WorldWideScience

Sample records for habitat-quality equation case

  1. Putting density back into the habitat-quality equation: case study of an open-nesting forest bird.

    Science.gov (United States)

    Pérot, Aurore; Villard, Marc-André

    2009-12-01

    Ecological traps and other cases of apparently maladaptive habitat selection cast doubt on the relevance of density as an indicator of habitat quality. Nevertheless, the prevalence of these phenomena remains poorly known, and density may still reflect habitat quality in most systems. We examined the relationship between density and two other parameters of habitat quality in an open-nesting passerine species: the Ovenbird (Seiurus aurocapilla). We hypothesized that the average individual bird makes a good decision when selecting its breeding territory and that territory spacing reflects site productivity or predation risk. Therefore, we predicted that density would be positively correlated with productivity (number of young fledged per unit area). Because individual performance is sensitive to events partly determined by chance, such as nest predation, we further predicted density would be weakly correlated or uncorrelated with the proportion of territories fledging young. We collected data in 23 study sites (25 ha each), 16 of which were located in untreated mature northern hardwood forest and seven in stands partially harvested (treated) 1-7 years prior to the survey. Density explained most of the variability in productivity (R(2)= 0.73), and there was no apparent decoupling between density and productivity in treated plots. In contrast, there was no significant relationship between density and the proportion of territories fledging >or=1 young over the entire breeding season. These results suggest that density reflects habitat quality at the plot scale in this study system. To our knowledge this is one of the few studies testing the value of territory density as an indicator of habitat quality in an open-nesting bird species on the basis of a relatively large number of sizeable study plots.

  2. Constructing Ecological Networks Based on Habitat Quality Assessment: A Case Study of Changzhou, China

    Science.gov (United States)

    Gao, Yu; Ma, Lei; Liu, Jiaxun; Zhuang, Zhuzhou; Huang, Qiuhao; Li, Manchun

    2017-01-01

    Fragmentation and reduced continuity of habitat patches threaten the environment and biodiversity. Recently, ecological networks are increasingly attracting the attention of researchers as they provide fundamental frameworks for environmental protection. This study suggests a set of procedures to construct an ecological network. First, we proposed a method to construct a landscape resistance surface based on the assessment of habitat quality. Second, to analyze the effect of the resistance surface on corridor simulations, we used three methods to construct resistance surfaces: (1) the method proposed in this paper, (2) the entropy coefficient method, and (3) the expert scoring method. Then, we integrated habitat patches and resistance surfaces to identify potential corridors using graph theory. These procedures were tested in Changzhou, China. Comparing the outputs of using different resistance surfaces demonstrated that: (1) different landscape resistance surfaces contribute to how corridors are identified, but only slightly affect the assessment of the importance of habitat patches and potential corridors; (2) the resistance surface, which is constructed based on habitat quality, is more applicable to corridor simulations; and (3) the assessment of the importance of habitat patches is fundamental for ecological network optimization in the conservation of critical habitat patches and corridors. PMID:28393879

  3. Genomics meets applied ecology: Characterizing habitat quality for sloths in a tropical agroecosystem.

    Science.gov (United States)

    Fountain, Emily D; Kang, Jung Koo; Tempel, Douglas J; Palsbøll, Per J; Pauli, Jonathan N; Zachariah Peery, M

    2018-01-01

    Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in heterogeneous landscapes requires estimates of dispersal rates among habitat types. The increasing accessibility of genomic approaches, combined with field-based demographic methods, provides novel opportunities for incorporating dispersal estimation into assessments of habitat quality. In this study, we integrated genomic kinship approaches with field-based estimates of fitness components and approximate Bayesian computation (ABC) procedures to estimate habitat-specific dispersal rates and characterize habitat quality in two-toed sloths (Choloepus hoffmanni) occurring in a Costa Rican agricultural ecosystem. Field-based observations indicated that birth and survival rates were similar in a sparsely shaded cacao farm and adjacent cattle pasture-forest mosaic. Sloth density was threefold higher in pasture compared with cacao, whereas home range size and overlap were greater in cacao compared with pasture. Dispersal rates were similar between the two habitats, as estimated using ABC procedures applied to the spatial distribution of pairs of related individuals identified using 3,431 single nucleotide polymorphism and 11 microsatellite locus genotypes. Our results indicate that crops produced under a sparse overstorey can, in some cases, constitute lower-quality habitat than pasture-forest mosaics for sloths, perhaps because of differences in food resources or predator communities. Finally, our study demonstrates that integrating field-based demographic approaches with genomic methods can provide a powerful means for characterizing habitat quality for animal populations occurring in heterogeneous landscapes. © 2017 John Wiley & Sons Ltd.

  4. Genomics meets applied ecology : Characterizing habitat quality for sloths in a tropical agro-ecosystem

    NARCIS (Netherlands)

    Fountain, Emily D; Kang, Jung Koo; Tempel, Douglas J; Palsbøll, Per J; Pauli, Jonathan N; Peery, M Zachariah

    Understanding how habitat quality in heterogeneous landscapes governs the distribution and fitness of individuals is a fundamental aspect of ecology. While mean individual fitness is generally considered a key to assessing habitat quality, a comprehensive understanding of habitat quality in

  5. Stress Associated With Habitat Quality And Group Living In Ravens

    OpenAIRE

    Mueller, Thomas; Selva, Nuria; Cortes-Avizanda, Ainara; Lemus, Jesús Angel; Blanco, Guillermo; Heinrich, Bernd; Pugacewicz, Eugeniuz; Prins, Erik; Donázar, José A.

    2011-01-01

    Many long-lived avian species adopt life strategies that involve a gregarious way of life at juvenile and sub-adult stages and territoriality during adulthood. However, the potential associated costs of these life styles, such as stress, are poorly understood. Likewise the effects of habitat quality on stress are not well understood. We examined the effects of group living, habitat quality, sex, and parasite load on the baseline concentration of faecal stress hormone (corticosterone) metaboli...

  6. Singularly Perturbed Equations in the Critical Case.

    Science.gov (United States)

    1980-02-01

    asymptotic properties of the differential equation (1) in the noncritical case (all ReXi (t) ɘ) . We will consider the critical case (k 0) ; the...the inequality (3), that is, ReXi (t,a) < 0 (58) The matrix ca(t,a) , consisting of the eigenvectors corresponding to w 0 , now has the form I (P -(t

  7. A guide to calculating habitat-quality metrics to inform conservation of highly mobile species

    Science.gov (United States)

    Bieri, Joanna A.; Sample, Christine; Thogmartin, Wayne E.; Diffendorfer, James E.; Earl, Julia E.; Erickson, Richard A.; Federico, Paula; Flockhart, D. T. Tyler; Nicol, Sam; Semmens, Darius J.; Skraber, T.; Wiederholt, Ruscena; Mattsson, Brady J.

    2018-01-01

    Many metrics exist for quantifying the relative value of habitats and pathways used by highly mobile species. Properly selecting and applying such metrics requires substantial background in mathematics and understanding the relevant management arena. To address this multidimensional challenge, we demonstrate and compare three measurements of habitat quality: graph-, occupancy-, and demographic-based metrics. Each metric provides insights into system dynamics, at the expense of increasing amounts and complexity of data and models. Our descriptions and comparisons of diverse habitat-quality metrics provide means for practitioners to overcome the modeling challenges associated with management or conservation of such highly mobile species. Whereas previous guidance for applying habitat-quality metrics has been scattered in diversified tracks of literature, we have brought this information together into an approachable format including accessible descriptions and a modeling case study for a typical example that conservation professionals can adapt for their own decision contexts and focal populations.Considerations for Resource ManagersManagement objectives, proposed actions, data availability and quality, and model assumptions are all relevant considerations when applying and interpreting habitat-quality metrics.Graph-based metrics answer questions related to habitat centrality and connectivity, are suitable for populations with any movement pattern, quantify basic spatial and temporal patterns of occupancy and movement, and require the least data.Occupancy-based metrics answer questions about likelihood of persistence or colonization, are suitable for populations that undergo localized extinctions, quantify spatial and temporal patterns of occupancy and movement, and require a moderate amount of data.Demographic-based metrics answer questions about relative or absolute population size, are suitable for populations with any movement pattern, quantify demographic

  8. Habitat quality of the woolly spider monkey (Brachyteles hypoxanthus).

    Science.gov (United States)

    da Silva Júnior, Wilson Marcelo; Alves Meira-Neto, João Augusto; da Silva Carmo, Flávia Maria; Rodrigues de Melo, Fabiano; Santana Moreira, Leandro; Ferreira Barbosa, Elaine; Dias, Luiz Gustavo; da Silva Peres, Carlos Augusto

    2009-01-01

    This study examines how habitat structure affects the home range use of a group of Brachyteles hypoxanthus in the Brigadeiro State Park, Brazil. It has been reported that most of the annual feeding time of woolly spider monkeys is spent eating leaves, but they prefer fruits when available. We hypothesise that the protein-to-fibre ratio (PF; best descriptor of habitat quality for folivorous primates) is a better descriptor of habitat quality and abundance for these primates than the structural attributes of forests (basal area is the best descriptor of habitat quality for frugivorous primates of Africa and Asia). We evaluated plant community structure, successional status, and PF of leaf samples from the dominant tree populations, both within the core and from a non-core area of the home range of our study group. Forest structure was a combination of stem density and basal area of dominant tree populations. The core area had larger trees, a higher forest basal area, and higher stem density than the non-core area. Mean PF did not differ significantly between these sites, although PF was influenced by differences in tree regeneration guilds. Large-bodied monkeys could be favoured by later successional stages of forests because larger trees and denser stems prevent the need for a higher expenditure of energy for locomotion as a consequence of vertical travel when the crowns of trees are disconnected in early successional forests. Forest structure variables (such as basal area of trees) driven by succession influence woolly spider monkey abundance in a fashion similar to frugivorous monkeys of Asia and Africa, and could explain marked differences in ranging behaviour and home range use by B. hypoxanthus. Copyright 2009 S. Karger AG, Basel.

  9. Liouville supersymmetrical equation for a quantum case

    International Nuclear Information System (INIS)

    Leznov, A.N.; Khrushev, V.V.

    1982-01-01

    The relation between coupling constants of interacting nonlinear scalar and spinor fields was established which leads to finite series of perturbation theory for the dynamical variable esup(-phi). In the classical limit h/2π→0 the system under consideration turns out to be described by supersymmetric Luiville equation

  10. Sensitivity Analysis in Structural Equation Models: Cases and Their Influence

    Science.gov (United States)

    Pek, Jolynn; MacCallum, Robert C.

    2011-01-01

    The detection of outliers and influential observations is routine practice in linear regression. Despite ongoing extensions and development of case diagnostics in structural equation models (SEM), their application has received limited attention and understanding in practice. The use of case diagnostics informs analysts of the uncertainty of model…

  11. Serengeti real estate: density vs. fitness-based indicators of lion habitat quality.

    Science.gov (United States)

    Mosser, Anna; Fryxell, John M; Eberly, Lynn; Packer, Craig

    2009-10-01

    Habitat quality is typically inferred by assuming a direct relationship between consumer density and resource abundance, although it has been suggested that consumer fitness may be a more accurate measure of habitat quality. We examined density vs. fitness-based measures of habitat quality for lions in the Serengeti National Park, Tanzania. A 40-year average of female reproductive success (yearling cubs per female) was best explained by proximity to river confluences, whereas patterns of productivity (yearling cubs per km(2)) and adult female density (individuals per km(2)) were associated with more general measures of habitat quality and areas of shelter in poor habitat. This suggests that density may not accurately distinguish between high-quality 'source' areas and low-quality sites that merely provide refuges for effectively non-reproductive individuals. Our results indicate that density may be a misleading indicator of real estate value, particularly for populations that do not conform to an ideal free distribution.

  12. Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie

    Science.gov (United States)

    Arend, Kristin K.; Beletsky, Dmitry; DePinto, Joseph; Ludsin, Stuart A.; Roberts, James J.; Rucinski, Daniel K.; Scavia, Donald; Schwab, David J.; Höök, Tomas O.

    2011-01-01

    1. Hypoxia occurs seasonally in many stratified coastal marine and freshwater ecosystems when bottom dissolved oxygen (DO) concentrations are depleted below 2–3 mg O2 L-1. 2. We evaluated the effects of hypoxia on fish habitat quality in the central basin of Lake Erie from 1987 to 2005, using bioenergetic growth rate potential (GRP) as a proxy for habitat quality. We compared the effect of hypoxia on habitat quality of (i) rainbow smelt, Osmerus mordax mordax Mitchill (young-of-year, YOY, and adult), a cold-water planktivore, (ii) emerald shiner, Notropis atherinoides Rafinesque (adult), a warm-water planktivore, (iii) yellow perch, Perca flavescens Mitchill (YOY and adult), a cool-water benthopelagic omnivore and (iv) round goby Neogobius melanostomus Pallas (adult) a eurythermal benthivore. Annual thermal and DO profiles were generated from 1D thermal and DO hydrodynamics models developed for Lake Erie’s central basin. 3. Hypoxia occurred annually, typically from mid-July to mid-October, which spatially and temporally overlaps with otherwise high benthic habitat quality. Hypoxia reduced the habitat quality across fish species and life stages, but the magnitude of the reduction varied both among and within species because of the differences in tolerance to low DO levels and warm-water temperatures. 4. Across years, trends in habitat quality mirrored trends in phosphorus concentration and water column oxygen demand in central Lake Erie. The per cent reduction in habitat quality owing to hypoxia was greatest for adult rainbow smelt and round goby (mean: -35%), followed by adult emerald shiner (mean: -12%), YOY rainbow smelt (mean: -10%) and YOY and adult yellow perch (mean: -8.5%). 5. Our results highlight the importance of differential spatiotemporally interactive effects of DO and temperature on relative fish habitat quality and quantity. These effects have the potential to influence the performance of individual fish species as well as population dynamics

  13. Semiconservative quasispecies equations for polysomic genomes: The general case

    Science.gov (United States)

    Itan, Eran; Tannenbaum, Emmanuel

    2010-06-01

    This paper develops a formulation of the quasispecies equations appropriate for polysomic, semiconservatively replicating genomes. This paper is an extension of previous work on the subject, which considered the case of haploid genomes. Here, we develop a more general formulation of the quasispecies equations that is applicable to diploid and even polyploid genomes. Interestingly, with an appropriate classification of population fractions, we obtain a system of equations that is formally identical to the haploid case. As with the work for haploid genomes, we consider both random and immortal DNA strand chromosome segregation mechanisms. However, in contrast to the haploid case, we have found that an analytical solution for the mean fitness is considerably more difficult to obtain for the polyploid case. Accordingly, whereas for the haploid case we obtained expressions for the mean fitness for the case of an analog of the single-fitness-peak landscape for arbitrary lesion repair probabilities (thereby allowing for noncomplementary genomes), here we solve for the mean fitness for the restricted case of perfect lesion repair.

  14. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    Directory of Open Access Journals (Sweden)

    Aaron D Flesch

    Full Text Available Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70 than weather (0.17 or conspecifics (0.13, evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways

  15. Apparent foraging success reflects habitat quality in an irruptive species, the Black-backed Woodpecker

    Science.gov (United States)

    Christopher T. Rota; Mark A. Rumble; Chad P. Lehman; Dylan C. Kesler; Joshua J. Millspaugh

    2015-01-01

    Dramatic fluctuations in food resources are a key feature of many habitats, and many species have evolved a movement strategy to exploit food resources that are unpredictable in space and time. The availability of food resources may be a particularly strong determinant of habitat quality for irruptive bird species. We studied the apparent foraging success of Black-...

  16. Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L

    International Nuclear Information System (INIS)

    Kardel, F.; Wuyts, K.; Babanezhad, M.; Vitharana, U.W.A.; Wuytack, T.; Potters, G.; Samson, R.

    2010-01-01

    This study has evaluated urban habitat quality by studying specific leaf area (SLA) and stomatal characteristics of the common herb Plantago lanceolata L. SLA and stomatal density, pore surface and resistance were measured at 169 locations in the city of Gent (Belgium), distributed over four land use classes, i.e., sub-urban green, urban green, urban and industry. SLA and stomatal density significantly increased from sub-urban green towards more urbanised land use classes, while the reverse was observed for stomatal pore surface. Stomatal resistance increased in the urban and industrial land use class in comparison with the (sub-) urban green, but differences between land use classes were less pronounced. Spatial distribution maps for these leaf characteristics showed a high spatial variation, related to differences in habitat quality within the city. Hence, stomatal density and stomatal pore surface are assumed to be potentially good bio-indicators for urban habitat quality. - Stomatal characteristics of Plantago lanceolata can be used for biomonitoring of urban habitat quality.

  17. Chinook salmon use of spawning patches: relative roles of habitat quality, size, and connectivity.

    Science.gov (United States)

    Isaak, Daniel J; Thurow, Russell F; Rieman, Bruce E; Dunham, Jason B

    2007-03-01

    Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically

  18. Chinook salmon use of spawning patches: Relative roles of habitat quality, size, and connectivity

    Science.gov (United States)

    Isaak, D.J.; Thurow, R.F.; Rieman, B.E.; Dunham, J.B.

    2007-01-01

    Declines in many native fish populations have led to reassessments of management goals and shifted priorities from consumptive uses to species preservation. As management has shifted, relevant environmental characteristics have evolved from traditional metrics that described local habitat quality to characterizations of habitat size and connectivity. Despite the implications this shift has for how habitats may be prioritized for conservation, it has been rare to assess the relative importance of these habitat components. We used an information-theoretic approach to select the best models from sets of logistic regressions that linked habitat quality, size, and connectivity to the occurrence of chinook salmon (Oncorhynchus tshawytscha) nests. Spawning distributions were censused annually from 1995 to 2004, and data were complemented with field measurements that described habitat quality in 43 suitable spawning patches across a stream network that drained 1150 km 2 in central Idaho. Results indicated that the most plausible models were dominated by measures of habitat size and connectivity, whereas habitat quality was of minor importance. Connectivity was the strongest predictor of nest occurrence, but connectivity interacted with habitat size, which became relatively more important when populations were reduced. Comparison of observed nest distributions to null model predictions confirmed that the habitat size association was driven by a biological mechanism when populations were small, but this association may have been an area-related sampling artifact at higher abundances. The implications for habitat management are that the size and connectivity of existing habitat networks should be maintained whenever possible. In situations where habitat restoration is occurring, expansion of existing areas or creation of new habitats in key areas that increase connectivity may be beneficial. Information about habitat size and connectivity also could be used to strategically

  19. Strongly asymmetric discrete Painlevé equations: The additive case

    Energy Technology Data Exchange (ETDEWEB)

    Grammaticos, B. [IMNC, Université Paris VII and XI, CNRS, UMR 8165, Bât. 440, 91406 Orsay (France); Ramani, A. [Centre de Physique Théorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Tamizhmani, K. M. [Department of Mathematics, Pondicherry University, Kalapet, 605014 Puducherry (India); Tamizhmani, T. [Avvaiyar Government College for Women, 609602 Karaikal (India); Satsuma, J. [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi 252-5258 (Japan)

    2014-05-15

    We examine a class of discrete Painlevé equations which present a strong asymmetry. These equations can be written as a system of two equations, the right-hand-sides of which do not have the same functional form. We limit here our investigation to two canonical families of the Quispel-Roberts-Thompson (QRT) classification both of which lead to difference equations. Several new integrable discrete systems are identified.

  20. HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data

    Science.gov (United States)

    Heumann, B. W.; Guichard, F.; Seaquist, J. W.

    2005-05-01

    The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.

  1. Habitat quality assessment of two wetland treatment systems in Mississippi: A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    McAllister, L.S.

    1992-12-01

    The use of wetland treatment systems (WTS), or constructed wetlands, for treating municipal wastewater is increasing in the United States, but little is known about the ability of these systems to duplicate or sustain wetland functions. The pilot study was designed to examine methods and the usefulness of various wetland indicators for assessing the wildlife habitat quality in six WTS sites throughout the United States. The report focusses on two Mississippi sites, one located near Collins, and one near Ocean Springs.

  2. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    The study examined errors students make in solving linear equation word problems with a view to expose the nature of these errors and to make suggestions for classroom teaching. A diagnostic test comprising 10 linear equation word problems, was administered to a sample (n=130) of senior high school first year Home ...

  3. Differential equations and integrable models: the SU(3) case

    International Nuclear Information System (INIS)

    Dorey, Patrick; Tateo, Roberto

    2000-01-01

    We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz

  4. Modeling population dynamics of solitary bees in relation to habitat quality

    Directory of Open Access Journals (Sweden)

    K. Ulbrich

    2001-09-01

    Full Text Available To understand associations between habitat, individual behaviour, and population development of solitary bees we developed an individual-based model. This model is based on field observations of Osmia rufa (L (Apoideae: Megachilidae and describes population dynamics of solitary bees. Model rules are focused on maternal investment, in particular on the female’s individual decisions about sex and size of progeny. In the present paper, we address the effect of habitat quality on population size and sex ratio. We examine how food availability and the risk of parasitism influence long-term population development. It can be shown how population properties result from individual maternal investment which is described as a functional response to fluctuations of environmental conditions. We found that habitat quality can be expressed in terms of cell construction time. This interface factor influences the rate of open cell parasitism as the risk for a brood cell to be parasitized is positively correlated with the time of its construction. Under conditions of scarce food and under resulting long provision times even low parasitism rates lead to a high extinction risk of the population, whereas in rich habitats probabilities of extinction are low even for high rates of parasitism. For a given level of food and parasitism there is an optimum time for cell construction which minimizes the extinction risk of the population. Model results demonstrate that under fluctuating environmental conditions, decreasing habitat quality leads to a decrease in population size but also to rapid shifts in sex ratio.

  5. Compensatory immigration depends on adjacent population size and habitat quality but not on landscape connectivity.

    Science.gov (United States)

    Turgeon, Katrine; Kramer, Donald L

    2012-11-01

    1. Populations experiencing localized mortality can recover in the short term by net movement of individuals from adjacent areas, a process called compensatory immigration or spillover. Little is known about the factors influencing the magnitude of compensatory immigration or its impact on source populations. Such information is important for understanding metapopulation dynamics, the use of protected areas for conservation, management of exploited populations and pest control. 2. Using two small, territorial damselfish species (Stegastes diencaeus and S. adustus) in their naturally fragmented habitat, we quantified compensatory immigration in response to localized mortality, assessed its impact on adjacent source populations and examined the importance of potential immigrants, habitat quality and landscape connectivity as limiting factors. On seven experimental sites, we repeatedly removed 15% of the initial population size until none remained and immigration ceased. 3. Immigrants replaced 16-72% of original residents in S. diencaeus and 0-69% in S. adustus. The proportion of the source population that immigrated into depleted areas varied from 9% to 61% in S. diencaeus and from 3% to 21% in S. adustus. In S. diencaeus, compensatory immigration was strongly affected by habitat quality, to a lesser extent by the abundance of potential immigrants and not by landscape connectivity. In S. adustus, immigration was strongly affected by the density of potential migrants and not by habitat quality and landscape connectivity. On two control sites, immigration in the absence of creation of vacancies was extremely rare. 4. Immigration occurred in response to localized mortality and was therefore compensatory. It was highly variable, sometimes producing substantial impacts on both depleted and source populations. The magnitude of compensatory immigration was influenced primarily by the availability of immigrants and by the potential improvement in territory quality that they

  6. Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Science.gov (United States)

    Flitcroft, Rebecca L; Falke, Jeffrey A.; Reeves, Gordon H.; Hessburg, Paul F.; McNyset, Kris M.; Benda, Lee E.

    2016-01-01

    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in

  7. Assessing habitat quality of farm-dwelling house sparrows in different agricultural landscapes.

    Science.gov (United States)

    von Post, Maria; Borgström, Pernilla; Smith, Henrik G; Olsson, Ola

    2012-04-01

    Having historically been abundant throughout Europe, the house sparrow (Passer domesticus) has in recent decades suffered severe population declines in many urban and rural areas. The decline in rural environments is believed to be caused by agricultural intensification, which has resulted in landscape simplification. We used giving-up densities (GUDs) of house sparrows feeding in artificial food patches placed in farmlands of southern Sweden to determine habitat quality during the breeding season at two different spatial scales: the landscape and the patch scale. At the landscape scale, GUDs were lower on farms in homogeneous landscapes dominated by crop production compared to more heterogeneous landscapes with mixed farming or animal husbandry. At the patch level, feeding patches with a higher predation risk (caused by fitting a wall to the patch to obstruct vigilance) had higher GUDs. In addition, GUDs were positively related to population size, which strongly implies that GUDs reflect habitat quality. However, the increase followed different patterns in homogeneous and heterogeneous landscapes, indicating differing population limiting mechanisms in these two environments. We found no effect of the interaction between patch type and landscape type, suggesting that predation risk was similar in both landscape types. Thus, our study suggests that simplified landscapes constitute a poorer feeding environment for house sparrows during breeding, that the population-regulating mechanisms in the landscapes differ, but that predation risk is the same across the landscape types.

  8. Evaluation of habitat quality for selected wildlife species associated with back channels.

    Science.gov (United States)

    Anderson, James T.; Zadnik, Andrew K.; Wood, Petra Bohall; Bledsoe, Kerry

    2013-01-01

    The islands and associated back channels on the Ohio River, USA, are believed to provide critical habitat features for several wildlife species. However, few studies have quantitatively evaluated habitat quality in these areas. Our main objective was to evaluate the habitat quality of back and main channel areas for several species using habitat suitability index (HSI) models. To test the effectiveness of these models, we attempted to relate HSI scores and the variables measured for each model with measures of relative abundance for the model species. The mean belted kingfisher (Ceryle alcyon) HSI was greater on the main than back channel. However, the model failed to predict kingfisher abundance. The mean reproduction component of the great blue heron (Ardea herodias) HSI, total common muskrat (Ondatra zibethicus) HSI, winter cover component of the snapping turtle (Chelydra serpentina) HSI, and brood-rearing component of the wood duck (Aix sponsa) HSI were all greater on the back than main channel, and were positively related with the relative abundance of each species. We found that island back channels provide characteristics not found elsewhere on the Ohio River and warrant conservation as important riparian wildlife habitat. The effectiveness of using HSI models to predict species abundance on the river was mixed. Modifications to several of the models are needed to improve their use on the Ohio River and, likely, other large rivers.

  9. Students' errors in solving linear equation word problems: Case ...

    African Journals Online (AJOL)

    kofi.mereku

    Development in most areas of life is based on effective knowledge of science and ... Problem solving, as used in mathematics education literature, refers ... word problems, on the other hand, are those linear equation tasks or ... taught LEWPs in the junior high school, many of them reach the senior high school without a.

  10. Relativistic Tsiolkovsky equation -- a case study in special relativity

    Science.gov (United States)

    Redd, Jeremy; Panin, Alexander

    2011-10-01

    A possibility of using antimatter in future space propulsion systems is seriously discussed in scientific literature. Annihilation of matter and antimatter is not only the energy source of ultimate density 9x10^16 J/kg (provided that antimatter fuel is available on board or can be collected along the journey) but also potentially allows to reach ultimate exhaust speed -- speed of light c. Using relativistic rocket equation we discuss the feasibility of achieving relativistic velocities with annihilation powered photon engine, as well as the advantages and disadvantages of interstellar travel with relativistic and ultrarelativistic velocities.

  11. Estuarine habitat quality reflects urbanization at large spatial scales in South Carolina's coastal zone.

    Science.gov (United States)

    Van Dolah, Robert F; Riekerk, George H M; Bergquist, Derk C; Felber, Jordan; Chestnut, David E; Holland, A Fredrick

    2008-02-01

    Land cover patterns were evaluated in 29 estuarine watersheds of South Carolina to determine relationships between urban/suburban development and estuarine habitat quality. Principal components analysis and Pearson product moment correlation analyses were used to examine the relationships between ten land cover categories and selected measures of nutrient or bacterial enrichment in the water column and contaminant enrichment in sediments. These analyses indicated strong relationships between land cover categories representing upland development and a composite measure of 24 inorganic and organic contaminants using the Effect Range Median-Quotient (ERM-Q). Similar relationships also were observed for the summed concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), pesticides, and metals. Data obtained from tidal creeks generally showed stronger correlations between urban/suburban land use and pesticides and metals compared to data obtained from larger open water habitats. Correlations between PAH concentrations and the urban/suburban land cover categories were similar between creek and open water habitats. PCB concentrations generally showed very little relationship to any of the land cover categories. Measures of nutrient enrichment, which included total Kjeldahl nitrogen (TKN), nitrate-nitrite, phosphorus, chlorophyll-a, and total organic carbon, were generally not significantly correlated with any land cover categories, whereas fecal coliform bacteria were significantly and positively correlated with the urban/suburban land cover categories and negatively correlated with the non-urban land cover categories. Fecal coliform correlations were stronger using data from the open water sites than from the tidal creek sites. Both ERM-Q and fecal coliform concentrations were much greater and more pervasive in watersheds with relatively high (>50%) urban/suburban cover compared to watersheds with low (urban/suburban cover. These

  12. On the energy-critical fractional Sch\\"odinger equation in the radial case

    OpenAIRE

    Guo, Zihua; Sire, Yannick; Wang, Yuzhao; Zhao, Lifeng

    2013-01-01

    We consider the Cauchy problem for the energy-critical nonlinear Schr\\"odinger equation with fractional Laplacian (fNLS) in the radial case. We obtain global well-posedness and scattering in the energy space in the defocusing case, and in the focusing case with energy below the ground state.

  13. Does coastal lagoon habitat quality affect fish growth rate and their recruitment? Insights from fishing and acoustic surveys

    Science.gov (United States)

    Brehmer, P.; Laugier, T.; Kantoussan, J.; Galgani, F.; Mouillot, D.

    2013-07-01

    Ensuring the sustainability of fish resources necessitates understanding their interaction with coastal habitats, which is becoming ever more challenging in the context of ever increasing anthropogenic pressures. The ability of coastal lagoons, exposed to major sources of disturbance, to provide resources and suitable habitats for growth and survival of juvenile fish is especially important. We analysed three lagoons with different ecological statuses and habitat quality on the basis of their eutrophication and ecotoxicity (Trix test) levels. Fish abundances were sampled using fishing and horizontal beaming acoustic surveys with the same protocols in the same year. The relative abundance of Anguilla anguilla, Dicentrarchus labrax or the Mugilidae group was not an indicator of habitat quality, whereas Atherina boyeri and Sparus aurata appeared to be more sensitive to habitat quality. Fish abundance was higher in the two lagoons with high eutrophication and ecotoxicity levels than in the less impacted lagoon, while fish sizes were significantly higher in the two most severely impacted lagoons. This leads us to suggest low habitat quality may increase fish growth rate (by the mean of a cascading effect), but may reduce lagoon juvenile abundance by increasing larval mortality. Such a hypothesis needs to be further validated using greater investigations which take into account more influences on fish growth and recruitment in such variable environments under complex multi-stressor conditions.

  14. Invasion by nonnative brook trout in Panther Creek, Idaho: Roles of habitat quality, connectivity, and biotic resistance

    Science.gov (United States)

    Joseph R. Benjamin

    2006-01-01

    Theoretical models suggest the invasion of nonnative freshwater species is facilitated through the interaction of three factors: biotic resistance, habitat quality, and connectivity. We measured variables that represented each component to determine which were associated with small (150 mm) brook trout occurrence in Panther Creek, a tributary...

  15. Numerical resolution of the Fokker-Planck equation for non-lineal cases

    International Nuclear Information System (INIS)

    Mastropiero, Daniel

    1997-01-01

    The author resolves the Fokker-Plank equation of the statistical thermodynamics of irreversible processes for the flow of particles in a medium, considering two cases: a) The diffusion coefficient of the medium depends on concentration; and b) The medium is unhomogeneous, i.e. the diffusion coefficient varies with the position. Different cases are analyzed and compared

  16. The selection problem for discounted Hamilton–Jacobi equations: some non-convex cases

    KAUST Repository

    Gomes, Diogo A.; Mitake, Hiroyoshi; Tran, Hung V.

    2018-01-01

    Here, we study the selection problem for the vanishing discount approximation of non-convex, first-order Hamilton–Jacobi equations. While the selection problem is well understood for convex Hamiltonians, the selection problem for non-convex Hamiltonians has thus far not been studied. We begin our study by examining a generalized discounted Hamilton–Jacobi equation. Next, using an exponential transformation, we apply our methods to strictly quasi-convex and to some non-convex Hamilton–Jacobi equations. Finally, we examine a non-convex Hamiltonian with flat parts to which our results do not directly apply. In this case, we establish the convergence by a direct approach.

  17. The selection problem for discounted Hamilton–Jacobi equations: some non-convex cases

    KAUST Repository

    Gomes, Diogo A.

    2018-01-26

    Here, we study the selection problem for the vanishing discount approximation of non-convex, first-order Hamilton–Jacobi equations. While the selection problem is well understood for convex Hamiltonians, the selection problem for non-convex Hamiltonians has thus far not been studied. We begin our study by examining a generalized discounted Hamilton–Jacobi equation. Next, using an exponential transformation, we apply our methods to strictly quasi-convex and to some non-convex Hamilton–Jacobi equations. Finally, we examine a non-convex Hamiltonian with flat parts to which our results do not directly apply. In this case, we establish the convergence by a direct approach.

  18. Competition and habitat quality influence age and sex distribution in wintering rusty blackbirds.

    Science.gov (United States)

    Mettke-Hofmann, Claudia; Hamel, Paul B; Hofmann, Gerhard; Zenzal, Theodore J; Pellegrini, Anne; Malpass, Jennifer; Garfinkel, Megan; Schiff, Nathan; Greenberg, Russell

    2015-01-01

    Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus) is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes.

  19. Competition and habitat quality influence age and sex distribution in wintering rusty blackbirds.

    Directory of Open Access Journals (Sweden)

    Claudia Mettke-Hofmann

    Full Text Available Bird habitat quality is often inferred from species abundance measures during the breeding and non-breeding season and used for conservation management decisions. However, during the non-breeding season age and sex classes often occupy different habitats which suggest a need for more habitat-specific data. Rusty Blackbird (Euphagus carolinus is a forested wetland specialist wintering in bottomland hardwood forests in the south-eastern U. S. and belongs to the most steeply declining songbirds in the U.S. Little information is available to support priority birds such as the Rusty Blackbird wintering in this threatened habitat. We assessed age and sex distribution and body condition of Rusty Blackbirds among the three major habitats used by this species in the Lower Mississippi Alluvial Valley and also measured food availability. Overall, pecan groves had the highest biomass mainly driven by the amount of nuts. Invertebrate biomass was highest in forests but contributed only a small percentage to overall biomass. Age and sex classes were unevenly distributed among habitats with adult males primarily occupying pecan groves containing the highest nut biomass, females being found in forests which had the lowest nut biomass and young males primarily staying in forest fragments along creeks which had intermediate nut biomass. Males were in better body condition than females and were in slightly better condition in pecan groves. The results suggest that adult males occupy the highest quality habitat and may competitively exclude the other age and sex classes.

  20. Habitat quality of a subarctic nursery ground for 0-group plaice ( Pleuronectes platessa L.)

    Science.gov (United States)

    Freitas, Vânia; Campos, Joana; Skreslet, Stig; van der Veer, Henk W.

    2010-07-01

    Habitat quality of a subarctic nursery ground in northern Norway for 0-group plaice Pleuronectes platessa was investigated by following settlement, mortality and growth during 2005 and 2006. Newly settled individuals were first observed in the end of May to early June and settlement lasted until mid-July. Densities peaked in early July and were comparable to those reported in temperate nursery grounds. Mortality estimates after settlement differed between 0.062 d -1 in 2005 and 0.025 d -1 in 2006. Potential predators appeared to be rather similar as those reported in other areas: the brown shrimp Crangoncrangon, the shore crab Carcinus maenas and demersal fish species (gadoids). Population mean growth indicated linear growth until August leveling-off afterwards. 0-group plaice reached a lower mean size (5-6 cm) at the end of the growing season than in temperate areas probably due to later settlement timing in combination with lower summer-autumn water temperatures. The comparison of observed growth rates with predictions of maximum growth models indicated a similar pattern as observed in temperate nursery grounds: Growth appeared to be maximal except for the period after summer. Whether or not this was related to changes in food quality throughout the season, to interspecies competition or to emigration remains to be elucidated.

  1. Habitat quality affects stress responses and survival in a bird wintering under extremely low ambient temperatures

    Science.gov (United States)

    Cīrule, Dina; Krama, Tatjana; Krams, Ronalds; Elferts, Didzis; Kaasik, Ants; Rantala, Markus J.; Mierauskas, Pranas; Luoto, Severi; Krams, Indrikis A.

    2017-12-01

    Animals normally respond to stressful environmental stimuli by releasing glucocorticoid hormones. We investigated whether baseline corticosterone (CORT), handling-induced corticosterone concentration(s), and body condition indices of members of willow tit ( Poecile montanus) groups differed while wintering in old growth forests and managed young forests in mild weather conditions and during cold spells. Willow tits spend the winter season in non-kin groups in which dominant individuals typically claim their priority to access resources, while subordinate individuals may experience greater levels of stress and higher mortality, especially during cold spells. We captured birds to measure baseline CORT and levels of handling-induced CORT secretion after 20 min of capture. Willow tits in the young forests had higher baseline CORT and a smaller increase in CORT in response to capture than individuals in the old forests. Baseline CORT was higher in females and juvenile birds compared to adult males, whereas handling-induced CORT secretion did not differ between birds of different ages. During cold spells, baseline CORT of willow tits increased and handling-induced CORT secretion decreased, especially in birds in young forests. Willow tits' survival was higher in the old forests, with dominant individuals surviving better than subordinates. Our results show that changes in CORT secretion reflect responses to habitat quality and climate harshness, indicating young managed coniferous forests as a suboptimal habitat for the willow tit.

  2. Solving Some Special Cases of Monomial Ratio Equations Appearing Frequently in Physical and Engineering Problems

    Directory of Open Access Journals (Sweden)

    Enrique Castillo

    2016-01-01

    Full Text Available We first show that monomial ratio equations are not only very common in Physics and Engineering, but the natural type of equations in many practical problems. More precisely, in the case of models involving scale variables if the used formulas are not of this type they are not physically valid. The consequence is that when estimating the model parameters we are faced with systems of monomial ratio equations that are nonlinear and difficult to solve. In this paper, we provide an original algorithm to obtain the unique solutions of systems of equations made of linear combinations of monomial ratios whose coefficient matrix has a proper null space with low dimension that permits solving the problem in a simple way. Finally, we illustrate the proposed methods by their application to two practical problems from the hydraulic and structural fields.

  3. Models of regional habitat quality and connectivity for pumas (Puma concolor) in the southwestern United States.

    Science.gov (United States)

    Dickson, Brett G; Roemer, Gary W; McRae, Brad H; Rundall, Jill M

    2013-01-01

    The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor) are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate the dispersal

  4. Models of regional habitat quality and connectivity for pumas (Puma concolor in the southwestern United States.

    Directory of Open Access Journals (Sweden)

    Brett G Dickson

    Full Text Available The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate

  5. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Yuekui Ding

    2015-09-01

    Full Text Available We applied a river habitat quality (RHQ assessment method to the Hai River Basin (HRB; an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m; lower coverage of riparian vegetation (≤40%; artificial land use patterns (public and industrial land; frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3; single flow channels; and rare aquatic plants (≤1 category. At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01 and urban land (r = 0.998; p < 0.05; and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01. Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56; caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  6. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    Directory of Open Access Journals (Sweden)

    Juan M Requena-Mullor

    Full Text Available As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the

  7. Prioritizing tropical habitats for long-distance migratory songbirds: an assessment of habitat quality at a stopover site in Colombia

    Directory of Open Access Journals (Sweden)

    Nicholas J. Bayly

    2016-12-01

    Full Text Available Long-distance migratory birds are declining globally and migration has been identified as the primary source of mortality in this group. Despite this, our lack of knowledge of habitat use and quality at stopovers, i.e., sites where the energy for migration is accumulated, remains a barrier to designing appropriate conservation measures, especially in tropical regions. There is therefore an urgent need to assess stopover habitat quality and concurrently identify efficient and cost-effective methods for doing so. Given that fuel deposition rates directly influence stopover duration, departure fuel load, and subsequent speed of migration, they are expected to provide a direct measure of habitat quality and have the advantage of being measurable through body-mass changes. Here, we examined seven potential indicators of quality, including body-mass change, for two ecologically distinct Neotropical migratory landbirds on stopover in shade-coffee plantations and tropical humid premontane forest during spring migration in Colombia: (1 rate of body-mass change; (2 foraging rate; (3 recapture rate; (4 density; (5 flock size; (6 age and sex ratios; and (7 body-mass distribution. We found higher rates of mass change in premontane forest than in shade-coffee in Tennessee Warbler Oreothlypis peregrina, a difference that was mirrored in higher densities and body masses in forest. In Gray-cheeked Thrush Catharus minimus, a lack of recaptures in shade-coffee and higher densities in forest, also suggested that forest provided superior fueling conditions. For a reliable assessment of habitat quality, we therefore recommend using a suite of indicators, taking into account each species' ecology and methodological considerations. Our results also imply that birds stopping over in lower quality habitats may spend a longer time migrating and require more stopovers, potentially leading to important carryover effects on reproductive fitness. Evaluating habitat quality is

  8. Sustainability in a Differential Equations Course: A Case Study of Easter Island

    Science.gov (United States)

    Koss, Lorelei

    2011-01-01

    Easter Island is a fascinating example of resource depletion and population collapse, and its relatively short period of human habitation combined with its isolation lends itself well to investigation by students in a first-semester ordinary differential equations course. This article describes curricular materials for a semester-long case study…

  9. Existence and Multiplicity Results for Nonlinear Differential Equations Depending on a Parameter in Semipositone Case

    Directory of Open Access Journals (Sweden)

    Hailong Zhu

    2012-01-01

    Full Text Available The existence and multiplicity of solutions for second-order differential equations with a parameter are discussed in this paper. We are mainly concerned with the semipositone case. The analysis relies on the nonlinear alternative principle of Leray-Schauder and Krasnosel'skii's fixed point theorem in cones.

  10. Reduction of structured population models to threshold-type delay equations and functional differential equations: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.L. (Arizona State Univ., Tempe (United States))

    1993-01-01

    It is shown by way of a simple example that certain structured population models lead naturally to differential delay equations of the threshold type and that these equations can be transformed in a natural way to functional differential equations. The model examined can be viewed as a model of competition between adults and juveniles of a single population. The results indicate the possibility that this competition leads to instability. 28 refs., 2 figs.

  11. Using Regression Equations Built from Summary Data in the Psychological Assessment of the Individual Case: Extension to Multiple Regression

    Science.gov (United States)

    Crawford, John R.; Garthwaite, Paul H.; Denham, Annie K.; Chelune, Gordon J.

    2012-01-01

    Regression equations have many useful roles in psychological assessment. Moreover, there is a large reservoir of published data that could be used to build regression equations; these equations could then be employed to test a wide variety of hypotheses concerning the functioning of individual cases. This resource is currently underused because…

  12. The behavior of steady quasisolitons near the limit cases of third-order nonlinear Schrödinger equation

    DEFF Research Database (Denmark)

    Karpman, V.I.; Shagalov, A.G.; Juul Rasmussen, J.

    2002-01-01

    The behavior of steady quasisoliton solutions to the extended third-order nonlinear Schrodinger (NLS) equation is studied in two cases: (i) when the coefficients in the equation approach the Hirota conditions, and (ii) near the limit of the regular NLS equation. (C) 2002 Published by Elsevier...

  13. Application of the Fokker-Plank-Kolmogorov equation for affluence forecast to hydropower reservoirs (Betania Case)

    International Nuclear Information System (INIS)

    Dominguez Calle, Efrain Antonio

    2004-01-01

    This paper shows a modeling technique to forecast probability density curves for the flows that represent the monthly affluence to hydropower reservoirs. Briefly, the factors that require affluence forecast in terms of probabilities, the ranges of existing forecast methods as well as the contradiction between those techniques and the real requirements of decision-making procedures are pointed out. The mentioned contradiction is resolved applying the Fokker-Planck-Kolmogorov equation that describes the time evolution of a stochastic process that can be considered as markovian. We show the numerical scheme for this equation, its initial and boundary conditions, and its application results in the case of Betania's reservoir

  14. Solutions of the linearized Bach-Einstein equation in the static spherically symmetric case

    International Nuclear Information System (INIS)

    Schmidt, H.J.

    1985-01-01

    The Bach-Einstein equation linearized around Minkowski space-time is completely solved. The set of solutions depends on three parameters; a two-parameter subset of it becomes asymptotically flat. In that region the gravitational potential is of the type phi = -m/r + epsilon exp (-r/l). Because of the different asymptotic behaviour of both terms, it became necessary to linearize also around the Schwarzschild solution phi = -m/r. The linearized equation resulting in this case is discussed using qualitative methods. The result is that for m = 2l phi = -m/r + epsilon r -2 exp (-r/l) u, where u is some bounded function; m is arbitrary and epsilon again small. Further, the relation between the solution of the linearized and the full equation is discussed. (author)

  15. Dealing with Dependent Uncertainty in Modelling: A Comparative Study Case through the Airy Equation

    Directory of Open Access Journals (Sweden)

    J.-C. Cortés

    2013-01-01

    Full Text Available The consideration of uncertainty in differential equations leads to the emergent area of random differential equations. Under this approach, inputs become random variables and/or stochastic processes. Often one assumes that inputs are independent, a hypothesis that simplifies the mathematical treatment although it could not be met in applications. In this paper, we analyse, through the Airy equation, the influence of statistical dependence of inputs on the output, computing its expectation and standard deviation by Fröbenius and Polynomial Chaos methods. The results are compared with Monte Carlo sampling. The analysis is conducted by the Airy equation since, as in the deterministic scenario its solutions are highly oscillatory, it is expected that differences will be better highlighted. To illustrate our study, and motivated by the ubiquity of Gaussian random variables in numerous practical problems, we assume that inputs follow a multivariate Gaussian distribution throughout the paper. The application of Fröbenius method to solve Airy equation is based on an extension of the method to the case where inputs are dependent. The numerical results show that the existence of statistical dependence among the inputs and its magnitude entails changes on the variability of the output.

  16. Influence of habitat quality, population size, patch size, and connectivity on patch-occupancy dynamics of the middle spotted woodpecker.

    Science.gov (United States)

    Robles, Hugo; Ciudad, Carlos

    2012-04-01

    Despite extensive research on the effects of habitat fragmentation, the ecological mechanisms underlying colonization and extinction processes are poorly known, but knowledge of these mechanisms is essential to understanding the distribution and persistence of populations in fragmented habitats. We examined these mechanisms through multiseason occupancy models that elucidated patch-occupancy dynamics of Middle Spotted Woodpeckers (Dendrocopos medius) in northwestern Spain. The number of occupied patches was relatively stable from 2000 to 2010 (15-24% of 101 patches occupied every year) because extinction was balanced by recolonization. Larger and higher quality patches (i.e., higher density of oaks >37 cm dbh [diameter at breast height]) were more likely to be occupied. Habitat quality (i.e., density of large oaks) explained more variation in patch colonization and extinction than did patch size and connectivity, which were both weakly associated with probabilities of turnover. Patches of higher quality were more likely to be colonized than patches of lower quality. Populations in high-quality patches were less likely to become extinct. In addition, extinction in a patch was strongly associated with local population size but not with patch size, which means the latter may not be a good surrogate of population size in assessments of extinction probability. Our results suggest that habitat quality may be a primary driver of patch-occupancy dynamics and may increase the accuracy of models of population survival. We encourage comparisons of competing models that assess occupancy, colonization, and extinction probabilities in a single analytical framework (e.g., dynamic occupancy models) so as to shed light on the association of habitat quality and patch geometry with colonization and extinction processes in different settings and species. ©2012 Society for Conservation Biology.

  17. Algebraic inversion of the Dirac equation for the vector potential in the non-Abelian case

    International Nuclear Information System (INIS)

    Inglis, S M; Jarvis, P D

    2012-01-01

    We study the Dirac equation for spinor wavefunctions minimally coupled to an external field, from the perspective of an algebraic system of linear equations for the vector potential. By analogy with the method in electromagnetism, which has been well-studied, and leads to classical solutions of the Maxwell–Dirac equations, we set up the formalism for non-Abelian gauge symmetry, with the SU(2) group and the case of four-spinor doublets. An extended isospin-charge conjugation operator is defined, enabling the hermiticity constraint on the gauge potential to be imposed in a covariant fashion, and rendering the algebraic system tractable. The outcome is an invertible linear equation for the non-Abelian vector potential in terms of bispinor current densities. We show that, via application of suitable extended Fierz identities, the solution of this system for the non-Abelian vector potential is a rational expression involving only Pauli scalar and Pauli triplet, Lorentz scalar, vector and axial vector current densities, albeit in the non-closed form of a Neumann series. (paper)

  18. A non-trivial special case of the biconfluent Heun equation [0,1,1_3]: orthogonality of its solutions

    Directory of Open Access Journals (Sweden)

    Harold Exton

    1996-05-01

    Full Text Available A special case of the biconfluent Heun equation which is not reducible to a form of a hypergeometric equation is solved by means of a Laplace transform. The solutions are double series which exhibit a type of orthogonality comparable in some respects to that of Fourier-Bessel type.

  19. Exact Solutions to Several Nonlinear Cases of Generalized Grad-Shafranov Equation for Ideal Magnetohydrodynamic Flows in Axisymmetric Domain

    Science.gov (United States)

    Adem, Abdullahi Rashid; Moawad, Salah M.

    2018-05-01

    In this paper, the steady-state equations of ideal magnetohydrodynamic incompressible flows in axisymmetric domains are investigated. These flows are governed by a second-order elliptic partial differential equation as a type of generalized Grad-Shafranov equation. The problem of finding exact equilibria to the full governing equations in the presence of incompressible mass flows is considered. Two different types of constraints on position variables are presented to construct exact solution classes for several nonlinear cases of the governing equations. Some of the obtained results are checked for their applications to magnetic confinement plasma. Besides, they cover many previous configurations and include new considerations about the nonlinearity of magnetic flux stream variables.

  20. Invasion by non-native brook trout in Panther Creek, Idaho: Roles of habitat quality, biotic resistance, and connectivity to source habitats

    Science.gov (United States)

    Joseph R. Benjamin; Jason B. Dunham; Matthew R. Dare

    2007-01-01

    Theoretical models and empirical evidence suggest that the invasion of nonnative species in freshwaters is facilitated through the interaction of three factors: habitat quality, biotic resistance, and connectivity. We measured variables that represented each factor to determine which were associated with the occurrence of nonnative brook trout Salvelinus...

  1. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management.

    Science.gov (United States)

    Coates, Peter S; Casazza, Michael L; Ricca, Mark A; Brussee, Brianne E; Blomberg, Erik J; Gustafson, K Benjamin; Overton, Cory T; Davis, Dawn M; Niell, Lara E; Espinosa, Shawn P; Gardner, Scott C; Delehanty, David J

    2016-02-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management.Greater sage-grouse Centrocercus urophasianus , hereafter 'sage-grouse' populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize the use of available information.Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by >35 500 independent telemetry locations from >1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes.We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of the following: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and application s. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance and space use derived from multiple data sources yields a composite map that can guide effective allocation of management

  2. Integrating spatially explicit indices of abundance and habitat quality: an applied example for greater sage-grouse management

    Science.gov (United States)

    Coates, Peter S.; Casazza, Michael L.; Ricca, Mark A.; Brussee, Brianne E.; Blomberg, Erik J.; Gustafson, K. Benjamin; Overton, Cory T.; Davis, Dawn M.; Niell, Lara E.; Espinosa, Shawn P.; Gardner, Scott C.; Delehanty, David J.

    2016-01-01

    Predictive species distributional models are a cornerstone of wildlife conservation planning. Constructing such models requires robust underpinning science that integrates formerly disparate data types to achieve effective species management. Greater sage-grouse Centrocercus urophasianus, hereafter “sage-grouse” populations are declining throughout sagebrush-steppe ecosystems in North America, particularly within the Great Basin, which heightens the need for novel management tools that maximize use of available information. Herein, we improve upon existing species distribution models by combining information about sage-grouse habitat quality, distribution, and abundance from multiple data sources. To measure habitat, we created spatially explicit maps depicting habitat selection indices (HSI) informed by > 35 500 independent telemetry locations from > 1600 sage-grouse collected over 15 years across much of the Great Basin. These indices were derived from models that accounted for selection at different spatial scales and seasons. A region-wide HSI was calculated using the HSI surfaces modelled for 12 independent subregions and then demarcated into distinct habitat quality classes. We also employed a novel index to describe landscape patterns of sage-grouse abundance and space use (AUI). The AUI is a probabilistic composite of: (i) breeding density patterns based on the spatial configuration of breeding leks and associated trends in male attendance; and (ii) year-round patterns of space use indexed by the decreasing probability of use with increasing distance to leks. The continuous AUI surface was then reclassified into two classes representing high and low/no use and abundance. Synthesis and applications. Using the example of sage-grouse, we demonstrate how the joint application of indices of habitat selection, abundance, and space use derived from multiple data sources yields a composite map that can guide effective allocation of management intensity across

  3. Nonlinear Boltzmann equation for the homogeneous isotropic case: Minimal deterministic Matlab program

    Science.gov (United States)

    Asinari, Pietro

    2010-10-01

    The homogeneous isotropic Boltzmann equation (HIBE) is a fundamental dynamic model for many applications in thermodynamics, econophysics and sociodynamics. Despite recent hardware improvements, the solution of the Boltzmann equation remains extremely challenging from the computational point of view, in particular by deterministic methods (free of stochastic noise). This work aims to improve a deterministic direct method recently proposed [V.V. Aristov, Kluwer Academic Publishers, 2001] for solving the HIBE with a generic collisional kernel and, in particular, for taking care of the late dynamics of the relaxation towards the equilibrium. Essentially (a) the original problem is reformulated in terms of particle kinetic energy (exact particle number and energy conservation during microscopic collisions) and (b) the computation of the relaxation rates is improved by the DVM-like correction, where DVM stands for Discrete Velocity Model (ensuring that the macroscopic conservation laws are exactly satisfied). Both these corrections make possible to derive very accurate reference solutions for this test case. Moreover this work aims to distribute an open-source program (called HOMISBOLTZ), which can be redistributed and/or modified for dealing with different applications, under the terms of the GNU General Public License. The program has been purposely designed in order to be minimal, not only with regards to the reduced number of lines (less than 1000), but also with regards to the coding style (as simple as possible). Program summaryProgram title: HOMISBOLTZ Catalogue identifier: AEGN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEGN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 23 340 No. of bytes in distributed program, including test data, etc.: 7 635 236 Distribution format: tar

  4. MODELLING SOLUTIONS TO THE KdV-BURGERS EQUATION IN THE CASE OF NONHOMOGENEOUS DISSIPATIVE MEDIA

    Directory of Open Access Journals (Sweden)

    V. Samokhin Alexey

    2017-01-01

    Full Text Available The behavior of the soliton type solutions to the KdV-Burgers equation is studied numerically in the case of non- homogeneous dissipative media. A soliton moves from left to right and it does not change its form. The solitons with great- er amplitude are narrower and move faster. The aim of the presented research is to study the behavior of the soliton that, while moving in nondissipative medium encounters a barrier (finite or infinite with finite constant dissipation; one may imagine an impulse of light meeting on its way a partially absorbing layer. The modelling included the case of a finite dis- sipative layer similar to a wave passing through the air-glass-air as well as a wave passing from a nondissipative layer into a dissipative one (similar to the passage of light from air to water. The present paper is a continuation of the authors’ pub- lications. New results include a numerical model of the wave’s behavior for different types of the media non-homogeneity. The dissipation predictably results in reducing the soliton’s amplitude, but some new effects occur in the case of finite piecewise constant barrier on the soliton path: after the wave leaves the dissipative barrier it retains, on the whole, a soliton form yet some small and rapidly decreasing oscillations arises in front of the soliton. These oscillations are getting larger and spread as the soliton is moving of the barrier; the distance between the soliton and the oscillation grows. That is, the oscillations are faster than the soliton. The modelling used the Maple software PDETools packet; these activities were time and resources consuming.

  5. Effects of roads on habitat quality for bears in the southern Appalachians: A long-term study

    Science.gov (United States)

    Reynolds-Hogland, M. J.; Mitchell, M.S.

    2007-01-01

    We tested the hypothesis that gravel roads, not paved roads, had the largest negative effect on habitat quality for a population of American black bears (Ursus americanus) that lived in a protected area, where vehicle collision was a relatively minimal source of mortality. We also evaluated whether road use by bears differed by sex or age and whether annual variation in hard mast productivity affected the way bears used areas near roads. In addition, we tested previous findings regarding the spatial extent to which roads affected bear behavior negatively. Using summer and fall home ranges for 118 black bears living in the Pisgah Bear Sanctuary in western North Carolina during 1981-2001, we estimated both home-range-scale (2nd-order) and within-home-range-scale (3rd-order) selection for areas within 250, 500, 800, and 1,600 m of paved and gravel roads. All bears avoided areas near gravel roads more than they avoided areas near paved roads during summer and fall for 2nd-order selection and during summer for 3rd-order selection. During fall, only adult females avoided areas near gravel roads more than they avoided areas near paved roads for 3rd-order selection. We found a positive relationship between use of roads by adults and annual variability in hard mast productivity. Overall, bears avoided areas within 800 m of gravel roads. Future research should determine whether avoidance of gravel roads by bears affects bear survival. ?? 2007 American Society of Mammalogists.

  6. Habitat quality influences population distribution, individual space use and functional responses in habitat selection by a large herbivore.

    Science.gov (United States)

    Bjørneraas, Kari; Herfindal, Ivar; Solberg, Erling Johan; Sæther, Bernt-Erik; van Moorter, Bram; Rolandsen, Christer Moe

    2012-01-01

    Identifying factors shaping variation in resource selection is central for our understanding of the behaviour and distribution of animals. We examined summer habitat selection and space use by 108 Global Positioning System (GPS)-collared moose in Norway in relation to sex, reproductive status, habitat quality, and availability. Moose selected habitat types based on a combination of forage quality and availability of suitable habitat types. Selection of protective cover was strongest for reproducing females, likely reflecting the need to protect young. Males showed strong selection for habitat types with high quality forage, possibly due to higher energy requirements. Selection for preferred habitat types providing food and cover was a positive function of their availability within home ranges (i.e. not proportional use) indicating functional response in habitat selection. This relationship was not found for unproductive habitat types. Moreover, home ranges with high cover of unproductive habitat types were larger, and smaller home ranges contained higher proportions of the most preferred habitat type. The distribution of moose within the study area was partly related to the distribution of different habitat types. Our study shows how distribution and availability of habitat types providing cover and high-quality food shape ungulate habitat selection and space use.

  7. A modeling approach to assess coastal management effects on benthic habitat quality: a case study on coastal defense and navigability

    NARCIS (Netherlands)

    Cozzoli, F.; Smolders, S.; Eelkema, M.; Ysebaert, T.; Escavarage, V.; Temmerman, S.; Meire, P.; Herman, P.; Bouma, T.J.

    2017-01-01

    The natural coastal hydrodynamics and morphology worldwide is altered by human interventions such as embankments, shipping and dredging, which may have consequences for ecosystem functionality. To ensure long-term ecological sustainability, requires capability to predict long-term large-scale

  8. Expert Strategies in Solving Algebraic Structure Sense Problems: The Case of Quadratic Equations

    Science.gov (United States)

    Jupri, Al; Sispiyati, R.

    2017-02-01

    Structure sense, an intuitive ability towards symbolic expressions, including skills to interpret, to manipulate, and to perceive symbols in different roles, is considered as a key success in learning algebra. In this article, we report results of three phases of a case study on solving algebraic structure sense problems aiming at testing the appropriateness of algebraic structure sense tasks and at investigating expert strategies dealing with the tasks. First, we developed three tasks on quadratic equations based on the characteristics of structure sense for high school algebra. Next, we validated the tasks to seven experts. In the validation process, we requested these experts to solve each task using two different strategies. Finally, we analyzing expert solution strategies in the light of structure sense characteristics. We found that even if eventual expert strategies are in line with the characteristics of structure sense; some of their initial solution strategies used standard procedures which might pay less attention to algebraic structures. This finding suggests that experts have reconsidered their procedural work and have provided more efficient solution strategies. For further investigation, we consider to test the tasks to high school algebra students and to see whether they produce similar results as experts.

  9. Singular vectors and invariant equations for the Schroedinger algebra in n ≥ 3 space dimensions. The general case

    International Nuclear Information System (INIS)

    Dobrev, V. K.; Stoimenov, S.

    2010-01-01

    The singular vectors in Verma modules over the Schroedinger algebra s(n) in (n + 1)-dimensional space-time are found for the case of general representations. Using the singular vectors, hierarchies of equations invariant under Schroedinger algebras are constructed.

  10. Two analytic transport equation solutions for particular cases of particle history

    International Nuclear Information System (INIS)

    Simovic, R.

    1997-01-01

    For anisotropic scattering and plane geometry, the linear transport equation of particles generated by a monodirectional unit source A(x,μ) = δ(x-0)δ(μ - μ 0 ) > 0, can be stated in the form of an integral equation

  11. Axiomatic field theory and quantum electrodynamics: the massive case. [Gauge invariance, Maxwell equations, high momentum behavior

    Energy Technology Data Exchange (ETDEWEB)

    Steinmann, O [Bielefeld Univ. (F.R. Germany). Fakultaet fuer Physik

    1975-01-01

    Massive quantum electrodynamics of the electron is formulated as an LSZ theory of the electromagnetic field F(..mu nu..) and the electron-positron fields PSI. The interaction is introduced with the help of mathematically well defined subsidiary conditions. These are: 1) gauge invariance of the first kind, assumed to be generated by a conserved current j(..mu..); 2) the homogeneous Maxwell equations and a massive version of the inhomogeneous Maxwell equations; 3) a minimality condition concerning the high momentum behaviour of the theory. The inhomogeneous Maxwell equation is a linear differential equation connecting Fsub(..mu nu..) with the current Jsub(..mu..). No Lagrangian, no non-linear field equations, and no explicit expression of Jsub(..mu..) in terms of PSI, anti-PSI are needed. It is shown in perturbation theory that the proposed conditions fix the physically relevant (i.e. observable) quantities of the theory uniquely.

  12. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.

    Science.gov (United States)

    Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin

    2018-08-15

    The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high

  13. Semi-analytic equations to the Cox-Thompson inverse scattering method at fixed energy for special cases

    International Nuclear Information System (INIS)

    Palmai, T.; Apagyi, B.; Horvath, M.

    2008-01-01

    Solution of the Cox-Thompson inverse scattering problem at fixed energy 1-3 is reformulated resulting in semi-analytic equations. The new set of equations for the normalization constants and the nonphysical (shifted) angular momenta are free of matrix inversion operations. This simplification is a result of treating only the input phase shifts of partial waves of a given parity. Therefore, the proposed method can be applied for identical particle scattering of the bosonic type (or for certain cases of identical fermionic scattering). The new formulae are expected to be numerically more efficient than the previous ones. Based on the semi-analytic equations an approximate method is proposed for the generic inverse scattering problem, when partial waves of arbitrary parity are considered. (author)

  14. Novel equations to predict body fat percentage of Brazilian professional soccer players: A case study

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Novack

    2014-12-01

    Full Text Available This study analyzed classical and developed novel mathematical models to predict body fat percentage (%BF in professional soccer players from the South Brazilian region using skinfold thicknesses measurement. Skinfolds of thirty one male professional soccer players (age of 21.48 ± 3.38 years, body mass of 79.05 ± 9.48 kg and height of 181.97 ± 8.11 cm were introduced into eight mathematical models from the literature for the prediction of %BF; these results were then compared to Dual-energy X-ray Absorptiometry (DXA. The classical equations were able to account from 65% to 79% of the variation of %BF in DXA. Statistical differences between most of the classical equations (seven of the eight classic equations and DXA were found, rendering their widespread use in this population useless. We developed three new equations for prediction of %BF with skinfolds from: axils, abdomen, thighs and calves. Theses equations accounted for 86.5% of the variation in %BF obtained with DXA.

  15. Effects of competition on great and blue tit reproduction: intensity and importance in relation to habitat quality.

    Science.gov (United States)

    Dhondt, André A

    2010-01-01

    increases with habitat quality but is limited by territorial behaviour. As a result competition for food is reduced in high quality habitats resulting in a reduction of competition intensity in high quality sites in which birds breed at high densities. 8. It can be predicted that in studies of territorial species density dependent effects on reproduction are more likely to be detected in low quality sites explaining in part differences in results between studies.

  16. Foraging habitat quality constrains effectiveness of artificial nest-site provisioning in reversing population declines in a colonial cavity nester.

    Directory of Open Access Journals (Sweden)

    Inês Catry

    Full Text Available Among birds, breeding numbers are mainly limited by two resources of major importance: food supply and nest-site availability. Here, we investigated how differences in land-use and nest-site availability affected the foraging behaviour, breeding success and population trends of the colonial cavity-dependent lesser kestrel Falco naumanni inhabiting two protected areas. Both areas were provided with artificial nests to increase nest-site availability. The first area is a pseudo-steppe characterized by traditional extensive cereal cultivation, whereas the second area is a previous agricultural zone now abandoned or replaced by forested areas. In both areas, lesser kestrels selected extensive agricultural habitats, such as fallows and cereal fields, and avoided scrubland and forests. In the second area, tracked birds from one colony travelled significantly farther distances (6.2 km ± 1.7 vs. 1.8 km ± 0.4 and 1.9 km ± 0.6 and had significant larger foraging-ranges (144 km(2 vs. 18.8 and 14.8 km(2 when compared to the birds of two colonies in the extensive agricultural area. Longer foraging trips were reflected in lower chick feeding rates, lower fledging success and reduced chick fitness. Availability and occupation of artificial nests was high in both areas but population followed opposite trends, with a positive increment recorded exclusively in the first area with a large proportion of agricultural areas. Progressive habitat loss around the studied colony in the second area (suitable habitat decreased from 32% in 1990 to only 7% in 2002 is likely the main driver of the recorded population decline and suggests that the effectiveness of bird species conservation based on nest-site provisioning is highly constrained by habitat quality in the surrounding areas. Therefore, the conservation of cavity-dependent species may be enhanced firstly by finding the best areas of remaining habitat and secondly by increasing the carrying capacity of high

  17. Soil loss risk and habitat quality in streams of a meso-scale river basin Risco de perda de solo e qualidade do habitat numa bacia hidrográfica de meso-escala

    Directory of Open Access Journals (Sweden)

    Alexandre Marco da Silva

    2007-08-01

    Full Text Available Soil loss expectation and possible relationships among soil erosion, riparian vegetation and water quality were studied in the São José dos Dourados River basin, State of São Paulo, Brazil. Through Geographic Information System (GIS resources and technology, Soil Loss Expectation (SLE data obtained using the Universal Soil Loss Equation (USLE model were analyzed. For the whole catchment area and for the 30 m buffer strips of the streams of 22 randomly selected catchments, the predominant land use and habitat quality were studied. Owing mainly to the high soil erodibility, the river basin is highly susceptible to erosive processes. Habitat quality analyses revealed that the superficial water from the catchments is not chemically impacted but suffers physical damage. A high chemical purity is observed since there are no urban areas along the catchments. The water is physically poor because of high rates of sediment delivery and the almost nonexistence of riparian vegetation.Expectativa de perda de solo e possíveis relações entre erosão, vegetação ripária e qualidade da água foram estudados na bacia do rio São José dos Dourados (SP. Através de recursos de geoprocessamento e da Equação Universal de Perda de Solos, os dados sobre expectativa de perda de solo foram levantados. Para a área de drenagem total e a faixa tampão dos corpos d'água de 22 sub-bacias aleatoriamente selecionadas, analisou-se a cobertura do solo predominante e qualidade do habitat. Devido principalmente à alta erodibilidade do solo, a área estudada é altamente suscetível ao processo erosivo. As análises de qualidade da água revelaram que as águas superficiais das sub-bacias estão quimicamente não impactadas, mas fisicamente degradadas. A alta pureza química deve-se, possivelmente, à ausência de áreas urbanizadas ao longo das sub-bacias e as alterações nas características físicas são, possivelmente, decorrentes das altas taxas de transfer

  18. Existence and Asymptotic Stability of Periodic Solutions of the Reaction-Diffusion Equations in the Case of a Rapid Reaction

    Science.gov (United States)

    Nefedov, N. N.; Nikulin, E. I.

    2018-01-01

    A singularly perturbed periodic in time problem for a parabolic reaction-diffusion equation in a two-dimensional domain is studied. The case of existence of an internal transition layer under the conditions of balanced and unbalanced rapid reaction is considered. An asymptotic expansion of a solution is constructed. To justify the asymptotic expansion thus constructed, the asymptotic method of differential inequalities is used. The Lyapunov asymptotic stability of a periodic solution is investigated.

  19. Empirical equation to let reproducing the temperature field of air around a horizontal isothermal cylinder in natural convection case

    International Nuclear Information System (INIS)

    Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.

    1988-01-01

    The analysis of 7.000 measured pairs of values, distance-temperature, of air around a horizontal isothermal cylinder has made possible to obtain an empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same given for other authors. (Author)

  20. Empirical equation to let reproducing the temperature field of air around a horizontal isothermal cylinder in natural convection case

    Energy Technology Data Exchange (ETDEWEB)

    Diez Gonzalez, R.; Dolz, M.; Belsa, R.; Herraez, J.V.

    1988-01-01

    The analysis of more or 7.000 measured pairs of values, diatance-temperature, of air around a horizontal isothermal cylinder has made it possible to obtain a empirical simple equation to let reproducing the temperature field of air in the natural convection case. The experimental and calculated results for a cylinder of 1 cm diameter and 10.5 cm length are compared with the same fiven for others authors

  1. Global well-posedness and scattering for the focusing nonlinear Schrödinger equation in the nonradial case

    Directory of Open Access Journals (Sweden)

    Pigong Han

    2012-01-01

    Full Text Available The energy-critical, focusing nonlinear Schrödinger equation in the nonradial case reads as follows: \\[i\\partial_t u = -\\Delta u -|u|^{\\frac{4}{N-2}}u,\\quad (x,0=u_0 \\in H^1 (\\mathbb{R}^N,\\quad N\\geq 3.\\] Under a suitable assumption on the maximal strong solution, using a compactness argument and a virial identity, we establish the global well-posedness and scattering in the nonradial case, which gives a positive answer to one open problem proposed by Kenig and Merle [Invent. Math. 166 (2006, 645–675].

  2. Social accountability and the finance sector: the case of Equator Principles (EP) institutionalisation

    NARCIS (Netherlands)

    O'Sullivan, N.A.

    2010-01-01

    In June 2003, the Equator Principles (EP) were launched by ten international commercial banks. The EP were designed as a set of voluntary environmental and social risk management guidelines for project finance. Whilst lauded as a revolutionary initiative by the financial sector, the Principles were

  3. Stakeholder perspectives on a financial sector legitimation process: the case of NGOs and the Equator Principles

    NARCIS (Netherlands)

    O'Sullivan, N.; O'Dwyer, B.

    2009-01-01

    Purpose - The purpose of this paper is to present an in-depth, context rich, and stakeholder-focused perspective on the legitimation dynamics surrounding the initiation and evolution of one of the key financial sector environmental and social responsibility initiatives in recent years, the Equator

  4. From Ordinary Differential Equations to Structural Causal Models: the deterministic case

    NARCIS (Netherlands)

    Mooij, J.M.; Janzing, D.; Schölkopf, B.; Nicholson, A.; Smyth, P.

    2013-01-01

    We show how, and under which conditions, the equilibrium states of a first-order Ordinary Differential Equation (ODE) system can be described with a deterministic Structural Causal Model (SCM). Our exposition sheds more light on the concept of causality as expressed within the framework of

  5. Holder continuity of bounded weak solutions to generalized parabolic p-Laplacian equations II: singular case

    Directory of Open Access Journals (Sweden)

    Sukjung Hwang

    2015-11-01

    Full Text Available Here we generalize quasilinear parabolic p-Laplacian type equations to obtain the prototype equation $$ u_t - \\hbox{div} \\Big(\\frac{g(|Du|}{|Du|} Du\\Big = 0, $$ where g is a nonnegative, increasing, and continuous function trapped in between two power functions $|Du|^{g_0 -1}$ and $|Du|^{g_1 -1}$ with $1

  6. The ε-form of the differential equations for Feynman integrals in the elliptic case

    Science.gov (United States)

    Adams, Luise; Weinzierl, Stefan

    2018-06-01

    Feynman integrals are easily solved if their system of differential equations is in ε-form. In this letter we show by the explicit example of the kite integral family that an ε-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The ε-form is obtained by a (non-algebraic) change of basis for the master integrals.

  7. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics.

    Science.gov (United States)

    Aguayo-Ortiz, A; Mendoza, S; Olvera, D

    2018-01-01

    In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.

  8. Model reduction of multiscale chemical langevin equations: a numerical case study.

    Science.gov (United States)

    Sotiropoulos, Vassilios; Contou-Carrere, Marie-Nathalie; Daoutidis, Prodromos; Kaznessis, Yiannis N

    2009-01-01

    Two very important characteristics of biological reaction networks need to be considered carefully when modeling these systems. First, models must account for the inherent probabilistic nature of systems far from the thermodynamic limit. Often, biological systems cannot be modeled with traditional continuous-deterministic models. Second, models must take into consideration the disparate spectrum of time scales observed in biological phenomena, such as slow transcription events and fast dimerization reactions. In the last decade, significant efforts have been expended on the development of stochastic chemical kinetics models to capture the dynamics of biomolecular systems, and on the development of robust multiscale algorithms, able to handle stiffness. In this paper, the focus is on the dynamics of reaction sets governed by stiff chemical Langevin equations, i.e., stiff stochastic differential equations. These are particularly challenging systems to model, requiring prohibitively small integration step sizes. We describe and illustrate the application of a semianalytical reduction framework for chemical Langevin equations that results in significant gains in computational cost.

  9. Generalized solutions of the radiative transfer equations in a singular case

    International Nuclear Information System (INIS)

    Golse, F.; Perthame, B.

    1985-07-01

    This paper is devoted to the study of the radiative transfer equations (TR). First, we prove a global existence theorem, which allows a blow-up of the opacity σsub(ν)(E) when E → 0. Thus, it extends Mercier's previous result. This proof relies mainly on a non linear version of Hille-Yosida theorem. Then, we prove the uniqueness of the semigroup solving (TR), and some regularity results (in the class of functions with bounded variation). Finally, we prove the convergence of some splitting algorithms associated to (TR)

  10. Particular cases of materials balance equation generalized for gas deposits associated to the coal

    International Nuclear Information System (INIS)

    Penuela, G; Ordonez, A; Bejarano, A

    1997-01-01

    One of the fundamental principles used in the work, developed in engineering is the law of the matter conservation. The application of this principle to the hydrocarbons fields, with the purpose of to quantify and to be predicted expresses by means of materials balance method. While the equation construction of conventional materials balance and the calculations that come with their application are not a difficult task, the approach of selection of the solution that better it represents the deposit it is one of the problems that the petroleum engineer should face. The materials balance is a useful analysis method of the deposit operation, reserves estimate of raw and gas, and prediction of the future behavior of the deposit. The coal, beds, devonian shales and geo pressurized-aquifer are some examples of natural gas sources and to possess production mechanisms and behaviors significantly different to the traditional than have been considered as non conventional deposits

  11. Adaptation and extension of the framework of reducing abstraction in the case of differential equations

    Science.gov (United States)

    Raychaudhuri, Debasree

    2014-01-01

    Although there is no consensus in regard to a unique meaning for abstraction, there is a recognition of the existence of several theories of abstraction, and that the ability to abstract is imperative to learning and doing meaningful mathematics. The theory of reducing abstraction maps the abstract nature of mathematics to the nature of knowledge construction by offering three interpretations of how students reduce abstraction while learning mathematical concepts. We apply this framework to explain students' cognition processes as they construct the concept of solution to differential equations and related concepts during a semester long study. Additionally, we refine and extend the framework to elucidate various nuances of the interplay between mathematical structures and human thoughts.

  12. Examining the antecedents of Facebook acceptance via structural equation modeling: A case of CEGEP students

    Directory of Open Access Journals (Sweden)

    Tenzin Doleck

    2017-03-01

    Full Text Available Although the last decade has witnessed social networking sites of varied flavors, Facebook’s user growth continues to balloon, and relatedly, Facebook remains popular among the college populace. While there has been a growing body of work on ascertaining antecedents of Facebook use among college students, Collège d'enseignement général et professionnel (CEGEP students’ acceptance of Facebook remains underexplored. The purpose of this study was to analyze CEGEP students’ acceptance of Facebook using the technology acceptance model (TAM. Structural equation modeling was conducted on data from a survey of 214 CEGEP students. We find that Facebook use is motivated by the core TAM constructs as well as the added factors of peer influence, perceived enjoyment, perceived self-efficacy, relative advantage, risk, and trust.

  13. Comments on the dispersion equation of a turbulent plasma - an inhomogeneous, magnetoactive case

    International Nuclear Information System (INIS)

    Ag, A.

    1978-03-01

    A weakly turbulent, magnetoactive plasma is considered in an inhomogeneous case with anisotropic temperature distribution. The dispersion relation is established following a method developed by Tsytovich and Nekrasov. The correction coefficients are calculated in the three principal scaling modes: (1) the turbulent frequencies predominate, (2) the cyclotronic velocities of the macroinstabilities predominate, (3) the turbulent frequencies are lower. (D.P.)

  14. Circular economy development phase research based on the IPAT equation: The case Shaanxi

    Directory of Open Access Journals (Sweden)

    Fang Ying

    2015-04-01

    Full Text Available In recent years, the worsening of the quality of the air has urged more people to attach great importance to circular economy. Shaanxi, abundant in natural resources, maintained the GDP growth rate of 14.9% during the period of the twelfth five-year plan. However, the fast economic growth under the extensive traditional economic growth mode renders Shaanxi inadequate in resources supply and noticeably worse in ecological environment issues. With the method of the IPAT equation, this paper quantitatively analyzes the developmental stage and the developmental level of the circular economy of Shaanxi to cover the shortage of the previous studies having only been focused on the policy study and the practice mode. The result shows that Shaanxi is in the intermediate stage of circular economy and the advanced stage has an apparent advantage over the intermediate one by comparing their energy consumption and solid pollutant discharge. The development experience of Shaanxi, a typical province of China, has guidance and reference significance to China and other developing countries.

  15. Mathematical modelling with case studies a differential equations approach using Maple and Matlab

    CERN Document Server

    Barnes, B

    2011-01-01

    ""The book is written in a very lucid manner, with numerous case studies and examples thoroughly discussed. The material is very well organized, generously illustrated, and delightfully presented. All chapters, except the first one, conclude with scores of nicely designed exercises that can be used for independent study. The book contains enough material to organize a new well-structured one-semester course or to complement the existing one with additional examples and problems and is highly recommended for either purpose""-Zentralblatt MATH, 1168""… The book can be useful for students of math

  16. Measuring Habitat Quality for Deep-Sea Corals and Sponges to Add Conservation Value to Telepresence-Enabled Science and Technology

    Science.gov (United States)

    Etnoyer, P. J.; Hourigan, T. F.; Reser, B.; Monaco, M.

    2016-02-01

    The growing fleet of telepresence-enabled research vessels equipped with deep-sea imaging technology provides a new opportunity to catalyze and coordinate research efforts among ships. This development is particularly useful for studying the distribution and diversity of deep-sea corals, which occur worldwide from 50 to 8600 m depth. Marine managers around the world seek to conserve these habitats, but require a clear consensus on what types of information are most important and most relevant for marine conservation. The National Oceanic and Atmospheric Administration (NOAA) seeks to develop a reproducible, non-invasive set of ROV methods designed to measure conservation value, or habitat quality, for deep-sea corals and sponges. New tools and methods will be proposed to inform ocean resource management, as well as facilitate research, outreach, and education. A new database schema will be presented, building upon the Ocean Biogeographic Information System (OBIS) and efforts of submersible and ROV teams over the years. Visual information about corals and sponges has proven paramount, particularly high-quality images with standard attributes for marine geology and marine biology, including scientific names, colony size, health, abundance, and density. Improved habitat suitability models can be developed from these data if presence and absence are measured. Recent efforts to incorporate physical sampling into telepresence protocols further increase the value of such information. It is possible for systematic observations with small file sizes to be distributed as geo-referenced, time-stamped still images with environmental variables for water chemistry and a standardized habitat classification. The technique is common among researchers, but a distributed network for this information is still in its infancy. One goal of this presentation is to make progress towards a more integrated network of these measured observations of habitat quality to better facilitate

  17. Dynamics for the complex Ginzburg-Landau equation on non-cylindrical domains II: The monotone case

    Science.gov (United States)

    Zhou, Feng; Sun, Chunyou; Cheng, Jiaqi

    2018-02-01

    In this article, we continue the study of the dynamics of the following complex Ginzburg-Landau equation ∂tu - (λ + iα)Δu + (κ + iβ)|u|p-2u - γu = f(t) on non-cylindrical domains. We assume that the spatial domains are bounded and increase with time, which is different from the diffeomorphism case presented in Zhou and Sun [Discrete Contin. Dyn. Syst., Ser. B 21, 3767-3792 (2016)]. We develop a new penalty function to establish the existence and uniqueness of a variational solution satisfying energy equality as well as some energy inequalities and prove the existence of a D -pullback attractor for the non-autonomous dynamical system generated by this class of solutions.

  18. A Novel Approach for Assessing the Performance of Sustainable Urbanization Based on Structural Equation Modeling: A China Case Study

    Directory of Open Access Journals (Sweden)

    Liudan Jiao

    2016-09-01

    Full Text Available The rapid urbanization process has brought problems to China, such as traffic congestion, air pollution, water pollution and resources scarcity. Sustainable urbanization is commonly appreciated as an effective way to promote the sustainable development. The proper understanding of the sustainable urbanization performance is critical to provide governments with support in making urban development strategies and policies for guiding the sustainable development. This paper utilizes the method of Structural equation modeling (SEM to establish an assessment model for measuring sustainable urbanization performance. Four unobserved endogenous variables, economic variable, social variable, environment variable and resource variable, and 21 observed endogenous variables comprise the SEM model. A case study of the 31 provinces in China demonstrates the validity of the SEM model and the analysis results indicated that the assessment model could help make more effective policies and strategies for improving urban sustainability by recognizing the statue of sustainable urbanization.

  19. An analytical theory of a scattering of radio waves on meteoric ionization - II. Solution of the integro-differential equation in case of backscatter

    Science.gov (United States)

    Pecina, P.

    2016-12-01

    The integro-differential equation for the polarization vector P inside the meteor trail, representing the analytical solution of the set of Maxwell equations, is solved for the case of backscattering of radio waves on meteoric ionization. The transversal and longitudinal dimensions of a typical meteor trail are small in comparison to the distances to both transmitter and receiver and so the phase factor appearing in the kernel of the integral equation is large and rapidly changing. This allows us to use the method of stationary phase to obtain an approximate solution of the integral equation for the scattered field and for the corresponding generalized radar equation. The final solution is obtained by expanding it into the complete set of Bessel functions, which results in solving a system of linear algebraic equations for the coefficients of the expansion. The time behaviour of the meteor echoes is then obtained using the generalized radar equation. Examples are given for values of the electron density spanning a range from underdense meteor echoes to overdense meteor echoes. We show that the time behaviour of overdense meteor echoes using this method is very different from the one obtained using purely numerical solutions of the Maxwell equations. Our results are in much better agreement with the observations performed e.g. by the Ondřejov radar.

  20. Implementation of constitutive equations for creep damage mechanics into the ABAQUS finite element code - some practical cases in high temperature component design and life assessment

    International Nuclear Information System (INIS)

    Segle, P.; Samuelson, L.Aa.; Andersson, Peder; Moberg, F.

    1996-01-01

    Constitutive equations for creep damage mechanics are implemented into the finite element program ABAQUS using a user supplied subroutine, UMAT. A modified Kachanov-Rabotnov constitutive equation which accounts for inhomogeneity in creep damage is used. With a user defined material a number of bench mark tests are analyzed for verification. In the cases where analytical solutions exist, the numerical results agree very well. In other cases, the creep damage evolution response appear to be realistic in comparison with laboratory creep tests. The appropriateness of using the creep damage mechanics concept in design and life assessment of high temperature components is demonstrated. 18 refs

  1. Statistical description of massless excitations within a sphere with a linear equation of state and the dark energy case

    Science.gov (United States)

    Viaggiu, S.

    2018-04-01

    In this paper, we continue the investigations present in Refs. 1-3. In particular, we extend the theorem proved in Ref. 3 to any massless excitation in a given spherical box. As a first interesting result, we show that it is possible, contrary to the black hole case studied in detail in Refs. 1-3, to build macroscopic configurations with a dark energy equation of state. To this purpose, by requiring a stable configuration, a macroscopic dark fluid is obtained with an internal energy U scaling as the volume V, but with a fundamental correction looking like ˜ 1/R motivated by quantum fluctuations. Thanks to the proposition in Sec. 3 (and in Ref. 3 for gravitons), one can depict the dark energy in terms of massless excitations with a discrete spectrum. This fact opens the possibility to test a possible physical mechanism converting usual radiation into dark energy in a macroscopic configuration, also in a cosmological context. In fact, for example, in a Friedmann flat universe with a cosmological constant, particles are marginally trapped at the Hubble horizon for any given comoving observer.

  2. A physiological approach to quantifying thermal habitat quality for redband rainbow trout (Oncorhynchus mykiss gairdneri) in the south Fork John Day River, Oregon

    Science.gov (United States)

    Feldhaus, J.W.; Heppell, S.A.; Li, H.; Mesa, M.G.

    2010-01-01

    We examined tissue-specific levels of heat shock protein 70 (hsp70) and whole body lipid levels in juvenile redband trout (Oncorhynchus mykiss gairdneri) from the South Fork of the John Day River (SFJD), Oregon, with the goal of determining if these measures could be used as physiological indicators of thermal habitat quality for juvenile redband trout. Our objectives were to determine the hsp70 induction temperature in liver, fin, and white muscle tissue and characterize the relation between whole body lipids and hsp70 for fish in the SFJD. We found significant increases in hsp70 levels between 19 and 22??C in fin, liver, and white muscle tissue. Maximum hsp70 levels in liver, fin, and white muscle tissue occurred when mean weekly maximum temperatures (MWMT) exceeded 20-22??C. In general, the estimated hsp70 induction temperature for fin and white muscle tissue was higher than liver tissue. Whole body lipid levels began to decrease when MWMT exceeded 20. 4??C. There was a significant interaction between temperature and hsp70 in fin and white muscle tissue, but not liver tissue. Collectively, these results suggest that increased hsp70 levels in juvenile redband trout are symptomatic of thermal stress, and that energy storage capacity decreases with this stress. The possible decrease in growth potential and fitness for thermally stressed individuals emphasizes the physiological justification for thermal management criteria in salmon-bearing streams. ?? Springer Science+Business Media B.V. 2010.

  3. Long-Term Impact of Valid Case Criterion on Capturing Population-Level Growth under Item Response Theory Equating. Research Report. ETS RR-17-17

    Science.gov (United States)

    Deng, Weiling; Monfils, Lora

    2017-01-01

    Using simulated data, this study examined the impact of different levels of stringency of the valid case inclusion criterion on item response theory (IRT)-based true score equating over 5 years in the context of K-12 assessment when growth in student achievement is expected. Findings indicate that the use of the most stringent inclusion criterion…

  4. Limit equation for vacuum Einstein constraints with a translational Killing vector field in the compact hyperbolic case

    Science.gov (United States)

    Gicquaud, Romain; Huneau, Cécile

    2016-09-01

    We construct solutions to the constraint equations in general relativity using the limit equation criterion introduced in Dahl et al. (2012). We focus on solutions over compact 3-manifolds admitting a S1-symmetry group. When the quotient manifold has genus greater than 2, we obtain strong far from CMC results.

  5. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Science.gov (United States)

    Tremblay, Junior A; Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R; Price, David T; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change") were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  6. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada's boreal forest.

    Directory of Open Access Journals (Sweden)

    Junior A Tremblay

    Full Text Available Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as "drivers of change" were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus, a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5, compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5. However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of

  7. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae) in Fragmented Grassland?

    Science.gov (United States)

    Kalarus, Konrad; Nowicki, Piotr

    2015-01-01

    Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i) habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height); (ii) factors associated with habitat spatial structure (patch size, patch isolation and fragmentation); and (iii) features of patch surroundings (100-m buffers around patches) that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and more

  8. How Do Landscape Structure, Management and Habitat Quality Drive the Colonization of Habitat Patches by the Dryad Butterfly (Lepidoptera: Satyrinae in Fragmented Grassland?

    Directory of Open Access Journals (Sweden)

    Konrad Kalarus

    Full Text Available Most studies dealing with species distribution patterns on fragmented landscapes focus on the characteristics of habitat patches that influence local occurrence and abundance, but they tend to neglect the question of what drives colonization of previously unoccupied patches. In a study of the dryad butterfly, we combined classical approaches derived from metapopulation theory and landscape ecology to investigate the factors driving colonization from a recent refugium. In three consecutive transect surveys, we recorded the presence and numbers of imagos in 27 patches of xerothermic grassland and 26 patches of wet meadow. Among the predictors affecting the occurrence and abundance of the dryad, we considered environmental variables reflecting (i habitat patch quality (e.g., goldenrod cover, shrub density, vegetation height; (ii factors associated with habitat spatial structure (patch size, patch isolation and fragmentation; and (iii features of patch surroundings (100-m buffers around patches that potentially pose barriers or provide corridors. Patch colonization by the dryad was strongly limited by the distance from the species refugium in the region; there was a slight positive effect of shrub density in this respect. Butterfly abundance increased in smaller and more fragmented habitat patches; it was negatively impacted by invasive goldenrod cover, and positively influenced by the density of watercourses in patch surroundings. Nectar plant availability was positively related to species abundance in xerothermic grassland, while in wet meadow the effect was the reverse. We conclude that dryad colonization of our study area is very recent, since the most important factor limiting colonization was distance from the refugium, while the habitat quality of target patches had less relevance. In order to preserve the species, conservation managers should focus on enhancing the quality of large patches and should also direct their efforts on smaller and

  9. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  10. On generalized fractional vibration equation

    International Nuclear Information System (INIS)

    Dai, Hongzhe; Zheng, Zhibao; Wang, Wei

    2017-01-01

    Highlights: • The paper presents a generalized fractional vibration equation for arbitrary viscoelastically damped system. • Some classical vibration equations can be derived from the developed equation. • The analytic solution of developed equation is derived under some special cases. • The generalized equation is particularly useful for developing new fractional equivalent linearization method. - Abstract: In this paper, a generalized fractional vibration equation with multi-terms of fractional dissipation is developed to describe the dynamical response of an arbitrary viscoelastically damped system. It is shown that many classical equations of motion, e.g., the Bagley–Torvik equation, can be derived from the developed equation. The Laplace transform is utilized to solve the generalized equation and the analytic solution under some special cases is derived. Example demonstrates the generalized transfer function of an arbitrary viscoelastic system.

  11. Multistable selection equations of pattern formation type in the case of inhomogeneous growth rates: With applications to two-dimensional assignment problems

    International Nuclear Information System (INIS)

    Frank, T.D.

    2011-01-01

    We study the stability of solutions of a particular type of multistable selection equations proposed by Starke, Schanz and Haken in the case of an inhomogeneous spectrum of growth parameters. We determine how the stability of feasible solutions depends on the inhomogeneity of the spectrum. We show that the strength of the competitive interaction between feasible solutions can act as a control parameter that induces bifurcations reducing the degree of multistability. - Research highlights: → Feasible solutions can be stable in the case of inhomogeneous growth parameters. → Changing coupling strength can induce bifurcations of feasible solutions. → Optimal solutions are obtained when selected winnings are relatively large.

  12. Nonlinearities Distribution Homotopy Perturbation Method Applied to Solve Nonlinear Problems: Thomas-Fermi Equation as a Case Study

    Directory of Open Access Journals (Sweden)

    U. Filobello-Nino

    2015-01-01

    Full Text Available We propose an approximate solution of T-F equation, obtained by using the nonlinearities distribution homotopy perturbation method (NDHPM. Besides, we show a table of comparison, between this proposed approximate solution and a numerical of T-F, by establishing the accuracy of the results.

  13. Understanding quantum phenomena without solving the Schrödinger equation: the case of the finite square well

    International Nuclear Information System (INIS)

    Barsan, Victor

    2015-01-01

    An approximate formula for the energy levels of the bound states of a particle in a finite square well are obtained, without using the Schrödinger equation. The physics and mathematics involved in this approach are accessible to a gifted high school student. (paper)

  14. Invasion by nonnative brook trout in Panther Creek, Idaho: Roles of local habitat quality, biotic resistance, and connectivity to source habitats

    Science.gov (United States)

    Benjamin, Joseph R.; Dunham, Jason B.; Dare, M.R.

    2007-01-01

    Theoretical models and empirical evidence suggest that the invasion of nonnative species in freshwaters is facilitated through the interaction of three factors: habitat quality, biotic resistance, and connectivity. We measured variables that represented each factor to determine which were associated with the occurrence of nonnative brook trout Salvelinus fontinalis in Panther Creek, a tributary to the Salmon River, Idaho. Habitat variables included measures of summer and winter temperature, instream cover, and channel size. The abundance of native rainbow trout Oncorhynchus mykiss within sampled sites was used as a measure of biotic resistance. We also considered the connectivity of sample sites to unconfined valley bottoms, which were considered habitats that may serve as sources for the spread of established populations of brook trout. We analyzed the occurrence of small (<150‐mm [fork length]) and large (≥150‐mm) brook trout separately, assuming that the former represents an established invasion while accounting for the higher potential mobility of the latter. The occurrence of small brook trout was strongly associated with the proximity of sites to large, unconstrained valley bottoms, providing evidence that such habitats may serve as sources for the spread of brook trout invasion. Within sites, winter degree‐days and maximum summer temperature were positively associated with the occurrence of small brook trout. The occurrence of large brook trout was not related to any of the variables considered, perhaps due to the difficulty of linking site‐specific habitat factors to larger and more mobile individuals. The abundance of rainbow trout was not conclusively associated with the occurrence of either small or large brook trout, providing little support for the role of biotic resistance. Overall, our results suggest that source connectivity and local habitat characteristics, but not biotic resistance, influence the establishment and spread of

  15. Solution of the two dimensional diffusion and transport equations in a rectangular lattice with an elliptical fuel element using Fourier transform methods: One and two group cases

    International Nuclear Information System (INIS)

    Williams, M.M.R.; Hall, S.K.; Eaton, M.D.

    2014-01-01

    Highlights: • A rectangular reactor cell with an elliptical fuel element. • Solution of transport and diffusion equations by Fourier expansion. • Numerical examples showing convergence. • Two group cell problems. - Abstract: A method for solving the diffusion and transport equations in a rectangular lattice cell with an elliptical fuel element has been developed using a Fourier expansion of the neutron flux. The method is applied to a one group model with a source in the moderator. The cell flux is obtained and also the associated disadvantage factor. In addition to the one speed case, we also consider the two group equations in the cell which now become an eigenvalue problem for the lattice multiplication factor. The method of solution relies upon an efficient procedure to solve a large set of simultaneous linear equations and for this we use the IMSL library routines. Our method is compared with the results from a finite element code. The main drawback of the problem arises from the very large number of terms required in the Fourier series which taxes the storage and speed of the computer. Nevertheless, useful solutions are obtained in geometries that would normally require the use of finite element or analogous methods, for this reason the Fourier method is useful for comparison with that type of numerical approach. Extension of the method to more intricate fuel shapes, such as stars and cruciforms as well as superpositions of these, is possible

  16. Reduction operators of Burgers equation.

    Science.gov (United States)

    Pocheketa, Oleksandr A; Popovych, Roman O

    2013-02-01

    The solution of the problem on reduction operators and nonclassical reductions of the Burgers equation is systematically treated and completed. A new proof of the theorem on the special "no-go" case of regular reduction operators is presented, and the representation of the coefficients of operators in terms of solutions of the initial equation is constructed for this case. All possible nonclassical reductions of the Burgers equation to single ordinary differential equations are exhaustively described. Any Lie reduction of the Burgers equation proves to be equivalent via the Hopf-Cole transformation to a parameterized family of Lie reductions of the linear heat equation.

  17. EQUATIONS OF RADIATION TRANSFER IN INFRARED TOMOGRAPHY IN THE CASE OF ACTIVE-PASSIVE DIAGNOSIS AND SWEEPING SCANNING

    Directory of Open Access Journals (Sweden)

    A. A. Makarova

    2014-01-01

    Full Text Available Sweeping scanning scheme of a hot gas in the task of infrared tomography is formulated. Two diagnosis regimes are used: the active one (ON – with included source and the passive one (OFF – without it. Two integral equations are deduced concerning the absorption coefficient k and the Planck function B of a medium (by which it is possible to calculate the temperature profile of a medium T.

  18. A unified approach to determining forms for the 2D Navier-Stokes equations -- the general interpolants case

    International Nuclear Information System (INIS)

    Foias, C; Jolly, M S; Kravchenko, R; Titi, E S

    2014-01-01

    It is shown that the long-time dynamics (the global attractor) of the 2D Navier-Stokes system is embedded in the long-time dynamics of an ordinary differential equation, called a determining form, in a space of trajectories which is isomorphic to C b 1 (R;R N ) for sufficiently large N depending on the physical parameters of the Navier-Stokes equations. A unified approach is presented, based on interpolant operators constructed from various determining parameters for the Navier-Stokes equations, namely, determining nodal values, Fourier modes, finite volume elements, finite elements, and so on. There are two immediate and interesting consequences of this unified approach. The first is that the constructed determining form has a Lyapunov function, and thus its solutions converge to the set of steady states of the determining form as the time goes to infinity. The second is that these steady states of the determining form can be uniquely identified with the trajectories in the global attractor of the Navier-Stokes system. It should be added that this unified approach is general enough that it applies, in an almost straightforward manner, to a whole class of dissipative dynamical systems. Bibliography: 23 titles

  19. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  20. X-ray convergent beam pattern simulation using the Moodie-Wagenfeld equations: 3-beam Laue case

    International Nuclear Information System (INIS)

    Liu, L.; Goodman, P.

    1998-01-01

    Pattern simulations for 3-beam X-ray diffraction are presented, by multi-slice calculations based on Moodie and Wagenfeld's formulation of the X-ray equations, which factorise Maxwell's equations into Dirac format, using circular-polarisation bases. The results are presented in the form of convergent-beam patterns for each diffraction order, using experience gained from CBED (convergent beam electron diffraction) and LACBED (large-angle CBED), since this displays the results in the most compact form. The acronym CBXRAD (convergent-beam X-ray-diffraction) is used for these patterns. Although optics required for the complete patterns is not currently available, capillary focussing is undergoing rapid development, and our simulations define critical angular ranges within reach of current designs. Simulations for light and heavy-atoms structures belonging to the enantiomorphic space-group pair P3 1 21 and P3 2 21, provide clear evidence of chiral interaction between radiation and structure, highlighting divergences from the well studied CBED pattern symmetries. MoKα 1 and TaKα 1 wavelengths were used to minimise absorption for the two structures respectively, although 'anomalous absorption' is always important due to the large thicknesses required (up to 20 mm)

  1. Convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation and rate constants: Case study of the spin-boson model

    Science.gov (United States)

    Xu, Meng; Yan, Yaming; Liu, Yanying; Shi, Qiang

    2018-04-01

    The Nakajima-Zwanzig generalized master equation provides a formally exact framework to simulate quantum dynamics in condensed phases. Yet, the exact memory kernel is hard to obtain and calculations based on perturbative expansions are often employed. By using the spin-boson model as an example, we assess the convergence of high order memory kernels in the Nakajima-Zwanzig generalized master equation. The exact memory kernels are calculated by combining the hierarchical equation of motion approach and the Dyson expansion of the exact memory kernel. High order expansions of the memory kernels are obtained by extending our previous work to calculate perturbative expansions of open system quantum dynamics [M. Xu et al., J. Chem. Phys. 146, 064102 (2017)]. It is found that the high order expansions do not necessarily converge in certain parameter regimes where the exact kernel show a long memory time, especially in cases of slow bath, weak system-bath coupling, and low temperature. Effectiveness of the Padé and Landau-Zener resummation approaches is tested, and the convergence of higher order rate constants beyond Fermi's golden rule is investigated.

  2. Case: Making students grasp the concept of differential equations in a broader and more flexible way by using computers

    DEFF Research Database (Denmark)

    Andresen, Mette

    2003-01-01

    their abilities in this area. Organizing mathematical objects by building structures, as well as by handling the interaction between the component parts and the structures in full, is one activity in learning mathematics at all levels in school. I have concentrated on setting up and solving differential equations......, because this area offers a suitable structure complexity at various levels. Furthermore, one point of interest for me is to find out how to use CAS (Computer Algebraic Systems) constructively in this context. I feel that research in this area could prove valuable, provided that its outcome in the form...... through specific directions for subsequently implementing in teaching practice. Abstract: Teaching mathematics for more than 12 years, mainly at upper secondary school level, I have often wondered why the ability to handle structures seemingly is insufficiently developed in many students. It causes them...

  3. Determination of a basic set of Eigen-functions and of the corresponding norm in the case of the one-velocity integral differential Boltzmann equation in spherical geometry

    International Nuclear Information System (INIS)

    Lafore, P.

    1965-01-01

    The object of the present work is to draw up a basic set of orthogonal eigenfunctions; resolution of the one-velocity integral-differential Boltzmann equation; this in the case of a spherical geometry system. (author) [fr

  4. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  5. Differential equations

    CERN Document Server

    Tricomi, FG

    2013-01-01

    Based on his extensive experience as an educator, F. G. Tricomi wrote this practical and concise teaching text to offer a clear idea of the problems and methods of the theory of differential equations. The treatment is geared toward advanced undergraduates and graduate students and addresses only questions that can be resolved with rigor and simplicity.Starting with a consideration of the existence and uniqueness theorem, the text advances to the behavior of the characteristics of a first-order equation, boundary problems for second-order linear equations, asymptotic methods, and diff

  6. The Effects of Transformational Leadership and Mediating Factors on the Organizational Success Using Structural Equation Modeling: A Case Study.

    Science.gov (United States)

    Ravangard, Ramin; Karimi, Sakine; Farhadi, Payam; Sajjadnia, Zahra; Shokrpour, Nasrin

    This study was undertaken to determine the effects of transformational leadership (TL) and mediating factors on organizational success (OS) from the administrative, financial, and support employees' perspective in teaching hospitals affiliated with Shiraz University of Medical Sciences using structural equation modeling. Three hundred administrative and financial employees were selected, using stratified sampling proportional to size and simple random sampling. Data were collected using 5 questionnaires and analyzed using SPSS 21.0 and Lisrel 8.5 through Pearson correlation coefficient and path analysis and confirmatory factor analysis methods. Results showed that TL had significant positive effects on the 3 mediating factors, including organizational culture (t = 15.31), organizational citizenship behavior (OCB) (t = 10.06), and social capital (t = 10.25). Also, the organizational culture (t = 2.26), OCB (t = 3.48), and social capital (t = 7.41) had significant positive effects on OS. According to the results, TL had an indirect effect on OS. Therefore, organizations can achieve more success by strengthening organizational culture, OCB, and social capital through using transformational leadership style. Therefore, in order to increase OS, the following recommendations are made: supporting and encouraging new ideas in the organization, promoting teamwork, strengthening intergroup and intragroup relationships, planning to strengthen and enrich the social and organizational culture, considering the promotion of social capital in the employee training, establishing a system to give rewards to the employees performing extra-role activities, providing a suitable environment for creative employees, and so on.

  7. Describing model of empowering managers by applying structural equation modeling: A case study of universities in Ardabil

    Directory of Open Access Journals (Sweden)

    Maryam Ghahremani Germi

    2015-06-01

    Full Text Available Empowerment is still on the agenda as a management concept and has become a widely used management term in the last decade or so. The purpose of this research was describing model of empowering managers by applying structural equation modeling (SEM at Ardabil universities. Two hundred and twenty managers of Ardabil universities including chancellors, managers, and vice presidents of education, research, and studies participated in this study. Clear and challenging goals, evaluation of function, access to resources, and rewarding were investigated. The results indicated that the designed SEM for empowering managers at university reflects a good fitness level. As it stands out, the conceptual model in the society under investigation was used appropriately. Among variables, access to resources with 88 per cent of load factor was known as the affective variable. Evaluation of function containing 51 per cent of load factor was recognized to have less effect. Results of average rating show that evaluation of function and access to resources with 2.62 coefficients stand at first level. Due to this, they had great impact on managers' empowerment. The results of the analysis provided compelling evidence that model of empowering managers was desirable at Ardabil universities.

  8. The Effects of Supervisors' Support and Mediating Factors on the Nurses' Job Performance Using Structural Equation Modeling: A Case Study.

    Science.gov (United States)

    Ravangard, Ramin; Yasami, Shamim; Shokrpour, Nasrin; Sajjadnia, Zahra; Farhadi, Payam

    2015-01-01

    Nurses are the largest group and an important part of the providers in the health care systems that who a key role in hospitals. Any defect and deficiency in their work can result in irreversible outcomes. This study aimed to determine the effect of supervisors' support and mediating factors on the job performance (JOBPER) of 400 nurses working in the teaching hospitals affiliated to Shiraz University of Medical Sciences, using structural equation modeling. The results showed that the supervisor's support had a significant negative effect on work-family conflict (t = -2.57) and a positive effect on organizational commitment (t = 4.03); Work-family conflict had a significant positive effect on job stress (t = 11.24) and a negative effect on organizational commitment (t = -3.35) and JOBPER (t = -2.29). Family-work conflict had a positive effect on job stress (t = 4.48) and a negative effect on organizational commitment (t = -2.54). Finally, job stress had a negative effect (t = -3.30), and organizational commitment showed a positive effect (t = 5.96) on the studied nurses' JOBPER. According to the results, supervisor's support could influence JOBPER through reducing work-family conflict and increasing organizational commitment. Therefore, to improve the nurses' JOBPER in the hospitals, some strategies are recommended.

  9. Structural equation model to investigate the dimensions influencing safety culture improvement in construction sector: A case in Indonesia

    Science.gov (United States)

    Machfudiyanto, Rossy Armyn; Latief, Yusuf; Yogiswara, Yoko; Setiawan, R. Mahendra Fitra

    2017-06-01

    In facing the ASEAN Economic Community, the level of prevailing working accidents becomes one of the competitiveness factors among the companies. A construction industry is one of the industries prone to high level of accidents. Improving the safety record will not be completely effective unless the occupational safety and healthy culture is enhanced. The aim of this research was to develop a model and to conduct empirical investigation on the relationships among the dimensions of construction occupational safety culture. This research used the structural equation model as a means to examine the hypothesis of positive relationships between dimensions and objectives. The method used in this research was questionnaire survey which was distributed to the respondents from construction companies in a state-owned enterprise in Indonesia. Moreover, there were dimensions of occupational safety culture that was established, such as leadership, behavior, value, strategy, policy, process, employee, safety cost, and contract system. The results of this study indicated that all dimensions were significant and inter-related in forming the safety culture. The result of R2 yielded the safety performance was 54%, which means it was in low category and evaluation of policies on construction companies was required in addressing the issue of working accidents.

  10. Analysis of Service Quality on Building Loyalty by Using Structural Equation Modelling Method (Case Study in Majapahit Railways

    Directory of Open Access Journals (Sweden)

    Eka Arista Anggorowati

    2015-05-01

    Full Text Available Train system is one of the transportation modes with some special characteristics that make it becomes an effective and efficient transportation system to increase the service quality. Although the AC economy class of Majapahit Railway has been officially opened by the government, it has not been able to fulfill the people’s need. It is proved with the decrease of number of passenger, and the increase of critics related to the service quality. This research aims to analyze the principal elements and the effect of service qualities towards the customer’s loyalty. The research was conducted through survey on the Majapahit railway users consisting of 200 respondents. The used sampling technique was non probability sampling with purposive sampling method. It applied Structural Equation Modelling in which the previous test was the classical assumptions. Based on the calculations, it is indicated that the variables of service quality in customer satisfaction and loyalty is significant. The principal elements that influence satisfaction and loyalty are the operational schedule, the rolling stock condition, station’s comfort and security, safety, ticket price, and how the passengers enjoy the travelling. Adjusted R square of 0.8246 shows that 82 percent of consumer’ loyalty can give impact on service quality and customer satisfaction.

  11. Differential equations

    CERN Document Server

    Barbu, Viorel

    2016-01-01

    This textbook is a comprehensive treatment of ordinary differential equations, concisely presenting basic and essential results in a rigorous manner. Including various examples from physics, mechanics, natural sciences, engineering and automatic theory, Differential Equations is a bridge between the abstract theory of differential equations and applied systems theory. Particular attention is given to the existence and uniqueness of the Cauchy problem, linear differential systems, stability theory and applications to first-order partial differential equations. Upper undergraduate students and researchers in applied mathematics and systems theory with a background in advanced calculus will find this book particularly useful. Supplementary topics are covered in an appendix enabling the book to be completely self-contained.

  12. Impact of a proposed revision of the IESTI equation on the acute risk assessment conducted when setting maximum residue levels (MRLs) in the European Union (EU): A case study.

    Science.gov (United States)

    Breysse, Nicolas; Vial, Gaelle; Pattingre, Lauriane; Ossendorp, Bernadette C; Mahieu, Karin; Reich, Hermine; Rietveld, Anton; Sieke, Christian; van der Velde-Koerts, Trijntje; Sarda, Xavier

    2018-06-03

    Proposals to update the methodology for the international estimated short-term intake (IESTI) equations were made during an international workshop held in Geneva in 2015. Changes to several parameters of the current four IESTI equations (cases 1, 2a, 2b, and 3) were proposed. In this study, the overall impact of these proposed changes on estimates of short-term exposure was studied using the large portion data available in the European Food Safety Authority PRIMo model and the residue data submitted in the framework of the European Maximum Residue Levels (MRL) review under Article 12 of Regulation (EC) No 396/2005. Evaluation of consumer exposure using the current and proposed equations resulted in substantial differences in the exposure estimates; however, there were no significant changes regarding the number of accepted MRLs. For the different IESTI cases, the median ratio of the new versus the current equation is 1.1 for case 1, 1.4 for case 2a, 0.75 for case 2b, and 1 for case 3. The impact, expressed as a shift in the IESTI distribution profile, indicated that the 95th percentile IESTI shifted from 50% of the acute reference dose (ARfD) with the current equations to 65% of the ARfD with the proposed equations. This IESTI increase resulted in the loss of 1.2% of the MRLs (37 out of 3110) tested within this study. At the same time, the proposed equations would have allowed 0.4% of the MRLs (14 out of 3110) that were rejected with the current equations to be accepted. The commodity groups that were most impacted by these modifications are solanacea (e.g., potato, eggplant), lettuces, pulses (dry), leafy brassica (e.g., kale, Chinese cabbage), and pome fruits. The active substances that were most affected were fluazifop-p-butyl, deltamethrin, and lambda-cyhalothrin.

  13. To Be or Not to Be Intrusive? The Solution of Parametric and Stochastic Equations---the “Plain Vanilla” Galerkin Case

    KAUST Repository

    Giraldi, Loï c; Litvinenko, Alexander; Liu, Dishi; Matthies, Hermann G.; Nouy, Anthony

    2014-01-01

    In parametric equations---stochastic equations are a special case---one may want to approximate the solution such that it is easy to evaluate its dependence on the parameters. Interpolation in the parameters is an obvious possibility---in this context often labeled as a collocation method. In the frequent situation where one has a “solver” for a given fixed parameter value, this may be used “nonintrusively” as a black-box component to compute the solution at all the interpolation points independently of each other. By extension, all other methods, and especially simple Galerkin methods, which produce some kind of coupled system, are often classed as “intrusive.” We show how, for such “plain vanilla” Galerkin formulations, one may solve the coupled system in a nonintrusive way, and even the simplest form of block-solver has comparable efficiency. This opens at least two avenues for possible speed-up: first, to benefit from the coupling in the iteration by using more sophisticated block-solvers and, second, the possibility of nonintrusive successive rank-one updates as in the proper generalized decomposition (PGD).

  14. Reduction of infinite dimensional equations

    Directory of Open Access Journals (Sweden)

    Zhongding Li

    2006-02-01

    Full Text Available In this paper, we use the general Legendre transformation to show the infinite dimensional integrable equations can be reduced to a finite dimensional integrable Hamiltonian system on an invariant set under the flow of the integrable equations. Then we obtain the periodic or quasi-periodic solution of the equation. This generalizes the results of Lax and Novikov regarding the periodic or quasi-periodic solution of the KdV equation to the general case of isospectral Hamiltonian integrable equation. And finally, we discuss the AKNS hierarchy as a special example.

  15. Bernoulli's Equation

    Indian Academy of Sciences (India)

    regarding nature of forces hold equally for liquids, even though the ... particle. Figure A. A fluid particle is a very small imaginary blob of fluid, here shown sche- matically in .... picture gives important information about the flow field. ... Bernoulli's equation is derived assuming ideal flow, .... weight acting in the flow direction S is.

  16. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  17. Growth and condition of juvenile sole (Solea solea L. as indicators of habitat quality in coastal and estuarine nurseries in the Bay of Biscay with a focus on sites exposed to Erika oil spill

    Directory of Open Access Journals (Sweden)

    Camille Gilliers

    2006-06-01

    Full Text Available Indicators of growth and condition were used to compare the habitat quality of nurseries of juvenile sole (Solea solea L. in the Bay of Biscay, based on one survey in 2000. The four biological indicators are poorly correlated with each other, suggesting that no single measure may give an adequate description of fish health and of its habitat’s quality. Growth indicators showed significant differences between northern and southern areas. Juveniles from the two southernmost nurseries, the Gironde estuary and the Pertuis Antioche, displayed significant lower otolith increment widths and mean sizes. These differences were inversely related to water temperature and unrelated to genetic or age differences, and are unlikely to be due to limiting trophic conditions in the nurseries. Hence, they may be considered in terms of differences in habitat quality and potential anthropogenic impacts. Condition indices do not show this north-south pattern but highlight low condition values in the Pertuis Antioche. Short-term and fluctuating biochemical indicators such as RNA/DNA ratios appeared to be unreliable over a long-term study, while morphometric indices seemed to be relevant, complementary indicators as they integrate the whole juvenile life-history of sole in the nurseries. The growth and condition indices of juveniles in September 2000 from nursery grounds exposed to the Erika oil spill in December 1999 were relatively high. These results lead us to suggest that there was no obvious impact of this event on the health of juvenile sole and on the quality of the exposed nursery grounds a few months after the event.

  18. Fractional Diffusion Equations and Anomalous Diffusion

    Science.gov (United States)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  19. Quantum linear Boltzmann equation

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Hornberger, Klaus

    2009-01-01

    We review the quantum version of the linear Boltzmann equation, which describes in a non-perturbative fashion, by means of scattering theory, how the quantum motion of a single test particle is affected by collisions with an ideal background gas. A heuristic derivation of this Lindblad master equation is presented, based on the requirement of translation-covariance and on the relation to the classical linear Boltzmann equation. After analyzing its general symmetry properties and the associated relaxation dynamics, we discuss a quantum Monte Carlo method for its numerical solution. We then review important limiting forms of the quantum linear Boltzmann equation, such as the case of quantum Brownian motion and pure collisional decoherence, as well as the application to matter wave optics. Finally, we point to the incorporation of quantum degeneracies and self-interactions in the gas by relating the equation to the dynamic structure factor of the ambient medium, and we provide an extension of the equation to include internal degrees of freedom.

  20. Transport equation solving methods

    International Nuclear Information System (INIS)

    Granjean, P.M.

    1984-06-01

    This work is mainly devoted to Csub(N) and Fsub(N) methods. CN method: starting from a lemma stated by Placzek, an equivalence is established between two problems: the first one is defined in a finite medium bounded by a surface S, the second one is defined in the whole space. In the first problem the angular flux on the surface S is shown to be the solution of an integral equation. This equation is solved by Galerkin's method. The Csub(N) method is applied here to one-velocity problems: in plane geometry, slab albedo and transmission with Rayleigh scattering, calculation of the extrapolation length; in cylindrical geometry, albedo and extrapolation length calculation with linear scattering. Fsub(N) method: the basic integral transport equation of the Csub(N) method is integrated on Case's elementary distributions; another integral transport equation is obtained: this equation is solved by a collocation method. The plane problems solved by the Csub(N) method are also solved by the Fsub(N) method. The Fsub(N) method is extended to any polynomial scattering law. Some simple spherical problems are also studied. Chandrasekhar's method, collision probability method, Case's method are presented for comparison with Csub(N) and Fsub(N) methods. This comparison shows the respective advantages of the two methods: a) fast convergence and possible extension to various geometries for Csub(N) method; b) easy calculations and easy extension to polynomial scattering for Fsub(N) method [fr

  1. Supersymmetric two-particle equations

    International Nuclear Information System (INIS)

    Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.

    1986-01-01

    In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found

  2. Differential equations and finite groups

    NARCIS (Netherlands)

    Put, Marius van der; Ulmer, Felix

    2000-01-01

    The classical solution of the Riemann-Hilbert problem attaches to a given representation of the fundamental group a regular singular linear differential equation. We present a method to compute this differential equation in the case of a representation with finite image. The approach uses Galois

  3. Differential Equations Compatible with KZ Equations

    International Nuclear Information System (INIS)

    Felder, G.; Markov, Y.; Tarasov, V.; Varchenko, A.

    2000-01-01

    We define a system of 'dynamical' differential equations compatible with the KZ differential equations. The KZ differential equations are associated to a complex simple Lie algebra g. These are equations on a function of n complex variables z i taking values in the tensor product of n finite dimensional g-modules. The KZ equations depend on the 'dual' variable in the Cartan subalgebra of g. The dynamical differential equations are differential equations with respect to the dual variable. We prove that the standard hypergeometric solutions of the KZ equations also satisfy the dynamical equations. As an application we give a new determinant formula for the coordinates of a basis of hypergeometric solutions

  4. Reduced kinetic equations: An influence functional approach

    International Nuclear Information System (INIS)

    Wio, H.S.

    1985-01-01

    The author discusses a scheme for obtaining reduced descriptions of multivariate kinetic equations based on the 'influence functional' method of Feynmann. It is applied to the case of Fokker-Planck equations showing the form that results for the reduced equation. The possibility of Markovian or non-Markovian reduced description is discussed. As a particular example, the reduction of the Kramers equation to the Smoluchwski equation in the limit of high friction is also discussed

  5. Dynamical equations for the optical potential

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1981-01-01

    Dynamical equations for the optical potential are obtained starting from a wide class of N-particle equations. This is done with arbitrary multiparticle interactions to allow adaptation to few-body models of nuclear reactions and including all effects of nucleon identity. Earlier forms of the optical potential equations are obtained as special cases. Particular emphasis is placed upon obtaining dynamical equations for the optical potential from the equations of Kouri, Levin, and Tobocman including all effects of particle identity

  6. Dynamical equations for a Regge theory with crossing symmetry and unitarity. II. The case of strong coupling, and elimination of ghost poles

    International Nuclear Information System (INIS)

    Johnson, P.W.; Warnock, R.L.

    1977-01-01

    Equations for the construction of a crossing-symmetric unitary Regge theory of meson-meson scattering are described. In the case of strong coupling, Regge trajectories are to be generated dynamically as zeros of the D function in a nonlinear N/D system. This paper is concerned mainly with writing the inputs to the N/D system in such a way that a convergent theory with exact crossing symmetry is defined. The scheme demands elimination of ghosts, i.e., bound-state poles at energies below threshold where trajectories pass through zero. A method for ghost elimination is proposed which entails an s-wave subtraction constant, and allows the physical s wave to be different from the l-analytic amplitude evaluated at l = 0. A dynamical model is suggested in which the subtraction constant alone generates the meson-meson interaction. An alternative ghost-elimination scheme proposed by Gell-Mann, in which only l-analytic amplitudes are involved, can be discussed in a formalism including channels with spin

  7. Complex relationships between occupation, environment, DNA adducts, genetic polymorphisms and bladder cancer in a case-control study using a structural equation modeling.

    Directory of Open Access Journals (Sweden)

    Stefano Porru

    Full Text Available DNA adducts are considered an integrate measure of carcinogen exposure and the initial step of carcinogenesis. Their levels in more accessible peripheral blood lymphocytes (PBLs mirror that in the bladder tissue. In this study we explore whether the formation of PBL DNA adducts may be associated with bladder cancer (BC risk, and how this relationship is modulated by genetic polymorphisms, environmental and occupational risk factors for BC. These complex interrelationships, including direct and indirect effects of each variable, were appraised using the structural equation modeling (SEM analysis. Within the framework of a hospital-based case/control study, study population included 199 BC cases and 213 non-cancer controls, all Caucasian males. Data were collected on lifetime smoking, coffee drinking, dietary habits and lifetime occupation, with particular reference to exposure to aromatic amines (AAs and polycyclic aromatic hydrocarbons (PAHs. No indirect paths were found, disproving hypothesis on association between PBL DNA adducts and BC risk. DNA adducts were instead positively associated with occupational cumulative exposure to AAs (p = 0.028, whereas XRCC1 Arg 399 (p<0.006 was related with a decreased adduct levels, but with no impact on BC risk. Previous findings on increased BC risk by packyears (p<0.001, coffee (p<0.001, cumulative AAs exposure (p = 0.041 and MnSOD (p = 0.009 and a decreased risk by MPO (p<0.008 were also confirmed by SEM analysis. Our results for the first time make evident an association between occupational cumulative exposure to AAs with DNA adducts and BC risk, strengthening the central role of AAs in bladder carcinogenesis. However the lack of an association between PBL DNA adducts and BC risk advises that these snapshot measurements are not representative of relevant exposures. This would envisage new scenarios for biomarker discovery and new challenges such as repeated measurements at different

  8. Generalized Lorentz-Force equations

    International Nuclear Information System (INIS)

    Yamaleev, R.M.

    2001-01-01

    Guided by Nambu (n+1)-dimensional phase space formalism we build a new system of dynamic equations. These equations describe a dynamic state of the corporeal system composed of n subsystems. The dynamic equations are formulated in terms of dynamic variables of the subsystems as well as in terms of dynamic variables of the corporeal system. These two sets of variables are related respectively as roots and coefficients of the n-degree polynomial equation. In the special n=2 case, this formalism reproduces relativistic dynamics for the charged spinning particles

  9. p-Euler equations and p-Navier-Stokes equations

    Science.gov (United States)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  10. New solutions of Heun's general equation

    International Nuclear Information System (INIS)

    Ishkhanyan, Artur; Suominen, Kalle-Antti

    2003-01-01

    We show that in four particular cases the derivative of the solution of Heun's general equation can be expressed in terms of a solution to another Heun's equation. Starting from this property, we use the Gauss hypergeometric functions to construct series solutions to Heun's equation for the mentioned cases. Each of the hypergeometric functions involved has correct singular behaviour at only one of the singular points of the equation; the sum, however, has correct behaviour. (letter to the editor)

  11. Analytic solutions of hydrodynamics equations

    International Nuclear Information System (INIS)

    Coggeshall, S.V.

    1991-01-01

    Many similarity solutions have been found for the equations of one-dimensional (1-D) hydrodynamics. These special combinations of variables allow the partial differential equations to be reduced to ordinary differential equations, which must then be solved to determine the physical solutions. Usually, these reduced ordinary differential equations are solved numerically. In some cases it is possible to solve these reduced equations analytically to obtain explicit solutions. In this work a collection of analytic solutions of the 1-D hydrodynamics equations is presented. These can be used for a variety of purposes, including (i) numerical benchmark problems, (ii) as a basis for analytic models, and (iii) to provide insight into more complicated solutions

  12. Lattice Wigner equation

    Science.gov (United States)

    Solórzano, S.; Mendoza, M.; Succi, S.; Herrmann, H. J.

    2018-01-01

    We present a numerical scheme to solve the Wigner equation, based on a lattice discretization of momentum space. The moments of the Wigner function are recovered exactly, up to the desired order given by the number of discrete momenta retained in the discretization, which also determines the accuracy of the method. The Wigner equation is equipped with an additional collision operator, designed in such a way as to ensure numerical stability without affecting the evolution of the relevant moments of the Wigner function. The lattice Wigner scheme is validated for the case of quantum harmonic and anharmonic potentials, showing good agreement with theoretical results. It is further applied to the study of the transport properties of one- and two-dimensional open quantum systems with potential barriers. Finally, the computational viability of the scheme for the case of three-dimensional open systems is also illustrated.

  13. Causal electromagnetic interaction equations

    International Nuclear Information System (INIS)

    Zinoviev, Yury M.

    2011-01-01

    For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.

  14. Test Score Equating Using Discrete Anchor Items versus Passage-Based Anchor Items: A Case Study Using "SAT"® Data. Research Report. ETS RR-14-14

    Science.gov (United States)

    Liu, Jinghua; Zu, Jiyun; Curley, Edward; Carey, Jill

    2014-01-01

    The purpose of this study is to investigate the impact of discrete anchor items versus passage-based anchor items on observed score equating using empirical data.This study compares an "SAT"® critical reading anchor that contains more discrete items proportionally, compared to the total tests to be equated, to another anchor that…

  15. Products of prime powers in binary recurrence sequences : part I. The hyperbolic case, with an application to the generalized Ramanujan-Nagell equation

    NARCIS (Netherlands)

    Pethö, A.; Weger, de B.M.M.

    1986-01-01

    We show how the Gelfond-Baker theory and diophantine approximation techniques can be applied to solve explicitly the diophantine equation [formula] (where [formula] is a binary recurrence sequence with positive discriminant), for arbitrary values of the parameters. We apply this to the equation

  16. Method of ATMS operators in the formalism of Faddeev equations

    International Nuclear Information System (INIS)

    Zubarev, D.A.

    1991-01-01

    The method of ATMS operators is generalized for the case of Faddeev equations. The method to construct effective equations for both elastic scattering and scattering with rearrangement is presented. Properties to obtained equations are considered

  17. Harvesting interacts with climate change to affect future habitat quality of a focal species in eastern Canada’s boreal forest

    Science.gov (United States)

    Boulanger, Yan; Cyr, Dominic; Taylor, Anthony R.; Price, David T.; St-Laurent, Martin-Hugues

    2018-01-01

    Many studies project future bird ranges by relying on correlative species distribution models. Such models do not usually represent important processes explicitly related to climate change and harvesting, which limits their potential for predicting and understanding the future of boreal bird assemblages at the landscape scale. In this study, we attempted to assess the cumulative and specific impacts of both harvesting and climate-induced changes on wildfires and stand-level processes (e.g., reproduction, growth) in the boreal forest of eastern Canada. The projected changes in these landscape- and stand-scale processes (referred to as “drivers of change”) were then assessed for their impacts on future habitats and potential productivity of black-backed woodpecker (BBWO; Picoides arcticus), a focal species representative of deadwood and old-growth biodiversity in eastern Canada. Forest attributes were simulated using a forest landscape model, LANDIS-II, and were used to infer future landscape suitability to BBWO under three anthropogenic climate forcing scenarios (RCP 2.6, RCP 4.5 and RCP 8.5), compared to the historical baseline. We found climate change is likely to be detrimental for BBWO, with up to 92% decline in potential productivity under the worst-case climate forcing scenario (RCP 8.5). However, large declines were also projected under baseline climate, underlining the importance of harvest in determining future BBWO productivity. Present-day harvesting practices were the single most important cause of declining areas of old-growth coniferous forest, and hence appeared as the single most important driver of future BBWO productivity, regardless of the climate scenario. Climate-induced increases in fire activity would further promote young, deciduous stands at the expense of old-growth coniferous stands. This suggests that the biodiversity associated with deadwood and old-growth boreal forests may be greatly altered by the cumulative impacts of natural and

  18. Extended rate equations

    International Nuclear Information System (INIS)

    Shore, B.W.

    1981-01-01

    The equations of motion are discussed which describe time dependent population flows in an N-level system, reviewing the relationship between incoherent (rate) equations, coherent (Schrodinger) equations, and more general partially coherent (Bloch) equations. Approximations are discussed which replace the elaborate Bloch equations by simpler rate equations whose coefficients incorporate long-time consequences of coherence

  19. Compositeness condition in the renormalization group equation

    International Nuclear Information System (INIS)

    Bando, Masako; Kugo, Taichiro; Maekawa, Nobuhiro; Sasakura, Naoki; Watabiki, Yoshiyuki; Suehiro, Kazuhiko

    1990-01-01

    The problems in imposing compositeness conditions as boundary conditions in renormalization group equations are discussed. It is pointed out that one has to use the renormalization group equation directly in cutoff theory. In some cases, however, it can be approximated by the renormalization group equation in continuum theory if the mass dependent renormalization scheme is adopted. (orig.)

  20. Loop equations in the theory of gravitation

    International Nuclear Information System (INIS)

    Makeenko, Yu.M.; Voronov, N.A.

    1981-01-01

    Loop-space variables (matrices of parallel transport) for the theory of gravitation are described. Loop equations, which are equivalent to the Einstein equations, are derived in the classical case. Loop equations are derived for gravity with cosmological constant as well. An analogy with the loop-space approach in Yang-Mills theory is discussed [ru

  1. The Modified Enskog Equation for Mixtures

    NARCIS (Netherlands)

    Beijeren, H. van; Ernst, M.H.

    1973-01-01

    In a previous paper it was shown that a modified form of the Enskog equation, applied to mixtures of hard spheres, should be considered as the correct extension of the usual Enskog equation to the case of mixtures. The main argument was that the modified Enskog equation leads to linear transport

  2. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    Directory of Open Access Journals (Sweden)

    Vitanov Nikolay K.

    2018-03-01

    Full Text Available We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  3. Modified Method of Simplest Equation Applied to the Nonlinear Schrödinger Equation

    Science.gov (United States)

    Vitanov, Nikolay K.; Dimitrova, Zlatinka I.

    2018-03-01

    We consider an extension of the methodology of the modified method of simplest equation to the case of use of two simplest equations. The extended methodology is applied for obtaining exact solutions of model nonlinear partial differential equations for deep water waves: the nonlinear Schrödinger equation. It is shown that the methodology works also for other equations of the nonlinear Schrödinger kind.

  4. Random walk and the heat equation

    CERN Document Server

    Lawler, Gregory F

    2010-01-01

    The heat equation can be derived by averaging over a very large number of particles. Traditionally, the resulting PDE is studied as a deterministic equation, an approach that has brought many significant results and a deep understanding of the equation and its solutions. By studying the heat equation by considering the individual random particles, however, one gains further intuition into the problem. While this is now standard for many researchers, this approach is generally not presented at the undergraduate level. In this book, Lawler introduces the heat equation and the closely related notion of harmonic functions from a probabilistic perspective. The theme of the first two chapters of the book is the relationship between random walks and the heat equation. The first chapter discusses the discrete case, random walk and the heat equation on the integer lattice; and the second chapter discusses the continuous case, Brownian motion and the usual heat equation. Relationships are shown between the two. For exa...

  5. Some Aspects of Extended Kinetic Equation

    Directory of Open Access Journals (Sweden)

    Dilip Kumar

    2015-09-01

    Full Text Available Motivated by the pathway model of Mathai introduced in 2005 [Linear Algebra and Its Applications, 396, 317–328] we extend the standard kinetic equations. Connection of the extended kinetic equation with fractional calculus operator is established. The solution of the general form of the fractional kinetic equation is obtained through Laplace transform. The results for the standard kinetic equation are obtained as the limiting case.

  6. Habitat quality, water quality and otter distribution

    Directory of Open Access Journals (Sweden)

    Christopher Mason

    1995-12-01

    Full Text Available Abstract In recent decades the otter (Lutra lutra has declined over much of Europe. Good habitat has been shown to be essential to otters. Specific elements of cover have been identified in some studies but the minimum cover requirements to support otter populations are not known. These are likely to vary in relation to other factors, such as disturbance. Habitat destruction has been severe in many areas of Europe. Water quantity is important to otters, especially where low flows destroy the food base, namely fish. However the minimum food requirements to support populations are not known. The main cause of the decline in otter populations is almost certainly bioaccumulating pollutants, especially PCBs. These are likely to be inhibiting recolonization in many areas. In Britain, catchment distribution of otters within regions is negatively correlated to mean PCB levels in otter spraints, and these are indicative of tissue levels. PCBs have been found in all samples studied. Current EC statutory monitoring is inadequate to protect otter populations from bioaccumulating contaminants. Standards are presented here for otter protection. More fundamental research is required to refine our understanding of the requirements of the otter. Riassunto Qualità ambientale, qualità dell'acqua e distribuzione della lontra - Negli ultimi decenni la lontra (Lutra lutra è diminuita su buona parte del suo areale europeo, dove particolarmente pesante è stata la distruzione di ambienti favorevoli. Habitat qualitativamente idonei sono essenziali per la sopravvivenza della specie. In alcuni studi, specifici parametri di copertura vegetale dei corpi idrici sono stati ritenuti importanti per la specie, ma quale sia il valore minimo di copertura riparia in grado di supportare una popolazione resta sconosciuto. I parametri di copertura variano probabilmente in relazione ad altri fattori, quali, ad esempio, il disturbo. La quantità d'acqua è importante per la lontra, specialmente in situazioni di bassa portata dei corsi idrici che ha come conseguenza il depauperamento delle disponibilità trofiche di base e quindi del popolamento ittico. Comunque, il livello minimo di disponibilità di cibo in grado di soddisfarc le esigenze di una popolazione di lontra non è noto. La principale causa del declino della lontra è quasi certamente il bioaccumulo di sostanze tossiche, specialmente dei PCB. Questi probabilmente inibiscono la riproduzione e di conseguenza limitano la possibilità di ricolonizzazione di molte zone. In Gran Bretagna, la distribuzione della lontra in bacini idrografici è negativamente correlata ai livelli medi di PCB nelle feci della specie che riflettono indicativamente il tasso di accumulo nei tessuti degli animali. I PCB sono stati trovati in tutti i campioni fecali esaminati. Gli attuali livelli di contaminazione stabiliti dalla Comunità Europea sono inadeguati per proteggere la specie contro l'effetto del bioaccumulo. Nel presente studio sono riportati gli standard cui fare riferimento per la conservazione della specie. Ulteriori ricerche sono di fondamentale importanza per approfondire le conoscenze sulle esigenze ecologiche della lontra.

  7. Partial Differential Equations

    CERN Document Server

    1988-01-01

    The volume contains a selection of papers presented at the 7th Symposium on differential geometry and differential equations (DD7) held at the Nankai Institute of Mathematics, Tianjin, China, in 1986. Most of the contributions are original research papers on topics including elliptic equations, hyperbolic equations, evolution equations, non-linear equations from differential geometry and mechanics, micro-local analysis.

  8. Products of prime powers in binary recurrence sequences : part II. The elliptic case, with an application to a mixed quadratic-exponential equation

    NARCIS (Netherlands)

    Weger, de B.M.M.

    1986-01-01

    In Part I the diophantine equation [formula] was studied, where [formula] is a linear binary recurrence sequence with positive discriminant. In this second part we extend this to negative discriminants. We use the p-adic and complex Gelfond-Baker theory to find explicit upper bounds for the

  9. Equating error in observed-score equating

    NARCIS (Netherlands)

    van der Linden, Willem J.

    2006-01-01

    Traditionally, error in equating observed scores on two versions of a test is defined as the difference between the transformations that equate the quantiles of their distributions in the sample and population of test takers. But it is argued that if the goal of equating is to adjust the scores of

  10. Higher order field equations. II

    International Nuclear Information System (INIS)

    Tolhoek, H.A.

    1977-01-01

    In a previous paper wave propagation was studied according to a sixth-order partial differential equation involving a complex mass M. The corresponding Yang-Feldman integral equations (indicated as SM-YF-equations), were formulated using modified Green's functions Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x), which then incorporate the partial differential equation together with certain boundary conditions. In this paper certain limit properties of these modified Green's functions are derived: (a) It is shown that for mod(M)→infinity the Green's functions Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x) approach the Green's functions Δsub(R)(x) and Δsub(A)(x) of the corresponding KG-equation (Klein-Gordon equation). (b) It is further shown that the asymptotic behaviour of Gsub(R)sup(M)(x) and Gsub(A)sup(M)(x) is the same as of Δsub(R)(x) and Δsub(A)(x)-and also the same as for Dsub(R)(x) and Dsub(A)(x) for t→+-infinity;, where Dsub(R) and Dsub(A) are the Green's functions for the KG-equation with mass zero. It is essential to take limits in the sense of distribution theory in both cases (a) and (b). The property (b) indicates that the wave propagation properties of the SM-YF-equations, the KG-equation with finite mass and the KG-equation with mass zero are closely related in an asymptotic sense. (Auth.)

  11. Kinetic equations with pairing correlations

    International Nuclear Information System (INIS)

    Fauser, R.

    1995-12-01

    The Gorkov equations are derived for a general non-equilibrium system. The Gorkov factorization is generalized by the cumulant expansion of the 2-particle correlation and by a generalized Wick theorem in the case of a perturbation expansion. A stationary solution for the Green functions in the Schwinger-Keldysh formalism is presented taking into account pairing correlations. Especially the effects of collisional broadening on the spectral functions and Green functions is discussed. Kinetic equations are derived in the quasi-particle approximation and in the case of particles with width. Explicit expressions for the self-energies are given. (orig.)

  12. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    International Nuclear Information System (INIS)

    Priimak, Dmitri

    2014-01-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques

  13. Finite difference numerical method for the superlattice Boltzmann transport equation and case comparison of CPU(C) and GPU(CUDA) implementations

    Energy Technology Data Exchange (ETDEWEB)

    Priimak, Dmitri

    2014-12-01

    We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.

  14. An integral transform of the Salpeter equation

    International Nuclear Information System (INIS)

    Krolikowski, W.

    1980-03-01

    We find a new form of relativistic wave equation for two spin-1/2 particles, which arises by an integral transformation (in the position space) of the wave function in the Salpeter equation. The non-locality involved in this transformation is extended practically over the Compton wavelength of the lighter of two particles. In the case of equal masses the new equation assumes the form of the Breit equation with an effective integral interaction. In the one-body limit it reduces to the Dirac equation also with an effective integral interaction. (author)

  15. Sparse dynamics for partial differential equations.

    Science.gov (United States)

    Schaeffer, Hayden; Caflisch, Russel; Hauck, Cory D; Osher, Stanley

    2013-04-23

    We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics are represented. In many cases, there are natural bases derived from the differential equations, which promote sparsity. We find that our method successfully reduces the dynamics of convection equations, diffusion equations, weak shocks, and vorticity equations with high-frequency source terms.

  16. On the Existence and the Applications of Modified Equations for Stochastic Differential Equations

    KAUST Repository

    Zygalakis, K. C.

    2011-01-01

    In this paper we describe a general framework for deriving modified equations for stochastic differential equations (SDEs) with respect to weak convergence. Modified equations are derived for a variety of numerical methods, such as the Euler or the Milstein method. Existence of higher order modified equations is also discussed. In the case of linear SDEs, using the Gaussianity of the underlying solutions, we derive an SDE which the numerical method solves exactly in the weak sense. Applications of modified equations in the numerical study of Langevin equations is also discussed. © 2011 Society for Industrial and Applied Mathematics.

  17. On a functional equation related to the intermediate long wave equation

    International Nuclear Information System (INIS)

    Hone, A N W; Novikov, V S

    2004-01-01

    We resolve an open problem stated by Ablowitz et al (1982 J. Phys. A: Math. Gen. 15 781) concerning the integral operator appearing in the intermediate long wave equation. We explain how this is resolved using the perturbative symmetry approach introduced by one of us with Mikhailov. By solving a certain functional equation, we prove that the intermediate long wave equation and the Benjamin-Ono equation are the unique integrable cases within a particular class of integro-differential equations. Furthermore, we explain how the perturbative symmetry approach is naturally extended to treat equations on a periodic domain. (letter to the editor)

  18. An Auxiliary Equation for the Bellman Equation in a One-Dimensional Ergodic Control

    International Nuclear Information System (INIS)

    Fujita, Y.

    2001-01-01

    In this paper we consider the Bellman equation in a one-dimensional ergodic control. Our aim is to show the existence and the uniqueness of its solution under general assumptions. For this purpose we introduce an auxiliary equation whose solution gives the invariant measure of the diffusion corresponding to an optimal control. Using this solution, we construct a solution to the Bellman equation. Our method of using this auxiliary equation has two advantages in the one-dimensional case. First, we can solve the Bellman equation under general assumptions. Second, this auxiliary equation gives an optimal Markov control explicitly in many examples

  19. Chemical Equation Balancing.

    Science.gov (United States)

    Blakley, G. R.

    1982-01-01

    Reviews mathematical techniques for solving systems of homogeneous linear equations and demonstrates that the algebraic method of balancing chemical equations is a matter of solving a system of homogeneous linear equations. FORTRAN programs using this matrix method to chemical equation balancing are available from the author. (JN)

  20. Solutions of Einstein's field equations

    Energy Technology Data Exchange (ETDEWEB)

    Tomonaga, Y [Utsunomiya Univ. (Japan). Faculty of Education

    1978-12-01

    In this paper the author investigates the Einstein's field equations of the non-vacuum case and generalizes the solution of Robertson-Walker by the three dimensional Einstein spaces. In Section 2 the author shortly generalizes the dynamic space-time of G. Lemetre and A. Friedmann by a simple transformation.

  1. Equations for formally real meadows

    NARCIS (Netherlands)

    Bergstra, J.A.; Bethke, I.; Ponse, A.

    2015-01-01

    We consider the signatures Σm = (0,1,−,+,⋅,−1)  of meadows and (Σm,s)  of signed meadows. We give two complete axiomatizations of the equational theories of the real numbers with respect to these signatures. In the first case, we extend the axiomatization of zero-totalized fields by a single axiom

  2. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  3. MANAGEMENT CONTROL SYSTEM AND THE CASE OF CSR IN THE TUNISIAN INDUSTRIAL COMPANIES: WHAT FINDINGS BY THE METHOD OF STRUCTURAL EQUATION?

    Directory of Open Access Journals (Sweden)

    Hichem Dkhili

    2013-01-01

    Full Text Available This study aims to the behavior of management control; it is providing a model to the behavior of integration of social responsibility in the management control tools. This model was validated with 306 Tunisian companies in the industrial sector. Through a questionnaire, the data collected are processed using exploratory and confirmatory analysis by the methods of structural equations. The results revealed that the management control system in industrial Tunisia is facing economic responsibility. This is in response to emerging pressures of uncertainty related to the environment, and in enrolling a strategy of domination by cost. In addition, the management control system is designed as a guidance tool actions and behaviors.

  4. Equations of motion derived from a generalization of Einstein's equation for the gravitational field

    International Nuclear Information System (INIS)

    Mociutchi, C.

    1980-01-01

    The extended Einstein's equation, combined with a vectorial theory of maxwellian type of the gravitational field, leads to: a) the equation of motion; b) the equation of the trajectory for the static case of spherical symmetry, the test particle having a rest mass other than zero, and c) the propagation of light on null geodesics. All the basic tests of the theory given by Einstein's extended equation. Thus, the new theory of gravitation suggested by us is competitive. (author)

  5. A discrete model of a modified Burgers' partial differential equation

    Science.gov (United States)

    Mickens, R. E.; Shoosmith, J. N.

    1990-01-01

    A new finite-difference scheme is constructed for a modified Burger's equation. Three special cases of the equation are considered, and the 'exact' difference schemes for the space- and time-independent forms of the equation are presented, along with the diffusion-free case of Burger's equation modeled by a difference equation. The desired difference scheme is then obtained by imposing on any difference model of the initial equation the requirement that, in the appropriate limits, its difference scheme must reduce the results of the obtained equations.

  6. Critical spaces for quasilinear parabolic evolution equations and applications

    Science.gov (United States)

    Prüss, Jan; Simonett, Gieri; Wilke, Mathias

    2018-02-01

    We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.

  7. Stationary axisymmetric Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Catenacci, R.; Diaz Alonso, J.

    1976-01-01

    We show the existence of a formal identity between Einstein's and Ernst's stationary axisymmetric gravitational field equations and the Einstein--Maxwell and the Ernst equations for the electrostatic and magnetostatic axisymmetric cases. Our equations are invariant under very simple internal symmetry groups, and one of them appears to be new. We also obtain a method for associating two stationary axisymmetric vacuum solutions with every electrostatic known

  8. Isomorphism of Intransitive Linear Lie Equations

    Directory of Open Access Journals (Sweden)

    Jose Miguel Martins Veloso

    2009-11-01

    Full Text Available We show that formal isomorphism of intransitive linear Lie equations along transversal to the orbits can be extended to neighborhoods of these transversal. In analytic cases, the word formal is dropped from theorems. Also, we associate an intransitive Lie algebra with each intransitive linear Lie equation, and from the intransitive Lie algebra we recover the linear Lie equation, unless of formal isomorphism. The intransitive Lie algebra gives the structure functions introduced by É. Cartan.

  9. Modeling of Individual and Organizational Factors Affecting Traumatic Occupational Injuries Based on the Structural Equation Modeling: A Case Study in Large Construction Industries.

    Science.gov (United States)

    Mohammadfam, Iraj; Soltanzadeh, Ahmad; Moghimbeigi, Abbas; Akbarzadeh, Mehdi

    2016-09-01

    Individual and organizational factors are the factors influencing traumatic occupational injuries. The aim of the present study was the short path analysis of the severity of occupational injuries based on individual and organizational factors. The present cross-sectional analytical study was implemented on traumatic occupational injuries within a ten-year timeframe in 13 large Iranian construction industries. Modeling and data analysis were done using the structural equation modeling (SEM) approach and the IBM SPSS AMOS statistical software version 22.0, respectively. The mean age and working experience of the injured workers were 28.03 ± 5.33 and 4.53 ± 3.82 years, respectively. The portions of construction and installation activities of traumatic occupational injuries were 64.4% and 18.1%, respectively. The SEM findings showed that the individual, organizational and accident type factors significantly were considered as effective factors on occupational injuries' severity (P accidents' severity in large construction industries.

  10. A generalized nodal finite element formalism for discrete ordinates equations in slab geometry Part I: Theory in the continuous moment case

    International Nuclear Information System (INIS)

    Hennart, J.P.; Valle, E. del.

    1995-01-01

    A generalized nodal finite element formalism is presented, which covers virtually all known finit difference approximation to the discrete ordinates equations in slab geometry. This paper (Part 1) presents the theory of the so called open-quotes continuous moment methodsclose quotes, which include such well-known methods as the open-quotes diamond differenceclose quotes and the open-quotes characteristicclose quotes schemes. In a second paper (hereafter referred to as Part II), the authors will present the theory of the open-quotes discontinuous moment methodsclose quotes, consisting in particular of the open-quotes linear discontinuousclose quotes scheme as well as of an entire new class of schemes. Corresponding numerical results are available for all these schemes and will be presented in a third paper (Part III). 12 refs

  11. Energy-based operator splitting approach for the time discretization of coupled systems of partial and ordinary differential equations for fluid flows: The Stokes case

    Science.gov (United States)

    Carichino, Lucia; Guidoboni, Giovanna; Szopos, Marcela

    2018-07-01

    The goal of this work is to develop a novel splitting approach for the numerical solution of multiscale problems involving the coupling between Stokes equations and ODE systems, as often encountered in blood flow modeling applications. The proposed algorithm is based on a semi-discretization in time based on operator splitting, whose design is guided by the rationale of ensuring that the physical energy balance is maintained at the discrete level. As a result, unconditional stability with respect to the time step choice is ensured by the implicit treatment of interface conditions within the Stokes substeps, whereas the coupling between Stokes and ODE substeps is enforced via appropriate initial conditions for each substep. Notably, unconditional stability is attained without the need of subiterating between Stokes and ODE substeps. Stability and convergence properties of the proposed algorithm are tested on three specific examples for which analytical solutions are derived.

  12. Numerical resolution of Navier-Stokes equations coupled to the heat equation

    International Nuclear Information System (INIS)

    Zenouda, Jean-Claude

    1970-08-01

    The author proves a uniqueness theorem for the time dependent Navier-Stokes equations coupled with heat flow in the two-dimensional case. He studies stability and convergence of several finite - difference schemes to solve these equations. Numerical experiments are done in the case of a square domain. (author) [fr

  13. Geometric approach to soliton equations

    International Nuclear Information System (INIS)

    Sasaki, R.

    1979-09-01

    A class of nonlinear equations that can be solved in terms of nxn scattering problem is investigated. A systematic geometric method of exploiting conservation laws and related equations, the so-called prolongation structure, is worked out. The nxn problem is reduced to nsub(n-1)x(n-1) problems and finally to 2x2 problems, which have been comprehensively investigated recently by the author. A general method of deriving the infinite numbers of polynomial conservation laws for an nxn problem is presented. The cases of 3x3 and 2x2 problems are discussed explicitly. (Auth.)

  14. Sequent Calculus and Equational Programming

    Directory of Open Access Journals (Sweden)

    Nicolas Guenot

    2015-07-01

    Full Text Available Proof assistants and programming languages based on type theories usually come in two flavours: one is based on the standard natural deduction presentation of type theory and involves eliminators, while the other provides a syntax in equational style. We show here that the equational approach corresponds to the use of a focused presentation of a type theory expressed as a sequent calculus. A typed functional language is presented, based on a sequent calculus, that we relate to the syntax and internal language of Agda. In particular, we discuss the use of patterns and case splittings, as well as rules implementing inductive reasoning and dependent products and sums.

  15. Kinetic equations for an unstable plasma; Equations cinetiques d'un plasma instable

    Energy Technology Data Exchange (ETDEWEB)

    Laval, G; Pellat, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this work, we establish the plasma kinetic equations starting from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations. We demonstrate that relations existing between correlation functions may help to justify the truncation of the hierarchy. Then we obtain the kinetic equations of a stable or unstable plasma. They do not reduce to an equation for the one-body distribution function, but generally involve two coupled equations for the one-body distribution function and the spectral density of the fluctuating electric field. We study limiting cases where the Balescu-Lenard equation, the quasi-linear theory, the Pines-Schrieffer equations and the equations of weak turbulence in the random phase approximation are recovered. At last we generalise the H-theorem for the system of equations and we define conditions for irreversible behaviour. (authors) [French] Dans ce travail nous etablissons les equations cinetiques d'un plasma a partir des equations de la recurrence de Bogoliubov, Born, Green, Kirkwood et Yvon. Nous demontrons qu'entre les fonctions de correlation d'un plasma existent des relations qui permettent de justifier la troncature de la recurrence. Nous obtenons alors les equations cinetiques d'un plasma stable ou instable. En general elles ne se reduisent pas a une equation d'evolution pour la densite simple, mais se composent de deux equations couplees portant sur la densite simple et la densite spectrale du champ electrique fluctuant. Nous etudions le cas limites ou l'on retrouve l'equation de Balescu-Lenard, les equations de la theorie quasi-lineaire, les equations de Pines et Schrieffer et les equations de la turbulence faible dans l'approximation des phases aleatoires. Enfin, nous generalisons le theoreme H pour ce systeme d'equations et nous precisons les conditions d'evolution irreversible. (auteurs)

  16. Introduction to differential equations

    CERN Document Server

    Taylor, Michael E

    2011-01-01

    The mathematical formulations of problems in physics, economics, biology, and other sciences are usually embodied in differential equations. The analysis of the resulting equations then provides new insight into the original problems. This book describes the tools for performing that analysis. The first chapter treats single differential equations, emphasizing linear and nonlinear first order equations, linear second order equations, and a class of nonlinear second order equations arising from Newton's laws. The first order linear theory starts with a self-contained presentation of the exponen

  17. Nonlinear evolution equations

    CERN Document Server

    Uraltseva, N N

    1995-01-01

    This collection focuses on nonlinear problems in partial differential equations. Most of the papers are based on lectures presented at the seminar on partial differential equations and mathematical physics at St. Petersburg University. Among the topics explored are the existence and properties of solutions of various classes of nonlinear evolution equations, nonlinear imbedding theorems, bifurcations of solutions, and equations of mathematical physics (Navier-Stokes type equations and the nonlinear Schrödinger equation). The book will be useful to researchers and graduate students working in p

  18. Analysis of Influence of the Thermal Dependence of Air Thermophysical Properties on the Accuracy of Simulation of Heat Transfer in a Turbulent Flow in Case of Applying Different Methods of Averaging Navier-Stokes Equations

    Directory of Open Access Journals (Sweden)

    A. D. Kliukvin

    2014-01-01

    Full Text Available There is theoretically investigated the influence of thermal dependence of air thermophysical properties on accuracy of heat transfer problems solution in a turbulent flow when using different methods of averaging the Navier-Stokes equations.There is analyzed the practicability of using particular method of averaging the NavierStokes equations when it’s necessary to clarify the solution of heat transfer problem taking into account the variability of air thermophysical properties.It’s shown that Reynolds and Favre averaging (the most common methods of averaging the Navier-Stokes equations are not effective in this case because these methods inaccurately describe behavior of large scale turbulent structures which strongly depends on geometry of particular flow. Thus it’s necessary to use more universal methods of turbulent flow simulation which are not based on averaging of all turbulent scales.In the article it’s shown that instead of Reynold and Favre averaging it’s possible to use large eddy simulation whereby turbulent structures are divided into small-scale and large-scale ones with subsequent modelling of small-scale ones only. But this approach leads to the necessarity of increasing the computational power by 2-3 orders.For different methods of averaging the form of additional terms of averaged Navier-Stokes equations in case of accounting pulsation of thermophysical properties of the air is obtained.On the example of a submerged heated air jet the errors (which occur when neglecting the thermal dependence of air thermophysical properties on averaged flow temperature in determination of convectional and conductive components of heat flux and viscous stresses are evaluated. It’s shown that the greatest increase of solution accuracy can be obtained in case of the flows with high temperature gradients.Finally using infinite Teylor series it’s found that underestimation of convective and conductive components of heat flux and

  19. Solution of kinetic equation by means of the moments method for phonon thermoconductivity and effect of isotopic disorder on it in the case of germanium and silicon crystals at T = 300 K

    CERN Document Server

    Zhernov, A P

    2001-01-01

    The problem on solving the kinetic equation through the moments method for the dielectric and semiconductor thermal conductivity is discussed. The evaluations of the isotopic disorder effect on the germanium crystals heat resistance in the multimoment approximation are obtained on the basis of the microscopic models. The contributions of the acoustic and optical phonons to the thermal conductivity are accounted for. The DELTA W surplus heat resistance in comparison with highly-enriched samples was determined for the natural composition samples. Good agreement between the theory and experiment for DELTA W is observed in the case of germanium. The theoretical value in the case of silicon is essentially lower as compared to the DELTA W experimental value

  20. The circle equation over finite fields

    DEFF Research Database (Denmark)

    Aabrandt, Andreas; Hansen, Vagn Lundsgaard

    2017-01-01

    Interesting patterns in the geometry of a plane algebraic curve C can be observed when the defining polynomial equation is solved over the family of finite fields. In this paper, we examine the case of C the classical unit circle defined by the circle equation x2 + y2 = 1. As a main result, we es...

  1. Generalized equations of gravitational field

    International Nuclear Information System (INIS)

    Stanyukovich, K.P.; Borisova, L.B.

    1985-01-01

    Equations for gravitational fields are obtained on the basis of a generalized Lagrangian Z=f(R) (R is the scalar curvature). Such an approach permits to take into account the evolution of a gravitation ''constant''. An expression for the force Fsub(i) versus the field variability is obtained. Conservation laws are formulated differing from the standard ones by the fact that in the right part of new equations the value Fsub(i) is present that goes to zero at an ultimate passage to the standard Einstein theory. An equation of state is derived for cosmological metrics for a particular case, f=bRsup(1+α) (b=const, α=const)

  2. Evolution equations for Killing fields

    International Nuclear Information System (INIS)

    Coll, B.

    1977-01-01

    The problem of finding necessary and sufficient conditions on the Cauchy data for Einstein equations which insure the existence of Killing fields in a neighborhood of an initial hypersurface has been considered recently by Berezdivin, Coll, and Moncrief. Nevertheless, it can be shown that the evolution equations obtained in all these cases are of nonstrictly hyperbolic type, and, thus, the Cauchy data must belong to a special class of functions. We prove here that, for the vacuum and Einstein--Maxwell space--times and in a coordinate independent way, one can always choose, as evolution equations for the Killing fields, a strictly hyperbolic system: The above theorems can be thus extended to all Cauchy data for which the Einstein evolution problem has been proved to be well set

  3. Quasisymmetry equations for conventional stellarators

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    1994-11-01

    General quasisymmetry condition, which demands the independence of B 2 on one of the angular Boozer coordinates, is reduced to two equations containing only geometrical characteristics and helical field of a stellarator. The analysis is performed for conventional stellarators with a planar circular axis using standard stellarator expansion. As a basis, the invariant quasisymmetry condition is used. The quasisymmetry equations for stellarators are obtained from this condition also in an invariant form. Simplified analogs of these equations are given for the case when averaged magnetic surfaces are circular shifted torii. It is shown that quasisymmetry condition can be satisfied, in principle, in a conventional stellarator by a proper choice of two satellite harmonics of the helical field in addition to the main harmonic. Besides, there appears a restriction on the shift of magnetic surfaces. Thus, in general, the problem is closely related with that of self-consistent description of a configuration. (author)

  4. The generalized good cut equation

    International Nuclear Information System (INIS)

    Adamo, T M; Newman, E T

    2010-01-01

    The properties of null geodesic congruences (NGCs) in Lorentzian manifolds are a topic of considerable importance. More specifically NGCs with the special property of being shear-free or asymptotically shear-free (as either infinity or a horizon is approached) have received a great deal of recent attention for a variety of reasons. Such congruences are most easily studied via solutions to what has been referred to as the 'good cut equation' or the 'generalization good cut equation'. It is the purpose of this paper to study these equations and show their relationship to each other. In particular we show how they all have a four-complex-dimensional manifold (known as H-space, or in a special case as complex Minkowski space) as a solution space.

  5. Benney's long wave equations

    International Nuclear Information System (INIS)

    Lebedev, D.R.

    1979-01-01

    Benney's equations of motion of incompressible nonviscous fluid with free surface in the approximation of long waves are analyzed. The connection between the Lie algebra of Hamilton plane vector fields and the Benney's momentum equations is shown

  6. Structural Equation Modelling with Three Schemes Estimation of Score Factors on Partial Least Square (Case Study: The Quality Of Education Level SMA/MA in Sumenep Regency)

    Science.gov (United States)

    Anekawati, Anik; Widjanarko Otok, Bambang; Purhadi; Sutikno

    2017-06-01

    Research in education often involves a latent variable. Statistical analysis technique that has the ability to analyze the pattern of relationship among latent variables as well as between latent variables and their indicators is Structural Equation Modeling (SEM). SEM partial least square (PLS) was developed as an alternative if these conditions are met: the theory that underlying the design of the model is weak, does not assume a certain scale measurement, the sample size should not be large and the data does not have the multivariate normal distribution. The purpose of this paper is to compare the results of modeling of the educational quality in high school level (SMA/MA) in Sumenep Regency with structural equation modeling approach partial least square with three schemes estimation of score factors. This paper is a result of explanatory research using secondary data from Sumenep Education Department and Badan Pusat Statistik (BPS) Sumenep which was data of Sumenep in the Figures and the District of Sumenep in the Figures for the year 2015. The unit of observation in this study were districts in Sumenep that consists of 18 districts on the mainland and 9 districts in the islands. There were two endogenous variables and one exogenous variable. Endogenous variables are the quality of education level of SMA/MA (Y1) and school infrastructure (Y2), whereas exogenous variable is socio-economic condition (X1). In this study, There is one improved model which represented by model from path scheme because this model is a consistent, all of its indicators are valid and its the value of R-square increased which is: Y1=0.651Y2. In this model, the quality of education influenced only by the school infrastructure (0.651). The socio-economic condition did not affect neither the school infrastructure nor the quality of education. If the school infrastructure increased 1 point, then the quality of education increased 0.651 point. The quality of education had an R2 of 0

  7. Fractional Schroedinger equation

    International Nuclear Information System (INIS)

    Laskin, Nick

    2002-01-01

    Some properties of the fractional Schroedinger equation are studied. We prove the Hermiticity of the fractional Hamilton operator and establish the parity conservation law for fractional quantum mechanics. As physical applications of the fractional Schroedinger equation we find the energy spectra of a hydrogenlike atom (fractional 'Bohr atom') and of a fractional oscillator in the semiclassical approximation. An equation for the fractional probability current density is developed and discussed. We also discuss the relationships between the fractional and standard Schroedinger equations

  8. Ordinary differential equations

    CERN Document Server

    Greenberg, Michael D

    2014-01-01

    Features a balance between theory, proofs, and examples and provides applications across diverse fields of study Ordinary Differential Equations presents a thorough discussion of first-order differential equations and progresses to equations of higher order. The book transitions smoothly from first-order to higher-order equations, allowing readers to develop a complete understanding of the related theory. Featuring diverse and interesting applications from engineering, bioengineering, ecology, and biology, the book anticipates potential difficulties in understanding the various solution steps

  9. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2014-01-01

    A broad introduction to PDEs with an emphasis on specialized topics and applications occurring in a variety of fields Featuring a thoroughly revised presentation of topics, Beginning Partial Differential Equations, Third Edition provides a challenging, yet accessible,combination of techniques, applications, and introductory theory on the subjectof partial differential equations. The new edition offers nonstandard coverageon material including Burger's equation, the telegraph equation, damped wavemotion, and the use of characteristics to solve nonhomogeneous problems. The Third Edition is or

  10. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    International Nuclear Information System (INIS)

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D.

    2013-01-01

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M ☉ neutron star, 5.6 M ☉ black hole), high-spin (black hole J/M 2 = 0.9) system with the K 0 = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M ☉ of nuclear matter is ejected from the system, while another 0.3 M ☉ forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y e of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L ν ∼ 10 54 erg s –1 ), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution

  11. Soil erosion assessment using the Universal Soil Loss Equation (USLE) in a GIS framework: A case study of Zacatecas, México

    Science.gov (United States)

    Betanzos Arroyo, L. I.; Prol Ledesma, R. M.; da Silva Pinto da Rocha, F. J. P.

    2014-12-01

    The Universal Soil Loss Equation (USLE), which is considered to be a contemporary approach in soil loss assessment, was used to assess soil erosion hazard in the Zacatecas mining district. The purpose of this study is to produce erosion susceptibility maps for an area that is polluted with mining tailings which are susceptible to erosion and can disperse the particles that contain heavy metals and other toxic elements. USLE method is based in the estimation of soil loss per unit area and takes into account specific parameters such as precipitation data, topography, soil erodibility, erosivity and runoff. The R-factor (rainfall erosivity) was calculated from monthly and annual precipitation data. The K-factor (soil erodibility) was estimated using soil maps available from the CONABIO at a scale of 1:250000. The LS-factor (slope length and steepness) was determined from a 30-m digital elevation model. A raster-based Geographic Information System (GIS) was used to interactively calculate soil loss and map erosion hazard. The results show that estimated erosion rates ranged from 0 to 4770.48 t/ha year. Maximum proportion of the total area of the Zacatecas mining district have nil to very extremely slight erosion severity. Small areas in the central and south part of the study area shows the critical condition requiring sustainable land management.

  12. Averaged RMHD equations

    International Nuclear Information System (INIS)

    Ichiguchi, Katsuji

    1998-01-01

    A new reduced set of resistive MHD equations is derived by averaging the full MHD equations on specified flux coordinates, which is consistent with 3D equilibria. It is confirmed that the total energy is conserved and the linearized equations for ideal modes are self-adjoint. (author)

  13. On the existence of solutions for functional differential equations

    International Nuclear Information System (INIS)

    Walo Omana, R.

    1994-12-01

    The aim of the paper is to extend the Granas Topological Transversality Method used in boundary value problems for functional differential equations for first and second order, to the case of n-th order functional differential equations. 15 refs

  14. Discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities

    DEFF Research Database (Denmark)

    Khare, A.; Rasmussen, Kim Ø; Salerno, M.

    2006-01-01

    -Ladik equation. As a common property, these equations possess three kinds of exact analytical stationary solutions for which the Peierls-Nabarro barrier is zero. Several properties of these solutions, including stability, discrete breathers, and moving solutions, are investigated.......A class of discrete nonlinear Schrodinger equations with arbitrarily high-order nonlinearities is introduced. These equations are derived from the same Hamiltonian using different Poisson brackets and include as particular cases the saturable discrete nonlinear Schrodinger equation and the Ablowitz...

  15. Analytical Solution of Pantograph Equation with Incommensurate Delay

    Science.gov (United States)

    Patade, Jayvant; Bhalekar, Sachin

    2017-08-01

    Pantograph equation is a delay differential equation (DDE) arising in electrodynamics. This paper studies the pantograph equation with two delays. The existence, uniqueness, stability and convergence results for DDEs are presented. The series solution of the proposed equation is obtained by using Daftardar-Gejji and Jafari method and given in terms of a special function. This new special function has several properties and relations with other functions. Further, we generalize the proposed equation to fractional-order case and obtain its solution.

  16. Two dimensional generalizations of the Newcomb equation

    International Nuclear Information System (INIS)

    Dewar, R.L.; Pletzer, A.

    1989-11-01

    The Bineau reduction to scalar form of the equation governing ideal, zero frequency linearized displacements from a hydromagnetic equilibrium possessing a continuous symmetry is performed in 'universal coordinates', applicable to both the toroidal and helical cases. The resulting generalized Newcomb equation (GNE) has in general a more complicated form than the corresponding one dimensional equation obtained by Newcomb in the case of circular cylindrical symmetry, but in this cylindrical case , the equation can be transformed to that of Newcomb. In the two dimensional case there is a transformation which leaves the form of the GNE invariant and simplifies the Frobenius expansion about a rational surface, especially in the limit of zero pressure gradient. The Frobenius expansions about a mode rational surface is developed and the connection with Hamiltonian transformation theory is shown. 17 refs

  17. Chaos in discrete fractional difference equations

    Indian Academy of Sciences (India)

    2016-09-07

    Sep 7, 2016 ... chaotic behaviour of fractional difference equations for the tent map, Gauss map and 2x(mod 1) map are studied ..... (4) No significant change is observed by changing .... (3) In fractional case, the rational initial condition.

  18. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian; Sparber, Christof; Markowich, Peter A.

    2014-01-01

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass

  19. Symmetries and Invariants of the Time-dependent Oscillator Equation and the Envelope Equation

    CERN Document Server

    Qin, Hong

    2005-01-01

    Single-particle dynamics in a time-dependent focusing field is examined. The existence of the Courant-Snyder invariant* is fundamentally the result of the corresponding symmetry admitted by the oscillator equation with time-dependent frequency.** A careful analysis of the admitted symmetries reveals a deeper connection between the nonlinear envelope equation and the oscillator equation. A general theorem regarding the symmetries and invariants of the envelope equation, which includes the existence of the Courant-Snyder invariant as a special case, is demonstrated. The symmetries of the envelope equation enable a fast algorithm for finding matched solutions without using the conventional iterative shooting method.

  20. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  1. Hartree--Fock density matrix equation

    International Nuclear Information System (INIS)

    Cohen, L.; Frishberg, C.

    1976-01-01

    An equation for the Hartree--Fock density matrix is discussed and the possibility of solving this equation directly for the density matrix instead of solving the Hartree--Fock equation for orbitals is considered. Toward that end the density matrix is expanded in a finite basis to obtain the matrix representative equation. The closed shell case is considered. Two numerical schemes are developed and applied to a number of examples. One example is given where the standard orbital method does not converge while the method presented here does

  2. On implicit abstract neutral nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hernández, Eduardo, E-mail: lalohm@ffclrp.usp.br [Universidade de São Paulo, Departamento de Computação e Matemática, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto (Brazil); O’Regan, Donal, E-mail: donal.oregan@nuigalway.ie [National University of Ireland, School of Mathematics, Statistics and Applied Mathematics (Ireland)

    2016-04-15

    In this paper we continue our developments in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) on the existence of solutions for abstract neutral differential equations. In particular we extend the results in Hernández and O’Regan (J Funct Anal 261:3457–3481, 2011) for the case of implicit nonlinear neutral equations and we focus on applications to partial “nonlinear” neutral differential equations. Some applications involving partial neutral differential equations are presented.

  3. On the helix equation

    Directory of Open Access Journals (Sweden)

    Taouil Hajer

    2012-08-01

    Full Text Available This paper is devoted to the helices processes, i.e. the solutions H : ℝ × Ω → ℝd, (t, ω ↦ H(t, ω of the helix equation egin{eqnarray} H(0,o=0; quad H(s+t,o= H(s,Phi(t,o +H(t,oonumber end{eqnarray} H ( 0 ,ω = 0 ;   H ( s + t,ω = H ( s, Φ ( t,ω + H ( t,ω where Φ : ℝ × Ω → Ω, (t, ω ↦ Φ(t, ω is a dynamical system on a measurable space (Ω, ℱ. More precisely, we investigate dominated solutions and non differentiable solutions of the helix equation. For the last case, the Wiener helix plays a fundamental role. Moreover, some relations with the cocycle equation defined by Φ, are investigated. Ce papier est consacré aux hélices, c’est-à-dire les solutions H : ℝ × Ω → ℝd, (t, ω ↦ H(t, ω de l’équation fonctionnelle egin{eqnarray} H(0,o=0; quad H(s+t,o= H(s,Phi(t,o +H(t,o onumber end{eqnarray} H ( 0 ,ω = 0 ;   H ( s + t,ω = H ( s, Φ ( t,ω + H ( t,ω où Φ : ℝ × Ω → Ω, (t, ω ↦ Φ(t, ω est un système dynamique défini sur un espace mesurable (Ω, ℱ. Plus présisément, nous déterminons d’abord les hélices dominées puis nous caractérisons les hélices non différentiables. Dans ce dernier cas, l’hélice de Wiener joue un rôle important. Nous précisons aussi quelques relations des hélices avec les cocycles définis par Φ.

  4. Singular stochastic differential equations

    CERN Document Server

    Cherny, Alexander S

    2005-01-01

    The authors introduce, in this research monograph on stochastic differential equations, a class of points termed isolated singular points. Stochastic differential equations possessing such points (called singular stochastic differential equations here) arise often in theory and in applications. However, known conditions for the existence and uniqueness of a solution typically fail for such equations. The book concentrates on the study of the existence, the uniqueness, and, what is most important, on the qualitative behaviour of solutions of singular stochastic differential equations. This is done by providing a qualitative classification of isolated singular points, into 48 possible types.

  5. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    Energy Technology Data Exchange (ETDEWEB)

    Deaton, M. Brett; Duez, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164 (United States); Foucart, Francois; O' Connor, Evan [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada); Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela [TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Kidder, Lawrence E.; Muhlberger, Curran D., E-mail: mbdeaton@wsu.edu, E-mail: m.duez@wsu.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ☉} neutron star, 5.6 M{sub ☉} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ☉} of nuclear matter is ejected from the system, while another 0.3 M{sub ☉} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L{sub ν} ∼ 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  6. Lax representations for matrix short pulse equations

    Science.gov (United States)

    Popowicz, Z.

    2017-10-01

    The Lax representation for different matrix generalizations of Short Pulse Equations (SPEs) is considered. The four-dimensional Lax representations of four-component Matsuno, Feng, and Dimakis-Müller-Hoissen-Matsuno equations are obtained. The four-component Feng system is defined by generalization of the two-dimensional Lax representation to the four-component case. This system reduces to the original Feng equation, to the two-component Matsuno equation, or to the Yao-Zang equation. The three-component version of the Feng equation is presented. The four-component version of the Matsuno equation with its Lax representation is given. This equation reduces the new two-component Feng system. The two-component Dimakis-Müller-Hoissen-Matsuno equations are generalized to the four-parameter family of the four-component SPE. The bi-Hamiltonian structure of this generalization, for special values of parameters, is defined. This four-component SPE in special cases reduces to the new two-component SPE.

  7. Nonadiabatic quantum Vlasov equation for Schwinger pair production

    International Nuclear Information System (INIS)

    Kim, Sang Pyo; Schubert, Christian

    2011-01-01

    Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.

  8. Combinatorics of Generalized Bethe Equations

    Science.gov (United States)

    Kozlowski, Karol K.; Sklyanin, Evgeny K.

    2013-10-01

    A generalization of the Bethe ansatz equations is studied, where a scalar two-particle S-matrix has several zeroes and poles in the complex plane, as opposed to the ordinary single pole/zero case. For the repulsive case (no complex roots), the main result is the enumeration of all distinct solutions to the Bethe equations in terms of the Fuss-Catalan numbers. Two new combinatorial interpretations of the Fuss-Catalan and related numbers are obtained. On the one hand, they count regular orbits of the permutation group in certain factor modules over {{Z}^M}, and on the other hand, they count integer points in certain M-dimensional polytopes.

  9. Complex solutions for generalised fitzhughnagumo equation

    International Nuclear Information System (INIS)

    Neirameh, A.

    2014-01-01

    During present investigation, a direct algebraic method on complex solutions of nonlinear partial differential equation is developed and tested in the case of generalized Burgers-Huxley equation. The proposed scheme can be used in a wide class of nonlinear reaction-diffusion equations. These calculations demonstrate that the accuracy of the direct algebraic solutions is quite high even in the case of a small number of grid points. This method is a very reliable, simple, small computation costs, flexible, and convenient alternative method. (author)

  10. Asymptotic problems for stochastic partial differential equations

    Science.gov (United States)

    Salins, Michael

    Stochastic partial differential equations (SPDEs) can be used to model systems in a wide variety of fields including physics, chemistry, and engineering. The main SPDEs of interest in this dissertation are the semilinear stochastic wave equations which model the movement of a material with constant mass density that is exposed to both determinstic and random forcing. Cerrai and Freidlin have shown that on fixed time intervals, as the mass density of the material approaches zero, the solutions of the stochastic wave equation converge uniformly to the solutions of a stochastic heat equation, in probability. This is called the Smoluchowski-Kramers approximation. In Chapter 2, we investigate some of the multi-scale behaviors that these wave equations exhibit. In particular, we show that the Freidlin-Wentzell exit place and exit time asymptotics for the stochastic wave equation in the small noise regime can be approximated by the exit place and exit time asymptotics for the stochastic heat equation. We prove that the exit time and exit place asymptotics are characterized by quantities called quasipotentials and we prove that the quasipotentials converge. We then investigate the special case where the equation has a gradient structure and show that we can explicitly solve for the quasipotentials, and that the quasipotentials for the heat equation and wave equation are equal. In Chapter 3, we study the Smoluchowski-Kramers approximation in the case where the material is electrically charged and exposed to a magnetic field. Interestingly, if the system is frictionless, then the Smoluchowski-Kramers approximation does not hold. We prove that the Smoluchowski-Kramers approximation is valid for systems exposed to both a magnetic field and friction. Notably, we prove that the solutions to the second-order equations converge to the solutions of the first-order equation in an Lp sense. This strengthens previous results where convergence was proved in probability.

  11. On separable Pauli equations

    International Nuclear Information System (INIS)

    Zhalij, Alexander

    2002-01-01

    We classify (1+3)-dimensional Pauli equations for a spin-(1/2) particle interacting with the electro-magnetic field, that are solvable by the method of separation of variables. As a result, we obtain the 11 classes of vector-potentials of the electro-magnetic field A(t,x(vector sign))=(A 0 (t,x(vector sign)), A(vector sign)(t,x(vector sign))) providing separability of the corresponding Pauli equations. It is established, in particular, that the necessary condition for the Pauli equation to be separable into second-order matrix ordinary differential equations is its equivalence to the system of two uncoupled Schroedinger equations. In addition, the magnetic field has to be independent of spatial variables. We prove that coordinate systems and the vector-potentials of the electro-magnetic field providing the separability of the corresponding Pauli equations coincide with those for the Schroedinger equations. Furthermore, an efficient algorithm for constructing all coordinate systems providing the separability of Pauli equation with a fixed vector-potential of the electro-magnetic field is developed. Finally, we describe all vector-potentials A(t,x(vector sign)) that (a) provide the separability of Pauli equation, (b) satisfy vacuum Maxwell equations without currents, and (c) describe non-zero magnetic field

  12. Functional equations with causal operators

    CERN Document Server

    Corduneanu, C

    2003-01-01

    Functional equations encompass most of the equations used in applied science and engineering: ordinary differential equations, integral equations of the Volterra type, equations with delayed argument, and integro-differential equations of the Volterra type. The basic theory of functional equations includes functional differential equations with causal operators. Functional Equations with Causal Operators explains the connection between equations with causal operators and the classical types of functional equations encountered by mathematicians and engineers. It details the fundamentals of linear equations and stability theory and provides several applications and examples.

  13. Modified Darboux transformations with foreign auxiliary equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel

    2011-01-01

    We construct a new type of first-order Darboux transformations for the stationary Schroedinger equation. In contrast to the conventional case, our Darboux transformations support arbitrary (foreign) auxiliary equations. We show that among other applications, our formalism can be used to systematically construct Darboux transformations for Schroedinger equations with energy-dependent potentials, including a recent result (Lin et al., 2007) as a special case. -- Highlights: → We generalize the Darboux transformation for the Schroedinger equation. → By admitting arbitrary auxiliary functions, we provide a new tool for generating solutions. → As a special case we recover a recent result on energy-dependent potentials. → We extend the latter result to very general energy-dependence.

  14. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean; Mouhot, Clé ment; Schmeiser, Christian

    2015-01-01

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  15. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean

    2015-02-03

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  16. Partial differential equations

    CERN Document Server

    Evans, Lawrence C

    2010-01-01

    This text gives a comprehensive survey of modern techniques in the theoretical study of partial differential equations (PDEs) with particular emphasis on nonlinear equations. The exposition is divided into three parts: representation formulas for solutions; theory for linear partial differential equations; and theory for nonlinear partial differential equations. Included are complete treatments of the method of characteristics; energy methods within Sobolev spaces; regularity for second-order elliptic, parabolic, and hyperbolic equations; maximum principles; the multidimensional calculus of variations; viscosity solutions of Hamilton-Jacobi equations; shock waves and entropy criteria for conservation laws; and, much more.The author summarizes the relevant mathematics required to understand current research in PDEs, especially nonlinear PDEs. While he has reworked and simplified much of the classical theory (particularly the method of characteristics), he primarily emphasizes the modern interplay between funct...

  17. Nonlinear Dirac Equations

    Directory of Open Access Journals (Sweden)

    Wei Khim Ng

    2009-02-01

    Full Text Available We construct nonlinear extensions of Dirac's relativistic electron equation that preserve its other desirable properties such as locality, separability, conservation of probability and Poincaré invariance. We determine the constraints that the nonlinear term must obey and classify the resultant non-polynomial nonlinearities in a double expansion in the degree of nonlinearity and number of derivatives. We give explicit examples of such nonlinear equations, studying their discrete symmetries and other properties. Motivated by some previously suggested applications we then consider nonlinear terms that simultaneously violate Lorentz covariance and again study various explicit examples. We contrast our equations and construction procedure with others in the literature and also show that our equations are not gauge equivalent to the linear Dirac equation. Finally we outline various physical applications for these equations.

  18. Differential equations for dummies

    CERN Document Server

    Holzner, Steven

    2008-01-01

    The fun and easy way to understand and solve complex equations Many of the fundamental laws of physics, chemistry, biology, and economics can be formulated as differential equations. This plain-English guide explores the many applications of this mathematical tool and shows how differential equations can help us understand the world around us. Differential Equations For Dummies is the perfect companion for a college differential equations course and is an ideal supplemental resource for other calculus classes as well as science and engineering courses. It offers step-by-step techniques, practical tips, numerous exercises, and clear, concise examples to help readers improve their differential equation-solving skills and boost their test scores.

  19. Drift-Diffusion Equation

    Directory of Open Access Journals (Sweden)

    K. Banoo

    1998-01-01

    equation in the discrete momentum space. This is shown to be similar to the conventional drift-diffusion equation except that it is a more rigorous solution to the Boltzmann equation because the current and carrier densities are resolved into M×1 vectors, where M is the number of modes in the discrete momentum space. The mobility and diffusion coefficient become M×M matrices which connect the M momentum space modes. This approach is demonstrated by simulating electron transport in bulk silicon.

  20. Solving Ordinary Differential Equations

    Science.gov (United States)

    Krogh, F. T.

    1987-01-01

    Initial-value ordinary differential equation solution via variable order Adams method (SIVA/DIVA) package is collection of subroutines for solution of nonstiff ordinary differential equations. There are versions for single-precision and double-precision arithmetic. Requires fewer evaluations of derivatives than other variable-order Adams predictor/ corrector methods. Option for direct integration of second-order equations makes integration of trajectory problems significantly more efficient. Written in FORTRAN 77.

  1. Reactimeter dispersion equation

    OpenAIRE

    A.G. Yuferov

    2016-01-01

    The aim of this work is to derive and analyze a reactimeter metrological model in the form of the dispersion equation which connects reactimeter input/output signal dispersions with superimposed random noise at the inlet. It is proposed to standardize the reactimeter equation form, presenting the main reactimeter computing unit by a convolution equation. Hence, the reactimeter metrological characteristics are completely determined by this unit hardware function which represents a transient re...

  2. Differential equations I essentials

    CERN Document Server

    REA, Editors of

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Differential Equations I covers first- and second-order equations, series solutions, higher-order linear equations, and the Laplace transform.

  3. JWL Equation of State

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2015-12-15

    The JWL equation of state (EOS) is frequently used for the products (and sometimes reactants) of a high explosive (HE). Here we review and systematically derive important properties. The JWL EOS is of the Mie-Grueneisen form with a constant Grueneisen coefficient and a constants specific heat. It is thermodynamically consistent to specify the temperature at a reference state. However, increasing the reference state temperature restricts the EOS domain in the (V, e)-plane of phase space. The restrictions are due to the conditions that P ≥ 0, T ≥ 0, and the isothermal bulk modulus is positive. Typically, this limits the low temperature regime in expansion. The domain restrictions can result in the P-T equilibrium EOS of a partly burned HE failing to have a solution in some cases. For application to HE, the heat of detonation is discussed. Example JWL parameters for an HE, both products and reactions, are used to illustrate the restrictions on the domain of the EOS.

  4. A new evolution equation

    International Nuclear Information System (INIS)

    Laenen, E.

    1995-01-01

    We propose a new evolution equation for the gluon density relevant for the region of small x B . It generalizes the GLR equation and allows deeper penetration in dense parton systems than the GLR equation does. This generalization consists of taking shadowing effects more comprehensively into account by including multigluon correlations, and allowing for an arbitrary initial gluon distribution in a hadron. We solve the new equation for fixed α s . We find that the effects of multigluon correlations on the deep-inelastic structure function are small. (orig.)

  5. Chew-Low equations as Cremoma transformations

    International Nuclear Information System (INIS)

    Rerikh, K.V.

    1982-01-01

    The Chew-Low equations for the p-wave pion-nucleon scattering with the crossing-symmetry matrix (3x3) are investigated in their well-known formulation as a system of nonlinear difference equations. These equations interpreted as geometrical transformations are shown to be a special case of the Cremona transformaions. Using the properties of the Cremona transformations we obtain the general 3-parametric functional equation on invariant algebraic and nonalgebraic curves in the space solutions of the Chew- Low equations. It is proved that there exists only one invariant algebraic curve, the parabola corresponding to the well-known solution. Analysis of the general functional equation on invariant nonalgebraic curves makes it possible to select in addition to this parabola 3 invariant forms defining implicitly 3 nonalgebraic curves and to concretize for them the general equation by means of fixing the parameters. From the transformational properties of the invariant forms with respect to the Cremona transformations, there follows an important result that the ration of these forms in proper powers is the general integral of the nonlinear system of the Chew-Low equations, which is an even antiperiodic function. The structure of the second general integral is given and the functional equations which determinne this integral are presented [ru

  6. Equational type logic

    NARCIS (Netherlands)

    Manca, V.; Salibra, A.; Scollo, Giuseppe

    1990-01-01

    Equational type logic is an extension of (conditional) equational logic, that enables one to deal in a single, unified framework with diverse phenomena such as partiality, type polymorphism and dependent types. In this logic, terms may denote types as well as elements, and atomic formulae are either

  7. Alternative equations of gravitation

    International Nuclear Information System (INIS)

    Pinto Neto, N.

    1983-01-01

    It is shown, trough a new formalism, that the quantum fluctuation effects of the gravitational field in Einstein's equations are analogs to the effects of a continuum medium in Maxwell's Electrodynamics. Following, a real example of the applications of these equations is studied. Qunatum fluctuations effects as perturbation sources in Minkowski and Friedmann Universes are examined. (L.C.) [pt

  8. Reduced Braginskii equations

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, M. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Horton, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite {beta} that we solve the perpendicular component of Ohm`s law to conserve the physical energy while ensuring the relation {del} {center_dot} j = 0.

  9. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1993-11-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that we solve the perpendicular component of Ohm's law to conserve the physical energy while ensuring the relation ∇ · j = 0

  10. Reduced Braginskii equations

    International Nuclear Information System (INIS)

    Yagi, M.; Horton, W.

    1994-01-01

    A set of reduced Braginskii equations is derived without assuming flute ordering and the Boussinesq approximation. These model equations conserve the physical energy. It is crucial at finite β that the perpendicular component of Ohm's law be solved to ensure ∇·j=0 for energy conservation

  11. Model Compaction Equation

    African Journals Online (AJOL)

    The currently proposed model compaction equation was derived from data sourced from the. Niger Delta and it relates porosity to depth for sandstones under hydrostatic pressure condition. The equation is useful in predicting porosity and compaction trend in hydrostatic sands of the. Niger Delta. GEOLOGICAL SETTING OF ...

  12. The Wouthuysen equation

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1995-01-01

    textabstractDedication: I dedicate this paper to Prof. P.C. Baayen, at the occasion of his retirement on 20 December 1994. The beautiful equation which forms the subject matter of this paper was invented by Wouthuysen after he retired. The four complex variable Wouthuysen equation arises from an

  13. The generalized Fermat equation

    NARCIS (Netherlands)

    Beukers, F.

    2006-01-01

    This article will be devoted to generalisations of Fermat’s equation xn + yn = zn. Very soon after the Wiles and Taylor proof of Fermat’s Last Theorem, it was wondered what would happen if the exponents in the three term equation would be chosen differently. Or if coefficients other than 1 would

  14. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2004-01-01

    This primer on elementary partial differential equations presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs. What makes this book unique is that it is a brief treatment, yet it covers all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. Mathematical ideas are motivated from physical problems, and the exposition is presented in a concise style accessible to science and engineering students; emphasis is on motivation, concepts, methods, and interpretation, rather than formal theory. This second edition contains new and additional exercises, and it includes a new chapter on the applications of PDEs to biology: age structured models, pattern formation; epidemic wave fronts, and advection-diffusion processes. The student who reads through this book and solves many of t...

  15. Exact solution for the generalized Telegraph Fisher's equation

    International Nuclear Information System (INIS)

    Abdusalam, H.A.; Fahmy, E.S.

    2009-01-01

    In this paper, we applied the factorization scheme for the generalized Telegraph Fisher's equation and an exact particular solution has been found. The exact particular solution for the generalized Fisher's equation was obtained as a particular case of the generalized Telegraph Fisher's equation and the two-parameter solution can be obtained when n=2.

  16. The existence of solutions of q-difference-differential equations.

    Science.gov (United States)

    Wang, Xin-Li; Wang, Hua; Xu, Hong-Yan

    2016-01-01

    By using the Nevanlinna theory of value distribution, we investigate the existence of solutions of some types of non-linear q-difference differential equations. In particular, we generalize the Rellich-Wittich-type theorem and Malmquist-type theorem about differential equations to the case of q-difference differential equations (system).

  17. Construction of a Roe linearization for the ideal MHD equations

    International Nuclear Information System (INIS)

    Cargo, P.; Gallice, G.; Raviart, P.A.

    1996-01-01

    In [3], Munz has constructed a Roe linearization for the equations of gas dynamics in Lagrangian coordinates. We extend this construction to the case of the ideal magnetohydrodynamics equations again in Lagrangian coordinates. As a consequence we obtain a Roe linearization for the MHD equations in Eulerian coordinates. (author)

  18. Integrable coupling system of fractional soliton equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-10-05

    In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.

  19. Nonlinear elliptic equations of the second order

    CERN Document Server

    Han, Qing

    2016-01-01

    Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...

  20. Symmetries of the Euler compressible flow equations for general equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Zachary M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ramsey, Scott D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baty, Roy S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-15

    The Euler compressible flow equations exhibit different Lie symmetries depending on the equation of state (EOS) of the medium in which the flow occurs. This means that, in general, different types of similarity solution will be available in different flow media. We present a comprehensive classification of all EOS’s to which the Euler equations apply, based on the Lie symmetries admitted by the corresponding flow equations, restricting to the case of 1-D planar, cylindrical, or spherical geometry. The results are conveniently summarized in tables. This analysis also clarifies past work by Axford and Ovsiannikov on symmetry classification.

  1. Nonlinear hydrodynamic equations for superfluid helium in aerogel

    International Nuclear Information System (INIS)

    Brusov, Peter N.; Brusov, Paul P.

    2003-01-01

    Aerogel in superfluids is studied very intensively during last decade. The importance of these systems is connected to the fact that this allows to investigate the influence of impurities on superfluidity. We have derived for the first time nonlinear hydrodynamic equations for superfluid helium in aerogel. These equations are generalization of McKenna et al. equations for nonlinear hydrodynamics case and could be used to study sound propagation phenomena in aerogel-superfluid system, in particular--to study sound conversion phenomena. We have obtained two alternative sets of equations, one of which is a generalization of a traditional set of nonlinear hydrodynamics equations for the case of an aerogel-superfluid system and, the other one represents a la Putterman equations (equation for v→ s is replaced by equation for A→=((ρ n )/(ρσ))w→, where w→=v→ n -v→ s )

  2. Saint Venant's equation and theory of characteristics

    International Nuclear Information System (INIS)

    Daubert, Andre

    1978-01-01

    This theory, in its general scope, will be dealt with through the concrete example of Saint Venant's equations which govern the waves in channels. 1. Finding the characteristic directions. The aim is to interpret the hyperbolic sort of equations to show that there is a way of combining them in order to shape them so that they express a linear relation between the variations of the unknowns when moving along particular differential paths. In certain cases, this differential relation can integrate to lead to Rieman's invariants. 2. Relation between the theory of characteristics and the wave equation. In the linear systems case, it is worthwhile showing simply, how the method of characteristics is linked to the conventional treatment of the wave equation. 3. Relation between the theory of characteristics and the Cauchy problem. The theory of characteristics is frequently introduced as from the Cauchy problem, the characteristics forming the conditions of indetermination of the Cauchy problem [fr

  3. Stochastic Differential Equations and Kondratiev Spaces

    Energy Technology Data Exchange (ETDEWEB)

    Vaage, G.

    1995-05-01

    The purpose of this mathematical thesis was to improve the understanding of physical processes such as fluid flow in porous media. An example is oil flowing in a reservoir. In the first of five included papers, Hilbert space methods for elliptic boundary value problems are used to prove the existence and uniqueness of a large family of elliptic differential equations with additive noise without using the Hermite transform. The ideas are then extended to the multidimensional case and used to prove existence and uniqueness of solution of the Stokes equations with additive noise. The second paper uses functional analytic methods for partial differential equations and presents a general framework for proving existence and uniqueness of solutions to stochastic partial differential equations with multiplicative noise, for a large family of noises. The methods are applied to equations of elliptic, parabolic as well as hyperbolic type. The framework presented can be extended to the multidimensional case. The third paper shows how the ideas from the second paper can be extended to study the moving boundary value problem associated with the stochastic pressure equation. The fourth paper discusses a set of stochastic differential equations. The fifth paper studies the relationship between the two families of Kondratiev spaces used in the thesis. 102 refs.

  4. Linear causal modeling with structural equations

    CERN Document Server

    Mulaik, Stanley A

    2009-01-01

    Emphasizing causation as a functional relationship between variables that describe objects, Linear Causal Modeling with Structural Equations integrates a general philosophical theory of causation with structural equation modeling (SEM) that concerns the special case of linear causal relations. In addition to describing how the functional relation concept may be generalized to treat probabilistic causation, the book reviews historical treatments of causation and explores recent developments in experimental psychology on studies of the perception of causation. It looks at how to perceive causal

  5. Green's function method for perturbed Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Cai Hao; Huang Nianning

    2003-01-01

    The x-derivatives of squared Jost solution are the eigenfunctions with the zero eigenvalue of the linearized equation derived from the perturbed Korteweg-de Vries equation. A method similar to Green's function formalism is introduced to show the completeness of the squared Jost solutions in multi-soliton cases. It is not related to Lax equations directly, and thus it is beneficial to deal with the nonlinear equations with complicated Lax pair

  6. Darboux invariants of integrable equations with variable spectral parameters

    International Nuclear Information System (INIS)

    Shin, H J

    2008-01-01

    The Darboux transformation for integrable equations with variable spectral parameters is introduced. Darboux invariant quantities are calculated, which are used in constructing the Lax pair of integrable equations. This approach serves as a systematic method for constructing inhomogeneous integrable equations and their soliton solutions. The structure functions of variable spectral parameters determine the integrability and nonlinear coupling terms. Three cases of integrable equations are treated as examples of this approach

  7. BCS @ 50: derivation of gap equations in different lattice geometries

    International Nuclear Information System (INIS)

    Saurabh Basu

    2007-07-01

    We rigorously derive BCS gap equations for a square, triangular and a honeycomb lattice using a two-dimensional t-J model. The gap equations in all the three lattice geometries look usual, with band indices appearing and a minor modification in the separable pair potential for the (two band) honeycomb lattice. In each case, the gap equation is solved (self consistently with the number equation) at low densities assuming singlet pairing. (author)

  8. The matrix nonlinear Schrodinger equation in dimension 2

    DEFF Research Database (Denmark)

    Zuhan, L; Pedersen, Michael

    2001-01-01

    In this paper we study the existence of global solutions to the Cauchy problem for the matrix nonlinear Schrodinger equation (MNLS) in 2 space dimensions. A sharp condition for the global existence is obtained for this equation. This condition is in terms of an exact stationary solution...... of a semilinear elliptic equation. In the scalar case, the MNLS reduces to the well-known cubic nonlinear Schrodinger equation for which existence of solutions has been studied by many authors. (C) 2001 Academic Press....

  9. The 'generalized Balescu-Lenard' transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1990-01-01

    The transport equations arising from the 'generalized Balescu-Lenard' collision operator are obtained and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases having the same structure. The resultant theory offers a possible explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy with neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. (author). Letter-to-the-editor. 10 refs

  10. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  11. The gBL transport equations

    International Nuclear Information System (INIS)

    Mynick, H.E.

    1989-05-01

    The transport equations arising from the ''generalized Balescu- Lenard'' (gBL) collision operator are obtained, and some of their properties examined. The equations contain neoclassical and turbulent transport as two special cases, having the same structure. The resultant theory offers potential explanation for a number of results not well understood, including the anomalous pinch, observed ratios of Q/ΓT on TFTR, and numerical reproduction of ASDEX profiles by a model for turbulent transport invoked without derivation, but by analogy to neoclassical theory. The general equations are specialized to consideration of a number of particular transport mechanisms of interest. 10 refs

  12. Relativistic three-particle dynamical equations: I. Theoretical development

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1993-11-01

    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)

  13. State-dependent neutral delay equations from population dynamics.

    Science.gov (United States)

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.

  14. Hyperbolic partial differential equations

    CERN Document Server

    Witten, Matthew

    1986-01-01

    Hyperbolic Partial Differential Equations III is a refereed journal issue that explores the applications, theory, and/or applied methods related to hyperbolic partial differential equations, or problems arising out of hyperbolic partial differential equations, in any area of research. This journal issue is interested in all types of articles in terms of review, mini-monograph, standard study, or short communication. Some studies presented in this journal include discretization of ideal fluid dynamics in the Eulerian representation; a Riemann problem in gas dynamics with bifurcation; periodic M

  15. Differential equations problem solver

    CERN Document Server

    Arterburn, David R

    2012-01-01

    REA's Problem Solvers is a series of useful, practical, and informative study guides. Each title in the series is complete step-by-step solution guide. The Differential Equations Problem Solver enables students to solve difficult problems by showing them step-by-step solutions to Differential Equations problems. The Problem Solvers cover material ranging from the elementary to the advanced and make excellent review books and textbook companions. They're perfect for undergraduate and graduate studies.The Differential Equations Problem Solver is the perfect resource for any class, any exam, and

  16. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  17. Local instant conservation equations

    International Nuclear Information System (INIS)

    Delaje, Dzh.

    1984-01-01

    Local instant conservation equations for two-phase flow are derived. Derivation of the equation starts from the recording of integral laws of conservation for a fixed reference volume, containing both phases. Transformation of the laws, using the Leibniz rule and Gauss theory permits to obtain the sum of two integrals as to the volume and integral as to the surface. Integrals as to the volume result in local instant differential equations, in particular derivatives for each phase, and integrals as to the surface reflect local instant conditions of a jump on interface surface

  18. Beginning partial differential equations

    CERN Document Server

    O'Neil, Peter V

    2011-01-01

    A rigorous, yet accessible, introduction to partial differential equations-updated in a valuable new edition Beginning Partial Differential Equations, Second Edition provides a comprehensive introduction to partial differential equations (PDEs) with a special focus on the significance of characteristics, solutions by Fourier series, integrals and transforms, properties and physical interpretations of solutions, and a transition to the modern function space approach to PDEs. With its breadth of coverage, this new edition continues to present a broad introduction to the field, while also addres

  19. Ordinary differential equations

    CERN Document Server

    Miller, Richard K

    1982-01-01

    Ordinary Differential Equations is an outgrowth of courses taught for a number of years at Iowa State University in the mathematics and the electrical engineering departments. It is intended as a text for a first graduate course in differential equations for students in mathematics, engineering, and the sciences. Although differential equations is an old, traditional, and well-established subject, the diverse backgrounds and interests of the students in a typical modern-day course cause problems in the selection and method of presentation of material. In order to compensate for this diversity,

  20. Uncertain differential equations

    CERN Document Server

    Yao, Kai

    2016-01-01

    This book introduces readers to the basic concepts of and latest findings in the area of differential equations with uncertain factors. It covers the analytic method and numerical method for solving uncertain differential equations, as well as their applications in the field of finance. Furthermore, the book provides a number of new potential research directions for uncertain differential equation. It will be of interest to researchers, engineers and students in the fields of mathematics, information science, operations research, industrial engineering, computer science, artificial intelligence, automation, economics, and management science.

  1. An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like

    International Nuclear Information System (INIS)

    Pierantozzi, T.; Vazquez, L.

    2005-01-01

    Through fractional calculus and following the method used by Dirac to obtain his well-known equation from the Klein-Gordon equation, we analyze a possible interpolation between the Dirac and the diffusion equations in one space dimension. We study the transition between the hyperbolic and parabolic behaviors by means of the generalization of the D'Alembert formula for the classical wave equation and the invariance under space and time inversions of the interpolating fractional evolution equations Dirac like. Such invariance depends on the values of the fractional index and is related to the nonlocal property of the time fractional differential operator. For this system of fractional evolution equations, we also find an associated conserved quantity analogous to the Hamiltonian for the classical Dirac case

  2. Relativistic wave equations and compton scattering

    International Nuclear Information System (INIS)

    Sutanto, S.H.; Robson, B.A.

    1998-01-01

    Full text: Recently an eight-component relativistic wave equation for spin-1/2 particles was proposed.This equation was obtained from a four-component spin-1/2 wave equation (the KG1/2 equation), which contains second-order derivatives in both space and time, by a procedure involving a linearisation of the time derivative analogous to that introduced by Feshbach and Villars for the Klein-Gordon equation. This new eight-component equation gives the same bound-state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation but has been shown to predict different radiative transition probabilities for the fine structure of both the Balmer and Lyman a-lines. Since it has been shown that the new theory does not always give the same results as the Dirac theory, it is important to consider the validity of the new equation in the case of other physical problems. One of the early crucial tests of the Dirac theory was its application to the scattering of a photon by a free electron: the so-called Compton scattering problem. In this paper we apply the new theory to the calculation of Compton scattering to order e 2 . It will be shown that in spite of the considerable difference in the structure of the new theory and that of Dirac the cross section is given by the Klein-Nishina formula

  3. Applied partial differential equations

    CERN Document Server

    Logan, J David

    2015-01-01

    This text presents the standard material usually covered in a one-semester, undergraduate course on boundary value problems and PDEs.  Emphasis is placed on motivation, concepts, methods, and interpretation, rather than on formal theory. The concise treatment of the subject is maintained in this third edition covering all the major ideas: the wave equation, the diffusion equation, the Laplace equation, and the advection equation on bounded and unbounded domains. Methods include eigenfunction expansions, integral transforms, and characteristics. In this third edition, text remains intimately tied to applications in heat transfer, wave motion, biological systems, and a variety other topics in pure and applied science. The text offers flexibility to instructors who, for example, may wish to insert topics from biology or numerical methods at any time in the course. The exposition is presented in a friendly, easy-to-read, style, with mathematical ideas motivated from physical problems. Many exercises and worked e...

  4. Nonlinear differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics.

  5. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  6. Equations For Rotary Transformers

    Science.gov (United States)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  7. Problems in differential equations

    CERN Document Server

    Brenner, J L

    2013-01-01

    More than 900 problems and answers explore applications of differential equations to vibrations, electrical engineering, mechanics, and physics. Problem types include both routine and nonroutine, and stars indicate advanced problems. 1963 edition.

  8. Applied partial differential equations

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    Book focuses mainly on boundary-value and initial-boundary-value problems on spatially bounded and on unbounded domains; integral transforms; uniqueness and continuous dependence on data, first-order equations, and more. Numerous exercises included.

  9. Nonlinear differential equations

    International Nuclear Information System (INIS)

    Dresner, L.

    1988-01-01

    This report is the text of a graduate course on nonlinear differential equations given by the author at the University of Wisconsin-Madison during the summer of 1987. The topics covered are: direction fields of first-order differential equations; the Lie (group) theory of ordinary differential equations; similarity solutions of second-order partial differential equations; maximum principles and differential inequalities; monotone operators and iteration; complementary variational principles; and stability of numerical methods. The report should be of interest to graduate students, faculty, and practicing scientists and engineers. No prior knowledge is required beyond a good working knowledge of the calculus. The emphasis is on practical results. Most of the illustrative examples are taken from the fields of nonlinear diffusion, heat and mass transfer, applied superconductivity, and helium cryogenics

  10. Modern nonlinear equations

    CERN Document Server

    Saaty, Thomas L

    1981-01-01

    Covers major types of classical equations: operator, functional, difference, integro-differential, and more. Suitable for graduate students as well as scientists, technologists, and mathematicians. "A welcome contribution." - Math Reviews. 1964 edition.

  11. SIMULTANEOUS DIFFERENTIAL EQUATION COMPUTER

    Science.gov (United States)

    Collier, D.M.; Meeks, L.A.; Palmer, J.P.

    1960-05-10

    A description is given for an electronic simulator for a system of simultaneous differential equations, including nonlinear equations. As a specific example, a homogeneous nuclear reactor system including a reactor fluid, heat exchanger, and a steam boiler may be simulated, with the nonlinearity resulting from a consideration of temperature effects taken into account. The simulator includes three operational amplifiers, a multiplier, appropriate potential sources, and interconnecting R-C networks.

  12. Structural Equations and Causation

    OpenAIRE

    Hall, Ned

    2007-01-01

    Structural equations have become increasingly popular in recent years as tools for understanding causation. But standard structural equations approaches to causation face deep problems. The most philosophically interesting of these consists in their failure to incorporate a distinction between default states of an object or system, and deviations therefrom. Exploring this problem, and how to fix it, helps to illuminate the central role this distinction plays in our causal thinking.

  13. Unsteady analytical solutions to the Poisson–Nernst–Planck equations

    International Nuclear Information System (INIS)

    Schönke, Johannes

    2012-01-01

    It is shown that the Poisson–Nernst–Planck equations for a single ion species can be formulated as one equation in terms of the electric field. This previously not analyzed equation shows similarities to the vector Burgers equation and is identical with it in the one dimensional case. Several unsteady exact solutions for one and multidimensional cases are presented. Besides new mathematical insights which these first known unsteady solutions give, they can serve as test cases in computer simulations to analyze numerical algorithms and to verify code. (paper)

  14. Equations of radiation hydrodynamics

    International Nuclear Information System (INIS)

    Mihalas, D.

    1982-01-01

    The purpose of this paper is to give an overview of the role of radiation in the transport of energy and momentum in a combined matter-radiation fluid. The transport equation for a moving radiating fluid is presented in both a fully Eulerian and a fully Lagrangian formulation, along with conservation equations describing the dynamics of the fluid. Special attention is paid to the problem of deriving equations that are mutually consistent in each frame, and between frames, to 0(v/c). A detailed analysis is made to show that in situations of broad interest, terms that are formally of 0(v/c) actually dominate the solution, demonstrating that it is esential (1) to pay scrupulous attention to the question of the frame dependence in formulating the equations; and (2) to solve the equations to 0(v/c) in quite general circumstances. These points are illustrated in the context of the nonequilibrium radiation diffusion limit, and a sketch of how the Lagrangian equations are to be solved will be presented

  15. Covariant field equations in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vanhecke, Bram [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium); Ghent University, Faculty of Physics, Gent (Belgium); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2017-12-15

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Covariant field equations in supergravity

    International Nuclear Information System (INIS)

    Vanhecke, Bram; Proeyen, Antoine van

    2017-01-01

    Covariance is a useful property for handling supergravity theories. In this paper, we prove a covariance property of supergravity field equations: under reasonable conditions, field equations of supergravity are covariant modulo other field equations. We prove that for any supergravity there exist such covariant equations of motion, other than the regular equations of motion, that are equivalent to the latter. The relations that we find between field equations and their covariant form can be used to obtain multiplets of field equations. In practice, the covariant field equations are easily found by simply covariantizing the ordinary field equations. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Geometric Implications of Maxwell's Equations

    Science.gov (United States)

    Smith, Felix T.

    2015-03-01

    Maxwell's synthesis of the varied results of the accumulated knowledge of electricity and magnetism, based largely on the searching insights of Faraday, still provide new issues to explore. A case in point is a well recognized anomaly in the Maxwell equations: The laws of electricity and magnetism require two 3-vector and two scalar equations, but only six dependent variables are available to be their solutions, the 3-vectors E and B. This leaves an apparent redundancy of two degrees of freedom (J. Rosen, AJP 48, 1071 (1980); Jiang, Wu, Povinelli, J. Comp. Phys. 125, 104 (1996)). The observed self-consistency of the eight equations suggests that they contain additional information. This can be sought as a previously unnoticed constraint connecting the space and time variables, r and t. This constraint can be identified. It distorts the otherwise Euclidean 3-space of r with the extremely slight, time dependent curvature k (t) =Rcurv-2 (t) of the 3-space of a hypersphere whose radius has the time dependence dRcurv / dt = +/- c nonrelativistically, or dRcurvLor / dt = +/- ic relativistically. The time dependence is exactly that of the Hubble expansion. Implications of this identification will be explored.

  18. Differential Equation over Banach Algebra

    OpenAIRE

    Kleyn, Aleks

    2018-01-01

    In the book, I considered differential equations of order $1$ over Banach $D$-algebra: differential equation solved with respect to the derivative; exact differential equation; linear homogeneous equation. In noncommutative Banach algebra, initial value problem for linear homogeneous equation has infinitely many solutions.

  19. Collapse in a forced three-dimensional nonlinear Schrodinger equation

    DEFF Research Database (Denmark)

    Lushnikov, P.M.; Saffman, M.

    2000-01-01

    We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation.......We derive sufficient conditions for the occurrence of collapse in a forced three-dimensional nonlinear Schrodinger equation without dissipation. Numerical studies continue the results to the case of finite dissipation....

  20. Introduction to partial differential equations

    CERN Document Server

    Greenspan, Donald

    2000-01-01

    Designed for use in a one-semester course by seniors and beginning graduate students, this rigorous presentation explores practical methods of solving differential equations, plus the unifying theory underlying the mathematical superstructure. Topics include basic concepts, Fourier series, second-order partial differential equations, wave equation, potential equation, heat equation, approximate solution of partial differential equations, and more. Exercises appear at the ends of most chapters. 1961 edition.

  1. Quadratic Diophantine equations

    CERN Document Server

    Andreescu, Titu

    2015-01-01

    This monograph treats the classical theory of quadratic Diophantine equations and guides the reader through the last two decades of computational techniques and progress in the area. These new techniques combined with the latest increases in computational power shed new light on important open problems. The authors motivate the study of quadratic Diophantine equations with excellent examples, open problems, and applications. Moreover, the exposition aptly demonstrates many applications of results and techniques from the study of Pell-type equations to other problems in number theory. The book is intended for advanced undergraduate and graduate students as well as researchers. It challenges the reader to apply not only specific techniques and strategies, but also to employ methods and tools from other areas of mathematics, such as algebra and analysis.

  2. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  3. Boussinesq evolution equations

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Schaffer, H.; Madsen, Per A.

    2004-01-01

    This paper deals with the possibility of using methods and ideas from time domain Boussinesq formulations in the corresponding frequency domain formulations. We term such frequency domain models "evolution equations". First, we demonstrate that the numerical efficiency of the deterministic...... Boussinesq evolution equations of Madsen and Sorensen [Madsen, P.A., Sorensen, O.R., 1993. Bound waves and triad interactions in shallow water. Ocean Eng. 20 359-388] can be improved by using Fast Fourier Transforms to evaluate the nonlinear terms. For a practical example of irregular waves propagating over...... a submerged bar, it is demonstrated that evolution equations utilising FFT can be solved around 100 times faster than the corresponding time domain model. Use of FFT provides an efficient bridge between the frequency domain and the time domain. We utilise this by adapting the surface roller model for wave...

  4. Approximate radiative solutions of the Einstein equations

    International Nuclear Information System (INIS)

    Kuusk, P.; Unt, V.

    1976-01-01

    In this paper the external field of a bounded source emitting gravitational radiation is considered. A successive approximation method is used to integrate the Einstein equations in Bondi's coordinates (Bondi et al, Proc. R. Soc.; A269:21 (1962)). A method of separation of angular variables is worked out and the approximate Einstein equations are reduced to key equations. The losses of mass, momentum, and angular momentum due to gravitational multipole radiation are found. It is demonstrated that in the case of proper treatment a real mass occurs instead of a mass aspect in a solution of the Einstein equations. In an appendix Bondi's new function is given in terms of sources. (author)

  5. Non-instantaneous impulses in differential equations

    CERN Document Server

    Agarwal, Ravi; O'Regan, Donal

    2017-01-01

    This monograph is the first published book devoted to the theory of differential equations with non-instantaneous impulses. It aims to equip the reader with mathematical models and theory behind real life processes in physics, biology, population dynamics, ecology and pharmacokinetics. The authors examine a wide scope of differential equations with non-instantaneous impulses through three comprehensive chapters, providing an all-rounded and unique presentation on the topic, including: - Ordinary differential equations with non-instantaneous impulses (scalar and n-dimensional case) - Fractional differential equa tions with non-instantaneous impulses (with Caputo fractional derivatives of order q ϵ (0, 1)) - Ordinary differential equations with non-instantaneous impulses occurring at random moments (with exponential, Erlang, or Gamma distribution) Each chapter focuses on theory, proofs and examples, and contains numerous graphs to enrich the reader’s understanding. Additionally, a carefully selected bibliogr...

  6. A connection between the Einstein and Yang-Mills equations

    International Nuclear Information System (INIS)

    Mason, L.J.; Newman, E.T.

    1989-01-01

    It is our purpose here to show an unusual relationship between the Einstein equations and the Yang-Mills equations. We give a correspondence between solutions of the self-dual Einstein vacuum equations and the self-dual Yang-Mills equations with a special choice of gauge group. The extension of the argument to the full Yang-Mills equations yields Einstein's unified equations. We try to incorporate the full Einstein vacuum equations, but the approach is incomplete. We first consider Yang-Mills theory for an arbitrary Lie-algebra with the condition that the connection 1-form and curvature are constant on Minkowski space. This leads to a set of algebraic equations on the connection components. We then specialize the Lie-algebra to be the (infinite dimensional) Lie algebra of a group of diffeomorphisms of some manifold. The algebraic equations then become differential equations for four vector fields on the manifold on which the diffeomorphisms act. In the self-dual case, if we choose the connection components from the Lie-algebra of the volume preserving 4-dimensional diffeomorphism group, the resulting equations are the same as those obtained by Ashtekar, Jacobsen and Smolin, in their remarkable simplification of the self-dual Einstein vacuum equations. (An alternative derivation of the same equations begins with the self-dual Yang-Mills connection now depending only on the time, then choosing the Lie-algebra as that of the volume preserving 3-dimensional diffeomorphisms). When the reduced full Yang-Mills equations are used in the same context, we get Einstein's equations for his unified theory based on absolute parallelism. To incorporate the full Einstein vacuum equations we use as the Lie group the semi-direct product of the diffeomorphism group of a 4-dimensional manifold with the group of frame rotations of an SO(1, 3) bundle over the 4-manifold. This last approach, however, yields equations more general than the vacuum equations. (orig.)

  7. Equations of mathematical physics

    CERN Document Server

    Tikhonov, A N

    2011-01-01

    Mathematical physics plays an important role in the study of many physical processes - hydrodynamics, elasticity, and electrodynamics, to name just a few. Because of the enormous range and variety of problems dealt with by mathematical physics, this thorough advanced-undergraduate or graduate-level text considers only those problems leading to partial differential equations. The authors - two well-known Russian mathematicians - have focused on typical physical processes and the principal types of equations deailing with them. Special attention is paid throughout to mathematical formulation, ri

  8. Iteration of adjoint equations

    International Nuclear Information System (INIS)

    Lewins, J.D.

    1994-01-01

    Adjoint functions are the basis of variational methods and now widely used for perturbation theory and its extension to higher order theory as used, for example, in modelling fuel burnup and optimization. In such models, the adjoint equation is to be solved in a critical system with an adjoint source distribution that is not zero but has special properties related to ratios of interest in critical systems. Consequently the methods of solving equations by iteration and accumulation are reviewed to show how conventional methods may be utilized in these circumstances with adequate accuracy. (author). 3 refs., 6 figs., 3 tabs

  9. Systematic Equation Formulation

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2007-01-01

    A tutorial giving a very simple introduction to the set-up of the equations used as a model for an electrical/electronic circuit. The aim is to find a method which is as simple and general as possible with respect to implementation in a computer program. The “Modified Nodal Approach”, MNA, and th......, and the “Controlled Source Approach”, CSA, for systematic equation formulation are investigated. It is suggested that the kernel of the P Spice program based on MNA is reprogrammed....

  10. Partial differential equations

    CERN Document Server

    Agranovich, M S

    2002-01-01

    Mark Vishik's Partial Differential Equations seminar held at Moscow State University was one of the world's leading seminars in PDEs for over 40 years. This book celebrates Vishik's eightieth birthday. It comprises new results and survey papers written by many renowned specialists who actively participated over the years in Vishik's seminars. Contributions include original developments and methods in PDEs and related fields, such as mathematical physics, tomography, and symplectic geometry. Papers discuss linear and nonlinear equations, particularly linear elliptic problems in angles and gener

  11. Generalized estimating equations

    CERN Document Server

    Hardin, James W

    2002-01-01

    Although powerful and flexible, the method of generalized linear models (GLM) is limited in its ability to accurately deal with longitudinal and clustered data. Developed specifically to accommodate these data types, the method of Generalized Estimating Equations (GEE) extends the GLM algorithm to accommodate the correlated data encountered in health research, social science, biology, and other related fields.Generalized Estimating Equations provides the first complete treatment of GEE methodology in all of its variations. After introducing the subject and reviewing GLM, the authors examine th

  12. Nonlinear wave equations

    CERN Document Server

    Li, Tatsien

    2017-01-01

    This book focuses on nonlinear wave equations, which are of considerable significance from both physical and theoretical perspectives. It also presents complete results on the lower bound estimates of lifespan (including the global existence), which are established for classical solutions to the Cauchy problem of nonlinear wave equations with small initial data in all possible space dimensions and with all possible integer powers of nonlinear terms. Further, the book proposes the global iteration method, which offers a unified and straightforward approach for treating these kinds of problems. Purely based on the properties of solut ions to the corresponding linear problems, the method simply applies the contraction mapping principle.

  13. Analysis of wave equation in electromagnetic field by Proca equation

    International Nuclear Information System (INIS)

    Pamungkas, Oky Rio; Soeparmi; Cari

    2017-01-01

    This research is aimed to analyze wave equation for the electric and magnetic field, vector and scalar potential, and continuity equation using Proca equation. Then, also analyze comparison of the solution on Maxwell and Proca equation for scalar potential and electric field, both as a function of distance and constant wave number. (paper)

  14. Comparison of Kernel Equating and Item Response Theory Equating Methods

    Science.gov (United States)

    Meng, Yu

    2012-01-01

    The kernel method of test equating is a unified approach to test equating with some advantages over traditional equating methods. Therefore, it is important to evaluate in a comprehensive way the usefulness and appropriateness of the Kernel equating (KE) method, as well as its advantages and disadvantages compared with several popular item…

  15. Test equating methods and practices

    CERN Document Server

    Kolen, Michael J

    1995-01-01

    In recent years, many researchers in the psychology and statistical communities have paid increasing attention to test equating as issues of using multiple test forms have arisen and in response to criticisms of traditional testing techniques This book provides a practically oriented introduction to test equating which both discusses the most frequently used equating methodologies and covers many of the practical issues involved The main themes are - the purpose of equating - distinguishing between equating and related methodologies - the importance of test equating to test development and quality control - the differences between equating properties, equating designs, and equating methods - equating error, and the underlying statistical assumptions for equating The authors are acknowledged experts in the field, and the book is based on numerous courses and seminars they have presented As a result, educators, psychometricians, professionals in measurement, statisticians, and students coming to the subject for...

  16. Solution of radial spin-1 field equation in Robertson-Walker space-time via Heun's equation

    International Nuclear Information System (INIS)

    Zecca, A.

    2010-01-01

    The spin-1 field equation is considered in Robertson-Walker spacetime. The problem of the solution of the separated radial equations, previously discussed in the flat space-time case, is solved also for both the closed and open curvature case. The radial equation is reduced to Heun's differential equation that recently has been widely reconsidered. It is shown that the solution of the present Heun equation does not fall into the class of polynomial-like or hypergeometric functions. Heun's operator results also non-factorisable. The properties follow from application of general theorems and power series expansion. In the positive curvature case of the universe a discrete energy spectrum of the system is found. The result follows by requiring a polynomial-like behaviour of at least one component of the spinor field. Developments and applications of the theory suggest further study of the solution of Heun's equation.

  17. On the Raychaudhuri equation

    Indian Academy of Sciences (India)

    The Raychaudhuri equation is central to the understanding of gravitational attraction in ... of K Gödel on the ideas of shear and vorticity in cosmology (he defines the shear. (eq. (8) in [1]) .... which follows from the definition of the scale factor l.

  18. Generalized reduced magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Kruger, S.E.

    1999-01-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics

  19. Calculus & ordinary differential equations

    CERN Document Server

    Pearson, David

    1995-01-01

    Professor Pearson's book starts with an introduction to the area and an explanation of the most commonly used functions. It then moves on through differentiation, special functions, derivatives, integrals and onto full differential equations. As with other books in the series the emphasis is on using worked examples and tutorial-based problem solving to gain the confidence of students.

  20. The Freudenstein Equation

    Indian Academy of Sciences (India)

    research, teaching and practice related to the analysis and design ... its variants, are present in a large number of ma- chines used in daily ... with advanced electronics, sensors, control systems and computing ... ted perfectly well with the rapidly developing comput- .... velopment of the Freudenstein equation using Figure 3.

  1. Differential Equation of Equilibrium

    African Journals Online (AJOL)

    user

    ABSTRACT. Analysis of underground circular cylindrical shell is carried out in this work. The forth order differential equation of equilibrium, comparable to that of beam on elastic foundation, was derived from static principles on the assumptions of P. L Pasternak. Laplace transformation was used to solve the governing ...

  2. Equational binary decision diagrams

    NARCIS (Netherlands)

    J.F. Groote (Jan Friso); J.C. van de Pol (Jaco)

    2000-01-01

    textabstractWe incorporate equations in binary decision diagrams (BDD). The resulting objects are called EQ-BDDs. A straightforward notion of ordered EQ-BDDs (EQ-OBDD) is defined, and it is proved that each EQ-BDD is logically equivalent to an EQ-OBDD. Moreover, on EQ-OBDDs satisfiability and

  3. Dunkl Hyperbolic Equations

    Directory of Open Access Journals (Sweden)

    Hatem Mejjaoli

    2008-12-01

    Full Text Available We introduce and study the Dunkl symmetric systems. We prove the well-posedness results for the Cauchy problem for these systems. Eventually we describe the finite speed of it. Next the semi-linear Dunkl-wave equations are also studied.

  4. Structural Equation Model Trees

    Science.gov (United States)

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  5. ANTHROPOMETRIC PREDICTIVE EQUATIONS FOR ...

    African Journals Online (AJOL)

    Keywords: Anthropometry, Predictive Equations, Percentage Body Fat, Nigerian Women, Bioelectric Impedance ... such as Asians and Indians (Pranav et al., 2009), ... size (n) of at least 3o is adjudged as sufficient for the ..... of people, gender and age (Vogel eta/., 1984). .... Fish Sold at Ile-Ife Main Market, South West Nigeria.

  6. dimensional Fokas equation

    Indian Academy of Sciences (India)

    However, one can associate the term with any solution of nonlinear partial differential equations (PDEs) which (i) represents a wave of permanent form, (ii) is localized ... In the past several decades, many methods have been proposed for solving nonlinear PDEs, such as ... space–time fractional derivative form of eq. (1) and ...

  7. A Quadratic Spring Equation

    Science.gov (United States)

    Fay, Temple H.

    2010-01-01

    Through numerical investigations, we study examples of the forced quadratic spring equation [image omitted]. By performing trial-and-error numerical experiments, we demonstrate the existence of stability boundaries in the phase plane indicating initial conditions yielding bounded solutions, investigate the resonance boundary in the [omega]…

  8. Guiding center drift equations

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1979-03-01

    The quations for particle guiding center drift orbits are given in a new magnetic coordinate system. This form of the equations not only separates the fast motion along the lines from the slow motion across, but also requires less information about the magnetic field than many other formulations of the problem

  9. dimensional nonlinear evolution equations

    Indian Academy of Sciences (India)

    in real-life situations, it is important to find their exact solutions. Further, in ... But only little work is done on the high-dimensional equations. .... Similarly, to determine the values of d and q, we balance the linear term of the lowest order in eq.

  10. Stochastic nonlinear beam equations

    Czech Academy of Sciences Publication Activity Database

    Brzezniak, Z.; Maslowski, Bohdan; Seidler, Jan

    2005-01-01

    Roč. 132, č. 1 (2005), s. 119-149 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA201/01/1197 Institutional research plan: CEZ:AV0Z10190503 Keywords : stochastic beam equation * stability Subject RIV: BA - General Mathematics Impact factor: 0.896, year: 2005

  11. Balancing Chemical Equations.

    Science.gov (United States)

    Savoy, L. G.

    1988-01-01

    Describes a study of students' ability to balance equations. Answers to a test on this topic were analyzed to determine the level of understanding and processes used by the students. Presented is a method to teach this skill to high school chemistry students. (CW)

  12. New solutions of Heun's general equation

    Energy Technology Data Exchange (ETDEWEB)

    Ishkhanyan, Artur [Engineering Center of Armenian National Academy of Sciences, Ashtarak (Armenia); Suominen, Kalle-Antti [Helsinki Institute of Physics, PL 64, Helsinki (Finland)

    2003-02-07

    We show that in four particular cases the derivative of the solution of Heun's general equation can be expressed in terms of a solution to another Heun's equation. Starting from this property, we use the Gauss hypergeometric functions to construct series solutions to Heun's equation for the mentioned cases. Each of the hypergeometric functions involved has correct singular behaviour at only one of the singular points of the equation; the sum, however, has correct behaviour. (letter to the editor)

  13. Lectures on partial differential equations

    CERN Document Server

    Petrovsky, I G

    1992-01-01

    Graduate-level exposition by noted Russian mathematician offers rigorous, transparent, highly readable coverage of classification of equations, hyperbolic equations, elliptic equations and parabolic equations. Wealth of commentary and insight invaluable for deepening understanding of problems considered in text. Translated from the Russian by A. Shenitzer.

  14. Quantum equations from Brownian motions

    International Nuclear Information System (INIS)

    Rajput, B.S.

    2011-01-01

    Classical Schrodinger and Dirac equations have been derived from Brownian motions of a particle, it has been shown that the classical Schrodinger equation can be transformed to usual Schrodinger Quantum equation on applying Heisenberg uncertainty principle between position and momentum while Dirac Quantum equation follows it's classical counter part on applying Heisenberg uncertainly principle between energy and time without applying any analytical continuation. (author)

  15. BCS equations in the continuum

    International Nuclear Information System (INIS)

    Sandulescu, N.; Liotta, R. J.; Wyss, R.

    1998-01-01

    The properties of nuclei close to the drip line are significantly influenced by the continuum part of the single-particle spectrum. The main role is played by the resonant states which are largely confined in the region of nuclear potential and therefore stronger coupled with the bound states in an excitation process. Resonant states are also important in the nuclei beyond the drip line. In this case the decay properties of the nucleus can be directly related to the widths of the narrow resonances occupied by the unbound nucleons. The aim of this work is to propose an alternative for evaluating the effect of the resonant part of single-particle spectrum on the pairing correlations calculated within the BCS approximation. We estimated the role of resonances in the case of the isotope 170 Sn. The Resonant-BCS (RBCS) equations are solved for the case of a seniority force. The BCS approximation based on a seniority force cannot be applied in the case of a nucleus immersed in a box if all discrete states simulating the continuum are considered. In such a case the pairing correlations will increase with the number of states in the box. In our case one can still apply a seniority force with RBCS because the effect of the continuum appears here through a finite number of physical resonances, well defined by the given mean field. Because these resonances have a spatial distribution concentrated within the region of the nuclear potential, one expects that the localization probability of nucleons, far out from the nuclear surface, to be small. The gap obtained taking correctly the contribution of resonances, according to RBCS equations, is about 1.3 MeV, while pairing gap calculated only with the bound single-particle spectrum has the value Δ = 1.10 MeV. If we introduce also the resonant states, neglecting completely their widths, the gap will increase to the value Δ = 1.880 MeV. Therefore, one cannot estimate properly the pairing correlations by supplementing the spectrum

  16. Polynomial solutions of nonlinear integral equations

    International Nuclear Information System (INIS)

    Dominici, Diego

    2009-01-01

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

  17. Polynomial solutions of nonlinear integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

    2009-05-22

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

  18. 'Footballs', conical singularities, and the Liouville equation

    International Nuclear Information System (INIS)

    Redi, Michele

    2005-01-01

    We generalize the football shaped extra dimensions scenario to an arbitrary number of branes. The problem is related to the solution of the Liouville equation with singularities, and explicit solutions are presented for the case of three branes. The tensions of the branes do not need to be tuned with each other but only satisfy mild global constraints

  19. Advanced structural equation modeling issues and techniques

    CERN Document Server

    Marcoulides, George A

    2013-01-01

    By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.

  20. Conformal anomalies and the Einstein field equations

    Energy Technology Data Exchange (ETDEWEB)

    Godazgar, Hadi [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany); Meissner, Krzysztof A. [Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw (Poland); Nicolai, Hermann [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Mühlenberg 1, D-14476 Potsdam (Germany)

    2017-04-28

    We compute corrections to the Einstein field equations which are induced by the anomalous effective actions associated to the type A conformal anomaly, both for the (non-local) Riegert action, as well as for the local action with dilaton. In all cases considered we find that these corrections can be very large.

  1. A method for solving neutron transport equation

    International Nuclear Information System (INIS)

    Dimitrijevic, Z.

    1993-01-01

    The procedure for solving the transport equation by directly integrating for case one-dimensional uniform multigroup medium is shown. The solution is expressed in terms of linear combination of function H n (x,μ), and the coefficient is determined from given conditions. The solution is applied for homogeneous slab of critical thickness. (author)

  2. Some isometrical identities in the wave equation

    Directory of Open Access Journals (Sweden)

    Saburou Saitoh

    1984-01-01

    Full Text Available We consider the usual wave equation utt(x,t=c2uxx(x,t on the real line with some typical initial and boundary conditions. In each case, we establish a natural isometrical identity and inverse formula between the sourse function and the response function.

  3. Investigating Students' Mathematical Difficulties with Quadratic Equations

    Science.gov (United States)

    O'Connor, Bronwyn Reid; Norton, Stephen

    2016-01-01

    This paper examines the factors that hinder students' success in working with and understanding the mathematics of quadratic equations using a case study analysis of student error patterns. Twenty-five Year 11 students were administered a written test to examine their understanding of concepts and procedures associated with this topic. The…

  4. Elements of partial differential equations

    CERN Document Server

    Sneddon, Ian Naismith

    1957-01-01

    Geared toward students of applied rather than pure mathematics, this volume introduces elements of partial differential equations. Its focus is primarily upon finding solutions to particular equations rather than general theory.Topics include ordinary differential equations in more than two variables, partial differential equations of the first and second orders, Laplace's equation, the wave equation, and the diffusion equation. A helpful Appendix offers information on systems of surfaces, and solutions to the odd-numbered problems appear at the end of the book. Readers pursuing independent st

  5. Elliptic equation rational expansion method and new exact travelling solutions for Whitham-Broer-Kaup equations

    International Nuclear Information System (INIS)

    Chen Yong; Wang Qi; Li Biao

    2005-01-01

    Based on a new general ansatz and a general subepuation, a new general algebraic method named elliptic equation rational expansion method is devised for constructing multiple travelling wave solutions in terms of rational special function for nonlinear evolution equations (NEEs). We apply the proposed method to solve Whitham-Broer-Kaup equation and explicitly construct a series of exact solutions which include rational form solitary wave solution, rational form triangular periodic wave solutions and rational wave solutions as special cases. In addition, the links among our proposed method with the method by Fan [Chaos, Solitons and Fractals 2004;20:609], are also clarified generally

  6. Einstein-Friedmann equation, nonlinear dynamics and chaotic behaviours

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Nakano, Shingo; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji

    2009-01-01

    We have studied the Einstein-Friedmann equation [Case 1] on the basis of the bifurcation theory and shown that the chaotic behaviours in the Einstein-Friedmann equation [Case 1] are reduced to the pitchfork bifurcation and the homoclinic bifurcation. We have obtained the following results: (i) 'The chaos region diagram' (the p-λ plane) in the Einstein-Friedmann equation [Case 1]. (ii) 'The chaos inducing chart' of the homoclinic orbital systems in the unforced differential equations. We have discussed the non-integrable conditions in the Einstein-Friedmann equation and proposed the chaotic model: p=p 0 ρ n (n≥0). In case n≠0,1, the Einstein-Friedmann equation is not integrable and there may occur chaotic behaviours. The cosmological constant (λ) turns out to play important roles for the non-integrable condition in the Einstein-Friedmann equation and also for the pitchfork bifurcation and the homoclinic bifurcation in the relativistic field equation. With the use of the E-infinity theory, we have also discussed the physical quantities in the gravitational field equations, and obtained the formula logκ=-10(1/φ) 2 [1+(φ) 8 ]=-26.737, which is in nice agreement with the experiment (-26.730).

  7. Methods for Equating Mental Tests.

    Science.gov (United States)

    1984-11-01

    1983) compared conventional and IRT methods for equating the Test of English as a Foreign Language ( TOEFL ) after chaining. Three conventional and...three IRT equating methods were examined in this study; two sections of TOEFL were each (separately) equated. The IRT methods included the following: (a...group. A separate base form was established for each of the six equating methods. Instead of equating the base-form TOEFL to itself, the last (eighth

  8. equateIRT: An R Package for IRT Test Equating

    Directory of Open Access Journals (Sweden)

    Michela Battauz

    2015-12-01

    Full Text Available The R package equateIRT implements item response theory (IRT methods for equating different forms composed of dichotomous items. In particular, the IRT models included are the three-parameter logistic model, the two-parameter logistic model, the one-parameter logistic model and the Rasch model. Forms can be equated when they present common items (direct equating or when they can be linked through a chain of forms that present common items in pairs (indirect or chain equating. When two forms can be equated through different paths, a single conversion can be obtained by averaging the equating coefficients. The package calculates direct and chain equating coefficients. The averaging of direct and chain coefficients that link the same two forms is performed through the bisector method. Furthermore, the package provides analytic standard errors of direct, chain and average equating coefficients.

  9. Gravitational closure of matter field equations

    Science.gov (United States)

    Düll, Maximilian; Schuller, Frederic P.; Stritzelberger, Nadine; Wolz, Florian

    2018-04-01

    The requirement that both the matter and the geometry of a spacetime canonically evolve together, starting and ending on shared Cauchy surfaces and independently of the intermediate foliation, leaves one with little choice for diffeomorphism-invariant gravitational dynamics that can equip the coefficients of a given system of matter field equations with causally compatible canonical dynamics. Concretely, we show how starting from any linear local matter field equations whose principal polynomial satisfies three physicality conditions, one may calculate coefficient functions which then enter an otherwise immutable set of countably many linear homogeneous partial differential equations. Any solution of these so-called gravitational closure equations then provides a Lagrangian density for any type of tensorial geometry that features ultralocally in the initially specified matter Lagrangian density. Thus the given system of matter field equations is indeed closed by the so obtained gravitational equations. In contrast to previous work, we build the theory on a suitable associated bundle encoding the canonical configuration degrees of freedom, which allows one to include necessary constraints on the geometry in practically tractable fashion. By virtue of the presented mechanism, one thus can practically calculate, rather than having to postulate, the gravitational theory that is required by specific matter field dynamics. For the special case of standard model matter one obtains general relativity.

  10. Spurious solutions in few-body equations

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Gloeckle, W.

    1979-01-01

    After Faddeev and Yakubovskii showed how to write connected few-body equations which are free from discrete spurious solutions various authors have proposed different connected few-body scattering equations. Federbush first pointed out that Weinberg's formulation admits the existence of discrete spurious solutions. In this paper we investigate the possibility and consequence of the existence of spurious solutions in some of the few-body formulations. Contrary to a proof by Hahn, Kouri, and Levin and by Bencze and Tandy the channel coupling array scheme of Kouri, Levin, and Tobocman which is also the starting point of a formulation by Hahn is shown to admit spurious solutions. We can show that the set of six coupled four-body equations proposed independently by Mitra, Gillespie, Sugar, and Panchapakesan, by Rosenberg, by Alessandrini, and by Takahashi and Mishima and the seven coupled four-body equations proposed by Sloan and related by matrix multipliers to basic sets which correspond uniquely to the Schroedinger equation. These multipliers are likely to give spurious solutions to these equations. In all these cases spuriosities are shown to have no hazardous consequence if one is interested in studying the scattering problem

  11. Multiphase averaging of periodic soliton equations

    International Nuclear Information System (INIS)

    Forest, M.G.

    1979-01-01

    The multiphase averaging of periodic soliton equations is considered. Particular attention is given to the periodic sine-Gordon and Korteweg-deVries (KdV) equations. The periodic sine-Gordon equation and its associated inverse spectral theory are analyzed, including a discussion of the spectral representations of exact, N-phase sine-Gordon solutions. The emphasis is on physical characteristics of the periodic waves, with a motivation from the well-known whole-line solitons. A canonical Hamiltonian approach for the modulational theory of N-phase waves is prescribed. A concrete illustration of this averaging method is provided with the periodic sine-Gordon equation; explicit averaging results are given only for the N = 1 case, laying a foundation for a more thorough treatment of the general N-phase problem. For the KdV equation, very general results are given for multiphase averaging of the N-phase waves. The single-phase results of Whitham are extended to general N phases, and more importantly, an invariant representation in terms of Abelian differentials on a Riemann surface is provided. Several consequences of this invariant representation are deduced, including strong evidence for the Hamiltonian structure of N-phase modulational equations

  12. Quantization of Equations of Motion

    Directory of Open Access Journals (Sweden)

    D. Kochan

    2007-01-01

    Full Text Available The Classical Newton-Lagrange equations of motion represent the fundamental physical law of mechanics. Their traditional Lagrangian and/or Hamiltonian precursors when available are essential in the context of quantization. However, there are situations that lack Lagrangian and/or Hamiltonian settings. This paper discusses a description of classical dynamics and presents some irresponsible speculations about its quantization by introducing a certain canonical two-form ?. By its construction ? embodies kinetic energy and forces acting within the system (not their potential. A new type of variational principle employing differential two-form ? is introduced. Variation is performed over “umbilical surfaces“ instead of system histories. It provides correct Newton-Lagrange equations of motion. The quantization is inspired by the Feynman path integral approach. The quintessence is to rearrange it into an “umbilical world-sheet“ functional integral in accordance with the proposed variational principle. In the case of potential-generated forces, the new approach reduces to the standard quantum mechanics. As an example, Quantum Mechanics with friction is analyzed in detail. 

  13. Energy master equation

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    1995-01-01

    energies chosen randomly according to a Gaussian. The random-walk model is here derived from Newton's laws by making a number of simplifying assumptions. In the second part of the paper an approximate low-temperature description of energy fluctuations in the random-walk model—the energy master equation...... (EME)—is arrived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation dominates the relaxational properties of the random-walk model at low temperatures. The approximate EME description of the random-walk model is expected to be valid at low temperatures...... of the random-walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory time scales for an arbitrarily varying temperature as function of time. The EME is probably the only realistic equation available today with this property that is also explicitly consistent...

  14. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  15. Flavored quantum Boltzmann equations

    International Nuclear Information System (INIS)

    Cirigliano, Vincenzo; Lee, Christopher; Ramsey-Musolf, Michael J.; Tulin, Sean

    2010-01-01

    We derive from first principles, using nonequilibrium field theory, the quantum Boltzmann equations that describe the dynamics of flavor oscillations, collisions, and a time-dependent mass matrix in the early universe. Working to leading nontrivial order in ratios of relevant time scales, we study in detail a toy model for weak-scale baryogenesis: two scalar species that mix through a slowly varying time-dependent and CP-violating mass matrix, and interact with a thermal bath. This model clearly illustrates how the CP asymmetry arises through coherent flavor oscillations in a nontrivial background. We solve the Boltzmann equations numerically for the density matrices, investigating the impact of collisions in various regimes.

  16. Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

    Directory of Open Access Journals (Sweden)

    Hamidreza Rezazadeh

    2014-05-01

    Full Text Available In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.. So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreover, its asymptotic stability and statistical concepts like expectation and variance of solutions are discussed. Finally, the attained solutions of these S.D.E.s compared with exact solution of corresponding differential equations.

  17. Soliton solutions for ABS lattice equations: I. Cauchy matrix approach

    Science.gov (United States)

    Nijhoff, Frank; Atkinson, James; Hietarinta, Jarmo

    2009-10-01

    In recent years there have been new insights into the integrability of quadrilateral lattice equations, i.e. partial difference equations which are the natural discrete analogues of integrable partial differential equations in 1+1 dimensions. In the scalar (i.e. single-field) case, there now exist classification results by Adler, Bobenko and Suris (ABS) leading to some new examples in addition to the lattice equations 'of KdV type' that were known since the late 1970s and early 1980s. In this paper, we review the construction of soliton solutions for the KdV-type lattice equations and use those results to construct N-soliton solutions for all lattice equations in the ABS list except for the elliptic case of Q4, which is left to a separate treatment.

  18. Equations of multiparticle dynamics

    International Nuclear Information System (INIS)

    Chao, A.W.

    1987-01-01

    The description of the motion of charged-particle beams in an accelerator proceeds in steps of increasing complexity. The first step is to consider a single-particle picture in which the beam is represented as a collection on non-interacting test particles moving in a prescribed external electromagnetic field. Knowing the external field, it is then possible to calculate the beam motion to a high accuracy. The real beam consists of a large number of particles, typically 10 11 per beam bunch. It is sometimes inconvenient, or even impossible, to treat the real beam behavior using the single particle approach. One way to approach this problem is to supplement the single particle by another qualitatively different picture. The commonly used tools in accelerator physics for this purpose are the Vlasov and the Fokker-Planck equations. These equations assume smooth beam distributions and are therefore strictly valid in the limit of infinite number of micro-particles, each carrying an infinitesimal charge. The hope is that by studying the two extremes -- the single particle picture and the picture of smooth beam distributions -- we will be able to describe the behavior of our 10 11 -particle system. As mentioned, the most notable use of the smooth distribution picture is the study of collective beam instabilities. However, the purpose of this lecture is not to address this more advanced subject. Rather, it has the limited goal to familiarize the reader with the analytical tools, namely the Vlasov and the Fokker-Planck equations, as a preparation for dealing with the more advanced problems at later times. We will first derive these equations and then illustrate their applications by several examples which allow exact solutions

  19. Electroweak evolution equations

    International Nuclear Information System (INIS)

    Ciafaloni, Paolo; Comelli, Denis

    2005-01-01

    Enlarging a previous analysis, where only fermions and transverse gauge bosons were taken into account, we write down infrared-collinear evolution equations for the Standard Model of electroweak interactions computing the full set of splitting functions. Due to the presence of double logs which are characteristic of electroweak interactions (Bloch-Nordsieck violation), new infrared singular splitting functions have to be introduced. We also include corrections related to the third generation Yukawa couplings

  20. Differential equations with Mathematica

    CERN Document Server

    Abell, Martha L

    2004-01-01

    The Third Edition of the Differential Equations with Mathematica integrates new applications from a variety of fields,especially biology, physics, and engineering. The new handbook is also completely compatible with recent versions of Mathematica and is a perfect introduction for Mathematica beginners.* Focuses on the most often used features of Mathematica for the beginning Mathematica user* New applications from a variety of fields, including engineering, biology, and physics* All applications were completed using recent versions of Mathematica

  1. Damped nonlinear Schrodinger equation

    International Nuclear Information System (INIS)

    Nicholson, D.R.; Goldman, M.V.

    1976-01-01

    High frequency electrostatic plasma oscillations described by the nonlinear Schrodinger equation in the presence of damping, collisional or Landau, are considered. At early times, Landau damping of an initial soliton profile results in a broader, but smaller amplitude soliton, while collisional damping reduces the soliton size everywhere; soliton speeds at early times are unchanged by either kind of damping. For collisional damping, soliton speeds are unchanged for all time

  2. Fun with Differential Equations

    Indian Academy of Sciences (India)

    IAS Admin

    tion of ® with ¼=2. One can use the uniqueness of solutions of differential equations to prove the addition formulae for sin(t1 +t2), etc. But instead of continuing with this thought process, let us do something more interesting. Now we shall consider another system. Fix 0 < < 1. I am looking for three real-valued functions x(t), ...

  3. Mathematics and Maxwell's equations

    International Nuclear Information System (INIS)

    Boozer, Allen H

    2010-01-01

    The universality of mathematics and Maxwell's equations is not shared by specific plasma models. Computations become more reliable, efficient and transparent if specific plasma models are used to obtain only the information that would otherwise be missing. Constraints of high universality, such as those from mathematics and Maxwell's equations, can be obscured or lost by integrated computations. Recognition of subtle constraints of high universality is important for (1) focusing the design of control systems for magnetic field errors in tokamaks from perturbations that have little effect on the plasma to those that do, (2) clarifying the limits of applicability to astrophysics of computations of magnetic reconnection in fields that have a double periodicity or have B-vector =0 on a surface, as in a Harris sheet. Both require a degree of symmetry not expected in natural systems. Mathematics and Maxwell's equations imply that neighboring magnetic field lines characteristically separate exponentially with distance along a line. This remarkably universal phenomenon has been largely ignored, though it defines a trigger for reconnection through a critical magnitude of exponentiation. These and other examples of the importance of making distinctions and understanding constraints of high universality are explained.

  4. Information Equation of State

    Directory of Open Access Journals (Sweden)

    M. Paul Gough

    2008-07-01

    Full Text Available Landauer’s principle is applied to information in the universe. Once stars began forming there was a constant information energy density as the increasing proportion of matter at high stellar temperatures exactly compensated for the expanding universe. The information equation of state was close to the dark energy value, w = -1, for a wide range of redshifts, 10 > z > 0.8, over one half of cosmic time. A reasonable universe information bit content of only 1087 bits is sufficient for information energy to account for all dark energy. A time varying equation of state with a direct link between dark energy and matter, and linked to star formation in particular, is clearly relevant to the cosmic coincidence problem. In answering the ‘Why now?’ question we wonder ‘What next?’ as we expect the information equation of state to tend towards w = 0 in the future.c

  5. Generalized reduced MHD equations

    International Nuclear Information System (INIS)

    Kruger, S.E.; Hegna, C.C.; Callen, J.D.

    1998-07-01

    A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson

  6. Darboux transformations and linear parabolic partial differential equations

    International Nuclear Information System (INIS)

    Arrigo, Daniel J.; Hickling, Fred

    2002-01-01

    Solutions for a class of linear parabolic partial differential equation are provided. These solutions are obtained by first solving a system of (n+1) nonlinear partial differential equations. This system arises as the coefficients of a Darboux transformation and is equivalent to a matrix Burgers' equation. This matrix equation is solved using a generalized Hopf-Cole transformation. The solutions for the original equation are given in terms of solutions of the heat equation. These results are applied to the (1+1)-dimensional Schroedinger equation where all bound state solutions are obtained for a 2n-parameter family of potentials. As a special case, the solutions for integral members of the regular and modified Poeschl-Teller potentials are recovered. (author). Letter-to-the-editor

  7. On the hierarchy of partially invariant submodels of differential equations

    OpenAIRE

    Golovin, Sergey V.

    2007-01-01

    It is noticed, that partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PIS of the higher rank. This introduce a hierarchic structure in the set of all PISs of a given system of differential equations. By using this structure one can significantly decrease an amount of calculations required in enumeration of all PISs for a given system of partially differential equations. An equivalence of the two-step and the direct ...

  8. An implicit spectral formula for generalized linear Schroedinger equations

    International Nuclear Information System (INIS)

    Schulze-Halberg, A.; Garcia-Ravelo, J.; Pena Gil, Jose Juan

    2009-01-01

    We generalize the semiclassical Bohr–Sommerfeld quantization rule to an exact, implicit spectral formula for linear, generalized Schroedinger equations admitting a discrete spectrum. Special cases include the position-dependent mass Schroedinger equation or the Schroedinger equation for weighted energy. Requiring knowledge of the potential and the solution associated with the lowest spectral value, our formula predicts the complete spectrum in its exact form. (author)

  9. Variational problems with fractional derivatives: Euler-Lagrange equations

    International Nuclear Information System (INIS)

    Atanackovic, T M; Konjik, S; Pilipovic, S

    2008-01-01

    We generalize the fractional variational problem by allowing the possibility that the lower bound in the fractional derivative does not coincide with the lower bound of the integral that is minimized. Also, for the standard case when these two bounds coincide, we derive a new form of Euler-Lagrange equations. We use approximations for fractional derivatives in the Lagrangian and obtain the Euler-Lagrange equations which approximate the initial Euler-Lagrange equations in a weak sense

  10. General method for reducing the two-body Dirac equation

    International Nuclear Information System (INIS)

    Galeao, A.P.; Ferreira, P.L.

    1992-01-01

    A semi relativistic two-body Dirac equation with an enlarged set of phenomenological potentials, including Breit-type terms, is investigated for the general case of unequal masses. Solutions corresponding to definite total angular momentum and parity are shown to fall into two classes, each one being obtained by solving a system of four coupled first-order radial differential equations. The reduction of each of these systems to a pair of coupled Schroedinger-type equations is also discussed. (author)

  11. Exact solutions to some modified sine-Gordon equations

    International Nuclear Information System (INIS)

    Saermark, K.

    1983-01-01

    Exact, translational solutions to a number of modified sine-Gordon equations are presented. In deriving the equations and the solutions use is made of results from the theory of ordinary differential equations without moving critical points as given by Ince. It is found that kink-like solutions exist also in cases where the coefficients of the trigonometric terms are space- and time-dependent. (Auth.)

  12. Differential equations from the algebraic standpoint

    CERN Document Server

    Ritt, Joseph Fels

    1932-01-01

    This book can be viewed as a first attempt to systematically develop an algebraic theory of nonlinear differential equations, both ordinary and partial. The main goal of the author was to construct a theory of elimination, which "will reduce the existence problem for a finite or infinite system of algebraic differential equations to the application of the implicit function theorem taken with Cauchy's theorem in the ordinary case and Riquier's in the partial." In his 1934 review of the book, J. M. Thomas called it "concise, readable, original, precise, and stimulating", and his words still rema

  13. Numerical study of fractional nonlinear Schrodinger equations

    KAUST Repository

    Klein, Christian

    2014-10-08

    Using a Fourier spectral method, we provide a detailed numerical investigation of dispersive Schrödinger-type equations involving a fractional Laplacian in an one-dimensional case. By an appropriate choice of the dispersive exponent, both mass and energy sub- and supercritical regimes can be identified. This allows us to study the possibility of finite time blow-up versus global existence, the nature of the blow-up, the stability and instability of nonlinear ground states and the long-time dynamics of solutions. The latter is also studied in a semiclassical setting. Moreover, we numerically construct ground state solutions of the fractional nonlinear Schrödinger equation.

  14. On current contribution to Fronsdal equations

    Science.gov (United States)

    Misuna, N. G.

    2018-03-01

    We explore a local form of second-order Vasiliev equations proposed in [arxiv:arXiv:1706.03718] and obtain an explicit expression for quadratic corrections to bosonic Fronsdal equations, generated by gauge-invariant higher-spin currents. Our analysis is performed for general phase factor, and for the case of parity-invariant theory we find the agreement with expressions for cubic vertices available in the literature. This provides an additional indication that local frame proposed in [arxiv:arXiv:1706.03718] is the proper one.

  15. Guiding Center Equations in Toroidal Equilibria

    International Nuclear Information System (INIS)

    White, Roscoe; Zakharov, Leonid

    2002-01-01

    Guiding center equations for particle motion in a general toroidal magnetic equilibrium configuration are derived using magnetic coordinates. Previous derivations made use of Boozer coordinates, in which the poloidal and toroidal angle variables are chosen so that the Jacobian is inversely proportional to the square of the magnetic field. It is shown that the equations for guiding center motion in any equilibrium possessing nested flux surfaces have exactly the same simple form as those derived in this special case. This allows the use of more spatially uniform coordinates instead of the Boozer coordinates, greatly increasing the accuracy of calculations in large beta and strongly shaped equilibria

  16. Computing generalized Langevin equations and generalized Fokker-Planck equations.

    Science.gov (United States)

    Darve, Eric; Solomon, Jose; Kia, Amirali

    2009-07-07

    The Mori-Zwanzig formalism is an effective tool to derive differential equations describing the evolution of a small number of resolved variables. In this paper we present its application to the derivation of generalized Langevin equations and generalized non-Markovian Fokker-Planck equations. We show how long time scales rates and metastable basins can be extracted from these equations. Numerical algorithms are proposed to discretize these equations. An important aspect is the numerical solution of the orthogonal dynamics equation which is a partial differential equation in a high dimensional space. We propose efficient numerical methods to solve this orthogonal dynamics equation. In addition, we present a projection formalism of the Mori-Zwanzig type that is applicable to discrete maps. Numerical applications are presented from the field of Hamiltonian systems.

  17. FMTLxLyLz DIMENSIONAL EQUAT DIMENSIONAL EQUATION ...

    African Journals Online (AJOL)

    eobe

    plant made of 12mm thick steel plate was used in de steel plate ... water treatment plant. ... ameters affecting filtration processes were used to derive an equation usin ..... system. However, in deriving the equation onl terms are incorporated.

  18. Abecedarian School on Symmetries and Integrability of Difference Equations (ASIDE) & SIDE 12 International Conference Symmetries and Integrability of Difference Equations

    CERN Document Server

    Rebelo, Raphaël; Winternitz, Pavel

    2017-01-01

    This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers...

  19. On solvability of some quadratic functional-integral equation in Banach algebra

    International Nuclear Information System (INIS)

    Darwish, M.A.

    2007-08-01

    Using the technique of a suitable measure of non-compactness in Banach algebra, we prove an existence theorem for some functional-integral equations which contain, as particular cases, a lot of integral and functional-integral equations that arise in many branches of nonlinear analysis and its applications. Also, the famous Chandrasekhar's integral equation is considered as a special case. (author)

  20. Generalised master equations for wave equation separation in a Kerr or Kerr-Newman black hole background

    International Nuclear Information System (INIS)

    Carter, B.; McLenaghan, R.G.

    1982-01-01

    It is shown how previous general formulae for the separated radial and angular parts of the massive, charged scalar (Klein, Gordon) wave equation on one hand, and of the zero mass, neutral, but higher spin (neutrino, electromagnetic and gravitational) wave equations on the other hand may be combined in a more general formula which also covers the case of the full massive charged Dirac equation in a Kerr or Kerr-Newman background space. (Auth.)

  1. Auxiliary equation method for solving nonlinear partial differential equations

    International Nuclear Information System (INIS)

    Sirendaoreji,; Jiong, Sun

    2003-01-01

    By using the solutions of an auxiliary ordinary differential equation, a direct algebraic method is described to construct several kinds of exact travelling wave solutions for some nonlinear partial differential equations. By this method some physically important nonlinear equations are investigated and new exact travelling wave solutions are explicitly obtained with the aid of symbolic computation

  2. Evaluating Equating Results: Percent Relative Error for Chained Kernel Equating

    Science.gov (United States)

    Jiang, Yanlin; von Davier, Alina A.; Chen, Haiwen

    2012-01-01

    This article presents a method for evaluating equating results. Within the kernel equating framework, the percent relative error (PRE) for chained equipercentile equating was computed under the nonequivalent groups with anchor test (NEAT) design. The method was applied to two data sets to obtain the PRE, which can be used to measure equating…

  3. Multi-component bi-Hamiltonian Dirac integrable equations

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)], E-mail: mawx@math.usf.edu

    2009-01-15

    A specific matrix iso-spectral problem of arbitrary order is introduced and an associated hierarchy of multi-component Dirac integrable equations is constructed within the framework of zero curvature equations. The bi-Hamiltonian structure of the obtained Dirac hierarchy is presented be means of the variational trace identity. Two examples in the cases of lower order are computed.

  4. Solving Fuzzy Fractional Differential Equations Using Zadeh's Extension Principle

    Science.gov (United States)

    Ahmad, M. Z.; Hasan, M. K.; Abbasbandy, S.

    2013-01-01

    We study a fuzzy fractional differential equation (FFDE) and present its solution using Zadeh's extension principle. The proposed study extends the case of fuzzy differential equations of integer order. We also propose a numerical method to approximate the solution of FFDEs. To solve nonlinear problems, the proposed numerical method is then incorporated into an unconstrained optimisation technique. Several numerical examples are provided. PMID:24082853

  5. On monotonic solutions of an integral equation of Abel type

    International Nuclear Information System (INIS)

    Darwish, Mohamed Abdalla

    2007-08-01

    We present an existence theorem of monotonic solutions for a quadratic integral equation of Abel type in C[0, 1]. The famous Chandrasekhar's integral equation is considered as a special case. The concept of measure of noncompactness and a fi xed point theorem due to Darbo are the main tools in carrying out our proof. (author)

  6. Kelvin Equation for a Non-Ideal Multicomponent Mixture

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1997-01-01

    The Kelvin equation is generalized by application to a case of a multicomponent non-ideal mixture. Such a generalization is necessary in order to describe the two-phase equilibrium in a capillary medium with respect to both normal and retrograde condensation. The equation obtained is applied...... to the equilibrium state of a hydrocarbon mixture ina gas-condensate reservoir....

  7. On equations of motion on complex grassman manifold

    International Nuclear Information System (INIS)

    Berceanu, S.; Gheorghe, A.

    1989-02-01

    We investigate the equations of motion on the 'classical' phase space which corresponds to quantum state space in the case of the complex Grassmann manifold appearing in the Hartree-Fock problem. First and second degree polynomial Hamiltonians in bifermion operators are considered. The 'classical' motion corresponding to linear Hamiltonians is described by a Matrix Riccati equation.(authors)

  8. New variational principles for locating periodic orbits of differential equations.

    Science.gov (United States)

    Boghosian, Bruce M; Fazendeiro, Luis M; Lätt, Jonas; Tang, Hui; Coveney, Peter V

    2011-06-13

    We present new methods for the determination of periodic orbits of general dynamical systems. Iterative algorithms for finding solutions by these methods, for both the exact continuum case, and for approximate discrete representations suitable for numerical implementation, are discussed. Finally, we describe our approach to the computation of unstable periodic orbits of the driven Navier-Stokes equations, simulated using the lattice Boltzmann equation.

  9. Speed ot travelling waves in reaction-diffusion equations

    International Nuclear Information System (INIS)

    Benguria, R.D.; Depassier, M.C.; Mendez, V.

    2002-01-01

    Reaction diffusion equations arise in several problems of population dynamics, flame propagation and others. In one dimensional cases the systems may evolve into travelling fronts. Here we concentrate on a reaction diffusion equation which arises as a simple model for chemotaxis and present results for the speed of the travelling fronts. (Author)

  10. Boundary value problems for multi-term fractional differential equations

    Science.gov (United States)

    Daftardar-Gejji, Varsha; Bhalekar, Sachin

    2008-09-01

    Multi-term fractional diffusion-wave equation along with the homogeneous/non-homogeneous boundary conditions has been solved using the method of separation of variables. It is observed that, unlike in the one term case, solution of multi-term fractional diffusion-wave equation is not necessarily non-negative, and hence does not represent anomalous diffusion of any kind.

  11. A Structural Equation Modeling Analysis of Influences on Juvenile Delinquency

    Science.gov (United States)

    Barrett, David E.; Katsiyannis, Antonis; Zhang, Dalun; Zhang, Dake

    2014-01-01

    This study examined influences on delinquency and recidivism using structural equation modeling. The sample comprised 199,204 individuals: 99,602 youth whose cases had been processed by the South Carolina Department of Juvenile Justice and a matched control group of 99,602 youth without juvenile records. Structural equation modeling for the…

  12. Einstein equation and Yang-Mills theory of gravitation

    International Nuclear Information System (INIS)

    Stedile, E.

    1988-01-01

    The possibility of Yang Mills theory of gravitation being a candidate as a gauge model for the Poincare group is pointed out. If the arguments favoring this theory are accepted then Einstein's equations can be derived by a different method in which they arise from a dynamical equation for the torsion field, in a particular case. (author) [pt

  13. On nonlocal symmetries of some shallow water equations

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Enrique G [Departamento de Matematicas y Ciencia de la Computacion, Universidad de Santiago de Chile, Casilla 307 Correo 2 Santiago (Chile)

    2007-04-27

    A recent construction of nonlocal symmetries for the Korteweg-de Vries, Camassa-Holm and Hunter-Saxton equations is reviewed, and it is pointed out that-in the Camassa-Holm and Hunter-Saxton case-these symmetries can be considered as (nonlocal) symmetries of integro-differential equations.

  14. Differential Equations as Actions

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    We extend a conventional action system with a primitive action consisting of a differential equation and an evolution invariant. The semantics is given by a predicate transformer. The weakest liberal precondition is chosen, because it is not always desirable that steps corresponding to differential...... actions shall terminate. It is shown that the proposed differential action has a semantics which corresponds to a discrete approximation when the discrete step size goes to zero. The extension gives action systems the power to model real-time clocks and continuous evolutions within hybrid systems....

  15. Partial differential equations

    CERN Document Server

    Levine, Harold

    1997-01-01

    The subject matter, partial differential equations (PDEs), has a long history (dating from the 18th century) and an active contemporary phase. An early phase (with a separate focus on taut string vibrations and heat flow through solid bodies) stimulated developments of great importance for mathematical analysis, such as a wider concept of functions and integration and the existence of trigonometric or Fourier series representations. The direct relevance of PDEs to all manner of mathematical, physical and technical problems continues. This book presents a reasonably broad introductory account of the subject, with due regard for analytical detail, applications and historical matters.

  16. Ordinary differential equations

    CERN Document Server

    Cox, William

    1995-01-01

    Building on introductory calculus courses, this text provides a sound foundation in the underlying principles of ordinary differential equations. Important concepts, including uniqueness and existence theorems, are worked through in detail and the student is encouraged to develop much of the routine material themselves, thus helping to ensure a solid understanding of the fundamentals required.The wide use of exercises, problems and self-assessment questions helps to promote a deeper understanding of the material and it is developed in such a way that it lays the groundwork for further

  17. Partial differential equations

    CERN Document Server

    Sloan, D; Süli, E

    2001-01-01

    /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight in

  18. Elliptic partial differential equations

    CERN Document Server

    Han, Qing

    2011-01-01

    Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo

  19. Construction and accuracy of partial differential equation approximations to the chemical master equation.

    Science.gov (United States)

    Grima, Ramon

    2011-11-01

    The mesoscopic description of chemical kinetics, the chemical master equation, can be exactly solved in only a few simple cases. The analytical intractability stems from the discrete character of the equation, and hence considerable effort has been invested in the development of Fokker-Planck equations, second-order partial differential equation approximations to the master equation. We here consider two different types of higher-order partial differential approximations, one derived from the system-size expansion and the other from the Kramers-Moyal expansion, and derive the accuracy of their predictions for chemical reactive networks composed of arbitrary numbers of unimolecular and bimolecular reactions. In particular, we show that the partial differential equation approximation of order Q from the Kramers-Moyal expansion leads to estimates of the mean number of molecules accurate to order Ω(-(2Q-3)/2), of the variance of the fluctuations in the number of molecules accurate to order Ω(-(2Q-5)/2), and of skewness accurate to order Ω(-(Q-2)). We also show that for large Q, the accuracy in the estimates can be matched only by a partial differential equation approximation from the system-size expansion of approximate order 2Q. Hence, we conclude that partial differential approximations based on the Kramers-Moyal expansion generally lead to considerably more accurate estimates in the mean, variance, and skewness than approximations of the same order derived from the system-size expansion.

  20. Differential equation models for sharp threshold dynamics.

    Science.gov (United States)

    Schramm, Harrison C; Dimitrov, Nedialko B

    2014-01-01

    We develop an extension to differential equation models of dynamical systems to allow us to analyze probabilistic threshold dynamics that fundamentally and globally change system behavior. We apply our novel modeling approach to two cases of interest: a model of infectious disease modified for malware where a detection event drastically changes dynamics by introducing a new class in competition with the original infection; and the Lanchester model of armed conflict, where the loss of a key capability drastically changes the effectiveness of one of the sides. We derive and demonstrate a step-by-step, repeatable method for applying our novel modeling approach to an arbitrary system, and we compare the resulting differential equations to simulations of the system's random progression. Our work leads to a simple and easily implemented method for analyzing probabilistic threshold dynamics using differential equations. Published by Elsevier Inc.

  1. Equations in mathematical physics a practical course

    CERN Document Server

    Pikulin, Victor P

    2001-01-01

    This handbook is addressed to students of technology institutf's where a course on mathematical physics of relatively reduced volume is offered, as well as to engineers and scientists. The aim of the handbook is to treat (demonstrate) the basic methods for solving the simplest problems of classical mathematical physics. The most basic among the methods considered hrre i8 the superposition method. It allows one, based on particular linearly indepmdent HolutionH (solution "atoms"), to obtain the solution of a given problem. To that end the "Hupply" of solution atoms must be complete. This method is a development of the well-known method of particular solutions from the theory of ordinar~' differelltial equations. In contrast to the case of ordinary differential equations, where the number of linearly independent 80lutions is always finite, for a linear partial differrntial equation a complete "supply" of solution atoms is always infinite. This infinite set of Holutions may be discrete (for example, for regular ...

  2. Static Einstein--Maxwell field equations

    International Nuclear Information System (INIS)

    Das, A.

    1979-01-01

    The static Einstein--Maxwell field equations are investigated in the presence of both electric and magnetic fields. The sources or bodies are assumed to be of finite size and to not affect the connectivity of the associated space. Furthermore, electromagnetic and metric fields are assumed to have reasonable differentiabilities. It is then proved that the electric and magnetic field vectors are constant multiples of one another. Moreover, the static Einstein--Maxwell equations reduce to the static magnetovac case. If, furthermore, the variational derivation of the Einstein--Maxwell equations is assumed, then both the total electric and magnetic charge of each body must vanish. As a physical consequence it is pointed out that if a suspended magnet be electrically charged then it must experience a purely general relativistic torque

  3. Comment on connections between nonlinear evolution equations

    International Nuclear Information System (INIS)

    Fuchssteiner, B.; Hefter, E.F.

    1981-01-01

    An open problem raised in a recent paper by Chodos is treated. We explain the reason for the interrelation between the conservation laws of the Korteweg-de Vries (KdV) and sine-Gordon equations. We point out that it is due to a corresponding connection between the infinite-dimensional Abelian symmetry groups of these equations. While it has been known for a long time that a Baecklund transformation (in this case the Miura transformation) connects corresponding members of the KdV and the sine-Gordon families, it is quite obvious that no Baecklund transformation can exist between different members of these families. And since the KdV and sine-Gordon equations do not correspond to each other, one cannot expect a Baecklund transformation between them; nevertheless we can give explicit relations between their two-soliton solutions. No inverse scattering techniques are used in this paper

  4. A derivation of the beam equation

    International Nuclear Information System (INIS)

    Duque, Daniel

    2016-01-01

    The Euler–Bernoulli equation describing the deflection of a beam is a vital tool in structural and mechanical engineering. However, its derivation usually entails a number of intermediate steps that may confuse engineering or science students at the beginnig of their undergraduate studies. We explain how this equation may be deduced, beginning with an approximate expression for the energy, from which the forces and finally the equation itself may be obtained. The description is begun at the level of small ‘particles’, and the continuum level is taken later on. However, when a computational solution is sought, the description turns back to the discrete level again. We first consider the easier case of a string under tension, and then focus on the beam. Numerical solutions for several loads are obtained. (paper)

  5. A derivation of the beam equation

    Science.gov (United States)

    Duque, Daniel

    2016-01-01

    The Euler-Bernoulli equation describing the deflection of a beam is a vital tool in structural and mechanical engineering. However, its derivation usually entails a number of intermediate steps that may confuse engineering or science students at the beginnig of their undergraduate studies. We explain how this equation may be deduced, beginning with an approximate expression for the energy, from which the forces and finally the equation itself may be obtained. The description is begun at the level of small ‘particles’, and the continuum level is taken later on. However, when a computational solution is sought, the description turns back to the discrete level again. We first consider the easier case of a string under tension, and then focus on the beam. Numerical solutions for several loads are obtained.

  6. Complete integrability of the difference evolution equations

    International Nuclear Information System (INIS)

    Gerdjikov, V.S.; Ivanov, M.I.; Kulish, P.P.

    1980-01-01

    The class of exactly solvable nonlinear difference evolution equations (DEE) related to the discrete analog of the one-dimensional Dirac problem L is studied. For this starting from L we construct a special linear non-local operator Λ and obtain the expansions of w and σ 3 deltaw over its eigenfunctions, w being the potential in L. This allows us to obtain compact expressions for the integrals of motion and to prove that these DEE are completely integrable Hamiltonian systems. Moreover, it is shown that there exists a hierarchy of Hamiltonian structures, generated by Λ, and the action-angle variables are explicity calculated. As particular cases the difference analog of the non-linear Schroedinger equation and the modified Korteweg-de-Vries equation are considered. The quantization of these Hamiltonian system through the use of the quantum inverse scattering method is briefly discussed [ru

  7. Stochastic partial differential equations an introduction

    CERN Document Server

    Liu, Wei

    2015-01-01

    This book provides an introduction to the theory of stochastic partial differential equations (SPDEs) of evolutionary type. SPDEs are one of the main research directions in probability theory with several wide ranging applications. Many types of dynamics with stochastic influence in nature or man-made complex systems can be modelled by such equations. The theory of SPDEs is based both on the theory of deterministic partial differential equations, as well as on modern stochastic analysis. Whilst this volume mainly follows the ‘variational approach’, it also contains a short account on the ‘semigroup (or mild solution) approach’. In particular, the volume contains a complete presentation of the main existence and uniqueness results in the case of locally monotone coefficients. Various types of generalized coercivity conditions are shown to guarantee non-explosion, but also a systematic approach to treat SPDEs with explosion in finite time is developed. It is, so far, the only book where the latter and t...

  8. dimensional Jaulent–Miodek equations

    Indian Academy of Sciences (India)

    (2+1)-dimensional Jaulent–Miodek equation; the first integral method; kinks; ... and effective method for solving nonlinear partial differential equations which can ... of the method employed and exact kink and soliton solutions are constructed ...

  9. Equationally Noetherian property of Ershov algebras

    OpenAIRE

    Dvorzhetskiy, Yuriy

    2014-01-01

    This article is about equationally Noetherian and weak equationally Noetherian property of Ershov algebras. Here we show two canonical forms of the system of equations over Ershov algebras and two criteria of equationally Noetherian and weak equationally Noetherian properties.

  10. Fractional Bhatnagar-Gross-Krook kinetic equation

    Science.gov (United States)

    Goychuk, Igor

    2017-11-01

    The linear Boltzmann equation (LBE) approach is generalized to describe fractional superdiffusive transport of the Lévy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional LBE approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook (BGK) kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers-Fokker-Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative.

  11. The Dirac equation

    International Nuclear Information System (INIS)

    Thaller, B.

    1992-01-01

    This monograph treats most of the usual material to be found in texts on the Dirac equation such as the basic formalism of quantum mechanics, representations of Dirac matrices, covariant realization of the Dirac equation, interpretation of negative energies, Foldy-Wouthuysen transformation, Klein's paradox, spherically symmetric interactions and a treatment of the relativistic hydrogen atom, etc., and also provides excellent additional treatments of a variety of other relevant topics. The monograph contains an extensive treatment of the Lorentz and Poincare groups and their representations. The author discusses in depth Lie algebaic and projective representations, covering groups, and Mackey's theory and Wigner's realization of induced representations. A careful classification of external fields with respect to their behavior under Poincare transformations is supplemented by a basic account of self-adjointness and spectral properties of Dirac operators. A state-of-the-art treatment of relativistic scattering theory based on a time-dependent approach originally due to Enss is presented. An excellent introduction to quantum electrodynamics in external fields is provided. Various appendices containing further details, notes on each chapter commenting on the history involved and referring to original research papers and further developments in the literature, and a bibliography covering all relevant monographs and over 500 articles on the subject, complete this text. This book should satisfy the needs of a wide audience, ranging from graduate students in theoretical physics and mathematics to researchers interested in mathematical physics

  12. Cryostatic stability equation

    International Nuclear Information System (INIS)

    Sydoriak, S.G.

    1976-01-01

    Although criteria for cryostatic stability of superconducting magnets cooled by pool boiling of liquid helium have been widely discussed the same cannot be said for magnets cooled by natural convection or forced flow boiling in channels. Boiling in narrow channels is shown to be qualitatively superior to pool boiling because the recovery heat flux equals the breakaway flux for narrow channels, whereas the two are markedly different in pool boiling. A second advantage of channel boiling is that it is well understood and calculable; pool peak nucleate boiling heat flux has been adequately measured only for boiling from the top of an immersed heated body. Peak boiling from the bottom is much less and (probably) depends strongly on the extent of the bottom surface. Equations are presented by which one can calculate the critical boiling heat flux for parallel wall vertical channels subject to either natural convection or forced flow boiling, with one or both walls heated. The one-heated-wall forced flow equation is discussed with regard to design of a spiral wound solenoid (pancake magnet) having a slippery insulating tape between the windings

  13. Solving Nonlinear Coupled Differential Equations

    Science.gov (United States)

    Mitchell, L.; David, J.

    1986-01-01

    Harmonic balance method developed to obtain approximate steady-state solutions for nonlinear coupled ordinary differential equations. Method usable with transfer matrices commonly used to analyze shaft systems. Solution to nonlinear equation, with periodic forcing function represented as sum of series similar to Fourier series but with form of terms suggested by equation itself.

  14. Completely integrable operator evolutionary equations

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)

  15. On the F-equation

    International Nuclear Information System (INIS)

    Kalinowski, M.W.; Szymanowski, L.

    1982-03-01

    A generalization of the Truesdell F-equations is proposed and some solutions to them - generalized Fox F-functions - are found. It is also shown that a non-linear difference-differential equation, which does not belong to the Truesdell class, nevertheless may be transformed into the standard F-equation. (author)

  16. On the Saha Ionization Equation

    Indian Academy of Sciences (India)

    Abstract. We revisit the Saha Ionization Equation in order to highlightthe rich interdisciplinary content of the equation thatstraddles distinct areas of spectroscopy, thermodynamics andchemical reactions. In a self-contained discussion, relegatedto an appendix, we delve further into the hidden message ofthe equation in terms ...

  17. Squeezing corrections to the Bloch equations

    International Nuclear Information System (INIS)

    Abundo, M.; Accardi, L.

    1991-01-01

    The general analysis of quantum noise shows that a squeezing noise can produce quadratic nonlinearities in the Langevin equations leading to the Bloch equations. These quadratic nonlinearities are governed by the imaginary part of the off-diagonal terms of the covariance of the noise (the squeezing terms) and imply a correction to the usual form of the Bloch equations. Here the case of spin-one nuclei subjected to squeezing noises of particular type is studied numerically. It is shown that the corrections to the Bloch equations, suggested by the theory, to the behaviour of the macroscopic nuclear polarization in a scale of times of the order of the relaxation time can be quite substantial. In the equilibrium regime, even if the qualitative behaviour of the system is the same (exponential decay), the numerical equilibrium values predicted by the theory are consistently different from those predicted by the usual Bloch equation. It is suggested that this difference might be used to test experimentally the observable effects of squeezing noises

  18. Minimal length, Friedmann equations and maximum density

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Adel [Center for Theoretical Physics, British University of Egypt,Sherouk City 11837, P.O. Box 43 (Egypt); Department of Physics, Faculty of Science, Ain Shams University,Cairo, 11566 (Egypt); Ali, Ahmed Farag [Centre for Fundamental Physics, Zewail City of Science and Technology,Sheikh Zayed, 12588, Giza (Egypt); Department of Physics, Faculty of Science, Benha University,Benha, 13518 (Egypt)

    2014-06-16

    Inspired by Jacobson’s thermodynamic approach, Cai et al. have shown the emergence of Friedmann equations from the first law of thermodynamics. We extend Akbar-Cai derivation http://dx.doi.org/10.1103/PhysRevD.75.084003 of Friedmann equations to accommodate a general entropy-area law. Studying the resulted Friedmann equations using a specific entropy-area law, which is motivated by the generalized uncertainty principle (GUP), reveals the existence of a maximum energy density closed to Planck density. Allowing for a general continuous pressure p(ρ,a) leads to bounded curvature invariants and a general nonsingular evolution. In this case, the maximum energy density is reached in a finite time and there is no cosmological evolution beyond this point which leaves the big bang singularity inaccessible from a spacetime prospective. The existence of maximum energy density and a general nonsingular evolution is independent of the equation of state and the spacial curvature k. As an example we study the evolution of the equation of state p=ωρ through its phase-space diagram to show the existence of a maximum energy which is reachable in a finite time.

  19. Relativistic wave equations for particles in electromagnetic fields

    International Nuclear Information System (INIS)

    Good, R.H. Jr.

    1989-01-01

    A new type of generalization of the Dirac equation of higher spin particles and antiparticles is given, in case only the terms proportional to the external fields need to be retained. copyright 1989 Academic Press, Inc

  20. On the Foundational Equations of the Classical Theory of ...

    Indian Academy of Sciences (India)

    IAS Admin

    ... Equations of the Classical. Theory of Electrodynamics ... most cherished notions of the Maxwell{Lorentz theory .... dia in the presence of the fields, in which case a self- consistent ..... could benefit from further experimental verification, we.

  1. Solution of heat equation with variable coefficient using derive

    CSIR Research Space (South Africa)

    Lebelo, RS

    2008-09-01

    Full Text Available In this paper, the method of approximating solutions of partial differential equations with variable coefficients is studied. This is done by considering heat flow through a one-dimensional model with variable cross-sections. Two cases...

  2. On the hierarchy of partially invariant submodels of differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Sergey V [Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk 630090 (Russian Federation)], E-mail: sergey@hydro.nsc.ru

    2008-07-04

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  3. On the hierarchy of partially invariant submodels of differential equations

    Science.gov (United States)

    Golovin, Sergey V.

    2008-07-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given.

  4. On the hierarchy of partially invariant submodels of differential equations

    International Nuclear Information System (INIS)

    Golovin, Sergey V

    2008-01-01

    It is noted that the partially invariant solution (PIS) of differential equations in many cases can be represented as an invariant reduction of some PISs of the higher rank. This introduces a hierarchic structure in the set of all PISs of a given system of differential equations. An equivalence of the two-step and the direct ways of construction of PISs is proved. The hierarchy simplifies the process of enumeration and analysis of partially invariant submodels to the given system of differential equations. In this framework, the complete classification of regular partially invariant solutions of ideal MHD equations is given

  5. Sigma set scattering equations in nuclear reaction theory

    International Nuclear Information System (INIS)

    Kowalski, K.L.; Picklesimer, A.

    1982-01-01

    The practical applications of partially summed versions of the Rosenberg equations involving only special subsets (sigma sets) of the physical amplitudes are investigated with special attention to the Pauli principle. The requisite properties of the transformations from the pair labels to the set of partitions labeling the sigma set of asymptotic channels are established. New, well-defined, scattering integral equations for the antisymmetrized transition operators are found which possess much less coupling among the physically distinct channels than hitherto expected for equations with kernels of equal complexity. In several cases of physical interest in nuclear physics, a single connected-kernel equation is obtained for the relevant antisymmetrized elastic scattering amplitude

  6. Cnoidal waves governed by the Kudryashov–Sinelshchikov equation

    International Nuclear Information System (INIS)

    Randrüüt, Merle; Braun, Manfred

    2013-01-01

    The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech 2 type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.

  7. Cnoidal waves governed by the Kudryashov–Sinelshchikov equation

    Energy Technology Data Exchange (ETDEWEB)

    Randrüüt, Merle, E-mail: merler@cens.ioc.ee [Tallinn University of Technology, Faculty of Mechanical Engineering, Department of Mechatronics, Ehitajate tee 5, 19086 Tallinn (Estonia); Braun, Manfred [University of Duisburg–Essen, Chair of Mechanics and Robotics, Lotharstraße 1, 47057 Duisburg (Germany)

    2013-10-30

    The evolution equation for waves propagating in a mixture of liquid and gas bubbles as proposed by Kudryashov and Sinelshchikov allows, in a special case, the propagation of solitary waves of the sech{sup 2} type. It is shown that these waves represent the solitary limit separating two families of periodic waves. One of them consists of the same cnoidal waves that are solutions of the Korteweg–de Vries equation, while the other one does not have a corresponding counterpart. It is pointed out how the ordinary differential equations governing traveling-wave solutions of the Kudryashov–Sinelshchikov and the Korteweg–de Vries equations are related to each other.

  8. Differential equations extended to superspace

    Energy Technology Data Exchange (ETDEWEB)

    Torres, J. [Instituto de Fisica, Universidad de Guanajuato, A.P. E-143, Leon, Guanajuato (Mexico); Rosu, H.C. [Instituto Potosino de Investigacion Cientifica y Tecnologica, A.P. 3-74, Tangamanga, San Luis Potosi (Mexico)

    2003-07-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  9. Differential equations extended to superspace

    International Nuclear Information System (INIS)

    Torres, J.; Rosu, H.C.

    2003-01-01

    We present a simple SUSY Ns = 2 superspace extension of the differential equations in which the sought solutions are considered to be real superfields but maintaining the common derivative operators and the coefficients of the differential equations unaltered. In this way, we get self consistent systems of coupled differential equations for the components of the superfield. This procedure is applied to the Riccati equation, for which we obtain in addition the system of coupled equations corresponding to the components of the general superfield solution. (Author)

  10. Simple functional-differential equations for the bound-state wave-function components

    International Nuclear Information System (INIS)

    Kamuntavicius, G.P.

    1986-01-01

    The author presents a new method of a direct derivation of differential equations for the wave-function components of identical-particles systems. The method generates in a simple manner all the possible variants of these equations. In some cases they are the differential equations of Faddeev or Yakubovskii. It is shown that the case of the bound states allows to formulate very simple equations for the components which are equivalent to the Schroedinger equation for the complete wave function. The components with a minimal antisymmetry are defined and the corresponding equations are derived. (Auth.)

  11. Modified Van der Waals equation and law of corresponding states

    Science.gov (United States)

    Zhong, Wei; Xiao, Changming; Zhu, Yongkai

    2017-04-01

    It is well known that the Van der Waals equation is a modification of the ideal gas law, yet it can be used to describe both gas and liquid, and some important messages can be obtained from this state equation. However, the Van der Waals equation is not a precise state equation, and it does not give a good description of the law of corresponding states. In this paper, we expand the Van der Waals equation into its Taylor's series form, and then modify the fourth order expansion by changing the constant Virial coefficients into their analogous ones. Via this way, a more precise result about the law of corresponding states has been obtained, and the law of corresponding states can then be expressed as: in terms of the reduced variables, all fluids should obey the same equation with the analogous Virial coefficients. In addition, the system of 3 He with quantum effects has also been taken into consideration with our modified Van der Waals equation, and it is found that, for a normal system without quantum effect, the modification on ideal gas law from the Van der Waals equation is more significant than the real case, however, for a system with quantum effect, this modification is less significant than the real case, thus a factor is introduced in this paper to weaken or strengthen the modification of the Van der Waals equation, respectively.

  12. Stochastic Levy Divergence and Maxwell's Equations

    Directory of Open Access Journals (Sweden)

    B. O. Volkov

    2015-01-01

    Full Text Available One of the main reasons for interest in the Levy Laplacian and its analogues such as Levy d'Alembertian is a connection of these operators with gauge fields. The theorem proved by Accardi, Gibillisco and Volovich stated that a connection in a bundle over a Euclidean space or over a Minkowski space is a solution of the Yang-Mills equations if and only if the corresponding parallel transport to the connection is a solution of the Laplace equation for the Levy Laplacian or of the d'Alembert equation for the Levy d'Alembertian respectively (see [5, 6]. There are two approaches to define Levy type operators, both of which date back to the original works of Levy [7]. The first is that the Levy Laplacian (or Levy d'Alembertian is defined as an integral functional generated by a special form of the second derivative. This approach is used in the works [5, 6], as well as in the paper [8] of Leandre and Volovich, where stochastic Levy-Laplacian is discussed. Another approach to the Levy Laplacian is defining it as the Cesaro mean of second order derivatives along the family of vectors, which is an orthonormal basis in the Hilbert space. This definition of the Levy Laplacian is used for the description of solutions of the Yang-Mills equations in the paper [10].The present work shows that the definitions of the Levy Laplacian and the Levy d'Alembertian based on Cesaro averaging of the second order directional derivatives can be transferred to the stochastic case. In the article the values of these operators on a stochastic parallel transport associated with a connection (vector potential are found. In this case, unlike the deterministic case and the stochastic case of Levy Laplacian from [8], these values are not equal to zero if the vector potential corresponding to the stochastic parallel transport is a solution of the Maxwell's equations. As a result, two approaches to definition of the Levy Laplacian in the stochastic case give different operators. This

  13. A limit of the confluent Heun equation and the Schroedinger equation for an inverted potential and for an electric dipole

    International Nuclear Information System (INIS)

    El-Jaick, Lea Jaccoud; Figueiredo, Bartolomeu D.B.

    2009-01-01

    We reexamine and extend a group of solutions in series of Bessel functions for a limiting case of the confluent Heun equation and, then, apply such solutions to the one-dimensional Schroedinger equation with an inverted quasi-exactly solvable potential as well as to the angular equation for an electron in the field of a point electric dipole. For the first problem we find finite and infinite-series solutions which are convergent and bounded for any value of the independent variable. For the angular equation, we also find expansions in series of Jacobi polynomials. (author)

  14. Generalized quantal equation of motion

    International Nuclear Information System (INIS)

    Morsy, M.W.; Embaby, M.

    1986-07-01

    In the present paper, an attempt is made for establishing a generalized equation of motion for quantal objects, in which intrinsic self adjointness is naturally built in, independently of any prescribed representation. This is accomplished by adopting Hamilton's principle of least action, after incorporating, properly, the quantal features and employing the generalized calculus of variations, without being restricted to fixed end points representation. It turns out that our proposed equation of motion is an intrinsically self-adjoint Euler-Lagrange's differential equation that ensures extremization of the quantal action as required by Hamilton's principle. Time dependence is introduced and the corresponding equation of motion is derived, in which intrinsic self adjointness is also achieved. Reducibility of the proposed equation of motion to the conventional Schroedinger equation is examined. The corresponding continuity equation is established, and both of the probability density and the probability current density are identified. (author)

  15. Alternatives to the Dirac equation

    International Nuclear Information System (INIS)

    Girvin, S.M.; Brownstein, K.R.

    1975-01-01

    Recent work by Biedenharn, Han, and van Dam (BHvD) has questioned the uniqueness of the Dirac equation. BHvD have obtained a two-component equation as an alternate to the Dirac equation. Although they later show their alternative to be unitarily equivalent to the Dirac equation, certain physical differences were claimed. BHvD attribute the existence of this alternate equation to the fact that their factorizing matrices were position-dependent. To investigate this, we factor the Klein-Gordon equation in spherical coordinates allowing the factorizing matrices to depend arbitrarily upon theta and phi. It is shown that despite this additional freedom, and without involving any relativistic covariance, the conventional four-component Dirac equation is the only possibility

  16. Wave Partial Differential Equation

    OpenAIRE

    Szöllös, Alexandr

    2009-01-01

    Práce se zabývá diferenciálními rovnicemi, jejich využitím při analýze     vedení, experimenty s vedením a možnou akcelerací výpočtu v GPU  s využitím prostředí nVidia CUDA. This work deals with diffrential equations, with the possibility     of using them for analysis of the line and the possibility     of accelerating the computations in GPU using nVidia CUDA. C

  17. Λ scattering equations

    Science.gov (United States)

    Gomez, Humberto

    2016-06-01

    The CHY representation of scattering amplitudes is based on integrals over the moduli space of a punctured sphere. We replace the punctured sphere by a double-cover version. The resulting scattering equations depend on a parameter Λ controlling the opening of a branch cut. The new representation of scattering amplitudes possesses an enhanced redundancy which can be used to fix, modulo branches, the location of four punctures while promoting Λ to a variable. Via residue theorems we show how CHY formulas break up into sums of products of smaller (off-shell) ones times a propagator. This leads to a powerful way of evaluating CHY integrals of generic rational functions, which we call the Λ algorithm.

  18. Scaling of differential equations

    CERN Document Server

    Langtangen, Hans Petter

    2016-01-01

    The book serves both as a reference for various scaled models with corresponding dimensionless numbers, and as a resource for learning the art of scaling. A special feature of the book is the emphasis on how to create software for scaled models, based on existing software for unscaled models. Scaling (or non-dimensionalization) is a mathematical technique that greatly simplifies the setting of input parameters in numerical simulations. Moreover, scaling enhances the understanding of how different physical processes interact in a differential equation model. Compared to the existing literature, where the topic of scaling is frequently encountered, but very often in only a brief and shallow setting, the present book gives much more thorough explanations of how to reason about finding the right scales. This process is highly problem dependent, and therefore the book features a lot of worked examples, from very simple ODEs to systems of PDEs, especially from fluid mechanics. The text is easily accessible and exam...

  19. Parabolized stability equations

    Science.gov (United States)

    Herbert, Thorwald

    1994-01-01

    The parabolized stability equations (PSE) are a new approach to analyze the streamwise evolution of single or interacting Fourier modes in weakly nonparallel flows such as boundary layers. The concept rests on the decomposition of every mode into a slowly varying amplitude function and a wave function with slowly varying wave number. The neglect of the small second derivatives of the slowly varying functions with respect to the streamwise variable leads to an initial boundary-value problem that can be solved by numerical marching procedures. The PSE approach is valid in convectively unstable flows. The equations for a single mode are closely related to those of the traditional eigenvalue problems for linear stability analysis. However, the PSE approach does not exploit the homogeneity of the problem and, therefore, can be utilized to analyze forced modes and the nonlinear growth and interaction of an initial disturbance field. In contrast to the traditional patching of local solutions, the PSE provide the spatial evolution of modes with proper account for their history. The PSE approach allows studies of secondary instabilities without the constraints of the Floquet analysis and reproduces the established experimental, theoretical, and computational benchmark results on transition up to the breakdown stage. The method matches or exceeds the demonstrated capabilities of current spatial Navier-Stokes solvers at a small fraction of their computational cost. Recent applications include studies on localized or distributed receptivity and prediction of transition in model environments for realistic engineering problems. This report describes the basis, intricacies, and some applications of the PSE methodology.

  20. The Langevin equation

    Science.gov (United States)

    Pomeau, Yves; Piasecki, Jarosław

    2017-11-01

    The existence of atoms has been long predicted by philosophers and scientists. The development of thermodynamics and of the statistical interpretation of its concepts at the end of the nineteenth century and in the early years of the twentieth century made it possible to bridge the gap of scales between the macroscopic world and the world of atoms. Einstein and Smoluchowski showed in 1905 and 1906 that the Brownian motion of particles of measurable size is a manifestation of the motion of atoms in fluids. Their derivation was completely different from each other. Langevin showed in 1908 how to put in a coherent framework the subtle effect of the randomness of the atomic world, responsible for the fluctuating force driving the motion of the Brownian particle and the viscosity of the "macroscopic" flow taking place around the same Brownian particle. Whereas viscous forces were already well understood at this time, the "Langevin" force appears there for the first time: it represents the fluctuating part of the interaction between the Brownian particle and the surrounding fluid. We discuss the derivation by Einstein and Smoluchowski as well as a previous paper by Sutherland on the diffusion coefficient of large spheres. Next we present Langevin's short note and explain the fundamental splitting into a random force and a macroscopic viscous force. This brings us to discuss various points, like the kind of constraints on Langevin-like equations. We insist in particular on the one arising from the time-reversal symmetry of the equilibrium fluctuations. Moreover, we discuss another constraint, raised first by Lorentz, which implies that, if the Brownian particle is not very heavy, the viscous force cannot be taken as the standard Stokes drag on an object moving at uniform speed. Lastly, we examine the so-called Langevin-Heisenberg and/or Langevin-Schrödinger equation used in quantum mechanics.

  1. New Formulation of the Governing Equations for Analyzing Outrigger Structures

    International Nuclear Information System (INIS)

    Er, G.-K.

    2010-01-01

    In this paper, an easily comprehensible solution procedure is proposed for the analysis of outrigger-braced structures. The idea is based on the compatibility of the columns' axial deformation. The unknowns are selected to be the axial forces in the columns. The resulted governing equations and the equations for the optimum analysis of the outrigger locations are different from the conventional ones, but numerical analysis shows that the results obtained with the new equations are same as those obtained with conventional equations. The relations between the new equations and the conventional ones are also figured out. The new procedure of formulating the governing equations can be easily extended to more complicated cases of outrigger-braced structures.

  2. Contact Geometry of Hyperbolic Equations of Generic Type

    Directory of Open Access Journals (Sweden)

    Dennis The

    2008-08-01

    Full Text Available We study the contact geometry of scalar second order hyperbolic equations in the plane of generic type. Following a derivation of parametrized contact-invariants to distinguish Monge-Ampère (class 6-6, Goursat (class 6-7 and generic (class 7-7 hyperbolic equations, we use Cartan's equivalence method to study the generic case. An intriguing feature of this class of equations is that every generic hyperbolic equation admits at most a nine-dimensional contact symmetry algebra. The nine-dimensional bound is sharp: normal forms for the contact-equivalence classes of these maximally symmetric generic hyperbolic equations are derived and explicit symmetry algebras are presented. Moreover, these maximally symmetric equations are Darboux integrable. An enumeration of several submaximally symmetric (eight and seven-dimensional generic hyperbolic structures is also given.

  3. Monge-Ampere equations and characteristic connection functors

    International Nuclear Information System (INIS)

    Tunitskii, D V

    2001-01-01

    We investigate contact equivalence of Monge-Ampere equations. We define a category of Monge-Ampere equations and introduce the notion of a characteristic connection functor. This functor maps the category of Monge-Ampere equations to the category of affine connections. We give a constructive description of the characteristic connection functors corresponding to three subcategories, which include a large class of Monge-Ampere equations of elliptic and hyperbolic type. This essentially reduces the contact equivalence problem for Monge-Ampere equations in the cases under study to the equivalence problem for affine connections. Using E. Cartan's familiar theory, we are thus able to state and prove several criteria of contact equivalence for a large class of elliptic and hyperbolic Monge-Ampere equations

  4. Integral equations for four identical particles in angular momentum representation

    International Nuclear Information System (INIS)

    Kharchenko, V.F.; Shadchin, S.A.

    1975-01-01

    In integral equations of motion for a system of four identical spinless particles with central pair interactions, transition is realized from the representation of relative Jacobi momenta to the representation of their moduli and relative angular moments. As a result, the variables associated with the rotation of the system as a whole are separated in the equations. The integral equations of motion for four particles are reduced to the form of an infinite system of three-demensional integral equations. The four-particle kinematic factors contained in integral kernels are expressed in terms of three-particle type kinematic factors. In the case of separable two-particle interaction, the equations of motion for four particles have the form of an infinite system of two-dimensional integral equations

  5. Taming the nonlinearity of the Einstein equation.

    Science.gov (United States)

    Harte, Abraham I

    2014-12-31

    Many of the technical complications associated with the general theory of relativity ultimately stem from the nonlinearity of Einstein's equation. It is shown here that an appropriate choice of dynamical variables may be used to eliminate all such nonlinearities beyond a particular order: Both Landau-Lifshitz and tetrad formulations of Einstein's equation are obtained that involve only finite products of the unknowns and their derivatives. Considerable additional simplifications arise in physically interesting cases where metrics become approximately Kerr or, e.g., plane waves, suggesting that the variables described here can be used to efficiently reformulate perturbation theory in a variety of contexts. In all cases, these variables are shown to have simple geometrical interpretations that directly relate the local causal structure associated with the metric of interest to the causal structure associated with a prescribed background. A new method to search for exact solutions is outlined as well.

  6. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  7. Maxwell equations in conformal invariant electrodynamics

    International Nuclear Information System (INIS)

    Fradkin, E.S.; AN SSSR, Novosibirsk. Inst. Avtomatiki i Ehlektrometrii); Kozhevnikov, A.A.; Palchik, M.Ya.; Pomeransky, A.A.

    1983-01-01

    We consider a conformal invariant formulation of quantum electrodynamics. Conformal invariance is achieved with a specific mathematical construction based on the indecomposable representations of the conformal group associated with the electromagnetic potential and current. As a corolary of this construction modified expressions for the 3-point Green functions are obtained which both contain transverse parts. They make it possible to formulate a conformal invariant skeleton perturbation theory. It is also shown that the Euclidean Maxwell equations in conformal electrodynamics are manifestations of its kinematical structure: in the case of the 3-point Green functions these equations follow (up to constants) from the conformal invariance while in the case of higher Green functions they are equivalent to the equality of the kernels of the partial wave expansions. This is the manifestation of the mathematical fast of a (partial) equivalence of the representations associated with the potential, current and the field tensor. (orig.)

  8. Determination of source terms in a degenerate parabolic equation

    International Nuclear Information System (INIS)

    Cannarsa, P; Tort, J; Yamamoto, M

    2010-01-01

    In this paper, we prove Lipschitz stability results for inverse source problems relative to parabolic equations. We use the method introduced by Imanuvilov and Yamamoto in 1998 based on Carleman estimates. What is new here is that we study a class of one-dimensional degenerate parabolic equations. In our model, the diffusion coefficient vanishes at one extreme point of the domain. Instead of the classical Carleman estimates obtained by Fursikov and Imanuvilov for non degenerate equations, we use and extend some recent Carleman estimates for degenerate equations obtained by Cannarsa, Martinez and Vancostenoble. Finally, we obtain Lipschitz stability results in inverse source problems for our class of degenerate parabolic equations both in the case of a boundary observation and in the case of a locally distributed observation

  9. Nonlinear dynamics in the Einstein-Friedmann equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Ohta, Shigetoshi; Mori, Keisuke; Horiuchi, Tanji

    2009-01-01

    We have studied the gravitational field equations on the basis of general relativity and nonlinear dynamics. The space component of the Einstein-Friedmann equation shows the chaotic behaviours in case the following conditions are satisfied: (i)the expanding ratio: h=x . /x max = +0.14) for the occurrence of the chaotic behaviours in the Einstein-Friedmann equation (0 ≤ λ ≤ +0.14). The numerical calculations are performed with the use of the Microsoft EXCEL(2003), and the results are shown in the following cases; λ = 2b = +0.06 and +0.14.

  10. An approach to rogue waves through the cnoidal equation

    Science.gov (United States)

    Lechuga, Antonio

    2014-05-01

    Lately it has been realized the importance of rogue waves in some events happening in open seas. Extreme waves and extreme weather could explain some accidents, but not all of them. Every now and then inflicted damages on ships only can be reported to be caused by anomalous and elusive waves, such as rogue waves. That's one of the reason why they continue attracting considerable interest among researchers. In the frame of the Nonlinear Schrödinger equation(NLS), Witham(1974) and Dingemans and Otta (2001)gave asymptotic solutions in moving coordinates that transformed the NLS equation in a ordinary differential equation that is the Duffing or cnoidal wave equation. Applying the Zakharov equation, Stiassnie and Shemer(2004) and Shemer(2010)got also a similar equation. It's well known that this ordinary equation can be solved in elliptic functions. The main aim of this presentation is to sort out the domains of the solutions of this equation, that, of course, are linked to the corresponding solutions of the partial differential equations(PDEs). That being, Lechuga(2007),a simple way to look for anomalous waves as it's the case with some "chaotic" solutions of the Duffing equation.

  11. Drift-free kinetic equations for turbulent dispersion

    Science.gov (United States)

    Bragg, A.; Swailes, D. C.; Skartlien, R.

    2012-11-01

    The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.

  12. Lagrangian procedures for higher order field equations

    International Nuclear Information System (INIS)

    Bollini, C.G.

    1987-01-01

    A Lagrangian procedure for a pedagogical way is presented for the treatment of higher order field equations. The energy-momentum tensor and the conserved density current are built. In particular the case in which the derivatives appear only in the invariant D'Alembertian operator is discussed. Some examples are discussed. The fields are quantized and the corresponding Hamilonian which is shown not to be positive defructed. Rules are given to write the causal propagators. (author) [pt

  13. Measurement theory and the Schroedinger equation

    International Nuclear Information System (INIS)

    Schwarz, A.S.; Tyupkin, Yu.S.

    1987-01-01

    The paper is an analysis of the measuring process in quantum mechanics based on the Schroedinger equation. The arguments employed use an assumption reflecting, to some extent, the statistical properties of the vacuum. A description is given of the cases in which different incoherent superpositions of pure states in quantum mechanics are physically equivalent. The fundamental difference between quantum and classical mechanics as explained by the existence of unobservable variables is discussed. (U.K.)

  14. Hydrogen equation in spaces of arbitrary dimensions

    International Nuclear Information System (INIS)

    Amusia, M Ya

    2015-01-01

    We note that presenting Hydrogen atom Schrodinger equation in the case of arbitrary dimensions require simultaneous modification of the Coulomb potential that only in three dimensions has the form Z / r. This was not done in a number of relatively recent papers (see [1] and references therein). Therefore, some results obtained in [1] seem to be doubtful. Several required considerations in the area are mentioned. (paper)

  15. Lagrangian procedures for higher order field equations

    International Nuclear Information System (INIS)

    Bollini, C.G.; Giambiagi, J.J.

    1986-01-01

    We present in a pedagogical way a Lagrangian procedure for the treatment of higher order field equations. We build the energy-momentum tensor and the conserved density current. In particular we discuss the case in which the derivatives appear only in the invariant D'Alembertian operator. We discuss some examples. We quantize the fields and construct the corresponding Hamiltonian which is shown not to be positive definite. We give the rules for the causal propagators. (Author) [pt

  16. On the reduction of the multidimensional stationary Schroedinger equation to a first-order equation and its relation to the pseudoanalytic function theory

    Energy Technology Data Exchange (ETDEWEB)

    Kravchenko, Vladislav V [Departmento de Telecomunicaciones, SEPI, Escuela Superior de IngenierIa Mecanica y Electrica, Instituto Politecnico Nacional, CP 07738 Mexico DF (Mexico)

    2005-01-28

    Given a particular solution of a one-dimensional stationary Schroedinger equation this equation of second order can be reduced to a first-order linear ordinary differential equation. This is done with the aid of an auxiliary Riccati differential equation. In the present work we show that the same fact is true in a multidimensional situation also. For simplicity we consider the case of two or three independent variables. One particular solution of the stationary Schroedinger equation allows us to reduce this second-order equation to a linear first-order quaternionic differential equation. As in the one-dimensional case this is done with the aid of an auxiliary quaternionic Riccati equation. The resulting first-order quaternionic equation is equivalent to the static Maxwell system and is closely related to the Dirac equation. In the case of two independent variables it is the well-known Vekua equation from theory of pseudoanalytic (or generalized analytic) functions. Nevertheless, we show that even in this case it is very useful to consider not only complex valued functions, solutions of the Vekua equation, but complete quaternionic functions. In this way the first-order quaternionic equation represents two separate Vekua equations, one of which gives us solutions of the Schroedinger equation and the other one can be considered as an auxiliary equation of a simpler structure. Moreover for the auxiliary equation we always have the corresponding Bers generating pair (F, G), the base of the Bers theory of pseudoanalytic functions, and what is very important, the Bers derivatives of solutions of the auxiliary equation give us solutions of the main Vekua equation and as a consequence of the Schroedinger equation. Based on this fact we obtain an analogue of the Cauchy integral theorem for solutions of the stationary Schroedinger equation. Other results from theory of pseudoanalytic functions can be written for solutions of the Schroedinger equation. Moreover, for an ample

  17. Synchronization with propagation - The functional differential equations

    Science.gov (United States)

    Rǎsvan, Vladimir

    2016-06-01

    The structure represented by one or several oscillators couple to a one-dimensional transmission environment (e.g. a vibrating string in the mechanical case or a lossless transmission line in the electrical case) turned to be attractive for the research in the field of complex structures and/or complex behavior. This is due to the fact that such a structure represents some generalization of various interconnection modes with lumped parameters for the oscillators. On the other hand the lossless and distortionless propagation along transmission lines has generated several research in electrical, thermal, hydro and control engineering leading to the association of some functional differential equations to the basic initial boundary value problems. The present research is performed at the crossroad of the aforementioned directions. We shall associate to the starting models some functional differential equations - in most cases of neutral type - and make use of the general theorems for existence and stability of forced oscillations for functional differential equations. The challenges introduced by the analyzed problems for the general theory are emphasized, together with the implication of the results for various applications.

  18. True amplitude wave equation migration arising from true amplitude one-way wave equations

    Science.gov (United States)

    Zhang, Yu; Zhang, Guanquan; Bleistein, Norman

    2003-10-01

    One-way wave operators are powerful tools for use in forward modelling and inversion. Their implementation, however, involves introduction of the square root of an operator as a pseudo-differential operator. Furthermore, a simple factoring of the wave operator produces one-way wave equations that yield the same travel times as the full wave equation, but do not yield accurate amplitudes except for homogeneous media and for almost all points in heterogeneous media. Here, we present augmented one-way wave equations. We show that these equations yield solutions for which the leading order asymptotic amplitude as well as the travel time satisfy the same differential equations as the corresponding functions for the full wave equation. Exact representations of the square-root operator appearing in these differential equations are elusive, except in cases in which the heterogeneity of the medium is independent of the transverse spatial variables. Here, we address the fully heterogeneous case. Singling out depth as the preferred direction of propagation, we introduce a representation of the square-root operator as an integral in which a rational function of the transverse Laplacian appears in the integrand. This allows us to carry out explicit asymptotic analysis of the resulting one-way wave equations. To do this, we introduce an auxiliary function that satisfies a lower dimensional wave equation in transverse spatial variables only. We prove that ray theory for these one-way wave equations leads to one-way eikonal equations and the correct leading order transport equation for the full wave equation. We then introduce appropriate boundary conditions at z = 0 to generate waves at depth whose quotient leads to a reflector map and an estimate of the ray theoretical reflection coefficient on the reflector. Thus, these true amplitude one-way wave equations lead to a 'true amplitude wave equation migration' (WEM) method. In fact, we prove that applying the WEM imaging condition

  19. Analytic Solutions of Special Functional Equations

    Directory of Open Access Journals (Sweden)

    Octav Olteanu

    2013-07-01

    Full Text Available We recall some of our earlier results on the construction of a mapping defined implicitly, without using the implicit function theorem. All these considerations work in the real case, for functions and operators. Then we consider the complex case, proving the analyticity of the function defined implicitly, under certain hypothesis. Some consequences are given. An approximating formula for the analytic form of the solution is also given. Finally, one illustrates the preceding results by an application to a concrete functional and operatorial equation. Some related examples are given.

  20. Optimal Wentzell Boundary Control of Parabolic Equations

    International Nuclear Information System (INIS)

    Luo, Yousong

    2017-01-01

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  1. Optimal Wentzell Boundary Control of Parabolic Equations

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yousong, E-mail: yousong.luo@rmit.edu.au [RMIT University, School of Mathematical and Geospatial Sciences (Australia)

    2017-04-15

    This paper deals with a class of optimal control problems governed by an initial-boundary value problem of a parabolic equation. The case of semi-linear boundary control is studied where the control is applied to the system via the Wentzell boundary condition. The differentiability of the state variable with respect to the control is established and hence a necessary condition is derived for the optimal solution in the case of both unconstrained and constrained problems. The condition is also sufficient for the unconstrained convex problems. A second order condition is also derived.

  2. Habitat quality mediates personality through differences in social context.

    Science.gov (United States)

    Belgrad, Benjamin A; Griffen, Blaine D

    2017-06-01

    Assessing the stability of animal personalities has become a major goal of behavioral ecologists. Most personality studies have utilized solitary individuals, but little is known on the extent that individuals retain their personality across ecologically relevant group settings. We conducted a field survey which determined that mud crabs, Panopeus herbstii, remain scattered as isolated individuals on degraded oyster reefs while high quality reefs can sustain high crab densities (>10 m -2 ). We examined the impact of these differences in social context on personality by quantifying the boldness of the same individual crabs when in isolation and in natural cohorts. Crabs were also exposed to either a treatment of predator cues or a control of no cue throughout the experiment to assess the strength of this behavioral reaction norm. Crabs were significantly bolder when in groups than as solitary individuals with predator cue treatments exhibiting severally reduced crab activity levels in comparison to corresponding treatments with no predator cues. Behavioral plasticity depended on the individual and was strongest in the presence of predator cues. While bold crabs largely maintained their personality in isolation and group settings, shy crabs would become substantially bolder when among conspecifics. These results imply that the shifts in crab boldness were a response to changes in perceived predation risk, and provide a mechanism for explaining variation in behavioral plasticity. Such findings suggest that habitat degradation may produce subpopulations with different behavioral patterns because of differing social interactions between individual animals.

  3. Combining catchment and instream modelling to assess physical habitat quality

    DEFF Research Database (Denmark)

    Olsen, Martin

    Study objectives After the implementation of EU's Water Framework Directive (WFD) in Denmark ecological impacts from groundwater exploitation on surface waters has to receive additional consideration. Small streams in particular are susceptible to changes in run-off but have only recieved little...... attention in past studies of run-off impact on the quality of stream physical habitats. This study combined catchment and instream models with instream habitat observations to assess the ecological impacts from groundwater exploitation on a small stream. The main objectives of this study was; • to assess...... which factors are controlling the run-off conditions in stream Ledreborg and to what degree • to assess the run-off reference condition of stream Ledreborg where intensive groundwater abstraction has taken place in 67 years using a simple rainfall-run-off-model • to assess how stream run-off affect...

  4. Introduction to partial differential equations

    CERN Document Server

    Borthwick, David

    2016-01-01

    This modern take on partial differential equations does not require knowledge beyond vector calculus and linear algebra. The author focuses on the most important classical partial differential equations, including conservation equations and their characteristics, the wave equation, the heat equation, function spaces, and Fourier series, drawing on tools from analysis only as they arise.Within each section the author creates a narrative that answers the five questions: (1) What is the scientific problem we are trying to understand? (2) How do we model that with PDE? (3) What techniques can we use to analyze the PDE? (4) How do those techniques apply to this equation? (5) What information or insight did we obtain by developing and analyzing the PDE? The text stresses the interplay between modeling and mathematical analysis, providing a thorough source of problems and an inspiration for the development of methods.

  5. On matrix fractional differential equations

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2017-01-01

    Full Text Available The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.

  6. Differential equations methods and applications

    CERN Document Server

    Said-Houari, Belkacem

    2015-01-01

    This book presents a variety of techniques for solving ordinary differential equations analytically and features a wealth of examples. Focusing on the modeling of real-world phenomena, it begins with a basic introduction to differential equations, followed by linear and nonlinear first order equations and a detailed treatment of the second order linear equations. After presenting solution methods for the Laplace transform and power series, it lastly presents systems of equations and offers an introduction to the stability theory. To help readers practice the theory covered, two types of exercises are provided: those that illustrate the general theory, and others designed to expand on the text material. Detailed solutions to all the exercises are included. The book is excellently suited for use as a textbook for an undergraduate class (of all disciplines) in ordinary differential equations. .

  7. Integral equations and their applications

    CERN Document Server

    Rahman, M

    2007-01-01

    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  8. Stochastic partial differential equations

    CERN Document Server

    Lototsky, Sergey V

    2017-01-01

    Taking readers with a basic knowledge of probability and real analysis to the frontiers of a very active research discipline, this textbook provides all the necessary background from functional analysis and the theory of PDEs. It covers the main types of equations (elliptic, hyperbolic and parabolic) and discusses different types of random forcing. The objective is to give the reader the necessary tools to understand the proofs of existing theorems about SPDEs (from other sources) and perhaps even to formulate and prove a few new ones. Most of the material could be covered in about 40 hours of lectures, as long as not too much time is spent on the general discussion of stochastic analysis in infinite dimensions. As the subject of SPDEs is currently making the transition from the research level to that of a graduate or even undergraduate course, the book attempts to present enough exercise material to fill potential exams and homework assignments. Exercises appear throughout and are usually directly connected ...

  9. Gauge-invariant flow equation

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    We propose a closed gauge-invariant functional flow equation for Yang-Mills theories and quantum gravity that only involves one macroscopic gauge field or metric. It is based on a projection on physical and gauge fluctuations. Deriving this equation from a functional integral we employ the freedom in the precise choice of the macroscopic field and the effective average action in order to realize a closed and simple form of the flow equation.

  10. The generalized Airy diffusion equation

    Directory of Open Access Journals (Sweden)

    Frank M. Cholewinski

    2003-08-01

    Full Text Available Solutions of a generalized Airy diffusion equation and an associated nonlinear partial differential equation are obtained. Trigonometric type functions are derived for a third order generalized radial Euler type operator. An associated complex variable theory and generalized Cauchy-Euler equations are obtained. Further, it is shown that the Airy expansions can be mapped onto the Bessel Calculus of Bochner, Cholewinski and Haimo.

  11. Introduction to ordinary differential equations

    CERN Document Server

    Rabenstein, Albert L

    1966-01-01

    Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutio

  12. On matrix fractional differential equations

    OpenAIRE

    Adem Kılıçman; Wasan Ajeel Ahmood

    2017-01-01

    The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objec...

  13. Study of the dynamics of an equation with two large different-order delays

    International Nuclear Information System (INIS)

    Kashchenko, I.S.

    2016-01-01

    The case where the larger delay is proportional to the square of the smaller delay is studied in detail. Regions of stability and instability of the equilibrium state and critical cases are found. In all critical cases, special evolutionary equations (quasinormal forms) are constructed. Their non-local dynamics determines the local behavior of solutions of the original equation [ru

  14. Electronic representation of wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Veigend, Petr; Kunovský, Jiří, E-mail: kunovsky@fit.vutbr.cz; Kocina, Filip; Nečasová, Gabriela; Valenta, Václav [University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno (Czech Republic); Šátek, Václav [IT4Innovations, VŠB Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66 Brno (Czech Republic)

    2016-06-08

    The Taylor series method for solving differential equations represents a non-traditional way of a numerical solution. Even though this method is not much preferred in the literature, experimental calculations done at the Department of Intelligent Systems of the Faculty of Information Technology of TU Brno have verified that the accuracy and stability of the Taylor series method exceeds the currently used algorithms for numerically solving differential equations. This paper deals with solution of Telegraph equation using modelling of a series small pieces of the wire. Corresponding differential equations are solved by the Modern Taylor Series Method.

  15. The forced nonlinear Schroedinger equation

    International Nuclear Information System (INIS)

    Kaup, D.J.; Hansen, P.J.

    1985-01-01

    The nonlinear Schroedinger equation describes the behaviour of a radio frequency wave in the ionosphere near the reflexion point where nonlinear processes are important. A simple model of this phenomenon leads to the forced nonlinear Schroedinger equation in terms of a nonlinear boundary value problem. A WKB analysis of the time evolution equations for the nonlinear Schroedinger equation in the inverse scattering transform formalism gives a crude order of magnitude estimation of the qualitative behaviour of the solutions. This estimation is compared with the numerical solutions. (D.Gy.)

  16. Correct Linearization of Einstein's Equations

    Directory of Open Access Journals (Sweden)

    Rabounski D.

    2006-06-01

    Full Text Available Regularly Einstein's equations can be reduced to a wave form (linearly dependent from the second derivatives of the space metric in the absence of gravitation, the space rotation and Christoffel's symbols. As shown here, the origin of the problem is that one uses the general covariant theory of measurement. Here the wave form of Einstein's equations is obtained in the terms of Zelmanov's chronometric invariants (physically observable projections on the observer's time line and spatial section. The obtained equations depend on solely the second derivatives even if gravitation, the space rotation and Christoffel's symbols. The correct linearization proves: the Einstein equations are completely compatible with weak waves of the metric.

  17. The Dirac equation for accountants

    International Nuclear Information System (INIS)

    Ord, G.N.

    2006-01-01

    In the context of relativistic quantum mechanics, derivations of the Dirac equation usually take the form of plausibility arguments based on experience with the Schroedinger equation. The primary reason for this is that we do not know what wavefunctions physically represent, so derivations have to rely on formal arguments. There is however a context in which the Dirac equation in one dimension is directly related to a classical generating function. In that context, the derivation of the Dirac equation is an exercise in counting. We provide this derivation here and discuss its relationship to quantum mechanics

  18. Stochastic reliability analysis using Fokker Planck equations

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Rami Reddy, G.; Srividya, A.; Verma, A.K.

    2011-01-01

    The Fokker-Planck equation describes the time evolution of the probability density function of the velocity of a particle, and can be generalized to other observables as well. It is also known as the Kolmogorov forward equation (diffusion). Hence, for any process, which evolves with time, the probability density function as a function of time can be represented with Fokker-Planck equation. In stochastic reliability analysis one is more interested in finding out the reliability or failure probability of the components or structures as a function of time rather than instantaneous failure probabilities. In this analysis the variables are represented with random processes instead of random variables. A random processes can be either stationary or non stationary. If the random process is stationary then the failure probability doesn't change with time where as in the case of non stationary processes the failure probability changes with time. In the present paper Fokker Planck equations have been used to find out the probability density function of the non stationary random processes. In this paper a flow chart has been provided which describes step by step process for carrying out stochastic reliability analysis using Fokker-Planck equations. As a first step one has to identify the failure function as a function of random processes. Then one has to solve the Fokker-Planck equation for each random process. In this paper the Fokker-Planck equation has been solved by using Finite difference method. As a result one gets the probability density values of the random process in the sample space as well as time space. Later at each time step appropriate probability distribution has to be identified based on the available probability density values. For checking the better fitness of the data Kolmogorov-Smirnov Goodness of fit test has been performed. In this way one can find out the distribution of the random process at each time step. Once one has the probability distribution

  19. Multi-diffusive nonlinear Fokker–Planck equation

    International Nuclear Information System (INIS)

    Ribeiro, Mauricio S; Casas, Gabriela A; Nobre, Fernando D

    2017-01-01

    Nonlinear Fokker–Planck equations, characterized by more than one diffusion term, have appeared recently in literature. Here, it is shown that these equations may be derived either from approximations in a master equation, or from a Langevin-type approach. An H-theorem is proven, relating these Fokker–Planck equations to an entropy composed by a sum of contributions, each of them associated with a given diffusion term. Moreover, the stationary state of the Fokker–Planck equation is shown to coincide with the equilibrium state, obtained by extremization of the entropy, in the sense that both procedures yield precisely the same equation. Due to the nonlinear character of this equation, the equilibrium probability may be obtained, in most cases, only by means of numerical approaches. Some examples are worked out, where the equilibrium probability distribution is computed for nonlinear Fokker–Planck equations presenting two diffusion terms, corresponding to an entropy characterized by a sum of two contributions. It is shown that the resulting equilibrium distribution, in general, presents a form that differs from a sum of the equilibrium distributions that maximizes each entropic contribution separately, although in some cases one may construct such a linear combination as a good approximation for the equilibrium distribution. (paper)

  20. Difference equations theory, applications and advanced topics

    CERN Document Server

    Mickens, Ronald E

    2015-01-01

    THE DIFFERENCE CALCULUS GENESIS OF DIFFERENCE EQUATIONS DEFINITIONS DERIVATION OF DIFFERENCE EQUATIONS EXISTENCE AND UNIQUENESS THEOREM OPERATORS ∆ AND E ELEMENTARY DIFFERENCE OPERATORS FACTORIAL POLYNOMIALS OPERATOR ∆−1 AND THE SUM CALCULUS FIRST-ORDER DIFFERENCE EQUATIONS INTRODUCTION GENERAL LINEAR EQUATION CONTINUED FRACTIONS A GENERAL FIRST-ORDER EQUATION: GEOMETRICAL METHODS A GENERAL FIRST-ORDER EQUATION: EXPANSION TECHNIQUES LINEAR DIFFERENCE EQUATIONSINTRODUCTION LINEARLY INDEPENDENT FUNCTIONS FUNDAMENTAL THEOREMS FOR HOMOGENEOUS EQUATIONSINHOMOGENEOUS EQUATIONS SECOND-ORDER EQUATIONS STURM-LIOUVILLE DIFFERENCE EQUATIONS LINEAR DIFFERENCE EQUATIONS INTRODUCTION HOMOGENEOUS EQUATIONS CONSTRUCTION OF A DIFFERENCE EQUATION HAVING SPECIFIED SOLUTIONS RELATIONSHIP BETWEEN LINEAR DIFFERENCE AND DIFFERENTIAL EQUATIONS INHOMOGENEOUS EQUATIONS: METHOD OF UNDETERMINED COEFFICIENTS INHOMOGENEOUS EQUATIONS: OPERATOR METHODS z-TRANSFORM METHOD SYSTEMS OF DIFFERENCE EQUATIONS LINEAR PARTIAL DIFFERENCE EQUATI...

  1. Differential equations a dynamical systems approach ordinary differential equations

    CERN Document Server

    Hubbard, John H

    1991-01-01

    This is a corrected third printing of the first part of the text Differential Equations: A Dynamical Systems Approach written by John Hubbard and Beverly West. The authors' main emphasis in this book is on ordinary differential equations. The book is most appropriate for upper level undergraduate and graduate students in the fields of mathematics, engineering, and applied mathematics, as well as the life sciences, physics and economics. Traditional courses on differential equations focus on techniques leading to solutions. Yet most differential equations do not admit solutions which can be written in elementary terms. The authors have taken the view that a differential equations defines functions; the object of the theory is to understand the behavior of these functions. The tools the authors use include qualitative and numerical methods besides the traditional analytic methods. The companion software, MacMath, is designed to bring these notions to life.

  2. Fundamental equations for two-phase flow. Part 1: general conservation equations. Part 2: complement and remarks

    International Nuclear Information System (INIS)

    Delhaye, J.M.

    1968-12-01

    This report deals with the general equations of mass conservation, of momentum conservation, and energy conservation in the case of a two-phase flow. These equations are presented in several forms starting from integral equations which are assumed initially a priori. 1. Equations with local instantaneous variables, and interfacial conditions; 2. Equations with mean instantaneous variables in a cross-section, and practical applications: these equations include an important experimental value which is the ratio of the cross-section of passage of one phase to the total cross-section of a flow-tube. 3. Equations with a local statistical mean, and equations averaged over a period of time: A more advanced attempt to relate theory and experiment consists in taking the statistical averages of local equations. Equations are then obtained involving variables which are averaged over a period of time with the help of an ergodic assumption. 4. Combination of statistical averages and averages over a cross-section: in this study are considered the local variables averaged statistically, then averaged over the cross-section, and also the variables averaged over the section and then averaged statistically. 5. General equations concerning emulsions: In this case a phase exists in a locally very finely divided form. This peculiarity makes it possible to define a volume concentration, and to draw up equations which have numerous applications. - Certain points arising in the first part of this report concerning general mass conservation equations for two-phase flow have been completed and clarified. The terms corresponding to the interfacial tension have been introduced into the general equations. The interfacial conditions have thus been generalized. A supplementary step has still to be carried out: it has, in effect, been impossible to take the interfacial tension into account in the case of emulsions. It was then appeared interesting to compare this large group of fundamental

  3. New Poisson–Boltzmann type equations: one-dimensional solutions

    International Nuclear Information System (INIS)

    Lee, Chiun-Chang; Lee, Hijin; Hyon, YunKyong; Lin, Tai-Chia; Liu, Chun

    2011-01-01

    The Poisson–Boltzmann (PB) equation is conventionally used to model the equilibrium of bulk ionic species in different media and solvents. In this paper we study a new Poisson–Boltzmann type (PB n ) equation with a small dielectric parameter ε 2 and non-local nonlinearity which takes into consideration the preservation of the total amount of each individual ion. This equation can be derived from the original Poisson–Nernst–Planck system. Under Robin-type boundary conditions with various coefficient scales, we demonstrate the asymptotic behaviours of one-dimensional solutions of PB n equations as the parameter ε approaches zero. In particular, we show that in case of electroneutrality, i.e. α = β, solutions of 1D PB n equations have a similar asymptotic behaviour as those of 1D PB equations. However, as α ≠ β (non-electroneutrality), solutions of 1D PB n equations may have blow-up behaviour which cannot be found in 1D PB equations. Such a difference between 1D PB and PB n equations can also be verified by numerical simulations

  4. On a method of construction of exact solutions for equations of two-dimensional hydrodynamics of incompressible liquids

    International Nuclear Information System (INIS)

    Yurov, A.V.; Yurova, A.A.

    2006-01-01

    The simple algebraic method for construction of exact solutions of two-dimensional hydrodynamic equations of incompressible flow is proposed. This method can be applied both to nonviscous flow (Euler equations) and to viscous flow (Navier-Stokes equations). In the case of nonviscous flow, the problem is reduced to sequential solving of three linear partial differential equations. In the case of viscous flow, the Navier-Stokes equations are reduced to three linear partial differential equations and one differential equation of the first order [ru

  5. PREFACE: Symmetries and Integrability of Difference Equations

    Science.gov (United States)

    Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane

    2007-10-01

    The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations (DE), like differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, and quantum field theory. It is thus crucial to develop tools to study and solve DEs. While the theory of symmetry and integrability for differential equations is now largely well-established, this is not yet the case for discrete equations. Although over recent years there has been significant progress in the development of a complete analytic theory of difference equations, further tools are still needed to fully understand, for instance, the symmetries, asymptotics and the singularity structure of difference equations. The series of SIDE meetings on Symmetries and Integrability of Difference Equations started in 1994. Its goal is to provide a platform for an international and interdisciplinary communication for researchers working in areas associated with integrable discrete systems, such as classical and quantum physics, computer science and numerical analysis, mathematical biology and economics, discrete geometry and combinatorics, theory of special functions, etc. The previous SIDE meetings took place in Estérel near Montréal, Canada (1994), at the University of

  6. Analysis of numerical solutions for Bateman equations

    International Nuclear Information System (INIS)

    Loch, Guilherme G.; Bevilacqua, Joyce S.

    2013-01-01

    The implementation of stable and efficient numerical methods for solving problems involving nuclear transmutation and radioactive decay chains is the main scope of this work. The physical processes associated with irradiations of samples in particle accelerators, or the burning spent nuclear fuel in reactors, or simply the natural decay chains, can be represented by a set of first order ordinary differential equations with constant coefficients, for instance, the decay radioactive constants of each nuclide in the chain. Bateman proposed an analytical solution for a particular case of a linear chain with n nuclides decaying in series and with different decay constants. For more complex and realistic applications, the construction of analytical solutions is not viable and the introduction of numerical techniques is imperative. However, depending on the magnitudes of the decay radioactive constants, the matrix of coefficients could be almost singular, generating unstable and non convergent numerical solutions. In this work, different numerical strategies for solving systems of differential equations were implemented, the Runge-Kutta 4-4, Adams Predictor-Corrector (PC2) and the Rosenbrock algorithm, this last one more specific for stiff equations. Consistency, convergence and stability of the numerical solutions are studied and the performance of the methods is analyzed for the case of the natural decay chain of Uranium-235 comparing numerical with analytical solutions. (author)

  7. A fast marching algorithm for the factored eikonal equation

    Energy Technology Data Exchange (ETDEWEB)

    Treister, Eran, E-mail: erantreister@gmail.com [Department of Earth and Ocean Sciences, The University of British Columbia, Vancouver, BC (Canada); Haber, Eldad, E-mail: haber@math.ubc.ca [Department of Earth and Ocean Sciences, The University of British Columbia, Vancouver, BC (Canada); Department of Mathematics, The University of British Columbia, Vancouver, BC (Canada)

    2016-11-01

    The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at the source. In this case, the factored eikonal equation is often preferred, and is known to yield a more accurate numerical solution. One application that requires the solution of the eikonal equation for point sources is travel time tomography. This inverse problem may be formulated using the eikonal equation as a forward problem. While this problem has been solved using FS in the past, the more recent choice for applying it involves FM methods because of the efficiency in which sensitivities can be obtained using them. However, while several FS methods are available for solving the factored equation, the FM method is available only for the original eikonal equation. In this paper we develop a Fast Marching algorithm for the factored eikonal equation, using both first and second order finite-difference schemes. Our algorithm follows the same lines as the original FM algorithm and requires the same computational effort. In addition, we show how to obtain sensitivities using this FM method and apply travel time tomography, formulated as an inverse factored eikonal equation. Numerical results in two and three dimensions show that our algorithm solves the factored eikonal equation efficiently, and demonstrate the achieved accuracy for computing the travel time. We also demonstrate a recovery of a 2D and 3D heterogeneous medium by travel time tomography using the eikonal equation for forward modeling and inversion by Gauss–Newton.

  8. Solutions to Arithmetic Convolution Equations

    Czech Academy of Sciences Publication Activity Database

    Glöckner, H.; Lucht, L.G.; Porubský, Štefan

    2007-01-01

    Roč. 135, č. 6 (2007), s. 1619-1629 ISSN 0002-9939 R&D Projects: GA ČR GA201/04/0381 Institutional research plan: CEZ:AV0Z10300504 Keywords : arithmetic functions * Dirichlet convolution * polynomial equations * analytic equations * topological algebras * holomorphic functional calculus Subject RIV: BA - General Mathematics Impact factor: 0.520, year: 2007

  9. On Degenerate Partial Differential Equations

    OpenAIRE

    Chen, Gui-Qiang G.

    2010-01-01

    Some of recent developments, including recent results, ideas, techniques, and approaches, in the study of degenerate partial differential equations are surveyed and analyzed. Several examples of nonlinear degenerate, even mixed, partial differential equations, are presented, which arise naturally in some longstanding, fundamental problems in fluid mechanics and differential geometry. The solution to these fundamental problems greatly requires a deep understanding of nonlinear degenerate parti...

  10. Differential equations a concise course

    CERN Document Server

    Bear, H S

    2011-01-01

    Concise introduction for undergraduates includes, among other topics, a survey of first order equations, discussions of complex-valued solutions, linear differential operators, inverse operators and variation of parameters method, the Laplace transform, Picard's existence theorem, and an exploration of various interpretations of systems of equations. Numerous clearly stated theorems and proofs, examples, and problems followed by solutions.

  11. Saturation and linear transport equation

    International Nuclear Information System (INIS)

    Kutak, K.

    2009-03-01

    We show that the GBW saturation model provides an exact solution to the one dimensional linear transport equation. We also show that it is motivated by the BK equation considered in the saturated regime when the diffusion and the splitting term in the diffusive approximation are balanced by the nonlinear term. (orig.)

  12. Lie symmetries in differential equations

    International Nuclear Information System (INIS)

    Pleitez, V.

    1979-01-01

    A study of ordinary and Partial Differential equations using the symmetries of Lie groups is made. Following such a study, an application to the Helmholtz, Line-Gordon, Korleweg-de Vries, Burguer, Benjamin-Bona-Mahony and wave equations is carried out [pt

  13. Introduction to nonlinear dispersive equations

    CERN Document Server

    Linares, Felipe

    2015-01-01

    This textbook introduces the well-posedness theory for initial-value problems of nonlinear, dispersive partial differential equations, with special focus on two key models, the Korteweg–de Vries equation and the nonlinear Schrödinger equation. A concise and self-contained treatment of background material (the Fourier transform, interpolation theory, Sobolev spaces, and the linear Schrödinger equation) prepares the reader to understand the main topics covered: the initial-value problem for the nonlinear Schrödinger equation and the generalized Korteweg–de Vries equation, properties of their solutions, and a survey of general classes of nonlinear dispersive equations of physical and mathematical significance. Each chapter ends with an expert account of recent developments and open problems, as well as exercises. The final chapter gives a detailed exposition of local well-posedness for the nonlinear Schrödinger equation, taking the reader to the forefront of recent research. The second edition of Introdu...

  14. Students' Understanding of Quadratic Equations

    Science.gov (United States)

    López, Jonathan; Robles, Izraim; Martínez-Planell, Rafael

    2016-01-01

    Action-Process-Object-Schema theory (APOS) was applied to study student understanding of quadratic equations in one variable. This required proposing a detailed conjecture (called a genetic decomposition) of mental constructions students may do to understand quadratic equations. The genetic decomposition which was proposed can contribute to help…

  15. Solving equations by topological methods

    Directory of Open Access Journals (Sweden)

    Lech Górniewicz

    2005-01-01

    Full Text Available In this paper we survey most important results from topological fixed point theory which can be directly applied to differential equations. Some new formulations are presented. We believe that our article will be useful for analysts applying topological fixed point theory in nonlinear analysis and in differential equations.

  16. Generalized Fermat equations: A miscellany

    NARCIS (Netherlands)

    Bennett, M.A.; Chen, I.; Dahmen, S.R.; Yazdani, S.

    2015-01-01

    This paper is devoted to the generalized Fermat equation xp + yq = zr, where p, q and r are integers, and x, y and z are nonzero coprime integers. We begin by surveying the exponent triples (p, q, r), including a number of infinite families, for which the equation has been solved to date, detailing

  17. Equation with the many fathers

    DEFF Research Database (Denmark)

    Kragh, Helge

    1984-01-01

    In this essay I discuss the origin and early development of the first relativistic wave equation, known as the Klein-Gordon equation. In 1926 several physicists, among them Klein, Fock, Schrödinger, and de Broglie, announced this equation as a candidate for a relativistic generalization of the us...... as electrodynamics. Although this ambitious attempt attracted some interest in 1926, its impact on the mainstream of development in quantum mechanics was virtually nil....... of the usual Schrödinger equation. In most of the early versions the Klein-Gordon equation was connected with the general theory of relativity. Klein and some other physicists attempted to express quantum mechanics within a five-dimensional unified theory, embracing general relativity as well...

  18. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  19. Generalized Solutions of the Dirac Equation, W Bosons, and Beta Decay

    International Nuclear Information System (INIS)

    Okniński, Andrzej

    2016-01-01

    We study the 7×7 Hagen-Hurley equations describing spin 1 particles. We split these equations, in the interacting case, into two Dirac equations with nonstandard solutions. It is argued that these solutions describe decay of a virtual W boson in beta decay.

  20. On the equivalence between particular types of Navier-Stokes and non-linear Schroedinger equations

    International Nuclear Information System (INIS)

    Dietrich, K.; Vautherin, D.

    1985-01-01

    We derive a Schroedinger equation equivalent to the Navier-Stokes equation in the special case of constant kinematic viscosities. This equation contains a non-linear term similar to that proposed by Kostin for a quantum description of friction [fr