ; Krikke, AP; Van Huffelen, WM; Wit, HP; Albers, FWJ

    Objective: In this study, three-dimensional Fourier transformation constructive interference in steady state (3DFT-CISS) magnetic resonance imaging was used to quantify the distance between the vertical part of the posterior semicircular canal and the posterior fossa as a measure of the

  14. Automated classification of maxillofacial cysts in cone beam CT images using contourlet transformation and Spherical Harmonics.

    Science.gov (United States)

    Abdolali, Fatemeh; Zoroofi, Reza Aghaeizadeh; Otake, Yoshito; Sato, Yoshinobu

    2017-02-01

    Accurate detection of maxillofacial cysts is an essential step for diagnosis, monitoring and planning therapeutic intervention. Cysts can be of various sizes and shapes and existing detection methods lead to poor results. Customizing automatic detection systems to gain sufficient accuracy in clinical practice is highly challenging. For this purpose, integrating the engineering knowledge in efficient feature extraction is essential. This paper presents a novel framework for maxillofacial cysts detection. A hybrid methodology based on surface and texture information is introduced. The proposed approach consists of three main steps as follows: At first, each cystic lesion is segmented with high accuracy. Then, in the second and third steps, feature extraction and classification are performed. Contourlet and SPHARM coefficients are utilized as texture and shape features which are fed into the classifier. Two different classifiers are used in this study, i.e. support vector machine and sparse discriminant analysis. Generally SPHARM coefficients are estimated by the iterative residual fitting (IRF) algorithm which is based on stepwise regression method. In order to improve the accuracy of IRF estimation, a method based on extra orthogonalization is employed to reduce linear dependency. We have utilized a ground-truth dataset consisting of cone beam CT images of 96 patients, belonging to three maxillofacial cyst categories: radicular cyst, dentigerous cyst and keratocystic odontogenic tumor. Using orthogonalized SPHARM, residual sum of squares is decreased which leads to a more accurate estimation. Analysis of the results based on statistical measures such as specificity, sensitivity, positive predictive value and negative predictive value is reported. The classification rate of 96.48% is achieved using sparse discriminant analysis and orthogonalized SPHARM features. Classification accuracy at least improved by 8.94% with respect to conventional features. This study

  15. A MODIFIED PROJECTIVE TRANSFORMATION SCHEME FOR MOSAICKING MULTI-CAMERA IMAGING SYSTEM EQUIPPED ON A LARGE PAYLOAD FIXED-WING UAS

    Directory of Open Access Journals (Sweden)

    J. P. Jhan

    2015-03-01

    Full Text Available In recent years, Unmanned Aerial System (UAS has been applied to collect aerial images for mapping, disaster investigation, vegetation monitoring and etc. It is a higher mobility and lower risk platform for human operation, but the low payload and short operation time reduce the image collection efficiency. In this study, one nadir and four oblique consumer grade DSLR cameras composed multiple camera system is equipped on a large payload UAS, which is designed to collect large ground coverage images in an effective way. The field of view (FOV is increased to 127 degree, which is thus suitable to collect disaster images in mountainous area. The synthetic acquired five images are registered and mosaicked as larger format virtual image for reducing the number of images, post processing time, and for easier stereo plotting. Instead of traditional image matching and applying bundle adjustment method to estimate transformation parameters, the IOPs and ROPs of multiple cameras are calibrated and derived the coefficients of modified projective transformation (MPT model for image mosaicking. However, there are some uncertainty of indoor calibrated IOPs and ROPs since the different environment conditions as well as the vibration of UAS, which will cause misregistration effect of initial MPT results. Remaining residuals are analysed through tie points matching on overlapping area of initial MPT results, in which displacement and scale difference are introduced and corrected to modify the ROPs and IOPs for finer registration results. In this experiment, the internal accuracy of mosaic image is better than 0.5 pixels after correcting the systematic errors. Comparison between separate cameras and mosaic images through rigorous aerial triangulation are conducted, in which the RMSE of 5 control and 9 check points is less than 5 cm and 10 cm in planimetric and vertical directions, respectively, for all cases. It proves that the designed imaging system and the

  16. a Modified Projective Transformation Scheme for Mosaicking Multi-Camera Imaging System Equipped on a Large Payload Fixed-Wing Uas

    Science.gov (United States)

    Jhan, J. P.; Li, Y. T.; Rau, J. Y.

    2015-03-01

    In recent years, Unmanned Aerial System (UAS) has been applied to collect aerial images for mapping, disaster investigation, vegetation monitoring and etc. It is a higher mobility and lower risk platform for human operation, but the low payload and short operation time reduce the image collection efficiency. In this study, one nadir and four oblique consumer grade DSLR cameras composed multiple camera system is equipped on a large payload UAS, which is designed to collect large ground coverage images in an effective way. The field of view (FOV) is increased to 127 degree, which is thus suitable to collect disaster images in mountainous area. The synthetic acquired five images are registered and mosaicked as larger format virtual image for reducing the number of images, post processing time, and for easier stereo plotting. Instead of traditional image matching and applying bundle adjustment method to estimate transformation parameters, the IOPs and ROPs of multiple cameras are calibrated and derived the coefficients of modified projective transformation (MPT) model for image mosaicking. However, there are some uncertainty of indoor calibrated IOPs and ROPs since the different environment conditions as well as the vibration of UAS, which will cause misregistration effect of initial MPT results. Remaining residuals are analysed through tie points matching on overlapping area of initial MPT results, in which displacement and scale difference are introduced and corrected to modify the ROPs and IOPs for finer registration results. In this experiment, the internal accuracy of mosaic image is better than 0.5 pixels after correcting the systematic errors. Comparison between separate cameras and mosaic images through rigorous aerial triangulation are conducted, in which the RMSE of 5 control and 9 check points is less than 5 cm and 10 cm in planimetric and vertical directions, respectively, for all cases. It proves that the designed imaging system and the proposed scheme

  17. A no-key-exchange secure image sharing scheme based on Shamir's three-pass cryptography protocol and the multiple-parameter fractional Fourier transform.

    Science.gov (United States)

    Lang, Jun

    2012-01-30

    In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.

  18. Application of second derivative spectroscopy for increasing molecular specificity of Fourier transform infrared spectroscopic imaging of articular cartilage.

    Science.gov (United States)

    Rieppo, L; Saarakkala, S; Närhi, T; Helminen, H J; Jurvelin, J S; Rieppo, J

    2012-05-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is a promising method that enables the analysis of spatial distribution of biochemical components within histological sections. However, analysis of FT-IR spectroscopic data is complicated since absorption peaks often overlap with each other. Second derivative spectroscopy is a technique which enhances the separation of overlapping peaks. The objective of this study was to evaluate the specificity of the second derivative peaks for the main tissue components of articular cartilage (AC), i.e., collagen and proteoglycans (PGs). Histological bovine AC sections were measured before and after enzymatic removal of PGs. Both formalin-fixed sections (n = 10) and cryosections (n = 6) were investigated. Relative changes in the second derivative peak heights caused by the removal of PGs were calculated for both sample groups. The results showed that numerous peaks, e.g., peaks located at 1202 cm(-1) and 1336 cm(-1), altered less than 5% in the experiment. These peaks were assumed to be specific for collagen. In contrast, two peaks located at 1064 cm(-1) and 1376 cm(-1) were seen to alter notably, approximately 50% or more. These peaks were regarded to be specific for PGs. The changes were greater in cryosections than formalin-fixed sections. The results of this study suggest that the second derivative spectroscopy offers a practical and more specific method than routinely used absorption spectrum analysis methods to obtain compositional information on AC with FT-IR spectroscopic imaging. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  19. Assessing the Accuracy and Reliability of Root Crack and Fracture Detection in Teeth Using Sweep Imaging with Fourier Transform (SWIFT) Magnetic Resonance Imaging (MRI)

    Science.gov (United States)

    Schuurmans, Tyler J.

    Introduction: Magnetic Resonance Imaging (MRI) has the potential to aid in determining the presence and extent of cracks/fractures in teeth due to more advantageous contrast, without ionizing radiation. An MRI technique called Sweep Imaging with Fourier Transform (SWIFT) has overcome many of the inherent difficulties of conventional MRI with detecting fast-relaxing signals from densely mineralized dental tissues. The objectives of this in vitro investigation were to develop MRI criteria for root crack/fracture identification in teeth and to establish intra- and inter-rater reliabilities and corresponding sensitivity and specificity values for the detection of tooth-root cracks/fractures in SWIFT MRI and limited field of view (FOV) CBCT. Materials and Methods: MRI-based criteria for crack/fracture appearance was developed by an MRI physicist and 6 dentists, including 3 endodontists and 1 Oral and Maxillofacial (OMF) radiologist. Twenty-nine human adult teeth previously extracted following clinical diagnosis by a board-certified endodontist of a root crack/fracture were frequency-matched to 29 non-cracked controls. Crack/fracture status confirmation was performed with magnified visual inspection, transillumination and vital staining. Samples were scanned with two 3D imaging modalities: 1) SWIFT MRI (10 teeth/scan) via a custom oral radiofrequency (RF) coil and a 90cm, 4-T magnet; 2) Limited FOV CBCT (1 tooth/scan) via a Carestream (CS) 9000 (Rochester, NY). Following a training period, a blinded 4-member panel (3 endodontists, 1 OMF radiologist) evaluated the images with a proportion randomly re-tested to establish intra-rater reliability. Overall observer agreement was measured using Cohen's kappa and levels of agreement judged using the criteria of Landis and Koch. Sensitivity and specificity were computed with 95% confidence interval (CI); statistical significance was set at alpha ≤ 0.05. Results: MRI-based crack/fracture criteria were defined as 1-2 sharply

  20. Automation and Control of an Imaging Internal Laser Desorption Fourier Transform Mass Spectrometer (I2LD-FTMS)

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, Timothy R; Tranter, Troy Joseph; Scott, Jill Rennee

    2002-06-01

    This paper describes the automation of an imaging internal source laser desorption Fourier transform mass spectrometer (I2LD-FTMS). The I2LD-FTMS consists of a laser-scanning device [Scott and Tremblay, Rev. Sci. Instrum. 2002, 73, 1108–1116] that has been integrated with a laboratory-built FTMS using a commercial data acquisition system (ThermoFinnigan FT/MS, Bremen, Germany). A new user interface has been developed in National Instrument's (Austin, Texas) graphical programming language LabVIEW to control the motors of the laser positioning system and the commercial FTMS data acquisition system. A feature of the FTMS software that allows the user to write macros in a scripting language is used creatively to our advantage in creating a mechanism to control the FTMS from outside its graphical user interface. The new user interface also allows the user to configure target locations. Automation of the data analysis along with data display using commercial graphing software is also described.

  1. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    Science.gov (United States)

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Transformation of the Image

    DEFF Research Database (Denmark)

    Middlemas, Jill

    2009-01-01

    reveals that in every case the book of Ezekiel establishes a distance between divinity and forms. How items of a visual nature are employed contribute to a wider discussion about the imago dei and theories about the closest representations of the deity of ancient Israel as a human being, most frequently...

  3. Transform Image Coding.

    Science.gov (United States)

    1978-05-01

    s ’ ~~~~~~~~ ——- - --- - - - - (Ic s ’ sis l abls ’ t’ i’s i i u u [u l ’ s’s ’i s_ i u sIt ’ dt ’o ’ sisl s ’d oI~it a , o h _ i s ’ i’ss’i so

  4. Transformation of light double cones in the human retina: the origin of trichromatism, of 4D-spatiotemporal vision, and of patchwise 4D Fourier transformation in Talbot imaging

    Science.gov (United States)

    Lauinger, Norbert

    1997-09-01

    The interpretation of the 'inverted' retina of primates as an 'optoretina' (a light cones transforming diffractive cellular 3D-phase grating) integrates the functional, structural, and oscillatory aspects of a cortical layer. It is therefore relevant to consider prenatal developments as a basis of the macro- and micro-geometry of the inner eye. This geometry becomes relevant for the postnatal trichromatic synchrony organization (TSO) as well as the adaptive levels of human vision. It is shown that the functional performances, the trichromatism in photopic vision, the monocular spatiotemporal 3D- and 4D-motion detection, as well as the Fourier optical image transformation with extraction of invariances all become possible. To transform light cones into reciprocal gratings especially the spectral phase conditions in the eikonal of the geometrical optical imaging before the retinal 3D-grating become relevant first, then in the von Laue resp. reciprocal von Laue equation for 3D-grating optics inside the grating and finally in the periodicity of Talbot-2/Fresnel-planes in the near-field behind the grating. It is becoming possible to technically realize -- at least in some specific aspects -- such a cortical optoretina sensor element with its typical hexagonal-concentric structure which leads to these visual functions.

  5. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    Science.gov (United States)

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  6. Performance enhancement of successive interference cancellation scheme based on spectral amplitude coding for optical code-division multiple-access systems using Hadamard codes

    Science.gov (United States)

    Eltaif, Tawfig; Shalaby, Hossam M. H.; Shaari, Sahbudin; Hamarsheh, Mohammad M. N.

    2009-04-01

    A successive interference cancellation scheme is applied to optical code-division multiple-access (OCDMA) systems with spectral amplitude coding (SAC). A detailed analysis of this system, with Hadamard codes used as signature sequences, is presented. The system can easily remove the effect of the strongest signal at each stage of the cancellation process. In addition, simulation of the prose system is performed in order to validate the theoretical results. The system shows a small bit error rate at a large number of active users compared to the SAC OCDMA system. Our results reveal that the proposed system is efficient in eliminating the effect of the multiple-user interference and in the enhancement of the overall performance.

  7. Hadamard and minimal renormalizations

    International Nuclear Information System (INIS)

    Castagnino, M.A.; Gunzig, E.; Nardone, P.; Paz, J.P.

    1986-01-01

    A common language is introduced to study two, well-known, different methods for the renormalization of the energy-momentum tensor of a scalar neutral quantum field in curved space-time. Different features of the two renormalizations are established and compared

  8. Slow Light Based On-Chip High Resolution Fourier Transform Spectrometer For Geostationary Imaging of Atmospheric Greenhouse Gases, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Fourier transform spectroscopy (FTS) in infrared wavelength range is an effective measure for global greenhouse gas monitoring. However, conventional FTS instruments...

  9. Volumetric real-time imaging using a CMUT ring array.

    Science.gov (United States)

    Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T

    2012-06-01

    A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.

  10. Radiomics Evaluation of Histological Heterogeneity Using Multiscale Textures Derived From 3D Wavelet Transformation of Multispectral Images

    Directory of Open Access Journals (Sweden)

    Ahmad Chaddad

    2018-04-01

    Full Text Available PurposeColorectal cancer (CRC is markedly heterogeneous and develops progressively toward malignancy through several stages which include stroma (ST, benign hyperplasia (BH, intraepithelial neoplasia (IN or precursor cancerous lesion, and carcinoma (CA. Identification of the malignancy stage of CRC pathology tissues (PT allows the most appropriate therapeutic intervention.MethodsThis study investigates multiscale texture features extracted from CRC pathology sections using 3D wavelet transform (3D-WT filter. Multiscale features were extracted from digital whole slide images of 39 patients that were segmented in a pre-processing step using an active contour model. The capacity for multiscale texture to compare and classify between PTs was investigated using ANOVA significance test and random forest classifier models, respectively.Results12 significant features derived from the multiscale texture (i.e., variance, entropy, and energy were found to discriminate between CRC grades at a significance value of p < 0.01 after correction. Combining multiscale texture features lead to a better predictive capacity compared to prediction models based on individual scale features with an average (±SD classification accuracy of 93.33 (±3.52%, sensitivity of 88.33 (± 4.12%, and specificity of 96.89 (± 3.88%. Entropy was found to be the best classifier feature across all the PT grades with an average of the area under the curve (AUC value of 91.17, 94.21, 97.70, 100% for ST, BH, IN, and CA, respectively.ConclusionOur results suggest that multiscale texture features based on 3D-WT are sensitive enough to discriminate between CRC grades with the entropy feature, the best predictor of pathology grade.

  11. Reconsidering the advantages of the three-dimensional representation of the interferometric transform for imaging with non-coplanar baselines and wide fields of view

    Science.gov (United States)

    Smith, D. M. P.; Young, A.; Davidson, D. B.

    2017-07-01

    Radio telescopes with baselines that span thousands of kilometres and with fields of view that span tens of degrees have been recently deployed, such as the Low Frequency Array, and are currently being developed, such as the Square Kilometre Array. Additionally, there are proposals for space-based instruments with all-sky imaging capabilities, such as the Orbiting Low Frequency Array. Such telescopes produce observations with three-dimensional visibility distributions and curved image domains. In most work to date, the visibility distribution has been converted to a planar form to compute the brightness map using a two-dimensional Fourier transform. The celestial sphere is faceted in order to counter pixel distortion at wide angles, with each such facet requiring a unique planar form of the visibility distribution. Under the above conditions, the computational and storage complexities of this approach can become excessive. On the other hand, when using the direct Fourier transform approach, which maintains the three-dimensional shapes of the visibility distribution and celestial sphere, the non-coplanar visibility component requires no special attention. Furthermore, as the celestial samples are placed directly on the curved surface of the celestial sphere, pixel distortion at wide angles is avoided. In this paper, a number of examples illustrate that under these conditions (very long baselines and very wide fields of view) the costs of the direct Fourier transform may be comparable to (or even lower than) methods that utilise the two-dimensional fast Fourier transform.

  12. Fourier Transform Infrared Imaging Shows Reduced Unsaturated Lipid Content in the Hippocampus of a Mouse Model of Alzheimer’s Disease

    OpenAIRE

    Leskovjan, Andreana C.; Kretlow, Ariane; Miller, Lisa M.

    2010-01-01

    Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer’s disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier Transform Infrared Imaging ...

  13. Quantitative characterization of chitosan in the skin by Fourier-transform infrared spectroscopic imaging and ninhydrin assay: application in transdermal sciences.

    Science.gov (United States)

    Nawaz, A; Wong, T W

    2016-07-01

    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. Combined Synchrotron X-ray Diffraction and Digital Image Correlation Technique for Measurement of Austenite Transformation with Strain in TRIP-assisted Steels

    Energy Technology Data Exchange (ETDEWEB)

    Poling, Whitney A.; Savic, Vesna; Hector, Louis G.; Sachdev, Anil K.; Hu, Xiaohua; Devaraj, Arun; Abu-Farha, Fadi

    2016-04-05

    The strain-induced, diffusionless shear transformation of retained austenite to martensite during straining of transformation induced plasticity (TRIP) assisted steels increases strain hardening and delays necking and fracture leading to exceptional ductility and strength, which are attractive for automotive applications. A novel technique that provides the retained austenite volume fraction variation with strain in TRIP-assisted steels with improved precision is presented. Digital images of the gauge section of tensile specimens were first recorded up to selected plastic strains with a stereo digital image correlation (DIC) system. The austenite volume fraction was measured by synchrotron X-ray diffraction from small squares cut from the gage section. Strain fields in the squares were then computed by localizing the strain measurement to the corresponding region of a given square during DIC post-processing of the images recorded during tensile testing. Results obtained for a QP980 steel are used to study the influence of initial volume fraction of austenite and the austenite transformation with strain on tensile mechanical behavior.

  15. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients.

    Science.gov (United States)

    Burger, C; Goerres, G; Schoenes, S; Buck, A; Lonn, A H R; Von Schulthess, G K

    2002-07-01

    The CT data acquired in combined PET/CT studies provide a fast and essentially noiseless source for the correction of photon attenuation in PET emission data. To this end, the CT values relating to attenuation of photons in the range of 40-140 keV must be transformed into linear attenuation coefficients at the PET energy of 511 keV. As attenuation depends on photon energy and the absorbing material, an accurate theoretical relation cannot be devised. The transformation implemented in the Discovery LS PET/CT scanner (GE Medical Systems, Milwaukee, Wis.) uses a bilinear function based on the attenuation of water and cortical bone at the CT and PET energies. The purpose of this study was to compare this transformation with experimental CT values and corresponding PET attenuation coefficients. In 14 patients, quantitative PET attenuation maps were calculated from germanium-68 transmission scans, and resolution-matched CT images were generated. A total of 114 volumes of interest were defined and the average PET attenuation coefficients and CT values measured. From the CT values the predicted PET attenuation coefficients were calculated using the bilinear transformation. When the transformation was based on the narrow-beam attenuation coefficient of water at 511 keV (0.096 cm(-1)), the predicted attenuation coefficients were higher in soft tissue than the measured values. This bias was reduced by replacing 0.096 cm(-1) in the transformation by the linear attenuation coefficient of 0.093 cm(-1) obtained from germanium-68 transmission scans. An analysis of the corrected emission activities shows that the resulting transformation is essentially equivalent to the transmission-based attenuation correction for human tissue. For non-human material, however, it may assign inaccurate attenuation coefficients which will also affect the correction in neighbouring tissue.

  16. Registration of 3D FMT and CT Images of Mouse via Affine Transformation using Sequential Monte Carlo

    International Nuclear Information System (INIS)

    Xia Zheng; Zhou Xiaobo; Wong, Stephen T. C.; Sun Youxian

    2007-01-01

    It is difficult to directly co-register the 3D FMT (Fluorescence Molecular Tomography) image of a small tumor in a mouse whose maximal diameter is only a few mm with a larger CT image of the entire animal that spans about ten cm. This paper proposes a new method to register 2D flat and 3D CT image first to facilitate the registration between small 3D FMT images and large CT images. A novel algorithm based on SMC (Sequential Monte Carlo) incorporated with least square operation for the registration between the 2D flat and 3D CT images is introduced and validated with simulated images and real images of mice. The visualization of the preliminary alignment of the 3D FMT and CT image through 2D registration shows promising results

  17. Preoperative assessment of trigeminal neuralgia and hemifacial spasm using constructive interference in steady state-three-dimensional fourier transformation magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamakami, Iwao; Kobayashi, Eiichi; Hirai, Shinji; Yamaura, Akira [Chiba Univ. (Japan). School of Medicine

    2000-11-01

    Results of microvascular decompression (MVD) for trigeminal neuralgia (TN) and hemifacial spasm (HFS) may be improved by accurate preoperative assessment of neurovascular relationships at the root entry/exit zone (REZ). Constructive interference in steady state (CISS)-three-dimensional Fourier transformation (3DFT) magnetic resonance (MR) imaging was evaluated for visualizing the neurovascular relationships at the REZ. Fourteen patients with TN and eight patients with HFS underwent MR imaging using CISS-3DFT and 3D fast inflow with steady-state precession (FISP) sequences. Axial images of the cerebellopontine angle (CPA) obtained by the two sequences were reviewed to assess the neurovascular relationships at the REZ of the trigeminal and facial nerves. Eleven patients subsequently underwent MVD. Preoperative MR imaging findings were related to surgical observations and results. CISS MR imaging provided excellent contrast between the cranial nerves, small vessels, and cerebrospinal fluid (CSF) in the CPA. CISS was significantly better than FISP for delineating anatomic detail in the CPA (trigeminal and facial nerves, petrosal vein) and abnormal neurovascular relationships responsible for TN and HFS (vascular contact and deformity at the REZ). Preoperative CISS MR imaging demonstrated precisely the neurovascular relationships at the REZ and identified the offending artery in all seven patients with TN undergoing MVD. CISS MR imaging has high resolution and excellent contrast between cranial nerves, small vessels, and CSF, so can precisely and accurately delineate normal and abnormal neurovascular relationships at the REZ in the CPA, and is a valuable preoperative examination for MVD. (author)

  18. Preoperative assessment of trigeminal neuralgia and hemifacial spasm using constructive interference in steady state-three-dimensional fourier transformation magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yamakami, Iwao; Kobayashi, Eiichi; Hirai, Shinji; Yamaura, Akira

    2000-01-01

    Results of microvascular decompression (MVD) for trigeminal neuralgia (TN) and hemifacial spasm (HFS) may be improved by accurate preoperative assessment of neurovascular relationships at the root entry/exit zone (REZ). Constructive interference in steady state (CISS)-three-dimensional Fourier transformation (3DFT) magnetic resonance (MR) imaging was evaluated for visualizing the neurovascular relationships at the REZ. Fourteen patients with TN and eight patients with HFS underwent MR imaging using CISS-3DFT and 3D fast inflow with steady-state precession (FISP) sequences. Axial images of the cerebellopontine angle (CPA) obtained by the two sequences were reviewed to assess the neurovascular relationships at the REZ of the trigeminal and facial nerves. Eleven patients subsequently underwent MVD. Preoperative MR imaging findings were related to surgical observations and results. CISS MR imaging provided excellent contrast between the cranial nerves, small vessels, and cerebrospinal fluid (CSF) in the CPA. CISS was significantly better than FISP for delineating anatomic detail in the CPA (trigeminal and facial nerves, petrosal vein) and abnormal neurovascular relationships responsible for TN and HFS (vascular contact and deformity at the REZ). Preoperative CISS MR imaging demonstrated precisely the neurovascular relationships at the REZ and identified the offending artery in all seven patients with TN undergoing MVD. CISS MR imaging has high resolution and excellent contrast between cranial nerves, small vessels, and CSF, so can precisely and accurately delineate normal and abnormal neurovascular relationships at the REZ in the CPA, and is a valuable preoperative examination for MVD. (author)

  19. Using Spatial Structure Analysis of Hyperspectral Imaging Data and Fourier Transformed Infrared Analysis to Determine Bioactivity of Surface Pesticide Treatment

    Directory of Open Access Journals (Sweden)

    Christian Nansen

    2010-03-01

    Full Text Available Many food products are subjected to quality control analyses for detection of surface residue/contaminants, and there is a trend of requiring more and more documentation and reporting by farmers regarding their use of pesticides. Recent outbreaks of food borne illnesses have been a major contributor to this trend. With a growing need for food safety measures and “smart applications” of insecticides, it is important to develop methods for rapid and accurate assessments of surface residues on food and feed items. As a model system, we investigated detection of a miticide applied to maize leaves and its miticidal bioactivity over time, and we compared two types of reflectance data: fourier transformed infrared (FTIR data and hyperspectral imaging (HI data. The miticide (bifenazate was applied at a commercial field rate to maize leaves in the field, with or without application of a surfactant, and with or without application of a simulated “rain event”. In addition, we collected FTIR and HI from untreated control leaves (total of five treatments. Maize leaf data were collected at seven time intervals from 0 to 48 hours after application. FTIR data were analyzed using conventional analysis of variance of miticide-specific vibration peaks. Two unique FTIR vibration peaks were associated with miticide application (1,700 cm−1 and 763 cm−1. The integrated intensities of these two peaks, miticide application, surfactant, rain event, time between miticide application, and rain event were used as explanatory variables in a linear multi-regression fit to spider mite mortality. The same linear multi-regression approach was applied to variogram parameters derived from HI data in five selected spectral bands (664, 683, 706, 740, and 747 nm. For each spectral band, we conducted a spatial structure analysis, and the three standard variogram parameters (“sill”, “range”, and “nugget” were examined as possible “indicators” of miticide

  20. Fourier Transform Near Infrared Microspectroscopy, Infrared Chemical Imaging, High-Resolution Nuclear Magnetic Resonance and Fluorescence Microspectroscopy Detection of Single Cancer Cells and Single Viral Particles

    CERN Document Server

    Baianu,I C; Hofmann, N E; Korban, S S; Lozano, P; You, T

    2004-01-01

    Single Cancer Cells from Human tumors are being detected and imaged by Fourier Transform Infrared (FT-IR), Fourier Transform Near Infrared (FT-NIR)Hyperspectral Imaging and Fluorescence Correlation Microspectroscopy. The first FT-NIR chemical, microscopic images of biological systems approaching one micron resolution are here reported. Chemical images obtained by FT-NIR and FT-IR Microspectroscopy are also presented for oil in soybean seeds and somatic embryos under physiological conditions. FT-NIR spectra of oil and proteins were obtained for volumes as small as two cubic microns. Related, HR-NMR analyses of oil contents in somatic embryos as well as 99% accurate calibrations are also presented here with nanoliter precision. Such high-resolution, 400 MHz H-1 NMR analyses allowed the selection of mutagenized embryos with higher oil content (e.g. >~20%) compared to the average levels in non-mutagenized control embryos. Moreover, developmental changes in single soybean seeds and/or somatic embryos may be monito...

  1. Mammalian evolution: timing and implications from using the LogDeterminant transform for proteins of differing amino acid composition.

    Science.gov (United States)

    Penny, D; Hasegawa, M; Waddell, P J; Hendy, M D

    1999-03-01

    We explore the tree of mammalian mtDNA sequences, using particularly the LogDet transform on amino acid sequences, the distance Hadamard transform, and the Closest Tree selection criterion. The amino acid composition of different species show significant differences, even within mammals. After compensating for these differences, nearest-neighbor bootstrap results suggest that the tree is locally stable, though a few groups show slightly greater rearrangements when a large proportion of the constant sites are removed. Many parts of the trees we obtain agree with those on published protein ML trees. Interesting results include a preference for rodent monophyly. The detection of a few alternative signals to those on the optimal tree were obtained using the distance Hadamard transform (with results expressed as a Lento plot). One rearrangement suggested was the interchange of the position of primates and rodents on the optimal tree. The basic stability of the tree, combined with two calibration points (whale/cow and horse/rhinoceros), together with a distant secondary calibration from the mammal/bird divergence, allows inferences of the times of divergence of putative clades. Allowing for sampling variances due to finite sequence length, most major divergences amongst lineages leading to modern orders, appear to occur well before the Cretaceous/Tertiary (K/T) boundary. Implications arising from these early divergences are discussed, particularly the possibility of competition between the small dinosaurs and the new mammal clades.

  2. Target recognition by wavelet transform

    International Nuclear Information System (INIS)

    Li Zhengdong; He Wuliang; Zheng Xiaodong; Cheng Jiayuan; Peng Wen; Pei Chunlan; Song Chen

    2002-01-01

    Wavelet transform has an important character of multi-resolution power, which presents pyramid structure, and this character coincides the way by which people distinguish object from coarse to fineness and from large to tiny. In addition to it, wavelet transform benefits to reducing image noise, simplifying calculation, and embodying target image characteristic point. A method of target recognition by wavelet transform is provided

  3. Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations.

    Science.gov (United States)

    Novakovic, Dunja; Saarinen, Jukka; Rojalin, Tatu; Antikainen, Osmo; Fraser-Miller, Sara J; Laaksonen, Timo; Peltonen, Leena; Isomäki, Antti; Strachan, Clare J

    2017-11-07

    Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches. Simultaneous narrowband CARS and SFG imaging was faster, but hyperspectral CARS and SFG imaging has the potential to be applied to a wider variety of more complex samples. These methodologies were further used to follow crystallization of indomethacin on tablet surfaces under two storage conditions: 30 °C/23% RH and 30 °C/75% RH. Imaging with (sub)micron resolution showed that the approach allowed detection of very early stage surface crystallization. The surfaces progressively crystallized to predominantly (but not exclusively) the gamma form at lower humidity and the alpha form at higher humidity. Overall, this study suggests that multimodal nonlinear imaging is a highly sensitive, solid-state (and chemically) specific, rapid, and versatile imaging technique for understanding and hence controlling (surface) solid-state forms and their complex changes in pharmaceuticals.

  4. The Modified Frequency Algorithm of Digital Watermarking of Still Images Resistant to JPEG Compression

    Directory of Open Access Journals (Sweden)

    V. A. Batura

    2015-01-01

    Full Text Available Digital watermarking is an effective copyright protection for multimedia products (in particular, still images. Digital marking represents process of embedding into object of protection of a digital watermark which is invisible for a human eye. However there is rather large number of the harmful influences capable to destroy the watermark which is embedded into the still image. The most widespread attack is JPEG compression that is caused by efficiency of this format of compression and its big prevalence on the Internet.The new algorithm which is modification of algorithm of Elham is presented in the present article. The algorithm of digital marking of motionless images carries out embedding of a watermark in frequency coefficients of discrete Hadamard transform of the chosen image blocks. The choice of blocks of the image for embedding of a digital watermark is carried out on the basis of the set threshold of entropy of pixels. The choice of low-frequency coefficients for embedding is carried out on the basis of comparison of values of coefficients of discrete cosine transformation with a predetermined threshold, depending on the product of the built-in watermark coefficient on change coefficient.Resistance of new algorithm to compression of JPEG, noising, filtration, change of color, the size and histogram equalization is in details analysed. Research of algorithm consists in comparison of the appearance taken from the damaged image of a watermark with the introduced logo. Ability of algorithm to embedding of a watermark with a minimum level of distortions of the image is in addition analysed. It is established that the new algorithm in comparison by initial algorithm of Elham showed full resistance to compression of JPEG, and also the improved resistance to a noising, change of brightness and histogram equalization.The developed algorithm can be used for copyright protection on the static images. Further studies will be used to study the

  5. Built-Up Area Detection from High-Resolution Satellite Images Using Multi-Scale Wavelet Transform and Local Spatial Statistics

    Science.gov (United States)

    Chen, Y.; Zhang, Y.; Gao, J.; Yuan, Y.; Lv, Z.

    2018-04-01

    Recently, built-up area detection from high-resolution satellite images (HRSI) has attracted increasing attention because HRSI can provide more detailed object information. In this paper, multi-resolution wavelet transform and local spatial autocorrelation statistic are introduced to model the spatial patterns of built-up areas. First, the input image is decomposed into high- and low-frequency subbands by wavelet transform at three levels. Then the high-frequency detail information in three directions (horizontal, vertical and diagonal) are extracted followed by a maximization operation to integrate the information in all directions. Afterward, a cross-scale operation is implemented to fuse different levels of information. Finally, local spatial autocorrelation statistic is introduced to enhance the saliency of built-up features and an adaptive threshold algorithm is used to achieve the detection of built-up areas. Experiments are conducted on ZY-3 and Quickbird panchromatic satellite images, and the results show that the proposed method is very effective for built-up area detection.

  6. Segmentation of radiologic images with self-organizing maps: the segmentation problem transformed into a classification task

    Science.gov (United States)

    Pelikan, Erich; Vogelsang, Frank; Tolxdorff, Thomas

    1996-04-01

    The texture-based segmentation of x-ray images of focal bone lesions using topological maps is introduced. Texture characteristics are described by image-point correlation of feature images to feature vectors. For the segmentation, the topological map is labeled using an improved labeling strategy. Results of the technique are demonstrated on original and synthetic x-ray images and quantified with the aid of quality measures. In addition, a classifier-specific contribution analysis is applied for assessing the feature space.

  7. Transformada fraccional de Fourier en el caso de un plano imagen inclinado Fraccional Fourier transform in the case of an inclined image plane

    Directory of Open Access Journals (Sweden)

    Y Torres

    2010-12-01

    Full Text Available La conocida fórmula de difracción de Fresnel relaciona la distribución de amplitud compleja de una onda en el plano objeto (campo ondulatorio de entrada con la distribución de amplitud compleja de la onda en el plano imagen(campo ondulatorio de salida cuando se trata de propagación en el espaciolibre; esto significa que si los planos objeto e imagen son paralelos entre sí, el sistema imagen correspondiente se dice que es un sistema lineal invariantea desplazamiento (LSI. Esta propiedad ventajosa es esencial para el desarrollo de técnicas de imagen sensitivas a fase; sin embargo, si el plano imagen está inclinado con respecto al haz incidente, la distancia efectiva de propagación cambiará sobre el plano imagen, consecuentemente el sistema imagen será no invariante a desplazamiento. En este artículo es propuesta una extensión del formalismo de la difracción de Fresnel al caso de un plano imageninclinado utilizando la transformada de Fourier de orden fraccional.The well-known Fresnel integral relates a known complex wave defined in the object plane (the input wave field to the observable complex wave (the output wave field defined in the image plane after free-space propagation; this means that if the object and image plane are parallel to each other, corresponding imaging system is said to be linear-shift-invariant (LSI. This advantageous property was essential for the development of phase sensitive imaging techniques; however, if the image plane is inclined with respect to the incident beam, the effective propagation distance will vary over the image plane, consequently, the imaging system is not shiftinvariant. In this paper an extension of the theoretical formalism of Fresnel diffraction to the case of an inclined image plane is proposed using the fractional Fourier transform.

  8. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    Science.gov (United States)

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. New Analysis Method Application in Metallographic Images through the Construction of Mosaics Via Speeded Up Robust Features and Scale Invariant Feature Transform

    Directory of Open Access Journals (Sweden)

    Pedro Pedrosa Rebouças Filho

    2015-06-01

    results and expediting the decision making process. Two different methods are proposed: One using the transformed Scale Invariant Feature Transform (SIFT, and the second using features extractor Speeded Up Robust Features (SURF. Although slower, the SIFT method is more stable and has a better performance than the SURF method and can be applied to real applications. The best results were obtained using SIFT with Peak Signal-to-Noise Ratio = 61.38, Mean squared error = 0.048 and mean-structural-similarity = 0.999, and processing time of 4.91 seconds for mosaic building. The methodology proposed shows be more promissory in aiding specialists during analysis of metallographic images.

  10. SU-E-I-30: Image Analysis in Ultrasonography for Diagnosis of Sjoegren's Syndrome Using Dual-Tree Complex Wavelet Transform

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, T [Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka (Japan); Ohki, M [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Nakamura, T; Takagi, Y [Department of Radiology and Cancer Biology, Nagasaki University School of Dentistry, Nagasaki (Japan)

    2014-06-01

    Purpose: Sjoegren's syndrome (SS) is an autoimmune disease invading mainly salivary and lacrimal glands. Ultrasonography is used for an initial and non-invasive examination of this disease. However, the ultrasonography diagnosis tends to lack in objectivity and depends on the operator's skills. The purpose of this study is to propose a computer-aided diagnosis (CAD) system for SS based on a dual-tree complex wavelet transform (DT-CWT) and machine learning. Methods: The subjects of this study were 174 patients suspected of having SS at Nagasaki University Hospital and examined with ultrasonography of the parotid glands. Out of these patients, 77 patients were diagnosed with SS by sialography. A region of interest (ROI) of 128 × 128 pixels was set within the parotid gland that was indicated by a dental radiologist. The DT-CWT was applied to the images in the ROI and every image was decomposed into 72 sub-images of the real and imaginary components in six different resolution levels and six orientations. The statistical features of the sub-image were calculated and used as data input for the support vector machine (SVM) classifier for the detection of SS. A ten-fold cross-validation was employed to verify the Resultof SVM. The accuracy of diagnosis was compared by a CAD system with a human observer performance. Results: The sensitivity, specificity, and accuracy in the detection of SS were 95%, 86%, and 91% through our CAD system respectively, while those by a human observer were 84%, 81%, and 83% respectively. Conclusion: The proposed computer-aided diagnosis system for Sjoegren's syndrome in ultrasonography based on dual-tree complex wavelet transform had a better performance than a human observer.

  11. SU-E-I-30: Image Analysis in Ultrasonography for Diagnosis of Sjoegren's Syndrome Using Dual-Tree Complex Wavelet Transform

    International Nuclear Information System (INIS)

    Matsui, T; Ohki, M; Nakamura, T; Takagi, Y

    2014-01-01

    Purpose: Sjoegren's syndrome (SS) is an autoimmune disease invading mainly salivary and lacrimal glands. Ultrasonography is used for an initial and non-invasive examination of this disease. However, the ultrasonography diagnosis tends to lack in objectivity and depends on the operator's skills. The purpose of this study is to propose a computer-aided diagnosis (CAD) system for SS based on a dual-tree complex wavelet transform (DT-CWT) and machine learning. Methods: The subjects of this study were 174 patients suspected of having SS at Nagasaki University Hospital and examined with ultrasonography of the parotid glands. Out of these patients, 77 patients were diagnosed with SS by sialography. A region of interest (ROI) of 128 × 128 pixels was set within the parotid gland that was indicated by a dental radiologist. The DT-CWT was applied to the images in the ROI and every image was decomposed into 72 sub-images of the real and imaginary components in six different resolution levels and six orientations. The statistical features of the sub-image were calculated and used as data input for the support vector machine (SVM) classifier for the detection of SS. A ten-fold cross-validation was employed to verify the Resultof SVM. The accuracy of diagnosis was compared by a CAD system with a human observer performance. Results: The sensitivity, specificity, and accuracy in the detection of SS were 95%, 86%, and 91% through our CAD system respectively, while those by a human observer were 84%, 81%, and 83% respectively. Conclusion: The proposed computer-aided diagnosis system for Sjoegren's syndrome in ultrasonography based on dual-tree complex wavelet transform had a better performance than a human observer

  12. A Systematic Hardware Sharing Method for Unified Architecture Design of H.264 Transforms

    Directory of Open Access Journals (Sweden)

    Po-Hung Chen

    2015-01-01

    Full Text Available Multitransform techniques have been widely used in modern video coding and have better compression efficiency than the single transform technique that is used conventionally. However, every transform needs a corresponding hardware implementation, which results in a high hardware cost for multiple transforms. A novel method that includes a five-step operation sharing synthesis and architecture-unification techniques is proposed to systematically share the hardware and reduce the cost of multitransform coding. In order to demonstrate the effectiveness of the method, a unified architecture is designed using the method for all of the six transforms involved in the H.264 video codec: 2D 4 × 4 forward and inverse integer transforms, 2D 4 × 4 and 2 × 2 Hadamard transforms, and 1D 8 × 8 forward and inverse integer transforms. Firstly, the six H.264 transform architectures are designed at a low cost using the proposed five-step operation sharing synthesis technique. Secondly, the proposed architecture-unification technique further unifies these six transform architectures into a low cost hardware-unified architecture. The unified architecture requires only 28 adders, 16 subtractors, 40 shifters, and a proposed mux-based routing network, and the gate count is only 16308. The unified architecture processes 8 pixels/clock-cycle, up to 275 MHz, which is equal to 707 Full-HD 1080 p frames/second.

  13. Application of Color Transformation Techniques in Pediatric Spinal Cord MR Images: Typically Developing and Spinal Cord Injury Population.

    Science.gov (United States)

    Alizadeh, Mahdi; Shah, Pallav; Conklin, Chris J; Middleton, Devon M; Saksena, Sona; Flanders, Adam E; Krisa, Laura; Mulcahey, M J; Faro, Scott H; Mohamed, Feroze B

    2018-01-16

    The purpose of this study was to evaluate an improved and reliable visualization method for pediatric spinal cord MR images in healthy subjects and patients with spinal cord injury (SCI). A total of 15 pediatric volunteers (10 healthy subjects and 5 subjects with cervical SCI) with a mean age of 11.41 years (range 8-16 years) were recruited and scanned using a 3.0T Siemens Verio MR scanner. T2-weighted axial images were acquired covering entire cervical spinal cord level C1 to C7. These gray-scale images were then converted to color images by using five different techniques including hue-saturation-value (HSV), rainbow, red-green-blue (RGB), and two enhanced RGB techniques using automated contrast stretching and intensity inhomogeneity correction. Performance of these techniques was scored visually by two neuroradiologists within three selected cervical spinal cord intervertebral disk levels (C2-C3, C4-C5, and C6-C7) and quantified using signal to noise ratio (SNR) and contrast to noise ratio (CNR). Qualitative and quantitative evaluation of the color images shows consistent improvement across all the healthy and SCI subjects over conventional gray-scale T2-weighted gradient echo (GRE) images. Inter-observer reliability test showed moderate to strong intra-class correlation (ICC) coefficients in the proposed techniques (ICC > 0.73). The results suggest that the color images could be used for quantification and enhanced visualization of the spinal cord structures in addition to the conventional gray-scale images. This would immensely help towards improved delineation of the gray/white and CSF structures and further aid towards accurate manual or automatic drawings of region of interests (ROIs).

  14. A Novel 1D Hybrid Chaotic Map-Based Image Compression and Encryption Using Compressed Sensing and Fibonacci-Lucas Transform

    Directory of Open Access Journals (Sweden)

    Tongfeng Zhang

    2016-01-01

    Full Text Available A one-dimensional (1D hybrid chaotic system is constructed by three different 1D chaotic maps in parallel-then-cascade fashion. The proposed chaotic map has larger key space and exhibits better uniform distribution property in some parametric range compared with existing 1D chaotic map. Meanwhile, with the combination of compressive sensing (CS and Fibonacci-Lucas transform (FLT, a novel image compression and encryption scheme is proposed with the advantages of the 1D hybrid chaotic map. The whole encryption procedure includes compression by compressed sensing (CS, scrambling with FLT, and diffusion after linear scaling. Bernoulli measurement matrix in CS is generated by the proposed 1D hybrid chaotic map due to its excellent uniform distribution. To enhance the security and complexity, transform kernel of FLT varies in each permutation round according to the generated chaotic sequences. Further, the key streams used in the diffusion process depend on the chaotic map as well as plain image, which could resist chosen plaintext attack (CPA. Experimental results and security analyses demonstrate the validity of our scheme in terms of high security and robustness against noise attack and cropping attack.

  15. An efficient and secure partial image encryption for wireless multimedia sensor networks using discrete wavelet transform, chaotic maps and substitution box

    Science.gov (United States)

    Khan, Muazzam A.; Ahmad, Jawad; Javaid, Qaisar; Saqib, Nazar A.

    2017-03-01

    Wireless Sensor Networks (WSN) is widely deployed in monitoring of some physical activity and/or environmental conditions. Data gathered from WSN is transmitted via network to a central location for further processing. Numerous applications of WSN can be found in smart homes, intelligent buildings, health care, energy efficient smart grids and industrial control systems. In recent years, computer scientists has focused towards findings more applications of WSN in multimedia technologies, i.e. audio, video and digital images. Due to bulky nature of multimedia data, WSN process a large volume of multimedia data which significantly increases computational complexity and hence reduces battery time. With respect to battery life constraints, image compression in addition with secure transmission over a wide ranged sensor network is an emerging and challenging task in Wireless Multimedia Sensor Networks. Due to the open nature of the Internet, transmission of data must be secure through a process known as encryption. As a result, there is an intensive demand for such schemes that is energy efficient as well as highly secure since decades. In this paper, discrete wavelet-based partial image encryption scheme using hashing algorithm, chaotic maps and Hussain's S-Box is reported. The plaintext image is compressed via discrete wavelet transform and then the image is shuffled column-wise and row wise-wise via Piece-wise Linear Chaotic Map (PWLCM) and Nonlinear Chaotic Algorithm, respectively. To get higher security, initial conditions for PWLCM are made dependent on hash function. The permuted image is bitwise XORed with random matrix generated from Intertwining Logistic map. To enhance the security further, final ciphertext is obtained after substituting all elements with Hussain's substitution box. Experimental and statistical results confirm the strength of the anticipated scheme.

  16. An Efficient SAR Image Segmentation Framework Using Transformed Nonlocal Mean and Multi-Objective Clustering in Kernel Space

    Directory of Open Access Journals (Sweden)

    Dongdong Yang

    2015-02-01

    Full Text Available Synthetic aperture radar (SAR image segmentation usually involves two crucial issues: suitable speckle noise removing technique and effective image segmentation methodology. Here, an efficient SAR image segmentation method considering both of the two aspects is presented. As for the first issue, the famous nonlocal mean (NLM filter is introduced in this study to suppress the multiplicative speckle noise in SAR image. Furthermore, to achieve a higher denoising accuracy, the local neighboring pixels in the searching window are projected into a lower dimensional subspace by principal component analysis (PCA. Thus, the nonlocal mean filter is implemented in the subspace. Afterwards, a multi-objective clustering algorithm is proposed using the principals of artificial immune system (AIS and kernel-induced distance measures. The multi-objective clustering has been shown to discover the data distribution with different characteristics and the kernel methods can improve its robustness to noise and outliers. Experiments demonstrate that the proposed method is able to partition the SAR image robustly and accurately than the conventional approaches.

  17. Estimation bias from using nonlinear Fourier plane correlators for sub-pixel image shift measurement and implications for the binary joint transform correlator

    Science.gov (United States)

    Grycewicz, Thomas J.; Florio, Christopher J.; Franz, Geoffrey A.; Robinson, Ross E.

    2007-09-01

    When using Fourier plane digital algorithms or an optical correlator to measure the correlation between digital images, interpolation by center-of-mass or quadratic estimation techniques can be used to estimate image displacement to the sub-pixel level. However, this can lead to a bias in the correlation measurement. This bias shifts the sub-pixel output measurement to be closer to the nearest pixel center than the actual location. The paper investigates the bias in the outputs of both digital and optical correlators, and proposes methods to minimize this effect. We use digital studies and optical implementations of the joint transform correlator to demonstrate optical registration with accuracies better than 0.1 pixels. We use both simulations of image shift and movies of a moving target as inputs. We demonstrate bias error for both center-of-mass and quadratic interpolation, and discuss the reasons that this bias is present. Finally, we suggest measures to reduce or eliminate the bias effects. We show that when sub-pixel bias is present, it can be eliminated by modifying the interpolation method. By removing the bias error, we improve registration accuracy by thirty percent.

  18. Depth-Dependent Anisotropies of Amides and Sugar in Perpendicular and Parallel Sections of Articular Cartilage by Fourier Transform Infrared Imaging (FTIRI)

    Science.gov (United States)

    Xia, Yang; Mittelstaedt, Daniel; Ramakrishnan, Nagarajan; Szarko, Matthew; Bidthanapally, Aruna

    2010-01-01

    Full thickness blocks of canine humeral cartilage were microtomed into both perpendicular sections and a series of 100 parallel sections, each 6 μm thick. Fourier Transform Infrared Imaging (FTIRI) was used to image each tissue section eleven times under different infrared polarizations (from 0° to 180° polarization states in 20° increments and with an additional 90° polarization), at a spatial resolution of 6.25 μm and a wavenumber step of 8 cm−1. With increasing depth from the articular surface, amide anisotropies increased in the perpendicular sections and decreased in the parallel sections. Both types of tissue sectioning identified a 90° difference between amide I and amide II in the superficial zone of cartilage. The fibrillar distribution in the parallel sections from the superficial zone was shown to not be random. Sugar had the greatest anisotropy in the upper part of the radial zone in the perpendicular sections. The depth-dependent anisotropic data were fitted with a theoretical equation that contained three signature parameters, which illustrate the arcade structure of collagens with the aid of a fibril model. Infrared imaging of both perpendicular and parallel sections provides the possibility of determining the three-dimensional macromolecular structures in articular cartilage. Being sensitive to the orientation of the macromolecular structure in healthy articular cartilage aids the prospect of detecting the early onset of the tissue degradation that may lead to pathological conditions such as osteoarthritis. PMID:21274999

  19. Non-Destructive Detection of Wire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Juwei Zhang

    2017-03-01

    Full Text Available Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance.

  20. Ship Detection in Optical Remote Sensing Images Based on Wavelet Transform and Multi-Level False Alarm Identification

    Directory of Open Access Journals (Sweden)

    Fang Xu

    2017-09-01

    Full Text Available Ship detection by Unmanned Airborne Vehicles (UAVs and satellites plays an important role in a spectrum of related military and civil applications. To improve the detection efficiency, accuracy, and speed, a novel ship detection method from coarse to fine is presented. Ship targets are viewed as uncommon regions in the sea background caused by the differences in colors, textures, shapes, or other factors. Inspired by this fact, a global saliency model is constructed based on high-frequency coefficients of the multi-scale and multi-direction wavelet decomposition, which can characterize different feature information from edge to texture of the input image. To further reduce the false alarms, a new and effective multi-level discrimination method is designed based on the improved entropy and pixel distribution, which is robust against the interferences introduced by islands, coastlines, clouds, and shadows. The experimental results on optical remote sensing images validate that the presented saliency model outperforms the comparative models in terms of the area under the receiver operating characteristic curves core and the accuracy in the images with different sizes. After the target identification, the locations and the number of the ships in various sizes and colors can be detected accurately and fast with high robustness.

  1. INCREASE OF STABILITY AT JPEG COMPRESSION OF THE DIGITAL WATERMARKS EMBEDDED IN STILL IMAGES

    Directory of Open Access Journals (Sweden)

    V. A. Batura

    2015-07-01

    Full Text Available Subject of Research. The paper deals with creation and research of method for increasing stability at JPEG compressing of digital watermarks embedded in still images. Method. A new algorithm of digital watermarking for still images which embeds digital watermark into a still image via modification of frequency coefficients for Hadamard discrete transformation is presented. The choice of frequency coefficients for embedding of a digital watermark is based on existence of sharp change of their values after modification at the maximum compression of JPEG. The choice of blocks of pixels for embedding is based on the value of their entropy. The new algorithm was subjected to the analysis of resistance to an image compression, noising, filtration, change of size, color and histogram equalization. Elham algorithm possessing a good resistance to JPEG compression was chosen for comparative analysis. Nine gray-scale images were selected as objects for protection. Obscurity of the distortions embedded in them was defined on the basis of the peak value of a signal to noise ratio which should be not lower than 43 dB for obscurity of the brought distortions. Resistibility of embedded watermark was determined by the Pearson correlation coefficient, which value should not be below 0.5 for the minimum allowed stability. The algorithm of computing experiment comprises: watermark embedding into each test image by the new algorithm and Elham algorithm; introducing distortions to the object of protection; extracting of embedded information with its subsequent comparison with the original. Parameters of the algorithms were chosen so as to provide approximately the same level of distortions introduced into the images. Main Results. The method of preliminary processing of digital watermark presented in the paper makes it possible to reduce significantly the volume of information embedded in the still image. The results of numerical experiment have shown that the

  2. From an “Internationalist Woman” to “Just another Asian Immigrant”: Transformation of Japanese Women’s Self-Image before and after Permanent Settlement in a Western Country

    Directory of Open Access Journals (Sweden)

    Atsuko KAWAKAMI

    2009-11-01

    Full Text Available Young middle class Japanese women who speak English identify themselves as career-oriented “internationalist women.” They hold positive self-images; however, their self-images become convoluted with negative images as they experience changes in their lives. When they marry white males and become permanent residents in Western countries, their self-identities transform into “just another Asian immigrant” out of many. Many Japanese wives of white husbands deny their association with their compatriots when they actually do associate with other Japanese immigrant women. They also deny racial factors in their attraction to their white husbands. I argue that these behaviors are harnessed to redevelop a self-identity by renouncing the stereotypical images of Eurocentric Japanese women. This paper will describe the transformation of Japanese women’s self-images before and after permanent settlement in a Western country and the process of their redevelopment of self-identity.

  3. Disruption of bbe02 by Insertion of a Luciferase Gene Increases Transformation Efficiency of Borrelia burgdorferi and Allows Live Imaging in Lyme Disease Susceptible C3H Mice.

    Directory of Open Access Journals (Sweden)

    Kamfai Chan

    Full Text Available Lyme disease is the most prevalent tick-borne disease in North America and Europe. The causative agent, Borrelia burgdorferi persists in the white-footed mouse. Infection with B. burgdorferi can cause acute to persistent multisystemic Lyme disease in humans. Some disease manifestations are also exhibited in the mouse model of Lyme disease. Genetic manipulation of B. burgdorferi remains difficult. First, B. burgdorferi contains a large number of endogenous plasmids with unique sequences encoding unknown functions. The presence of these plasmids needs to be confirmed after each genetic manipulation. Second, the restriction modification defense systems, including that encoded by bbe02 gene lead to low transformation efficiency in B. burgdorferi. Therefore, studying the molecular basis of Lyme pathogenesis is a challenge. Furthermore, investigation of the role of a specific B. burgdorferi protein throughout infection requires a large number of mice, making it labor intensive and expensive. To overcome the problems associated with low transformation efficiency and to reduce the number of mice needed for experiments, we disrupted the bbe02 gene of a highly infectious and pathogenic B. burgdorferi strain, N40 D10/E9 through insertion of a firefly luciferase gene. The bbe02 mutant shows higher transformation efficiency and maintains luciferase activity throughout infection as detected by live imaging of mice. Infectivity and pathogenesis of this mutant were comparable to the wild-type N40 strain. This mutant will serve as an ideal parental strain to examine the roles of various B. burgdorferi proteins in Lyme pathogenesis in the mouse model in the future.

  4. Automated corresponding point candidate selection for image registration using wavelet transformation neurla network with rotation invariant inputs and context information about neighboring candidates

    Science.gov (United States)

    Okumura, Hiroshi; Suezaki, Masashi; Sueyasu, Hideki; Arai, Kohei

    2003-03-01

    An automated method that can select corresponding point candidates is developed. This method has the following three features: 1) employment of the RIN-net for corresponding point candidate selection; 2) employment of multi resolution analysis with Haar wavelet transformation for improvement of selection accuracy and noise tolerance; 3) employment of context information about corresponding point candidates for screening of selected candidates. Here, the 'RIN-net' means the back-propagation trained feed-forward 3-layer artificial neural network that feeds rotation invariants as input data. In our system, pseudo Zernike moments are employed as the rotation invariants. The RIN-net has N x N pixels field of view (FOV). Some experiments are conducted to evaluate corresponding point candidate selection capability of the proposed method by using various kinds of remotely sensed images. The experimental results show the proposed method achieves fewer training patterns, less training time, and higher selection accuracy than conventional method.

  5. Effect of number of of projections on inverse radon transform based image reconstruction by using filtered back-projection for parallel beam transmission tomography

    International Nuclear Information System (INIS)

    Qureshi, S.A.; Mirza, S.M.; Arif, M.

    2007-01-01

    This paper present the effect of number of projections on inverse Radon transform (IRT) estimation using filtered back-projection (FBP) technique for parallel beam transmission tomography. The head phantom and the lung phantom have been used in this work. Various filters used in this study include Ram-Lak, Shepp-Logan, Cosin, Hamming and Hanning filters. The slices have been reconstructed by increasing the number of projections through parallel beam transmission tomography keeping the projections uniformly distributed. The Euclidean and Mean Squared errors and peak signal-to-noise ratio (PSNR) have been analyzed for their sensitiveness as functions of number of projections. It has found that image quality improves with the number of projections but at the cost of the computer time. The error has been minimized to get the best approximation of inverse Radon transform (IRT) as the number of projections is enhanced. The value of PSNR has been found to increase from 8.20 to 24.53 dB as the number of projections is raised from 5 to 180 for head phantom. (author)

  6. Transforming Our Understanding of the X-ray Universe: The Imaging X-ray Polarimeter Explorer (IXPE)

    Science.gov (United States)

    Weisskopf, Martin C.; Bellazzini, Ronaldo; Costa, Enrico; Matt, Giorgio; Marshall, Herman; ODell, Stephen L.; Pavlov, George; Ramsey, Brian; Romani, Roger

    2014-01-01

    Accurate X-ray polarimetry can provide unique information on high-energy-astrophysical processes and sources. As there have been no meaningful X-ray polarization measurements of cosmic sources since our pioneering work in the 1970's, the time is ripe to explore this new parameter space in X-ray astronomy. To accomplish this requires a well-calibrated and well understood system that-particularly for an Explorer mission-has technical, cost, and schedule credibility. The system that we shall present satisfies these conditions, being based upon completely calibrated imaging- and polarization-sensitive detectors and proven X-ray-telescope technology.

  7. Fourier transform infrared imaging and microscopy studies of Pinus radiata pulps regarding the simultaneous saccharification and fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Rosario del P., E-mail: rosariocastillo@udec.cl [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Biotechnology Center, University of Concepcion, Concepcion (Chile); Araya, Juan [Faculty of Pharmacy, University of Concepcion, Concepcion (Chile); Biotechnology Center, University of Concepcion, Concepcion (Chile); Troncoso, Eduardo [Consorcio Bioenercel S.A, University of Concepcion, Concepcion (Chile); Vinet, Silenne; Freer, Juanita [Biotechnology Center, University of Concepcion, Concepcion (Chile); Faculty of Chemical Sciences, University of Concepcion, Concepcion (Chile)

    2015-03-25

    The distribution and chemical patterns of lignocellulosic components at microscopic scale and their effect on the simultaneous saccharification and fermentation process (SSF) in the production of bioethanol from Pinus radiata pulps were analyzed by the application of diverse microscopical techniques, including scanning electronic microscopy (SEM), confocal laser scanning microscopy (CLSM) and attenuated total reflectance (ATR) – Fourier transform infrared microspectroscopy. This last technique was accompanied with multivariate methods, including principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS) to evaluate the distribution patterns and to generate pure spectra of the lignocellulosic components of fibers. The results indicate that the information obtained by the techniques is complementary (ultrastructure, confocality and chemical characterization) and that the distribution of components affects the SSF yield, identifying lignin coalescence droplets as a characteristic factor to increase the SSF yield. Therefore, multivariate analysis of the infrared spectra enabled the in situ identification of the cellulose, lignin and lignin-carbohydrates arrangements. These techniques could be used to investigate the lignocellulosic components distribution and consequently their recalcitrance in many applications where minimal sample manipulation and microscale chemical information is required.

  8. Fourier transform infrared imaging and microscopy studies of Pinus radiata pulps regarding the simultaneous saccharification and fermentation process

    International Nuclear Information System (INIS)

    Castillo, Rosario del P.; Araya, Juan; Troncoso, Eduardo; Vinet, Silenne; Freer, Juanita

    2015-01-01

    The distribution and chemical patterns of lignocellulosic components at microscopic scale and their effect on the simultaneous saccharification and fermentation process (SSF) in the production of bioethanol from Pinus radiata pulps were analyzed by the application of diverse microscopical techniques, including scanning electronic microscopy (SEM), confocal laser scanning microscopy (CLSM) and attenuated total reflectance (ATR) – Fourier transform infrared microspectroscopy. This last technique was accompanied with multivariate methods, including principal component analysis (PCA) and multivariate curve resolution with alternating least squares (MCR-ALS) to evaluate the distribution patterns and to generate pure spectra of the lignocellulosic components of fibers. The results indicate that the information obtained by the techniques is complementary (ultrastructure, confocality and chemical characterization) and that the distribution of components affects the SSF yield, identifying lignin coalescence droplets as a characteristic factor to increase the SSF yield. Therefore, multivariate analysis of the infrared spectra enabled the in situ identification of the cellulose, lignin and lignin-carbohydrates arrangements. These techniques could be used to investigate the lignocellulosic components distribution and consequently their recalcitrance in many applications where minimal sample manipulation and microscale chemical information is required

  9. Direct and simultaneous detection of organic and inorganic ingredients in herbal powder preparations by Fourier transform infrared microspectroscopic imaging.

    Science.gov (United States)

    Chen, Jian-Bo; Sun, Su-Qin; Tang, Xu-Dong; Zhang, Jing-Zhao; Zhou, Qun

    2016-08-05

    Herbal powder preparation is a kind of widely-used herbal product in the form of powder mixture of herbal ingredients. Identification of herbal ingredients is the first and foremost step in assuring the quality, safety and efficacy of herbal powder preparations. In this research, Fourier transform infrared (FT-IR) microspectroscopic identification method is proposed for the direct and simultaneous recognition of multiple organic and inorganic ingredients in herbal powder preparations. First, the reference spectrum of characteristic particles of each herbal ingredient is assigned according to FT-IR results and other available information. Next, a statistical correlation threshold is determined as the lower limit of correlation coefficients between the reference spectrum and a larger number of calibration characteristic particles. After validation, the reference spectrum and correlation threshold can be used to identify herbal ingredient in mixture preparations. A herbal ingredient is supposed to be present if correlation coefficients between the reference spectrum and some sample particles are above the threshold. Using this method, all kinds of herbal materials in powder preparation Kouqiang Kuiyang San are identified successfully. This research shows the potential of FT-IR microspectroscopic identification method for the accurate and quick identification of ingredients in herbal powder preparations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. High-frequency Total Focusing Method (TFM) imaging in strongly attenuating materials with the decomposition of the time reversal operator associated with orthogonal coded excitations

    Science.gov (United States)

    Villaverde, Eduardo Lopez; Robert, Sébastien; Prada, Claire

    2017-02-01

    In the present work, the Total Focusing Method (TFM) is used to image defects in a High Density Polyethylene (HDPE) pipe. The viscoelastic attenuation of this material corrupts the images with a high electronic noise. In order to improve the image quality, the Decomposition of the Time Reversal Operator (DORT) filtering is combined with spatial Walsh-Hadamard coded transmissions before calculating the images. Experiments on a complex HDPE joint demonstrate that this method improves the signal-to-noise ratio by more than 40 dB in comparison with the conventional TFM.

  11. WAVELET TRANSFORM AND LIP MODEL

    Directory of Open Access Journals (Sweden)

    Guy Courbebaisse

    2011-05-01

    Full Text Available The Fourier transform is well suited to the study of stationary functions. Yet, it is superseded by the Wavelet transform for the powerful characterizations of function features such as singularities. On the other hand, the LIP (Logarithmic Image Processing model is a mathematical framework developed by Jourlin and Pinoli, dedicated to the representation and processing of gray tones images called hereafter logarithmic images. This mathematically well defined model, comprising a Fourier Transform "of its own", provides an effective tool for the representation of images obtained by transmitted light, such as microscope images. This paper presents a Wavelet transform within the LIP framework, with preservation of the classical Wavelet Transform properties. We show that the fast computation algorithm due to Mallat can be easily used. An application is given for the detection of crests.

  12. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation.

    Science.gov (United States)

    Vega, Sebastián L; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V

    2017-02-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Preclinical Diagnosis of Magnetic Resonance (MR Brain Images via Discrete Wavelet Packet Transform with Tsallis Entropy and Generalized Eigenvalue Proximal Support Vector Machine (GEPSVM

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2015-03-01

    Full Text Available Background: Developing an accurate computer-aided diagnosis (CAD system of MR brain images is essential for medical interpretation and analysis. In this study, we propose a novel automatic CAD system to distinguish abnormal brains from normal brains in MRI scanning. Methods: The proposed method simplifies the task to a binary classification problem. We used discrete wavelet packet transform (DWPT to extract wavelet packet coefficients from MR brain images. Next, Shannon entropy (SE and Tsallis entropy (TE were harnessed to obtain entropy features from DWPT coefficients. Finally, generalized eigenvalue proximate support vector machine (GEPSVM, and GEPSVM with radial basis function (RBF kernel, were employed as classifier. We tested the four proposed diagnosis methods (DWPT + SE + GEPSVM, DWPT + TE + GEPSVM, DWPT + SE + GEPSVM + RBF, and DWPT + TE + GEPSVM + RBF on three benchmark datasets of Dataset-66, Dataset-160, and Dataset-255. Results: The 10 repetition of K-fold stratified cross validation results showed the proposed DWPT + TE + GEPSVM + RBF method excelled not only other three proposed classifiers but also existing state-of-the-art methods in terms of classification accuracy. In addition, the DWPT + TE + GEPSVM + RBF method achieved accuracy of 100%, 100%, and 99.53% on Dataset-66, Dataset-160, and Dataset-255, respectively. For Dataset-255, the offline learning cost 8.4430s and online prediction cost merely 0.1059s. Conclusions: We have proved the effectiveness of the proposed method, which achieved nearly 100% accuracy over three benchmark datasets.

  14. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Vega, Sebastián L. [Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ (United States); Liu, Er; Arvind, Varun [Department of Biomedical Engineering, Rutgers University, Piscataway, NJ (United States); Bushman, Jared [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); School of Pharmacy, University of Wyoming, Laramie, WY (United States); Sung, Hak-Joon [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Becker, Matthew L. [Department of Polymer Science and Engineering, University of Akron, Akron, OH (United States); Lelièvre, Sophie [Department of Basic Medical Sciences, Purdue University, West Lafayette, IN (United States); Kohn, Joachim [Department of Chemistry and Chemical Biology, New Jersey Center for Biomaterials, Piscataway, NJ (United States); Vidi, Pierre-Alexandre, E-mail: pvidi@wakehealth.edu [Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC (United States); Moghe, Prabhas V., E-mail: moghe@rutgers.edu [Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ (United States); Department of Biomedical Engineering, Rutgers University, Piscataway, NJ (United States)

    2017-02-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image

  15. High-content image informatics of the structural nuclear protein NuMA parses trajectories for stem/progenitor cell lineages and oncogenic transformation

    International Nuclear Information System (INIS)

    Vega, Sebastián L.; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L.; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V.

    2017-01-01

    Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image

  16. Transformative Learning

    Science.gov (United States)

    Wang, Victor C. X.; Cranton, Patricia

    2011-01-01

    The theory of transformative learning has been explored by different theorists and scholars. However, few scholars have made an attempt to make a comparison between transformative learning and Confucianism or between transformative learning and andragogy. The authors of this article address these comparisons to develop new and different insights…

  17. Backlund transformations as canonical transformations

    International Nuclear Information System (INIS)

    Villani, A.; Zimerman, A.H.

    1977-01-01

    Toda and Wadati as well as Kodama and Wadati have shown that the Backlund transformations, for the exponential lattice equation, sine-Gordon equation, K-dV (Korteweg de Vries) equation and modifies K-dV equation, are canonical transformation. It is shown that the Backlund transformation for the Boussinesq equation, for a generalized K-dV equation, for a model equation for shallow water waves and for the nonlinear Schroedinger equation are also canonical transformations [pt

  18. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    Science.gov (United States)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  19. A Method for Extracting Suspected Parotid Lesions in CT Images using Feature-based Segmentation and Active Contours based on Stationary Wavelet Transform

    Science.gov (United States)

    Wu, T. Y.; Lin, S. F.

    2013-10-01

    Automatic suspected lesion extraction is an important application in computer-aided diagnosis (CAD). In this paper, we propose a method to automatically extract the suspected parotid regions for clinical evaluation in head and neck CT images. The suspected lesion tissues in low contrast tissue regions can be localized with feature-based segmentation (FBS) based on local texture features, and can be delineated with accuracy by modified active contour models (ACM). At first, stationary wavelet transform (SWT) is introduced. The derived wavelet coefficients are applied to derive the local features for FBS, and to generate enhanced energy maps for ACM computation. Geometric shape features (GSFs) are proposed to analyze each soft tissue region segmented by FBS; the regions with higher similarity GSFs with the lesions are extracted and the information is also applied as the initial conditions for fine delineation computation. Consequently, the suspected lesions can be automatically localized and accurately delineated for aiding clinical diagnosis. The performance of the proposed method is evaluated by comparing with the results outlined by clinical experts. The experiments on 20 pathological CT data sets show that the true-positive (TP) rate on recognizing parotid lesions is about 94%, and the dimension accuracy of delineation results can also approach over 93%.

  20. Documenting human transformation and establishing the reference condition of large river systems using Corona images: a case study from the Ganga River basin, India

    Science.gov (United States)

    Sinha, Rajiv; Pipil, Shobhit; Carbonneau, Patrice; Galiatsatos, Nikolaos

    2016-04-01

    The Ganga basin in northern India is one of the most populous river basin in the world with nearly half a billion inhabitants. In the post-independence era, population expansion and human interventions have left the ecosystem of the Ganga in a severely damaged state with dwindling water levels, pollution due to human activity and natural sediment transport severely perturbed by dams and barrages. Fortunately, there is a growing recognition by the policy managers in India that the restoration of the Ganga to a healthier status, closer to its original unperturbed state, would set a strong foundation to future, greener, economic growth in Northern India. However, given the past six decades of fast development, efforts to restore the Ganga to its original condition are faced with a fundamental question: What was the original state of the Ganga? Answering this question will require some knowledge of the former course of the Ganga and of the farming and urban density of the surrounding plains before the impacts of human disturbance could be felt. We have made use of the Corona spy satellite program that collected a large number of earth observation photos in the 1960s. These photos, now declassified, offer us a unique view of the Ganga at the very early stages of intense development and thus before the worst ecological damages occurred. However, actual usage of these images poses significant technical challenges. In the design of the Corona cameras, very high resolution comes at the cost of complex distortions. Furthermore, we have no information on the exact position and orientation of the satellite at the time of image acquisition so an accurate reprojection of the image into conventional map coordinates is not straightforward. We have developed a georectification process based on polynomial transformation to achieve a positional accuracy of ±20m for the area of our interest. Further, We have developed an object-based classification method that uses both texture and