WorldWideScience

Sample records for habitat health monitoring

  1. Sound solutions for habitat monitoring

    Science.gov (United States)

    Mary M. Rowland; Lowell H. Suring; Christina D. Vojta

    2015-01-01

    For agencies and organizations to effectively manage wildlife, knowledge about the status and trend of wildlife habitat is critical. Traditional wildlife monitoring, however, has focused on populations rather than habitat, because ultimately population status drives long-term species viability. Still, habitat loss has contributed to the decline of nearly all at-risk...

  2. An approach to effectiveness monitoring of floodplain channel aquatic habitat: channel condition assessment.

    Science.gov (United States)

    Richard D. Woodsmith; James R. Noel; Michael L. Dilger

    2005-01-01

    The condition of aquatic habitat and the health of species dependent on that habitat are issues of significant concern to land management agencies, other organizations, and the public at large in southeastern Alaska, as well as along much of the Pacific coastal region of North America. We develop and test a set of effectiveness monitoring procedures for measuring...

  3. A technical guide for monitoring wildlife habitat

    Science.gov (United States)

    M.M. Rowland; C.D. Vojta

    2013-01-01

    Information about status and trend of wildlife habitat is important for the U.S. Department of Agriculture, Forest Service to accomplish its mission and meet its legal requirements. As the steward of 193 million acres (ac) of Federal land, the Forest Service needs to evaluate the status of wildlife habitat and how it compares with desired conditions. Habitat monitoring...

  4. Strategies for monitoring terrestrial animals and habitats

    Science.gov (United States)

    Richard Holthausen; Raymond L. Czaplewski; Don DeLorenzo; Greg Hayward; Winifred B. Kessler; Pat Manley; Kevin S. McKelvey; Douglas S. Powell; Leonard F. Ruggiero; Michael K. Schwartz; Bea Van Horne; Christina D. Vojta

    2005-01-01

    This General Technical Report (GTR) addresses monitoring strategies for terrestrial animals and habitats. It focuses on monitoring associated with National Forest Management Act planning and is intended to apply primarily to monitoring efforts that are broader than individual National Forests. Primary topics covered in the GTR are monitoring requirements; ongoing...

  5. The Earth Observation Data for Habitat Monitoring (EODHaM) system

    Science.gov (United States)

    Lucas, Richard; Blonda, Palma; Bunting, Peter; Jones, Gwawr; Inglada, Jordi; Arias, Marcela; Kosmidou, Vasiliki; Petrou, Zisis I.; Manakos, Ioannis; Adamo, Maria; Charnock, Rebecca; Tarantino, Cristina; Mücher, Caspar A.; Jongman, Rob H. G.; Kramer, Henk; Arvor, Damien; Honrado, Joāo Pradinho; Mairota, Paola

    2015-05-01

    To support decisions relating to the use and conservation of protected areas and surrounds, the EU-funded BIOdiversity multi-SOurce monitoring System: from Space TO Species (BIO_SOS) project has developed the Earth Observation Data for HAbitat Monitoring (EODHaM) system for consistent mapping and monitoring of biodiversity. The EODHaM approach has adopted the Food and Agriculture Organization Land Cover Classification System (LCCS) taxonomy and translates mapped classes to General Habitat Categories (GHCs) from which Annex I habitats (EU Habitats Directive) can be defined. The EODHaM system uses a combination of pixel and object-based procedures. The 1st and 2nd stages use earth observation (EO) data alone with expert knowledge to generate classes according to the LCCS taxonomy (Levels 1 to 3 and beyond). The 3rd stage translates the final LCCS classes into GHCs from which Annex I habitat type maps are derived. An additional module quantifies changes in the LCCS classes and their components, indices derived from earth observation, object sizes and dimensions and the translated habitat maps (i.e., GHCs or Annex I). Examples are provided of the application of EODHaM system elements to protected sites and their surrounds in Italy, Wales (UK), the Netherlands, Greece, Portugal and India.

  6. Lower Columbia River and Estuary Habitat Monitoring Study, 2011 - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Borde, Amy B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaufmann, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cullinan, Valerie I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zimmerman, Shon A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thom, Ronald M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wright, Cynthia L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-03-01

    The Ecosystem Monitoring Program is a collaborative effort between the Lower Columbia River Estuary Partnership (LCREP), University of Washington, Wetland Ecosystem Team (UW), US Geological Survey, Water Science Center (USGS), National Oceanic and Atmospheric Administration, National Marine Fisheries Service (NOAA-Fisheries, hereafter NOAA), and Pacific Northwest National Laboratory, Marine Sciences Laboratory (PNNL). The goal of the program is to conduct emergent wetland monitoring aimed at characterizing salmonid habitats in the lower Columbia River and estuary (LCRE) from the mouth of the estuary to Bonneville Dam (Figure 1). This is an ecosystem based monitoring program focused on evaluating status and trends in habitat and reducing uncertainties regarding these ecosystems to ultimately improve the survival of juvenile salmonids through the LCRE. This project comprehensively assesses habitat, fish, food web, and abiotic conditions in the lower river, focusing on shallow water and vegetated habitats used by juvenile salmonids for feeding, rearing and refugia. The information is intended to be used to guide management actions associated with species recovery, particularly that of threatened and endangered salmonids. PNNL’s role in this multi-year study is to monitor the habitat structure (e.g., vegetation, topography, channel morphology, and sediment type) as well as hydrologic patterns.

  7. CHaMP metrics - Columbia Habitat Monitoring Program

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goal of CHaMP is to generate and implement a standard set of fish habitat monitoring (status and trend) methods in up to 26 watersheds across the Columbia River...

  8. Monitoring and mapping selected riparian habitat along the lower Snake River

    Energy Technology Data Exchange (ETDEWEB)

    Downs, J. L; Tiller, B. L [Pacific Northwest Lab., Richland, WA (United States); Witter, M. [Shannon and Wilson, Inc., Seattle, WA (United States). Geotechnical and Environmental Consultants, Seattle, Washington (United States); Mazaika, R. [Corps of Engineers, Portland, OR (United States)

    1996-01-01

    Studies in this document were initiated to establish baseline information on riparian and wetland habitat conditions at the areas studied under the current reservoir operations on the lower Snake River. Two approaches were used to assess habitat at 28 study sites selected on the four pools on the lower Snake River. These areas all contribute significant riparian habitat along the river, and several of these areas are designated habitat management units. At 14 of the 28 sites, we monitored riparian habitat on three dates during the growing season to quantify vegetation abundance and composition along three transects: soil nutrients, moisture, and pH and water level and pH. A second approach involved identifying any differences in the extent and amount of riparian/wetland habitat currently found at the study areas from that previously documented. We used both ground and boat surveys to map and classify the changes in vegetative cover along the shoreline at the 14 monitoring sites and at 14 additional sites along the lower Snake selected to represent various riparian/wetland habitat conditions. Results of these mapping efforts are compared with maps of cover types previously generated using aerial photography taken in 1987.

  9. Long-term vegetation monitoring for different habitats in floodplains

    Directory of Open Access Journals (Sweden)

    LANG Petra

    2014-03-01

    Full Text Available A floodplain-restoration project along the Danube between Neuburg and Ingolstadt (Germany aims to bring back water and sediment dynamic to the floodplain. The accompanied long-term monitoring has to document the changes in biodiversity related to this new dynamics. Considerations on and results of the vegetation monitoring concept are documented in this paper. In a habitat rich ecosystem like a floodplain different habitats (alluvial forest, semi-aquatic/aquatic sites have different demands on the sampling methods. Therefore, different monitoring designs (preferential, random, systematic, stratified random and transect sampling are discussed and tested for their use in different habitat types of the floodplain. A stratified random sampling is chosen for the alluvial forest stands, as it guarantees an equal distribution of the monitoring plots along the main driving factors, i.e. influence of water. The parameters distance to barrage, ecological flooding, height above thalweg and distance to the new floodplain river are used for stratifying and the plots are placed randomly into these strata, resulting in 117 permanent plots. Due to small changes at the semi-aquatic/aquatic sites a transect sampling was chosen. Further, a rough stratification (channel bed, river bank adjacent floodplain was implemented, which was only possible after the start of the restoration project. To capture the small-scale changes due to the restoration measures on the vegetation, 99 additional plots completed the transect sampling. We conclude that hetereogenous study areas need different monitoring approaches, but, later on, a joint analysis must be possible.

  10. Integrated Systems Health Management for Sustainable Habitats (Using Sustainability Base as a Testbed)

    Science.gov (United States)

    Martin, Rodney A.

    2017-01-01

    Habitation systems provide a safe place for astronauts to live and work in space and on planetary surfaces. They enable crews to live and work safely in deep space, and include integrated life support systems, radiation protection, fire safety, and systems to reduce logistics and the need for resupply missions. Innovative health management technologies are needed in order to increase the safety and mission-effectiveness for future space habitats on other planets, asteroids, or lunar surfaces. For example, off-nominal or failure conditions occurring in safety-critical life support systems may need to be addressed quickly by the habitat crew without extensive technical support from Earth due to communication delays. If the crew in the habitat must manage, plan and operate much of the mission themselves, operations support must be migrated from Earth to the habitat. Enabling monitoring, tracking, and management capabilities on-board the habitat and related EVA platforms for a small crew to use will require significant automation and decision support software.Traditional caution and warning systems are typically triggered by out-of-bounds sensor values, but can be enhanced by including machine learning and data mining techniques. These methods aim to reveal latent, unknown conditions while still retaining and improving the ability to provide highly accurate alerts for known issues. A few of these techniques will briefly described, along with performance targets for known faults and failures. Specific system health management capabilities required for habitat system elements (environmental control and life support systems, etc.) may include relevant subsystems such as water recycling systems, photovoltaic systems, electrical power systems, and environmental monitoring systems. Sustainability Base, the agency's flagship LEED-platinum certified green building acts as a living laboratory for testing advanced information and sustainable technologies that provides an

  11. Asotin Creek instream habitat alteration projects : habitat evaluation, adult and juvenile habitat utilization and water temperature monitoring : 2001 progress report

    International Nuclear Information System (INIS)

    Bumgarner, Joseph D.

    2002-01-01

    projects to improve fish habitat. In 1998, the ACCD identified the need for a more detailed analysis of these instream projects to fully evaluate their effectiveness at improving fish habitat. Therefore, ACCD contracted with WDFW's Snake River Lab (SRL) to take pre- and post-construction measurements of the habitat (i.e., pools, LOD, width, depth) at each site, and to evaluate fish use within some of the altered sites. These results have been published annually as progress reports to the ACCD (Bumgarner et al. 1999, Wargo et al. 2000, and Bumgarner and Schuck 2001). The ACCD also contracted with the WDFW SRL to conduct other evaluation and monitoring in the stream such as: (1) conduct snorkel surveys at habitat alteration sites to document fish usage following construction, (2) deploy temperature monitors throughout the basin to document summer water temperatures, and (3) attempt to document adult fish utilization by documenting the number of steelhead redds associated with habitat altered areas. This report provides a summary of pre-construction measurements taken on three proposed Charley Creek habitat sites during 2001, two sites in main Asotin Creek, and one site in George Creek, a tributary that enters in the lower Asotin Creek basin. Further, it provides a comparison of measurements taken pre- and post-construction on three 1999 habitat sites taken two years later, but at similar river flows. It also presents data collected from snorkel surveys, redd counts, and temperature monitoring

  12. Evaluation and prioritization of stream habitat monitoring in the Lower Columbia Salmon and Steelhead Recovery Domain as related to the habitat monitoring needs of ESA recovery plans

    Science.gov (United States)

    Puls, Amy L.; Anlauf Dunn, Kara; Graham Hudson, Bernadette

    2014-01-01

    The lower Columbia River and its tributaries once supported abundant runs of salmon and steelhead; however, there are five species currently listed under the federal Endangered Species Act (ESA). The National Marine Fisheries Service has completed, and is proposing for adoption, a comprehensive ESA Recovery Plan for the Lower Columbia Evolutionarily Significant Units (ESUs) based on the recovery plans developed by Oregon and Washington. One of the primary factors attributed to the decline of these species is habitat degradation. There are numerous entities conducting status and/or trends monitoring of instream habitat in the lower Columbia River Basin, but because the programs were developed for agency specific reasons, the existing monitoring efforts are not well coordinated, and often lack the spatial coverage, certainty, or species coverage necessary to answer questions related to status and trends of the ESA listed populations. The Pacific Northwest Aquatic Monitoring Partnership’s Integrated Status and Trends Monitoring (ISTM) project was initiated to improve integration of existing and new monitoring efforts by developing recommendations for sampling frames, protocols, and data sharing. In an effort to meet the ISTM project goals, five objectives were identified: (1) identify and prioritize decisions, questions, and monitoring objectives, (2) evaluate how existing programs align with these management decisions, questions, and objectives, (3) identify the most appropriate monitoring design to inform priority management decisions, questions, and objectives, (4) use trade-off analysis to develop specific recommendations for monitoring based on outcomes of Objectives 1-3 and (5) recommend implementation and reporting mechanisms. This report summarizes the effort to address Objectives 1 and 2, detailing the commonalities among the habitat characteristics that all entities measure and monitor, and how the metrics align with the priorities listed in the

  13. Restoration of Dune Habitats in Østerild Klitplantage - Baseline Monitoring 2011

    DEFF Research Database (Denmark)

    Nygaard, Bettina; Wind, Peter; Ejrnæs, Rasmus

    will lead to clear-felling of up to 266 ha coniferous dune plantations. The agreement parties decided that the vegetation development from coniferous forest to open dune habitats should be monitored. The monitoring programme includes a recording of soil conditions and plant species composition pr...

  14. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    Science.gov (United States)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  15. Missouri River Emergent Sandbar Habitat Monitoring Plan - A Conceptual Framework for Adaptive Management

    Science.gov (United States)

    Sherfy, Mark H.; Stucker, Jennifer H.; Anteau, Michael J.

    2009-01-01

    Habitat conditions are one of the most important factors determining distribution and productivity of least terns (Sternula antillarum) and piping plovers (Charadrius melodus) in the upper Missouri River system (Ziewitz and others, 1992; Kruse and others, 2002). Habitat conditions are known to change within and among seasons in response to variation in river flows, weather conditions, and management actions targeted at providing for the needs of terns and plovers. Although these principles are generally agreed upon, there is little empirical information available on the quantity and quality of tern and plover habitats in this system, particularly with reference to the major life history events that must be supported (egg laying, incubation, and brood rearing). Habitat requirements for these events are composed of two major categories: nesting and foraging habitat. In the case of piping plovers, these two requirements must occur on the same area because plover chicks are constrained to foraging near nesting sites prior to fledging (Knetter and others, 2002; Haffner, 2005). In contrast, least terns chicks are fed by the adults, allowing food procurement for broods to occur outside the immediate nesting area; however, food resources must be close enough to nesting locations to minimize foraging time. The complexity and dynamics of the upper Missouri River system introduce considerable uncertainty into how best to manage tern and plover habitats, and how best to evaluate the effectiveness of this management. An extensive program of habitat monitoring will be needed to address this complexity and support the management of least terns and piping plovers under the Missouri River Recovery Program. These needs are being addressed, in part, through a program of habitat creation and management targeted at improving quality and quantity of habitats for terns and plovers. Given the momentum of these projects and their associated costs, it is imperative that the capacity be

  16. Investigating Long-Term Monitoring Protocols in support of Quivira NWR Habitat Objectives

    Data.gov (United States)

    Department of the Interior — The project purpose is to investigate long-term monitoring protocols in support of Quivira NWR habitat objectives as described in the Refuge’s recently approved CCP...

  17. Monitoring Natura 2000 habitats: habitat 92A0 in central Italy as an example

    Directory of Open Access Journals (Sweden)

    Emanuela Carli

    2016-10-01

    Full Text Available The evaluation and the subsequent monitoring of the conservation status of habitats is one of the key steps in nature protection. While some European countries have tested suitable methodologies, others, including Italy, lack procedures tested at the national level. The aim of this work is to propose a method to assess the conservation status of habitat 92A0 (Salix alba and Populus alba galleries in central Italy, and to test the method using data from the Molise region. We selected parameters that highlight the conservation status of the flora and vegetation in order to assess habitat structures and functions at the site level. After selecting the parameters, we tested them on a training dataset of 22 unpublished phytosociological relevés taken from the whole dataset, which consists of 119 relevés (49 unpublished relevés for the study area, and 70 published relevés for central Italy. We detected the most serious conservation problems in the middle and lower course of the Biferno river: the past use of river terraces for agriculture and continual human interventions on the river water flow have drastically reduced the riparian forests of Molise. Our results show that in areas in which forest structure and floristic composition have been substantially modified, certain alien plant species, particularly Robinia pseudoacacia, Amorpha fruticosa and Erigeron canadensis, have spread extensively along rivers. In the management of riparian forests, actions aimed at maintaining the stratification of the forest, its uneven-agedness and tree species richness may help to ensure the conservation status, as well as favour the restoration, of habitat 92A0.

  18. Wigwam River juvenile bull trout and fish habitat monitoring program : 2001 data report

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.; Bisset, J.E.

    2002-01-01

    The Wigwam River juvenile bull trout and fish habitat monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. The Wigwam River has been characterized as the single most important bull trout spawning stream in the Kootenay Region. This report provides a summary of results obtained during the second year (2001) of the juvenile bull trout enumeration and fish habitat assessment program. This project was commissioned in planning for fish habitat protection and forest development within the upper Wigwam River valley. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes in the upper Wigwam River, especially as they relate to spawning and rearing habitat quality. Five permanent sampling sites were established August 2000 in the Wigwam river drainage (one site on Bighorn Creek and four sites on the mainstem Wigwam River). At each site, juvenile (0(sup+), 1(sup+) and 2(sup+) age classes) fish densities and stream habitat conditions were measured over two stream meander wavelengths. Bull trout represented 95.1% of the catch and the mean density of juvenile bull trout was estimated to be 20.7 fish/100m(sup 2) (range 0.9 to 24.0 fish/100m(sup 2)). This compares to 17.2 fish/100m(sup 2) (+20%) for the previous year. Fry (0(sup+)) dominated the catch and this was a direct result of juvenile bull trout ecology and habitat partitioning among life history stages. Site selection was biased towards sample sites which favored high bull trout fry capture success. Comparison of fry density estimates replicated across both the preliminary survey (1997) and the current study (Cope and Morris 2001) illustrate the stable nature of these high densities. Bull trout populations have been shown to be extremely susceptible to habitat degradation and over-harvest and are ecologically

  19. Idaho Habitat/Natural Production Monitoring, Pt. I: General Monitoring Subproject : Annual Progress Report 1990.

    Energy Technology Data Exchange (ETDEWEB)

    Rich, Bruce A.; Scully, Richard J.; Petrosky, Charles Edward

    1992-01-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring and evaluating proposed and existing habitat improvement projects for rainbow-steelhead trout Oncorhynchus mykiss, hereafter called steelhead, and chinook salmon O. tshawytscha, hereafter called chinook, in the Clearwater and Salmon River drainages for the past seven years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. This evaluation project is also funded under the same authority (Fish and Wildlife Program, Northwest Power Planning Council). A mitigation record is being developed using increased carrying capacity and/or survival as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on completion or maturation of the project and presence of adequate numbers of fish to document actual increases in fish production. The depressed status of upriver anadromous stocks has precluded measuring full benefits of any habitat project in Idaho. Partial benefit is credited to the mitigation record in the interim period of run restoration.

  20. Mosquito larval habitats and public health implications in Abeokuta ...

    African Journals Online (AJOL)

    The larval habitats of mosquitoes were investigated in Abeokuta, Nigeria in order to determine the breeding sites of the existing mosquito fauna and its possible public health implications on the residents of the City. The habitats were sampled between August 2005 and July 2006 using plastic dippers and a pipette.

  1. Information to support to monitoring and habitat restoration on Ash Meadows National Wildlife Refuge

    Science.gov (United States)

    Scoppettone, G. Gary

    2013-01-01

    for monitoring native fish populations in relation to restoration efforts on the Ash Meadows National Wildlife Refuge. There are no precise records on conditions of each of the spring systems prior to anthropogenic alteration; however, fostering conditions that favor native over non-natives will be key to habitat restoration. Information regarding native species carbon source is needed to create habitat that favors native species, thus habitat restoration fostering food stuff consumed by native species should be considered in restoration efforts. In compiling data for the first part of this report, we tracked carbon source for native and non-native species at four stations along the Jackrabbit Spring system. Thus, we were able to contrast carbon source in warm- and cool-water habitats. Habitat in Jackrabbit Spring was improved for native fishes in 2007. The second paper in this report focuses on native fish populations in Jackrabbit Spring system pre- and post-restoration. Much of the Ash Meadows Oases is marsh habitat where non-native red swamp crayfish and western mosquitofish are often abundant, to the detriment of non-natives. Because marsh habitat is broadly represented in the Ash Meadows landscape, establishing marsh habitat most conducive to the native fishes is important to the restoration effort, and the third paper addresses marsh habitat type with the relative abundance of fishes and crayfish. There are previous years of monitoring Ash Meadows’ native fish populations, but not all monitoring occurred at the same time of year. Desert-fish populations sometimes undergo seasonal fluctuation, so it might not be valid to compare population trends using difference seasons. For report four, we tracked a closed population of Amargosa pupfish (Cyprinodon nevadensis) year round to track seasonal trends. Knowledge of seasonal trends is important in tracking changes of populations pre- and post-restoration.

  2. An evaluation of rapid methods for monitoring vegetation characteristics of wetland bird habitat

    Science.gov (United States)

    Tavernia, Brian G.; Lyons, James E.; Loges, Brian W.; Wilson, Andrew; Collazo, Jaime A.; Runge, Michael C.

    2016-01-01

    Wetland managers benefit from monitoring data of sufficient precision and accuracy to assess wildlife habitat conditions and to evaluate and learn from past management decisions. For large-scale monitoring programs focused on waterbirds (waterfowl, wading birds, secretive marsh birds, and shorebirds), precision and accuracy of habitat measurements must be balanced with fiscal and logistic constraints. We evaluated a set of protocols for rapid, visual estimates of key waterbird habitat characteristics made from the wetland perimeter against estimates from (1) plots sampled within wetlands, and (2) cover maps made from aerial photographs. Estimated percent cover of annuals and perennials using a perimeter-based protocol fell within 10 percent of plot-based estimates, and percent cover estimates for seven vegetation height classes were within 20 % of plot-based estimates. Perimeter-based estimates of total emergent vegetation cover did not differ significantly from cover map estimates. Post-hoc analyses revealed evidence for observer effects in estimates of annual and perennial covers and vegetation height. Median time required to complete perimeter-based methods was less than 7 percent of the time needed for intensive plot-based methods. Our results show that rapid, perimeter-based assessments, which increase sample size and efficiency, provide vegetation estimates comparable to more intensive methods.

  3. Protocols for Monitoring Habitat Restoration Projects in the Lower Columbia River and Estuary

    Energy Technology Data Exchange (ETDEWEB)

    Roegner, G. Curtis; Diefenderfer, Heida L.; Borde, Amy B.; Thom, Ronald M.; Dawley, Earl M.; Whiting, Allan H.; Zimmerman, Shon A.; Johnson, Gary E.

    2008-04-25

    Protocols for monitoring salmon habitat restoration projects are essential for the U.S. Army Corps of Engineers' environmental efforts in the Columbia River estuary. This manual provides state-of-the science data collection and analysis methods for landscape features, water quality, and fish species composition, among others.

  4. Monitoring of vegetation response to elk population and habitat management in Rocky Mountain National Park, 2008–14

    Science.gov (United States)

    Zeigenfuss, Linda C.; Johnson, Therese L.

    2015-12-17

    Since 2008, Rocky Mountain National Park in Colorado has been implementing an elk and vegetation management plan with the goal of managing elk populations and their habitats to improve the condition of key vegetation communities on elk winter range. Management actions that have been taken thus far include small reductions in the elk herd through culling of animals and temporary fencing of large areas of willow and aspen habitat to protect them from elk browsing. As part of the park’s elk and vegetation management plan (EVMP), a monitoring program was established to assess effectiveness of management actions in achieving vegetation goals. We collected data to monitor offtake (consumption) of upland herbaceous plants and willow annually from 2008 to 2014 and to assess aspen stand structure and regeneration and willow cover and height in 2013, 5 years after plan implementation. Loss of many willow and a few aspen monitoring sites to a fire in late 2012 complicated data collection and interpretation of results but will provide opportunities to observe habitat recovery following fire and in the presence and absence of elk herbivory, which will offer important insights into the use of prescribed fire as an additional management tool in these habitats.

  5. Design of forest bird monitoring for strategic habitat conservation on Kaua'i Island, Hawai'i

    Science.gov (United States)

    Camp, Richard J.; Gorresen, P. Marcos

    2011-01-01

    This report was commissioned by the U.S. Fish and Wildlife Service (USFWS). The purpose was to develop a monitoring program for Kaua`i forest birds in the USFWS Strategic Habitat Conservation and adaptive management frameworks. Monitoring within those frameworks is a tool to assess resource responses to management and conservation actions, and through an iterative learning process improve our understanding of species recovery, effective management, and knowledge gaps. This report provides only the monitoring component of both frameworks, and we apply the monitoring program to the East Alaka`i Protective Fence Project.

  6. GLOBE Observer Mosquito Habitat Mapper: Geoscience and Public Health Connections

    Science.gov (United States)

    Low, R.; Boger, R. A.

    2017-12-01

    The global health crisis posed by vector-borne diseases is so great in scope that it is clearly insurmountable without the active help of tens-or hundreds- of thousands of individuals, working to identify and eradicate risk in communities around the world. Mobile devices equipped with data collection capabilities and visualization opportunities are lowering the barrier for participation in data collection efforts. The GLOBE Observer Mosquito Habitat Mapper (MHM) provides citizen scientists with an easy to use mobile platform to identify and locate mosquito breeding sites in their community. The app also supports the identification of vector taxa in the larvae development phase via a built-in key, which provides important information for scientists and public health officials tracking the rate of range expansion of invasive vector species and associated health threats. GO Mosquito is actively working with other citizen scientist programs across the world to ensure interoperability of data through standardization of metadata fields specific to vector monitoring, and through the development of APIs that allow for data exchange and shared data display through a UN-sponsored proof of concept project, Global Mosquito Alert. Avenues of application for mosquito vector data-both directly, by public health entities, and by modelers who employ remotely sensed environmental data to project mosquito population dynamics and epidemic disease will be featured.

  7. Marine habitat mapping of the Milford Haven Waterway, Wales, UK: Comparison of facies mapping and EUNIS classification for monitoring sediment habitats in an industrialized estuary

    Science.gov (United States)

    Carey, Drew A.; Hayn, Melanie; Germano, Joseph D.; Little, David I.; Bullimore, Blaise

    2015-06-01

    A detailed map and dataset of sedimentary habitats of the Milford Haven Waterway (MHW) was compiled for the Milford Haven Waterway Environmental Surveillance Group (MHWESG) from seafloor images collected in May, 2012 using sediment-profile and plan-view imaging (SPI/PV) survey techniques. This is the most comprehensive synoptic assessment of sediment distribution and benthic habitat composition available for the MHW, with 559 stations covering over 40 km2 of subtidal habitats. In the context of the MHW, an interpretative framework was developed that classified each station within a 'facies' that included information on the location within the waterway and inferred sedimentary and biological processes. The facies approach provides critical information on landscape-scale habitats including relative location and inferred sediment transport processes and can be used to direct future monitoring activities within the MHW and to predict areas of greatest potential risk from contaminant transport. Intertidal sediment 'facies' maps have been compiled in the past for MHW; this approach was expanded to map the subtidal portions of the waterway. Because sediment facies can be projected over larger areas than individual samples (due to assumptions based on physiography, or landforms) they represent an observational model of the distribution of sediments in an estuary. This model can be tested over time and space through comparison with additional past or future sample results. This approach provides a means to evaluate stability or change in the physical and biological conditions of the estuarine system. Initial comparison with past results for intertidal facies mapping and grain size analysis from grab samples showed remarkable stability over time for the MHW. The results of the SPI/PV mapping effort were cross-walked to the European Nature Information System (EUNIS) classification to provide a comparison of locally derived habitat mapping with European-standard habitat

  8. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.; Downs, Janelle L.

    2008-11-06

    Emergent sandbar habitat (ESH) in the Missouri River Mainstem System is a critical habitat element for several federally listed bird species: the endangered interior least tern (Sterna antillarum) and the threatened Northern Great Plains piping plover (Charadrius melodus). The Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River and is responsible under the Endangered Species Act (ESA) to take actions within its authorities to conserve listed species. To comply with the 2000 USFWS BiOp and the 2003 amended USFWS BiOp, the Corps has created habitats below Gavins Point Dam using mechanical means. Initial monitoring indicates that constructed sandbars provide suitable habitat features for nesting and foraging least terns and piping plovers. Terns and plovers are using constructed sandbars and successfully reproducing at or above levels stipulated in the BiOp. However, whether such positive impacts will persist cannot yet be adequately assessed at this time.

  9. Seagrass-Watch: Engaging Torres Strait Islanders in marine habitat monitoring

    Science.gov (United States)

    Mellors, Jane E.; McKenzie, Len J.; Coles, Robert G.

    2008-09-01

    Involvement in scientifically structured habitat monitoring is a relatively new concept to the peoples of Torres Strait. The approach we used was to focus on awareness, and to build the capacity of groups to participate using Seagrass-Watch as the vehicle to provide education and training in monitoring marine ecosystems. The project successfully delivered quality scientifically rigorous baseline information on the seasonality of seagrasses in the Torres Strait—a first for this region. Eight seagrass species were identified across the monitoring sites. Seagrass cover varied within and between years. Preliminary evidence indicated that drivers for seagrass variability were climate related. Generally, seagrass abundance increased during the north-west monsoon ( Kuki), possibly a consequence of elevated nutrients, lower tidal exposure times, less wind, and higher air temperatures. Low seagrass abundance coincided with the presence of greater winds and longer periods of exposure at low tides during the south-east trade wind season ( Sager). No seasonal patterns were apparent when frequency of disturbance from high sedimentation and human impacts was high. Seagrass-Watch has been incorporated in to the Thursday Island High School's Marine Studies Unit ensuring continuity of monitoring. The students, teachers, and other interested individuals involved in Seagrass-Watch have mastered the necessary scientific procedures to monitor seagrass meadows, and developed skills in coordinating a monitoring program and skills in mentoring younger students. This has increased the participants' self-esteem and confidence, and given them an insight into how they may participate in the future management of their sea country.

  10. Preprocessing in a Tiered Sensor Network for Habitat Monitoring

    Directory of Open Access Journals (Sweden)

    Hanbiao Wang

    2003-03-01

    Full Text Available We investigate task decomposition and collaboration in a two-tiered sensor network for habitat monitoring. The system recognizes and localizes a specified type of birdcalls. The system has a few powerful macronodes in the first tier, and many less powerful micronodes in the second tier. Each macronode combines data collected by multiple micronodes for target classification and localization. We describe two types of lightweight preprocessing which significantly reduce data transmission from micronodes to macronodes. Micronodes classify events according to their cross-zero rates and discard irrelevant events. Data about events of interest is reduced and compressed before being transmitted to macronodes for target localization. Preliminary experiments illustrate the effectiveness of event filtering and data reduction at micronodes.

  11. Plant life form based habitat monitoring in a European landscape framework for early warning of changes in land cover and biodiversity

    DEFF Research Database (Denmark)

    Brandt, Jesper; Olsen, Martin; Bloch-Petersen, Margit

    and habitat composition and quality. The focus on essential features of the habitat that can be expressed easily and quantitatively for identification and mapping of small but significant changes at a landscape level has resulted in the reintroduction of Raunkiaers plant life form concept from 1907...... of agricultural land use, general land cover and tree and shrub cover of small biotopes), it has not been difficult to integrate the BioHab framework in the SBMP-monitoring system, thus permitting the monitoring system to deliver an additional important European perspective with only very limited extra resources...

  12. Marine habitat mapping, classification and monitoring in the coastal North Sea: Scientific vs. stakeholder interests

    Science.gov (United States)

    Hass, H. Christian; Mielck, Finn; Papenmeier, Svenja; Fiorentino, Dario

    2016-04-01

    Producing detailed maps of the seafloor that include both, water depth and simple textural characteristics has always been a challenge to scientists. In this context, marine habitat maps are an essential tool to comprehend the complexity, the spatial distribution and the ecological status of different seafloor types. The increasing need for more detail demands additional information on the texture of the sediment, bedforms and information on benthic sessile life. For long time, taking samples and videos/photographs followed by interpolation over larger distances was the only feasible way to gain information about sedimentary features such as grain-size distribution and bedforms. While ground truthing is still necessary, swath systems such as multibeam echo sounders (MBES) and sidescan sonars (SSS), as well as single beam acoustic ground discrimination systems (AGDS) became available to map the seafloor area-wide (MBES, SSS), fast and in great detail. Where area-wide measurements are impossible or unavailable point measurements are interpolated, classified and modeled. To keep pace with environmental change in the highly dynamic coastal areas of the North Sea (here: German Bight) monitoring that utilizes all of the mentioned techniques is a necessity. Since monitoring of larger areas is quite expensive, concepts for monitoring strategies were developed in scientific projects such as "WIMO" ("Scientific monitoring concepts for the German Bight, SE North Sea"). While instrumentation becomes better and better and interdisciplinary methods are being developed, the gap between basic scientific interests and stakeholder needs often seem to move in opposite directions. There are two main tendencies: the need to better understand nature systems (for theoretical purposes) and the one to simplify nature (for applied purposes). Science trends to resolve the most detail in highest precision employing soft gradients and/or fuzzy borders instead of crisp demarcations and

  13. Augmented fish health monitoring

    International Nuclear Information System (INIS)

    Michak, P.; Rogers, R.; Amos, K.

    1991-05-01

    The Bonneville Power Administration (BPA) initiated the Augmented Fish Health Monitoring project in 1986. This project was a five year interagency project involving fish rearing agencies in the Columbia Basin. Historically, all agencies involved with fish health in the Columbia Basin were conducting various levels of fish health monitoring, pathogen screening and collection. The goals of this project were; to identify, develop and implement a standardized level of fish health methodologies, develop a common data collection and reporting format in the area of artificial production, evaluate and monitor water quality, improve communications between agencies and provide annual evaluation of fish health information for production of healthier smolts. This completion report will contain a project evaluation, review of the goals of the project, evaluation of the specific fish health analyses, an overview of highlights of the project and concluding remarks. 8 refs., 1 fig., 4 tabs

  14. A comparison of the performance and compatibility of protocols used by seven monitoring groups to measure stream habitat in the Pacific Northwest

    Science.gov (United States)

    Brett B. Roper; John M. Buffington; Stephen Bennett; Steven H. Lanigan; Eric Archer; Scott T. Downie; John Faustini; Tracy W. Hillman; Shannon Hubler; Kim Jones; Chris Jordan; Philip R. Kaufmann; Glenn Merritt; Chris Moyer; Allen Pleus

    2010-01-01

    To comply with legal mandates, meet local management objectives, or both, many federal, state, and tribal organizations have monitoring groups that assess stream habitat at different scales. This myriad of groups has difficulty sharing data and scaling up stream habitat assessments to regional or national levels because of differences in their goals and data collection...

  15. Landsat ETM+ and SRTM Data Provide Near Real-Time Monitoring of Chimpanzee (Pan troglodytes Habitats in Africa

    Directory of Open Access Journals (Sweden)

    Samuel M. Jantz

    2016-05-01

    Full Text Available All four chimpanzee sub-species populations are declining due to multiple factors including human-caused habitat loss. Effective conservation efforts are therefore needed to ensure their long-term survival. Habitat suitability models serve as useful tools for conservation planning by depicting relative environmental suitability in geographic space over time. Previous studies mapping chimpanzee habitat suitability have been limited to small regions or coarse spatial and temporal resolutions. Here, we used Random Forests regression to downscale a coarse resolution habitat suitability calibration dataset to estimate habitat suitability over the entire chimpanzee range at 30-m resolution. Our model predicted habitat suitability well with an r2 of 0.82 (±0.002 based on 50-fold cross validation where 75% of the data was used for model calibration and 25% for model testing; however, there was considerable variation in the predictive capability among the four sub-species modeled individually. We tested the influence of several variables derived from Landsat Enhanced Thematic Mapper Plus (ETM+ that included metrics of forest canopy and structure for four three-year time periods between 2000 and 2012. Elevation, Landsat ETM+ band 5 and Landsat derived canopy cover were the strongest predictors; highly suitable areas were associated with dense tree canopy cover for all but the Nigeria-Cameroon and Central Chimpanzee sub-species. Because the models were sensitive to such temporally based predictors, our results are the first to highlight the value of integrating continuously updated variables derived from satellite remote sensing into temporally dynamic habitat suitability models to support  near real-time monitoring of habitat status and decision support systems.

  16. Innovative study methods for the Mediterranean coralligenous habitats

    Directory of Open Access Journals (Sweden)

    P.A. Zapata-Ramírez

    2013-11-01

    Full Text Available Coralligenous habitats are of special interest in the Mediterranean Sea because they represent one of the most important biodiversity ‘hot-spots’ and are considered of great relevance for fisheries activities in the region. Despite their importance, however, there are missing consensual methodologies for their monitoring and, despite some attempts, no environmental or ecological quality indices have been established yet. This situation could be related to the difficulties associated with their exploration and their spatial heterogeneity. These habitats are in urgent need of efficient standard monitoring and management protocols programmes to develop an effective network for their conservation. Here we reviewed the available methodologies and robotics tools used to evaluate and monitor benthic habitats, highlighting the importance of defining rapid cost-effective sampling and analyses approaches and architectures for future monitoring of changes in coralligenous habitats based on current technological developments. We identified still images acquisitions as the most effective data gathering system. Stereo photogrammetry, photomosaic elaboration and three-dimensional (3D modelling may largely improve the data analysis and therefore the quality status assessment of the coralligenous habitats. The advantage and efficiency of different approaches and methods, and whether they should be applied and standardised for further monitoring activities, were discussed.

  17. Promoting health equity: WHO health inequality monitoring at global and national levels

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Background Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level. PMID:26387506

  18. Promoting health equity: WHO health inequality monitoring at global and national levels.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne

    2015-01-01

    Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO) has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level.

  19. Promoting health equity: WHO health inequality monitoring at global and national levels

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Hosseinpoor

    2015-09-01

    Full Text Available Background: Health equity is a priority in the post-2015 sustainable development agenda and other major health initiatives. The World Health Organization (WHO has a history of promoting actions to achieve equity in health, including efforts to encourage the practice of health inequality monitoring. Health inequality monitoring systems use disaggregated data to identify disadvantaged subgroups within populations and inform equity-oriented health policies, programs, and practices. Objective: This paper provides an overview of a number of recent and current WHO initiatives related to health inequality monitoring at the global and/or national level. Design: We outline the scope, content, and intended uses/application of the following: Health Equity Monitor database and theme page; State of inequality: reproductive, maternal, newborn, and child health report; Handbook on health inequality monitoring: with a focus on low- and middle-income countries; Health inequality monitoring eLearning module; Monitoring health inequality: an essential step for achieving health equity advocacy booklet and accompanying video series; and capacity building workshops conducted in WHO Member States and Regions. Conclusions: The paper concludes by considering how the work of the WHO can be expanded upon to promote the establishment of sustainable and robust inequality monitoring systems across a variety of health topics among Member States and at the global level.

  20. Lunar Health Monitor (LHM)

    Science.gov (United States)

    Lisy, Frederick J.

    2015-01-01

    Orbital Research, Inc., has developed a low-profile, wearable sensor suite for monitoring astronaut health in both intravehicular and extravehicular activities. The Lunar Health Monitor measures respiration, body temperature, electrocardiogram (EKG) heart rate, and other cardiac functions. Orbital Research's dry recording electrode is central to the innovation and can be incorporated into garments, eliminating the need for conductive pastes, adhesives, or gels. The patented dry recording electrode has been approved by the U.S. Food and Drug Administration. The LHM is easily worn under flight gear or with civilian clothing, making the system completely versatile for applications where continuous physiological monitoring is needed. During Phase II, Orbital Research developed a second-generation LHM that allows sensor customization for specific monitoring applications and anatomical constraints. Evaluations included graded exercise tests, lunar mission task simulations, functional battery tests, and resting measures. The LHM represents the successful integration of sensors into a wearable platform to capture long-duration and ambulatory physiological markers.

  1. Metabolic monitoring in New Zealand district health board mental health services.

    Science.gov (United States)

    Staveley, Aimee; Soosay, Ian; O'Brien, Anthony J

    2017-11-10

    To audit New Zealand district health boards' (DHBs) metabolic monitoring policies in relation to consumers prescribed second-generation antipsychotic medications using a best practice guideline. Metabolic monitoring policies from DHBs and one private clinic were analysed in relation to a best practice standard developed from the current literature and published guidelines relevant to metabolic syndrome. Fourteen of New Zealand's 20 DHBs currently have metabolic monitoring policies for consumers prescribed antipsychotic medication. Two of those policies are consistent with the literature-based guideline. Eight policies include actions to be taken when consumers meet criteria for metabolic syndrome. Four DHBs have systems for measuring their rates of metabolic monitoring. There is no consensus on who is clinically responsible for metabolic monitoring. Metabolic monitoring by mental health services in New Zealand reflects international experience that current levels of monitoring are low and policies are not always in place. Collaboration across the mental health and primary care sectors together with the adoption of a consensus guideline is needed to improve rates of monitoring and reduce current rates of physical health morbidities.

  2. National health inequality monitoring: current challenges and opportunities.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Schlotheuber, Anne; Boerma, Ties

    National health inequality monitoring needs considerably more investment to realize equity-oriented health improvements in countries, including advancement towards the Sustainable Development Goals. Following an overview of national health inequality monitoring and the associated resource requirements, we highlight challenges that countries may encounter when setting up, expanding or strengthening national health inequality monitoring systems, and discuss opportunities and key initiatives that aim to address these challenges. We provide specific proposals on what is needed to ensure that national health inequality monitoring systems are harnessed to guide the reduction of health inequalities.

  3. Integrated Ecological River Health Assessments, Based on Water Chemistry, Physical Habitat Quality and Biological Integrity

    Directory of Open Access Journals (Sweden)

    Ji Yoon Kim

    2015-11-01

    Full Text Available This study evaluated integrative river ecosystem health using stressor-based models of physical habitat health, chemical water health, and biological health of fish and identified multiple-stressor indicators influencing the ecosystem health. Integrated health responses (IHRs, based on star-plot approach, were calculated from qualitative habitat evaluation index (QHEI, nutrient pollution index (NPI, and index of biological integrity (IBI in four different longitudinal regions (Groups I–IV. For the calculations of IHRs values, multi-metric QHEI, NPI, and IBI models were developed and their criteria for the diagnosis of the health were determined. The longitudinal patterns of the river were analyzed by a self-organizing map (SOM model and the key major stressors in the river were identified by principal component analysis (PCA. Our model scores of integrated health responses (IHRs suggested that mid-stream and downstream regions were impaired, and the key stressors were closely associated with nutrient enrichment (N and P and organic matter pollutions from domestic wastewater disposal plants and urban sewage. This modeling approach of IHRs may be used as an effective tool for evaluations of integrative ecological river health..

  4. Lunar Health Monitor, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — During the Phase II Lunar Health Monitor program, Orbital Research will develop a second generation wearable sensor suite for astronaut physiologic monitoring. The...

  5. Monitor and Protect Wigwam River Bull Trout for Koocanusa Reservoir; Skookumchuck Creek Juvenile Bull Trout and Fish Habitat Monitoring Program, Annual Report 2002.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.

    2003-06-01

    The Skookumchuck Creek juvenile bull trout (Salvelinus confluentus) and fish habitat-monitoring program is a co-operative initiative of the British Columbia Ministry of Water, Land, and Air Protection and Bonneville Power Administration. This project was commissioned in planning for fish habitat protection and forest development within the Skookumchuck Creek watershed and was intended to expand upon similar studies initiated within the Wigwam River from 2000 to 2002. The broad intent is to develop a better understanding of juvenile bull trout and Westslope cutthroat trout recruitment and the ongoing hydrologic and morphologic processes, especially as they relate to spawning and rearing habitat quality. The 2002 project year represents the first year of a long-term bull trout-monitoring program with current studies focused on collecting baseline information. This report provides a summary of results obtained to date. Bull trout represented 72.4% of the catch. Fry dominated the catch because site selection was biased towards electrofishing sample sites which favored high bull trout fry capture success. The mean density of all juvenile bull trout was estimated to be 6.6 fish/100m{sup 2}. This represents one-half the densities reported for the 2002 Wigwam River enumeration program, even though enumeration of bull trout redds was an order of magnitude higher for the Wigwam River. Typically, areas with combined fry and juvenile densities greater than 1.5 fish per 100 m{sup 2} are cited as critical rearing areas. Trends in abundance appeared to be related to proximity to spawning areas, bed material size, and water depth. Cover components utilized by juvenile and adult bull trout and cutthroat trout were interstices, boulder, depth, overhead vegetation and LWD. The range of morphological stream types encompass the stable and resilient spectrum (C3(1), C3 and B3c). The Skookumchuck can be generalized as a slightly entrenched, meandering, riffle-pool, cobble dominated

  6. Environmental variation and habitat separation among small mammals

    International Nuclear Information System (INIS)

    Vickery, W.L.; Iverson, S.L.; Mihok, S.; Schwartz, B.

    1989-01-01

    Habitat use and population density of five species of forest small mammals were monitored by annual spring snap-trap censuses at Pinawa, Manitoba, over 14 years. Population sizes were positively correlated among species and showed no evidence of density-dependent effects. Species were habitat selectors. Habitat use by species did not vary among years. Habitat separation between the dominant species was not correlated with environmental variables or with population size. We suggest that habitat selection and positive covariance among species abundances are the principal factors characterizing the dynamics of this community

  7. Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology

    Science.gov (United States)

    Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.

    1991-01-01

    Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.

  8. A Modular Instrumentation System for NASA's Habitat Demonstration Unit

    Science.gov (United States)

    Rojdev, Kristina; Kennedy, Kriss; Yim, Hester; Wagner, Raymond S.; Hong, Todd; Studor, George; Delaune, Paul

    2010-01-01

    module will be reconfigured for a pressurized core module configuration. Each year the HDU configurations will undergo testing at NASA's Desert Research and Technology Studies (D-RaTS) in Arizona [1]. As part of this project, a modular instrumentation system is developed to meet the monitoring needs of the HDU subsystems and to integrate with the current command and data handling infrastructure that has been developed for the project. The main objective of this study is to provide for the monitoring needs of the HDU. The requirements necessary to meet this objective are developed by working with the subsystem managers of the HDU to understand their monitoring needs. Additionally, the instrumentation system design leverages knowledge and lessons learned from previous studies, such as the inflatable habitat health monitoring system that was deployed in Antarctica [2], the integrated health monitoring system developed for NASA's Microhab [3], and the JSC Lunar Habitat Wireless Testbed to demonstrate a "standardsbased" approach to a wireless instrumentation system [4]. The HDU also requires flexibility in reconfiguration options, and it is necessary to demonstrate and evaluate a modular approach to an instrumentation system. Thus, the instrumentation system is designed in two parts: the primary system employs a standard WSN configuration, and the secondary system employs a wired USB hub. The WSN design provides for reconfiguration or replacement of sensors due to malfunctions or upgrades by using a wireless node that accepts ten instrument inputs and wirelessly transmits the data to the command and data handling system. The USB hub is necessary for those instruments that operate using a wired USB connection, although the design attempts to limit the amount of sensors that need to be wired connections.

  9. NCCOS Habitat Assessment and Monitoring Photographs, St. John, USVI , (2001 - Present)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The habitat photo database provides anecdotal and permanent visual descriptions of benthic organisms, benthic habitat composition, substrate complexity, and other...

  10. NCCOS Habitat Assessment and Monitoring Photographs, St. Croix, USVI, (2001 - Present)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The habitat photo database provides anecdotal and permanent visual descriptions of benthic organisms, benthic habitat composition, substrate complexity, and other...

  11. Hybrid Modeling Improves Health and Performance Monitoring

    Science.gov (United States)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  12. Estimating population size of a nocturnal burrow-nesting seabird using acoustic monitoring and habitat mapping

    Directory of Open Access Journals (Sweden)

    Steffen Oppel

    2014-04-01

    Full Text Available Population size assessments for nocturnal burrow-nesting seabirds are logistically challenging because these species are active in colonies only during darkness and often nest on remote islands where manual inspections of breeding burrows are not feasible. Many seabird species are highly vocal, and recent technological innovations now make it possible to record and quantify vocal activity in seabird colonies. Here we test the hypothesis that remotely recorded vocal activity in Cory’s shearwater (Calonectris borealis breeding colonies in the North Atlantic increases with nest density, and combined this relationship with cliff habitat mapping to estimate the population size of Cory’s shearwaters on the island of Corvo (Azores. We deployed acoustic recording devices in 9 Cory’s shearwater colonies of known size to establish a relationship between vocal activity and local nest density (slope = 1.07, R2 = 0.86, p < 0.001. We used this relationship to predict the nest density in various cliff habitat types and produced a habitat map of breeding cliffs to extrapolate nest density around the island of Corvo. The mean predicted nest density on Corvo ranged from 6.6 (2.1–16.2 to 27.8 (19.5–36.4 nests/ha. Extrapolation of habitat-specific nest densities across the cliff area of Corvo resulted in an estimate of 6326 Cory’s shearwater nests (95% confidence interval: 3735–10,524. This population size estimate is similar to previous assessments, but is too imprecise to detect moderate changes in population size over time. While estimating absolute population size from acoustic recordings may not be sufficiently precise, the strong positive relationship that we found between local nest density and recorded calling rate indicates that passive acoustic monitoring may be useful to document relative changes in seabird populations over time.

  13. A Quantitative, Non-Destructive Methodology for Habitat Characterisation and Benthic Monitoring at Offshore Renewable Energy Developments

    Science.gov (United States)

    Sheehan, Emma V.; Stevens, Timothy F.; Attrill, Martin J.

    2010-01-01

    Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs). Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs) could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a “flying array” that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects). The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth), then subsequently successfully deployed in demanding conditions at the deep (>50 m) high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms−1 current), the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath MPAs and

  14. A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments.

    Directory of Open Access Journals (Sweden)

    Emma V Sheehan

    2010-12-01

    Full Text Available Following governments' policies to tackle global climate change, the development of offshore renewable energy sites is likely to increase substantially over coming years. All such developments interact with the seabed to some degree and so a key need exists for suitable methodology to monitor the impacts of large-scale Marine Renewable Energy Installations (MREIs. Many of these will be situated on mixed or rocky substrata, where conventional methods to characterise the habitat are unsuitable. Traditional destructive sampling is also inappropriate in conservation terms, particularly as safety zones around (MREIs could function as Marine Protected Areas, with positive benefits for biodiversity. Here we describe a technique developed to effectively monitor the impact of MREIs and report the results of its field testing, enabling large areas to be surveyed accurately and cost-effectively. The methodology is based on a high-definition video camera, plus LED lights and laser scale markers, mounted on a "flying array" that maintains itself above the seabed grounded by a length of chain, thus causing minimal damage. Samples are taken by slow-speed tows of the gear behind a boat (200 m transects. The HD video and randomly selected frame grabs are analysed to quantify species distribution. The equipment was tested over two years in Lyme Bay, UK (25 m depth, then subsequently successfully deployed in demanding conditions at the deep (>50 m high-energy Wave Hub site off Cornwall, UK, and a potential tidal stream energy site in Guernsey, Channel Islands (1.5 ms⁻¹ current, the first time remote samples from such a habitat have been achieved. The next stage in the monitoring development process is described, involving the use of Remote Operated Vehicles to survey the seabed post-deployment of MREI devices. The complete methodology provides the first quantitative, relatively non-destructive method for monitoring mixed-substrate benthic communities beneath

  15. System health monitoring

    International Nuclear Information System (INIS)

    Reneke, J.A.; Fryer, M.O.

    1995-01-01

    Well designed large systems include many instrument taking data. These data are used in a variety of ways. They are used to control the system and its components, to monitor system and component health, and often for historical or financial purposes. This paper discusses a new method of using data from low level instrumentation to monitor system and component health. The method uses the covariance of instrument outputs to calculate a measure of system change. The method involves no complicated modeling since it is not a parameter estimation algorithm. The method is iterative and can be implemented on a computer in real time. Examples are presented for a metal lathe and a high efficiency particulate air (HEPA) filter. It is shown that the proposed method is quite sensitive to system changes such as wear out and failure. The method is useful for low level system diagnostics and fault detection

  16. Networked Biomedical System for Ubiquitous Health Monitoring

    Directory of Open Access Journals (Sweden)

    Arjan Durresi

    2008-01-01

    Full Text Available We propose a distributed system that enables global and ubiquitous health monitoring of patients. The biomedical data will be collected by wearable health diagnostic devices, which will include various types of sensors and will be transmitted towards the corresponding Health Monitoring Centers. The permanent medical data of patients will be kept in the corresponding Home Data Bases, while the measured biomedical data will be sent to the Visitor Health Monitor Center and Visitor Data Base that serves the area of present location of the patient. By combining the measured biomedical data and the permanent medical data, Health Medical Centers will be able to coordinate the needed actions and help the local medical teams to make quickly the best decisions that could be crucial for the patient health, and that can reduce the cost of health service.

  17. CTUIR Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2009-02-09

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2008 Fiscal Year (FY) reporting period (February 1, 2008-January 31, 2009) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight primary fisheries habitat enhancement projects were implemented on Meacham Creek, Birch Creek, West Birch Creek, McKay Creek, West Fork Spring Hollow, and the Umatilla River. Specific restoration actions included: (1) rectifying one fish passage barrier on West Birch Creek; (2) participating in six projects planting 10,000 trees and seeding 3225 pounds of native grasses; (3) donating 1000 ft of fencing and 1208 fence posts and associated hardware for 3.6 miles of livestock exclusion fencing projects in riparian areas of West Birch and Meacham Creek, and for tree screens to protect against beaver damage on West Fork Spring Hollow Creek; (4) using biological control (insects) to reduce noxious weeds on three treatment areas covering five acres on Meacham Creek; (5) planning activities for a levee setback project on Meacham Creek. We participated in additional secondary projects as opportunities arose. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at additional easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Proper selection and implementation of

  18. Bats and bat habitats : guidelines for wind power projects

    International Nuclear Information System (INIS)

    2010-03-01

    Bat mortality has been documented at wind power projects in a number of habitats across North America. Wind power projects in Ontario have reported annual estimates ranging from 4 to 14 bat mortalities per turbine per year. This document presented guidance on identifying and addressing potential negative effects on bats and bat habitats during the planning, construction, and operation of wind power projects in Ontario. The guidelines supported the Ministry of Environment's renewable energy approval regulation and applied on both Crown and privately-owned land. The document presented the regulatory framework and discussed the assessment process for bats and bat habitats. This process included project site; records review; site investigation; and evaluation of significance. Other topics that were presented included an environmental impact study and an environmental effects monitoring plan such as post construction monitoring and post construction mitigation. Several appendices were also included regarding the potential effects of wind power project on bats; best management practices; methods for evaluating bat wildlife habitat; and post construction monitoring methods. 10 refs., 1 tab., 2 figs., 4 appendices.

  19. Bats and bat habitats : guidelines for wind power projects

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-03-15

    Bat mortality has been documented at wind power projects in a number of habitats across North America. Wind power projects in Ontario have reported annual estimates ranging from 4 to 14 bat mortalities per turbine per year. This document presented guidance on identifying and addressing potential negative effects on bats and bat habitats during the planning, construction, and operation of wind power projects in Ontario. The guidelines supported the Ministry of Environment's renewable energy approval regulation and applied on both Crown and privately-owned land. The document presented the regulatory framework and discussed the assessment process for bats and bat habitats. This process included project site; records review; site investigation; and evaluation of significance. Other topics that were presented included an environmental impact study and an environmental effects monitoring plan such as post construction monitoring and post construction mitigation. Several appendices were also included regarding the potential effects of wind power project on bats; best management practices; methods for evaluating bat wildlife habitat; and post construction monitoring methods. 10 refs., 1 tab., 2 figs., 4 appendices.

  20. Privacy by design in personal health monitoring.

    Science.gov (United States)

    Nordgren, Anders

    2015-06-01

    The concept of privacy by design is becoming increasingly popular among regulators of information and communications technologies. This paper aims at analysing and discussing the ethical implications of this concept for personal health monitoring. I assume a privacy theory of restricted access and limited control. On the basis of this theory, I suggest a version of the concept of privacy by design that constitutes a middle road between what I call broad privacy by design and narrow privacy by design. The key feature of this approach is that it attempts to balance automated privacy protection and autonomously chosen privacy protection in a way that is context-sensitive. In personal health monitoring, this approach implies that in some contexts like medication assistance and monitoring of specific health parameters one single automatic option is legitimate, while in some other contexts, for example monitoring in which relatives are receivers of health-relevant information rather than health care professionals, a multi-choice approach stressing autonomy is warranted.

  1. Physical health monitoring in mental health settings: a study exploring mental health nurses' views of their role.

    Science.gov (United States)

    Mwebe, Herbert

    2017-10-01

    To explore nurses' views of their role in the screening and monitoring of the physical care needs of people with serious mental illness in a mental health service provider. There is increasing awareness through research that people with serious mental illness disproportionately experience and die early from physical health conditions. Mental health nurses are best placed as front-line workers to offer screening, monitoring and interventions; however, their views on physical care interventions are not studied often. Qualitative exploratory study. The study was carried out in a mental health inpatient centre in England. Volunteer sampling was adopted for the study with a total target sample of (n = 20) nurses from three inpatient wards. Semistructured interviews were conducted with (n = 10) registered mental health nurses who had consented to take part in the study. Inductive data analysis and theme development were guided by a thematic analytic framework. Participants shared a clear commitment regarding their role regarding physical health screening and monitoring in mental health settings. Four themes emerged as follows: features of current practice and physical health monitoring; perceived barriers to physical health monitoring; education and training needs; and strategies to improve physical health monitoring. Nurses were unequivocal in their resolve to ensure good standard physical health monitoring and screening interventions in practice. However, identified obstacles have to be addressed to ensure that physical health screening and monitoring is integrated adequately in everyday clinical activities. Achieving this would require improvements in nurses' training, and an integrated multiservice and team-working approach. Attending to the physical health needs of people with serious mental illness has been associated with multiple improvements in both mental and physical health; nurses have a vital role to play in identifying and addressing causes of poor

  2. Salmon River Habitat Enhancement, 1989 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1989-04-01

    This project was funded by the Bonneville Power Administration (BPA). The annual report contains three individual subproject papers detailing tribal fisheries work completed during the summer and fall of 1989. Subproject 1 contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject 2 contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. This report has been sub-divided into two parts: Part 1; stream evaluation and Part 2; pond series evaluation. Subproject 3 concerns the East Fork of the Salmon River, Idaho. This report summarizes the evaluation of the project to date including the 1989 pre-construction evaluation conducted within the East Fork drainage. Dredge mining has degraded spawning and rearing habitat for chinook salmon and steelhead trout in the Yankee Fork drainage of the Salmon River and in Bear Valley Creek. Mining, agricultural, and grazing practices degraded habitat in the East Fork of the Salmon River. Biological monitoring of the success of habitat enhancement for Bear Valley Creek and Yankee Fork are presented in this report. Physical and biological inventories prior to habitat enhancement in East Fork were also conducted. Four series of off-channel ponds of the Yankee Fork are shown to provide effective rearing habitat for chinook salmon. 45 refs., 49 figs., 24 tabs.

  3. Forest health monitoring: 2008 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The Forest Health Monitoring (FHM) Program’s annual national technical report has three objectives: (1) to present forest health status and trends from a national or a multi-State regional perspective using a variety of sources, (2) to introduce new techniques for analyzing forest health data, and (3) to report results of recently completed evaluation monitoring...

  4. Design of wearable health monitoring device

    Science.gov (United States)

    Devara, Kresna; Ramadhanty, Savira; Abuzairi, Tomy

    2018-02-01

    Wearable smart health monitoring devices have attracted considerable attention in both research community and industry. Some of the causes are the increasing healthcare costs, along with the growing technology. To address this demand, in this paper, design and evaluation of wearable health monitoring device integrated with smartphone were presented. This device was designed for patients in need of constant health monitoring. The performance of the proposed design has been tested by conducting measurement once in 2 minutes for 10 minutes to obtain heart rate and body temperature data. The comparation between data measured by the proposed device and that measured by the reference device yields only an average error of 1.45% for heart rate and 1.04% for body temperature.

  5. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-10-15

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health--changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and other conditions unfavorable to propagation of the most desirable moist soil plants. Hence, the implementation of a program to monitor annual changes in the most common moist soil plants might serve as an index of habitat health and sustainability. Our review of the current scientific and popular literature failed to identify a good, comprehensive field guide that could be used to calibrate and verify high resolution remote sensing imagery, that we had started to use to develop maps of wetland moist soil plants in the Grassland Water District. Since completing the guide it has been used to conduct ground truthing field surveys using the California Native Plant Society methodology in 2004. Results of this survey and a previous wetland plant survey in 2003 are published in a companion LBNL publication summarizing 4 years of fieldwork to advance the science of real-time wetland salinity management.

  6. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    Science.gov (United States)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  7. Smart health monitoring systems: an overview of design and modeling.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid

    2013-04-01

    Health monitoring systems have rapidly evolved during the past two decades and have the potential to change the way health care is currently delivered. Although smart health monitoring systems automate patient monitoring tasks and, thereby improve the patient workflow management, their efficiency in clinical settings is still debatable. This paper presents a review of smart health monitoring systems and an overview of their design and modeling. Furthermore, a critical analysis of the efficiency, clinical acceptability, strategies and recommendations on improving current health monitoring systems will be presented. The main aim is to review current state of the art monitoring systems and to perform extensive and an in-depth analysis of the findings in the area of smart health monitoring systems. In order to achieve this, over fifty different monitoring systems have been selected, categorized, classified and compared. Finally, major advances in the system design level have been discussed, current issues facing health care providers, as well as the potential challenges to health monitoring field will be identified and compared to other similar systems.

  8. Health disparities monitoring in the U.S.: lessons for monitoring efforts in Israel and other countries.

    Science.gov (United States)

    Abu-Saad, Kathleen; Avni, Shlomit; Kalter-Leibovici, Ofra

    2018-02-28

    Health disparities are a persistent problem in many high-income countries. Health policymakers recognize the need to develop systematic methods for documenting and tracking these disparities in order to reduce them. The experience of the U.S., which has a well-established health disparities monitoring infrastructure, provides useful insights for other countries. This article provides an in-depth review of health disparities monitoring in the U.S. Lessons of potential relevance for other countries include: 1) the integration of health disparities monitoring in population health surveillance, 2) the role of political commitment, 3) use of monitoring as a feedback loop to inform future directions, 4) use of monitoring to identify data gaps, 5) development of extensive cross-departmental cooperation, and 6) exploitation of digital tools for monitoring and reporting. Using Israel as a case in point, we provide a brief overview of the healthcare and health disparities landscape in Israel, and examine how the lessons from the U.S. experience might be applied in the Israeli context. The U.S. model of health disparities monitoring provides useful lessons for other countries with respect to documentation of health disparities and tracking of progress made towards their elimination. Given the persistence of health disparities both in the U.S. and Israel, there is a need for monitoring systems to expand beyond individual- and healthcare system-level factors, to incorporate social and environmental determinants of health as health indicators/outcomes.

  9. Household disposables as breeding habitats of dengue vectors: Linking wastes and public health

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Soumyajit, E-mail: soumyajitb@gmail.com [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019 (India); Aditya, Gautam, E-mail: gautamaditya2001@gmail.com [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019 (India); Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713 104 (India); Saha, Goutam K, E-mail: gkszoo@rediffmail.com [Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019 (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. Black-Right-Pointing-Pointer Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. Black-Right-Pointing-Pointer Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. Black-Right-Pointing-Pointer Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities of tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the containers that

  10. Household disposables as breeding habitats of dengue vectors: Linking wastes and public health

    International Nuclear Information System (INIS)

    Banerjee, Soumyajit; Aditya, Gautam; Saha, Goutam K

    2013-01-01

    Highlights: ► An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. ► Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. ► Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. ► Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities of tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the containers that are most frequently disposed off contributed largely to the sustenance of Aedes mosquito population

  11. A protocol using coho salmon to monitor Tongass National Forest Land and Resource Management Plan standards and guidelines for fish habitat.

    Science.gov (United States)

    M.D. Bryant; Trent McDonald; R. Aho; B.E. Wright; Michelle Bourassa Stahl

    2008-01-01

    We describe a protocol to monitor the effectiveness of the Tongass Land Management Plan (TLMP) management standards for maintaining fish habitat. The protocol uses juvenile coho salmon (Oncorhynchus kisutch) in small tributary streams in forested watersheds. We used a 3-year pilot study to develop detailed methods to estimate juvenile salmonid...

  12. A synthesis of European seahorse taxonomy, population structure, and habitat use as a basis for assessment, monitoring and conservation.

    Science.gov (United States)

    Woodall, Lucy C; Otero-Ferrer, Francisco; Correia, Miguel; Curtis, Janelle M R; Garrick-Maidment, Neil; Shaw, Paul W; Koldewey, Heather J

    2018-01-01

    Accurate taxonomy, population demography, and habitat descriptors inform species threat assessments and the design of effective conservation measures. Here we combine published studies with new genetic, morphological and habitat data that were collected from seahorse populations located along the European and North African coastlines to help inform management decisions for European seahorses. This study confirms the presence of only two native seahorse species ( Hippocampus guttulatus and H. hippocampus ) across Europe, with sporadic occurrence of non-native seahorse species in European waters. For the two native species, our findings demonstrate that highly variable morphological characteristics, such as size and presence or number of cirri, are unreliable for distinguishing species. Both species exhibit sex dimorphism with females being significantly larger. Across its range, H. guttulatus were larger and found at higher densities in cooler waters, and individuals in the Black Sea were significantly smaller than in other populations. H. hippocampus were significantly larger in Senegal. Hippocampus guttulatus tends to have higher density populations than H. hippocampus when they occur sympatrically. Although these species are often associated with seagrass beds, data show both species inhabit a wide variety of shallow habitats and use a mixture of holdfasts. We suggest an international mosaic of protected areas focused on multiple habitat types as the first step to successful assessment, monitoring and conservation management of these Data Deficient species.

  13. Manage habitat, monitor species [Chapter 10

    Science.gov (United States)

    Michael K. Schwartz; Jamie S. Sanderlin; William M. Block

    2015-01-01

    Monitoring is the collection of data over time. We monitor many things: temperatures at local weather stations, daily changes in sea level along the coastline, annual prevalence of specific diseases, sunspot cycles, unemployment rates, inflation, commodity futures-the list is virtually endless. In wildlife biology, we also conduct a lot of monitoring, most commonly...

  14. NCCOS Habitat Assessment and Monitoring Photographs, La Parguera, Puerto Rico, (2001 - Present)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The habitat photo database provides anecdotal and permanent visual descriptions of benthic organisms, benthic habitat composition, substrate complexity, and other...

  15. The use of the road to health card in monitoring child health | Tarwa ...

    African Journals Online (AJOL)

    The use of the road to health card in monitoring child health. ... The Road to Health Chart (RTHC) provides a simple, cheap, practical and convenient method of monitoring child health. The RTHC could assist ... Conclusions: Many parents believe that the RTHC is only required for Well-baby-clinic visits, not for consultations.

  16. Review of ExxonMobil Canada's 2008 offshore environmental effects monitoring report

    Energy Technology Data Exchange (ETDEWEB)

    Cogswell, A.; Kenchington, E.; Kennedy, E.; Law, B.; Lee, K.; Tremblay, J.; Worcester, T. [Department of Fisheries and Oceans Canada, Dartmouth, NS (Canada). Maritimes Science; Courtenay, S. [Department of Fisheries and Oceans Canada, Moncton, NB (Canada). Gulf Science; Payne, J. [Department of Fisheries and Oceans Canada, St. John' s, NL (Canada). Newfoundland and Labrador Science

    2009-07-15

    The environmental effects monitoring (EEM) program for the Sable Offshore Energy Project (SOEP) was designed to evaluate predictions made during its environmental assessment (EA) process. The Oceans, Habitat, and Species at Risk Branch of the Department of Fisheries and Oceans Canada was asked to review ExxonMobil Canada Properties Inc.'s 2008 annual report regarding the EEM for this offshore project. This report reviewed the monitoring results for benthic habitat and fish density; produced water chemistry and toxicity; and mussel hydrocarbon body burden. This report revealed that SOEP's 2008 EEM was consistent with previous reports, but that the monitoring methods used were not particularly meaningful, particularly since they failed to address fish health and fish quality issues. 3 refs.

  17. Tracking changes and preventing loss in critical tiger habitat.

    Science.gov (United States)

    Joshi, Anup R; Dinerstein, Eric; Wikramanayake, Eric; Anderson, Michael L; Olson, David; Jones, Benjamin S; Seidensticker, John; Lumpkin, Susan; Hansen, Matthew C; Sizer, Nigel C; Davis, Crystal L; Palminteri, Suzanne; Hahn, Nathan R

    2016-04-01

    The global population of wild tigers remains dangerously low at fewer than 3500 individuals. Habitat loss, along with poaching, can undermine the international target recovery of doubling the number of wild tigers by 2022. Using a new satellite-based monitoring system, we analyzed 14 years of forest loss data within the 76 landscapes (ranging from 278 to 269,983 km(2)) that have been prioritized for conservation of wild tigers. Our analysis provides an update of the status of tiger habitat and describes new applications of technology to detect precisely where forest loss is occurring in order to curb future habitat loss. Across the 76 landscapes, forest loss was far less than anticipated (79,597 ± 22,629 km(2), 7.7% of remaining habitat) over the 14-year study period (2001-2014). Habitat loss was unevenly distributed within a subset of 29 landscapes deemed most critical for doubling wild tiger populations: 19 showed little change (1.5%), whereas 10 accounted for more than 98% (57,392 ± 16,316 km(2)) of habitat loss. Habitat loss in source population sites within 76 landscapes ranged from no loss to 435 ± 124 km(2) ([Formula: see text], SD = 89, total = 1676 ± 476 km(2)). Doubling the tiger population by 2022 requires moving beyond tracking annual changes in habitat. We highlight near-real-time forest monitoring technologies that provide alerts of forest loss at relevant spatial and temporal scales to prevent further erosion.

  18. Health Monitor for Multitasking, Safety-Critical, Real-Time Software

    Science.gov (United States)

    Zoerner, Roger

    2011-01-01

    Health Manager can detect Bad Health prior to a failure occurring by periodically monitoring the application software by looking for code corruption errors, and sanity-checking each critical data value prior to use. A processor s memory can fail and corrupt the software, or the software can accidentally write to the wrong address and overwrite the executing software. This innovation will continuously calculate a checksum of the software load to detect corrupted code. This will allow a system to detect a failure before it happens. This innovation monitors each software task (thread) so that if any task reports "bad health," or does not report to the Health Manager, the system is declared bad. The Health Manager reports overall system health to the outside world by outputting a square wave signal. If the square wave stops, this indicates that system health is bad or hung and cannot report. Either way, "bad health" can be detected, whether caused by an error, corrupted data, or a hung processor. A separate Health Monitor Task is started and run periodically in a loop that starts and stops pending on a semaphore. Each monitored task registers with the Health Manager, which maintains a count for the task. The registering task must indicate if it will run more or less often than the Health Manager. If the task runs more often than the Health Manager, the monitored task calls a health function that increments the count and verifies it did not go over max-count. When the periodic Health Manager runs, it verifies that the count did not go over the max-count and zeroes it. If the task runs less often than the Health Manager, the periodic Health Manager will increment the count. The monitored task zeroes the count, and both the Health Manager and monitored task verify that the count did not go over the max-count.

  19. Mobile health monitoring system for community health workers

    CSIR Research Space (South Africa)

    Sibiya, G

    2014-09-01

    Full Text Available of hypertension as it provides real time information and eliminates the need to visit a healthcare facility to take blood pressure readings. Our proposed mobile health monitoring system enables faster computerization of data that has been recorded... pressure, heart rate and glucose readings. These reading closely related to most common NCDs. D. Feedback to health worker and the subject of care Community health workers are often not professionally trained on health. As a result they are not expected...

  20. Wearable Sensors for Remote Health Monitoring.

    Science.gov (United States)

    Majumder, Sumit; Mondal, Tapas; Deen, M Jamal

    2017-01-12

    Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  1. Wearable Sensors for Remote Health Monitoring

    Directory of Open Access Journals (Sweden)

    Sumit Majumder

    2017-01-01

    Full Text Available Life expectancy in most countries has been increasing continually over the several few decades thanks to significant improvements in medicine, public health, as well as personal and environmental hygiene. However, increased life expectancy combined with falling birth rates are expected to engender a large aging demographic in the near future that would impose significant  burdens on the socio-economic structure of these countries. Therefore, it is essential to develop cost-effective, easy-to-use systems for the sake of elderly healthcare and well-being. Remote health monitoring, based on non-invasive and wearable sensors, actuators and modern communication and information technologies offers an efficient and cost-effective solution that allows the elderly to continue to live in their comfortable home environment instead of expensive healthcare facilities. These systems will also allow healthcare personnel to monitor important physiological signs of their patients in real time, assess health conditions and provide feedback from distant facilities. In this paper, we have presented and compared several low-cost and non-invasive health and activity monitoring systems that were reported in recent years. A survey on textile-based sensors that can potentially be used in wearable systems is also presented. Finally, compatibility of several communication technologies as well as future perspectives and research challenges in remote monitoring systems will be discussed.

  2. Acoustic Techniques for Structural Health Monitoring

    Science.gov (United States)

    Frankenstein, B.; Augustin, J.; Hentschel, D.; Schubert, F.; Köhler, B.; Meyendorf, N.

    2008-02-01

    Future safety and maintenance strategies for industrial components and vehicles are based on combinations of monitoring systems that are permanently attached to or embedded in the structure, and periodic inspections. The latter belongs to conventional nondestructive evaluation (NDE) and can be enhanced or partially replaced by structural health monitoring systems. However, the main benefit of this technology for the future will consist of systems that can be differently designed based on improved safety philosophies, including continuous monitoring. This approach will increase the efficiency of inspection procedures at reduced inspection times. The Fraunhofer IZFP Dresden Branch has developed network nodes, miniaturized transmitter and receiver systems for active and passive acoustical techniques and sensor systems that can be attached to or embedded into components or structures. These systems have been used to demonstrate intelligent sensor networks for the monitoring of aerospace structures, railway systems, wind energy generators, piping system and other components. Material discontinuities and flaws have been detected and monitored during full scale fatigue testing. This paper will discuss opportunities and future trends in nondestructive evaluation and health monitoring based on new sensor principles and advanced microelectronics. It will outline various application examples of monitoring systems based on acoustic techniques and will indicate further needs for research and development.

  3. [Use of routine data from statutory health insurances for federal health monitoring purposes].

    Science.gov (United States)

    Ohlmeier, C; Frick, J; Prütz, F; Lampert, T; Ziese, T; Mikolajczyk, R; Garbe, E

    2014-04-01

    Federal health monitoring deals with the state of health and the health-related behavior of populations and is used to inform politics. To date, the routine data from statutory health insurances (SHI) have rarely been used for federal health monitoring purposes. SHI routine data enable analyses of disease frequency, risk factors, the course of the disease, the utilization of medical services, and mortality rates. The advantages offered by SHI routine data regarding federal health monitoring are the intersectoral perspective and the nearly complete absence of recall and selection bias in the respective population. Further, the large sample sizes and the continuous collection of the data allow reliable descriptions of the state of health of the insurants, even in cases of multiple stratification. These advantages have to be weighed against disadvantages linked to the claims nature of the data and the high administrative hurdles when requesting the use of SHI routine data. Particularly in view of the improved availability of data from all SHI insurants for research institutions in the context of the "health-care structure law", SHI routine data are an interesting data source for federal health monitoring purposes.

  4. Wearable sensors for human health monitoring

    Science.gov (United States)

    Asada, H. Harry; Reisner, Andrew

    2006-03-01

    Wearable sensors for continuous monitoring of vital signs for extended periods of weeks or months are expected to revolutionize healthcare services in the home and workplace as well as in hospitals and nursing homes. This invited paper describes recent research progress in wearable health monitoring technology and its clinical applications, with emphasis on blood pressure and circulatory monitoring. First, a finger ring-type wearable blood pressure sensor based on photo plethysmogram is presented. Technical issues, including motion artifact reduction, power saving, and wearability enhancement, will be addressed. Second, sensor fusion and sensor networking for integrating multiple sensors with diverse modalities will be discussed for comprehensive monitoring and diagnosis of health status. Unlike traditional snap-shot measurements, continuous monitoring with wearable sensors opens up the possibility to treat the physiological system as a dynamical process. This allows us to apply powerful system dynamics and control methodologies, such as adaptive filtering, single- and multi-channel system identification, active noise cancellation, and adaptive control, to the monitoring and treatment of highly complex physiological systems. A few clinical trials illustrate the potentials of the wearable sensor technology for future heath care services.

  5. Design of smart neonatal health monitoring system using SMCC.

    Science.gov (United States)

    De, Debashis; Mukherjee, Anwesha; Sau, Arkaprabha; Bhakta, Ishita

    2017-02-01

    Automated health monitoring and alert system development is a demanding research area today. Most of the currently available monitoring and controlling medical devices are wired which limits freeness of working environment. Wireless sensor network (WSN) is a better alternative in such an environment. Neonatal intensive care unit is used to take care of sick and premature neonates. Hypothermia is an independent risk factor for neonatal mortality and morbidity. To prevent it an automated monitoring system is required. In this Letter, an automated neonatal health monitoring system is designed using sensor mobile cloud computing (SMCC). SMCC is based on WSN and MCC. In the authors' system temperature sensor, acceleration sensor and heart rate measurement sensor are used to monitor body temperature, acceleration due to body movement and heart rate of neonates. The sensor data are stored inside the cloud. The health person continuously monitors and accesses these data through the mobile device using an Android Application for neonatal monitoring. When an abnormal situation arises, an alert is generated in the mobile device of the health person. By alerting health professional using such an automated system, early care is provided to the affected babies and the probability of recovery is increased.

  6. Mourning Dove nesting habitat and nest success in Central Missouri

    Science.gov (United States)

    Drobney, R.D.; Schulz, J.H.; Sheriff, S.L.; Fuemmeler, W.J.

    1998-01-01

    Previous Mourning Dove (Zenaida macroura) nesting studies conducted in areas containing a mixture of edge and continuous habitats have focused on edge habitats. Consequently, little is known about the potential contribution of continuous habitats to dove production. In this study we evaluated the relative importance of these two extensive habitat types by monitoring the habitat use and nest success of 59 radio-marked doves during 1990-1991 in central Missouri. Of 83 nests initiated by our marked sample, most (81.9%) were located in edge habitats. Although continuous habitats were selected less as nest sites, the proportion of successful nests did not differ significantly from that in edge habitats. Our data indicate that continuous habitats should not be considered marginal nesting habitat. If the intensity of use and nest success that we observed are representative regionally or nationally, continuous habitats could contribute substantially to annual Mourning Dove production because of the high availability of these habitats throughout much of the Mourning Dove breeding range.

  7. Flexible Sensing Electronics for Wearable/Attachable Health Monitoring.

    Science.gov (United States)

    Wang, Xuewen; Liu, Zheng; Zhang, Ting

    2017-07-01

    Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Coupling habitat suitability and ecosystem health with AEHRA to estimate E-flows under intensive human activities

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.

    2017-08-01

    Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.

  9. Context aware sensing for health monitoring

    NARCIS (Netherlands)

    Landete, F.; Chen, W.; Bouwstra, S.; Feijs, L.M.G.; Bambang Oetomo, S.

    2012-01-01

    Health Monitoring systems with textile sensors offer more comfort compared to gel electrodes, however they tend to suffer from poor skin contact and motion artifacts. In order to improve the monitoring reliability, we propose to apply multiple sensors and context aware sensing. A context aware

  10. Activity monitoring systems in health care

    NARCIS (Netherlands)

    Kröse, B.; van Oosterhout, T.; van Kasteren, T.; Salah, A.A.; Gevers, T.

    2011-01-01

    This chapter focuses on activity monitoring in a home setting for health care purposes. First the most current sensing systems are described, which consist of wearable and ambient sensors. Then several approaches for the monitoring of simple actions are discussed, like falls or therapies. After

  11. Acceptance by laypersons and medical professionals of the personalized eHealth platform, eHealthMonitor.

    Science.gov (United States)

    Griebel, Lena; Kolominsky-Rabas, Peter; Schaller, Sandra; Siudyka, Jakub; Sierpinski, Radoslaw; Papapavlou, Dimitrios; Simeonidou, Aliki; Prokosch, Hans-Ulrich; Sedlmayr, Martin

    2017-09-01

    Often, eHealth services are not accepted because of factors such as eHealth literacy or trust. Within this study, eHealthMonitor was evaluated in three European countries (Germany, Greece, and Poland) by medical professionals and laypersons with respect to numerous acceptance factors. Questionnaires were created on the basis of factors from literature and with the help of scales which have already been validated. A qualitative survey was conducted in Germany, Poland, and Greece. The eHealth literacy of all participants was medium/high. Laypersons mostly agreed that they could easily become skillful with eHealthMonitor and that other people thought that they should use eHealthMonitor. Amongst medical professionals, a large number were afraid that eHealthMonitor could violate their privacy or the privacy of their patients. Overall, the participants thought that eHealthMonitor was a good concept and that they would use it. The main hindrances to the use of eHealthMonitor were found in trust issues including data privacy. In the future, more research on the linkage of all measured factors is needed, for example, to address the question of whether highly educated people tend to mistrust eHealth information more than people with lower levels of education.

  12. Wearable sensors for health monitoring

    Science.gov (United States)

    Suciu, George; Butca, Cristina; Ochian, Adelina; Halunga, Simona

    2015-02-01

    In this paper we describe several wearable sensors, designed for monitoring the health condition of the patients, based on an experimental model. Wearable sensors enable long-term continuous physiological monitoring, which is important for the treatment and management of many chronic illnesses, neurological disorders, and mental health issues. The system is based on a wearable sensors network, which is connected to a computer or smartphone. The wearable sensor network integrates several wearable sensors that can measure different parameters such as body temperature, heart rate and carbon monoxide quantity from the air. After the portable sensors measuring parameter values, they are transmitted by microprocessor through the Bluetooth to the application developed on computer or smartphone, to be interpreted.

  13. Confederated Tribes Umatilla Indian Reservation (CTUIR) Umatilla Anadromous Fisheries Habitat Project : A Columbia River Basin Fish Habitat Project : Annual Report Fiscal Year 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Hoverson, Eric D.; Amonette, Alexandra

    2008-12-02

    The Umatilla Anadromous Fisheries Habitat Project (UAFHP) is an ongoing effort to protect, enhance, and restore riparian and instream habitat for the natural production of anadromous salmonids in the Umatilla River Basin, Northeast Oregon. Flow quantity, water temperature, passage, and lack of in-stream channel complexity have been identified as the key limiting factors in the basin. During the 2007 Fiscal Year (FY) reporting period (February 1, 2007-January 31, 2008) primary project activities focused on improving instream and riparian habitat complexity, migrational passage, and restoring natural channel morphology and floodplain function. Eight fisheries habitat enhancement projects were implemented on Meacham Creek, Camp Creek, Greasewood Creek, Birch Creek, West Birch Creek, and the Umatilla River. Specific restoration actions included: (1) rectifying five fish passage barriers on four creeks, (2) planting 1,275 saplings and seeding 130 pounds of native grasses, (3) constructing two miles of riparian fencing for livestock exclusion, (4) coordinating activities related to the installation of two off-channel, solar-powered watering areas for livestock, and (5) developing eight water gap access sites to reduce impacts from livestock. Baseline and ongoing monitoring and evaluation activities were also completed on major project areas such as conducting photo point monitoring strategies activities at the Meacham Creek Large Wood Implementation Project site (FY2006) and at all existing easements and planned project sites. Fish surveys and aquatic habitat inventories were conducted at project sites prior to implementation. Monitoring plans will continue throughout the life of each project to oversee progression and inspire timely managerial actions. Twenty-seven conservation easements were maintained with 23 landowners. Permitting applications for planned project activities and biological opinions were written and approved. Project activities were based on a variety

  14. Patient monitoring in mobile health: opportunities and challenges.

    Science.gov (United States)

    Mohammadzadeh, Niloofar; Safdari, Reza

    2014-01-01

    In most countries chronic diseases lead to high health care costs and reduced productivity of people in society. The best way to reduce costs of health sector and increase the empowerment of people is prevention of chronic diseases and appropriate health activities management through monitoring of patients. To enjoy the full benefits of E-health, making use of methods and modern technologies is very important. This literature review articles were searched with keywords like Patient monitoring, Mobile Health, and Chronic Disease in Science Direct, Google Scholar and Pub Med databases without regard to the year of publications. Applying remote medical diagnosis and monitoring system based on mobile health systems can help significantly to reduce health care costs, correct performance management particularly in chronic disease management. Also some challenges are in patient monitoring in general and specific aspects like threats to confidentiality and privacy, technology acceptance in general and lack of system interoperability with electronic health records and other IT tools, decrease in face to face communication between doctor and patient, sudden interruptions of telecommunication networks, and device and sensor type in specific aspect. It is obvious identifying the opportunities and challenges of mobile technology and reducing barriers, strengthening the positive points will have a significant role in the appropriate planning and promoting the achievements of the health care systems based on mobile and helps to design a roadmap for improvement of mobile health.

  15. Surface Habitat Systems

    Science.gov (United States)

    Kennedy, Kriss J.

    2009-01-01

    the 1) surface habitat concept definition, 2) inflatable surface habitat development, and 3) autonomous habitat operations, and 4) cross-cutting / systems engineering. In subsequent years, the SHS-FIG will solicit a call for innovations and technologies that will support the development of these four development areas. The other development areas will be assessed yearly and identified on the SHS-FIG s Strategic Development Roadmap. Initial investment projects that are funded by the Constellation Program Office (CxPO), LSSPO, or the Exploration Technology Development Projects (ETDP) will also be included on the Roadmap. For example, in one or two years from now, the autonomous habitat operations and testbed would collaborations with the Integrated Systems Health Management (ISHM) and Automation for Operations ETDP projects, which will give the surface habitat projects an integrated habitat autonomy testbed to test software and systems. The SHS-FIG scope is to provide focused direction for multiple innovations, technologies and subsystems that are needed to support humans at a remote planetary surface habitat during the concept development, design definition, and integration phases of that project. Subsystems include: habitability, lightweight structures, power management, communications, autonomy, deployment, outfitting, life support, wireless connectivity, lighting, thermal and more.

  16. Duck Valley Habitat Enhancement and Protection, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Dodson, Guy; Pero, Vincent (Shoshone-Paiute Nation, Duck Valley Indian Reservation, Owyhee, NV)

    2000-01-01

    The Duck Valley Indian Reservations' Habitat Enhancement project is an ongoing project designed to enhance and protect the critical riparian areas, natural springs, and native fish spawning areas on the Reservation. The project was begun in 1997 with the hiring of a fisheries biologist and the creation of a new department for the Tribes. The project's goals are to protect and enhance the springs, Owyhee River, its tributaries, and to develop a database that can be used by other fisheries professionals which includes information on water quality and fish composition, health, abundance, and genetic makeup. One habitat portion of the project is a focus on protection the numerous springs that provide clean, cool water to the Owyhee River. This will be accomplished through enclosure fences of the spring heads and water troughs to provide clean cool drinking water for wildlife and livestock. Another habitat portion of the project involves protecting headwater areas of streams with native fish populations. This is accomplished through enclosure fencing and riparian plantings on any eroded or degraded banks in the enclosure area. Finally, we monitor and evaluate the areas protected and enhanced. This is accomplished through biological sampling for temperature, Oxygen, sedimentation, and measurements of water depth, bank height and undercut, and width of stream. With the habitat and biological indices we will be able to evaluate how well protective measures are doing, and where to focus future efforts.

  17. Quantifying structural physical habitat attributes using LIDAR and hyperspectral imagery - PRK

    Science.gov (United States)

    Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecol...

  18. Mapping and modelling the habitat of giant pandas in Foping Nature Reserve, China

    OpenAIRE

    Liu, X.

    2001-01-01

    The fact that only about 1000 giant pandas and 29500 km2 of panda habitat are left in the west part of China makes it an urgent issue to save this endangered animal species and protect its habitat. For effective conservation of the giant panda and its habitat, a thorough evaluation of panda habitat and panda-habitat relationship based on each individual panda nature reserve is necessary and important. Mapping has been an effective approach for wildlife habitat evaluation and monitoring. There...

  19. Introduction to:Forest health monitoring program

    Science.gov (United States)

    Mark J. Ambrose

    2009-01-01

    This annual technical report is a product of the Forest Health Monitoring (FHM) Program. The report provides information about a variety of issues relating to forest health at a national scale. FHM national reports have the dual focus of presenting analyses of the latest available data and showcasing innovative techniques for analyzing forest health data. The report is...

  20. Enhancing and restoring habitat for the desert tortoise

    Science.gov (United States)

    Abella, Scott R.; Berry, Kristin H.

    2016-01-01

    Habitat has changed unfavorably during the past 150 y for the desert tortoise Gopherus agassizii, a federally threatened species with declining populations in the Mojave Desert and western Sonoran Desert. To support recovery efforts, we synthesized published information on relationships of desert tortoises with three habitat features (cover sites, forage, and soil) and candidate management practices for improving these features for tortoises. In addition to their role in soil health and facilitating recruitment of annual forage plants, shrubs are used by desert tortoises for cover and as sites for burrows. Outplanting greenhouse-grown seedlings, protected from herbivory, has successfully restored (>50% survival) a variety of shrubs on disturbed desert soils. Additionally, salvaging and reapplying topsoil using effective techniques is among the more ecologically beneficial ways to initiate plant recovery after severe disturbance. Through differences in biochemical composition and digestibility, some plant species provide better-quality forage than others. Desert tortoises selectively forage on particular annual and herbaceous perennial species (e.g., legumes), and forage selection shifts during the year as different plants grow or mature. Nonnative grasses provide low-quality forage and contribute fuel to spreading wildfires, which damage or kill shrubs that tortoises use for cover. Maintaining a diverse “menu” of native annual forbs and decreasing nonnative grasses are priorities for restoring most desert tortoise habitats. Reducing herbivory by nonnative animals, carefully timing herbicide applications, and strategically augmenting annual forage plants via seeding show promise for improving tortoise forage quality. Roads, another disturbance, negatively affect habitat in numerous ways (e.g., compacting soil, altering hydrology). Techniques such as recontouring road berms to reestablish drainage patterns, vertical mulching (“planting” dead plant material

  1. Walla Walla River Basin Fish Habitat Enhancement Project, 2001-2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-04-01

    In 2001, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. The CTUIR has currently enrolled six properties into this program: two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River. Since 1997, approximately 7 miles of critical salmonid habitat has been secured for restoration and protection under this project. Major accomplishments to date include the following: Secured approximately $250,000 in cost share; Secured 7 easements; Planted 30,000+ native plants; Installed 50,000+ cuttings; and Seeded 18 acres to native grass. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan. Basin-wide monitoring also included the deployment of 6 thermographs to collect summer stream temperatures.

  2. Assessing habitat selection when availability changes

    Science.gov (United States)

    Arthur, S.; Garner, G.; ,

    1996-01-01

    We present a method of comparing data on habitat use and availability that allows availability to differ among observations. This method is applicable when habitats change over time and when animals are unable to move throughout a predetermined study area between observations. We used maximum-likelihood techniques to derive an index that estimates the probability that each habitat type would be used if all were equally available. We also demonstrate how these indices can be used to compare relative use of available habitats, assign them ranks, and assess statistical differences between pairs of indices. The set of these indices for all habitats can be compared between groups of animals that represent different seasons, sex or age classes, or experimental treatments. This method allows quantitative comparisons among types and is not affected by arbitrary decisions about which habitats to include in the study. We provide an example by comparing the availability of four categories of sea ice concentration to their use by adult female polar bears, whose movements were monitored by satellite radio tracking in the Bering and Chukchi Seas during 1990. Use of ice categories by bears was nonrandom, and the pattern of use differed between spring and late summer seasons.

  3. Equity-Oriented Monitoring in the Context of Universal Health Coverage

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Bergen, Nicole; Koller, Theadora; Prasad, Amit; Schlotheuber, Anne; Valentine, Nicole; Lynch, John; Vega, Jeanette

    2014-01-01

    Monitoring inequalities in health is fundamental to the equitable and progressive realization of universal health coverage (UHC). A successful approach to global inequality monitoring must be intuitive enough for widespread adoption, yet maintain technical credibility. This article discusses methodological considerations for equity-oriented monitoring of UHC, and proposes recommendations for monitoring and target setting. Inequality is multidimensional, such that the extent of inequality may vary considerably across different dimensions such as economic status, education, sex, and urban/rural residence. Hence, global monitoring should include complementary dimensions of inequality (such as economic status and urban/rural residence) as well as sex. For a given dimension of inequality, subgroups for monitoring must be formulated taking into consideration applicability of the criteria across countries and subgroup heterogeneity. For economic-related inequality, we recommend forming subgroups as quintiles, and for urban/rural inequality we recommend a binary categorization. Inequality spans populations, thus appropriate approaches to monitoring should be based on comparisons between two subgroups (gap approach) or across multiple subgroups (whole spectrum approach). When measuring inequality absolute and relative measures should be reported together, along with disaggregated data; inequality should be reported alongside the national average. We recommend targets based on proportional reductions in absolute inequality across populations. Building capacity for health inequality monitoring is timely, relevant, and important. The development of high-quality health information systems, including data collection, analysis, interpretation, and reporting practices that are linked to review and evaluation cycles across health systems, will enable effective global and national health inequality monitoring. These actions will support equity-oriented progressive realization of UHC

  4. Structural health monitoring system/method using electroactive polymer fibers

    Science.gov (United States)

    Scott-Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor)

    2013-01-01

    A method for monitoring the structural health of a structure of interest by coupling one or more electroactive polymer fibers to the structure and monitoring the electroactive responses of the polymer fiber(s). Load changes that are experienced by the structure cause changes in the baseline responses of the polymer fiber(s). A system for monitoring the structural health of the structure is also provided.

  5. Structural health monitoring with a wireless vibration sensor network

    NARCIS (Netherlands)

    Basten, T.G.H.; Sas, P; Schiphorst, F.B.A.; Jonckheere, S.; Moens, D.

    2012-01-01

    Advanced maintenance strategies for infrastructure assets such as bridges or off shore wind turbines require actual and reliable information of the maintenance status. Structural health monitoring based on vibration sensing can help in supplying the input needed for structural health monitoring

  6. Passive acoustic monitoring using a towed hydrophone array results in identification of a previously unknown beaked whale habitat.

    Science.gov (United States)

    Yack, Tina M; Barlow, Jay; Calambokidis, John; Southall, Brandon; Coates, Shannon

    2013-09-01

    Beaked whales are diverse and species rich taxa. They spend the vast majority of their time submerged, regularly diving to depths of hundreds to thousands of meters, typically occur in small groups, and behave inconspicuously at the surface. These factors make them extremely difficult to detect using standard visual survey methods. However, recent advancements in acoustic detection capabilities have made passive acoustic monitoring (PAM) a viable alternative. Beaked whales can be discriminated from other odontocetes by the unique characteristics of their echolocation clicks. In 2009 and 2010, PAM methods using towed hydrophone arrays were tested. These methods proved highly effective for real-time detection of beaked whales in the Southern California Bight (SCB) and were subsequently implemented in 2011 to successfully detect and track beaked whales during the ongoing Southern California Behavioral Response Study. The three year field effort has resulted in (1) the successful classification and tracking of Cuvier's (Ziphius cavirostris), Baird's (Berardius bairdii), and unidentified Mesoplodon beaked whale species and (2) the identification of areas of previously unknown beaked whale habitat use. Identification of habitat use areas will contribute to a better understanding of the complex relationship between beaked whale distribution, occurrence, and preferred habitat characteristics on a relatively small spatial scale. These findings will also provide information that can be used to promote more effective management and conservation of beaked whales in the SCB, a heavily used Naval operation and training region.

  7. Balancing habitat delivery for breeding marsh birds and nonbreeding waterfowl: An integrated waterbird management and monitoring approach at Clarence Cannon National Wildlife Refuge, Missouri

    Science.gov (United States)

    Loges, Brian W.; Lyons, James E.; Tavernia, Brian G.

    2017-08-23

    The Clarence Cannon National Wildlife Refuge (CCNWR) in the Mississippi River flood plain of eastern Missouri provides high quality emergent marsh and moist-soil habitat benefitting both nesting marsh birds and migrating waterfowl. Staff of CCNWR manipulate water levels and vegetation in the 17 units of the CCNWR to provide conditions favorable to these two important guilds. Although both guilds include focal species at multiple planning levels and complement objectives to provide a diversity of wetland community types and water regimes, additional decision support is needed for choosing how much emergent marsh and moist-soil habitat should be provided through annual management actions.To develop decision guidance for balanced delivery of high-energy waterfowl habitat and breeding marsh bird habitat, two measureable management objectives were identified: nonbreeding Anas Linnaeus (dabbling duck) use-days and Rallus elegans (king rail) occupancy of managed units. Three different composite management actions were identified to achieve these objectives. Each composite management action is a unique combination of growing season water regime and soil disturbance. The three composite management actions are intense moist-soil management (moist-soil), intermediate moist-soil (intermediate), and perennial management, which idles soils disturbance (perennial). The two management objectives and three management options were used in a multi-criteria decision analysis to indicate resource allocations and inform annual decision making. Outcomes of the composite management actions were predicted in two ways and multi-criteria decision analysis was used with each set of predictions. First, outcomes were predicted using expert-elicitation techniques and a panel of subject matter experts. Second, empirical data from the Integrated Waterbird Management and Monitoring Initiative collected between 2010 and 2013 were used; where data were lacking, expert judgment was used. Also, a

  8. Monitoring the habitat use of common Bottlenose Dolphins (Tursiops truncatus using passive acoustics in a Mediterranean marine protected area

    Directory of Open Access Journals (Sweden)

    G. LA MANNA

    2014-03-01

    Full Text Available The Mediterranean Tursiops truncatus subpopulation has been classified as Vulnerable on the IUCN Red List because of its decline. This species in coastal areas is exposed to a wide variety of threats: directed kills, bycatch, reduced prey availability caused by environmental degradation and overfishing, habitat degradation including disturbances from boat traffic and noise. Despite the increase in boat traffic in the Mediterranean Sea, the effect on T. truncatus’ habitat use has been studied in little detail and few data have been published. This study represents the first attempt to characterise spatial and temporal habitat use by T. truncatus and its relation to boat traffic in the Isole Pelagie Marine Protected Area (Italy on the basis of an originally developed passive acoustic monitoring system (PAM. The devices were deployed in 2 areas in the southern waters of Lampedusa, during 2 separate years (2006 and 2009, each time for 3 months (from July to September and in 6 time slots (3 diurnal and 3 nocturnal. Acoustic analysis showed that T. truncatus used the Southern coastal area of Lampedusa independently of the year, primarily during the early summer, a period coinciding with the peak of calving season. Dolphin occurrences appeared independent of boat traffic, with the exception of the smallest temporal scale (time slots: dolphin occurrences were more prevalent during the night when the level of boat traffic was lower. This study provides evidence on T. truncatus habitat use in the Mediterranean Sea and reveals that boat traffic could be one of the factors influencing it, thus stressing the need for further detailed investigation regarding this topic.

  9. Integration of European habitat monitoring based on plant life form composition as an indicator of environmental change and change in biodiversity

    DEFF Research Database (Denmark)

    Bloch-Petersen, Margit; Brandt, Jesper; Olsen, Martin

    2006-01-01

      During the last 25 years a number of European countries have developed general landscape monitoring systems. In the agricultural landscapes of Denmark the Small Biotope Monitoring Program (SBMP), which focuses on the dynamics of small biotopes and their relation to changes in agricultural...... led to the re-introduction of Raunkiaer's plant life form concept. This approach enables the indication of changes in biodiversity based on alterations in general habitat composition and quality. Although the objectives of the SBMP and the BioHab projects have been somewhat different......, the methodologies have much in common. In this paper the background and perspectives of the two approaches are discussed, and a test of the BioHab field methodology in an area previously monitored by the SBMP is presented. It was found not to be difficult to integrate the BioHab field recording methodology...

  10. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2002 Data Report.

    Energy Technology Data Exchange (ETDEWEB)

    Cope, R.S. [Westslope Fisheries, Cranbrook, BC, Canada

    2003-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Water, Land, and Air Protection (MWLAP), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenay they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MWLAP applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that were undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  11. Principles in wireless building health monitoring systems.

    Science.gov (United States)

    Pentaris, F. P.; Makris, J. P.; Stonham, J.; Vallianatos, F.

    2012-04-01

    Monitoring the structural state of a building is essential for the safety of the people who work, live, visit or just use it as well as for the civil protection of urban areas. Many factors can affect the state of the health of a structure, namely man made, like mistakes in the construction, traffic, heavy loads on the structures, explosions, environmental impacts like wind loads, humidity, chemical reactions, temperature changes and saltiness, and natural hazards like earthquakes and landslides. Monitoring the health of a structure provides the ability to anticipate structural failures and secure the safe use of buildings especially those of public services. This work reviews the state of the art and the challenges of a wireless Structural Health Monitoring (WiSHM). Literature review reveals that although there is significant evolution in wireless structural health monitoring, in many cases, monitoring by itself is not enough to predict when a structure becomes inappropriate and/or unsafe for use, and the damage or low durability of a structure cannot be revealed (Chintalapudi, et al., 2006; Ramos, Aguilar, & Lourenço, 2011). Several features and specifications of WiSHM like wireless sensor networking, reliability and autonomy of sensors, algorithms of data transmission and analysis should still be evolved and improved in order to increase the predictive effectiveness of the SHM (Jinping Ou & Hui Li, 2010; Lu & Loh, 2010) . Acknowledgments This work was supported in part by the ARCHEMEDES III Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled «Interdisciplinary Multi-Scale Research of Earthquake Physics and Seismotectonics at the front of the Hellenic Arc (IMPACT-ARC) ».

  12. Recent Developments on Wireless Sensor Networks Technology for Bridge Health Monitoring

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2013-01-01

    Full Text Available Structural health monitoring (SHM systems have shown great potential to sense the responses of a bridge system, diagnose the current structural conditions, predict the expected future performance, provide information for maintenance, and validate design hypotheses. Wireless sensor networks (WSNs that have the benefits of reducing implementation costs of SHM systems as well as improving data processing efficiency become an attractive alternative to traditional tethered sensor systems. This paper introduces recent technology developments in the field of bridge health monitoring using WSNs. As a special application of WSNs, the requirements and characteristics of WSNs when used for bridge health monitoring are firstly briefly discussed. Then, the state of the art in WSNs-based bridge health monitoring systems is reviewed including wireless sensor, network topology, data processing technology, power management, and time synchronization. Following that, the performance validations and applications of WSNs in bridge health monitoring through scale models and field deployment are presented. Finally, some existing problems and promising research efforts for promoting applications of WSNs technology in bridge health monitoring throughout the world are explored.

  13. [Monitoring system on prison health: feasibility and recommendations].

    Science.gov (United States)

    Develay, Aude-Emmanuelle; Verdot, Charlotte; Grémy, Isabelle

    2015-01-01

    This article presents the results of two studies designed to define the feasibility and framework of the future prison health monitoring system in France. The objective of the first study was to obtain the points of view of professionals involved in prison health and the second study was designed to assess the feasibility of using prisoner's medical files for epidemiological purposes. The point of view of various professionals was collected by questionnaire sent to 43 randomly selected prison physicians and by 22 semi-directive interviews. The feasibility study was based on analysis of the medical files of 330 randomly selected prisoners in eleven prisons chosen in order to reflect the diversity of correctional settings and prison populations. Additional interviews were conducted with the medical staff of these prison facilities. There is a consensus on the need to monitor prison health, but there are contrasting views on data collection methods (surveys or routinely collected data]. The feasibility study also showed that the implementation of a prison health monitoring system based on routinely collected data from prisoner's medical records was not feasible at the present time in France. In the light of these findings, it is recommended to initially develop a monitoring system based on regular nationwide surveys, while pursuing computerization and standardization of health data in prison.

  14. Ecological Monitoring and Compliance Program 2008 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Dennis J.; Anderson, David C.; Hall, Derek B.; Greger, Paul D.; Ostler, W. Kent

    2009-04-30

    The Ecological Monitoring and Compliance Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2008. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC).

  15. Forest health monitoring in the United States: focus on national reports

    Science.gov (United States)

    Kurt Riitters; Kevin Potter

    2013-01-01

    The health and sustainability of United States forests have been monitored for many years from several different perspectives. The national Forest Health Monitoring (FHM) Program was established in 1990 by Federal and State agencies to develop a national system for monitoring and reporting on the status and trends of forest ecosystem health. We describe and illustrate...

  16. Idaho Habitat Evaluation for Off-Site Mitigation Record : Annual Report 1987.

    Energy Technology Data Exchange (ETDEWEB)

    Petrosky, Charles E.; Holubetz, Terry B. (Idaho Dept. of Fish and Game, Boise, ID (USA)

    1988-04-01

    The Idaho Department of Fish and Game has been monitoring and evaluating existing and proposed habitat improvement projects for steelhead (Salmo gairdneri) and chinook salmon (Oncorhynchus tshawytscha) in the Clearwater and Salmon River drainages over the last four years. Projects included in the evaluation are funded by, or proposed for funding by, the Bonneville Power Administration (BPA) under the Northwest Power Planning Act as off-site mitigation for downstream hydropower development on the Snake and Columbia rivers. A mitigation record is being developed to use increased smolt production at full seeding as the best measure of benefit from a habitat enhancement project. Determination of full benefit from a project depends on presence of adequate numbers of fish to document actual increases in fish production. The depressed nature of upriver anadromous stocks have precluded attainment of full benefit of any habitat project in Idaho. Partial benefit will be credited to the mitigation record in the interim period of run restoration. According to the BPA Work Plan, project implementors have the primary responsibility for measuring physical habitat and estimating habitat change. To date, Idaho habitat projects have been implemented primarily by the US Forest Service (USFS). The Shoshone-Bannock Tribes (SBT) have sponsored three projects (Bear Valley Mine, Yankee Fork, and the proposed East Fork Salmon River projects). IDFG implemented two barrier-removal projects (Johnson Creek and Boulder Creek) that the USFS was unable to sponsor at that time. The role of IDFG in physical habitat monitoring is primarily to link habitat quality and habitat change to changes in actual, or potential, fish production. Individual papers were processed separately for the data base.

  17. Puget Sound Intertidal Habitat Inventory; Puget Sound Ambient Monitoring Program, 1996 (NODC Accession 9900221)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Puget Sound's intertidal areas provide habitat for species of commercial, recreational, biotic, and aesthetic value. Habitat is a critical ecosystem component -- it...

  18. Climate change and tree-line ecosystems in the Sierra Nevada: Habitat suitability modelling to inform high-elevation forest dynamics monitoring

    Science.gov (United States)

    Moore, Peggy E.; Alvarez, Otto; McKinney, Shawn T.; Li, Wenkai; Brooks, Matthew L.; Guo, Qinghua

    2017-01-01

    Whitebark pine and foxtail pine serve foundational roles in the subalpine zone of the Sierra Nevada. They provide the dominant structure in tree-line forests and regulate key ecosystem processes and community dynamics. Climate change models suggest that there will be changes in temperature regimes and in the timing and magnitude of precipitation within the current distribution of these species, and these changes may alter the species’ distributional limits. Other stressors include the non-native pathogen white pine blister rust and mountain pine beetle, which have played a role in the decline of whitebark pine throughout much of its range. The National Park Service is monitoring status and trends of these species. This report provides complementary information in the form of habitat suitability models to predict climate change impacts on the future distribution of these species within Sierra Nevada national parks.We used maximum entropy modeling to build habitat suitability models by relating species occurrence to environmental variables. Species occurrence was available from 328 locations for whitebark pine and 244 for foxtail pine across the species’ distributions within the parks. We constructed current climate surfaces for modeling by interpolating data from weather stations. Climate surfaces included mean, minimum, and maximum temperature and total precipitation for January, April, July, and October. We downscaled five general circulation models for the 2050s and the 2090s from ~125 km2 to 1 km2 under both an optimistic and an extreme climate scenario to bracket potential climatic change and its influence on projected suitable habitat. To describe anticipated changes in the distribution of suitable habitat, we compared, for each species, climate scenario, and time period, the current models with future models in terms of proportional change in habitat size, elevation distribution, model center points, and where habitat is predicted to expand or contract

  19. Forest health monitoring: 2007 national technical report

    Science.gov (United States)

    Barbara L. Conkling

    2011-01-01

    The Forest Health Monitoring Program produces an annual technical report that has two main objectives. The first objective is to present information about forest health from a national perspective. The second objective is to present examples of useful techniques for analyzing forest health data new to the annual national reports and new applications of techniques...

  20. Forest health monitoring: 2009 national technical report

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2012-01-01

    The annual national technical report of the Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  1. Lower Klickitat Riparian and In-channel Habitat Restoration Project, Annual Report 2001-2002.

    Energy Technology Data Exchange (ETDEWEB)

    Conley, Will

    2003-10-01

    This project focuses on the lower Klickitat River and its tributaries that provide or affect salmonid habitat. The overall goal is to restore watershed health to aid recovery of salmonid stocks in the Klickitat subbasin. An emphasis is placed on restoration and protection of watersheds supporting anadromous fish production, particularly steelhead (Oncorhyncus mykiss) which are listed as 'Threatened' within the Mid-Columbia ESU. Restoration activities are aimed at restoring stream processes by removing or mitigating watershed perturbances and improving habitat conditions and water quality. In addition to steelhead, habitat improvements benefit Chinook (O. tshawytscha) and coho (O. kisutch) salmon, resident rainbow trout, and enhance habitat for many terrestrial and amphibian wildlife species. Protection activities compliment restoration efforts within the subbasin by securing refugia and preventing degradation. Since 90% of the project area is in private ownership, maximum effectiveness will be accomplished via cooperation with state, federal, tribal, and private entities. The project addresses goals and objectives presented in the Klickitat Subbasin Summary and the 1994 NWPPC Fish and Wildlife Program. Feedback from the 2000 Provincial Review process indicated a need for better information management to aid development of geographic priorities. Thus, an emphasis has been placed on database development and a review of existing information prior to pursuing more extensive implementation. Planning and design was initiated on several restoration projects. These priorities will be refined in future reports as the additional data is collected and analyzed. Tasks listed are for the April 1, 2001 to August 31, 2002 contract cycle, for which work was delayed during the summer of 2001 because the contract was not finalized until mid-August 2001. Accomplishments are provided for the September 1, 2001 to August 31, 2002 reporting period. During this reporting period

  2. NEFSC Benthic Habitat Survey (AL0304, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This survey will collect benthic samples using acoustics, nets, and grab samplers. The survey will monitor and map the geological, physical, and biological habitats...

  3. A synthesis of evaluation monitoring projects by the forest health monitoring program (1998-2007)

    Science.gov (United States)

    William A. Bechtold; Michael J. Bohne; Barbara L. Conkling; Dana L. Friedman

    2012-01-01

    The national Forest Health Monitoring Program of the Forest Service, U.S. Department of Agriculture, has funded over 200 Evaluation Monitoring projects. Evaluation Monitoring is designed to verify and define the extent of deterioration in forest ecosystems where potential problems have been identified. This report is a synthesis of results from over 150 Evaluation...

  4. Monitoring intervention coverage in the context of universal health coverage.

    Directory of Open Access Journals (Sweden)

    Ties Boerma

    2014-09-01

    Full Text Available Monitoring universal health coverage (UHC focuses on information on health intervention coverage and financial protection. This paper addresses monitoring intervention coverage, related to the full spectrum of UHC, including health promotion and disease prevention, treatment, rehabilitation, and palliation. A comprehensive core set of indicators most relevant to the country situation should be monitored on a regular basis as part of health progress and systems performance assessment for all countries. UHC monitoring should be embedded in a broad results framework for the country health system, but focus on indicators related to the coverage of interventions that most directly reflect the results of UHC investments and strategies in each country. A set of tracer coverage indicators can be selected, divided into two groups-promotion/prevention, and treatment/care-as illustrated in this paper. Disaggregation of the indicators by the main equity stratifiers is critical to monitor progress in all population groups. Targets need to be set in accordance with baselines, historical rate of progress, and measurement considerations. Critical measurement gaps also exist, especially for treatment indicators, covering issues such as mental health, injuries, chronic conditions, surgical interventions, rehabilitation, and palliation. Consequently, further research and proxy indicators need to be used in the interim. Ideally, indicators should include a quality of intervention dimension. For some interventions, use of a single indicator is feasible, such as management of hypertension; but in many areas additional indicators are needed to capture quality of service provision. The monitoring of UHC has significant implications for health information systems. Major data gaps will need to be filled. At a minimum, countries will need to administer regular household health surveys with biological and clinical data collection. Countries will also need to improve the

  5. Wearable Health Monitoring Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  6. Wearable Health Monitoring Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to demonstrate the feasibility of producing a wearable health monitoring system for the human body that is functional, comfortable,...

  7. Application of near field communication for health monitoring in daily life.

    Science.gov (United States)

    Strömmer, Esko; Kaartinen, Jouni; Pärkkä, Juha; Ylisaukko-Oja, Arto; Korhonen, Ilkka

    2006-01-01

    We study the possibility of applying an emerging RFID-based communication technology, NFC (Near Field Communication), to health monitoring. We suggest that NFC is, compared to other competing technologies, a high-potential technology for short-range connectivity between health monitoring devices and mobile terminals. We propose practices to apply NFC to some health monitoring applications and study the benefits that are attainable with NFC. We compare NFC to other short-range communication technologies such as Bluetooth and IrDA, and study the possibility of improving the usability of health monitoring devices with NFC. We also introduce a research platform for technical evaluation, applicability study and application demonstrations of NFC.

  8. Trapping Triatominae in Silvatic Habitats

    Directory of Open Access Journals (Sweden)

    Noireau François

    2002-01-01

    Full Text Available Large-scale trials of a trapping system designed to collect silvatic Triatominae are reported. Live-baited adhesive traps were tested in various ecosystems and different triatomine habitats (arboreal and terrestrial. The trials were always successful, with a rate of positive habitats generally over 20% and reaching 48.4% for palm trees of the Amazon basin. Eleven species of Triatominae belonging to the three genera of public health importance (Triatoma, Rhodnius and Panstrongylus were captured. This trapping system provides an effective way to detect the presence of triatomines in terrestrial and arboreal silvatic habitats and represents a promising tool for ecological studies. Various lines of research are contemplated to improve the performance of this trapping system.

  9. Sampling uncharted waters: Examining rearing habitat of larval Longfin Smelt (Spirinchus thaleichthys) in the upper San Francisco Estuary

    Science.gov (United States)

    Grimaldo, Lenny; Feyrer, Frederick; Burns, Jillian; Maniscalco, Donna

    2017-01-01

    The southern-most reproducing Longfin Smelt population occurs in the San Francisco Estuary, California, USA. Long-term monitoring of estuarine habitat for this species has generally only considered deep channels, with little known of the role shallow waters play in supporting their early life stage. To address the need for focused research on shallow-water habitat, a targeted study of Longfin Smelt larvae in littoral habitat was conducted to identify potential rearing habitats during 2013 and 2014. Our study objectives were to (1) determine if larval densities vary between littoral habitats (tidal slough vs. open-water shoal), (2) determine how larval densities in littoral habitats vary with physicochemical and biological attributes, (3) determine if larval densities vary between littoral habitats and long-term monitoring channel collections, and (4) determine what factors predict larval rearing distributions from the long-term monitoring channel collections. Larval densities did not vary between littoral habitats but they did vary between years. Water temperature, salinity, and chlorophyll a were found important in predicting larval densities in littoral habitats. Larval densities do not vary between littoral and channel surveys; however, the analysis based on channel data suggests that Longfin Smelt are hatching and rearing in a much broader region and under higher salinities (∼2–12 psu) than previously recognized. Results of this study indicate that conservation efforts should consider how freshwater flow, habitat, climate, and food webs interact as mechanisms that influence Longfin Smelt recruitment in estuarine environments.

  10. Monitoring 'monitoring' and evaluating 'evaluation': an ethical framework for monitoring and evaluation in public health.

    Science.gov (United States)

    Gopichandran, Vijayaprasad; Indira Krishna, Anil Kumar

    2013-01-01

    Monitoring and evaluation (M&E) is an essential part of public health programmes. Since M&E is the backbone of public health programmes, ethical considerations are important in their conduct. Some of the key ethical considerations are avoiding conflicts of interest, maintaining independence of judgement, maintaining fairness, transparency, full disclosure, privacy and confidentiality, respect, responsibility, accountability, empowerment and sustainability. There are several ethical frameworks in public health, but none focusing on the monitoring and evaluation process. There is a need to institutionalise the ethical review of M&E proposals. A theoretical framework for ethical considerations is proposed in this paper. This proposed theoretical framework can act as the blueprint for building the capacity of ethics committees to review M&E proposals. A case study is discussed in this context. After thorough field testing, this practical and field-based ethical framework can be widely used by donor agencies, M&E teams, institutional review boards and ethics committees.

  11. Characterization and Monitoring Data for Evaluating Constructed Emergent Sandbar Habitat in the Missouri River Mainstem 2004-2009

    Energy Technology Data Exchange (ETDEWEB)

    Duberstein, Corey A.

    2011-04-01

    The U.S. Army Corps of Engineers (Corps) provides the primary operational management of the Missouri River Main Stem Reservoir System. Management of the Missouri River has generally reduced peak river flows that form and maintain emergent sandbar habitat. Emergent sandbars provide non-vegetated nesting habitat for the endangered interior least tern (Sternula antillarum athalassos) and the threatened Northern Great Plains piping plover (Charadrius melodus). Since 2000, piping plover nesting habitat within the Gavins Point Reach, Garrison Reach, Lake Oahe, and Lake Sakakawea has fledged the majority of piping plovers produced along the Missouri River system. Habitats within Lewis and Clark Lake have also recently become important plover production areas. Mechanical construction of emergent sandbar habitat (ESH) within some of these reaches within the Missouri River began in 2004. Through 2009, 11 sandbar complexes had been constructed (10 in Gavins Point Reach, 1 in Lewis and Clarke Lake) totaling about 543 ac of piping plover and interior least tern nesting habitat. ESH Construction has resulted in a net gain of tern and plover nesting habitat. Both terns and plovers successfully nest and fledge young on constructed sandbars, and constructed habitats were preferred over natural habitats. Natural processes may limit the viability of constructed sandbars as nesting habitat. Continued research is needed to identify if changes in constructed sandbar engineering and management increase the length of time constructed habitats effectively function as nesting habitat. However, the transfer of information from researchers to planners through technical research reports may not be timely enough to effectively foster the feedback mechanisms of an adaptive management strategy.

  12. Assessing the value of structural health monitoring

    DEFF Research Database (Denmark)

    Thöns, S.; Faber, Michael Havbro

    2013-01-01

    Structural Health Monitoring (SHM) systems are designed for assisting owners and operators with information and forecasts concerning the fitness for purpose of structures and building systems. The benefit associated with the implementation of SHM may in some cases be intuitively anticipated...... as their responses and performances over their life-cycle. In addition, the quality of monitoring and the performance of possible remedial actions triggered by monitoring results are modeled probabilistically.The consequences accounted for, in principle include all consequences associated with the performance...

  13. Use of microcomputers for planning and managing silviculture habitat relationships.

    Science.gov (United States)

    B.G. Marcot; R.S. McNay; R.E. Page

    1988-01-01

    Microcomputers aid in monitoring, modeling, and decision support for integrating objectives of silviculture and wildlife habitat management. Spreadsheets, data bases, statistics, and graphics programs are described for use in monitoring. Stand growth models, modeling languages, area and geobased information systems, and optimization models are discussed for use in...

  14. Mobile Patient Monitoring: the MobiHealth System

    NARCIS (Netherlands)

    Konstantas, D.; van Halteren, Aart; Bults, Richard G.A.; Wac, K.E.; Widya, I.A.; Dokovski, N.T.; Jones, Valerie M.; Dokovsky, Nicolai; Koprinkov, G.T.; Herzog, Rainer; Bos, L.; Laxminarayan, S.

    2004-01-01

    The forthcoming wide availability of high bandwidth public wireless networks will give rise to new mobile health care services. Towards this direction the MobiHealth1 project has developed and trialed a highly customisable vital signals’ monitoring system based on a Body Area Network (BAN) and an

  15. Scoping review: national monitoring frameworks for social determinants of health and health equity

    Directory of Open Access Journals (Sweden)

    Leo Pedrana

    2016-02-01

    Full Text Available Background: The strategic importance of monitoring social determinants of health (SDH and health equity and inequity has been a central focus in global discussions around the 2011 Rio Political Declaration on SDH and the Millennium Development Goals. This study is part of the World Health Organization (WHO equity-oriented analysis of linkages between health and other sectors (EQuAL project, which aims to define a framework for monitoring SDH and health equity. Objectives: This review provides a global summary and analysis of the domains and indicators that have been used in recent studies covering the SDH. These studies are considered here within the context of indicators proposed by the WHO EQuAL project. The objectives are as follows: to describe the range of international and national studies and the types of indicators most frequently used; report how they are used in causal explanation of the SDH; and identify key priorities and challenges reported in current research for national monitoring of the SDH. Design: We conducted a scoping review of published SDH studies in the PubMed® database to obtain evidence of socio-economic indicators. We evaluated, selected, and extracted data from national scale studies published from 2004 to 2014. The research included papers published in English, Italian, French, Portuguese, and Spanish. Results: The final sample consisted of 96 articles. SDH monitoring is well reported in the scientific literature independent of the economic level of the country and magnitude of deprivation in population groups. The research methods were mostly quantitative and many papers used multilevel and multivariable statistical analyses and indexes to measure health inequalities and SDH. In addition to the usual economic indicators, a high number of socio-economic indicators were used. The indicators covered a broad range of social dimensions, which were given consideration within and across different social groups. Many

  16. Scoping review: national monitoring frameworks for social determinants of health and health equity.

    Science.gov (United States)

    Pedrana, Leo; Pamponet, Marina; Walker, Ruth; Costa, Federico; Rasella, Davide

    2016-01-01

    The strategic importance of monitoring social determinants of health (SDH) and health equity and inequity has been a central focus in global discussions around the 2011 Rio Political Declaration on SDH and the Millennium Development Goals. This study is part of the World Health Organization (WHO) equity-oriented analysis of linkages between health and other sectors (EQuAL) project, which aims to define a framework for monitoring SDH and health equity. This review provides a global summary and analysis of the domains and indicators that have been used in recent studies covering the SDH. These studies are considered here within the context of indicators proposed by the WHO EQuAL project. The objectives are as follows: to describe the range of international and national studies and the types of indicators most frequently used; report how they are used in causal explanation of the SDH; and identify key priorities and challenges reported in current research for national monitoring of the SDH. We conducted a scoping review of published SDH studies in the PubMed(®) database to obtain evidence of socio-economic indicators. We evaluated, selected, and extracted data from national scale studies published from 2004 to 2014. The research included papers published in English, Italian, French, Portuguese, and Spanish. The final sample consisted of 96 articles. SDH monitoring is well reported in the scientific literature independent of the economic level of the country and magnitude of deprivation in population groups. The research methods were mostly quantitative and many papers used multilevel and multivariable statistical analyses and indexes to measure health inequalities and SDH. In addition to the usual economic indicators, a high number of socio-economic indicators were used. The indicators covered a broad range of social dimensions, which were given consideration within and across different social groups. Many indicators included in the WHO EQuAL framework were not

  17. Efficient color correction method for smartphone camera-based health monitoring application.

    Science.gov (United States)

    Duc Dang; Chae Ho Cho; Daeik Kim; Oh Seok Kwon; Jo Woon Chong

    2017-07-01

    Smartphone health monitoring applications are recently highlighted due to the rapid development of hardware and software performance of smartphones. However, color characteristics of images captured by different smartphone models are dissimilar each other and this difference may give non-identical health monitoring results when the smartphone health monitoring applications monitor physiological information using their embedded smartphone cameras. In this paper, we investigate the differences in color properties of the captured images from different smartphone models and apply a color correction method to adjust dissimilar color values obtained from different smartphone cameras. Experimental results show that the color corrected images using the correction method provide much smaller color intensity errors compared to the images without correction. These results can be applied to enhance the consistency of smartphone camera-based health monitoring applications by reducing color intensity errors among the images obtained from different smartphones.

  18. Walla Walla River Basin Fish Habitat Enhancement Project, 2000-2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Volkman, Jed; Sexton, Amy D. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2001-01-01

    In 2000, the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) Fisheries Habitat Program implemented stream habitat restoration and protection efforts in the Walla Walla River Basin with funding from Bonneville Power Administration (BPA). The objective of these efforts is to protect and restore habitat critical to the recovery of weak or reintroduced populations of salmonid fish. Six projects, two on Couse Creek, two adjacent properties on Blue Creek, one on Patit Creek, and one property on the mainstem Walla Walla River were part of the exercise. Several thousand native plants as bare-root stock and cuttings were reintroduced to the sites and 18 acres of floodplain corridor was seeded with native grass seed. Pre and post-project monitoring efforts were included for all projects, incorporating methodologies from CTUIR's Draft Monitoring Plan.

  19. Wigwam River juvenile bull trout and fish habitat monitoring program: 2000 data report; TOPICAL

    International Nuclear Information System (INIS)

    Cope, R.S.; Morris, K.J.

    2001-01-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00)

  20. Real-Time Water Quality Monitoring and Habitat Assessment in theSan Luis National Wildlife Refuge

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Nigel W.T.; Hanlon, Jeremy S.; Burns, Josephine R.; Stromayer, Karl A.K.; Jordan, Brandon M.; Ennis, Mike J.; Woolington,Dennis W.

    2005-08-28

    The project report describes a two year experiment to control wetland drainage to the San Joaquin River of California from the San Luis National Wildlife Refuge using a decision support system for real-time water quality management. This system required the installation and operation of one inlet and three drainage flow and water quality monitoring stations which allowed a simple mass balance model to be developed of the seasonally managed wetlands in the study area. Remote sensing methods were developed to document long-term trends in wetland moist soil vegetation and soil salinity in response to management options such as delaying the initiation of seasonal wetland drainage. These environmental management tools provide wetland managers with some of the tools necessary to improve salinity conditions in the San Joaquin River and improve compliance with State mandated salinity objectives without inflicting long-term harm on the wild fowl habitat resource.

  1. Integrating Social Media Monitoring Into Public Health Emergency Response Operations.

    Science.gov (United States)

    Hadi, Tamer A; Fleshler, Keren

    2016-10-01

    Social media monitoring for public health emergency response and recovery is an essential response capability for any health department. The value of social media for emergency response lies not only in the capacity to rapidly communicate official and critical incident information, but as a rich source of incoming data that can be gathered to inform leadership decision-making. Social media monitoring is a function that can be formally integrated into the Incident Command System of any response agency. The approach to planning and required resources, such as staffing, logistics, and technology, is flexible and adaptable based on the needs of the agency and size and scope of the emergency. The New York City Department of Health and Mental Hygiene has successfully used its Social Media Monitoring Team during public health emergency responses and planned events including major Ebola and Legionnaires' disease responses. The concepts and implementations described can be applied by any agency, large or small, interested in building a social media monitoring capacity. (Disaster Med Public Health Preparedness. 2016;page 1 of 6).

  2. Ecological Monitoring and Compliance Program 2009 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, J. Dennis; Anderson, David C.; Hall, Derek B.; Greger, Paul D.; Ostler, W. Kent

    2010-07-13

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC, during calendar year 2009. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex. During 2009, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  3. Deep Space Habitat Wireless Smart Plug

    Science.gov (United States)

    Morgan, Joseph A.; Porter, Jay; Rojdev, Kristina; Carrejo, Daniel B.; Colozza, Anthony J.

    2014-01-01

    NASA has been interested in technology development for deep space exploration, and one avenue of developing these technologies is via the eXploration Habitat (X-Hab) Academic Innovation Challenge. In 2013, NASA's Deep Space Habitat (DSH) project was in need of sensors that could monitor the power consumption of various devices in the habitat with added capability to control the power to these devices for load shedding in emergency situations. Texas A&M University's Electronic Systems Engineering Technology Program (ESET) in conjunction with their Mobile Integrated Solutions Laboratory (MISL) accepted this challenge, and over the course of 2013, several undergraduate students in a Capstone design course developed five wireless DC Smart Plugs for NASA. The wireless DC Smart Plugs developed by Texas A&M in conjunction with NASA's Deep Space Habitat team is a first step in developing wireless instrumentation for future flight hardware. This paper will further discuss the X-Hab challenge and requirements set out by NASA, the detailed design and testing performed by Texas A&M, challenges faced by the team and lessons learned, and potential future work on this design.

  4. Device-based monitoring in physical activity and public health research

    International Nuclear Information System (INIS)

    Bassett, David R

    2012-01-01

    Measurement of physical activity is important, given the vital role of this behavior in physical and mental health. Over the past quarter of a century, the use of small, non-invasive, wearable monitors to assess physical activity has become commonplace. This review is divided into three sections. In the first section, a brief history of physical activity monitoring is provided, along with a discussion of the strengths and weaknesses of different devices. In the second section, recent applications of physical activity monitoring in physical activity and public health research are discussed. Wearable monitors are being used to conduct surveillance, and to determine the extent and distribution of physical activity and sedentary behaviors in populations around the world. They have been used to help clarify the dose–response relation between physical activity and health. Wearable monitors that provide feedback to users have also been used in longitudinal interventions to motivate research participants and to assess their compliance with program goals. In the third section, future directions for research in physical activity monitoring are discussed. It is likely that new developments in wearable monitors will lead to greater accuracy and improved ease-of-use. (paper)

  5. Assessment of giant panda habitat based on integration of expert system and neural network

    NARCIS (Netherlands)

    Liu, X.; Skidmore, A.K.; Bronsveld, M.C.

    2006-01-01

    To conserve giant panda effectively, it is important to understand the spatial pattern and temporal change of its habitat. Mapping is an effective approach for wildlife habitat evaluation and monitoring. The application of recently developed artificial intelligence tools, including expert systems

  6. Three-Dimensional Health Monitoring of Sandwich Composites, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project delivers a single-chip structural health-monitoring (SHM) system that uses the impedance method to monitor bulk interiors and wave propagation...

  7. Bat habitat research. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Keller, B.L.; Bosworth, W.R.; Doering, R.W.

    1993-12-31

    This progress report describes activities over the current reporting period to characterize the habitats of bats on the INEL. Research tasks are entitled Monitoring bat habitation of caves on the INEL to determine species present, numbers, and seasons of use; Monitor bat use of man-made ponds at the INEL to determine species present and rates of use of these waters; If the Big Lost River is flowing on the INEL and/or if the Big Lost River sinks contain water, determine species present, numbers and seasons of use; Determine the habitat requirement of Townsend`s big-eared bats, including the microclimate of caves containing Townsend`s big-eared bats as compared to other caves that do not contain bats; Determine and describe an economical and efficient bat census technique to be used periodically by INEL scientists to determine the status of bats on the INEL; and Provide a suggestive management and protective plan for bat species on the INEL that might, in the future, be added to the endangered and sensitive list;

  8. Smart Materials in Structural Health Monitoring, Control and Biomechanics

    CERN Document Server

    Soh, Chee-Kiong; Bhalla, Suresh

    2012-01-01

    "Smart Materials in Structural Health Monitoring, Control and Biomechanics" presents the latest developments in structural health monitoring, vibration control and biomechanics using smart materials. The book mainly focuses on piezoelectric, fibre optic and ionic polymer metal composite materials. It introduces concepts from the very basics and leads to advanced modelling (analytical/ numerical), practical aspects (including software/ hardware issues) and case studies spanning civil, mechanical and aerospace structures, including bridges, rocks and underground structures. This book is intended for practicing engineers, researchers from academic and R&D institutions and postgraduate students in the fields of smart materials and structures, structural health monitoring, vibration control and biomedical engineering. Professor Chee-Kiong Soh and Associate Professor Yaowen Yang both work at the School of Civil and Environmental Engineering, Nanyang Technological University, Singapore. Dr. Suresh Bhalla is an A...

  9. NEFSC 2015 Benthic Habitat Survey (HB1507, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This survey collects benthic samples using acoustics, nets, and grab samplers. The survey monitors and maps the geological, physical, and biological habitats of the...

  10. Forest health monitoring: 2005 national technical report

    Science.gov (United States)

    Mark J. Ambrose; Barbara L. Conkling

    2007-01-01

    The Forest Health Monitoring program's annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the Santiago Declaration. The results...

  11. Forest health monitoring: 2006 national technical report

    Science.gov (United States)

    Mark J. Ambrose; Barbara L. Conkling

    2009-01-01

    The Forest Health Monitoring Program’s annual national technical report presents results of forest health analyses from a national perspective using data from a variety of sources. The report is organized according to the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests of the...

  12. Intelligent Control and Health Monitoring. Chapter 3

    Science.gov (United States)

    Garg, Sanjay; Kumar, Aditya; Mathews, H. Kirk; Rosenfeld, Taylor; Rybarik, Pavol; Viassolo, Daniel E.

    2009-01-01

    Advanced model-based control architecture overcomes the limitations state-of-the-art engine control and provides the potential of virtual sensors, for example for thrust and stall margin. "Tracking filters" are used to adapt the control parameters to actual conditions and to individual engines. For health monitoring standalone monitoring units will be used for on-board analysis to determine the general engine health and detect and isolate sudden faults. Adaptive models open up the possibility of adapting the control logic to maintain desired performance in the presence of engine degradation or to accommodate any faults. Improved and new sensors are required to allow sensing at stations within the engine gas path that are currently not instrumented due in part to the harsh conditions including high operating temperatures and to allow additional monitoring of vibration, mass flows and energy properties, exhaust gas composition, and gas path debris. The environmental and performance requirements for these sensors are summarized.

  13. Physical health care monitoring for people with serious mental illness.

    Science.gov (United States)

    Tosh, Graeme; Clifton, Andrew V; Xia, Jun; White, Margueritte M

    2014-01-17

    Current guidance suggests that we should monitor the physical health of people with serious mental illness, and there has been a significant financial investment over recent years to provide this. To assess the effectiveness of physical health monitoring, compared with standard care for people with serious mental illness. We searched the Cochrane Schizophrenia Group Trials Register (October 2009, update in October 2012), which is based on regular searches of CINAHL, EMBASE, MEDLINE and PsycINFO. All randomised clinical trials focusing on physical health monitoring versus standard care, or comparing i) self monitoring versus monitoring by a healthcare professional; ii) simple versus complex monitoring; iii) specific versus non-specific checks; iv) once only versus regular checks; or v) different guidance materials. Initially, review authors (GT, AC, SM) independently screened the search results and identified three studies as possibly fulfilling the review's criteria. On examination, however, all three were subsequently excluded. Forty-two additional citations were identified in October 2012 and screened by two review authors (JX and MW), 11 of which underwent full screening. No relevant randomised trials which assess the effectiveness of physical health monitoring in people with serious mental illness have been completed. We identified one ongoing study. There is still no evidence from randomised trials to support or refute current guidance and practice. Guidance and practice are based on expert consensus, clinical experience and good intentions rather than high quality evidence.

  14. Real-time health monitoring of civil infrastructure systems in Colombia

    Science.gov (United States)

    Thomson, Peter; Marulanda Casas, Johannio; Marulanda Arbelaez, Johannio; Caicedo, Juan

    2001-08-01

    Colombia's topography, climatic conditions, intense seismic activity and acute social problems place high demands on the nations deteriorating civil infrastructure. Resources that are available for maintenance of the road and railway networks are often misdirected and actual inspection methods are limited to a visual examination. New techniques for inspection and evaluation of safety and serviceability of civil infrastructure, especially bridges, must be developed. Two cases of civil structures with health monitoring systems in Colombia are presented in this paper. Construction of the Pereria-Dos Quebradas Viaduct was completed in 1997 with a total cost of 58 million dollars, including 1.5 million dollars in health monitoring instrumentation provided and installed by foreign companies. This health monitoring system is not yet fully operational due to the lack of training of national personnel in system operation and extremely limited technical documentation. In contrast to the Pereria-Dos Quebradas Viaduct monitoring system, the authors have proposed a relatively low cost health monitoring system via telemetry. This system has been implemented for real-time monitoring of accelerations of El Hormiguero Bridge spanning the Cauca River using the Colombian Southwest Earthquake Observatory telemetry systems. This two span metallic bridge, located along a critical road between the cities of Puerto Tejada and Cali in the Cauca Valley, was constructed approximately 50 years ago. Experiences with this system demonstrate how effective low cost systems can be used to remotely monitor the structural integrity of deteriorating structures that are continuously subject to high loading conditions.

  15. Large-Area Landslides Monitoring Using Advanced Multi-Temporal InSAR Technique over the Giant Panda Habitat, Sichuan, China

    Directory of Open Access Journals (Sweden)

    Panpan Tang

    2015-07-01

    Full Text Available The region near Dujiangyan City and Wenchuan County, Sichuan China, including significant giant panda habitats, was severely impacted by the Wenchuan earthquake. Large-area landslides occurred and seriously threatened the lives of people and giant pandas. In this paper, we report the development of an enhanced multi-temporal interferometric synthetic aperture radar (MTInSAR methodology to monitor potential post-seismic landslides by analyzing coherent scatterers (CS and distributed scatterers (DS points extracted from multi-temporal l-band ALOS/PALSAR data in an integrated manner. Through the integration of phase optimization and mitigation of the orbit and topography-related phase errors, surface deformations in the study area were derived: the rates in the line of sight (LOS direction ranged from −7 to 1.5 cm/a. Dozens of potential landslides, distributed mainly along the Minjiang River, Longmenshan Fault, and in other the high-altitude areas were detected. These findings matched the distribution of previous landslides. InSAR-derived results demonstrated that some previous landslides were still active; many unstable slopes have developed, and there are significant probabilities of future massive failures. The impact of landslides on the giant panda habitat, however ranged from low to moderate, would continue to be a concern for conservationists for some time in the future.

  16. [Monitoring social determinants of health].

    Science.gov (United States)

    Espelt, Albert; Continente, Xavier; Domingo-Salvany, Antonia; Domínguez-Berjón, M Felicitas; Fernández-Villa, Tania; Monge, Susana; Ruiz-Cantero, M Teresa; Perez, Glòria; Borrell, Carme

    2016-11-01

    Public health surveillance is the systematic and continuous collection, analysis, dissemination and interpretation of health-related data for planning, implementation and evaluation of public health initiatives. Apart from the health system, social determinants of health include the circumstances in which people are born, grow up, live, work and age, and they go a long way to explaining health inequalities. A surveillance system of the social determinants of health requires a comprehensive and social overview of health. This paper analyses the importance of monitoring social determinants of health and health inequalities, and describes some relevant aspects concerning the implementation of surveillance during the data collection, compilation and analysis phases, as well as dissemination of information and evaluation of the surveillance system. It is important to have indicators from sources designed for this purpose, such as continuous records or periodic surveys, explicitly describing its limitations and strengths. The results should be published periodically in a communicative format that both enhances the public's ability to understand the problems that affect them, whilst at the same time empowering the population, with the ultimate goal of guiding health-related initiatives at different levels of intervention. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Smart homes and home health monitoring technologies for older adults: A systematic review.

    Science.gov (United States)

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Structural health monitoring an advanced signal processing perspective

    CERN Document Server

    Chen, Xuefeng; Mukhopadhyay, Subhas

    2017-01-01

    This book highlights the latest advances and trends in advanced signal processing (such as wavelet theory, time-frequency analysis, empirical mode decomposition, compressive sensing and sparse representation, and stochastic resonance) for structural health monitoring (SHM). Its primary focus is on the utilization of advanced signal processing techniques to help monitor the health status of critical structures and machines encountered in our daily lives: wind turbines, gas turbines, machine tools, etc. As such, it offers a key reference guide for researchers, graduate students, and industry professionals who work in the field of SHM.

  19. Integrated assessment of river health based on the conditions of water quality,aquatic life and physical habitat

    Institute of Scientific and Technical Information of China (English)

    MENG Wei; ZHANG Nan; ZHANG Yuan; ZHENG Binghui

    2009-01-01

    The health conditions of Liao River were assessed using 25 sampling sites in April 2005, with water quality index, biotic index and physical habitat quality index.Based on the method of cluster analysis (CA) for water quality indices, it reveals that heavily polluted sites of Liao River are located at estuary and mainstream.The aquatic species surveyed were attached algae and benthic invertebrates.The result shows that the diversity and biomass of attached algae and benthic index of biotic integrity (B-IBI) are degrading as the chemical and physical quality of water bodies deteriorating.Physiochemical parameters, BOD5, CODCr, TN, TP, NH3-N, DO, petroleum hydrocarbon and conductivity, were statistically analyzed with principal component analysis and correlation analysis.The statistical results were incorporated into the integrated assessing water quality index, combining fecal coliform count, attached algae diversity, B-IBI and physical habitat quality score, a comprehensive integrated assessing system of river ecological health was established.Based on the systimetic assesment, the assessed sites are categorized into 9 "healthy" and "sub-healthy" sites and 8 "sub-sick" and "sick" sites.

  20. Guidelines for evaluating performance of oyster habitat restoration

    Science.gov (United States)

    Baggett, Lesley P.; Powers, Sean P.; Brumbaugh, Robert D.; Coen, Loren D.; DeAngelis, Bryan M.; Greene, Jennifer K.; Hancock, Boze T.; Morlock, Summer M.; Allen, Brian L.; Breitburg, Denise L.; Bushek, David; Grabowski, Jonathan H.; Grizzle, Raymond E.; Grosholz, Edwin D.; LaPeyre, Megan K.; Luckenbach, Mark W.; McGraw, Kay A.; Piehler, Michael F.; Westby, Stephanie R.; zu Ermgassen, Philine S. E.

    2015-01-01

    Restoration of degraded ecosystems is an important societal goal, yet inadequate monitoring and the absence of clear performance metrics are common criticisms of many habitat restoration projects. Funding limitations can prevent adequate monitoring, but we suggest that the lack of accepted metrics to address the diversity of restoration objectives also presents a serious challenge to the monitoring of restoration projects. A working group with experience in designing and monitoring oyster reef projects was used to develop standardized monitoring metrics, units, and performance criteria that would allow for comparison among restoration sites and projects of various construction types. A set of four universal metrics (reef areal dimensions, reef height, oyster density, and oyster size–frequency distribution) and a set of three universal environmental variables (water temperature, salinity, and dissolved oxygen) are recommended to be monitored for all oyster habitat restoration projects regardless of their goal(s). In addition, restoration goal-based metrics specific to four commonly cited ecosystem service-based restoration goals are recommended, along with an optional set of seven supplemental ancillary metrics that could provide information useful to the interpretation of prerestoration and postrestoration monitoring data. Widespread adoption of a common set of metrics with standardized techniques and units to assess well-defined goals not only allows practitioners to gauge the performance of their own projects but also allows for comparison among projects, which is both essential to the advancement of the field of oyster restoration and can provide new knowledge about the structure and ecological function of oyster reef ecosystems.

  1. Advanced health monitor for automated driving functions

    OpenAIRE

    Mikovski Iotov, I.

    2017-01-01

    There is a trend in the automotive domain where driving functions are taken from the driver by automated driving functions. In order to guarantee the correct behavior of these auto-mated driving functions, the report introduces an Advanced Health Monitor that uses Tem-poral Logic and Probabilistic Analysis to indicate the system’s health.

  2. In situ health monitoring of piezoelectric sensors

    Science.gov (United States)

    Jensen, Scott L. (Inventor); Drouant, George J. (Inventor)

    2013-01-01

    An in situ health monitoring apparatus may include an exciter circuit that applies a pulse to a piezoelectric transducer and a data processing system that determines the piezoelectric transducer's dynamic response to the first pulse. The dynamic response can be used to evaluate the operating range, health, and as-mounted resonance frequency of the transducer, as well as the strength of a coupling between the transducer and a structure and the health of the structure.

  3. System Identification of Wind Turbines for Structural Health Monitoring

    DEFF Research Database (Denmark)

    Perisic, Nevena

    Structural health monitoring is a multi-disciplinary engineering field that should allow the actual wind turbine maintenance programmes to evolve to the next level, hence increasing safety and reliability and decreasing turbines downtime. The main idea is to have a sensing system on the structure...... cases are considered, two practical problems from the wind industry are studied, i.e. monitoring of the gearbox shaft torque and the tower root bending moments. The second part of the thesis is focused on the influence of friction on the health of the wind turbine and on the nonlinear identification...... that monitors the system responses and notifies the operator when damages or degradations have been detected. However, some of the response signals that contain important information about the health of the wind turbine components cannot be directly measured, or measuring them is highly complex and costly...

  4. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and

  5. Regional Geographic Information Systems of Health and Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Kurolap Semen A.

    2016-12-01

    Full Text Available The article describes a new scientific and methodological approach to designing geographic information systems of health and environmental monitoring for urban areas. Geographic information systems (GIS are analytical tools of the regional health and environmental monitoring; they are used for an integrated assessment of the environmental status of a large industrial centre or a part of it. The authors analyse the environmental situation in Voronezh, a major industrial city, located in the Central Black Earth Region with a population of more than 1 million people. The proposed research methodology is based on modern approaches to the assessment of health risks caused by adverse environmental conditions. The research work was implemented using a GIS and multicriteria probabilistic and statistical evaluation to identify cause-and-effect links, a combination of action and reaction, in the dichotomy ‘environmental factors — public health’. The analysis of the obtained statistical data confirmed an increase in childhood diseases in some areas of the city. Environmentally induced diseases include congenital malformations, tumors, endocrine and urogenital pathologies. The main factors having an adverse impact on health are emissions of carcinogens into the atmosphere and the negative impact of transport on the environment. The authors identify and characterize environmentally vulnerable parts of the city and developed principles of creating an automated system of health monitoring and control of environmental risks. The article offers a number of measures aimed at the reduction of environmental risks, better protection of public health and a more efficient environmental monitoring.

  6. Introduction to: The Forest Health monitoring program

    Science.gov (United States)

    Barbara L. Conkling

    2011-01-01

    The National Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, produces an annual technical report on forest health as one of its products. The report is organized using the Criteria and Indicators for the Conservation and Sustainable Management of Temperate and Boreal Forests (Montréal Process Working Group 2007) as a...

  7. Monitoring and Benchmarking eHealth in the Nordic Countries.

    Science.gov (United States)

    Nøhr, Christian; Koch, Sabine; Vimarlund, Vivian; Gilstad, Heidi; Faxvaag, Arild; Hardardottir, Gudrun Audur; Andreassen, Hege K; Kangas, Maarit; Reponen, Jarmo; Bertelsen, Pernille; Villumsen, Sidsel; Hyppönen, Hannele

    2018-01-01

    The Nordic eHealth Research Network, a subgroup of the Nordic Council of Ministers eHealth group, is working on developing indicators to monitor progress in availability, use and outcome of eHealth applications in the Nordic countries. This paper reports on the consecutive analysis of National eHealth policies in the Nordic countries from 2012 to 2016. Furthermore, it discusses the consequences for the development of indicators that can measure changes in the eHealth environment arising from the policies. The main change in policies is reflected in a shift towards more stakeholder involvement and intensified focus on clinical infrastructure. This change suggests developing indicators that can monitor understandability and usability of eHealth systems, and the use and utility of shared information infrastructure from the perspective of the end-users - citizens/patients and clinicians in particular.

  8. Capacity building for health inequality monitoring in Indonesia: enhancing the equity orientation of country health information system.

    Science.gov (United States)

    Hosseinpoor, Ahmad Reza; Nambiar, Devaki; Tawilah, Jihane; Schlotheuber, Anne; Briot, Benedicte; Bateman, Massee; Davey, Tamzyn; Kusumawardani, Nunik; Myint, Theingi; Nuryetty, Mariet Tetty; Prasetyo, Sabarinah; Suparmi; Floranita, Rustini

    Inequalities in health represent a major problem in many countries, including Indonesia. Addressing health inequality is a central component of the Sustainable Development Goals and a priority of the World Health Organization (WHO). WHO provides technical support for health inequality monitoring among its member states. Following a capacity-building workshop in the WHO South-East Asia Region in 2014, Indonesia expressed interest in incorporating health-inequality monitoring into its national health information system. This article details the capacity-building process for national health inequality monitoring in Indonesia, discusses successes and challenges, and how this process may be adapted and implemented in other countries/settings. We outline key capacity-building activities undertaken between April 2016 and December 2017 in Indonesia and present the four key outcomes of this process. The capacity-building process entailed a series of workshops, meetings, activities, and processes undertaken between April 2016 and December 2017. At each stage, a range of stakeholders with access to the relevant data and capacity for data analysis, interpretation and reporting was engaged with, under the stewardship of state agencies. Key steps to strengthening health inequality monitoring included capacity building in (1) identification of the health topics/areas of interest, (2) mapping data sources and identifying gaps, (3) conducting equity analyses using raw datasets, and (4) interpreting and reporting inequality results. As a result, Indonesia developed its first national report on the state of health inequality. A number of peer-reviewed manuscripts on various aspects of health inequality in Indonesia have also been developed. The capacity-building process undertaken in Indonesia is designed to be adaptable to other contexts. Capacity building for health inequality monitoring among countries is a critical step for strengthening equity-oriented national health

  9. Bridge health monitoring with consideration of environmental effects

    International Nuclear Information System (INIS)

    Kim, Yuhee; Kim, Hyunsoo; Shin, Soobong; Park, Jongchil

    2012-01-01

    Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposed a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable stayed bridge

  10. Bridge health monitoring with consideration of environmental effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yuhee; Kim, Hyunsoo; Shin, Soobong [Inha Univ., Incheon (Korea, Republic of); Park, Jongchil [Korea Expressway Co., (Korea, Republic of)

    2012-12-15

    Reliable response measurements are extremely important for proper bridge health monitoring but incomplete and unreliable data may be acquired due to sensor problems and environmental effects. In the case of a sensor malfunction, parts of the measured data can be missing so that the structural health condition cannot be monitored reliably. This means that the dynamic characteristics of natural frequencies can change as if the structure is damaged due to environmental effects, such as temperature variations. To overcome these problems, this paper proposes a systematic procedure of data analysis to recover missing data and eliminate the environmental effects from the measured data. It also proposed a health index calculated statistically using revised data to evaluate the health condition of a bridge. The proposed method was examined using numerically simulated data with a truss structure and then applied to a set of field data measured from a cable stayed bridge.

  11. Determination of Section 404 Permit and Habitat Mitigation Requirements

    Science.gov (United States)

    2012-09-01

    The Arizona Department of Transportation (ADOT) is committed to developing habitat, mitigation, : monitoring, and maintenance plans that replace the loss of the functions and values of an area and : are self-sustaining, thereby providing long-term co...

  12. Adaptive and Online Health Monitoring System for Autonomous Aircraft

    OpenAIRE

    Mokhtar, Maizura; Zapatel-Bayo, Sergio Z.; Hussein, Saed; Howe, Joe M.

    2012-01-01

    Good situation awareness is one of the key attributes required to maintain safe flight, especially for an Unmanned Aerial System (UAS). Good situation awareness can be achieved by incorporating an Adaptive Health Monitoring System (AHMS) to the aircraft. The AHMS monitors the flight outcome or flight behaviours of the aircraft based on its external environmental conditions and the behaviour of its internal systems. The AHMS does this by associating a health value to the aircraft's behaviour b...

  13. Multi- and hyperspectral remote sensing of tropical marine benthic habitats

    Science.gov (United States)

    Mishra, Deepak R.

    Tropical marine benthic habitats such as coral reef and associated environments are severely endangered because of the environmental degradation coupled with hurricanes, El Nino events, coastal pollution and runoff, tourism, and economic development. To monitor and protect this diverse environment it is important to not only develop baseline maps depicting their spatial distribution but also to document their changing conditions over time. Remote sensing offers an important means of delineating and monitoring coral reef ecosystems. Over the last twenty years the scientific community has been investigating the use and potential of remote sensing techniques to determine the conditions of the coral reefs by analyzing their spectral characteristics from space. One of the problems in monitoring coral reefs from space is the effect of the water column on the remotely sensed signal. When light penetrates water its intensity decreases exponentially with increasing depth. This process, known as water column attenuation, exerts a profound effect on remotely sensed data collected over water bodies. The approach presented in this research focuses on the development of semi-analytical models that resolves the confounding influence water column attenuation on substrate reflectance to characterize benthic habitats from high resolution remotely sensed imagery on a per-pixel basis. High spatial resolution satellite and airborne imagery were used as inputs in the models to derive water depth and water column optical properties (e.g., absorption and backscattering coefficients). These parameters were subsequently used in various bio-optical algorithms to deduce bottom albedo and then to classify the benthos, generating a detailed map of benthic habitats. IKONOS and QuickBird multispectral satellite data and AISA Eagle hyperspectral airborne data were used in this research for benthic habitat mapping along the north shore of Roatan Island, Honduras. The AISA Eagle classification was

  14. [What potential do geographic information systems have for population-wide health monitoring in Germany? : Perspectives and challenges for the health monitoring of the Robert Koch Institute].

    Science.gov (United States)

    Thißen, Martin; Niemann, Hildegard; Varnaccia, Gianni; Rommel, Alexander; Teti, Andrea; Butschalowsky, Hans; Manz, Kristin; Finger, Jonas David; Kroll, Lars Eric; Ziese, Thomas

    2017-12-01

    Geographic information systems (GISs) are computer-based systems with which geographical data can be recorded, stored, managed, analyzed, visualized and provided. In recent years, they have become an integral part of public health research. They offer a broad range of analysis tools, which enable innovative solutions for health-related research questions. An analysis of nationwide studies that applied geographic information systems underlines the potential this instrument bears for health monitoring in Germany. Geographic information systems provide up-to-date mapping and visualization options to be used for national health monitoring at the Robert Koch Institute (RKI). Furthermore, objective information on the residential environment as an influencing factor on population health and on health behavior can be gathered and linked to RKI survey data at different geographic scales. Besides using physical information, such as climate, vegetation or land use, as well as information on the built environment, the instrument can link socioeconomic and sociodemographic data as well as information on health care and environmental stress to the survey data and integrate them into concepts for analyses. Therefore, geographic information systems expand the potential of the RKI to present nationwide, representative and meaningful health-monitoring results. In doing so, data protection regulations must always be followed. To conclude, the development of a national spatial data infrastructure and the identification of important data sources can prospectively improve access to high quality data sets that are relevant for the health monitoring.

  15. Structural health monitoring 2012. Proceedings. Vol. 2

    International Nuclear Information System (INIS)

    Boller, Christian

    2012-01-01

    Structural Health Monitoring (SHM) is an emerging technology, dealing with the development and implementation of techniques and systems where monitoring, inspection and damage detection become an integral part of structures and thus a matter of automation. It further merges with a variety of techniques related to diagnostics and prognostics. SHM emerged from the field of smart structures and laterally encompasses disciplines such as structural dynamics, materials and structures, fatigue and fracture, non-destructive testing and evaluation, sensors and actuators, microelectronics, signal processing and much more. To be effective in the development of SHM systems, a multidisciplinary approach is therefore required. Without this global view it will be difficult for engineers to holistically manage the operation of an engineering structure through its life cycle in the future and to generate new breakthroughs in structural engineering. The second volume of the proceedings contains topics dealing with applications in the field of aeronautics, astronautic, civil engineering (bridges), energy (wind power), structural health monitoring (transportation), and poster presentations. Ten of the contributions are separately analyzed for the ENERGY database.

  16. Frequency Selective Surface for Structural Health Monitoring

    Science.gov (United States)

    Norlyana Azemi, Saidatul; Mustaffa, Farzana Hazira Wan; Faizal Jamlos, Mohd; Abdullah Al-Hadi, Azremi; Soh, Ping Jack

    2018-03-01

    Structural health monitoring (SHM) technologies have attained attention to monitor civil structures. SHM sensor systems have been used in various civil structures such as bridges, buildings, tunnels and so on. However the previous sensor for SHM is wired and encounter with problem to cover large areas. Therefore, wireless sensor was introduced for SHM to reduce network connecting problem. Wireless sensors for Structural Health monitoring are new technology and have many advantages to overcome the drawback of conventional and wired sensor. This project proposed passive wireless SHM sensor using frequency selective surface (FSS) as an alternative to conventional sensors. The electromagnetic wave characteristic of FSS will change by geometrical changes of FSS due to mechanical strain or structural failure. The changes feature is used as a sensing function without any connecting wires. Two type of design which are circular ring and square loop along with the transmission and reflection characteristics of SHM using FSS were discussed in this project. A simulation process has shown that incident angle characteristics can be use as a data for SHM application.

  17. Environment monitoring and residents health condition monitoring of nuclear power plant Bohunice region

    International Nuclear Information System (INIS)

    Letkovicova, M.; Rehak, R.; Stehlikova, B.; Celko, M.; Hraska, S.; Klocok, L.; Kostial, J.; Prikazsky, V.; Vidovic, J.; Zirko, M.; Beno, T.; Mitosinka, J.

    1998-01-01

    The report contents final environment evaluation and selected characteristic of residents health physics of nuclear power plant Bohunice region. Evaluated data were elaborated during analytical period 1993-1997.Task solving which results are documented in this final report was going on between 1996- 1998. The report deals in individual stages with the following: Information obtaining and completing which characterize demographic situation of the area for the 1993-1997 period; Datum obtaining and completing which contain selected health physics characteristics of the area residents; Database structures for individual data archiving from monitoring and collection; Brief description of geographic information system for graphic presentation of evaluation results based on topographic base; Digital mapping structure description; Results and evaluation of radionuclide monitoring in environment performed by Environmental radiation measurements laboratory by the nuclear power plant Bohunice for the 1993-1997 period. Demographic situation evaluation and selected health physics characteristics of the area of nuclear power plant residents for the 1993-1997 period are summarized in the final part of the document. Monitoring results and their evaluation is processed in graph, table, text description and map output forms. Map outputs are processed in the geographic information system Arc View GIS 3.0a environment

  18. Health monitoring of civil structures using fiber optic sensors

    International Nuclear Information System (INIS)

    Varma, Veto; Kumar, Praveen; Charan, J.J.; Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    2003-08-01

    During the lifetime of the reactor, the civil structure is subjected to many operational and environmental loads. Hence it is increasingly important to monitor the conditions of the structure and insure its safety and integrity. The conventional gauges have proved to be not sufficiently catering the problem of long term health monitoring of the structure because of its many limitations. Hence it is mandatory to develop a technique for the above purpose. Present study deals with the application of Fiber optic sensors (EFPI strain Gauges) in the civil structure for its health monitoring. Various experiments were undertaken and suitability of sensors was checked. A technique to embed the optical sensor inside the concrete is successfully developed and tested. (author)

  19. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    window’ allowing for the possible detection of faults up to 6 months in advance. The SHM system model uses a reduction in the probability of failure factor to account for lower modelling uncertainties. A case study is produced that shows a reduction in operating costs and also a reduction in risk......There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  20. Influence of habitat degradation on fish replenishment

    Science.gov (United States)

    McCormick, M. I.; Moore, J. A. Y.; Munday, P. L.

    2010-09-01

    Temperature-induced coral bleaching is a major threat to the biodiversity of coral reef ecosystems. While reductions in species diversity and abundance of fish communities have been documented following coral bleaching, the mechanisms that underlie these changes are poorly understood. The present study examined the impacts of coral bleaching on the early life-history processes of coral reef fishes. Daily monitoring of fish settlement patterns found that ten times as many fish settled to healthy coral than sub-lethally bleached coral. Species diversity of settling fishes was least on bleached coral and greatest on dead coral, with healthy coral having intermediate levels of diversity. Laboratory experiments using light-trap caught juveniles showed that different damselfish species chose among healthy, bleached and dead coral habitats using different combinations of visual and olfactory cues. The live coral specialist, Pomacentrus moluccensis, preferred live coral and avoided bleached and dead coral, using mostly visual cues to inform their habitat choice. The habitat generalist, Pomacentrus amboinensis, also preferred live coral and avoided bleached and dead coral but selected these habitats using both visual and olfactory cues. Trials with another habitat generalist, Dischistodus sp., suggested that vision played a significant role. A 20 days field experiment that manipulated densities of P. moluccensis on healthy and bleached coral heads found an influence of fish density on juvenile weight and growth, but no significant influence of habitat quality. These results suggests that coral bleaching will affect settlement patterns and species distributions by influencing the visual and olfactory cues that reef fish larvae use to make settlement choices. Furthermore, increased fish density within the remaining healthy coral habitats could play an important role in influencing population dynamics.

  1. Response of the agile antechinus to habitat edge, configuration and condition in fragmented forest.

    Directory of Open Access Journals (Sweden)

    Christopher P Johnstone

    Full Text Available Habitat fragmentation and degradation seriously threaten native animal communities. We studied the response of a small marsupial, the agile antechinus Antechinus agilis, to several environmental variables in anthropogenically fragmented Eucalyptus forest in south-east Australia. Agile antechinus were captured more in microhabitats dominated by woody debris than in other microhabitats. Relative abundances of both sexes were positively correlated with fragment core area. Male and female mass-size residuals were smaller in larger fragments. A health status indicator, haemoglobin-haematocrit residuals (HHR, did not vary as a function of any environmental variable in females, but male HHR indicated better health where sites' microhabitats were dominated by shrubs, woody debris and trees other than Eucalyptus. Females were trapped less often in edge than interior fragment habitat and their physiological stress level, indicated by the neutrophil/lymphocyte ratio in peripheral blood, was higher where fragments had a greater proportion of edge habitat. The latter trend was potentially due to lymphopoenia resulting from stress hormone-mediated leukocyte trafficking. Using multiple indicators of population condition and health status facilitates a comprehensive examination of the effects of anthropogenic disturbances, such as habitat fragmentation and degradation, on native vertebrates. Male agile antechinus' health responded negatively to habitat degradation, whilst females responded negatively to the proportion of edge habitat. The health and condition indicators used could be employed to identify conservation strategies that would make habitat fragments less stressful for this or similar native, small mammals.

  2. Evaluation of Macroinvertebrate Communities and Habitat for Selected Stream Reaches at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L.J. Henne; K.J. Buckley

    2005-08-12

    This is the second aquatic biological monitoring report generated by Los Alamos National Laboratory's (LANL's) Water Quality and Hydrology Group. The study has been conducted to generate impact-based assessments of habitat and water quality for LANL waterways. The monitoring program was designed to allow for the detection of spatial and temporal trends in water and habitat quality through ongoing, biannual monitoring of habitat characteristics and benthic aquatic macroinvertebrate communities at six key sites in Los Alamos, Sandia, Water, Pajarito, and Starmer's Gulch Canyons. Data were collected on aquatic habitat characteristics, channel substrate, and macroinvertebrate communities during 2001 and 2002. Aquatic habitat scores were stable between 2001 and 2002 at all locations except Starmer's Gulch and Pajarito Canyon, which had lower scores in 2002 due to low flow conditions. Channel substrate changes were most evident at the upper Los Alamos and Pajarito study reaches. The macroinvertebrate Stream Condition Index (SCI) indicated moderate to severe impairment at upper Los Alamos Canyon, slight to moderate impairment at upper Sandia Canyon, and little or no impairment at lower Sandia Canyon, Starmer's Gulch, and Pajarito Canyon. Habitat, substrate, and macroinvertebrate data from the site in upper Los Alamos Canyon indicated severe impacts from the Cerro Grande Fire of 2000. Impairment in the macroinvertebrate community at upper Sandia Canyon was probably due to effluent-dominated flow at that site. The minimal impairment SCI scores for the lower Sandia site indicated that water quality improved with distance downstream from the outfall at upper Sandia Canyon.

  3. Multi-metric model-based structural health monitoring

    Science.gov (United States)

    Jo, Hongki; Spencer, B. F.

    2014-04-01

    ABSTRACT The inspection and maintenance of bridges of all types is critical to the public safety and often critical to the economy of a region. Recent advanced sensor technologies provide accurate and easy-to-deploy means for structural health monitoring and, if the critical locations are known a priori, can be monitored by direct measurements. However, for today's complex civil infrastructure, the critical locations are numerous and often difficult to identify. This paper presents an innovative framework for structural monitoring at arbitrary locations on the structure combining computational models and limited physical sensor information. The use of multi-metric measurements is advocated to improve the accuracy of the approach. A numerical example is provided to illustrate the proposed hybrid monitoring framework, particularly focusing on fatigue life assessment of steel structures.

  4. Personalized Health Monitoring System for Managing Well-Being in Rural Areas.

    Science.gov (United States)

    Nedungadi, Prema; Jayakumar, Akshay; Raman, Raghu

    2017-12-14

    Rural India lacks easy access to health practitioners and medical centers, depending instead on community health workers. In these areas, common ailments that are easy to manage with medicines, often lead to medical escalations and even fatalities due to lack of awareness and delayed diagnosis. The introduction of wearable health devices has made it easier to monitor health conditions and to connect doctors and patients in urban areas. However, existing initiatives have not succeeded in providing adequate health monitoring to rural and low-literate patients, as current methods are expensive, require consistent connectivity and expect literate users. Our design considerations address these concerns by providing low-cost medical devices connected to a low-cost health platform, along with personalized guidance based on patient physiological parameters in local languages, and alerts to medical practitioners in case of emergencies. This patient-centric integrated healthcare system is designed to manage the overall health of villagers with real-time health monitoring of patients, to offer guidance on preventive care, and to increase health awareness and self-monitoring at an affordable price. This personalized health monitoring system addresses the health-related needs in remote and rural areas by (1) empowering health workers in monitoring of basic health conditions for rural patients in order to prevent escalations, (2) personalized feedback regarding nutrition, exercise, diet, preventive Ayurveda care and yoga postures based on vital parameters and (3) reporting of patient data to the patient's health center with emergency alerts to doctor and patient. The system supports community health workers in the diagnostic procedure, management, and reporting of rural patients, and functions well even with only intermittent access to Internet.

  5. Experimental Research on Quick Structural Health Monitoring Technique for Bridges Using Smartphone

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhao

    2016-01-01

    Full Text Available In the recent years, with the development and popularization of smartphone, the utilization of smartphone in the Structural Health Monitoring (SHM has attracted increasing attention owing to its unique feature. Since bridges are of great importance to society and economy, bridge health monitoring has very practical significance during its service life. Furthermore, rapid damage assessment of bridge after an extreme event such as earthquake is very important in the recovery work. Smartphone-based bridge health monitoring and postevent damage evaluation have advantages over the conventional monitoring techniques, such as low cost, ease of installation, and convenience. Therefore, this study investigates the implementation feasibility of the quick bridge health monitoring technique using smartphone. A novel vision-based cable force measurement method using smartphone camera is proposed, and, then, its feasibility and practicality is initially validated through cable model test. An experiment regarding multiple parameters monitoring of one bridge scale model is carried out. Parameters, such as acceleration, displacement, and angle, are monitored using smartphone. The experiment results show that there is a good agreement between the reference sensor and smartphone measurements in both time and frequency domains.

  6. Habitats and Surface Construction Technology and Development Roadmap

    Science.gov (United States)

    Cohen, Marc; Kennedy, Kriss J.

    1997-01-01

    The vision of the technology and development teams at NASA Ames and Johnson Research Centers is to provide the capability for automated delivery and emplacement of habitats and surface facilities. The benefits of the program are as follows: Composites and Inflatables: 30-50% (goal) lighter than Al Hard Structures; Capability for Increased Habitable Volume, Launch Efficiency; Long Term Growth Potential; and Supports initiation of commercial and industrial expansion. Key Habitats and Surface Construction (H&SC) technology issues are: Habitat Shell Structural Materials; Seals and Mechanisms; Construction and Assembly: Automated Pro-Deploy Construction Systems; ISRU Soil/Construction Equipment: Lightweight and Lower Power Needs; Radiation Protection (Health and Human Performance Tech.); Life Support System (Regenerative Life Support System Tech.); Human Physiology of Long Duration Space Flight (Health and Human Performance Tech.); and Human Psychology of Long Duration Space Flight (Health and Human Performance Tech.) What is being done regarding these issues?: Use of composite materials for X-38 CRV, RLV, etc.; TransHAB inflatable habitat design/development; Japanese corporations working on ISRU-derived construction processes. What needs to be done for the 2004 Go Decision?: Characterize Mars Environmental Conditions: Civil Engineering, Material Durability, etc.; Determine Credibility of Inflatable Structures for Human Habitation; and Determine Seal Technology for Mechanisms and Hatches, Life Cycle, and Durability. An overview encompassing all of the issues above is presented.

  7. Forest Health Status in North America

    Directory of Open Access Journals (Sweden)

    Borys Tkacz

    2007-01-01

    Full Text Available The forests of North America provide a variety of benefits including water, recreation, wildlife habitat, timber, and other forest products. However, they continue to face many biotic and abiotic stressors including fires, native and invasive pests, fragmentation, and air pollution. Forest health specialists have been monitoring the health of forests for many years. This paper highlights some of the most damaging forest stressors affecting North American forests in recent years and provides some projections of future risks.

  8. Identification methods for structural health monitoring

    CERN Document Server

    Papadimitriou, Costas

    2016-01-01

    The papers in this volume provide an introduction to well known and established system identification methods for structural health monitoring and to more advanced, state-of-the-art tools, able to tackle the challenges associated with actual implementation. Starting with an overview on fundamental methods, introductory concepts are provided on the general framework of time and frequency domain, parametric and non-parametric methods, input-output or output only techniques. Cutting edge tools are introduced including, nonlinear system identification methods; Bayesian tools; and advanced modal identification techniques (such as the Kalman and particle filters, the fast Bayesian FFT method). Advanced computational tools for uncertainty quantification are discussed to provide a link between monitoring and structural integrity assessment. In addition, full scale applications and field deployments that illustrate the workings and effectiveness of the introduced monitoring schemes are demonstrated.

  9. Localizing the HL7 Personal Health Monitoring Record for Danish Telemedicine

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2014-01-01

    Telemedicine holds a promise of lowering cost in health care and improving the life quality of chronic ill patients by allowing monitoring in the home. The Personal Health Monitoring Record (PHMR) is an international HL7 standard data format for encoding measurements made by devices in the home...

  10. Vibration-based structural health monitoring of harbor caisson structure

    Science.gov (United States)

    Lee, So-Young; Lee, So-Ra; Kim, Jeong-Tae

    2011-04-01

    This study presents vibration-based structural health monitoring method in foundation-structure interface of harbor caisson structure. In order to achieve the objective, the following approaches are implemented. Firstly, vibration-based response analysis method is selected and structural health monitoring (SHM) technique is designed for harbor caisson structure. Secondly, the performance of designed SHM technique for harbor structure is examined by FE analysis. Finally, the applicability of designed SHM technique for harbor structure is evaluated by dynamic tests on a lab-scaled caisson structure.

  11. ECOLOGICAL MONITORING AND COMPLIANCE PROGRAM CALENDAR YEAR 2005 REPORT

    Energy Technology Data Exchange (ETDEWEB)

    BECHTEL NEVADA ECOLOGICAL SERVICES

    2006-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program’s activities conducted by Bechtel Nevada (BN) during the Calendar Year 2005. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive and protected/regulated species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Non-Proliferation Test and Evaluation Complex (NPTEC).

  12. Leaf reflectance variation along a vertical crown gradient of two deciduous tree species in a Belgian industrial habitat

    International Nuclear Information System (INIS)

    Khavaninzadeh, Ali Reza; Veroustraete, Frank; Van Wittenberghe, Shari; Verrelst, Jochem; Samson, Roeland

    2015-01-01

    The reflectometry of leaf asymmetry is a novel approach in the bio-monitoring of tree health in urban or industrial habitats. Leaf asymmetry responds to the degree of environmental pollution and reflects structural changes in a leaf due to environmental pollution. This paper describes the boundary conditions to scale up from leaf to canopy level reflectance, by describing the variability of adaxial and abaxial leaf reflectance, hence leaf asymmetry, along the crown height gradients of two tree species. Our findings open a research pathway towards bio-monitoring based on the airborne remote sensing of tree canopies and their leaf asymmetric properties. - Highlights: • Reflectometry of leaf asymmetry is a novel approach in tree health bio-monitoring. • Leaf asymmetry reflects degrees of structural changes by environmental pollution. • Conditions to scale up from leaf to canopy level reflectance are described. • A research pathway is opened towards airborne pollution bio-assessment. - Tree leaf asymmetry responds to the degree of environmental pollution and reflects leaf structural changes differentially according to species and height in the crown

  13. Amphibian monitoring in the Atchafalaya Basin

    Science.gov (United States)

    Waddle, Hardin

    2011-01-01

    Amphibians are a diverse group of animals that includes frogs, toads, and salamanders. They are adapted to living in a variety of habitats, but most require water for at least one life stage. Amphibians have recently become a worldwide conservation concern because of declines and extinctions even in remote protected areas previously thought to be safe from the pressures of habitat loss and degradation. Amphibians are an important part of ecosystem dynamics because they can be quite abundant and serve both as a predator of smaller organisms and as prey to a suite of vertebrate predators. Their permeable skin and aquatic life history also make them useful as indicators of ecosystem health. Since 2002, the U.S. Geological Survey has been studying the frog and toad species inhabiting the Atchafalaya Basin to monitor for population declines and to better understand how the species are potentially affected by disease, environmental contaminants, and climate change.

  14. Long-term monitoring of tropical alpine habitat change, Andean anurans, and chytrid fungus in the Cordillera Vilcanota, Peru: Results from a decade of study.

    Science.gov (United States)

    Seimon, Tracie A; Seimon, Anton; Yager, Karina; Reider, Kelsey; Delgado, Amanda; Sowell, Preston; Tupayachi, Alfredo; Konecky, Bronwen; McAloose, Denise; Halloy, Stephan

    2017-03-01

    The Cordillera Vilcanota in southern Peru is the second largest glacierized range in the tropics and home to one of the largest high-alpine lakes, Sibinacocha (4,860 m). Here, Telmatobius marmoratus (marbled water frog), Rhinella spinulosa (Andean toad), and Pleurodema marmoratum (marbled four-eyed frog) have expanded their range vertically within the past century to inhabit newly formed ponds created by ongoing deglaciation. These anuran populations, geographically among the highest (5,200-5,400 m) recorded globally, are being impacted by the chytrid fungus Batrachochytrium dendrobatidis ( Bd ), and the disease it causes, chytridiomycosis. In this study, we report results from over a decade of monitoring these three anuran species, their habitat, and Bd infection status. Our observations reveal dynamic changes in habitat including ongoing rapid deglaciation (18.4 m/year widening of a corridor between retreating glaciers from 2005 to 2015), new pond formation, changes in vegetation in amphibian habitat, and widespread occurrence of Bd in amphibians in seven sites. Three of these sites have tested positive for Bd over a 9- to 12-year period. In addition, we observed a widespread reduction in T. marmoratus encounters in the Vilcanota in 2008, 2009, and 2012, while encounters increased in 2013 and 2015. Despite the rapid and dynamic changes in habitat under a warming climate, continued presence of Bd in the environment for over a decade, and a reduction in one of three anuran species, we document that these anurans continue to breed and survive in this high Andean environment. High variability in anuran encounters across sites and plasticity in these populations across habitats, sites, and years are all factors that could favor repopulation postdecline. Preserving the connectivity of wetlands in the Cordillera Vilcanota is therefore essential in ensuring that anurans continue to breed and adapt as climate change continues to reshape the environment.

  15. Monitoring the welfare of polar bear populations in a rapidly changing Arctic

    Science.gov (United States)

    Atwood, Todd C.; Duncan, Colleen G.; Patyk, Kelly A.; Sonsthagen, Sarah A.

    2017-01-01

    Most programs for monitoring the welfare of wildlife populations support efforts aimed at reaching discrete management objectives, like mitigating conflict with humans. While such programs can be effective, their limited scope may preclude systemic evaluations needed for large-scale conservation initiatives, like the recovery of at-risk species. We discuss select categories of metrics that can be used to monitor how polar bears (Ursus maritimus) are responding to the primary threat to their long-term persistence—loss of sea ice habitat due to the unabated rise in atmospheric greenhouse gas (GHG; e.g., CO2) concentrations—that can also provide information on ecosystem function and health. Monitoring key aspects of polar bear population dynamics, spatial behavior, health and resiliency can provide valuable insight into ecosystem state and function, and could be a powerful tool for achieving Arctic conservation objectives, particularly those that have transnational policy implications.

  16. To track or not to track: user reactions to concepts in longitudinal health monitoring.

    Science.gov (United States)

    Beaudin, Jennifer S; Intille, Stephen S; Morris, Margaret E

    2006-01-01

    Advances in ubiquitous computing, smart homes, and sensor technologies enable novel, longitudinal health monitoring applications in the home. Many home monitoring technologies have been proposed to detect health crises, support aging-in-place, and improve medical care. Health professionals and potential end users in the lay public, however, sometimes question whether home health monitoring is justified given the cost and potential invasion of privacy. The aim of the study was to elicit specific feedback from health professionals and laypeople about how they might use longitudinal health monitoring data for proactive health and well-being. Interviews were conducted with 8 health professionals and 26 laypeople. Participants were asked to evaluate mock data visualization displays that could be generated by novel home monitoring systems. The mock displays were used to elicit reactions to longitudinal monitoring in the home setting as well as what behaviors, events, and physiological indicators people were interested in tracking. Based on the qualitative data provided by the interviews, lists of benefits of and concerns about health tracking from the perspectives of the practitioners and laypeople were compiled. Variables of particular interest to the interviewees, as well as their specific ideas for applications of collected data, were documented. Based upon these interviews, we recommend that ubiquitous "monitoring" systems may be more readily adopted if they are developed as tools for personalized, longitudinal self-investigation that help end users learn about the conditions and variables that impact their social, cognitive, and physical health.

  17. Remote Sensing for Threatened and Endangered Species Habitat Assessment on Military Lands: A Literature Review

    National Research Council Canada - National Science Library

    Tweddale, Scott A; Melton, Robert H

    2005-01-01

    .... To meet the requirements of the Endangered Species Act, the DoD requires accurate, cost-effective surveying and monitoring methods to characterize and monitor the habitats of TES on military training and testing lands...

  18. Structure health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2003-01-01

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  19. Structural health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok [Nonstructive Measurment Lab., KRISS, Daejeon (Korea, Republic of)

    2003-07-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  20. Structure health monitoring system using internet and database technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok [Smart Measurment Group. Korea Resarch Institute of Standards and Science, Saejeon (Korea, Republic of)

    2003-05-15

    Structural health monitoring system should developed to be based on internet and database technology in order to manage efficiently large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconvince.

  1. Structural health monitoring system using internet and database technologies

    International Nuclear Information System (INIS)

    Kim, Chi Yeop; Choi, Man Yong; Kwon, Il Bum; Lee, Seung Seok

    2003-01-01

    Structure health monitoring system should develope to be based on internet and database technology in order to manage efficiency large structures. This system is operated by internet connected with the side of structures. The monitoring system has some functions: self monitoring, self diagnosis, and self control etc. Self monitoring is the function of sensor fault detection. If some sensors are not normally worked, then this system can detect the fault sensors. Also Self diagnosis function repair the abnormal condition of sensors. And self control is the repair function of the monitoring system. Especially, the monitoring system can identify the replacement of sensors. For further study, the real application test will be performed to check some unconviniences.

  2. Forest health monitoring: national status, trends, and analysis 2016

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2017-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introducesnew techniques for analyzing forest health data, and summarizes results of recently completed...

  3. Forest bird monitoring protocol for strategic habitat conservation and endangered species management on O'ahu Forest National Wildlife Refuge, Island of O'ahu, Hawai'i

    Science.gov (United States)

    Camp, Richard J.; Gorresen, P. Marcos; Banko, Paul C.

    2011-01-01

    This report describes the results of a pilot forest bird survey and a consequent forest bird monitoring protocol that was developed for the O'ahu Forest National Wildlife Refuge, O'ahu Island, Hawai'i. The pilot survey was conducted to inform aspects of the monitoring protocol and to provide a baseline with which to compare future surveys on the Refuge. The protocol was developed in an adaptive management framework to track bird distribution and abundance and to meet the strategic habitat conservation requirements of the Refuge. Funding for this research was provided through a Science Support Partnership grant sponsored jointly by the U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS).

  4. Validity and reliability of the South African health promoting schools monitoring questionnaire.

    Science.gov (United States)

    Struthers, Patricia; Wegner, Lisa; de Koker, Petra; Lerebo, Wondwossen; Blignaut, Renette J

    2017-04-01

    Health promoting schools, as conceptualised by the World Health Organisation, have been developed in many countries to facilitate the health-education link. In 1994, the concept of health promoting schools was introduced in South Africa. In the process of becoming a health promoting school, it is important for schools to monitor and evaluate changes and developments taking place. The Health Promoting Schools (HPS) Monitoring Questionnaire was developed to obtain opinions of students about their school as a health promoting school. It comprises 138 questions in seven sections: socio-demographic information; General health promotion programmes; health related Skills and knowledge; Policies; Environment; Community-school links; and support Services. This paper reports on the reliability and face validity of the HPS Monitoring Questionnaire. Seven experts reviewed the questionnaire and agreed that it has satisfactory face validity. A test-retest reliability study was conducted with 83 students in three high schools in Cape Town, South Africa. The kappa-coefficients demonstrate mostly fair (κ-scores between 0.21 and 0.4) to moderate (κ-scores between 0.41 and 0.6) agreement between test-retest General and Environment items; poor (κ-scores up to 0.2) agreement between Skills and Community test-retest items, fair agreement between Policies items, and for most of the questions focussing on Services a fair agreement was found. The study is a first effort at providing a tool that may be used to monitor and evaluate students' opinions about changes in health promoting schools. Although the HPS Monitoring Questionnaire has face validity, the results of the reliability testing were inconclusive. Further research is warranted. © The Author 2016. Published by Oxford University Press.

  5. Dry creek long-term watershed study: buffer zone performance as viable amphibian habitat

    Science.gov (United States)

    Brooke L. Talley; Thomas L. Crisman

    2006-01-01

    As bioindicators, amphibians typically require both terrestrial and aquatic habitats to complete their life cycles. Pre- timber-harvest monitoring (December 2002 through September 2003) of salamander and frog (Hylidae) populations was conducted in four watersheds of Decatur County, GA. Post- timber-harvest monitoring (December 2003 through September...

  6. Forest Health Monitoring: national status, trends, and analysis 2014

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2015-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  7. Forest health monitoring: national status, trends, and analysis 2013

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2015-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi-State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  8. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  9. Policy based Agents in Wireless Body Sensor Mesh Networks for Patient Health Monitoring

    OpenAIRE

    Kevin Miller; Suresh Sankaranarayanan

    2009-01-01

    There is presently considerable research interest in using wireless and mobile technologies in patient health monitoring particularly in hospitals and nursing homes. For health monitoring,, an intelligent agent based hierarchical architecture has already been published by one of the authors of this paper. Also, the technique of monitoring and notifying the health of patients using an intelligent agent, to the concerned hospital personnel, has also been proposed. We now present the details of ...

  10. Assigning delivered prey to visited habitat : the potential of combining video monitoring at nest and radio telemetry tested on female Eurasian kestrels (Falco tinnunculus)

    OpenAIRE

    Christensen, Mikkel Emil

    2012-01-01

    In this study I used a combination of video monitoring and high intensity radio telemetry to assign specific prey items to habitat visited by female Eurasian kestrels (Falco tinnunculus) during the breeding season of 2011 in Trysil, eastern Norway. I used the combined dataset comprising 63 locations reliably paired with prey items taken by five female kestrels to investigate: (1) The probability of a prey item belonging to family Cricetidae and genus Microtus in four observed and four map-der...

  11. Plant Habitat (PH)

    Science.gov (United States)

    Onate, Bryan

    2016-01-01

    The International Space Station (ISS) will soon have a platform for conducting fundamental research of Large Plants. Plant Habitat (PH) is designed to be a fully controllable environment for high-quality plant physiological research. PH will control light quality, level, and timing, temperature, CO2, relative humidity, and irrigation, while scrubbing ethylene. Additional capabilities include leaf temperature and root zone moisture and oxygen sensing. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs. There will be several internal cameras (visible and IR) to monitor and record plant growth and operations.

  12. The design of an m-Health monitoring system based on a cloud computing platform

    Science.gov (United States)

    Xu, Boyi; Xu, Lida; Cai, Hongming; Jiang, Lihong; Luo, Yang; Gu, Yizhi

    2017-01-01

    Compared to traditional medical services provided within hospitals, m-Health monitoring systems (MHMSs) face more challenges in personalised health data processing. To achieve personalised and high-quality health monitoring by means of new technologies, such as mobile network and cloud computing, in this paper, a framework of an m-Health monitoring system based on a cloud computing platform (Cloud-MHMS) is designed to implement pervasive health monitoring. Furthermore, the modules of the framework, which are Cloud Storage and Multiple Tenants Access Control Layer, Healthcare Data Annotation Layer, and Healthcare Data Analysis Layer, are discussed. In the data storage layer, a multiple tenant access method is designed to protect patient privacy. In the data annotation layer, linked open data are adopted to augment health data interoperability semantically. In the data analysis layer, the process mining algorithm and similarity calculating method are implemented to support personalised treatment plan selection. These three modules cooperate to implement the core functions in the process of health monitoring, which are data storage, data processing, and data analysis. Finally, we study the application of our architecture in the monitoring of antimicrobial drug usage to demonstrate the usability of our method in personal healthcare analysis.

  13. Crims Island-Restoration and monitoring of juvenile salmon rearing habitat in the Columbia River Estuary, Oregon, 2004-10

    Science.gov (United States)

    Haskell, Craig A.; Tiffan, Kenneth F.

    2011-01-01

    Under the 2004 Biological Opinion for operation of the Federal Columbia River Power System released by the National Marine Fisheries Service, the U.S. Army Corps of Engineers (USACE), the Bonneville Power Administration (BPA), and the Bureau of Reclamation (Reclamation) were directed to restore more than 4,047 hectares (10,000 acres) of tidal marsh in the Columbia River estuary by 2010. Restoration of Crims Island near Longview, Washington, restored 38.1 hectares of marsh and swamp in the tidal freshwater portion of the lower Columbia River. The goal of the restoration was to improve habitat for juveniles of Endangered Species Act (ESA)-listed salmon stocks and ESA-listed Columbian white-tailed deer. The U.S. Geological Survey (USGS) monitored and evaluated the fisheries and aquatic resources at Crims Island in 2004 prior to restoration (pre-restoration), which began in August 2004, and then post-restoration from 2006 to 2009. This report summarizes pre- and post-restoration monitoring data used by the USGS to evaluate project success. We evaluated project success by examining the interaction between juvenile salmon and a suite of broader ecological measures including sediments, plants, and invertebrates and their response to large-scale habitat alteration. The restoration action at Crims Island from August 2004 to September 2005 was to excavate a 0.6-meter layer of soil and dig channels in the interior of the island to remove reed canary grass and increase habitat area and tidal exchange. The excavation created 34.4 hectares of tidal emergent marsh where none previously existed and 3.7 hectares of intertidal and subtidal channels. Cattle that had grazed the island for more than 50 years were relocated. Soil excavated from the site was deposited in upland areas next to the tidal marsh to establish an upland forest. Excavation deepened and widened an existing T-shaped channel to increase tidal flow to the interior of the island. The western arm of the existing 'T

  14. Development of structural health monitoring techniques using dynamics testing

    Energy Technology Data Exchange (ETDEWEB)

    James, G.H. III [Sandia National Labs., Albuquerque, NM (United States). Experimental Structural Dynamics Dept.

    1996-03-01

    Today`s society depends upon many structures (such as aircraft, bridges, wind turbines, offshore platforms, buildings, and nuclear weapons) which are nearing the end of their design lifetime. Since these structures cannot be economically replaced, techniques for structural health monitoring must be developed and implemented. Modal and structural dynamics measurements hold promise for the global non-destructive inspection of a variety of structures since surface measurements of a vibrating structure can provide information about the health of the internal members without costly (or impossible) dismantling of the structure. In order to develop structural health monitoring for application to operational structures, developments in four areas have been undertaken within this project: operational evaluation, diagnostic measurements, information condensation, and damage identification. The developments in each of these four aspects of structural health monitoring have been exercised on a broad range of experimental data. This experimental data has been extracted from structures from several application areas which include aging aircraft, wind energy, aging bridges, offshore structures, structural supports, and mechanical parts. As a result of these advances, Sandia National Laboratories is in a position to perform further advanced development, operational implementation, and technical consulting for a broad class of the nation`s aging infrastructure problems.

  15. Population trends, bend use relative to available habitat and within-river-bend habitat use of eight indicator species of Missouri and Lower Kansas River benthic fishes: 15 years after baseline assessment

    Science.gov (United States)

    Wildhaber, Mark L.; Yang, Wen-Hsi; Arab, Ali

    2016-01-01

    A baseline assessment of the Missouri River fish community and species-specific habitat use patterns conducted from 1996 to 1998 provided the first comprehensive analysis of Missouri River benthic fish population trends and habitat use in the Missouri and Lower Yellowstone rivers, exclusive of reservoirs, and provided the foundation for the present Pallid Sturgeon Population Assessment Program (PSPAP). Data used in such studies are frequently zero inflated. To address this issue, the zero-inflated Poisson (ZIP) model was applied. This follow-up study is based on PSPAP data collected up to 15 years later along with new understanding of how habitat characteristics among and within bends affect habitat use of fish species targeted by PSPAP, including pallid sturgeon. This work demonstrated that a large-scale, large-river, PSPAP-type monitoring program can be an effective tool for assessing population trends and habitat usage of large-river fish species. Using multiple gears, PSPAP was effective in monitoring shovelnose and pallid sturgeons, sicklefin, shoal and sturgeon chubs, sand shiner, blue sucker and sauger. For all species, the relationship between environmental variables and relative abundance differed, somewhat, among river segments suggesting the importance of the overall conditions of Upper and Middle Missouri River and Lower Missouri and Kansas rivers on the habitat usage patterns exhibited. Shoal and sicklefin chubs exhibited many similar habitat usage patterns; blue sucker and shovelnose sturgeon also shared similar responses. For pallid sturgeon, the primary focus of PSPAP, relative abundance tended to increase in Upper and Middle Missouri River paralleling stocking efforts, whereas no evidence of an increasing relative abundance was found in the Lower Missouri River despite stocking.

  16. Stratification of habitats for identifying habitat selection by Merriam's turkeys

    Science.gov (United States)

    Mark A. Rumble; Stanley H. Anderson

    1992-01-01

    Habitat selection patterns of Merriam’s Turkeys were compared in hierarchical analyses of three levels of habitat stratification. Habitat descriptions in first-level analyses were based on dominant species of vegetation. Habitat descriptions in second-level analyses were based on dominant species of vegetation and overstory canopy cover. Habitat descriptions in third-...

  17. Evaluation of two methods of estimating larval habitat productivity in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Munga Stephen

    2011-06-01

    Full Text Available Abstract Background Malaria vector intervention and control programs require reliable and accurate information about vector abundance and their seasonal distribution. The availability of reliable information on the spatial and temporal productivity of larval vector habitats can improve targeting of larval control interventions and our understanding of local malaria transmission and epidemics. The main objective of this study was to evaluate two methods of estimating larval habitat productivity in the western Kenyan highlands, the aerial sampler and the emergence trap. Methods The study was conducted during the dry and rainy seasons in 2008, 2009 and 2010. Aerial samplers and emergence traps were set up for sixty days in each season in three habitat types: drainage ditches, natural swamps, and abandoned goldmines. Aerial samplers and emergence traps were set up in eleven places in each habitat type. The success of each in estimating habitat productivity was assessed according to method, habitat type, and season. The effect of other factors including algae cover, grass cover, habitat depth and width, and habitat water volume on species productivity was analysed using stepwise logistic regression Results Habitat productivity estimates obtained by the two sampling methods differed significantly for all species except for An. implexus. For for An. gambiae s.l. and An. funestus, aerial samplers performed better, 21.5 and 14.6 folds, than emergence trap respectively, while the emergence trap was shown to be more efficient for culicine species. Seasonality had a significant influence on the productivity of all species monitored. Dry season was most productive season. Overall, drainage ditches had significantly higher productivity in all seasons compared to other habitat types. Algae cover, debris, chlorophyll-a, and habitat depth and size had significant influence with respect to species. Conclusion These findings suggest that the aerial sampler is the

  18. Remote health monitoring for elderly through interactive television

    Science.gov (United States)

    2012-01-01

    Background Providing remote health monitoring to specific groups of patients represents an issue of great relevance for the national health systems, because of the costs related to moving health operators, the time spent to reach remote sites, and the high number of people needing health assistance. At the same time, some assistance activities, like those related to chronical diseases, may be satisfied through a remote interaction with the patient, without a direct medical examination. Methods Moving from this considerations, our paper proposes a system architecture for the provisioning of remote health assistance to older adults, based on a blind management of a network of wireless medical devices, and an interactive TV Set Top Box for accessing health related data. The selection of TV as the interface between the user and the system is specifically targeted to older adults. Due to the private nature of the information exchanged, a certified procedure is implemented for data delivery, through the use of non conditional smart cards. All these functions may be accomplished through a proper design of the system management, and a suitable interactive application. Results The interactive application acting as the interface between the user and the system on the TV monitor has been evaluated able to help readability and clear understanding of the contents and functions proposed. Thanks to the limited amount of data to transfer, even a Set Top Box equipped with a traditional PSTN modem may be used to support the proposed service at a basic level; more advanced features, like audio/video connection, may be activated if the Set Top Box enables a broadband connection (e.g. ADSL). Conclusions The proposed layered architecture for a remote health monitoring system can be tailored to address a wide range of needs, according with each patient’s conditions and capabilities. The system exploits the potentialities offered by Digital Television receivers, a friendly MHP interface

  19. Shopping Centers as Panther Habitat: Inferring Animal Locations from Models

    Directory of Open Access Journals (Sweden)

    David S. Maehr

    2004-12-01

    Full Text Available A recent model of Florida panther (Puma concolor coryi habitat erred in arbitrarily creating buffers around radio locations collected during daylight hours on the assumption that study animals were only at rest during these times. The buffers generated by this method likely cause an overestimation of the amounts and kinds of habitats that are used by the panther. This, and other errors, could lead to the impression that unfragmented forest cover is unimportant to panther conservation, and could encourage inaccurate characterizations of panther habitat. Previous 24-hour monitoring of activity and activity readings made during routine telemetry flights indicate that high levels of activity occur in the early morning hours. Literature on the behavior of the species does not support the creation of large buffers around telemetry locations to compensate for the lack of nighttime telemetry data. A thorough examination of ongoing studies that use global positioning systems may help calibrate future Florida panther habitat models.

  20. Monitoring health interventions--who's afraid of LQAS?

    Science.gov (United States)

    Pezzoli, Lorenzo; Kim, Sung Hye

    2013-11-08

    Lot quality assurance sampling (LQAS) is used to evaluate health services. Subunits of a population (lots) are accepted or rejected according to the number of failures in a random sample (N) of a given lot. If failures are greater than decision value (d), we reject the lot and recommend corrective actions in the lot (i.e. intervention area); if they are equal to or less than d, we accept it. We used LQAS to monitor coverage during the last 3 days of a meningitis vaccination campaign in Niger. We selected one health area (lot) per day reporting the lowest administrative coverage in the previous 2 days. In the sampling plan we considered: N to be small enough to allow us to evaluate one lot per day, deciding to sample 16 individuals from the selected villages of each health area, using probability proportionate to population size; thresholds and d to vary according to administrative coverage reported; α ≤5% (meaning that, if we would have conducted the survey 100 times, we would have accepted the lot up to five times when real coverage was at an unacceptable level) and β ≤20% (meaning that we would have rejected the lot up to 20 times, when real coverage was equal or above the satisfactory level). We classified all three lots as with the acceptable coverage. LQAS appeared to be a rapid, simple, and statistically sound method for in-process coverage assessment. We encourage colleagues in the field to consider using LQAS in complement with other monitoring techniques such as house-to-house monitoring.

  1. General Purpose Data-Driven Online System Health Monitoring with Applications to Space Operations

    Science.gov (United States)

    Iverson, David L.; Spirkovska, Lilly; Schwabacher, Mark

    2010-01-01

    Modern space transportation and ground support system designs are becoming increasingly sophisticated and complex. Determining the health state of these systems using traditional parameter limit checking, or model-based or rule-based methods is becoming more difficult as the number of sensors and component interactions grows. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults, failures, or precursors of significant failures. The Inductive Monitoring System (IMS) is a general purpose, data-driven system health monitoring software tool that has been successfully applied to several aerospace applications and is under evaluation for anomaly detection in vehicle and ground equipment for next generation launch systems. After an introduction to IMS application development, we discuss these NASA online monitoring applications, including the integration of IMS with complementary model-based and rule-based methods. Although the examples presented in this paper are from space operations applications, IMS is a general-purpose health-monitoring tool that is also applicable to power generation and transmission system monitoring.

  2. A Battery Health Monitoring Framework for Planetary Rovers

    Science.gov (United States)

    Daigle, Matthew J.; Kulkarni, Chetan Shrikant

    2014-01-01

    Batteries have seen an increased use in electric ground and air vehicles for commercial, military, and space applications as the primary energy source. An important aspect of using batteries in such contexts is battery health monitoring. Batteries must be carefully monitored such that the battery health can be determined, and end of discharge and end of usable life events may be accurately predicted. For planetary rovers, battery health estimation and prediction is critical to mission planning and decision-making. We develop a model-based approach utilizing computaitonally efficient and accurate electrochemistry models of batteries. An unscented Kalman filter yields state estimates, which are then used to predict the future behavior of the batteries and, specifically, end of discharge. The prediction algorithm accounts for possible future power demands on the rover batteries in order to provide meaningful results and an accurate representation of prediction uncertainty. The framework is demonstrated on a set of lithium-ion batteries powering a rover at NASA.

  3. INTEROPERABLE FRAMEWORK SOLUTION TO ICU HEALTH CARE MONITORING

    Directory of Open Access Journals (Sweden)

    Shola Usha Rani

    2015-03-01

    Full Text Available An interoperable telehealth system provides an independent healthcare solution for better management of health and wellness. It allows people to manage their heart disease and diabetes etc. by sending their health parameters like blood pressure, heart rate, glucose levels, temperature, weight, respiration from remote place to health professional, and get real-time feedback on their condition. Here different medical devices are connected to the patient for monitoring. Each kind of device is manufactured by different vendors. And each device information and communication requires different installation and network design. It causes design complexities and network overheads when moving patients for diagnosis examinations. This problem will be solved by interoperability among devices. The ISO/IEEE 11073 is an international standard which produces interoperable hospital information system solution to medical devices. One such type of integrated environment that requires the integration of medical devices is ICU (Intensive Care Unit. This paper presents the issues for ICU monitoring system and framework solution for it.

  4. Health technology assessment to optimize health technology utilization: using implementation initiatives and monitoring processes.

    Science.gov (United States)

    Frønsdal, Katrine B; Facey, Karen; Klemp, Marianne; Norderhaug, Inger Natvig; Mørland, Berit; Røttingen, John-Arne

    2010-07-01

    The way in which a health technology is used in any particular health system depends on the decisions and actions of a variety of stakeholders, the local culture, and context. In 2009, the HTAi Policy Forum considered how health technology assessment (HTA) could be improved to optimize the use of technologies (in terms of uptake, change in use, or disinvestment) in such complex systems. In scoping, it was agreed to focus on initiatives to implement evidence-based guidance and monitoring activities. A review identified systematic reviews of implementation initiatives and monitoring activities. A two-day deliberative workshop was held to discuss key papers, members' experiences, and collectively address key questions. This consensus paper was developed by email and finalized at a postworkshop meeting. Evidence suggests that the impact and use of HTA could be increased by ensuring timely delivery of relevant reports to clearly determined policy receptor (decision-making) points. To achieve this, the breadth of assessment, implementation initiatives such as incentives and targeted, intelligent dissemination of HTA result, needs to be considered. HTA stakeholders undertake a variety of monitoring activities, which could inform optimal use of a technology. However, the quality of these data varies and is often not submitted to an HTA. Monitoring data should be sufficiently robust so that they can be used in HTA to inform optimal use of technology. Evidence-based implementation initiatives should be developed for HTA, to better inform decision makers at all levels in a health system about the optimal use of technology.

  5. Habitat disturbance results in chronic stress and impaired health status in forest-dwelling paleotropical bats.

    Science.gov (United States)

    Seltmann, Anne; Czirják, Gábor Á; Courtiol, Alexandre; Bernard, Henry; Struebig, Matthew J; Voigt, Christian C

    2017-01-01

    Anthropogenic habitat disturbance is a major threat to biodiversity worldwide. Yet, before population declines are detectable, individuals may suffer from chronic stress and impaired immunity in disturbed habitats, making them more susceptible to pathogens and adverse weather conditions. Here, we tested in a paleotropical forest with ongoing logging and fragmentation, whether habitat disturbance influences the body mass and immunity of bats. We measured and compared body mass, chronic stress (indicated by neutrophil to lymphocyte ratios) and the number of circulating immune cells between several bat species with different roost types living in recovering areas, actively logged forests, and fragmented forests in Sabah, Malaysia. In a cave-roosting species, chronic stress levels were higher in individuals from fragmented habitats compared with conspecifics from actively logged areas. Foliage-roosting species showed a reduced body mass and decrease in total white blood cell counts in actively logged areas and fragmented forests compared with conspecifics living in recovering habitats. Our study highlights that habitat disturbance may have species-specific effects on chronic stress and immunity in bats that are potentially related to the roost type. We identified foliage-roosting species as particularly sensitive to forest habitat deterioration. These species may face a heightened extinction risk in the near future if anthropogenic habitat alterations continue.

  6. Measurement of exposures to radioactivity and monitoring of effects on health

    International Nuclear Information System (INIS)

    Spira, Alfred; Boutou, Odile

    1999-01-01

    On the request of the French ministries of Health and of the Environment, the author reports thoughts and proposals regarding epidemiological problems related to natural and artificial radioactive emissions. He first reports an analysis of the present context (assessment of health risks, ionizing radiation in France, radiation protection, nuclear operators, relationship between ionizing radiation and health, epidemiology) and knowledge (about nuclear and health, available results, current investigations). He outlines the benefits of an epidemiological monitoring and its requirements, and identifies the various components of this monitoring. While presenting current works, biological and epidemiological studies performed in the northern Cotentin area, he makes some specific proposals for this area and notably for the workers of La Hague. He proposes the implementation of a national arrangement comprising a measurement of exposures, an epidemiological monitoring, and a sociological survey. He discusses the associated administrative organisation and needs

  7. A qualitative review for wireless health monitoring system

    Science.gov (United States)

    Arshad, Atika; Fadzil Ismail, Ahmad; Khan, Sheroz; Zahirul Alam, A. H. M.; Tasnim, Rumana; Samnan Haider, Syed; Shobaki, Mohammed M.; Shahid, Zeeshan

    2013-12-01

    A proliferating interest has been being observed over the past years in accurate wireless system development in order to monitor incessant human activities in health care centres. Furthermore because of the swelling number of elderly population and the inadequate number of competent staffs for nursing homes there is a big market petition for health care monitoring system. In order to detect human researchers developed different methods namely which include Field Identification technique, Visual Sensor Network, radar detection, e-mobile techniques and so on. An all-encompassing overview of the non-wired human detection application advancement is presented in this paper. Inductive links are used for human detection application while wiring an electronic system has become impractical in recent times. Keeping in mind the shortcomings, an Inductive Intelligent Sensor (IIS) has been proposed as a novel human monitoring system for future implementation. The proposed sensor works towards exploring the signature signals of human body movement and size. This proposed sensor is fundamentally based on inductive loop that senses the presence and a passing human resulting an inductive change.

  8. Time-frequency Methods for Structural Health Monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  9. Time-frequency methods for structural health monitoring

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Meijer, R.J.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2014-01-01

    Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and

  10. Model-based health monitoring of hybrid systems

    CERN Document Server

    Wang, Danwei; Low, Chang Boon; Arogeti, Shai

    2013-01-01

    Offers in-depth comprehensive study on health monitoring for hybrid systems Includes new concepts, such as GARR, mode tracking and multiple failure prognosis Contains many examples, making the developed techniques easily understandable and accessible Introduces state-of-the-art algorithms and methodologies from experienced researchers

  11. Advanced health monitor for automated driving functions

    NARCIS (Netherlands)

    Mikovski Iotov, I.

    2017-01-01

    There is a trend in the automotive domain where driving functions are taken from the driver by automated driving functions. In order to guarantee the correct behavior of these auto-mated driving functions, the report introduces an Advanced Health Monitor that uses Tem-poral Logic and Probabilistic

  12. Mobile patient monitoring: The MobiHealth system

    NARCIS (Netherlands)

    Wac, K.E.; Bults, Richard G.A.; van Beijnum, Bernhard J.F.; Widya, I.A.; Jones, Valerie M.; Konstantas, D.; Vollenbroek-Hutten, Miriam Marie Rosé; Hermens, Hermanus J.

    2009-01-01

    The emergence of high bandwidth public wireless networks and miniaturized personal mobile devices give rise to new mobile healthcare services. To this end, the MobiHealth system provides highly customizable vital signs tele-monitoring and tele-treatment system based on a body area network (BAN) and

  13. Functional diversity measures revealed impacts of non-native species and habitat degradation on species-poor freshwater fish assemblages.

    Science.gov (United States)

    Colin, Nicole; Villéger, Sébastien; Wilkes, Martin; de Sostoa, Adolfo; Maceda-Veiga, Alberto

    2018-06-01

    Trait-based ecology has been developed for decades to infer ecosystem responses to stressors based on the functional structure of communities, yet its value in species-poor systems is largely unknown. Here, we used an extensive dataset in a Spanish region highly prone to non-native fish invasions (15 catchments, N=389 sites) to assess for the first time how species-poor communities respond to large-scale environmental gradients using a taxonomic and functional trait-based approach in riverine fish. We examined total species richness and three functional trait-based indices available when many sites have ≤3 species (specialization, FSpe; originality, FOri and entropy, FEnt). We assessed the responses of these taxonomic and functional indices along gradients of altitude, water pollution, physical habitat degradation and non-native fish biomass. Whilst species richness was relatively sensitive to spatial effects, functional diversity indices were responsive across natural and anthropogenic gradients. All four diversity measures declined with altitude but this decline was modulated by physical habitat degradation (richness, FSpe and FEnt) and the non-native:total fish biomass ratio (FSpe and FOri) in ways that varied between indices. Furthermore, FSpe and FOri were significantly correlated with Total Nitrogen. Non-native fish were a major component of the taxonomic and functional structure of fish communities, raising concerns about potential misdiagnosis between invaded and environmentally-degraded river reaches. Such misdiagnosis was evident in a regional fish index widely used in official monitoring programs. We recommend the application of FSpe and FOri to extensive datasets from monitoring programs in order to generate valuable cross-system information about the impacts of non-native species and habitat degradation, even in species-poor systems. Scoring non-native species apart from habitat degradation in the indices used to determine ecosystem health is

  14. Habitat and hydrology: assessing biological resources of the Suwannee River Estuarine System

    Science.gov (United States)

    Raabe, Ellen A.; Edwards, Randy E.; McIvor, Carole C.; Grubbs, Jack W.; Dennis, George D.

    2007-01-01

    The U.S. Geological Survey conducted a pilot integrated-science study during 2002 and 2003 to map, describe, and evaluate benthic and emergent habitats in the Suwannee River Estuary on the Gulf Coast of Florida. Categories of aquatic, emergent, and terrestrial habitats were determined from hyperspectral imagery and integrated with hydrologic data to identify estuarine fish habitats. Maps of intertidal and benthic habitat were derived from 12-band, 4-m resolution hyperspectral imagery acquired in September 2002. Hydrologic data were collected from tidal creeks during the winter of 2002-03 and the summer-fall of 2003. Fish were sampled from tidal creeks during March 2003 using rivulet nets, throw traps, and seine nets. Habitat characteristics, hydrologic data, and fish assemblages were compared for tidal creeks north and south of the Suwannee River. Tidal creeks north of the river had more shoreline edge and shallow habitat than creeks to the south. Tidal creeks south of the river were generally of lower salinity (fresher) and supported more freshwater marsh and submerged aquatic vegetation. The southern creeks tended to be deeper but less sinuous than the northern creeks. Water quality and inundation were evaluated with hydrologic monitoring in the creeks. In-situ gauges, recording pressure and temperature, documented a net discharge of brackish to saline groundwater into the tidal creeks with pronounced flow during low tide. Groundwater flow into the creeks was most prominent north of the river. Combined fish-sampling results showed an overall greater abundance of organisms and greater species richness in the southern creeks, nominally attributed a greater range in water quality. Fish samples were dominated by juvenile spot, grass shrimp, bay anchovy, and silverside. The short time frame for hydrologic monitoring and the one-time fish-sampling effort were insufficient for forming definitive conclusions. However, the combination of hyperspectral imagery and

  15. Structural health monitoring using wireless sensor networks

    Science.gov (United States)

    Sreevallabhan, K.; Nikhil Chand, B.; Ramasamy, Sudha

    2017-11-01

    Monitoring and analysing health of large structures like bridges, dams, buildings and heavy machinery is important for safety, economical, operational, making prior protective measures, and repair and maintenance point of view. In recent years there is growing demand for such larger structures which in turn make people focus more on safety. By using Microelectromechanical Systems (MEMS) Accelerometer we can perform Structural Health Monitoring by studying the dynamic response through measure of ambient vibrations and strong motion of such structures. By using Wireless Sensor Networks (WSN) we can embed these sensors in wireless networks which helps us to transmit data wirelessly thus we can measure the data wirelessly at any remote location. This in turn reduces heavy wiring which is a cost effective as well as time consuming process to lay those wires. In this paper we developed WSN based MEMS-accelerometer for Structural to test the results in the railway bridge near VIT University, Vellore campus.

  16. PROFILE: Integrated Management to Create New Breeding Habitat for Dalmatian Pelicans (Pelecanus crispus) in Greece

    Science.gov (United States)

    Pyrovetsi

    1997-09-01

    / An integrated management plan to create favorable nesting habitat for the world-endangered Dalmatian pelicans, was tested at Kerkini irrigation reservoir, a Ramsar wetland. The lake is the major wintering site of Dalmatian pelicans in Europe, where the species lives year-round without breeding. The rise of water level at the reservoir during spring (exceeding 5 m) has an impact on the whole system, including several birds, which lose their nesting habitat. Although the integrity of the wetland demands ecological restoration with changes in its hydrologic regime, local socioeconomic conditions allow only habitat level interventions. During the planning phase of the management plan, both the ecological and social context of the interventions were considered. Monitoring of all pelican habitats and populations provided the scientific basis, while a socioecological survey on knowledge/attitudes of local fishermen toward wetland identified conflicts with specific resources and planned management. To gain public support, a broad information/education program was implemented. The education program for fishermen was based on the findings of the socioecological survey. The in situ management involved experimental construction of floating rafts, platforms over water, dredged-spoil islands, and platforms at various sites of the wetland. Monitoring of the managed habitats showed that most waterbirds used them for resting and roosting. Common terns nested on the rafts, cormorants on the platforms, and Dalmatian pelicans on the man-made island. Under the prevailing hydrologic and weather conditions, islands seem to be the most suitable habitat for pelican nesting. It is concluded that wildlife habitat management should integrate the ecological component, related to the needs of the species and ecosystem, with the social one, expressed by cooperation and involvement of the local community.KEY WORDS: Integrated management; Pelican; Nesting habitat; Habitat management; Reservoir

  17. Enhancements of the "eHabitat

    Science.gov (United States)

    Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.

    2012-04-01

    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and

  18. Salmon River Habitat Enhancement. 1990 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, Mike

    1991-12-01

    The annual report contains three individual subproject sections detailing tribal fisheries work completed during the summer and fall of 1990. Subproject I contains summaries of evaluation/monitoring efforts associated with the Bear Valley Creek, Idaho enhancement project. Subproject II contains an evaluation of the Yankee Fork of the Salmon River habitat enhancement project. Subproject III concerns the East Fork of the Salmon River, Idaho.

  19. Umatilla River Subbasin Fish Habitat Improvement Program, 2004-2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-02-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and reconstruction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary of Program activities for the 2004 calendar year (January 1 through December 31, 2004), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance, and (4) Monitoring and Evaluation. This report also summarizes Program Administrative, Interagency Coordination, and Public Education activities.

  20. High-resolution behavioral mapping of electric fishes in Amazonian habitats.

    Science.gov (United States)

    Madhav, Manu S; Jayakumar, Ravikrishnan P; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J

    2018-04-11

    The study of animal behavior has been revolutionized by sophisticated methodologies that identify and track individuals in video recordings. Video recording of behavior, however, is challenging for many species and habitats including fishes that live in turbid water. Here we present a methodology for identifying and localizing weakly electric fishes on the centimeter scale with subsecond temporal resolution based solely on the electric signals generated by each individual. These signals are recorded with a grid of electrodes and analyzed using a two-part algorithm that identifies the signals from each individual fish and then estimates the position and orientation of each fish using Bayesian inference. Interestingly, because this system involves eavesdropping on electrocommunication signals, it permits monitoring of complex social and physical interactions in the wild. This approach has potential for large-scale non-invasive monitoring of aquatic habitats in the Amazon basin and other tropical freshwater systems.

  1. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    St. Hilaire, Danny R. (Oregon Department of Fish and Wildlife, Pendleton, OR)

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  2. Effect of habitat and foraging height on bat activity in the coastal plain of South Carolina.

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Jennifer, M.; Menzel, Michael A.; Kilgo, John C.; Ford, W. Mark; Edwards, John W.; McCracken, Gary F.

    2005-07-01

    A comparison of bat activity levels in the Coastal Plain of South Carolina among 5 habitat types: forested riparian areas, clearcuts, young pine plantations, mature pine plantations and pine savannas, using time expansion radio-microphones and integrated detectors to simultaneously monitor bat activity at three heights in each habitat type.

  3. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    coordinated by the Grande Ronde Model Watershed Program (Project. No.199202601). Work undertaken during 2007 included: (1) Starting 1 new fencing project in the NFJD subbasin that will protect an additional 1.82 miles of stream and 216.2 acres of habitat; (2) Constructing 0.47 miles of new channel on the Wallowa River to enhance habitat, restore natural channel dimensions, pattern and profile and reconnect approximately 18 acres of floodplain and wetland habitat; (3) Planting 22,100 plants along 3 streams totaling 3.6 stream miles; (4) Establishing 34 new photopoints on 5 projects and retaking 295 existing photopoint pictures; (5) Monitoring stream temperatures at 10 locations on 5 streams and conducting other monitoring activities; (6) Completing riparian fence, water gap and other maintenance on 116.8 miles of project fences; (7) Initiated writing of a comprehensive project summary report that will present a summary of conclusions of the benefits to focal species and management recommendations for the future. Since initiation of this program 56 individual projects have been implemented, monitored and maintained along 84.8 miles of anadromous fish bearing streams that protect and enhance 3,501 acres of riparian and instream habitat.

  4. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Science.gov (United States)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  5. Multinational surveys for monitoring eHealth policy implementations

    DEFF Research Database (Denmark)

    Gilstad, Heidi; Faxvaag, Arild; Hyppönen, Hannele

    2014-01-01

    Development of multinational variables for monitoring eHealth policy implementations is a complex task and requires multidisciplinary, knowledgebased international collaboration. Experts in an interdisciplinary workshop identified useful data and pitfalls for comparative variable development...

  6. Habitat Use Database - Groundfish Essential Fish Habitat (EFH) Habitat Use Database (HUD)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Habitat Use Database (HUD) was specifically designed to address the need for habitat-use analyses in support of groundfish EFH, HAPCs, and fishing and nonfishing...

  7. Smartphone technologies and Bayesian networks to assess shorebird habitat selection

    Science.gov (United States)

    Zeigler, Sara; Thieler, E. Robert; Gutierrez, Ben; Plant, Nathaniel G.; Hines, Megan K.; Fraser, James D.; Catlin, Daniel H.; Karpanty, Sarah M.

    2017-01-01

    Understanding patterns of habitat selection across a species’ geographic distribution can be critical for adequately managing populations and planning for habitat loss and related threats. However, studies of habitat selection can be time consuming and expensive over broad spatial scales, and a lack of standardized monitoring targets or methods can impede the generalization of site-based studies. Our objective was to collaborate with natural resource managers to define available nesting habitat for piping plovers (Charadrius melodus) throughout their U.S. Atlantic coast distribution from Maine to North Carolina, with a goal of providing science that could inform habitat management in response to sea-level rise. We characterized a data collection and analysis approach as being effective if it provided low-cost collection of standardized habitat-selection data across the species’ breeding range within 1–2 nesting seasons and accurate nesting location predictions. In the method developed, >30 managers and conservation practitioners from government agencies and private organizations used a smartphone application, “iPlover,” to collect data on landcover characteristics at piping plover nest locations and random points on 83 beaches and barrier islands in 2014 and 2015. We analyzed these data with a Bayesian network that predicted the probability a specific combination of landcover variables would be associated with a nesting site. Although we focused on a shorebird, our approach can be modified for other taxa. Results showed that the Bayesian network performed well in predicting habitat availability and confirmed predicted habitat preferences across the Atlantic coast breeding range of the piping plover. We used the Bayesian network to map areas with a high probability of containing nesting habitat on the Rockaway Peninsula in New York, USA, as an example application. Our approach facilitated the collation of evidence-based information on habitat selection

  8. Construction of health monitoring system for traveler based on the mobile Internet

    Directory of Open Access Journals (Sweden)

    Wei Haoqian

    2017-04-01

    Full Text Available With the development of communication technology and computer technology,intelligent terminals represented by smartphone and mobile Internet have become indispensable tools in people's life and work.As the intelligent terminal platform is widely used and the wearable medical equipment is gradually mature,this paper based on the Internet designs and develops a health monitoring system for travelers who suffered from chronic diseases or worried about their physical conditions,to provide a whole process of health monitoring and assistant service.The system,combing smartphone and wearable medical devices,uploads the health and physical signs data to the health monitoring platform through the mobile Internet.Then the professionals statistically analyze the data and provide appropriate advice and guidance,so as to achieve the remote medical treatment for travelers.

  9. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  10. Application of ubiquitous computing in personal health monitoring systems.

    Science.gov (United States)

    Kunze, C; Grossmann, U; Stork, W; Müller-Glaser, K D

    2002-01-01

    A possibility to significantly reduce the costs of public health systems is to increasingly use information technology. The Laboratory for Information Processing Technology (ITIV) at the University of Karlsruhe is developing a personal health monitoring system, which should improve health care and at the same time reduce costs by combining micro-technological smart sensors with personalized, mobile computing systems. In this paper we present how ubiquitous computing theory can be applied in the health-care domain.

  11. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

    OpenAIRE

    Rui Zhao; Ruqiang Yan; Jinjiang Wang; Kezhi Mao

    2017-01-01

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression mode...

  12. DLR-EnviHab - A closed environmental Habitat

    Science.gov (United States)

    Rabbow, E.; Koch, B.; Rettberg, P.; Horneck, G.; Graef, P.; Gerzer, R.

    Closed habitats intended for different purposes like confinement studies, life in extreme environments (Antarctica) and as simulation testbeds for complex closed life support systems have been built and achieved different degrees of closure. Those that were built in preparation of space missions oriented themselves on the need of a crew of astronauts during a long term mission in Space, on Mars or Moon. At DLR in Cologne, a modular approach is followed to build a closed environmental habitat for scientific and medical studies, the DLR-EnviHab. This modular structure of the EnviHab is designed to include humans as integral part in a bioregenerative life support system, and allows a step-wise realization of the project, ensuring useful results for a wide field of scientific research during each phase. The DLR-EnviHab provides a platform for international and interdisciplinary research and the development of innovative solutions for cultivation and habitation on Earth as well as for long term space or planetary missions. By the inclusion of humans as integral component of the system, medical research areas including physiological and psychological health and rehabilitation as well as environmental research and monitoring and modelling of coupled and controlled systems are addressed in EnviHab. Results of the research conducted in the individual and combined EnviHab modules will also contribute to most urgent issues like water(recycling) management, food management, pollution/waste management and atmosphere(air) management. In addition, EnviHab contributes to public education and outreach with the open visible and partly accessible structure, an exhibition and an explanatory module.

  13. Maine River Temperature Monitoring

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — We collect seasonal and annual temperature measurements on an hourly or quarter hourly basis to monitor habitat suitability for ATS and other species. Temperature...

  14. Towards "Zero" False Positive in Structural Health Monitoring

    National Research Council Canada - National Science Library

    Chiu, Wing K; Chang, F. K; Tian, Daniel T

    2007-01-01

    Structural Health Monitoring (SHM) is one aspect of a revolution based on the use of Smart Materials and Structures technologies that have the potential to provide major gains in structural performance and cost-efficient life management...

  15. WHITE-CLAWED CRAYFISH IN MUDDY HABITATS: MONITORING THE POPULATION IN THE RIVER IVEL, BEDFORDSHIRE, UK

    Directory of Open Access Journals (Sweden)

    PEAY S.

    2006-01-01

    Full Text Available White-clawed crayfish Austropotamobius pallipes are usually associated with stony substrates, tree roots, or refuges in submerged banks. The River Ivel has the last known population of white-clawed crayfish in Bedfordshire. Prior to 2005, much of the bed comprised uniform silt, plus leaf-litter. Stands of reedmace Typha latifolia and other emergent vegetation were localised in less shaded areas. Initial survey results suggested a population at low abundance. A low-cost monitoring strategy was started in 2001 and continued three times a year to 2005, using engineering bricks, which offer artificial refuges. Crayfish are counted when bricks are lifted periodically. De-silting of c. 430 m river was carried out in February 2005, to improve habitat and to maintain the flood capacity in the channel upstream of a mill weir. Additional bricks were deployed a few weeks in advance of de-silting, then bricks and crayfish were lifted prior to dredging and were returned the next day. Starting upstream, soft, wet mud was dredged out, placed on the bank and searched manually for crayfish. Banks, tree roots and shallow margins were left undisturbed. In all, 4,142 crayfish were found in dredgings from a 430 m length of the mid channel. Crayfish were strongly associated with emergent vegetation, but many were present below the surface of the silt. Crayfish released in the dredged channel immediately burrowed into the silt retained on the channel margins. Monitoring after dredging showed no change in abundance in the main area with in-bank refuges and lots of bricks, but there was an increase in occupancy of bricks in an area where most crayfish had been in emergent vegetation.

  16. Riverine habitat dynamics

    Science.gov (United States)

    Jacobson, R.B.

    2013-01-01

    The physical habitat template is a fundamental influence on riverine ecosystem structure and function. Habitat dynamics refers to the variation in habitat through space and time as the result of varying discharge and varying geomorphology. Habitat dynamics can be assessed at spatial scales ranging from the grain (the smallest resolution at which an organism relates to its environment) to the extent (the broadest resolution inclusive of all space occupied during its life cycle). In addition to a potentially broad range of spatial scales, assessments of habitat dynamics may include dynamics of both occupied and nonoccupied habitat patches because of process interactions among patches. Temporal aspects of riverine habitat dynamics can be categorized into hydrodynamics and morphodynamics. Hydrodynamics refers to habitat variation that results from changes in discharge in the absence of significant change of channel morphology and at generally low sediment-transport rates. Hydrodynamic assessments are useful in cases of relatively high flow exceedance (percent of time a flow is equaled or exceeded) or high critical shear stress, conditions that are applicable in many studies of instream flows. Morphodynamics refers to habitat variation resulting from changes to substrate conditions or channel/floodplain morphology. Morphodynamic assessments are necessary when channel and floodplain boundary conditions have been significantly changed, generally by relatively rare flood events or in rivers with low critical shear stress. Morphodynamic habitat variation can be particularly important as disturbance mechanisms that mediate population growth or for providing conditions needed for reproduction, such as channel-migration events that erode cutbanks and provide new pointbar surfaces for germination of riparian trees. Understanding of habitat dynamics is increasing in importance as societal goals shift toward restoration of riverine ecosystems. Effective investment in restoration

  17. Long-term real-time structural health monitoring using wireless smart sensor

    Science.gov (United States)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  18. Health monitoring system for transmission shafts based on adaptive parameter identification

    Science.gov (United States)

    Souflas, I.; Pezouvanis, A.; Ebrahimi, K. M.

    2018-05-01

    A health monitoring system for a transmission shaft is proposed. The solution is based on the real-time identification of the physical characteristics of the transmission shaft i.e. stiffness and damping coefficients, by using a physical oriented model and linear recursive identification. The efficacy of the suggested condition monitoring system is demonstrated on a prototype transient engine testing facility equipped with a transmission shaft capable of varying its physical properties. Simulation studies reveal that coupling shaft faults can be detected and isolated using the proposed condition monitoring system. Besides, the performance of various recursive identification algorithms is addressed. The results of this work recommend that the health status of engine dynamometer shafts can be monitored using a simple lumped-parameter shaft model and a linear recursive identification algorithm which makes the concept practically viable.

  19. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment.

    Science.gov (United States)

    2018-01-01

    Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0-11.2) to 10.0% (95% confidence interval 6.75-13.25) and decreased the number of severe hypoglycemic events.Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring interventions to usual care

  20. Coastal Bend Texas Benthic Habitat Mapping Patchy Shapefile Map - Lower Laguna Madre

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Office for Coastal Management (OCM) requested the creation of benthic habitat data along the southern Texas coast to support the Texas Seagrass Monitoring...

  1. Wearable health monitoring using capacitive voltage-mode Human Body Communication.

    Science.gov (United States)

    Maity, Shovan; Das, Debayan; Sen, Shreyas

    2017-07-01

    Rapid miniaturization and cost reduction of computing, along with the availability of wearable and implantable physiological sensors have led to the growth of human Body Area Network (BAN) formed by a network of such sensors and computing devices. One promising application of such a network is wearable health monitoring where the collected data from the sensors would be transmitted and analyzed to assess the health of a person. Typically, the devices in a BAN are connected through wireless (WBAN), which suffers from energy inefficiency due to the high-energy consumption of wireless transmission. Human Body Communication (HBC) uses the relatively low loss human body as the communication medium to connect these devices, promising order(s) of magnitude better energy-efficiency and built-in security compared to WBAN. In this paper, we demonstrate a health monitoring device and system built using Commercial-Off-The-Shelf (COTS) sensors and components, that can collect data from physiological sensors and transmit it through a) intra-body HBC to another device (hub) worn on the body or b) upload health data through HBC-based human-machine interaction to an HBC capable machine. The system design constraints and signal transfer characteristics for the implemented HBC-based wearable health monitoring system are measured and analyzed, showing reliable connectivity with >8× power savings compared to Bluetooth low-energy (BTLE).

  2. Accelerated Aging Experiments for Capacitor Health Monitoring and Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses experimental setups for health monitoring and prognostics of electrolytic capacitors under nominal operation and accelerated aging conditions....

  3. Propulsion health monitoring of a turbine engine disk using spin test data

    Science.gov (United States)

    Abdul-Aziz, Ali; Woike, Mark; Oza, Nikunj; Matthews, Bryan; Baakilini, George

    2010-03-01

    On line detection techniques to monitor the health of rotating engine components are becoming increasingly attractive options to aircraft engine companies in order to increase safety of operation and lower maintenance costs. Health monitoring remains a challenging feature to easily implement, especially, in the presence of scattered loading conditions, crack size, component geometry and materials properties. The current trend, however, is to utilize noninvasive types of health monitoring or nondestructive techniques to detect hidden flaws and mini cracks before any catastrophic event occurs. These techniques go further to evaluate materials' discontinuities and other anomalies that have grown to the level of critical defects which can lead to failure. Generally, health monitoring is highly dependent on sensor systems that are capable of performing in various engine environmental conditions and able to transmit a signal upon a predetermined crack length, while acting in a neutral form upon the overall performance of the engine system. Efforts are under way at NASA Glenn Research Center through support of the Intelligent Vehicle Health Management Project (IVHM) to develop and implement such sensor technology for a wide variety of applications. These efforts are focused on developing high temperature, wireless, low cost and durable products. Therefore, in an effort to address the technical issues concerning health monitoring of a rotor disk, this paper considers data collected from an experimental study using high frequency capacitive sensor technology to capture blade tip clearance and tip timing measurements in a rotating engine-like-disk-to predict the disk faults and assess its structural integrity. The experimental results collected at a range of rotational speeds from tests conducted at the NASA Glenn Research Center's Rotordynamics Laboratory will be evaluated using multiple data-driven anomaly detection techniques to identify anomalies in the disk. This study

  4. Linking hydrologic, physical and chemical habitat environments for the potential assessment of fish community rehabilitation in a developing city

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Liu, C. M.; Dou, T. W.; Yang, Z. L.; Yang, Z. Y.; Liu, X. L.; Xiang, H.; Nie, S. Y.; Zhang, J. L.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-04-01

    Aquatic ecological rehabilitation is increasingly attracting considerable public and research attention. An effective method that requires less data and expertise would help in the assessment of rehabilitation potential and in the monitoring of rehabilitation activities as complicated theories and excessive data requirements on assemblage information make many current assessment models expensive and limit their wide use. This paper presents an assessment model for restoration potential which successfully links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. In this model three newly developed sub-models, integrated habitat index (IHSI), integrated ecological niche breadth (INB) and integrated ecological niche overlap (INO), are established to study spatial heterogeneity of the restoration potential of fish assemblages based on gradient methods of habitat suitability index and ecological niche models. To reduce uncertainties in the model, as many fish species as possible, including important native fish, were selected as dominant species with monitoring occurring over several seasons to comprehensively select key habitat factors. Furthermore, a detrended correspondence analysis (DCA) was employed prior to a canonical correspondence analysis (CCA) of the data to avoid the "arc effect" in the selection of key habitat factors. Application of the model to data collected at Jinan City, China proved effective reveals that three lower potential regions that should be targeted in future aquatic ecosystem rehabilitation programs. They were well validated by the distribution of two habitat parameters: river width and transparency. River width positively influenced and transparency negatively influenced fish assemblages. The model can be applied for monitoring the effects of fish assemblage restoration

  5. Engagement with eHealth Self-Monitoring in a Primary Care-Based Weight Management Intervention.

    Science.gov (United States)

    Wolin, Kathleen Y; Steinberg, Dori M; Lane, Ilana B; Askew, Sandy; Greaney, Mary L; Colditz, Graham A; Bennett, Gary G

    2015-01-01

    While eHealth approaches hold promise for improving the reach and cost-effectiveness of behavior change interventions, they have been challenged by declining participant engagement over time, particularly for self-monitoring behaviors. These are significant concerns in the context of chronic disease prevention and management where durable effects are important for driving meaningful changes. "Be Fit, Be Well" was an eHealth weight loss intervention that allowed participants to self-select a self-monitoring modality (web or interactive voice response (IVR)). Participants could change their modality. As such, this study provides a unique opportunity to examine the effects of intervention modality choice and changing modalities on intervention engagement and outcomes. Intervention participants, who were recruited from community health centers, (n = 180) were expected to self-monitor health behaviors weekly over the course of the 24-month intervention. We examined trends in intervention engagement by modality (web, IVR, or changed modality) among participants in the intervention arm. The majority (61%) of participants chose IVR self-monitoring, while 39% chose web. 56% of those who selected web monitoring changed to IVR during the study versus no change in those who initially selected IVR. Self-monitoring declined in both modalities, but completion rates were higher in those who selected IVR. There were no associations between self-monitoring modality and weight or blood pressure outcomes. This is the first study to compare web and IVR self-monitoring in an eHealth intervention where participants could select and change their self-monitoring modality. IVR shows promise for achieving consistent engagement.

  6. Novelty detection methods for online health monitoring and post data analysis of turbopumps

    International Nuclear Information System (INIS)

    Lei Hu; Niaoqing, Hu; Xinpeng, Zhang; Fengshou, Gu; Ming, Gao

    2013-01-01

    As novelty detection works when only normal data are available, it is of considerable promise for health monitoring in cases lacking fault samples and prior knowledge. We present two novelty detection methods for health monitoring of turbopumps in large-scale liquid propellant rocket engines. The first method is the adaptive Gaussian threshold model. This method is designed to monitor the vibration of the turbopumps online because it has minimal computational complexity and is easy for implementation in real time. The second method is the one-class support vector machine (OCSVM) which is developed for post analysis of historical vibration signals. Via post analysis the method not only confirms the online monitoring results but also provides diagnostic results so that faults from sensors are separated from those actually from the turbopumps. Both of these two methods are validated to be efficient for health monitoring of the turbopumps.

  7. Design and Analysis of Architectures for Structural Health Monitoring Systems

    Science.gov (United States)

    Mukkamala, Ravi; Sixto, S. L. (Technical Monitor)

    2002-01-01

    During the two-year project period, we have worked on several aspects of Health Usage and Monitoring Systems for structural health monitoring. In particular, we have made contributions in the following areas. 1. Reference HUMS architecture: We developed a high-level architecture for health monitoring and usage systems (HUMS). The proposed reference architecture is shown. It is compatible with the Generic Open Architecture (GOA) proposed as a standard for avionics systems. 2. HUMS kernel: One of the critical layers of HUMS reference architecture is the HUMS kernel. We developed a detailed design of a kernel to implement the high level architecture.3. Prototype implementation of HUMS kernel: We have implemented a preliminary version of the HUMS kernel on a Unix platform.We have implemented both a centralized system version and a distributed version. 4. SCRAMNet and HUMS: SCRAMNet (Shared Common Random Access Memory Network) is a system that is found to be suitable to implement HUMS. For this reason, we have conducted a simulation study to determine its stability in handling the input data rates in HUMS. 5. Architectural specification.

  8. Primates living outside protected habitats are more stressed: the case of black howler monkeys in the Yucatán Peninsula.

    Directory of Open Access Journals (Sweden)

    Ariadna Rangel-Negrín

    Full Text Available The non-invasive monitoring of glucocorticoid hormones allows for the assessment of the physiological effects of anthropogenic disturbances on wildlife. Variation in glucocorticoid levels of the same species between protected and unprotect areas seldom has been measured, and the available evidence suggests that this relationship may depend on species-specific habitat requirements and biology. In the present study we focused on black howler monkeys (Alouatta pigra, a canopy-dwelling primate species, as a case study to evaluate the physiological consequences of living in unprotected areas, and relate them with intragroup competition and competition with extragroup individuals. From February 2006 to September 2007 we collected 371 fecal samples from 21 adults belonging to five groups (two from protected and three from unprotected areas in Campeche, Mexico. We recorded agonistic interactions within groups and encounters with other groups (1,200 h of behavioral observations, and determined fecal glucocorticoid metabolite (FGM concentrations with radioimmunoassays. We used linear mixed models and Akaike's information criterion to choose the best model explaining variation in FGM concentrations between protected and unprotected areas calculated from five categorical variables: habitat type (protected vs. unprotected, participation in agonistic interactions, intergroup encounters, sex and female reproductive state, and season. The best model included habitat type, the interaction between habitat type and agonism, and the interaction between habitat type and season. FGM concentrations were higher in unprotected habitats, particularly when individuals were involved in agonistic interactions; seasonal variation in FGM concentrations was only detected in protected habitats. High FGM concentrations in black howler monkeys living in unprotected habitats are associated with increased within-group food competition and probably associated with exposure to

  9. Habitat selection by female northern pintails wintering in the Grassland Ecological Area, California

    Science.gov (United States)

    Fleskes, Joseph P.; Gilmer, David S.; Jarvis, Robert L.

    2004-01-01

    To determine relative importance of habitats available in the Grassland Ecological Area (GEA) to wintering female northern pintails, Anas acuta, we studied habitat use relative to availability (i.e., habitat selection) in the GEA during September through March, 1991-94 for 196 Hatch-Year (HY) and 221 After-Hatch-Year (AHY) female pintails that were radio tagged during August-early October in the GEA (n = 239), other San Joaquin Valley areas (n = 132), or other Central Valley areas (n = 46). Habitat availability and use varied among seasons and years, but pintails always selected shallow and, except on hunting days, open habitats. Swamp timothy, Heleochloa schoenoides, marsh was the most available, used, and selected habitat. Watergrass, Echinochloa crusgalli, marsh in the GEA was used less than available at night in contrast to previous studies in other SJV areas. Preferred late-winter habitats were apparently lacking in the GEA, at least relative to in the Sacramento Valley and Delta where most pintails moved to in December each year. Impacts on pintails of the increasing practice of managing marshes for increased emergent vegetation to attract other species should be monitored. Shallow, open habitats that produce seeds and invertebrates available to pintails in late winter would help maintain pintail abundance in the GEA.

  10. Habitat-related specialization of lateral-line system morphology in a habitat-generalist and a habitat-specialist New Zealand eleotrid.

    Science.gov (United States)

    Vanderpham, J P; Nakagawa, S; Senior, A M; Closs, G P

    2016-04-01

    An investigation of intraspecific habitat-related patterns of variation in oculoscapular lateral-line superficial neuromasts (SN) identified a decrease in the ratio of total SNs to pores, and a trend towards decreased asymmetry in SNs in the habitat-generalist common bully Gobiomorphus cotidianus from fluvial habitats compared to lacustrine habitats, suggesting habitat-related phenotypic variability. A greater ratio of pores to SNs, as well as less variation in the total number and asymmetry of SNs observed in the fluvial habitat-specialist redfin bully Gobiomorphus huttoni may provide further evidence of variations in the oculoscapular lateral-line morphology of fluvial habitat G. cotidianus individuals serving as adaptations to more turbulent environments. © 2016 The Fisheries Society of the British Isles.

  11. Ecological Monitoring and Compliance Program 2007 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Dennis; Anderson, David; Derek, Hall; Greger, Paul; Ostler, W. Kent

    2008-03-01

    In accordance with U.S. Department of Energy (DOE) Order 450.1, 'Environmental Protection Program', the Office of the Assistant Manager for Environmental Management of the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) requires ecological monitoring and biological compliance support for activities and programs conducted at the Nevada Test Site (NTS). National Security Technologies, LLC (NSTec), Ecological Services has implemented the Ecological Monitoring and Compliance (EMAC) Program to provide this support. EMAC is designed to ensure compliance with applicable laws and regulations, delineate and define NTS ecosystems, and provide ecological information that can be used to predict and evaluate the potential impacts of proposed projects and programs on those ecosystems. This report summarizes the EMAC activities conducted by NSTec during calendar year 2007. Monitoring tasks during 2007 included eight program areas: (a) biological surveys, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) biological monitoring at the Nonproliferation Test and Evaluation Complex (NPTEC). The following sections of this report describe work performed under these eight areas.

  12. Twenty years of children’s health monitoring: organization, results, conclusions

    Directory of Open Access Journals (Sweden)

    Aleksandra Anatol’evna Shabunova

    2015-05-01

    Full Text Available Deep understanding of human potential reproduction, presenting it as a continuous cycle and reflecting the continuity of generations, is significant for the formation of health and development of children. Today’s children will determine the future of Russian society. It is they who in 10–15 years will be a major part of the labor and creative population, a demographic base of the country. The research into children’s problems through the prism of socio-economic development helps identify targets of the state many-sided policy. The article presents results of the long-term medical sociological monitoring on the formation of child health carried out by the Institute of Socio-Economic Development of Territories of RAS with the support of the Vologda Oblast Healthcare Department since 1995. The special monitoring study of health dynamics in real time is unique not only for the Vologda Oblast, but for Russia as well. It reveals the transformation of a personality and the dependence of these changes on direct and indirect factors. The work’s feature is that it addresses an extremely important and wide range of issues: whether man was born healthy or not, if he/she is unhealthy, then why and why he/she was born unhealthy; whether his/her health after the birth is improving or deteriorating; if health is changing, what causes the changes. The 15 year observations disclose the dynamics of child health in the conditions of transformation processes taking place in the country. If the official statistics only records certain health trends, the monitoring results allow us to talk about them at a qualitatively new level. They reveal the underlying causes of demographic processes. The conclusion is, on the one hand, obvious and, on the other hand, it can not be neglected: economic stability and orderly development of the social sphere are critical for family well-being and child health. The reverse situation leads to the destruction of the family

  13. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features

    Science.gov (United States)

    Liu, Yan; Wang, Hai; Zhao, Wei; Qin, Hongbo; Xie, Yongqiang

    2018-01-01

    Wearable health monitoring systems have gained considerable interest in recent years owing to their tremendous promise for personal portable health watching and remote medical practices. The sensors with excellent flexibility and stretchability are crucial components that can provide health monitoring systems with the capability of continuously tracking physiological signals of human body without conspicuous uncomfortableness and invasiveness. The signals acquired by these sensors, such as body motion, heart rate, breath, skin temperature and metabolism parameter, are closely associated with personal health conditions. This review attempts to summarize the recent progress in flexible and stretchable sensors, concerning the detected health indicators, sensing mechanisms, functional materials, fabrication strategies, basic and desired features. The potential challenges and future perspectives of wearable health monitoring system are also briefly discussed. PMID:29470408

  14. Continuous health monitoring of Graphite Epoxy Motorcases (GEM)

    Science.gov (United States)

    Finlayson, Richard D.; Schaafsma, David T.; Shen, H. Warren; Carlos, Mark F.; Miller, Ronnie K.; Shepherd, Brent

    2001-07-01

    Following the explosion of Delta 241 (IIR-1) on January 17th, 1997, the failure investigation board concluded that the Graphite Epoxy Motorcases (GEM's) should be inspected for damage just prior to launch. Subsequent investigations and feedback from industry led to an Aerospace Corporation proposal to instrument the entire fleet of GEM's with a continuous health monitoring system. The period of monitoring would extend from the initial acceptance testing through final erection on the launch pad. As this proposal demonstrates, (along with the increasing use of advanced composite materials in aircraft, automobiles, military hardware, and aerospace components such as rocket motorcases) a sizable need for composite health assessment measures exist. Particularly where continuous monitoring is required for the detection of damage from impacts and other sources of high mechanical and thermal stresses. Even low-momentum impacts can lead to barely visible impact damage (BVID), corresponding to a significant weakening of the composite. This damage, undetectable by visual inspection, can in turn lead to sudden and catastrophic failure when the material is subjected to a normal operating load. There is perhaps no system with as much potential for truly catastrophic failure as a rocket motor. We will present an update on our ongoing efforts with the United States Air Force Delta II Program Office, and The Aerospace Corporation. This will cover the development of a local, portable, surface-mounted, fiberoptic sensor based impact damage monitor designed to operate on a Delta II GEM during transport, storage, and handling. This system is designed to continuously monitor the GEMs, to communicate wirelessly with base stations and maintenance personnel, to operate autonomously for extended periods, and to fit unobtrusively on the GEM itself.

  15. Structural health monitoring of bridge cables : An overview

    OpenAIRE

    DRISSI HABTI, Monssef; BETTI, Raimondo; YANEV, Bojidar

    2009-01-01

    Bridges are critical components of the civil infrastructure and are normally designed for a long life span. The life span of suspension bridges depends on the health of their cables, which, in turn, is a function of many factors. Therefore, continuous health monitoring (SHM) and regular condition assessment of cables is highly desirable. In this article, some SHM procedures based on direct, indirect non-destructive techniques NDT, and vibration theory are presented.

  16. Mobile health-monitoring system through visible light communication.

    Science.gov (United States)

    Tan, Yee-Yong; Chung, Wan-Young

    2014-01-01

    Promising development in the light emitting diode (LED) technology has spurred the interest to adapt LED for both illumination and data transmission. This has fostered the growth of interest in visible light communication (VLC), with on-going research to utilize VLC in various applications. This paper presents a mobile-health monitoring system, where healthcare information such as biomedical signals and patient information are transmitted via the LED lighting. A small and portable receiver module is designed and developed to be attached to the mobile device, providing a seamless monitoring environment. Three different healthcare information including ECG, PPG signals and HL7 text information is transmitted simultaneously, using a single channel VLC. This allows for a more precise and accurate monitoring and diagnosis. The data packet size is carefully designed, to transmit information in a minimal packet error rate. A comprehensive monitoring application is designed and developed through the use of a tablet computer in our study. Monitoring and evaluation such as heart rate and arterial blood pressure measurement can be performed concurrently. Real-time monitoring is demonstrated through experiment, where non-hazardous transmission method can be implemented alongside a portable device for better and safer healthcare service.

  17. An approach of habitat degradation assessment for characterization on coastal habitat conservation tendency.

    Science.gov (United States)

    Zhou, Xi-Yin; Lei, Kun; Meng, Wei

    2017-09-01

    Coastal zones are population and economy highly intensity regions all over the world, and coastal habitat supports the sustainable development of human society. The accurate assessment of coastal habitat degradation is the essential prerequisite for coastal zone protection. In this study, an integrated framework of coastal habitat degradation assessment including landuse classification, habitat classifying and zoning, evaluation criterion of coastal habitat degradation and coastal habitat degradation index has been established for better regional coastal habitat assessment. Through establishment of detailed three-class landuse classification, the fine landscape change is revealed, the evaluation criterion of coastal habitat degradation through internal comparison based on the results of habitat classifying and zoning could indicate the levels of habitat degradation and distinguish the intensity of human disturbances in different habitat subareas under the same habitat classification. Finally, the results of coastal habitat degradation assessment could be achieved through coastal habitat degradation index (CHI). A case study of the framework is carried out in the Circum-Bohai-Sea-Coast, China, and the main results show the following: (1) The accuracy of all land use classes are above 90%, which indicates a satisfactory accuracy for the classification map. (2) The Circum-Bohai-Sea-Coast is divided into 3 kinds of habitats and 5 subareas. (3) In the five subareas of the Circum-Bohai-Sea-Coast, the levels of coastal habitat degradation own significant difference. The whole Circum-Bohai-Sea-Coast generally is in a worse state according to area weighting of each habitat subarea. This assessment framework of coastal habitat degradation would characterize the landuse change trend, realize better coastal habitat degradation assessment, reveal the habitat conservation tendency and distinguish intensity of human disturbances. Furthermore, it would support for accurate coastal

  18. Summary Report: Forest Health Monitoring in the South, 1991

    Science.gov (United States)

    William A. Bechtold; William H. Hoffard; Robert L. Anderson

    1992-01-01

    The USDA Forest Service and the U.S. Environmental Protection Agency have launched a joint program to monitor the health of forests iu the United States. The program is still in the initial phases of implementation, but several indicators of forest health are undergoiug development and permanent plots have been established in 12 States. This report contains...

  19. Summary of Forest health monitoring: 2006 national technical report

    Science.gov (United States)

    Mark J. Ambrose

    2009-01-01

    Forest Health Monitoring (FHM), together with cooperating researchers both in and outside of the Forest Service, continues to investigate a variety of issues relating to forest health. This report provides some of the latest analyses and results. The broad range of indicators presented demonstrates one reason it can be difficult to draw general conclusions about the...

  20. Transplantation assessment of degraded Posidonia oceanica habitats: site selection and long-term monitoring

    Directory of Open Access Journals (Sweden)

    M. PIRROTTA

    2014-09-01

    Full Text Available A model developed for Zostera marina was adapted and used to select suitable areas for Posidonia oceanica transplantation in the Gulf of Palermo, where recent rehabilitation programmes have reduced human pressure. This model consists of three steps: (1 habitat selection, by calculation of the Preliminary Transplant Suitability Index (PTSI; (2 field assessments and test-transplanting, to evaluate the site suitability and to estimate the effects of tearing on transplant units (about 50%; (3 identification of suitable restoration sites, by calculation of the Transplant Suitability Index (TSI. A new parameter was added to the literature model: the number of grids detached, which is linked to factors (hydrodynamic regime, anchoring, fishing that have a potentially great effect on the final outcome of the transplant. Only one site (TSI = 16 in the Gulf of Palermo was indicated as potentially suitable for restoration with P. oceanica. In this site, a transplant of 40 m2 was implemented. From 2008 to 2014, transplant effectiveness was evaluated in terms of establishment, detachment and mortality of cuttings and shoot density. The long-term monitoring (6 years allowed us to detect changes in the structural conditions of the transplanted meadow and to identify the possible turning point in P. oceanica recovery (2 years after transplanting. Moreover, 6 years after transplantation the P. oceanica meadow has exceeded the transplant shoot density of about 16%, with a mean and a maximum value of 11.6 and 17 shoots per cutting, respectively.

  1. Nuclear propulsion control and health monitoring

    Science.gov (United States)

    Walter, P. B.; Edwards, R. M.

    1993-11-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  2. Self-learning health monitoring algorithm in composite structures

    Science.gov (United States)

    Grassia, Luigi; Iannone, Michele; Califano, America; D'Amore, Alberto

    2018-02-01

    The paper describes a system that it is able of monitoring the health state of a composite structure in real time. The hardware of the system consists of a wire of strain sensors connected to a control unit. The software of the system elaborates the strain data and in real time is able to detect the presence of an eventual damage of the structures monitored with the strain sensors. The algorithm requires as input only the strains of the monitored structured measured on real time, i.e. those strains coming from the deformations of the composite structure due to the working loads. The health monitoring system does not require any additional device to interrogate the structure as often used in the literature, instead it is based on a self-learning procedure. The strain data acquired when the structure is healthy are used to set up the correlations between the strain in different positions of structure by means of neural network. Once the correlations between the strains in different position have been set up, these correlations act as a fingerprint of the healthy structure. In case of damage the correlation between the strains in the position of the structure near the damage will change due to the change of the stiffness of the structure caused by the damage. The developed software is able to recognize the change of the transfer function between the strains and consequently is able to detect the damage.

  3. Monitoring Indoor Air Quality for Enhanced Occupational Health.

    Science.gov (United States)

    Pitarma, Rui; Marques, Gonçalo; Ferreira, Bárbara Roque

    2017-02-01

    Indoor environments are characterized by several pollutant sources. Because people spend more than 90% of their time in indoor environments, several studies have pointed out the impact of indoor air quality on the etiopathogenesis of a wide number of non-specific symptoms which characterizes the "Sick Building Syndrome", involving the skin, the upper and lower respiratory tract, the eyes and the nervous system, as well as many building related diseases. Thus, indoor air quality (IAQ) is recognized as an important factor to be controlled for the occupants' health and comfort. The majority of the monitoring systems presently available is very expensive and only allow to collect random samples. This work describes the system (iAQ), a low-cost indoor air quality monitoring wireless sensor network system, developed using Arduino, XBee modules and micro sensors, for storage and availability of monitoring data on a web portal in real time. Five micro sensors of environmental parameters (air temperature, humidity, carbon monoxide, carbon dioxide and luminosity) were used. Other sensors can be added for monitoring specific pollutants. The results reveal that the system can provide an effective indoor air quality assessment to prevent exposure risk. In fact, the indoor air quality may be extremely different compared to what is expected for a quality living environment. Systems like this would have benefit as public health interventions to reduce the burden of symptoms and diseases related to "sick buildings".

  4. Continuous Monitoring of Glucose for Type 1 Diabetes: A Health Technology Assessment

    Science.gov (United States)

    Vandersluis, Stacey; Kabali, Conrad; Djalalov, Sandjar; Gajic-Veljanoski, Olga; Wells, David; Holubowich, Corinne

    2018-01-01

    Background Type 1 diabetes is a condition in which the pancreas produces little or no insulin. People with type 1 diabetes must manage their blood glucose levels by monitoring the amount of glucose in their blood and administering appropriate amounts of insulin via injection or an insulin pump. Continuous glucose monitoring may be beneficial compared to self-monitoring of blood glucose using a blood glucose meter. It provides insight into a person's blood glucose levels on a continuous basis, and can identify whether blood glucose levels are trending up or down. Methods We conducted a health technology assessment, which included an evaluation of clinical benefit, value for money, and patient preferences related to continuous glucose monitoring. We compared continuous glucose monitoring with self-monitoring of blood glucose using a finger-prick and a blood glucose meter. We performed a systematic literature search for studies published since January 1, 2010. We created a Markov model projecting the lifetime horizon of adults with type 1 diabetes, and performed a budget impact analysis from the perspective of the health care payer. We also conducted interviews and focus group discussions with people who self-manage their type 1 diabetes or support the management of a child with type 1 diabetes. Results Twenty studies were included in the clinical evidence review. Compared with self-monitoring of blood glucose, continuous glucose monitoring improved the percentage of time patients spent in the target glycemic range by 9.6% (95% confidence interval 8.0–11.2) to 10.0% (95% confidence interval 6.75–13.25) and decreased the number of severe hypoglycemic events. Continuous glucose monitoring was associated with higher costs and small increases in health benefits (quality-adjusted life-years). Incremental cost-effectiveness ratios (ICERs) ranged from $592,206 to $1,108,812 per quality-adjusted life-year gained in analyses comparing four continuous glucose monitoring

  5. Distributed Rocket Engine Testing Health Monitoring System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The on-ground and Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) provides a system architecture and software tools for performing diagnostics...

  6. Distributed Rocket Engine Testing Health Monitoring System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging the Phase I achievements of the Distributed Rocket Engine Testing Health Monitoring System (DiRETHMS) including its software toolsets and system building...

  7. Standards of lithium monitoring in mental health trusts in the UK

    Directory of Open Access Journals (Sweden)

    Shingleton-Smith Amber

    2010-10-01

    Full Text Available Abstract Background Lithium is a commonly prescribed drug with a narrow therapeutic index, and recognised adverse effects on the kidneys and thyroid. Clinical guidelines for the management of bipolar affective disorder published by The National Institute for Health and Clinical Excellence (NICE recommend checks of renal and thyroid function before lithium is prescribed. They further recommend that all patients who are prescribed lithium should have their renal and thyroid function checked every six months, and their serum lithium checked every three months. Adherence to these recommendations has not been subject to national UK audit. Methods The Prescribing Observatory for Mental Health (POMH-UK invited all National Health Service Mental Health Trusts in the UK to participate in a benchmarking audit of lithium monitoring against recommended standards. Data were collected retrospectively from clinical records and submitted electronically. Results 436 clinical teams from 38 Trusts submitted data for 3,373 patients. In patients recently starting lithium, there was a documented baseline measure of renal or thyroid function in 84% and 82% respectively. For patients prescribed lithium for a year or more, the NICE standards for monitoring lithium serum levels, and renal and thyroid function were met in 30%, 55% and 50% of cases respectively. Conclusions The quality of lithium monitoring in patients who are in contact with mental health services falls short of recognised standards and targets. Findings from this audit, along with reports of harm received by the National Patient Safety Agency, prompted a Patient Safety Alert mandating primary care, mental health and acute Trusts, and laboratory staff to work together to ensure systems are in place to support recommended lithium monitoring by December 2010.

  8. NCCOS St. Croix, USVI Rapid Habitat Assessment (RHA) and Monitoring Data (2001 - Present)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This metadata record refers to habitat assessment data collected as part of a larger effort described below. The intent of this work is five fold: 1) To spatially...

  9. A STUDY ON HEALTH MONITORING SYSTEM: RECENT ADVANCEMENTS

    Directory of Open Access Journals (Sweden)

    Atika Arshad

    2014-12-01

    Full Text Available ABSTRACT: A proliferating interest has been observed over the past years in the development of an accurate system for monitoring continuous human activities in the health care sectors, especially for the elderly. This paper conducts a survey of the various techniques and methods that are proposed to monitor the movements and activities of the elderly people. These techniques promise a useful and dependable detection system to give support and lessen the medical expenses of health care for the elderly. The detection approaches are divided into five main categories: wearable device based, wireless based, ambience device based, vision based and floor sensor / electric field sensors based. These techniques have focused on the pros and cons of the existing methods for recognizing the prospective scope of research in the domain of health monitoring systems. Apart from highlighting and analyzing the features of the existing techniques, perspectives on probable future studies have been detailed. ABSTRAK: Dewasa ini, pembangunan sistem yang tepat untuk memantau aktiviti berterusan terutamanya dalam sektor kesihatan warga tua mula mendapat tempat. Kaji selidik telah dijalankan dengan pelbagai teknik dan kaedah untuk meninjau pergerakan dan aktiviti golongan warga tua. Kaedah-kaedah ini memberikan sistem pengesanan yang berguna dan dipercayai untuk memberikan sokongan serta mengurangkan kos perubatan kesihatan bagi golongan tua. Pendekatan pengesanan dibahagikan kepada lima kategori utama; alatan yang dapat dipakai, alatan tanpa wayar, alatan berdasarkan persekitaran, alatan berasaskan penglihatan dan alatan berdasarkan pengesan pada lantai / medan elektrik.  Teknik-teknik ini memfokuskan kepada pro dan kontra kaedah yang sedia ada untuk mengenalpasti skop prospektif penyelidikan dalam domain sistem pengawasan kesihatan.  Selain daripada mengetengah dan menganalisa ciri-ciri teknik yang sedia ada, perspektif kajian akan datang juga diperincikan.KEYWORDS: health

  10. Using NASA Earth Observing Satellites and Statistical Model Analysis to Monitor Vegetation and Habitat Rehabilitation in Southwest Virginia's Reclaimed Mine Lands

    Science.gov (United States)

    Tate, Z.; Dusenge, D.; Elliot, T. S.; Hafashimana, P.; Medley, S.; Porter, R. P.; Rajappan, R.; Rodriguez, P.; Spangler, J.; Swaminathan, R. S.; VanGundy, R. D.

    2014-12-01

    The majority of the population in southwest Virginia depends economically on coal mining. In 2011, coal mining generated $2,000,000 in tax revenue to Wise County alone. However, surface mining completely removes land cover and leaves the land exposed to erosion. The destruction of the forest cover directly impacts local species, as some are displaced and others perish in the mining process. Even though surface mining has a negative impact on the environment, land reclamation efforts are in place to either restore mined areas to their natural vegetated state or to transform these areas for economic purposes. This project aimed to monitor the progress of land reclamation and the effect on the return of local species. By incorporating NASA Earth observations, such as Landsat 8 Operational Land Imager (OLI) and Landsat 5 Thematic Mapper (TM), re-vegetation process in reclamation sites was estimated through a Time series analysis using the Normalized Difference Vegetation Index (NDVI). A continuous source of cloud free images was accomplished by utilizing the Spatial and Temporal Adaptive Reflectance Fusion Model (STAR-FM). This model developed synthetic Landsat imagery by integrating the high-frequency temporal information from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution spatial information from Landsat sensors In addition, the Maximum Entropy Modeling (MaxENT), an eco-niche model was used to estimate the adaptation of animal species to the newly formed habitats. By combining factors such as land type, precipitation from Tropical Rainfall Measuring Mission (TRMM), and slope from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the MaxENT model produced a statistical analysis on the probability of species habitat. Altogether, the project compiled the ecological information which can be used to identify suitable habitats for local species in reclaimed mined areas.

  11. A power supply design of body sensor networks for health monitoring of neonates

    NARCIS (Netherlands)

    Chen, W.; Sonntag, C.L.W.; Boesten, F.; Bambang Oetomo, S.; Feijs, L.M.G.

    2008-01-01

    Critically ill new born babies are extremely tiny and vulnerable to external disturbance. Non-invasive health monitoring with body sensor networks is crucial for the survival of these neonates and the quality of their life later on. A key question for health monitoring with body sensor networks is

  12. An Overview of the NASA Aviation Safety Program Propulsion Health Monitoring Element

    Science.gov (United States)

    Simon, Donald L.

    2000-01-01

    The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.

  13. Life stage and species identity affect whether habitat subsidies enhance or simply redistribute consumer biomass.

    Science.gov (United States)

    Keller, Danielle A; Gittman, Rachel K; Bouchillon, Rachel K; Fodrie, F Joel

    2017-10-01

    Quantifying the response of mobile consumers to changes in habitat availability is essential for determining the degree to which population-level productivity is habitat limited rather than regulated by other, potentially density-independent factors. Over landscape scales, this can be explored by monitoring changes in density and foraging as habitat availability varies. As habitat availability increases, densities may: (1) decrease (unit-area production decreases; weak habitat limitation); (2) remain stable (unit-area production remains stable; habitat limitation) or (3) increase (unit-area production increases; strong habitat limitation). We tested the response of mobile estuarine consumers over 5 months to changes in habitat availability in situ by comparing densities and feeding rates on artificial reefs that were or were not adjacent to neighbouring artificial reefs or nearby natural reefs. Using either constructed or natural reefs to manipulate habitat availability, we documented threefold density decreases among juvenile stone crabs as habitat increased (i.e. weak habitat imitation). However, for adult stone crabs, density remained stable across treatments, demonstrating that habitat limitation presents a bottleneck in this species' later life history. Oyster toadfish densities also did not change with increasing habitat availability (i.e. habitat limitation), but densities of other cryptic fishes decreased as habitat availability increased (i.e. weak limitation). Feeding and abundance data suggested that some mobile fishes experience habitat limitation, or, potentially in one case, strong limitation across our habitat manipulations. These findings of significant, community-level habitat limitation provide insight into how global declines in structurally complex estuarine habitats may have reduced the fishery production of coastal ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  14. Monitoring health interventions – who's afraid of LQAS?

    Science.gov (United States)

    Pezzoli, Lorenzo; Kim, Sung Hye

    2013-01-01

    Lot quality assurance sampling (LQAS) is used to evaluate health services. Subunits of a population (lots) are accepted or rejected according to the number of failures in a random sample (N) of a given lot. If failures are greater than decision value (d), we reject the lot and recommend corrective actions in the lot (i.e. intervention area); if they are equal to or less than d, we accept it. We used LQAS to monitor coverage during the last 3 days of a meningitis vaccination campaign in Niger. We selected one health area (lot) per day reporting the lowest administrative coverage in the previous 2 days. In the sampling plan we considered: N to be small enough to allow us to evaluate one lot per day, deciding to sample 16 individuals from the selected villages of each health area, using probability proportionate to population size; thresholds and d to vary according to administrative coverage reported; α ≤5% (meaning that, if we would have conducted the survey 100 times, we would have accepted the lot up to five times when real coverage was at an unacceptable level) and β ≤20% (meaning that we would have rejected the lot up to 20 times, when real coverage was equal or above the satisfactory level). We classified all three lots as with the acceptable coverage. LQAS appeared to be a rapid, simple, and statistically sound method for in-process coverage assessment. We encourage colleagues in the field to consider using LQAS in complement with other monitoring techniques such as house-to-house monitoring. PMID:24206650

  15. The use of animals as a surveillance tool for monitoring environmental health hazards, human health hazards and bioterrorism.

    Science.gov (United States)

    Neo, Jacqueline Pei Shan; Tan, Boon Huan

    2017-05-01

    This review discusses the utilization of wild or domestic animals as surveillance tools for monitoring naturally occurring environmental and human health hazards. Besides providing early warning to natural hazards, animals can also provide early warning to societal hazards like bioterrorism. Animals are ideal surveillance tools to humans because they share the same environment as humans and spend more time outdoors than humans, increasing their exposure risk. Furthermore, the biologically compressed lifespans of some animals may allow them to develop clinical signs more rapidly after exposure to specific pathogens. Animals are an excellent channel for monitoring novel and known pathogens with outbreak potential given that more than 60 % of emerging infectious diseases in humans originate as zoonoses. This review attempts to highlight animal illnesses, deaths, biomarkers or sentinel events, to remind human and veterinary public health programs that animal health can be used to discover, monitor or predict environmental health hazards, human health hazards, or bioterrorism. Lastly, we hope that this review will encourage the implementation of animals as a surveillance tool by clinicians, veterinarians, ecosystem health professionals, researchers and governments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. A Low Cost Sensor Controller for Health Monitoring

    Science.gov (United States)

    Birbas, M.; Petrellis, N.; Gioulekas, F.

    2015-09-01

    Aging population can benefit from health care systems that allow their health and daily life to be monitored by expert medical staff. Blood pressure, temperature measurements or more advanced tests like Electrocardiograms (ECG) can be ordered through such a healthcare system while urgent situations can be detected and alleviated on time. The results of these tests can be stored with security in a remote cloud or database. Such systems are often used to monitor non-life threatening patient health problems and their advantage in lowering the cost of the healthcare services is obvious. A low cost commercial medical sensor kit has been used in the present work, trying to improve the accuracy and stability of the sensor measurements, the power consumption, etc. This Sensor Controller communicates with a Gateway installed in the patient's residence and a tablet or smart phone used for giving instructions to the patient through a comprehensive user interface. A flexible communication protocol has been defined supporting any short or long term sensor sampling scenario. The experimental results show that it is possible to achieve low power consumption by applying apropriate sleep intervals to the Sensor Controller and by deactivating periodically some of its functionality.

  17. Cointegration as a data normalization tool for structural health monitoring applications

    Science.gov (United States)

    Harvey, Dustin Y.; Todd, Michael D.

    2012-04-01

    The structural health monitoring literature has shown an abundance of features sensitive to various types of damage in laboratory tests. However, robust feature extraction in the presence of varying operational and environmental conditions has proven to be one of the largest obstacles in the development of practical structural health monitoring systems. Cointegration, a technique adapted from the field of econometrics, has recently been introduced to the SHM field as one solution to the data normalization problem. Response measurements and feature histories often show long-run nonstationarity due to fluctuating temperature, load conditions, or other factors that leads to the occurrence of false positives. Cointegration theory allows nonstationary trends common to two or more time series to be modeled and subsequently removed. Thus, the residual retains sensitivity to damage with dependence on operational and environmental variability removed. This study further explores the use of cointegration as a data normalization tool for structural health monitoring applications.

  18. Integrity mechanism for eHealth tele-monitoring system in smart home environment.

    Science.gov (United States)

    Mantas, Georgios; Lymberopoulos, Dimitrios; Komninos, Nikos

    2009-01-01

    During the past few years, a lot of effort has been invested in research and development of eHealth tele-monitoring systems that will provide many benefits for healthcare delivery from the healthcare provider to the patient's home. However, there is a plethora of security requirements in eHealth tele-monitoring systems. Data integrity of the transferred medical data is one of the most important security requirements that should be satisfied in these systems, since medical information is extremely sensitive information, and even sometimes life threatening information. In this paper, we present a data integrity mechanism for eHealth tele-monitoring system that operates in a smart home environment. Agent technology is applied to achieve data integrity with the use of cryptographic smart cards. Furthermore, the overall security infrastructure and its various components are described.

  19. Remote sensing-based landscape indicators for the evaluation of threatened-bird habitats in a tropical forest.

    Science.gov (United States)

    Singh, Minerva; Tokola, Timo; Hou, Zhengyang; Notarnicola, Claudia

    2017-07-01

    Avian species persistence in a forest patch is strongly related to the degree of isolation and size of a forest patch and the vegetation structure within a patch and its matrix are important predictors of bird habitat suitability. A combination of space-borne optical (Landsat), ALOS-PALSAR (radar), and airborne Light Detection and Ranging (LiDAR) data was used for assessing variation in forest structure across forest patches that had undergone different levels of forest degradation in a logged forest-agricultural landscape in Southern Laos. The efficacy of different remote sensing (RS) data sources in distinguishing forest patches that had different seizes, configurations, and vegetation structure was examined. These data were found to be sensitive to the varying levels of degradation of the different patch categories. Additionally, the role of local scale forest structure variables (characterized using the different RS data and patch area) and landscape variables (characterized by distance from different forest patches) in influencing habitat preferences of International Union for Conservation of Nature (IUCN) Red listed birds found in the study area was examined. A machine learning algorithm, MaxEnt, was used in conjunction with these data and field collected geographical locations of the avian species to identify the factors influencing habitat preference of the different bird species and their suitable habitats. Results show that distance from different forest patches played a more important role in influencing habitat suitability for the different avian species than local scale factors related to vegetation structure and health. In addition to distance from forest patches, LiDAR-derived forest structure and Landsat-derived spectral variables were important determinants of avian habitat preference. The models derived using MaxEnt were used to create an overall habitat suitability map (HSM) which mapped the most suitable habitat patches for sustaining all the

  20. Data for development in health: a case study and monitoring framework from Kazakhstan

    Science.gov (United States)

    Obermann, Konrad; Chanturidze, Tata; Richardson, Erica; Tanirbergenov, Serik; Shoranov, Marat; Nurgozhaev, Ali

    2016-01-01

    Healthcare reforms are often not coupled with a relevant and appropriate monitoring framework, leaving policymakers and the public without evidence about the implications of such reforms. Kazakhstan has embarked on a large-scale reform of its healthcare system in order to achieve Universal Health Coverage. The health-related 2020 Strategic Development Goals reflect this political ambition. In a case-study approach and on the basis of published and unpublished evidence as well as personal involvement and experience (A) the indicators in the 2020 Strategic Development Goals were assessed and (B) a ‘data-mapping’ exercise was conducted, where the WHO health system framework was used to describe the data available at present in Kazakhstan and comment on the different indicators regarding their usefulness for monitoring the current health-related 2020 Strategic Development Goals in Kazakhstan. It was concluded that the country’s current monitoring framework needs further development to track the progress and outcomes of policy implementation. The application of a modified WHO/World Bank/Global Fund health system monitoring framework was suggested to examine the implications of recent health sector reforms. Lessons drawn from the Kazakhstan experience on tailoring the suggested framework, collecting the data, and using the generated intelligence in policy development and decision-making can serve as a useful example for other middle-income countries, potentially enabling them to fast-track developments in the health sector. PMID:28588905

  1. New trends in structural health monitoring

    CERN Document Server

    Güemes, J

    2013-01-01

    Experts actively working in structural health monitoring and control techniques present the current research, areas of application and tendencies for the future of this technology, including various design issues involved. Examples using some of the latest hardware and software tools, experimental data from small scale laboratory demonstrators and measurements made on real structures illustrate the book. It will be a reference for professionals and students in the areas of engineering, applied natural sciences and engineering management.

  2. Wetland Plant Guide for Assessing Habitat Impacts of Real-Time Salinity Management

    OpenAIRE

    Quinn, Nigel W.T.; Feldmann, Sara A.

    2004-01-01

    This wetland plant guide was developed to aid moist soil plant identification and to assist in the mapping of waterfowl and shorebird habitat in the Grassland Water District and surrounding wetland areas. The motivation for this habitat mapping project was a concern that real-time salinity management of wetland drainage might have long-term consequences for wildfowl habitat health -- changes in wetland drawdown schedules might, over the long term, lead to increased soil salinity and othe...

  3. Simple measures of channel habitat complexity predict transient hydraulic storage in streams

    Science.gov (United States)

    Stream thalweg depth profiles (along path of greatest channel depth) and woody debris tallies have recently become components of routine field procedures for quantifying physical habitat in national stream monitoring efforts. Mean residual depth, standard deviation of thalweg dep...

  4. Engine health monitoring systems: Tools for improved maintenance management in the 1980's

    Science.gov (United States)

    Kimball, J. C.

    1981-01-01

    The performance monitoring aspect of maintenance, characteristic of the engine health monitoring system are discussed. An overview of the system activities is presented and a summary of programs for improved monitoring in the 1980's are discussed.

  5. Can we enhance amphibians' habitat restoration in the post-mining areas?

    Science.gov (United States)

    Klimaszewski, Krzysztof; Pacholik, Ewa; Snopek, Adam

    2016-09-01

    The study was aimed to evaluate the selected improvements of nature restoration in a depleted gravel pit. The study site consisted of four water reservoirs of different shapes and sizes, flooded after the gravel extraction ended. Ecological succession monitoring, conducted by the Warsaw University of Life Sciences students associated in the Student Scientific Association of Animal Sciences Faculty since the completion of mining, have focused on amphibians. A twofold approach upheld amphibian species population dynamics, as well as selected habitat elements. The restoration practices dedicated to habitat conditions enhancing have been proved to be definitely effective and useful for similar sites.

  6. Monitoring of health care personnel employee and occupational health immunization program practices in the United States.

    Science.gov (United States)

    Carrico, Ruth M; Sorrells, Nikka; Westhusing, Kelly; Wiemken, Timothy

    2014-01-01

    Recent studies have identified concerns with various elements of health care personnel immunization programs, including the handling and management of the vaccine. The purpose of this study was to assess monitoring processes that support evaluation of the care of vaccines in health care settings. An 11-question survey instrument was developed for use in scripted telephone surveys. State health departments in all 50 states in the United States and the District of Columbia were the target audience for the surveys. Data from a total of 47 states were obtained and analyzed. No states reported an existing monitoring process for evaluation of health care personnel immunization programs in their states. Our assessment indicates that vaccine evaluation processes for health care facilities are rare to nonexistent in the United States. Identifying existing practice gaps and resultant opportunities for improvements may be an important safety initiative that protects patients and health care personnel. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  7. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  8. Forest health monitoring: national status, trends, and analysis 2015

    Science.gov (United States)

    Kevin M. Potter; Barbara L. Conkling

    2016-01-01

    The annual national report of the Forest Health Monitoring (FHM) Program of the Forest Service, U.S. Department of Agriculture, presents forest health status and trends from a national or multi- State regional perspective using a variety of sources, introduces new techniques for analyzing forest health data, and summarizes results of recently completed Evaluation...

  9. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    J.L. Rovey

    2012-09-21

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strain measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit

  10. 75 FR 52504 - Notice of Request for Approval of an Information Collection; National Animal Health Monitoring...

    Science.gov (United States)

    2010-08-26

    ...; National Animal Health Monitoring System; Dairy Heifer Raiser 2010 Study AGENCY: Animal and Plant Health... Service's intention to initiate an information collection to support the National Animal Health Monitoring... Warnken, Management and Program Analyst, Centers for Epidemiology and Animal Health, VS, APHIS, 2150...

  11. Space Station Environmental Health System water quality monitoring

    Science.gov (United States)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  12. A VME based health monitoring system

    International Nuclear Information System (INIS)

    Huang Yiming; Wang Chunhong

    2011-01-01

    It introduces a VME based health system for monitoring the working status of VME crates in the BEPCⅡ. It consists of a PC and a VME crate where a CMM (Classic Monitor System) is installed. The CMM module is responsible for collecting data from the power supply and temperature as well as fan speed inside the VME crate and send these data to the PC via the serial port. The author developed EPICS asynchronous driver by using a character-based device protocol StreamDevice. The data is saved into EPICS IOC database in character. Man-machine interface which is designed by BOY displays the running status of the VME crate including the power supply and temperature as well as fan speed. If the value of records display unusual, the color of the value will be changed into red. This can facilitate the maintenance of the VME crates. (authors)

  13. Bayesian updating and decision making using correlated structural health monitoring observations

    DEFF Research Database (Denmark)

    Nielsen, Jannie Sønderkær

    2018-01-01

    A Bayesian approach is often applied when updating a deterioration model using observations from expected structural health monitoring or condition monitoring. Usually, observations are assumed to be independent conditioned on the damage size, but this assumption does not always hold, especially ...... is properly modeled. In case of correlated observations, an advanced decision model using all past observations for decision making is needed to make monitoring feasible compared to only using inspections....

  14. A fully automated health-care monitoring at home without attachment of any biological sensors and its clinical evaluation.

    Science.gov (United States)

    Motoi, Kosuke; Ogawa, Mitsuhiro; Ueno, Hiroshi; Kuwae, Yutaka; Ikarashi, Akira; Yuji, Tadahiko; Higashi, Yuji; Tanaka, Shinobu; Fujimoto, Toshiro; Asanoi, Hidetsugu; Yamakoshi, Ken-ichi

    2009-01-01

    Daily monitoring of health condition is important for an effective scheme for early diagnosis, treatment and prevention of lifestyle-related diseases such as adiposis, diabetes, cardiovascular diseases and other diseases. Commercially available devices for health care monitoring at home are cumbersome in terms of self-attachment of biological sensors and self-operation of the devices. From this viewpoint, we have been developing a non-conscious physiological monitor installed in a bath, a lavatory, and a bed for home health care and evaluated its measurement accuracy by simultaneous recordings of a biological sensors directly attached to the body surface. In order to investigate its applicability to health condition monitoring, we have further developed a new monitoring system which can automatically monitor and store the health condition data. In this study, by evaluation on 3 patients with cardiac infarct or sleep apnea syndrome, patients' health condition such as body and excretion weight in the toilet and apnea and hypopnea during sleeping were successfully monitored, indicating that the system appears useful for monitoring the health condition during daily living.

  15. Affordable Remote Health Monitoring System for the Elderly Using Smart Mobile Device

    Directory of Open Access Journals (Sweden)

    Matthew CLARK

    2015-01-01

    Full Text Available Aging population has been growing as life expectancy increases. In the years to come a much larger percentage of the population will be dependent on others for their daily care. According to a recent report more than 11 million seniors live alone in the USA. These seniors may face serious consequences when they have an emergency situation. However health-monitoring systems are often not affordable for many seniors. The remote health monitoring system presented in this paper addresses the challenge to provide caregivers an emergency alert system for the elderly based on monitoring of their heart rates, breathing activities, and room temperature measurements. The device also allows the dependents to make on demand request for assistance. The remote communication is enabled through the cellular telephone services; so there is no special or additional subscription services needed. This is essential to make the device more affordable for the elderly. We expect that this affordable remote health-monitoring system can be used to help seniors who live alone be safer and healthier.

  16. Dedicated real-time monitoring system for health care using ZigBee.

    Science.gov (United States)

    Alwan, Omar S; Prahald Rao, K

    2017-08-01

    Real-time monitoring systems (RTMSs) have drawn considerable attentions in the last decade. Several commercial versions of RTMS for patient monitoring are available which are used by health care professionals. Though they are working satisfactorily on various communication protocols, their range, power consumption, data rate and cost are really bothered. In this study, the authors present an efficient embedded system based wireless health care monitoring system using ZigBee. Their system has a capability to transmit the data between two embedded systems through two transceivers over a long range. In this, wireless transmission has been applied through two categories. The first part which contains Arduino with ZigBee will send the signals to the second device, which contains Raspberry with ZigBee. The second device will measure the patient data and send it to the first device through ZigBee transceiver. The designed system is demonstrated on volunteers to measure the body temperature which is clinically important to monitor and diagnose for fever in the patients.

  17. Investigation of Wireless Sensor Networks for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2012-01-01

    Full Text Available Wireless sensor networks (WSNs are one of the most able technologies in the structural health monitoring (SHM field. Through intelligent, self-organising means, the contents of this paper will test a variety of different objects and different working principles of sensor nodes connected into a network and integrated with data processing functions. In this paper the key issues of WSN applied in SHM are discussed, including the integration of different types of sensors with different operational modalities, sampling frequencies, issues of transmission bandwidth, real-time ability, and wireless transmitter frequency. Furthermore, the topology, data fusion, integration, energy saving, and self-powering nature of different systems will be investigated. In the FP7 project “Health Monitoring of Offshore Wind Farms,” the above issues are explored.

  18. Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen; Chan, Patrick

    2014-01-01

    The objective of this task is to investigate, develop, and demonstrate a low-cost swept lasing light source for NASA DFRC's fiber optics sensing system (FOSS) to perform structural health monitoring on current and future aerospace vehicles. This is the regular update of the Tunable Laser Development for In-flight Fiber Optic Based Structural Health Monitoring Systems website.

  19. Health monitoring method for composite materials

    Science.gov (United States)

    Watkins, Jr., Kenneth S.; Morris, Shelby J [Hampton, VA

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  20. Ecological Monitoring and Compliance Program Fiscal/Calendar Year 2004 Report

    Energy Technology Data Exchange (ETDEWEB)

    Bechtel Nevada

    2005-03-01

    The Ecological Monitoring and Compliance program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada Test Site and ensures compliance with laws and regulations pertaining to Nevada Test Site biota. This report summarizes the program's activities conducted by Bechtel Nevada during the Fiscal Year 2004 and the additional months of October, November, and December 2004, reflecting a change in the monitoring period to a calendar year rather than a fiscal year as reported in the past. This change in the monitoring period was made to better accommodate information required for the Nevada Test Site Environmental Report, which reports on a calendar year rather than a fiscal year. Program activities included: (1) biological surveys at proposed construction sites, (2) desert tortoise compliance, (3) ecosystem mapping and data management, (4) sensitive species and unique habitat monitoring, (5) habitat restoration monitoring, and (6) biological monitoring at the Hazardous Materials Spill Center.

  1. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  2. Experimental Research on Quick Structural Health Monitoring Technique for Bridges Using Smartphone

    OpenAIRE

    Zhao, Xuefeng; Ri, Kwang; Han, Ruicong; Yu, Yan; Li, Mingchu; Ou, Jinping

    2016-01-01

    In the recent years, with the development and popularization of smartphone, the utilization of smartphone in the Structural Health Monitoring (SHM) has attracted increasing attention owing to its unique feature. Since bridges are of great importance to society and economy, bridge health monitoring has very practical significance during its service life. Furthermore, rapid damage assessment of bridge after an extreme event such as earthquake is very important in the recovery work. Smartphone-b...

  3. Monitoring health interventions – who's afraid of LQAS?

    Directory of Open Access Journals (Sweden)

    Lorenzo Pezzoli

    2013-11-01

    Full Text Available Lot quality assurance sampling (LQAS is used to evaluate health services. Subunits of a population (lots are accepted or rejected according to the number of failures in a random sample (N of a given lot. If failures are greater than decision value (d, we reject the lot and recommend corrective actions in the lot (i.e. intervention area; if they are equal to or less than d, we accept it. We used LQAS to monitor coverage during the last 3 days of a meningitis vaccination campaign in Niger. We selected one health area (lot per day reporting the lowest administrative coverage in the previous 2 days. In the sampling plan we considered: N to be small enough to allow us to evaluate one lot per day, deciding to sample 16 individuals from the selected villages of each health area, using probability proportionate to population size; thresholds and d to vary according to administrative coverage reported; α≤5% (meaning that, if we would have conducted the survey 100 times, we would have accepted the lot up to five times when real coverage was at an unacceptable level and β≤20% (meaning that we would have rejected the lot up to 20 times, when real coverage was equal or above the satisfactory level. We classified all three lots as with the acceptable coverage. LQAS appeared to be a rapid, simple, and statistically sound method for in-process coverage assessment. We encourage colleagues in the field to consider using LQAS in complement with other monitoring techniques such as house-to-house monitoring.

  4. The Habitat Connection.

    Science.gov (United States)

    Naturescope, 1987

    1987-01-01

    Consists of activities which address the causes of habitat destruction and the effects of habitat loss on animals and plants. Identifies habitat loss as the major reason for the endangerment and extinction of plant and animal species. (ML)

  5. eHealth in the future of medications management: personalisation, monitoring and adherence.

    Science.gov (United States)

    Car, Josip; Tan, Woan Shin; Huang, Zhilian; Sloot, Peter; Franklin, Bryony Dean

    2017-04-05

    Globally, healthcare systems face major challenges with medicines management and medication adherence. Medication adherence determines medication effectiveness and can be the single most effective intervention for improving health outcomes. In anticipation of growth in eHealth interventions worldwide, we explore the role of eHealth in the patients' medicines management journey in primary care, focusing on personalisation and intelligent monitoring for greater adherence. eHealth offers opportunities to transform every step of the patient's medicines management journey. From booking appointments, consultation with a healthcare professional, decision-making, medication dispensing, carer support, information acquisition and monitoring, to learning about medicines and their management in daily life. It has the potential to support personalisation and monitoring and thus lead to better adherence. For some of these dimensions, such as supporting decision-making and providing reminders and prompts, evidence is stronger, but for many others more rigorous research is urgently needed. Given the potential benefits and barriers to eHealth in medicines management, a fine balance needs to be established between evidence-based integration of technologies and constructive experimentation that could lead to a game-changing breakthrough. A concerted, transdisciplinary approach adapted to different contexts, including low- and middle-income contries is required to realise the benefits of eHealth at scale.

  6. Desert tortoise use of burned habitat in the Eastern Mojave desert

    Science.gov (United States)

    Drake, Karla K.; Esque, Todd C.; Nussear, Kenneth E.; DeFalco, Lesley; Scoles, Sara; Modlin, Andrew T.; Medica, Philip A.

    2015-01-01

    Wildfires burned 24,254 ha of critical habitat designated for the recovery of the threatened Mojave desert tortoise (Gopherus agassizii) in southern Nevada during 2005. The proliferation of non-native annual grasses has increased wildfire frequency and extent in recent decades and continues to accelerate the conversion of tortoise habitat across the Mojave Desert. Immediate changes to vegetation are expected to reduce quality of critical habitat, yet whether tortoises will use burned and recovering habitat differently from intact unburned habitat is unknown. We compared movement patterns, home-range size, behavior, microhabitat use, reproduction, and survival for adult desert tortoises located in, and adjacent to, burned habitat to understand how tortoises respond to recovering burned habitat. Approximately 45% of home ranges in the post-fire environment contained burned habitat, and numerous observations (n = 12,223) corroborated tortoise use of both habitat types (52% unburned, 48% burned). Tortoises moved progressively deeper into burned habitat during the first 5 years following the fire, frequently foraging in burned habitats that had abundant annual plants, and returning to adjacent unburned habitat for cover provided by intact perennial vegetation. However, by years 6 and 7, the live cover of the short-lived herbaceous perennial desert globemallow (Sphaeralcea ambigua) that typically re-colonizes burned areas declined, resulting in a contraction of tortoise movements from the burned areas. Health and egg production were similar between burned and unburned areas indicating that tortoises were able to acquire necessary resources using both areas. This study documents that adult Mojave desert tortoises continue to use habitat burned once by wildfire. Thus, continued management of this burned habitat may contribute toward the recovery of the species in the face of many sources of habitat loss.

  7. A Habitat-Based Approach to Management of Tallgrass Prairies at the Tewaukon National Wildlife Refuge

    National Research Council Canada - National Science Library

    Schroeder, Richard

    1999-01-01

    .... and improving overall floristic quality. Selection of appropriate management strategies followed by monitoring and evaluation of habitat conditions will allow for adaptive management and appropriate modifications over time.

  8. Population overlap and habitat segregation in wintering Black-tailed Godwits Limosa limosa

    NARCIS (Netherlands)

    Alves, Jose A.; Lourenco, Pedro M.; Piersma, Theunis; Sutherland, William J.; Gill, Jennifer A.

    2010-01-01

    Capsule Distinct breeding populations of migratory species may overlap both spatially and temporally, but differ in patterns of habitat use. This has important implications for population monitoring and conservation. Aims To quantify the extent to which two distinct breeding populations of a

  9. Impacts of habitat loss and fragmentation on the activity budget, ranging ecology and habitat use of Bale monkeys (Chlorocebus djamdjamensis) in the southern Ethiopian Highlands.

    Science.gov (United States)

    Mekonnen, Addisu; Fashing, Peter J; Bekele, Afework; Hernandez-Aguilar, R Adriana; Rueness, Eli K; Nguyen, Nga; Stenseth, Nils Chr

    2017-07-01

    Understanding the extent to which primates in forest fragments can adjust behaviorally and ecologically to changes caused by deforestation is essential to designing conservation management plans. During a 12-month period, we studied the effects of habitat loss and degradation on the Ethiopian endemic, bamboo specialist, Bale monkey (Chlorocebus djamdjamensis) by comparing its habitat quality, activity budget, ranging ecology and habitat use in continuous forest and two fragments. We found that habitat loss and fragmentation resulted in major differences in vegetation composition and structure between forest types. We also found that Bale monkeys in continuous forest spent more time feeding and traveling and less time resting and socializing than monkeys in fragments. Bale monkeys in continuous forest also had higher movement rates (m/hr) than monkeys in fragments. Bale monkeys in continuous forest used exclusively bamboo and mixed bamboo forest habitats while conspecifics in fragments used a greater variety of habitats including human use areas (i.e., matrix). Our findings suggest that Bale monkeys in fragments use an energy minimization strategy to cope with the lower availability of the species' primary food species, bamboo (Arundinaria alpina). We contend that Bale monkeys may retain some of the ancestral ecological flexibility assumed to be characteristic of the genus Chlorocebus, within which all extant species except Bale monkeys are regarded as ecological generalists. Our results suggest that, like other bamboo eating primates (e.g., the bamboo lemurs of Madagascar), Bale monkeys can cope with a certain threshold of habitat destruction. However, the long-term conservation prospects for Bale monkeys in fragments remain unclear and will require further monitoring to be properly evaluated. © 2017 Wiley Periodicals, Inc.

  10. Snapshot recordings provide a first description of the acoustic signatures of deeper habitats adjacent to coral reefs of Moorea

    Directory of Open Access Journals (Sweden)

    Frédéric Bertucci

    2017-11-01

    Full Text Available Acoustic recording has been recognized as a valuable tool for non-intrusive monitoring of the marine environment, complementing traditional visual surveys. Acoustic surveys conducted on coral ecosystems have so far been restricted to barrier reefs and to shallow depths (10–30 m. Since they may provide refuge for coral reef organisms, the monitoring of outer reef slopes and describing of the soundscapes of deeper environment could provide insights into the characteristics of different biotopes of coral ecosystems. In this study, the acoustic features of four different habitats, with different topographies and substrates, located at different depths from 10 to 100 m, were recorded during day-time on the outer reef slope of the north Coast of Moorea Island (French Polynesia. Barrier reefs appeared to be the noisiest habitats whereas the average sound levels at other habitats decreased with their distance from the reef and with increasing depth. However, sound levels were higher than expected by propagation models, supporting that these habitats possess their own sound sources. While reef sounds are known to attract marine larvae, sounds from deeper habitats may then also have a non-negligible attractive potential, coming into play before the reef itself.

  11. Moire-Fringe-Based Fiber Optic Tiltmeter for Structural Health Monitoring

    International Nuclear Information System (INIS)

    Kim, Dae Hyun

    2008-01-01

    This paper presents a novel fiber optic tiltmeter system for the health monitoring of large-size structures. The system is composed of a sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy ratting, and low cost. In this paper, a prototype of the fiber optic tiltmeter system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. From an experimental test, the fiber optic tiltmeter is proven to be a prospective sensor for the monitoring of the tilting angle of civil structure with a good linearity. Finally, the test also successfully demonstrates the performance and the potential of the novel fiber optic tiltmeter system to monitor the health of civil infrastructures.

  12. Moire-Fringe-Based Fiber Optic Tiltmeter for Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Hyun [Seoul National of Technology, Seoul (Korea, Republic of)

    2008-04-15

    This paper presents a novel fiber optic tiltmeter system for the health monitoring of large-size structures. The system is composed of a sensor head, a light control unit and a signal processing unit. The sensing mechanism of the sensor head is based on a novel integration of the moire fringe phenomenon with fiber optics to achieve a robust performance in addition to its immunity to EM interference, easy ratting, and low cost. In this paper, a prototype of the fiber optic tiltmeter system has been developed successfully. A low-cost light control unit has been developed to drive the system's optic and electronic components. From an experimental test, the fiber optic tiltmeter is proven to be a prospective sensor for the monitoring of the tilting angle of civil structure with a good linearity. Finally, the test also successfully demonstrates the performance and the potential of the novel fiber optic tiltmeter system to monitor the health of civil infrastructures.

  13. High resolution critical habitat mapping and classification of tidal freshwater wetlands in the ACE Basin

    Science.gov (United States)

    Strickland, Melissa Anne

    In collaboration with the South Carolina Department of Natural Resources ACE Basin National Estuarine Research Reserve (ACE Basin NERR), the tidal freshwater ecosystems along the South Edisto River in the ACE Basin are being accurately mapped and classified using a LIDAR-Remote Sensing Fusion technique that integrates LAS LIDAR data into texture images and then merges the elevation textures and multispectral imagery for very high resolution mapping. This project discusses the development and refinement of an ArcGIS Toolbox capable of automating protocols and procedures for marsh delineation and microhabitat identification. The result is a high resolution habitat and land use map used for the identification of threatened habitat. Tidal freshwater wetlands are also a critical habitat for colonial wading birds and an accurate assessment of community diversity and acreage of this habitat type in the ACE Basin will support SCDNR's conservation and protection efforts. The maps developed by this study will be used to better monitor the freshwater/saltwater interface and establish a baseline for an ACE NERR monitoring program to track the rates and extent of alterations due to projected environmental stressors. Preliminary ground-truthing in the field will provide information about the accuracy of the mapping tool.

  14. Simultaneous Structural Health Monitoring and Vibration Control of Adaptive Structures Using Smart Materials

    Directory of Open Access Journals (Sweden)

    Myung-Hyun Kim

    2002-01-01

    Full Text Available The integration of actuators and sensors using smart materials enabled various applications including health monitoring and structural vibration control. In this study, a robust control technique is designed and implemented in order to reduce vibration of an active structure. Special attention is given to eliminating the possibility of interaction between the health monitoring system and the control system. Exploiting the disturbance decoupling characteristic of the sliding mode observer, it is demonstrated that the proposed observer can eliminate the possible high frequency excitation from the health monitoring system. At the same time, a damage identification scheme, which tracks the changes of mechanical impedance due to the presence of damage, has been applied to assess the health condition of structures. The main objective of this paper is to examine the potential of combining the two emerging techniques together. Using the collocated piezoelectric sensors/actuators for vibration suppression as well as for health monitoring, this technique enabled to reduce the number of system components, while enhancing the performance of structures. As an initial study, both simulation and experimental investigations were performed for an active beam structure. The results show that this integrated technique can provide substantial vibration reductions, while detecting damage on the structure at the same time.

  15. Idaho Habitat/Natural Production Monitoring Part I, 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hall-Griswold, J.A.; Petrosky, C.E. (Idaho Department of Fish and Game, Boise, ID)

    1996-12-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game`s 1992--1996 Anadromous Fish Management Plan.

  16. Idaho habitat/natural production monitoring: Part 1. Annual report 1995

    International Nuclear Information System (INIS)

    Hall-Griswold, J.A.; Petrosky, C.E.

    1996-11-01

    The Idaho Department of Fish and Game (IDFG) has been monitoring trends in juvenile spring and summer chinook salmon, Oncorhynchus tshawytscha, and steelhead trout, O. mykiss, populations in the Salmon, Clearwater, and lower Snake River drainages for the past 12 years. This work is the result of a program to protect, mitigate, and enhance fish and wildlife affected by the development and operation of hydroelectric power plants on the Columbia River. Project 91-73, Idaho Natural Production Monitoring, consists of two subprojects: General Monitoring and Intensive Monitoring. This report updates and summarizes data through 1995 for the General Parr Monitoring (GPM) database to document status and trends of classes of wild and natural chinook salmon and steelhead trout populations. A total of 281 stream sections were sampled in 1995 to monitor trends in spring and summer chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss parr populations in Idaho. Percent carrying capacity and density estimates were summarized for 1985--1995 by different classes of fish: wild A-run steelhead trout, wild B-run steelhead trout, natural A-run steelhead trout, natural B-run steelhead trout, wild spring and summer chinook salmon, and natural spring and summer chinook salmon. The 1995 data were also summarized by subbasins as defined in Idaho Department of Fish and Game's 1992--1996 Anadromous Fish Management Plan

  17. The effects of habitat on coral bleaching responses in Kenya.

    Science.gov (United States)

    Grimsditch, Gabriel; Mwaura, Jelvas M; Kilonzo, Joseph; Amiyo, Nassir

    2010-06-01

    This study examines the bleaching responses of scleractinian corals at four sites in Kenya (Kanamai, Vipingo, Mombasa and Nyali) representing two distinct lagoon habitats (relatively shallow and relatively deep). Bleaching incidence was monitored for the whole coral community, while zooxanthellae densities and chlorophyll levels were monitored for target species (Pocillopora damicornis, Porites lutea, and Porites cylindrica) during a non-bleaching year (2006) and a year of mild-bleaching (2007). Differences in bleaching responses between habitats were observed, with shallower sites Kanamai and Vipingo exhibiting lower bleaching incidence than deeper sites Nyali and Mombasa. These shallower lagoons display more fluctuating thermal and light environments than the deeper sites, suggesting that corals in the shallower lagoons have acclimatized and/or adapted to the fluctuating environmental conditions they endure on a daily basis and have become more resistant to bleaching stress. In deeper sites that did exhibit higher bleaching (Mombasa and Nyali), it was found that coral recovery occurred more quickly in the protected area than in the non-protected area.

  18. Stability of eelgrass (Zostera marina L.) depth limits: influence of habitat type

    DEFF Research Database (Denmark)

    Greve, T. M.; Krause-Jensen, D.

    2005-01-01

    significantly between habitat types, and neither did stability of physicochemical variables. However, when data from all habitat types were analysed together, they showed that eelgrass populations at the depth limit were significantly more constant and thus, in this respect, more stable when occurring in deep......Seagrass meadows are generally considered stable although few studies have specified and tested this statement. On the basis of a large monitoring dataset from Danish coastal waters, we aimed to test whether the stability of deep eelgrass populations changes along a eutrophication gradient...... waters as compared to shallow waters. Areas of good water quality may thus obtain the double benefit of deeper-growing and more stable eelgrass populations. The most likely reason why this pattern did not appear at habitat-type level is that the habitat types studied represented wide spatial variation...

  19. Does the scale of our observational window affect our conclusions about correlations between endangered salmon populations and their habitat?

    Science.gov (United States)

    Blake E. Feist; E. Ashley Steel; David W. Jensen; Damon N.D. Sather

    2010-01-01

    Differences in the strength of species-habitat relationships across scales provide insights into the mechanisms that drive these relationships and guidance for designing in situ monitoring programs, conservation efforts and mechanistic studies. The scale of our observation can also impact the strength of perceived relationships between animals and habitat conditions....

  20. Health Monitoring System Based on Intra-Body Communication

    Science.gov (United States)

    Razak, A. H. A.; Ibrahim, I. W.; Ayub, A. H.; Amri, M. F.; Hamzi, M. H.; Halim, A. K.; Ahmad, A.; Junid, S. A. M. Al

    2015-11-01

    This paper presents a model of a Body Area Network (BAN) health monitoring system based on Intra-Body Communication. Intra-body Communication (IBC) is a communication technique that uses the human body as a medium for electrical signal communication. One of the visions in the health care industry is to provide autonomous and continuous self and the remote health monitoring system. This can be achieved via BAN, LAN and WAN integration. The BAN technology itself consists of short range data communication modules, sensors, controller and actuators. The information can be transmitted to the LAN and WAN via the RF technology such as Bluetooth, ZigBee and ANT. Although the implementations of RF communication have been successful, there are still limitations in term of power consumption, battery lifetime, interferences and signal attenuations. One of the solutions for Medical Body Area Network (MBANs) to overcome these issues is by using an IBC technique because it can operate at lower frequencies and power consumption compared to the existing techniques. The first objective is to design the IBC's transmitter and receiver modules using the off the shelf components. The specifications of the modules such as frequency, data rate, modulation and demodulation coding system were defined. The individual module were designed and tested separately. The modules was integrated as an IBC system and tested for functionality then was implemented on PCB. Next objective is to model and implement the digital parts of the transmitter and receiver modules on the Altera's FPGA board. The digital blocks were interfaced with the FPGA's on board modules and the discrete components. The signals that have been received from the transmitter were converted into a proper waveform and it can be viewed via external devices such as oscilloscope and Labview. The signals such as heartbeats or pulses can also be displayed on LCD. In conclusion, the IBC project presents medical health monitoring model

  1. Modeling of Iranian Cheetah Habitat using Ecological Niche Factor Analysis (Case Study: Dare Anjir Wildlife Refuge

    Directory of Open Access Journals (Sweden)

    N. Zamani

    2016-03-01

    Full Text Available Evaluation of habitat sustainability indexes is essential in wildlife management and conservation of rare species. Suitable habitats are required in wildlife managements and conservation also, they increase reproduction and survival rate of species. In this study in order to mapping habitat sustainability and recognizing habitat requirements of Iranian Cheetah (Acinonyx jubatus venaticus, field data from Dare Anjir  wildlife refuge were collected since autumn 2009 until summer 2011. Ecological Niche Factor Analysis approach has been used to develop habitat suitability model. In this method primary maps of  habitat variables including elevation, slope, aspect, vegetation cover, distance from water sources and environmental monitoring stations have been produced by Idrisi and Biomapper software and imported in Biomapper. The output scores obtained from the analysis showed that Iranian cheetah tends to mountain areas where has more topographical features for camouflage in order to hunting, and northern aspects which have more humidity, denser vegetation cover and more preys . Our result showed that the Iranian cheetah has medium niche width and prefer marginal habitats.

  2. Impacts of temperature on giant panda habitat in the north Minshan Mountains.

    Science.gov (United States)

    Liu, Gang; Guan, Tianpei; Dai, Qiang; Li, Huixin; Gong, Minghao

    2016-02-01

    Understanding the impacts of meteorological factors on giant pandas is necessary for future conservation measures in response to global climate change. We integrated temperature data with three main habitat parameters (elevation, vegetation type, and bamboo species) to evaluate the influence of climate change on giant panda habitat in the northern Minshan Mountains using a habitat assessment model. Our study shows that temperature (relative importance = 25.1%) was the second most important variable influencing giant panda habitat excepting the elevation. There was a significant negative correlation between temperature and panda presence (ρ = -0.133, P pandas within the study area was 18-21°C, followed by 15-17°C and 22-24°C. The overall suitability of giant panda habitats will increase by 2.7%, however, it showed a opposite variation patterns between the eastern and northwestern region of the study area. Suitable and subsuitable habitats in the northwestern region of the study area, which is characterized by higher elevation and latitude, will increase by 18007.8 hm(2) (9.8% habitat suitability), while the eastern region will suffer a decrease of 9543.5 hm(2) (7.1% habitat suitability). Our results suggest that increasing areas of suitable giant panda habitat will support future giant panda expansion, and food shortage and insufficient living space will not arise as problems in the northwest Minshan Mountains, which means that giant pandas can adapt to climate change, and therefore may be resilient to climate change. Thus, for the safety and survival of giant pandas in the Baishuijiang Reserve, we propose strengthening the giant panda monitoring program in the west and improving the integrity of habitats to promote population dispersal with adjacent populations in the east.

  3. An autonomous structural health monitoring solution

    Science.gov (United States)

    Featherston, Carol A.; Holford, Karen M.; Pullin, Rhys; Lees, Jonathan; Eaton, Mark; Pearson, Matthew

    2013-05-01

    Combining advanced sensor technologies, with optimised data acquisition and diagnostic and prognostic capability, structural health monitoring (SHM) systems provide real-time assessment of the integrity of bridges, buildings, aircraft, wind turbines, oil pipelines and ships, leading to improved safety and reliability and reduced inspection and maintenance costs. The implementation of power harvesting, using energy scavenged from ambient sources such as thermal gradients and sources of vibration in conjunction with wireless transmission enables truly autonomous systems, reducing the need for batteries and associated maintenance in often inaccessible locations, alongside bulky and expensive wiring looms. The design and implementation of such a system however presents numerous challenges. A suitable energy source or multiple sources capable of meeting the power requirements of the system, over the entire monitoring period, in a location close to the sensor must be identified. Efficient power management techniques must be used to condition the power and deliver it, as required, to enable appropriate measurements to be taken. Energy storage may be necessary, to match a continuously changing supply and demand for a range of different monitoring states including sleep, record and transmit. An appropriate monitoring technique, capable of detecting, locating and characterising damage and delivering reliable information, whilst minimising power consumption, must be selected. Finally a wireless protocol capable of transmitting the levels of information generated at the rate needed in the required operating environment must be chosen. This paper considers solutions to some of these challenges, and in particular examines SHM in the context of the aircraft environment.

  4. Variability and convergence in benthic communities in created salt marshes transitioning into mangrove habitats

    Science.gov (United States)

    Wetland creation, enhancement, and restoration activities are commonly implemented to compensate for wetland loss or degradation in coastal ecosystems. Although assessments of structural condition are commonly used to monitor habitat restoration effectiveness, functional equivale...

  5. An integrated approach to the assessment of the eastern Gulf of Finland health: A case study of coastal habitats

    Science.gov (United States)

    Berezina, Nadezhda A.; Gubelit, Yulia I.; Polyak, Yulia M.; Sharov, Andrey N.; Kudryavtseva, Valentina A.; Lubimtsev, Vasily A.; Petukhov, Vasily A.; Shigaeva, Tatyana D.

    2017-07-01

    Eutrophication and chemical pollution are typical threats to the ecosystem of the Gulf of Finland. This paper aims to make a comprehensive assessment of the environmental status of coastal habitats in the easternmost Gulf of Finland (Neva River estuary) by using different physical, chemical and biotic variables to find cost-effective indicators for further monitoring. During summers of 2014 and 2015 we measured water salinity, phosphorus (eutrophication marker), biomass of harmful filamentous macroalgae (coastline hypoxia inductor), sediment hazardous substances (trace metals, polycyclic aromatic hydrocarbons) and other concomitant characters at 12 sites in the gulf. Also, we analyzed responses of the phytoplankton and benthic organisms, including metal-tolerant and hydrocarbon-oxidizing bacteria, meio- and macrofauna, to these factors. We compared the indicative sensitivity and efficiency of several well-known biotic indices and methods, including a Saprobity system (basing on phytoplankton), Raffaelli and Mason index (meiobenthos), and two macrobenthic derived indices (Goodnight-Whitley Index and Benthic Quality Index). Also, we applied a new index - the embryo malformation frequency in benthic amphipods. To estimate the level of bottom hypoxia induced by the macroalgae blooms, we measured the algal cover and thickness of the algal mats. To verify our assessment, we tested correlations between all used variables. Biotic communities of these areas are subjected to high phosphorus and macroalgae blooms, toxic pollution, water salinity and other factors. We concluded that environmental state of coastal habitats at several southern sites (in Koporskaya Bay and near the developing port Bronka) and near port Primorsk in the north was bad, while the state of the rest of sites was moderate or good. The integrated approach for the assessment may be recommended for monitoring programs as an important tool for studying human-mediated and other effects on brackishwater

  6. Research, Monitoring, and Evaluation for the Federal Columbia River Estuary Program.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Gary E.; Diefenderfer, Heida L. (Pacific Northwest National Laboratory)

    2008-02-20

    The purpose of this document is to describe research, monitoring, and evaluation (RME) for the Federal Columbia River Estuary Program, hereafter called 'the Estuary Program'. The intent of this RME effort is to provide data and information to evaluate progress toward meeting program goals and objectives and support decision making in the Estuary Program. The goal of the Estuary Program is to understand, conserve, and restore the estuary ecosystem to improve the performance of listed salmonid populations. The Estuary Program has five general objectives, designed to fulfill the program goal, as follows: (1) Understand the primary stressors affecting ecosystem controlling factors, such as ocean conditions and invasive species. (2) Conserve and restore factors controlling ecosystem structures and processes, such as hydrodynamics and water quality. (3) Increase the quantity and quality of ecosystem structures, i.e., habitats, juvenile salmonids use during migration through the estuary. (4) Maintain the food web to benefit salmonid performance. (5) Improve salmonid performance in terms of life history diversity, foraging success, growth, and survival. The goal of estuary RME is to provide pertinent and timely research and monitoring information to planners, implementers, and managers of the Estuary Program. The goal leads to three primary management questions pertaining to the main focus of the Estuary Program: estuary habitat conservation and restoration. (1) Are the estuary habitat actions achieving the expected biological and environmental performance targets? (2) Are the offsite habitat actions in the estuary improving juvenile salmonid performance and which actions are most effective at addressing the limiting factors preventing achievement of habitat, fish, or wildlife performance objectives? (3) What are the limiting factors or threats in the estuary/ocean preventing the achievement of desired habitat or fish performance objectives? Performance measures

  7. A comprehensive health service evaluation and monitoring framework.

    Science.gov (United States)

    Reeve, Carole; Humphreys, John; Wakerman, John

    2015-12-01

    To develop a framework for evaluating and monitoring a primary health care service, integrating hospital and community services. A targeted literature review of primary health service evaluation frameworks was performed to inform the development of the framework specifically for remote communities. Key principles underlying primary health care evaluation were determined and sentinel indicators developed to operationalise the evaluation framework. This framework was then validated with key stakeholders. The framework includes Donabedian's three seminal domains of structure, process and outcomes to determine health service performance. These in turn are dependent on sustainability, quality of patient care and the determinants of health to provide a comprehensive health service evaluation framework. The principles underpinning primary health service evaluation were pertinent to health services in remote contexts. Sentinel indicators were developed to fit the demographic characteristics and health needs of the population. Consultation with key stakeholders confirmed that the evaluation framework was applicable. Data collected routinely by health services can be used to operationalise the proposed health service evaluation framework. Use of an evaluation framework which links policy and health service performance to health outcomes will assist health services to improve performance as part of a continuous quality improvement cycle. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Health Monitoring of Composite Material Structures using a Vibrometry Technique

    Science.gov (United States)

    Schulz, Mark J.

    1997-01-01

    Large composite material structures such as aircraft and Reusable Launch Vehicles (RLVS) operate in severe environments comprised of vehicle dynamic loads, aerodynamic loads, engine vibration, foreign object impact, lightning strikes, corrosion, and moisture absorption. These structures are susceptible to damage such as delamination, fiber breaking/pullout, matrix cracking, and hygrothermal strain. To ensure human safety and load-bearing integrity, these structures must be inspected to detect and locate often invisible damage and faults before becoming catastrophic. Moreover, nearly all future structures will need some type of in-service inspection technique to increase their useful life and reduce maintenance and overall costs. Possible techniques for monitoring the health and indicating damage on composite structures include: c-scan, thermography, acoustic emissions using piezoceramic actuators or fiber-optic wires with gratings, laser ultrasound, shearography, holography, x-ray, and others. These techniques have limitations in detecting damage that is beneath the surface of the structure, far away from a sensor location, or during operation of the vehicle. The objective of this project is to develop a more global method for damage detection that is based on structural dynamics principles, and can inspect for damage when the structure is subjected to vibratory loads to expose faults that may not be evident by static inspection. A Transmittance Function Monitoring (TFM) method is being developed in this project for ground-based inspection and operational health monitoring of large composite structures as a RLV. A comparison of the features of existing health monitoring approaches and the proposed TFM method is given.

  9. Temporal Informative Analysis in Smart-ICU Monitoring: M-HealthCare Perspective.

    Science.gov (United States)

    Bhatia, Munish; Sood, Sandeep K

    2016-08-01

    The rapid introduction of Internet of Things (IoT) Technology has boosted the service deliverance aspects of health sector in terms of m-health, and remote patient monitoring. IoT Technology is not only capable of sensing the acute details of sensitive events from wider perspectives, but it also provides a means to deliver services in time sensitive and efficient manner. Henceforth, IoT Technology has been efficiently adopted in different fields of the healthcare domain. In this paper, a framework for IoT based patient monitoring in Intensive Care Unit (ICU) is presented to enhance the deliverance of curative services. Though ICUs remained a center of attraction for high quality care among researchers, still number of studies have depicted the vulnerability to a patient's life during ICU stay. The work presented in this study addresses such concerns in terms of efficient monitoring of various events (and anomalies) with temporal associations, followed by time sensitive alert generation procedure. In order to validate the system, it was deployed in 3 ICU room facilities for 30 days in which nearly 81 patients were monitored during their ICU stay. The results obtained after implementation depicts that IoT equipped ICUs are more efficient in monitoring sensitive events as compared to manual monitoring and traditional Tele-ICU monitoring. Moreover, the adopted methodology for alert generation with information presentation further enhances the utility of the system.

  10. Multidisciplinary health monitoring of a steel bridge deck structure

    NARCIS (Netherlands)

    Pahlavan, P.L.; Pijpers, R.J.M.; Paulissen, J.H.; Hakkesteegt, H.C.; Jansen, T.H.

    2013-01-01

    Fatigue cracks in orthotropic bridge decks are an important cause for the necessary renovation of existing bridges. Parallel utilization of various technologies based on different physical sensing principles can potentially maximize the efficiency of structural health monitoring (SHM) systems for

  11. Challenges of monitoring reproductive health services: a case study ...

    African Journals Online (AJOL)

    Challenges of monitoring reproductive health services: a case study of antenatal clinics in Kinondoni municipality, Dar Es Salaam. ... was descriptive cross sectional employing both qualitative and quantitative methods. The sample population included nurse-midwives who manage ANC clinics in Kinondoni Municipality.

  12. Spatial, temporal, and density-dependent components of habitat quality for a desert owl.

    Directory of Open Access Journals (Sweden)

    Aaron D Flesch

    Full Text Available Spatial variation in resources is a fundamental driver of habitat quality but the realized value of resources at any point in space may depend on the effects of conspecifics and stochastic factors, such as weather, which vary through time. We evaluated the relative and combined effects of habitat resources, weather, and conspecifics on habitat quality for ferruginous pygmy-owls (Glaucidium brasilianum in the Sonoran Desert of northwest Mexico by monitoring reproductive output and conspecific abundance over 10 years in and around 107 territory patches. Variation in reproductive output was much greater across space than time, and although habitat resources explained a much greater proportion of that variation (0.70 than weather (0.17 or conspecifics (0.13, evidence for interactions among each of these components of the environment was strong. Relative to habitat that was persistently low in quality, high-quality habitat buffered the negative effects of conspecifics and amplified the benefits of favorable weather, but did not buffer the disadvantages of harsh weather. Moreover, the positive effects of favorable weather at low conspecific densities were offset by intraspecific competition at high densities. Although realized habitat quality declined with increasing conspecific density suggesting interference mechanisms associated with an Ideal Free Distribution, broad spatial heterogeneity in habitat quality persisted. Factors linked to food resources had positive effects on reproductive output but only where nest cavities were sufficiently abundant to mitigate the negative effects of heterospecific enemies. Annual precipitation and brooding-season temperature had strong multiplicative effects on reproductive output, which declined at increasing rates as drought and temperature increased, reflecting conditions predicted to become more frequent with climate change. Because the collective environment influences habitat quality in complex ways

  13. Smartphone ownership and interest in mobile applications to monitor symptoms of mental health conditions.

    Science.gov (United States)

    Torous, John; Friedman, Rohn; Keshavan, Matcheri

    2014-01-21

    Patient retrospective recollection is a mainstay of assessing symptoms in mental health and psychiatry. However, evidence suggests that these retrospective recollections may not be as accurate as data collection though the experience sampling method (ESM), which captures patient data in "real time" and "real life." However, the difficulties in practical implementation of ESM data collection have limited its impact in psychiatry and mental health. Smartphones with the capability to run mobile applications may offer a novel method of collecting ESM data that may represent a practical and feasible tool for mental health and psychiatry. This paper aims to provide data on psychiatric patients' prevalence of smartphone ownership, patterns of use, and interest in utilizing mobile applications to monitor their mental health conditions. One hundred psychiatric outpatients at a large urban teaching hospital completed a paper-and-pencil survey regarding smartphone ownership, use, and interest in utilizing mobile applications to monitor their mental health condition. Ninety-seven percent of patients reported owning a phone and 72% reported that their phone was a smartphone. Patients in all age groups indicated greater than 50% interest in using a mobile application on a daily basis to monitor their mental health condition. Smartphone and mobile applications represent a practical opportunity to explore new modalities of monitoring, treatment, and research of psychiatric and mental health conditions.

  14. Patient Health Monitoring Using Wireless Body Area Network

    Directory of Open Access Journals (Sweden)

    Hsu Myat Thwe

    2015-06-01

    Full Text Available Abstract Nowadays remote patient health monitoring using wireless technology plays very vigorous role in a society. Wireless technology helps monitoring of physiological parameters like body temperature heart rate respiration blood pressure and ECG. The main aim of this paper is to propose a wireless sensor network system in which both heart rate and body temperature ofmultiplepatients can monitor on PC at the same time via RF network. The proposed prototype system includes two sensor nodes and receiver node base station. The sensor nodes are able to transmit data to receiver using wireless nRF transceiver module.The nRF transceiver module is used to transfer the data from microcontroller to PC and a graphical user interface GUI is developed to display the measured data and save to database. This system can provide very cheaper easier and quick respondent history of patient.

  15. Passive in-home health and wellness monitoring: overview, value and examples.

    Science.gov (United States)

    Alwan, Majd

    2009-01-01

    Modern sensor and communication technology, coupled with advances in data analysis and artificial intelligence techniques, is causing a paradigm shift in remote management and monitoring of chronic disease. In-home monitoring technology brings the added benefit of measuring individualized health status and reporting it to the care provider and caregivers alike, allowing timely and targeted preventive interventions, even in home and community based settings. This paper presents a paradigm for geriatric care based on monitoring older adults passively in their own living settings through placing sensors in their living environments or the objects they use. Activity and physiological data can be analyzed, archived and mined to detect indicators of early disease onset or changes in health conditions at various levels. Examples of monitoring systems are discussed and results from field evaluation pilot studies are summarized. The approach has shown great promise for a significant value proposition to all the stakeholders involved in caring for older adults. The paradigm would allow care providers to extend their services into the communities they serve.

  16. Toward youth self-report of health and quality of life in population monitoring.

    Science.gov (United States)

    Topolski, Tari D; Edwards, Todd C; Patrick, Donald L

    2004-01-01

    This paper addresses population monitoring of youth health and quality of life, including the concepts used, methodological and practical criteria for indicators, and existing surveys and measures. Current population surveys of youth generally focus on poor health, such as disability or health-risk behaviors. Although these are important end points, indicators of illness or risk do not reflect the health or life perspective of the majority of youth who do not experience health problems. The measures used to monitor youth health should be appropriate and sensitive to future needs and capture the perspectives of youths. Two potential concepts for this "scorecard" are self-perceived health and quality of life, which have been shown to be useful in adults. For youth, the quality of life framework seems particularly relevant as it incorporates both positive and negative aspects of health and well-being and also captures salient aspects of health other than physical health, such as sense of self, social relationships, environment and culture, and life satisfaction.

  17. Changes in habitat availability for outmigrating juvenile salmon (Oncorhychus spp.) following estuary restoration

    Science.gov (United States)

    Ellings, Christopher S.; Davis, Melanie; Grossman, Eric E.; Hodgson, Sayre; Turner, Kelley L.; Woo PR, Isa; Nakai, Glynnis; Takekawa, Jean E.; Takekawa, John Y.

    2016-01-01

    The restoration of the Nisqually River Delta (Washington, U.S.A.) represents one of the largest efforts toward reestablishing the ecosystem function and resilience of modified habitat in the Puget Sound, particularly for anadromous salmonid species. The opportunity for outmigrating salmon to access and benefit from the expansion of available tidal habitat can be quantified by several physical attributes, which are related to the ecological and physiological responses of juvenile salmon. We monitored a variety of physical parameters to measure changes in opportunity potential from historic, pre-restoration, and post-restoration habitat conditions at several sites across the delta. These parameters included channel morphology, water quality, tidal elevation, and landscape connectivity. We conducted fish catch surveys across the delta to determine if salmon was utilizing restored estuary habitat. Overall major channel area increased 42% and major channel length increased 131% from pre- to post-restoration conditions. Furthermore, the results of our tidal inundation model indicated that major channels were accessible up to 75% of the time, as opposed to 30% pre-restoration. Outmigrating salmon utilized this newly accessible habitat as quickly as 1 year post-restoration. The presence of salmon in restored tidal channels confirmed rapid post-restoration increases in opportunity potential on the delta despite habitat quality differences between restored and reference sites.

  18. Structural Health Monitoring for a Z-Type Special Vehicle

    Directory of Open Access Journals (Sweden)

    Chaolin Yuan

    2017-06-01

    Full Text Available Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles.

  19. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  20. Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring.

    Science.gov (United States)

    Young, Mary; Carr, Mark

    2015-01-01

    Networks of marine protected areas (MPAs) are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment) and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc.) done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network.

  1. Hydrologic and water-quality rehabilitation of environments for suitable fish habitat

    Science.gov (United States)

    Zhao, C. S.; Yang, S. T.; Xiang, H.; Liu, C. M.; Zhang, H. T.; Yang, Z. L.; Zhang, Y.; Sun, Y.; Mitrovic, S. M.; Yu, Q.; Lim, R. P.

    2015-11-01

    Aquatic ecological rehabilitation is attracting increasing public and research attention, but without knowledge of the responses of aquatic species to their habitats the success of habitat restoration is uncertain. Thus efficient study of species response to habitat, through which to prioritize the habitat factors influencing aquatic ecosystems, is highly important. However many current models have too high requirement for assemblage information and have great bias in results due to consideration of only the species' attribute of presence/absence, abundance or biomass, thus hindering the wider utility of these models. This paper, using fish as a case, presents a framework for identification of high-priority habitat factors based on the responses of aquatic species to their habitats, using presence/absence, abundance and biomass data. This framework consists of four newly developed sub-models aiming to determine weightings for the evaluation of species' contributions to their communities, to quantitatively calculate an integrated habitat suitability index for multi-species based on habitat factors, to assess the suitable probability of habitat factors and to assess the rehabilitation priority of habitat factors. The framework closely links hydrologic, physical and chemical habitat factors to fish assemblage attributes drawn from monitoring datasets on hydrology, water quality and fish assemblages at a total of 144 sites, where 5084 fish were sampled and tested. Breakpoint identification techniques based on curvature in cumulated dominance along with a newly developed weighting calculation model based on theory of mass systems were used to help identify the dominant fish, based on which the presence and abundance of multiple fish were normalized to estimate the integrated habitat suitability index along gradients of various factors, based on their variation with principal habitat factors. Then, the appropriate probability of every principal habitat factor was

  2. Effectiveness of post-fire seeding in desert tortoise Critical Habitat following the 2005 Southern Nevada Fire Complex

    Science.gov (United States)

    DeFalco, Lesley; Drake, Karla K.; Scoles-Sciulla, S. J.; Bauer, Kyla L.

    2010-01-01

    In June 2005, lightning strikes ignited multiple wildfires in southern Nevada. The Southern Nevada Fire Complex burned more than 32,000 acres of designated desert tortoise Critical Habitat and an additional 403,000 acres of Mojave Desert habitat characterized as potentially suitable for the tortoise. Mortalities of desert tortoises were observed after the fires, but altered habitat is likely to prolong and magnify the impacts of wildfire on desert tortoise populations. To accelerate the re-establishment of plants commonly used by tortoises for food and shelter, the Bureau of Land Management (BLM) distributed seeds of native annual and perennial species in burned areas within desert tortoise Critical Habitat. The U.S. Geological Survey (USGS) established monitoring plots to evaluate broadcast seeding as a means to restore habitat and tortoise activity compared with natural recovery. Within the standard three-year Emergency and Stabilization Response (ESR) monitoring timeline, seeding augmented perennial seed banks by four to six-fold within a year of seed applications compared with unseeded areas. By the end of the three-year monitoring period, seedling densities of seeded perennial species were 33% higher in seeded areas than in unseeded areas, particularly for the disturbance-adapted desert globemallow (Sphaeralcea ambigua) and desert marigold (Baileya multiradiata). Seeded annuals, in contrast, did not increase significantly in seed banks or biomass production, likely due to low seeding rates of these species. Production of non-native annuals that helped carry the fires was not reduced by seeding efforts but instead was strongly correlated with site-specific rainfall, as were native annual species. The short-term vegetation changes measured in seeded areas were not yet associated with a return of tortoise activity to unburned levels. By focusing on a combination of native species that can withstand disturbance conditions, including species that are found in

  3. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Lingyu

    2018-04-10

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extended life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures

  4. Investigating fish hydraulic habitat preferences using a passive integrated transponder antenna network: Scope on spatial scales and individual mobility

    Science.gov (United States)

    Roy, M. L.; Roy, A. G.

    2009-12-01

    Flow velocity is a major feature of fluvial fish habitat. It affects swimming energy expenditures, resource distribution and efficiency of prey capture, thus exerting a major influence on fish distribution. Preferences of juvenile salmonids for ranges of flow velocity are well documented. Preference curves are usually generated by comparing velocities measured at the precise location of captured fish (nose velocity) with velocities measured at random locations where fish are absent. However, these preferences tend to be specific to sites and rivers and show important variability with time. Recent biotelemetry studies have revealed that juvenile salmonids are more mobile than previously assumed and use larger home ranges and multiple micro-habitats. Therefore, fish might select habitats based on the characteristics of a microhabitat, but also based on the properties of the surrounding area. Furthermore, mobile fish could present temporal variability in their habitat preferences. Recent advances in biotelemetry provide new ways to monitor fish locations and to obtain habitat preferences both at the individual and the population levels at high temporal and spatial resolutions for extended periods. In this study, we seek to identify the most relevant spatial scales defining habitat preferences of juvenile Atlantic salmon. We emphasize both the group and individual temporal variability in hydraulic habitat preferences. During a three month period, we monitored the location and movements of 61 juveniles marked with 23-mm passive integrated transponders (PIT) using a network of 186 antennas buried into the bed of a natural river reach in Saguenay, Canada. Each antenna was scanned every 33 seconds to detect and record the presence or absence of tagged fish. The reach was 70 m long and 9 m wide on average and presented a very clear morphological sequence consisting of two pools separated by a riffle. Mean flow velocity and turbulent flow properties were measured at 3500

  5. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies.

    Science.gov (United States)

    Vedal, Sverre; Han, Bin; Xu, Jia; Szpiro, Adam; Bai, Zhipeng

    2017-12-15

    No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite) data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.

  6. Design of an Air Pollution Monitoring Campaign in Beijing for Application to Cohort Health Studies

    Directory of Open Access Journals (Sweden)

    Sverre Vedal

    2017-12-01

    Full Text Available No cohort studies in China on the health effects of long-term air pollution exposure have employed exposure estimates at the fine spatial scales desirable for cohort studies with individual-level health outcome data. Here we assess an array of modern air pollution exposure estimation approaches for assigning within-city exposure estimates in Beijing for individual pollutants and pollutant sources to individual members of a cohort. Issues considered in selecting specific monitoring data or new monitoring campaigns include: needed spatial resolution, exposure measurement error and its impact on health effect estimates, spatial alignment and compatibility with the cohort, and feasibility and expense. Sources of existing data largely include administrative monitoring data, predictions from air dispersion or chemical transport models and remote sensing (specifically satellite data. New air monitoring campaigns include additional fixed site monitoring, snapshot monitoring, passive badge or micro-sensor saturation monitoring and mobile monitoring, as well as combinations of these. Each of these has relative advantages and disadvantages. It is concluded that a campaign in Beijing that at least includes a mobile monitoring component, when coupled with currently available spatio-temporal modeling methods, should be strongly considered. Such a campaign is economical and capable of providing the desired fine-scale spatial resolution for pollutants and sources.

  7. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2001-01-01

    Fine sediment in spawning substrate has a major effect on salmon survival from egg to smolt. Basin-wide restoration plans have established targets for fine sediment levels in spawning habitat. The project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Fork John Day (NFJDR) and Grande Ronde Rivers, for five years. The project is also investigating the potential relationship between surface fine levels and overwinter sedimentation. It will provide data to assess trends in substrate conditions in monitored reaches and whether trends are consistent with efforts to improve salmon habitat conditions. The data on the magnitude of overwinter sedimentation will also be used to estimate salmon survival from egg to emergence. In Sept. 1998, 1999, and Aug. 2000, sites for monitoring overwinter sedimentation were established in salmon spawning habitat in the upper Grande Ronde River, Catherine Creek (a Grande Ronde tributary), the North Fork John Day River (NFJDR), and Granite Creek (a NFJDR tributary). Surface fine sediment levels were measured in these reaches via the grid method and visually estimated to test the relative accuracy of these two methods. In 1999 and 2000, surface fine sediment was also estimated via pebble counts at selected reaches to allow comparison of results among the methods. Overwintering substrate samples were collected in April 1999 and April-May 2000 to estimate the amount of overwinter sedimentation in clean gravels in spawning habitat. Monitoring methods and locations are described.

  8. Ultrasonic wireless health monitoring

    Science.gov (United States)

    Petit, Lionel; Lefeuvre, Elie; Guyomar, Daniel; Richard, Claude; Guy, Philippe; Yuse, Kaori; Monnier, Thomas

    2006-03-01

    The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations. This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation between the transmitted wave spectrum and a reference spectrum. The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter has been evaluated on a 300x50x2 mm 3 composite cantilever beam. Four 33x11x0.3 mm 3 piezoelements are used for the energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track the transmitted Lamb wave. In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm 3. The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some envisaged solutions are introduced for the implementation of the required data

  9. Terrestrial habitat mapping of the Oak Ridge Reservation: 1996 Summary

    International Nuclear Information System (INIS)

    Washington-Allen, R.A.; Ashwood, T.L.

    1996-09-01

    The US DOE is in the process of remediating historical contamination on the Oak Ridge Reservation (ORR). Two key components are ecological risk assessment and monitoring. In 1994 a strategy was developed and a specific program was initiated to implement the strategy for the terrestrial biota of the entire ORR. This document details results of the first task: development of a habitat map and habitat models for key species of interest. During the last 50 years ORR has been a relatively protected island of plant and animal habitats in a region of rapidly expanding urbanization. A preliminary biodiversity assessment of the ORR by the Nature Conservancy in 1995 noted 272 occurrences of significant plant and animal species and communities. Field surveys of threatened and endangered species show that the ORR contains 20 rare plant species, 4 of which are on the state list of endangered species. The rest are either on the state list of threatened species or listed as being of special concern. The ORR provides habitat for some 60 reptilian and amphibian species; more than 120 species of terrestrial birds; 32 species of waterfowl, wading birds, and shorebirds; and about 40 mammalian species. The ORR is both a refuge for rare species and a reservoir of recruitment for surrounding environments and wildlife management areas. Cedar barrens, river bluffs, and wetlands have been identified as the habitat for most rare vascular plant species on the ORR

  10. Northern Rivers Basins human health monitoring program : report

    International Nuclear Information System (INIS)

    Gabos, S.

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs

  11. Northern Rivers Basins human health monitoring program : report

    Energy Technology Data Exchange (ETDEWEB)

    Gabos, S. [Alberta Health, Edmonton, AB (Canada). Health Surveillance

    1999-04-01

    The Northern River Basins Human Health Monitoring Program was established in 1994 to investigate the possible relationships between various environmental risk factors and the health of northern residents in the province. This report presents the initial analysis of the health program and examines the differences in health outcomes across the province and compares the Northern Rivers Basin Study (NRBS) area with the other areas of the province. A series of maps and graphs showed the prevalence of certain diseases and disorders within the Peace and Athabasca river basins. The focus of the report was on reproductive health, congenital anomalies, respiratory ailments, circulatory diseases, gastrointestinal disorders, endocrine and metabolic disorders, and neurocognitive disorders. The study showed that compared to other areas of the province, the NRBS area had higher incidences of endometriosis, selected congenital anomalies, bronchitis, pneumonia, peptic ulcers and epilepsy. There were three potential exposure pathways to environmental contaminants. These were through ingestion of water or food, inhalation of air and through dermal exposure. refs., tabs., figs.

  12. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    Science.gov (United States)

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  13. Psycho-social aspects of personal health monitoring: a descriptive literature review.

    Science.gov (United States)

    Muehlan, Holger; Schmidt, Silke

    2013-01-01

    We aimed at providing a short review on already published studies addressing psycho-social issues of personal health monitoring (PHM). Both core questions addressed within this review are: What is the impact of PHM on intended psycho-social and health-related outcomes? And which psycho-social issues affected by or related to PHM have already been investigated? This descriptive review based on a literature search using various databases (Psycinfo, Psyndex, Pubmed, SSCI). Resulting 428 abstracts were coded regarding their psycho-social content. Inspection of results was carried out along the relevance of the papers regarding psycho-social issues. Research in PHM focuses on telemonitoring and smart home applications: Tele-monitoring studies are directed to outcome-related questions, smart home studies to feasibility issues. Despite of technological matters, comparability of both systems in psycho-social issues is lacking. Tele-monitoring has been proven for impact on patient groups with chronic diseases, yet smart home still lacks evidence in health-related and psycho-social matters. Smart home applications have been investigated with respect to attitudes, perceptions and concerns of end-users, telemonitoring regarding acceptance and adherence.

  14. Ecological Monitoring and Compliance Program 2006 Report

    Energy Technology Data Exchange (ETDEWEB)

    David C. Anderson; Paul D. Greger; Derek B. Hall; Dennis J. Hansen; William K. Ostler

    2007-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by National Security Technologies LLC (NSTec) during the Calendar Year 2006. Program activities included: (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). Sensitive and protected/regulated species of the NTS include 44 plants, 1 mollusk, 2 reptiles, over 250 birds, and 26 mammals protected, managed, or considered sensitive as per state or federal regulations and natural resource agencies and organizations. The threatened desert tortoise (Gopherus agassizii) is the only species on the NTS protected under the Endangered Species Act. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 34 projects. A total of 342.1 hectares (ha) (845.37 acres [ac]) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found included: 2 inactive tortoise burrows, 2 western burrowing owls (Athene cunicularia hypugaea), several horses (Equus caballus), 2 active predator burrows, mature Joshua trees (Yucca brevifolia), yuccas and cacti; and also 1 bird nest (2 eggs), 1 barn owl (Tyto alba) and 2 great-horned owls (Bubo virginianus). NSTec provided a written summary report of all survey findings and mitigation recommendations, where applicable. All flagged burrows

  15. Monitoring public health following a major firework factory explosion.

    NARCIS (Netherlands)

    Dirkzwager, A.J.E.; IJzermans, C.J.; Kerssens, J.J.

    2003-01-01

    Background: In May 2000, a firework factory exploded in a residential area in the Netherlands, resulting in 22 deaths, 947 wounded people, and about 2.000 severely damaged houses. Following the explosion, a largescale monitoring study was implemented to examine disaster-related health consequences

  16. Monitoring health status following a major firework factory explosion.

    NARCIS (Netherlands)

    Dirkzwager, A.; IJzermans, J.

    2003-01-01

    In May 2000, a firework factory exploded in a residential area in the Netherlands, resulting in 22 death, 947 wounded people, 500 destroyed houses, and 1.500 severely damaged houses. Following the explosion, a large-scale monitoring study was implemented to investigate disaster-related health

  17. The evolution of mapping habitat for northern spotted owls (Strix occidentalis caurina): A comparison of photo-interpreted, Landsat-based, and lidar-based habitat maps

    Science.gov (United States)

    Ackers, Steven H.; Davis, Raymond J.; Olsen, K.; Dugger, Catherine

    2015-01-01

    Wildlife habitat mapping has evolved at a rapid pace over the last few decades. Beginning with simple, often subjective, hand-drawn maps, habitat mapping now involves complex species distribution models (SDMs) using mapped predictor variables derived from remotely sensed data. For species that inhabit large geographic areas, remote sensing technology is often essential for producing range wide maps. Habitat monitoring for northern spotted owls (Strix occidentalis caurina), whose geographic covers about 23 million ha, is based on SDMs that use Landsat Thematic Mapper imagery to create forest vegetation data layers using gradient nearest neighbor (GNN) methods. Vegetation data layers derived from GNN are modeled relationships between forest inventory plot data, climate and topographic data, and the spectral signatures acquired by the satellite. When used as predictor variables for SDMs, there is some transference of the GNN modeling error to the final habitat map.Recent increases in the use of light detection and ranging (lidar) data, coupled with the need to produce spatially accurate and detailed forest vegetation maps have spurred interest in its use for SDMs and habitat mapping. Instead of modeling predictor variables from remotely sensed spectral data, lidar provides direct measurements of vegetation height for use in SDMs. We expect a SDM habitat map produced from directly measured predictor variables to be more accurate than one produced from modeled predictors.We used maximum entropy (Maxent) SDM modeling software to compare predictive performance and estimates of habitat area between Landsat-based and lidar-based northern spotted owl SDMs and habitat maps. We explored the differences and similarities between these maps, and to a pre-existing aerial photo-interpreted habitat map produced by local wildlife biologists. The lidar-based map had the highest predictive performance based on 10 bootstrapped replicate models (AUC = 0.809 ± 0.011), but the

  18. Health and usage monitoring system for the small aircraft composite structure

    Science.gov (United States)

    Růžička, Milan; Dvořák, Milan; Schmidová, Nikola; Šašek, Ladislav; Štěpánek, Martin

    2017-07-01

    This paper is focused on the design of the health and usage monitoring system (HUMS) of the composite ultra-light aircrafts. A multichannel measuring system was developed and installed for recording of the long-term operational measurements of the UL airplane. Many fiber Bragg grating sensors were implemented into the composite aircraft structure, mainly in the glue joints. More than ten other analog functions and signals of the aircraft is monitored and can be correlated together. Changing of the FBG sensors responses in monitored places and their correlations, comparing with the calibration and recalibration procedures during a monitored life may indicate damage (eg. in bonded joints) and complements the HUMS system.

  19. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  20. Monitoring and management of Cerambyx cerdo in the Mediterranean region – a review and the potential role of citizen science

    Directory of Open Access Journals (Sweden)

    Paolo Casula

    2017-07-01

    Full Text Available The Great Capricorn beetle, Cerambyx cerdo, and Mediterranean oak habitats (Quercus ilex – 9340 and Quercus suber – 9330 are protected by the Habitats Directive (HD. However, in the Mediterranean basin, these habitats are also traditionally used for animal, wood, and cork productions. Cerambyx cerdo feeds into the wood of trees and can be perceived by forest practitioners as an umbrella species or as a pest, depending on the context. Monitoring programmes involving forest practitioners could thus focus on assessing: 1 the conservation status of the Great Capricorn beetle and habitats (distribution and abundance of insects and reproductive sites or colonised trees, 2 pest status, and 3 management options to achieve both conservational and economic benefits. Considering that Cerambyx cerdo and Cork and Holm oak forests are not priority species or habitats under the HD, targeted funding is likely to be limited for monitoring. In this context, citizen science could gather important information on the target species useful for the monitoring programmes and management. To address management questions, the citizen science based programme for Cerambyx cerdo monitoring and habitat conservation should be seen not only as citizens collecting good data sets, but also as a deeper collaboration amongst different knowledge bodies and perspectives within a community – based environmental monitoring and learning network.

  1. Dynamic Analysis with Fibre Optic Sensors for Structural Health Monitoring

    National Research Council Canada - National Science Library

    Paolozzi, Antonio; Gasbarri, Paolo

    2006-01-01

    Structural Health Monitoring (SHM) is a new frontier of non destructing testing. Often SHM is associated with fibre optic sensors whose signals can be used to identify the structure and consequently its damage...

  2. Remote sensing of Qatar nearshore habitats with perspectives for coastal management.

    Science.gov (United States)

    Warren, Christopher; Dupont, Jennifer; Abdel-Moati, Mohamed; Hobeichi, Sanaa; Palandro, David; Purkis, Sam

    2016-04-30

    A framework is proposed for utilizing remote sensing and ground-truthing field data to map benthic habitats in the State of Qatar, with potential application across the Arabian Gulf. Ideally the methodology can be applied to optimize the efficiency and effectiveness of mapping the nearshore environment to identify sensitive habitats, monitor for change, and assist in management decisions. The framework is applied to a case study for northeastern Qatar with a key focus on identifying high sensitivity coral habitat. The study helps confirm the presence of known coral and provides detail on a region in the area of interest where corals have not been previously mapped. Challenges for the remote sensing methodology associated with natural heterogeneity of the physical and biological environment are addressed. Recommendations on the application of this approach to coastal environmental risk assessment and management planning are discussed as well as future opportunities for improvement of the framework. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Warm season chloride concentrations in stream habitats of freshwater mussel species at risk

    International Nuclear Information System (INIS)

    Todd, Aaron K.; Kaltenecker, M. Georgina

    2012-01-01

    Warm season (May–October) chloride concentrations were assessed in stream habitats of freshwater mussel species at risk in southern Ontario, Canada. Significant increases in concentrations were observed at 96% of 24 long-term (1975–2009) monitoring sites. Concentrations were described as a function of road density indicating an anthropogenic source of chloride. Linear regression showed that 36% of the variation of concentrations was explained by road salt use by the provincial transportation ministry. Results suggest that long-term road salt use and retention is contributing to a gradual increase in baseline chloride concentrations in at risk mussel habitats. Exposure of sensitive mussel larvae (glochidia) to increasing chloride concentrations may affect recruitment to at risk mussel populations. - Highlights: ► Warm season chloride concentrations were assessed in habitats of mussel species at risk. ► Concentrations increased significantly at 96% of 24 long-term monitoring sites. ► Concentrations increased with increases in road density and road salt use. ► Retention of road salt likely contributed to elevated warm season concentrations. ► Glochidia exposure to increasing concentrations may affect mussel reproduction. - Warm season chloride concentrations increased in southern Ontario streams with road salt use, such that reproduction of freshwater mussel species at risk may be affected.

  4. Application of Unmanned Air Vehicles (UAV) in monitoring of terrestrial habitats

    DEFF Research Database (Denmark)

    Sørensen, Peter Borgen; Strandberg, Beate; Bak, Jesper Leth

    2015-01-01

    I the last years there have been high focus on UAVs (drones) for many civil purposes and UAVs are also increasingly used for ecological data gathering. This presentation will first make an appetizer to show the new possibilities of using UAVs. The traditional concept of separating “data......” that are “real” from “models” that are “simulations” has to be refined in the area of field investigations, in order to utilize UAVs to make a revolution in data and understanding about the terrestrial habitats. However, this is not straightforward, and the presentation will line up the obstacles for using UAVs...

  5. ICT and the future of healthcare: Aspects of pervasive health monitoring.

    Science.gov (United States)

    Haluza, Daniela; Jungwirth, David

    2018-01-01

    Along with the digital revolution, information and communication technology applications are currently transforming the delivery of health and social care services. This paper investigates prevailing opinions toward future technology-based healthcare solutions among Austrian healthcare professionals. During a biphasic online Delphi survey, panelists rated expected outcomes of two future scenarios describing pervasive health monitoring applications. Experts perceived that the scenarios were highly innovative, but only moderately desirable, and that their implementation could especially improve patients' knowledge, quality of healthcare, and living standard. Contrarily, monetary aspects, technical prerequisites, and data security were identified as key obstacles. We further compared the impact of professional affiliation. Clearly, opinions toward pervasive healthcare differed between the interest groups, medical professionals, patient advocates, and administrative personnel. These data suggest closer collaborations between stakeholder groups to harmonize differences in expectations regarding pervasive health monitoring.

  6. Damage Detection Sensitivity of a Vehicle-based Bridge Health Monitoring System

    Science.gov (United States)

    Miyamoto, Ayaho; Yabe, Akito; Lúcio, Válter J. G.

    2017-05-01

    As one solution to the problem for condition assessment of existing short and medium span (10-30m) reinforced/prestressed concrete bridges, a new monitoring method using a public bus as part of a public transit system (called “Bus monitoring system”) was proposed, along with safety indices, namely, “characteristic deflection”, which is relatively free from the influence of dynamic disturbances due to such factors as the roughness of the road surface, and a structural anomaly parameter. In this study, to evaluate the practicality of the newly developed bus monitoring system, it has been field-tested over a period of about four years by using an in-service fixed-route bus operating on a bus route in the city of Ube, Yamaguchi Prefecture, Japan. In here, although there are some useful monitoring methods for short and medium span bridges based on the qualitative or quantitative information, the sensitivity of damage detection was newly discussed for safety assessment based on long term health monitoring data. The verification results thus obtained are also described in this paper, and also evaluates the sensitivity of the “characteristic deflection”, which is a bridge (health) condition indicator used by the bus monitoring system, in damage detection. Sensitivity of “characteristic deflection” is verified by introducing artificial damage into a bridge that has ended its service life and is awaiting removal. Furthermore, the sensitivity of “characteristic deflection” is verified by 3D FEM analysis.

  7. New seismic array solution for earthquake observations and hydropower plant health monitoring

    Science.gov (United States)

    Antonovskaya, Galina N.; Kapustian, Natalya K.; Moshkunov, Alexander I.; Danilov, Alexey V.; Moshkunov, Konstantin A.

    2017-09-01

    We present the novel fusion of seismic safety monitoring data of the hydropower plant in Chirkey (Caucasus Mountains, Russia). This includes new hardware solutions and observation methods, along with technical limitations for three types of applications: (a) seismic monitoring of the Chirkey reservoir area, (b) structure monitoring of the dam, and (c) monitoring of turbine vibrations. Previous observations and data processing for health monitoring do not include complex data analysis, while the new system is more rational and less expensive. The key new feature of the new system is remote monitoring of turbine vibration. A comparison of the data obtained at the test facilities and by hydropower plant inspection with remote sensors enables early detection of hazardous hydrodynamic phenomena.

  8. Human monitoring, smart health and assisted living techniques and technologies

    CERN Document Server

    Longhi, Sauro; Freddi, Alessandro

    2017-01-01

    This book covers the three main scientific and technological areas critical for improving people's quality of life - namely human monitoring, smart health and assisted living - from both the research and development points of view.

  9. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    Directory of Open Access Journals (Sweden)

    Anand K. Asundi

    2008-05-01

    Full Text Available Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for noninvasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control.

  10. Tamarix as habitat for birds: Implications for riparian restoration in the Southwestern United States

    Science.gov (United States)

    Sogge, M.K.; Sferra, S.J.; Paxton, E.H.

    2008-01-01

    Exotic vegetation has become a major habitat component in many ecosystems around the world, sometimes dramatically changing the vegetation community structure and composition. In the southwestern United States, riparian ecosystems are undergoing major changes in part due to the establishment and spread of the exotic Tamarix (saltcedar, tamarisk). There are concerns about the suitability of Tamarix as habitat for birds. Although Tamarix habitats tend to support fewer species and individuals than native habitats, Arizona Breeding Bird Atlas data and Birds of North America accounts show that 49 species use Tamarix as breeding habitat. Importantly, the relative use of Tamarix and its quality as habitat vary substantially by geographic location and bird species. Few studies have examined how breeding in Tamarix actually affects bird survivorship and productivity; recent research on Southwestern Willow Flycatchers has found no negative effects from breeding in Tamarix habitats. Therefore, the ecological benefits and costs of Tamarix control are difficult to predict and are likely to be species specific and site specific. Given the likelihood that high-quality native riparian vegetation will not develop at all Tamarix control sites, restoration projects that remove Tamarix but do not assure replacement by high-quality native habitat have the potential to reduce the net riparian habitat value for some local or regional bird populations. Therefore, an assessment of potential negative impacts is important in deciding if exotic control should be conducted. In addition, measurable project objectives, appropriate control and restoration techniques, and robust monitoring are all critical to effective restoration planning and execution. ?? 2008 Society for Ecological Restoration International.

  11. Evaluating the provenance of fine sediment in degraded Freshwater Pearl Mussel habitats.

    Science.gov (United States)

    Blake, Will; Haley, Steve; Goddard, Rupert; Stone, Peter; Broadhead, Kat

    2015-04-01

    Freshwater Pearl Mussels (FWPM), Margaritifera margaritifera, are among the most critically threatened freshwater bivalves worldwide. In addition to their important roles in particle processing, nutrient release, and sediment mixing, they also serve as an ideal target species for evaluation of aquatic ecosystem functioning especially in the context of their symbiotic relationship with Atlantic salmon Salmo salar and brown or sea trout Salmo trutta. Poor water quality, particularly eutrophication, and siltation are considered major contributory factors in the decline of the species hence management of diffuse water pollution from agriculture (DWPA) is a key priority in catchments that host FWPM habitats. Against this background, this study adopted a combined monitoring, surveying and sediment fingerprinting approach to determine the principal sources of fine sediment impacting FWPM habitats in the River Clun, a Special area of Conservation (SAC) for FWPMs in central western UK. Potential sediment production hotspot areas in the ca 200 km2 catchment area upstream of FWPM habitats were initially evaluated using the SCIMAP risk mapping tool. Suspended sediment monitoring was undertaken on the main stem channel where FWPM habitats are located and wet weather catchment walkover surveys undertaken along the upstream river and stream network. Within this monitoring framework, sediment fingerprinting was undertaken at two levels. The first level aimed to link primary catchment sources (cultivated and uncultivated soil, channel bank erosion, and material transported via roads and tracks) to suspended sediment output from each main tributary upstream of the FWPM beds. The second level linked silt in the FWMP beds to the main tributaries, as integrated source end-members, with the inclusion of main channel bank erosion, a notable feature of walkover surveys as an additional source. Geochemical fingerprints, determined by XRF spectroscopy, were dominated by conservative mineral

  12. Effects of hurricanes Katrina and Rita on Louisiana black bear habitat

    Science.gov (United States)

    Clark, Joseph D.; Murrow, Jennifer L.

    2012-01-01

    The Louisiana black bear (Ursus americanus luteolus) is comprised of 3 subpopulations, each being small, geographically isolated, and vulnerable to extinction. Hurricanes Katrina and Rita struck the Louisiana and Mississippi coasts in 2005, potentially altering habitat occupied by this federally threatened subspecies. We used data collected on radio-telemetered bears from 1993 to 1995 and pre-hurricane landscape data to develop a habitat model based on the Mahalanobis distance (D2) statistic. We then applied that model to post-hurricane landscape data where the telemetry data were collected (i.e., occupied study area) and where bear range expansion might occur (i.e., unoccupied study area) to quantify habitat loss or gain. The D2 model indicated that quality bear habitat was associated with areas of high mast-producing forest density, low water body density, and moderate forest patchiness. Cross-validation and testing on an independent data set in central Louisiana indicated that prediction and transferability of the model were good. Suitable bear habitat decreased from 348 to 345 km2 (0.9%) within the occupied study area and decreased from 34,383 to 33,891 km2 (1.4%) in the unoccupied study area following the hurricanes. Our analysis indicated that bear habitat was not significantly degraded by the hurricanes, although changes that could have occurred on a microhabitat level would be more difficult to detect at the resolution we used. We suggest that managers continue to monitor the possible long-term effects of these hurricanes (e.g., vegetation changes from flooding, introduction of toxic chemicals, or water quality changes).

  13. Diagnostic tool for structural health monitoring: effect of material nonlinearity and vibro-impact process

    Science.gov (United States)

    Hiwarkar, V. R.; Babitsky, V. I.; Silberschmidt, V. V.

    2013-07-01

    Numerous techniques are available for monitoring structural health. Most of these techniques are expensive and time-consuming. In this paper, vibration-based techniques are explored together with their use as diagnostic tools for structural health monitoring. Finite-element simulations are used to study the effect of material nonlinearity on dynamics of a cracked bar. Additionally, several experiments are performed to study the effect of vibro-impact behavior of crack on its dynamics. It was observed that a change in the natural frequency of the cracked bar due to crack-tip plasticity and vibro-impact behavior linked to interaction of crack faces, obtained from experiments, led to generation of higher harmonics; this can be used as a diagnostic tool for structural health monitoring.

  14. Recyclable Nonfunctionalized Paper-Based Ultralow-Cost Wearable Health Monitoring System

    KAUST Repository

    Nassar, Joanna M.; Mishra, Kush; Lau, Kirklann; Aguirre-Pablo, Andres A.; Hussain, Muhammad Mustafa

    2017-01-01

    A wearable health monitor using low-cost and recyclable paper continuously supervises and assesses body vital conditions simultaneously and in real time, such as blood pressure, heart rate, body temperature, and skin hydration. The affordability

  15. Application of data fusion techniques and technologies for wearable health monitoring.

    Science.gov (United States)

    King, Rachel C; Villeneuve, Emma; White, Ruth J; Sherratt, R Simon; Holderbaum, William; Harwin, William S

    2017-04-01

    Technological advances in sensors and communications have enabled discrete integration into everyday objects, both in the home and about the person. Information gathered by monitoring physiological, behavioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be woven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To interpret the complex multidimensional information provided by these sensors, data fusion techniques are employed to provide a meaningful representation of the sensor outputs. This paper is intended to provide a short overview of data fusion techniques and algorithms that can be used to interpret wearable sensor data in the context of health monitoring applications. The application of these techniques are then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to bring research to market. Copyright © 2017. Published by Elsevier Ltd.

  16. [Indicators to monitor the evolution of the economic crisis and its effects on health and health inequalities. SESPAS report 2014].

    Science.gov (United States)

    Pérez, Glòria; Rodríguez-Sanz, Maica; Domínguez-Berjón, Felicitas; Cabeza, Elena; Borrell, Carme

    2014-06-01

    The economic crisis has adverse effects on determinants of health and health inequalities. The aim of this article was to present a set of indicators of health and its determinants to monitor the effects of the crisis in Spain. On the basis of the conceptual framework proposed by the Commission for the Reduction of Social Health Inequalities in Spain, we searched for indicators of social, economic, and political (structural and intermediate) determinants of health, as well as for health indicators, bearing in mind the axes of social inequality (gender, age, socioeconomic status, and country of origin). The indicators were mainly obtained from official data sources published on the internet. The selected indicators are periodically updated and are comparable over time and among territories (among autonomous communities and in some cases among European Union countries), and are available for age groups, gender, socio-economic status, and country of origin. However, many of these indicators are not sufficiently reactive to rapid change, which occurs in the economic crisis, and consequently require monitoring over time. Another limitation is the lack of availability of indicators for the various axes of social inequality. In conclusion, the proposed indicators allow for progress in monitoring the effects of the economic crisis on health and health inequalities in Spain. Copyright © 2013 SESPAS. Published by Elsevier Espana. All rights reserved.

  17. Physical integrity: the missing link in biological monitoring and TMDLs.

    Science.gov (United States)

    Asmus, Brenda; Magner, Joseph A; Vondracek, Bruce; Perry, Jim

    2009-12-01

    The Clean Water Act mandates that the chemical, physical, and biological integrity of our nation's waters be maintained and restored. Physical integrity has often been defined as physical habitat integrity, and as such, data collected during biological monitoring programs focus primarily on habitat quality. However, we argue that channel stability is a more appropriate measure of physical integrity and that channel stability is a foundational element of physical habitat integrity in low-gradient alluvial streams. We highlight assessment tools that could supplement stream assessments and the Total Maximum Daily Load stressor identification process: field surveys of bankfull cross-sections; longitudinal thalweg profiles; particle size distribution; and regionally calibrated, visual, stream stability assessments. Benefits of measuring channel stability include a more informed selection of reference or best attainable stream condition for an Index of Biotic Integrity, establishment of a baseline for monitoring changes in present and future condition, and indication of channel stability for investigations of chemical and biological impairments associated with sediment discontinuity and loss of habitat quality.

  18. Wireless connectivity for health and sports monitoring: a review.

    Science.gov (United States)

    Armstrong, S

    2007-05-01

    This is a review of health and sports monitoring research that uses or could benefit from wireless connectivity. New, enabling wireless connectivity standards are evaluated for their suitability, and an assessment of current exploitation of these technologies is summarised. An example of the application is given, highlighting the capabilities of a network of wireless sensors. Issues of timing and power consumption in a battery-powered system are addressed to highlight the benefits networking can provide, and a suggestion of how monitoring different biometric signals might allow one to gain additional information about an athlete or patient is made.

  19. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway

    Directory of Open Access Journals (Sweden)

    Kai Guan

    2017-01-01

    Full Text Available This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly’s electrocardiogram (ECG and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.

  20. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway.

    Science.gov (United States)

    Guan, Kai; Shao, Minggang; Wu, Shuicai

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly.

  1. A Remote Health Monitoring System for the Elderly Based on Smart Home Gateway

    Science.gov (United States)

    Shao, Minggang

    2017-01-01

    This paper proposed a remote health monitoring system for the elderly based on smart home gateway. The proposed system consists of three parts: the smart clothing, the smart home gateway, and the health care server. The smart clothing collects the elderly's electrocardiogram (ECG) and motion signals. The home gateway is used for data transmission. The health care server provides services of data storage and user information management; it is constructed on the Windows-Apache-MySQL-PHP (WAMP) platform and is tested on the Ali Cloud platform. To resolve the issues of data overload and network congestion of the home gateway, an ECG compression algorithm is applied. System demonstration shows that the ECG signals and motion signals of the elderly can be monitored. Evaluation of the compression algorithm shows that it has a high compression ratio and low distortion and consumes little time, which is suitable for home gateways. The proposed system has good scalability, and it is simple to operate. It has the potential to provide long-term and continuous home health monitoring services for the elderly. PMID:29204258

  2. Development of a wearable wireless body area network for health monitoring of the elderly and disabled

    Science.gov (United States)

    Rushambwa, Munyaradzi C.; Gezimati, Mavis; Jeeva, J. B.

    2017-11-01

    Novel advancements in systems miniaturization, electronics in health care and communication technologies are enabling the integration of both patients and doctors involvement in health care system. A Wearable Wireless Body Area Network (WWBAN) provides continuous, unobtrusive ambulatory, ubiquitous health monitoring, and provide real time patient’s status to the physician without any constraint on their normal daily life activities. In this project we developed a wearable wireless body area network system that continuously monitor the health of the elderly and the disabled and provide them with independent, safe and secure living. The WWBAN system monitors the following parameters; blood oxygen saturation using a pulse oximeter sensor (SpO2), heart rate (HR) pulse sensor, Temperature, hydration, glucose level and fall detection. When the wearable system is put on, the sensor values are processed and analysed. If any of the monitored parameter values falls below or exceeds the normal range, there is trigger of remote alert by which an SMS is send to a doctor or physician via GSM module and network. The developed system offers flexibility and mobility to the user; it is a real time system and has significance in revolutionizing health care system by enabling non-invasive, inexpensive, continuous health monitoring.

  3. Ultra low power signal oriented approach for wireless health monitoring.

    Science.gov (United States)

    Marinkovic, Stevan; Popovici, Emanuel

    2012-01-01

    In recent years there is growing pressure on the medical sector to reduce costs while maintaining or even improving the quality of care. A potential solution to this problem is real time and/or remote patient monitoring by using mobile devices. To achieve this, medical sensors with wireless communication, computational and energy harvesting capabilities are networked on, or in, the human body forming what is commonly called a Wireless Body Area Network (WBAN). We present the implementation of a novel Wake Up Receiver (WUR) in the context of standardised wireless protocols, in a signal-oriented WBAN environment and present a novel protocol intended for wireless health monitoring (WhMAC). WhMAC is a TDMA-based protocol with very low power consumption. It utilises WBAN-specific features and a novel ultra low power wake up receiver technology, to achieve flexible and at the same time very low power wireless data transfer of physiological signals. As the main application is in the medical domain, or personal health monitoring, the protocol caters for different types of medical sensors. We define four sensor modes, in which the sensors can transmit data, depending on the sensor type and emergency level. A full power dissipation model is provided for the protocol, with individual hardware and application parameters. Finally, an example application shows the reduction in the power consumption for different data monitoring scenarios.

  4. Data Integration for Health and Stress Monitoring: Biological Metabolites, Wearables Data, and Self-Reporting

    Science.gov (United States)

    Dunn, Jocelyn T.

    Integrative and unobtrusive approaches to monitoring health and stress can assist in preventative medicine and disease management, and provide capabilities for complex work environments, such as military deployments and long-duration human space exploration missions. With many data streams that could potentially provide critical information about the health, behavior, and psychosocial states of individuals or small groups, the central question of this research is how to reliably measure health and stress states over time. This integrative approach to health and stress monitoring has implemented biological metabolite profiling, wearables data analysis, and survey assessment for comparing biological, behavioral, and psychological perspectives. Health monitoring technologies aim to provide objective data about health status. Providing objective information can help mitigate biases or blind spots in an individual's perception. Consider an individual who is unwilling to openly admit to psychosocial distress and unhealthy habits, or an individual who has habituated to long-term stressors and is unable to recognize a chronic state of high stress. Both honesty and self-awareness are required for accurate self-reporting. Digital health technologies, such as wearable devices, provide objective data for health monitoring. Compared to surveys, wearables are less influenced by participant openness, and compared to biological samples, wearables require less equipment and less labor for analysis. However, inherent to every data stream are limitations due to uncertainty and sensitivity. This research has been conducted in collaboration with Hawaii Space Exploration Analog and Simulation (HI-SEAS), which is a Mars analog research site on the slopes on Mauna Loa volcano in Hawaii. During 8-month and 12-month HI-SEAS missions in the 2014-2016 timeframe, twelve individuals provided hair and urine samples for metabolite profiling, utilized consumer-grade wearables to monitor sleep and

  5. Establishing a definition of polar bear (Ursus maritimus) health: A guide to research and management activities

    Science.gov (United States)

    Patyk, Kelly A.; Duncan, Colleen G.; Nol, Pauline; Sonne, C.; Laidre, Kristin L.; Obbard, Martyn E.; Wiig, Øystein; Aars, Jon; Regehr, Eric V.; Gustafson, L.; Atwood, Todd C.

    2015-01-01

    The meaning of health for wildlife and perspectives on how to assess and measure health, are not well characterized. For wildlife at risk, such as some polar bear (Ursus maritimus) subpopulations, establishing comprehensive monitoring programs that include health status is an emerging need. Environmental changes, especially loss of sea ice habitat, have raised concern about polar bear health. Effective and consistent monitoring of polar bear health requires an unambiguous definition of health. We used the Delphi method of soliciting and interpreting expert knowledge to propose a working definition of polar bear health and to identify current concerns regarding health, challenges in measuring health, and important metrics for monitoring health. The expert opinion elicited through the exercise agreed that polar bear health is defined by characteristics and knowledge at the individual, population, and ecosystem level. The most important threats identified were in decreasing order: climate change, increased nutritional stress, chronic physiological stress, harvest management, increased exposure to contaminants, increased frequency of human interaction, diseases and parasites, and increased exposure to competitors. Fifteen metrics were identified to monitor polar bear health. Of these, indicators of body condition, disease and parasite exposure, contaminant exposure, and reproductive success were ranked as most important. We suggest that a cumulative effects approach to research and monitoring will improve the ability to assess the biological, ecological, and social determinants of polar bear health and provide measurable objectives for conservation goals and priorities and to evaluate progress.

  6. Establishing a definition of polar bear (Ursus maritimus) health: a guide to research and management activities.

    Science.gov (United States)

    Patyk, Kelly A; Duncan, Colleen; Nol, Pauline; Sonne, Christian; Laidre, Kristin; Obbard, Martyn; Wiig, Øystein; Aars, Jon; Regehr, Eric; Gustafson, Lori L; Atwood, Todd

    2015-05-01

    The meaning of health for wildlife and perspectives on how to assess and measure health, are not well characterized. For wildlife at risk, such as some polar bear (Ursus maritimus) subpopulations, establishing comprehensive monitoring programs that include health status is an emerging need. Environmental changes, especially loss of sea ice habitat, have raised concern about polar bear health. Effective and consistent monitoring of polar bear health requires an unambiguous definition of health. We used the Delphi method of soliciting and interpreting expert knowledge to propose a working definition of polar bear health and to identify current concerns regarding health, challenges in measuring health, and important metrics for monitoring health. The expert opinion elicited through the exercise agreed that polar bear health is defined by characteristics and knowledge at the individual, population, and ecosystem level. The most important threats identified were in decreasing order: climate change, increased nutritional stress, chronic physiological stress, harvest management, increased exposure to contaminants, increased frequency of human interaction, diseases and parasites, and increased exposure to competitors. Fifteen metrics were identified to monitor polar bear health. Of these, indicators of body condition, disease and parasite exposure, contaminant exposure, and reproductive success were ranked as most important. We suggest that a cumulative effects approach to research and monitoring will improve the ability to assess the biological, ecological, and social determinants of polar bear health and provide measurable objectives for conservation goals and priorities and to evaluate progress. Published by Elsevier B.V.

  7. New Sensors and Techniques for the Structural Health Monitoring of Propulsion Systems

    Directory of Open Access Journals (Sweden)

    Mark Woike

    2013-01-01

    Full Text Available The ability to monitor the structural health of the rotating components, especially in the hot sections of turbine engines, is of major interest to aero community in improving engine safety and reliability. The use of instrumentation for these applications remains very challenging. It requires sensors and techniques that are highly accurate, are able to operate in a high temperature environment, and can detect minute changes and hidden flaws before catastrophic events occur. The National Aeronautics and Space Administration (NASA, through the Aviation Safety Program (AVSP, has taken a lead role in the development of new sensor technologies and techniques for the in situ structural health monitoring of gas turbine engines. This paper presents a summary of key results and findings obtained from three different structural health monitoring approaches that have been investigated. This includes evaluating the performance of a novel microwave blade tip clearance sensor; a vibration based crack detection technique using an externally mounted capacitive blade tip clearance sensor; and lastly the results of using data driven anomaly detection algorithms for detecting cracks in a rotating disk.

  8. Analysis of decision fusion algorithms in handling uncertainties for integrated health monitoring systems

    Science.gov (United States)

    Zein-Sabatto, Saleh; Mikhail, Maged; Bodruzzaman, Mohammad; DeSimio, Martin; Derriso, Mark; Behbahani, Alireza

    2012-06-01

    It has been widely accepted that data fusion and information fusion methods can improve the accuracy and robustness of decision-making in structural health monitoring systems. It is arguably true nonetheless, that decision-level is equally beneficial when applied to integrated health monitoring systems. Several decisions at low-levels of abstraction may be produced by different decision-makers; however, decision-level fusion is required at the final stage of the process to provide accurate assessment about the health of the monitored system as a whole. An example of such integrated systems with complex decision-making scenarios is the integrated health monitoring of aircraft. Thorough understanding of the characteristics of the decision-fusion methodologies is a crucial step for successful implementation of such decision-fusion systems. In this paper, we have presented the major information fusion methodologies reported in the literature, i.e., probabilistic, evidential, and artificial intelligent based methods. The theoretical basis and characteristics of these methodologies are explained and their performances are analyzed. Second, candidate methods from the above fusion methodologies, i.e., Bayesian, Dempster-Shafer, and fuzzy logic algorithms are selected and their applications are extended to decisions fusion. Finally, fusion algorithms are developed based on the selected fusion methods and their performance are tested on decisions generated from synthetic data and from experimental data. Also in this paper, a modeling methodology, i.e. cloud model, for generating synthetic decisions is presented and used. Using the cloud model, both types of uncertainties; randomness and fuzziness, involved in real decision-making are modeled. Synthetic decisions are generated with an unbiased process and varying interaction complexities among decisions to provide for fair performance comparison of the selected decision-fusion algorithms. For verification purposes

  9. Habitats and Species Covered by the EEC Habitats Directive

    DEFF Research Database (Denmark)

    Pihl, S.; Søgaard, B.; Ejrnæs, R.

    of Conservation (SAC's), Natura 2000. The designations are based upon the presence of 60 of the natural habitat types listed in Annex I of the Directive and approx. 44 of the species listed in Annex II which occur within the territory of Denmark and for the conservation of which the Community has a special...... and the Danish county authorities have initiated a co-operative programme to provide and compile the data necessary to assess the conservation status of the natural habitat types and species concerned. The purpose of this report is to present the conservation status of the habitats and species in Denmark...

  10. A field protocol to monitor cavity-nesting birds

    Science.gov (United States)

    J. Dudley; V. Saab

    2003-01-01

    We developed a field protocol to monitor populations of cavity-nesting birds in burned and unburned coniferous forests of western North America. Standardized field methods are described for implementing long-term monitoring strategies and for conducting field research to evaluate the effects of habitat change on cavity-nesting birds. Key references (but not...

  11. Performance Health Monitoring of Large-Scale Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rajamony, Ram [IBM Research, Austin, TX (United States)

    2014-11-20

    This report details the progress made on the ASCR funded project Performance Health Monitoring for Large Scale Systems. A large-­scale application may not achieve its full performance potential due to degraded performance of even a single subsystem. Detecting performance faults, isolating them, and taking remedial action is critical for the scale of systems on the horizon. PHM aims to develop techniques and tools that can be used to identify and mitigate such performance problems. We accomplish this through two main aspects. The PHM framework encompasses diagnostics, system monitoring, fault isolation, and performance evaluation capabilities that indicates when a performance fault has been detected, either due to an anomaly present in the system itself or due to contention for shared resources between concurrently executing jobs. Software components called the PHM Control system then build upon the capabilities provided by the PHM framework to mitigate degradation caused by performance problems.

  12. Interoperability as a quality label for portable & wearable health monitoring systems.

    Science.gov (United States)

    Chronaki, Catherine E; Chiarugi, Franco

    2005-01-01

    Advances in ICT promising universal access to high quality care, reduction of medical errors, and containment of health care costs, have renewed interest in electronic health records (EHR) standards and resulted in comprehensive EHR adoption programs in many European states. Health cards, and in particular the European health insurance card, present an opportunity for instant cross-border access to emergency health data including allergies, medication, even a reference ECG. At the same time, research and development in miniaturized medical devices and wearable medical sensors promise continuous health monitoring in a comfortable, flexible, and fashionable way. These trends call for the seamless integration of medical devices and intelligent wearables into an active EHR exploiting the vast information available to increase medical knowledge and establish personal wellness profiles. In a mobile connected world with empowered health consumers and fading barriers between health and healthcare, interoperability has a strong impact on consumer trust. As a result, current interoperability initiatives are extending the traditional standardization process to embrace implementation, validation, and conformance testing. In this paper, starting from the OpenECG initiative, which promotes the consistent implementation of interoperability standards in electrocardiography and supports a worldwide community with data sets, open source tools, specifications, and online conformance testing, we discuss EHR interoperability as a quality label for personalized health monitoring systems. Such a quality label would support big players and small enterprises in creating interoperable eHealth products, while opening the way for pervasive healthcare and the take-up of the eHealth market.

  13. Modelling Fish Habitat Suitability in the Eastern English Channel. Application to community habitat level

    OpenAIRE

    Vaz, Sandrine; Carpentier, Andre; Loots, Christophe; Koubbi, Philippe

    2004-01-01

    Valuable marine habitats and living resources can be found in the Eastern English Channel and in 2003, a Franco-British Interreg IIIA project, ‘Eastern Channel Habitat Atlas for Marine Resource Management’ (CHARM), was initiated to support decision-making for management of essential fish habitats. Fish habitat corresponds to geographic areas within which ranges of environmental factors define the presence of a particular species. Habitat Suitability index (HSI) modelling was used to relate fi...

  14. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data

    Directory of Open Access Journals (Sweden)

    Haoyu Wang

    2018-01-01

    Full Text Available Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger’s comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands. To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track.

  15. Structural Health Monitoring of Railway Transition Zones Using Satellite Radar Data.

    Science.gov (United States)

    Wang, Haoyu; Chang, Ling; Markine, Valeri

    2018-01-31

    Transition zones in railway tracks are locations with considerable changes in the rail-supporting structure. Typically, they are located near engineering structures, such as bridges, culverts and tunnels. In such locations, severe differential settlements often occur due to the different material properties and structure behavior. Without timely maintenance, the differential settlement may lead to the damage of track components and loss of passenger's comfort. To ensure the safety of railway operations and reduce the maintenance costs, it is necessary to consecutively monitor the structural health condition of the transition zones in an economical manner and detect the changes at an early stage. However, using the current in situ monitoring of transition zones is hard to achieve this goal, because most in situ techniques (e.g., track-measuring coaches) are labor-consuming and usually not frequently performed (approximately twice a year in the Netherlands). To tackle the limitations of the in situ techniques, a Satellite Synthetic Aperture Radar (InSAR) system is presented in this paper, which provides a potential solution for a consecutive structural health monitoring of transition zones with bi-/tri-weekly data update and mm-level precision. To demonstrate the feasibility of the InSAR system for monitoring transition zones, a transition zone is tested. The results show that the differential settlement in the transition zone and the settlement rate can be observed and detected by the InSAR measurements. Moreover, the InSAR results are cross-validated against measurements obtained using a measuring coach and a Digital Image Correlation (DIC) device. The results of the three measuring techniques show a good correlation, which proves the applicability of InSAR for the structural health monitoring of transition zones in railway track.

  16. Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Directory of Open Access Journals (Sweden)

    Dongkyun Im

    2011-12-01

    Full Text Available River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA using River2D, a two-dimensional hydraulic model. The habitat suitability for Zacco platypus in the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

  17. Security And Privacy Issues in Health Monitoring Systems: eCare@Home Case Study

    DEFF Research Database (Denmark)

    Wearing, Thomas; Dragoni, Nicola

    2016-01-01

    Automated systems for monitoring elderly people in their home are becoming more and more common. Indeed, an increasing number of home sensor networks for healthcare can be found in the recent literature, indicating a clear research direction in smart homes for health-care. Although the huge amount...... of sensitive data these systems deal with and expose to the external world, security and privacy issues are surpris-ingly not taken into consideration. The aim of this paper is to raise some key security and privacy issues that home health monitor systems should face with. The analysis is based on a real world...... monitoring sensor network for healthcare built in the context of the eCare@Home project....

  18. Children’s health and development: results of a 20-year monitoring

    Directory of Open Access Journals (Sweden)

    Aleksandra Anatol’evna Shabunova

    2014-11-01

    Full Text Available The analysis of the data from domestic and foreign theory and practice has shown that the monitoring of the cohort of children is the most effective method of studying and assessing the health and development of children in order to make efficient and adequate management decisions. The paper presents the results of the medical-and-sociological monitoring “Research into the conditions for the formation of a healthy generation”, performed by RAS Institute of Socio-Economic Development of Territories since 1995 with the active support on the part of the Vologda Oblast Department of Healthcare. The authors have found out that each age period is characterized by a specific set of factors influencing health. Infancy and early age are dominated by the impact of medico-biological and social factors (poor health of the parents; low level of hemoglobin during pregnancy; mother’s smoking during pregnancy; labour conditions of the mother that do not meet sanitary standards; specifics of the infant’s feeding. In preschool and primary school age greater importance is attached to environmental factors, lifestyle and standard of living of the family (comfort of living conditions, environmental conditions in the area of residence, level of sociohygienic literacy and health-preserving activity of the parents. Using the cohort of children born in 2014 as an example, the authors show certain positive trends that emerged during the reforms of the economy and social sphere, reflected in the living conditions of families with children, in the level of satisfaction with their health, infant health, and key indicators of obstetrics system. In this regard, the authors substantiate the necessity of such monitoring to determine the correct vector of government policy

  19. Snowshoe hare multi-level habitat use in a fire-adapted ecosystem

    Science.gov (United States)

    Gigliotti, Laura C.; Jones, Benjamin C.; Lovallo, Matthew J.; Diefenbach, Duane R.

    2018-01-01

    Prescribed burning has the potential to improve habitat for species that depend on pyric ecosystems or other early successional vegetation types. For species that occupy diverse plant communities over the extent of their range, response to disturbances such as fire might vary based on post-disturbance vegetation dynamics among plant communities. Although responses of snowshoe hares (Lepus americanus) to fire have been studied in conifer-dominated forests in northern parts of the species’ range, there is a lack of information on snowshoe hare habitat use in fire-dependent communities in southern parts of their range. We used global positioning system (GPS) and very high frequency (VHF) radio-collars to monitor the habitat use of 32 snowshoe hares in a scrub-oak (Quercus ilicifolia)-pitch pine (Pinus rigida) barrens complex in northeastern Pennsylvania where prescribed fire has been used for habitat restoration. The area contained stands that underwent prescribed burning 1–6 years prior to our study. Also, we investigated fine-scale determinants of habitat use within stands. We found that regardless of season, hares did not select for areas that had been burned within 6 years prior. Hares primarily used stands of older scrub oak, conifer, or hardwoods, which contained dense understory vegetation and canopy cover. Hare habitat use also was positively associated with stand edges. Our results suggest that hares do not respond to prescribed burning of scrub oak in the short-term. In addition, by focusing on structural determinants of habitat use, rather than broad-scale characteristics such as stand type, management strategies for snowshoe hares can be adapted over the extent of their range despite the multitude of different land cover types across which the species occurs. 

  20. Assessment of habitat representation across a network of marine protected areas with implications for the spatial design of monitoring.

    Directory of Open Access Journals (Sweden)

    Mary Young

    Full Text Available Networks of marine protected areas (MPAs are being adopted globally to protect ecosystems and supplement fisheries management. The state of California recently implemented a coast-wide network of MPAs, a statewide seafloor mapping program, and ecological characterizations of species and ecosystems targeted for protection by the network. The main goals of this study were to use these data to evaluate how well seafloor features, as proxies for habitats, are represented and replicated across an MPA network and how well ecological surveys representatively sampled fish habitats inside MPAs and adjacent reference sites. Seafloor data were classified into broad substrate categories (rock and sediment and finer scale geomorphic classifications standard to marine classification schemes using surface analyses (slope, ruggedness, etc. done on the digital elevation model derived from multibeam bathymetry data. These classifications were then used to evaluate the representation and replication of seafloor structure within the MPAs and across the ecological surveys. Both the broad substrate categories and the finer scale geomorphic features were proportionately represented for many of the classes with deviations of 1-6% and 0-7%, respectively. Within MPAs, however, representation of seafloor features differed markedly from original estimates, with differences ranging up to 28%. Seafloor structure in the biological monitoring design had mismatches between sampling in the MPAs and their corresponding reference sites and some seafloor structure classes were missed entirely. The geomorphic variables derived from multibeam bathymetry data for these analyses are known determinants of the distribution and abundance of marine species and for coastal marine biodiversity. Thus, analyses like those performed in this study can be a valuable initial method of evaluating and predicting the conservation value of MPAs across a regional network.

  1. Fatigue evaluation for Tsing Ma Bridge using structural health monitoring data

    Science.gov (United States)

    Chan, Hung-tin Tommy; Ko, Jan Ming; Li, Zhao-Xia

    2001-08-01

    Fatigue assessment for the Tsing Ma Bridge (TMB) are presented based on the British standard BS5400 and the real-time structural health monitoring data under railway loading. TMB, as an essential portion of transport network for the Hong Kong airport, is the longest suspension bridge in the world carrying both highway and railway traffic. The bridge design has been mainly based on BS5400. A structural health monitoring system - Wind and Structural Health Monitoring System (WASHMS) for TMB has been operated since the bridge commissioning in May 1997. In order to assess the fatigue behavior of TMB under railway loading, strain gauges were installed on the bridge deck to measure the strain-time histories as soon as the bridge is loaded by a standard railway loading due to the service of an actual train. The strain-time history data at the critical members are then used to determine the stress spectrum, of which the rainflow method recommended for railway bridges by BS5400 is applied to count cycles of stress range. Miner's law is employed to evaluate fatigue damage and remaining service life of the bridge. The evaluated results of fatigue damage and remaining service life would help us to well understand about the fatigue design of the bridge and status in fatigue accumulation.

  2. A review on architectures and communications technologies for wearable health-monitoring systems.

    Science.gov (United States)

    Custodio, Víctor; Herrera, Francisco J; López, Gregorio; Moreno, José Ignacio

    2012-10-16

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in "LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments", published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.

  3. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems

    Directory of Open Access Journals (Sweden)

    José Ignacio Moreno

    2012-10-01

    Full Text Available Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health and p-health (pervasive health paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in “LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments”, published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.

  4. Health-Based Cyanotoxin Guideline Values Allow for Cyanotoxin-Based Monitoring and Efficient Public Health Response to Cyanobacterial Blooms

    Science.gov (United States)

    Farrer, David; Counter, Marina; Hillwig, Rebecca; Cude, Curtis

    2015-01-01

    Human health risks from cyanobacterial blooms are primarily related to cyanotoxins that some cyanobacteria produce. Not all species of cyanobacteria can produce toxins. Those that do often do not produce toxins at levels harmful to human health. Monitoring programs that use identification of cyanobacteria genus and species and enumeration of cyanobacterial cells as a surrogate for cyanotoxin presence can overestimate risk and lead to unnecessary health advisories. In the absence of federal criteria for cyanotoxins in recreational water, the Oregon Health Authority (OHA) developed guideline values for the four most common cyanotoxins in Oregon’s fresh waters (anatoxin-a, cylindrospermopsin, microcystins, and saxitoxins). OHA developed three guideline values for each of the cyanotoxins found in Oregon. Each of the guideline values is for a specific use of cyanobacteria-affected water: drinking water, human recreational exposure and dog recreational exposure. Having cyanotoxin guidelines allows OHA to promote toxin-based monitoring (TBM) programs, which reduce the number of health advisories and focus advisories on times and places where actual, rather than potential, risks to health exist. TBM allows OHA to more efficiently protect public health while reducing burdens on local economies that depend on water recreation-related tourism. PMID:25664510

  5. Habitat monitoring and conservation prioritisation of protected areas in Western Ghats, Kerala, India.

    Science.gov (United States)

    Athira, K; Reddy, C Sudhakar; Saranya, K R L; Joseph, Shijo; Jaishanker, R

    2017-06-01

    Spatially explicit approach is essential to prioritise the ecosystems for biodiversity conservation. In the present study, the conservation status of 20 protected areas of the Western Ghats of Kerala, India, was analysed based on long-term changes in forests (1975-1985-1995-2005-2013), landscape level changes in fragmentation and forest fires (2005-2015). This study has shown that a significant forest loss occurred in protected areas before declaration. Idukki is one of the major protected areas which showed a drastic reduction (18.83%) in its forest cover. During 1985-1995, Periyar tiger reserve had lost 24.19 km 2 core 3 forest area followed by Peppara (18.54 km 2 ), Parambikulam (17.93 km 2 ), Chimmony (17.71 km 2 ), Peechi-Vazhani (12.31 km 2 ) and Neyyar (11.67 km 2 ). An area of 71.33 km 2 of the protected area was affected by fires in 2014. Overall protected area-wise decadal analysis indicates Periyar has the highest number of fire incidences followed by Wayanad, Kurinjimala, Silent Valley and Eravikulam. Disturbances in the form of fires and fragmentation still exist and may have significant conservation threat to flora and fauna. Among protected areas, many are having a probability to go under threat or dynamic stage. Chinnar, Thattekkad and Kurinjimala sanctuaries are representing high levels of vulnerability, or they are near to decline stage. Habitat level monitoring of the anthropogenic disturbances can be efficiently useful for the strategic conservation planning. The present study has provided geospatial database on spatial patterns of deforestation, fragmentation and forest fires in protected areas of Kerala. Conservation prioritization approach based on these parameters will be useful for the strategic planning in the state of Kerala.

  6. Promoting health and reducing costs: a role for reform of self-monitoring of blood glucose provision within the National Health Service.

    Science.gov (United States)

    Leigh, S; Idris, I; Collins, B; Granby, P; Noble, M; Parker, M

    2016-05-01

    To determine the cost-effectiveness of all options for the self-monitoring of blood glucose funded by the National Health Service, providing guidance for disinvestment and testing the hypothesis that advanced meter features may justify higher prices. Using data from the Health and Social Care Information Centre concerning all 8 340 700 self-monitoring of blood glucose-related prescriptions during 2013/2014, we conducted a cost-minimization analysis, considering both strip and lancet costs, including all clinically equivalent technologies for self-monitoring of blood glucose, as determined by the ability to meet ISO-15197:2013 guidelines for meter accuracy. A total of 56 glucose monitor, test strip and lancet combinations were identified, of which 38 met the required accuracy standards. Of these, the mean (range) net ingredient costs for test strips and lancets were £0.27 (£0.14-£0.32) and £0.04 (£0.02-£0.05), respectively, resulting in a weighted average of £0.28 (£0.18-£0.37) per test. Systems providing four or more advanced features were priced equal to those providing just one feature. A total of £12 m was invested in providing 42 million self-monitoring of blood glucose tests with systems that fail to meet acceptable accuracy standards, and efficiency savings of £23.2 m per annum are achievable if the National Health Service were to disinvest from technologies providing lesser functionality than available alternatives, but at a much higher price. The study uncovered considerable variation in the price paid by the National Health Service for self-monitoring of blood glucose, which could not be explained by the availability of advanced meter features. A standardized approach to self-monitoring of blood glucose prescribing could achieve significant efficiency savings for the National Health Service, whilst increasing overall utilisation and improving safety for those currently using systems that fail to meet acceptable standards for measurement accuracy

  7. Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures

    OpenAIRE

    M. Sun; W. J. Staszewski; R. N. Swamy

    2010-01-01

    Structural Health Monitoring (SHM) aims to develop automated systems for the continuous monitoring, inspection, and damage detection of structures with minimum labour involvement. The first step to set up a SHM system is to incorporate a level of structural sensing capability that is reliable and possesses long term stability. Smart sensing technologies including the applications of fibre optic sensors, piezoelectric sensors, magnetostrictive sensors and self-diagnosing fibre reinforced compo...

  8. Breeding bird populations and habitat associations within the Savannah River Site (SRS).

    Energy Technology Data Exchange (ETDEWEB)

    Gauthreaux, Sidney, A.; Steven J. Wagner.

    2005-06-29

    Gauthreaux, Sidney, A., and Steven J. Wagner. 2005. Breeding bird populations and habitat associations within the Savannah River Site (SRS). Final Report. USDA Forest Service, Savannah River, Aiken, SC. 48 pp. Abstract: During the 1970's and 1980's a dramatic decline occurred in the populations of Neotropical migratory birds, species that breed in North America and winter south of the border in Central and South America and in the Caribbean. In 1991 an international initiative was mounted by U. S. governmental land management agencies, nongovernmental conservation agencies, and the academic and lay ornithological communities to understand the decline of Neotropical migratory birds in the Americas. In cooperation with the USDA Forest Service - Savannah River (FS - SR) we began 1992 a project directed to monitoring population densities of breeding birds using the Breeding Bird Census (BBC) methodology in selected habitats within the Savannah River Site SRS. In addition we related point count data on the occurrence of breeding Neotropical migrants and other bird species to the habitat data gathered by the Forest Inventory and Analysis (FIA) program of the USDA Forest Service and data on habitat treatments within forest stands.

  9. Aircraft Control Augmentation and Health Monitoring Using FADS Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I research proposal is aimed at demonstrating the feasibility of an innovative architecture comprising control augmentation and on-line health monitoring...

  10. Automatic Sensor-Fault Detection System for Comprehensive Structural Health Monitoring System

    National Research Council Canada - National Science Library

    Chan, Hian-Leng; Zhang, Chang; Qing, Peter X; Ooi, Teng K; Marotta, Steve A

    2005-01-01

    Structural health monitoring systems are viewed as viable means to reduce life-cycle costs, increase structural reliability, and extend the operational hours for a wide variety of composite structures...

  11. Ecological Monitoring and Compliance Program 2006 Report

    Energy Technology Data Exchange (ETDEWEB)

    David C. Anderson; Paul D. Greger; Derek B. Hall; Dennis J. Hansen; William K. Ostler

    2007-03-01

    The Ecological Monitoring and Compliance program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada Test Site (NTS) and ensures compliance with laws and regulations pertaining to NTS biota. This report summarizes the program's activities conducted by National Security Technologies LLC (NSTec) during the Calendar Year 2006. Program activities included: (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem mapping and data management, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat monitoring, (g) habitat restoration monitoring, and (h) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). Sensitive and protected/regulated species of the NTS include 44 plants, 1 mollusk, 2 reptiles, over 250 birds, and 26 mammals protected, managed, or considered sensitive as per state or federal regulations and natural resource agencies and organizations. The threatened desert tortoise (Gopherus agassizii) is the only species on the NTS protected under the Endangered Species Act. Biological surveys for the presence of sensitive and protected/regulated species and important biological resources on which they depend were conducted for 34 projects. A total of 342.1 hectares (ha) (845.37 acres [ac]) was surveyed for these projects. Sensitive and protected/regulated species and important biological resources found included: 2 inactive tortoise burrows, 2 western burrowing owls (Athene cunicularia hypugaea), several horses (Equus caballus), 2 active predator burrows, mature Joshua trees (Yucca brevifolia), yuccas and cacti; and also 1 bird nest (2 eggs), 1 barn owl (Tyto alba) and 2 great-horned owls (Bubo virginianus). NSTec provided a written summary report of all survey findings and mitigation recommendations, where applicable. All flagged burrows

  12. European red list of habitats. Part 1: Marine habitats

    NARCIS (Netherlands)

    Gubbay, S.; Sanders, N.; Haynes, T.; Janssen, J.A.M.; Rodwell, J.R.; Nieto, A.; Garcia Criado, M.; Beal, S.; Borg, J.

    2016-01-01

    The European Red List of Habitats provides an overview of the risk
    of collapse (degree of endangerment) of marine, terrestrial and
    freshwater habitats in the European Union (EU28) and adjacent
    regions (EU28+), based on a consistent set of categories and
    criteria, and detailed data

  13. eWALL Innovation for Smart e-Health Monitoring Devices

    DEFF Research Database (Denmark)

    Mihovska, Albena Dimitrova; Kyriazakos, Sofoklis

    2017-01-01

    E-health environments should be designed to provide personalized services and applications to their primary users (i.e. the patients) by breaking the barrier of technology acceptance and addressing their daily needs, under strict regulation and security constraints. A typical scenario would employ...... wireless and wired sensors and local or cloud-based processing units to collect, process, store and communicate data related to the patients’ needs and condition. E-health devices can be located on the patients’ bodies or immediate environments to monitor and interact with the patients, while they perform...

  14. Wildlife habitats in managed rangelands—the Great Basin of southeastern Oregon: manmade habitats.

    Science.gov (United States)

    Chris Maser; Jack Ward Thomas; Ira David Luman; Ralph. Anderson

    1979-01-01

    Manmade structures on rangelands provide specialized habitats for some species. These habitats and how they function as specialized habitat features are examined in this publication. The relationships of the wildlife of the Great Basin to such structures are detailed.

  15. Contributions of national and global health estimates to monitoring health-related sustainable development goals.

    Science.gov (United States)

    Bundhamcharoen, Kanitta; Limwattananon, Supon; Kusreesakul, Khanitta; Tangcharoensathien, Viroj

    2016-01-01

    The millennium development goals triggered an increased demand for data on child and maternal mortalities for monitoring progress. With the advent of the sustainable development goals and growing evidence of an epidemiological transition toward non-communicable diseases, policymakers need data on mortality and disease trends and distribution to inform effective policies and support monitoring progress. Where there are limited capacities to produce national health estimates (NHEs), global health estimates (GHEs) can fill gaps for global monitoring and comparisons. This paper discusses lessons learned from Thailand's burden of disease (BOD) study on capacity development on NHEs and discusses the contributions and limitations of GHEs in informing policies at the country level. Through training and technical support by external partners, capacities are gradually strengthened and institutionalized to enable regular updates of BOD at national and subnational levels. Initially, the quality of cause-of-death reporting in death certificates was inadequate, especially for deaths occurring in the community. Verbal autopsies were conducted, using domestic resources, to determine probable causes of deaths occurring in the community. This method helped to improve the estimation of years of life lost. Since the achievement of universal health coverage in 2002, the quality of clinical data on morbidities has also considerably improved. There are significant discrepancies between the Global Burden of Disease 2010 study estimates for Thailand and the 1999 nationally generated BOD, especially for years of life lost due to HIV/AIDS, and the ranking of priority diseases. National ownership of NHEs and an effective interface between researchers and decision-makers contribute to enhanced country policy responses, whereas subnational data are intended to be used by various subnational partners. Although GHEs contribute to benchmarking country achievement compared with global health

  16. National Surveys of Population Health: Big Data Analytics for Mobile Health Monitors.

    Science.gov (United States)

    Schatz, Bruce R

    2015-12-01

    At the core of the healthcare crisis is fundamental lack of actionable data. Such data could stratify individuals within populations to predict which persons have which outcomes. If baselines existed for all variations of all conditions, then managing health could be improved by matching the measuring of individuals to their cohort in the population. The scale required for complete baselines involves effective National Surveys of Population Health (NSPH). Traditionally, these have been focused upon acute medicine, measuring people to contain the spread of epidemics. In recent decades, the focus has moved to chronic conditions as well, which require smaller measures over longer times. NSPH have long utilized quality of life questionnaires. Mobile Health Monitors, where computing technologies eliminate manual administration, provide richer data sets for health measurement. Older technologies of telephone interviews will be replaced by newer technologies of smartphone sensors to provide deeper individual measures at more frequent timings across larger-sized populations. Such continuous data can provide personal health records, supporting treatment guidelines specialized for population cohorts. Evidence-based medicine will become feasible by leveraging hundreds of millions of persons carrying mobile devices interacting with Internet-scale services for Big Data Analytics.

  17. Structural health monitoring 2012. Proceedings. Vol. 1

    International Nuclear Information System (INIS)

    Boller, Christian

    2012-01-01

    Structural Health Monitoring (SHM) is an emerging technology, dealing with the development and implementation of techniques and systems where monitoring, inspection and damage detection become an integral part of structures and thus a matter of automation. It further merges with a variety of techniques related to diagnostics and prognostics. SHM emerged from the field of smart structures and laterally encompasses disciplines such as structural dynamics, materials and structures, fatigue and fracture, non-destructive testing and evaluation, sensors and actuators, microelectronics, signal processing and much more. To be effective in the development of SHM systems, a multidisciplinary approach is therefore required. Without this global view it will be difficult for engineers to holistically manage the operation of an engineering structure through its life cycle in the future and to generate new breakthroughs in structural engineering. The first volume of the proceedings contains topics dealing with physics, materials and sensors. Five of the contributions are separately analyzed for the ENERGY database.

  18. An Approach for Real-time Levee Health Monitoring Using Signal Processing Methods

    NARCIS (Netherlands)

    Pyayt, A.L.; Kozionov, A.P.; Mokhov, I.I.; Lang, B.; Krzhizhanovskaya, V.V.; Sloot, P.M.A.

    2013-01-01

    We developed a levee health monitoring system within the UrbanFlood project funded under the EU 7th Framework Programme. A novel real-time levee health assessment Artificial Intelligence system is developed using data-driven methods. The system is implemented in the UrbanFlood early warning system.

  19. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems

    OpenAIRE

    Custodio, V?ctor; Herrera, Francisco J.; L?pez, Gregorio; Moreno, Jos? Ignacio

    2012-01-01

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide mor...

  20. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  1. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchell, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-01-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display-it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  2. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  3. Forest health monitoring in New England: 1990 annual report

    Science.gov (United States)

    Robert T. Brooks; David R. Dickson; William B. Burkman; Imants Millers; Margaret Miller-Weeks; Ellen Cooter; Luther Smith; Luther Smith

    1992-01-01

    The USDA Forest Service, in cooperation with the U.S. Environmental Protection Agency and the New England State Forestry Agencies initiated field sampling for the Forest Health Monitoring program in 1990. Two hundred and sixty-three permanent sample plots were established. Measurements were taken to characterize the physical conditions of the plots. This publication...

  4. Assessing the utilisation of a child health monitoring tool

    African Journals Online (AJOL)

    2017-12-06

    Dec 6, 2017 ... preventive or promotive tool for monitoring child health as neither ... attitudes and practices of both CGs and HCWs relating to these components; and (iii) identify HCWs' perceptions of the barriers .... In posession of old RtHC (n=54) .... number of CGs (16.4%; 409/1 646) knew that a young child should.

  5. Yakima/Klickitat Fisheries Project; Klickitat Only Monitoring and Evaluation, 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, Melvin; Evenson, Rolf

    2003-12-01

    The monitoring and evaluation activities described in this report were determined by consensus of the scientists from the Yakama Nation (YN). Klickitat Subbasin Monitoring and Evaluation (M&E) activities have been subjected to scientific and technical review by members of YKFP's Science/Technical Advisory Committee (STAC) as part of the YKFP's overall M&E proposal. Yakama Nation YKFP project biologists have transformed the conceptual design into the tasks described. This report summarizes progress and results for the following major categories of YN-managed tasks under this contract: (1) Monitoring and Evaluation - Accurately characterize baseline available habitat and salmonid populations pre-habitat restoration and pre-supplementation. (2) EDT Modeling - Identify and evaluate habitat and artificial production enhancement options. (3) Genetics - Characterize the genetic profile of wild steelhead in the Klickitat Basin. (4) Ecological Interactions - Determine the presence of pathogens in wild and naturally produced salmonids in the Klickitat Basin and develop supplementation strategies using this information.

  6. Green roofs provide habitat for urban bats

    Directory of Open Access Journals (Sweden)

    K.L. Parkins

    2015-07-01

    Full Text Available Understanding bat use of human-altered habitat is critical for developing effective conservation plans for this ecologically important taxon. Green roofs, building rooftops covered in growing medium and vegetation, are increasingly important conservation tools that make use of underutilized space to provide breeding and foraging grounds for urban wildlife. Green roofs are especially important in highly urbanized areas such as New York City (NYC, which has more rooftops (34% than green space (13%. To date, no studies have examined the extent to which North American bats utilize urban green roofs. To investigate the role of green roofs in supporting urban bats, we monitored bat activity using ultrasonic recorders on four green and four conventional roofs located in highly developed areas of NYC, which were paired to control for location, height, and local variability in surrounding habitat and species diversity. We then identified bat vocalizations on these recordings to the species level. We documented the presence of five of nine possible bat species over both roof types: Lasiurus borealis, L. cinereus, L. noctivagans, P. subflavus,andE. fuscus. Of the bat calls that could be identified to the species level, 66% were from L. borealis. Overall levels of bat activity were higher over green roofs than over conventional roofs. This study provides evidence that, in addition to well documented ecosystem benefits, urban green roofs contribute to urban habitat availability for several North American bat species.

  7. Effects of payments for ecosystem services on wildlife habitat recovery.

    Science.gov (United States)

    Tuanmu, Mao-Ning; Viña, Andrés; Yang, Wu; Chen, Xiaodong; Shortridge, Ashton M; Liu, Jianguo

    2016-08-01

    Conflicts between local people's livelihoods and conservation have led to many unsuccessful conservation efforts and have stimulated debates on policies that might simultaneously promote sustainable management of protected areas and improve the living conditions of local people. Many government-sponsored payments-for-ecosystem-services (PES) schemes have been implemented around the world. However, few empirical assessments of their effectiveness have been conducted, and even fewer assessments have directly measured their effects on ecosystem services. We conducted an empirical and spatially explicit assessment of the conservation effectiveness of one of the world's largest PES programs through the use of a long-term empirical data set, a satellite-based habitat model, and spatial autoregressive analyses on direct measures of change in an ecosystem service (i.e., the provision of wildlife species habitat). Giant panda (Ailuropoda melanoleuca) habitat improved in Wolong Nature Reserve of China after the implementation of the Natural Forest Conservation Program. The improvement was more pronounced in areas monitored by local residents than those monitored by the local government, but only when a higher payment was provided. Our results suggest that the effectiveness of a PES program depends on who receives the payment and on whether the payment provides sufficient incentives. As engagement of local residents has not been incorporated in many conservation strategies elsewhere in China or around the world, our results also suggest that using an incentive-based strategy as a complement to command-and-control, community- and norm-based strategies may help achieve greater conservation effectiveness and provide a potential solution for the park versus people conflict. © 2016 Society for Conservation Biology.

  8. Satellite-based remote sensing of running water habitats at large riverscape scales: Tools to analyze habitat heterogeneity for river ecosystem management

    Science.gov (United States)

    Hugue, F.; Lapointe, M.; Eaton, B. C.; Lepoutre, A.

    2016-01-01

    (V) over the 17-km Kiamika reach. The joint distribution of D and V variables over wetted zones then is used to reveal structural patterns in hydraulic habitat availability at patch, reach, and segment scales. Here we analyze 156 bivariate (D, V) density function plots estimated over moving reach windows along the satellite scene extent to extract 14 physical habitat metrics (such as river width, mean and modal depths and velocity, variances and covariance in D and V over 1-m pixels, HMID, entropy). A principal component analysis on the set of metrics is then used to cluster river reaches in regard to similarity in their hydraulic habitat composition and heterogeneity. Applications of this approach can include (i) specific fish habitat detection at riverscape scales (e.g., large areas of riffle spawning beds, deeper pools) for regional management, (ii) studying how river habitat heterogeneity is correlated to fish distribution and (iii) guidance for site location for restoration of key habitats or for post regulation monitoring of representative reaches of various types.

  9. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  10. Data driven innovations in structural health monitoring

    Science.gov (United States)

    Rosales, M. J.; Liyanapathirana, R.

    2017-05-01

    At present, substantial investments are being allocated to civil infrastructures also considered as valuable assets at a national or global scale. Structural Health Monitoring (SHM) is an indispensable tool required to ensure the performance and safety of these structures based on measured response parameters. The research to date on damage assessment has tended to focus on the utilization of wireless sensor networks (WSN) as it proves to be the best alternative over the traditional visual inspections and tethered or wired counterparts. Over the last decade, the structural health and behaviour of innumerable infrastructure has been measured and evaluated owing to several successful ventures of implementing these sensor networks. Various monitoring systems have the capability to rapidly transmit, measure, and store large capacities of data. The amount of data collected from these networks have eventually been unmanageable which paved the way to other relevant issues such as data quality, relevance, re-use, and decision support. There is an increasing need to integrate new technologies in order to automate the evaluation processes as well as to enhance the objectivity of data assessment routines. This paper aims to identify feasible methodologies towards the application of time-series analysis techniques to judiciously exploit the vast amount of readily available as well as the upcoming data resources. It continues the momentum of a greater effort to collect and archive SHM approaches that will serve as data-driven innovations for the assessment of damage through efficient algorithms and data analytics.

  11. A regional-scale Ocean Health Index for Brazil.

    Science.gov (United States)

    Elfes, Cristiane T; Longo, Catherine; Halpern, Benjamin S; Hardy, Darren; Scarborough, Courtney; Best, Benjamin D; Pinheiro, Tiago; Dutra, Guilherme F

    2014-01-01

    Brazil has one of the largest and fastest growing economies and one of the largest coastlines in the world, making human use and enjoyment of coastal and marine resources of fundamental importance to the country. Integrated assessments of ocean health are needed to understand the condition of a range of benefits that humans derive from marine systems and to evaluate where attention should be focused to improve the health of these systems. Here we describe the first such assessment for Brazil at both national and state levels. We applied the Ocean Health Index framework, which evaluates ten public goals for healthy oceans. Despite refinements of input data and model formulations, the national score of 60 (out of 100) was highly congruent with the previous global assessment for Brazil of 62. Variability in scores among coastal states was most striking for goals related to mariculture, protected areas, tourism, and clean waters. Extractive goals, including Food Provision, received low scores relative to habitat-related goals, such as Biodiversity. This study demonstrates the applicability of the Ocean Health Index at a regional scale, and its usefulness in highlighting existing data and knowledge gaps and identifying key policy and management recommendations. To improve Brazil's ocean health, this study suggests that future actions should focus on: enhancing fisheries management, expanding marine protected areas, and monitoring coastal habitats.

  12. Establishing a baseline for regional scale monitoring of eelgrass (Zostera marina) habitat on the lower Alaska Peninsula

    Science.gov (United States)

    Hogrefe, Kyle R.; Ward, David H.; Donnelly, Tyrone F.; Dau, Niels

    2014-01-01

    Seagrass meadows, one of the world’s most widespread and productive ecosystems, provide a wide range of services with real economic value. Worldwide declines in the distribution and abundance of seagrasses and increased threats to coastal ecosystems from climate change have prompted a need to acquire baseline data for monitoring and protecting these important habitats. We assessed the distribution and abundance of eelgrass (Zostera marina) along nearly 1200 km of shoreline on the lower Alaska Peninsula, a region of expansive eelgrass meadows whose status and trends are poorly understood. We demonstrate the effectiveness of a multi-scale approach by using Landsat satellite imagery to map the total areal extent of eelgrass while integrating field survey data to improve map accuracy and describe the physical and biological condition of the meadows. Innovative use of proven methods and processing tools was used to address challenges inherent to remote sensing in high latitude, coastal environments. Eelgrass was estimated to cover ~31,000 ha, 91% of submerged aquatic vegetation on the lower Alaska Peninsula, nearly doubling the known spatial extent of eelgrass in the region. Mapping accuracy was 80%–90% for eelgrass distribution at locations containing adequate field survey data for error analysis.

  13. Water stress index for alkaline fen habitat based on UAV and continuous tower measurements of canopy infrared temperature

    Science.gov (United States)

    Ciężkowski, Wojciech; Jóźwiak, Jacek; Chormański, Jarosław; Szporak-Wasilewska, Sylwia; Kleniewska, Małgorzata

    2017-04-01

    This study is focused on developing water stress index for alkaline fen, to evaluate water stress impact on habitat protected within Natura 2000 network: alkaline fens (habitat code:7230). It is calculated based on continuous measurements of air temperature, relative humidity and canopy temperature from meteorological tower and several UAV flights for canopy temperature registration. Measurements were taken during the growing season in 2016 in the Upper Biebrza Basin in north-east Poland. Firstly methodology of the crop water stress index (CWSI) determination was used to obtained non-water stress base line based on continuous measurements (NWSBtower). Parameters of NWSBtower were directly used to calculate spatial variability of CWSI for UAV thermal infrared (TIR) images. Then for each UAV flight day at least 3 acquisition were performed to define NWSBUAV. NWSBUAV was used to calculate canopy waters stress for whole image relative to the less stressed areas. The spatial distribution of developed index was verified using remotely sensed indices of vegetation health. Results showed that in analysed area covered by sedge-moss vegetation NWSB cannot be used directly. The proposed modification of CWSI allows identifying water stress in alkaline fen habitats and was called as Sedge-Moss Water Stress Index (SMWSI). The study shows possibility of usage remotely sensed canopy temperature data to detect areas exposed to the water stress on wetlands. This research has been carried out under the Biostrateg Programme of the Polish National Centre for Research and Development (NCBiR), project No.: DZP/BIOSTRATEG-II/390/2015: The innovative approach supporting monitoring of non-forest Natura 2000 habitats, using remote sensing methods (HabitARS).

  14. Rodent Habitat On ISS: Spaceflight Effects On Mouse Behavior

    Science.gov (United States)

    Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Padmanabhan, S.; Choi, S.; Gong, C.; Globus, R. K.

    2016-01-01

    The NASA Decadal Survey (2011), Recapturing a Future for Space Exploration: Life and Physical Sciences Research for a New Era, emphasized the importance of expanding NASA life sciences research to long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, flight hardware, operations, and science capabilities supporting mouse studies in space were developed at NASA Ames Research Center. The first flight experiment carrying mice, Rodent Research Hardware and Operations Validation (Rodent Research-1), was launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4, exposing the mice to a total of 37 days in space. Ground control groups were maintained in environmental chambers at Kennedy Space Center. Mouse health and behavior were monitored for the duration of the experiment via video streaming. Here we present behavioral analysis of two groups of five C57BL/6 female adult mice viewed via fixed camera views compared with identically housed Ground Controls. Flight (Flt) and Ground Control (GC) mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Mice propelled themselves freely and actively throughout the Habitat using their forelimbs to push off or by floating from one cage area to another, and they quickly learned to anchor themselves using tails and/or paws. Overall activity was greater in Flt as compared to GC mice, with spontaneous ambulatory behavior including the development of organized ‘circling’ or ‘race-tracking’ behavior that emerged within the first few days of flight and encompassed the primary dark cycle activity for the remainder of the experiment. We quantified the bout frequency, duration and rate of circling with respect to characteristic behaviors observed in the varying stages of the progressive development of circling: flipping utilizing two sides of the

  15. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    Science.gov (United States)

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  16. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples.

    Science.gov (United States)

    Duan, Wen Hui; Wang, Quan; Quek, Ser Tong

    2010-12-06

    The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  17. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples

    Directory of Open Access Journals (Sweden)

    Ser Tong Quek

    2010-12-01

    Full Text Available The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  18. Physical stream habitat dynamics in Lower Bear Creek, northern Arkansas

    Science.gov (United States)

    Reuter, Joanna M.; Jacobson, Robert B.; Elliott, Caroline M.

    2003-01-01

    We evaluated the roles of geomorphic and hydrologic dynamics in determining physical stream habitat in Bear Creek, a stream with a 239 km2 drainage basin in the Ozark Plateaus (Ozarks) in northern Arkansas. During a relatively wet 12-month monitoring period, the geomorphology of Bear Creek was altered by a series of floods, including at least four floods with peak discharges exceeding a 1-year recurrence interval and another flood with an estimated 2- to 4-year recurrence interval. These floods resulted in a net erosion of sediment from the study reach at Crane Bottom at rates far in excess of other sites previously studied in the Ozarks. The riffle-pool framework of the study reach at Crane Bottom was not substantially altered by these floods, but volumes of habitat in riffles and pools changed. The 2- to 4-year flood scoured gravel from pools and deposited it in riffles, increasing the diversity of available stream habitat. In contract, the smaller floods eroded gravel from the riffles and deposited it in pools, possibly flushing fine sediment from the substrate but also decreasing habitat diversity. Channel geometry measured at the beginning of the study was use to develop a two-dimensional, finite-element hydraulic model at assess how habitat varies with hydrologic dynamics. Distributions of depth and velocity simulated over the range of discharges observed during the study (0.1 to 556 cubic meters per second, cms) were classified into habitat units based on limiting depths and Froude number criteria. The results indicate that the areas of habitats are especially sensitive to change to low to medium flows. Races (areas of swift, relatively deep water downstream from riffles) disappear completely at the lowest flows, and riffles (areas of swift, relatively shallow water) contract substantially in area. Pools also contract in area during low flow, but deep scours associated with bedrock outcrops sustain some pool area even at the lowest modeled flows. Modeled

  19. A NEW HABITAT CLASSIFICATION AND MANUAL FOR STANDARDIZED HABITAT MAPPING

    Directory of Open Access Journals (Sweden)

    A. KUN

    2007-01-01

    Full Text Available Today the documentation of natural heritage with scientific methods but for conservation practice – like mapping of actual vegetation – becomes more and more important. For this purpose mapping guides containing only the names and descriptions of vegetation types are not sufficient. Instead, new, mapping-oriented vegetation classification systems and handbooks are needed. There are different standardised systems fitted to the characteristics of a region already published and used successfully for surveying large territories. However, detailed documentation of the aims and steps of their elaboration is still missing. Here we present a habitat-classification method developed specifically for mapping and the steps of its development. Habitat categories and descriptions reflect site conditions, physiognomy and species composition as well. However, for species composition much lower role was given deliberately than in the phytosociological systems. Recognition and mapping of vegetation types in the field is highly supported by a definition, list of subtypes and list of ‘types not belonging to this habitat category’. Our system is two-dimensional: the first dimension is habitat type, the other is naturalness based habitat quality. The development of the system was conducted in two steps, over 200 mappers already tested it over 7000 field days in different projects.

  20. Monitoring health related quality of life in adolescents with diabetes

    DEFF Research Database (Denmark)

    de Wit, M; Delemarre-van de Waal, Henriette A; Pouwer, F

    2007-01-01

    Particularly in chronic conditions, monitoring health related quality of life (HRQoL) of adolescents in clinical practice is increasingly advocated. We set out to identify and review the clinical utility of available generic and diabetes specific HRQoL questionnaires suitable for use in adolescents...

  1. Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Anbo [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2016-09-30

    This report summarizes technical progress on the program “Embedded Active Fiber Optic Sensing Network for Structural Health Monitoring in Harsh Environments” funded by the National Energy Technology Laboratory of the U.S. Department of Energy, and performed by the Center for Photonics Technology at Virginia Tech. The objective of this project is to develop a first-of-a-kind technology for remote fiber optic generation and detection of acoustic waves for structural health monitoring in harsh environments. During the project period, which is from April 1, 2013 to Septemeber 30, 2016, three different acoustic generation mechanisms were studied in detail for their applications in building a fiber optic acoustic generation unit (AGU), including laser induced plasma breakdown (LIP), Erbium-doped fiber laser absorption, and metal laser absorption. By comparing the performance of the AGUs designed based on these three mechanisms and analyzing the experimental results with simulations, the metal laser absorption method was selected to build a complete fiber optic structure health monitoring (FO-SHM) system for the proposed high temperature multi-parameter structure health monitoring application. Based on the simulation of elastic wave propagation and fiber Bragg grating acoustic pulse detection, an FO-SHM element together with a completed interrogation system were designed and built. This system was first tested on an aluminum piece in the low-temperature range and successfully demonstrated its capability of multi-parameter monitoring and multi-point sensing. In the later stages of the project, the research was focused on improving the surface attachment design and preparing the FO-SHM element for high temperature environment tests. After several upgrades to the surface attachment methods, the FO-SHM element was able to work reliably up to 600oC when attached to P91 pipes, which are the target material of this project. In the final stage of this project, this FO

  2. Body sensor networks for Mobile Health Monitoring: Experience in Europe and Australia

    NARCIS (Netherlands)

    Jones, Valerie M.; Gay, Valerie; Leijdekkers, Peter

    2009-01-01

    Remote ambulatory monitoring is widely seen as playing a key part in addressing the impending crisis in health care provision. We describe two mobile health solutions, one developed in the Netherlands and one in Australia. In both cases a patient’s biosignals are measured by means of a body sensor

  3. Multi-functional smart aggregate-based structural health monitoring of circular reinforced concrete columns subjected to seismic excitations

    International Nuclear Information System (INIS)

    Gu, Haichang; Song, Gangbing; Moslehy, Yashar; Mo, Y L; Sanders, David

    2010-01-01

    In this paper, a recently developed multi-functional piezoceramic-based device, named the smart aggregate, is used for the health monitoring of concrete columns subjected to shake table excitations. Two circular reinforced concrete columns instrumented with smart aggregates were fabricated and tested with a recorded seismic excitation at the structural laboratory at the University of Nevada—Reno. In the tests, the smart aggregates were used to perform multiple monitoring functions that included dynamic seismic response detection, structural health monitoring and white noise response detection. In the proposed health monitoring approach, a damage index was developed on the basis of the comparison of the transfer function with the baseline function obtained in the healthy state. A sensor-history damage index matrix is developed to monitor the damage evolution process. Experimental results showed that the acceleration level can be evaluated from the amplitude of the dynamic seismic response; the damage statuses at different locations were evaluated using a damage index matrix; the first modal frequency obtained from the white noise response decreased with increase of the damage severity. The proposed multi-functional smart aggregates have great potential for use in the structural health monitoring of large-scale concrete structures

  4. Biomonitoring: Guide for the Use of Biological Endpoints in Monitoring Species, Habitats, and Projects

    Science.gov (United States)

    2007-11-01

    et al ., 1991; Welsh and Ollivier 1998), behavior (Daly et al ., 1995; Maltby et al ., 2002 ...include changes in species diversity and community structure (Karr 1981; Bramblett and Fausch 1991; Barbour et al ., 1999; Zweig and Rabeni 2001; Martin et ...programs in aquatic habitats; these programs typically employ benthic invertebrates such as molluscs (Maltby et al ., 2002 ; Applied Biomonitoring

  5. Natural Propagation and Habitat Improvement, Volume 1, Oregon, 1985 Annual and Final Reports.

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, Ken

    1986-10-01

    The Hot Springs Fork of the Collawash River is a major sub-drainage in the Clackamas River drainage. Emphasis species for natural production are spring chinook, coho salmon, and winter steelhead. Increased natural production appears limited by a lack of quality rearing habitat. Habitat complexity over approximately 70% of accessible area to anadromous fish has been reduced over the last 40 years by numerous factors. Natural passage barriers limit anadromous fish access to over 7 miles of high quality habitat. In the first year of a multi-year effort to improve fish habitat in the Hot Springs Fork drainage, passage enhancement on two tributaries and channel rehabilitation on one of those tributaries was completed. Three waterfalls on Nohorn Creek were evaluated and passage improved on the uppermost waterfall to provide steelhead full access to 2.4 miles of good quality habitat. The work was completed in October 1985 and involved blasting three jump pools and two holding pools into the waterfall. On Pansy Creek, four potential passage barriers were evaluated and passage improvement work conducted on two logjams and one waterfall. Minor modifications were made to a waterfall to increase flow into a side channel which allows passage around the waterfall. Channel rehabilitation efforts on Pansy Creek (RM 0.0 to 0.3) to increase low flow pool rearing habitat and spawning habitat including blasting five pools into areas of bedrock substrate and using a track-mounted backhoe to construct instream structures. On site materials were used to construct three log sills, three boulder berms, a boulder flow deflector, and five log and boulder structures. Also, an alcove was excavated to provide overwinter rearing habitat. Pre-project monitoring consisting of physical and biological data collection was completed in the project area.

  6. Ecological Monitoring and Compliance Program 2015 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Derek B. [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States); Ostler, W. Kent [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States); Anderson, David C. [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States); Greger, Paul D. [National Security Technologies, LLC. (NSTec), Las Vegas, NV (United States)

    2016-01-01

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2015. Program activities included (a) biological surveys at proposed activity sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, and (f) habitat restoration monitoring. During 2015, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  7. Ecological Monitoring and Compliance Program 2016 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Derek [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Perry, Jeanette [National Security Technologies, LLC. (NSTec), Mercury, NV (United States); Ostler, W. Kent [National Security Technologies, LLC. (NSTec), Mercury, NV (United States)

    2017-09-06

    The Ecological Monitoring and Compliance Program (EMAC), funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2016. Program activities included (a) biological surveys at proposed activity sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, and (f) habitat restoration monitoring. During 2016, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  8. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  9. Habitat Ecology Visual Surveys of Demersal Fishes and Habitats off California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Since 1992, the Habitat Ecology team has been conducting fishery independent, visual surveys of demersal fishes and associated habitats in deep water (20 to 900...

  10. Spatial and temporal variations' of characidae habitat, case study in Abras de Mantequilla wetland, Ecuador

    NARCIS (Netherlands)

    Alvarez Mieles, M.G.; Corzo, G.; Irvine, K.; Mynett, A.E.

    2015-01-01

    A central component of predictive ecology in wetlands is the analysis of species distribution as a function of their biotic and abiotic environment. This analysis is normally used by decision-makers in biodiversity conservation, species monitoring and environmental planning, among others. Habitat

  11. Habitat structure and diversity influence the nesting success of an endangered large cavity-nesting bird, the Southern Ground-hornbill

    Directory of Open Access Journals (Sweden)

    Leigh Combrink

    2017-11-01

    Full Text Available Habitat features can have a profound effect on the nesting success of birds. Savannas are often managed with predators and large herbivores as priority species, with little thought to the many bird species that management decisions could affect. Using a data set spanning seven breeding seasons, we examined how nesting success of Southern Ground-hornbills (SGHs Bucorvus leadbeateri in the Kruger National Park varied as a result of various environmental and habitat factors within a radius of 3 km surrounding the nest site. Identifying which factors affect nesting success will allow for targeted management efforts to ensure the long-term survival of SGHs both within and outside of protected areas. Habitat structure and diversity of the vegetation surrounding the nest were the most influential factors on SGH nesting success. SGHs require open grassy areas for foraging and areas with large trees for nesting. Savanna habitat drivers such as elephants and fire should be managed to ensure that sufficient large trees are able to establish in the landscape and to control for bush encroachment. This is especially important in areas earmarked for SGH reintroductions. Nest sites of SGHs should be monitored to mitigate any structural changes in the habitat surrounding the nests. Nests should be modified or artificial nest sites provided, where nests have been damaged or lost, to ensure the continued presence of these birds in African savannas. Conservation implications: Habitat structure and diversity surrounding Southern Groundhornbill nests has a significant impact on their nesting success. This highlights the importance of monitoring vegetation change in savanna habitats where they occur. Management of savanna areas should take factors that influence bush encroachment, such as fire and elephants, into account to ensure the long-term persistence of these birds.

  12. A bio-inspired memory model for structural health monitoring

    International Nuclear Information System (INIS)

    Zheng, Wei; Zhu, Yong

    2009-01-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system

  13. A bio-inspired memory model for structural health monitoring

    Science.gov (United States)

    Zheng, Wei; Zhu, Yong

    2009-04-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.

  14. An Improved Neural Network for Regional Giant Panda Habitat Suitability Mapping: A Case Study in Ya’an Prefecture

    Directory of Open Access Journals (Sweden)

    Jingwei Song

    2014-06-01

    Full Text Available Expert knowledge is a combination of prior information and subjective opinions based on long-experience; as such it is often not sufficiently objective to produce convincing results in animal habitat suitability index mapping. In this study, an animal habitat assessment method based on a learning neural network is proposed to reduce the level of subjectivity in animal habitat assessments. Based on two hypotheses, this method substitutes habitat suitability index with apparent density and has advantages over conventional ones such as those based on analytical hierarchy process or multivariate regression approaches. Besides, this method is integrated with a learning neural network and is suitable for building non-linear transferring functions to fit complex relationships between multiple factors influencing habitat suitability. Once the neural network is properly trained, new earth observation data can be integrated for rapid habitat suitability monitoring which could save time and resources needed for traditional data collecting approaches through extensive field surveys. Giant panda (Ailuropoda melanoleuca natural habitat in Ya’an prefecture and corresponding landsat images, DEM and ground observations are tested for validity of using the methodology reported. Results show that the method scores well in key efficiency and performance indicators and could be extended for habitat assessments, particularly of other large, rare and widely distributed animal species.

  15. Regional health workforce monitoring as governance innovation: a German model to coordinate sectoral demand, skill mix and mobility.

    Science.gov (United States)

    Kuhlmann, E; Lauxen, O; Larsen, C

    2016-11-28

    As health workforce policy is gaining momentum, data sources and monitoring systems have significantly improved in the European Union and internationally. Yet data remain poorly connected to policy-making and implementation and often do not adequately support integrated approaches. This brings the importance of governance and the need for innovation into play. The present case study introduces a regional health workforce monitor in the German Federal State of Rhineland-Palatinate and seeks to explore the capacity of monitoring to innovate health workforce governance. The monitor applies an approach from the European Network on Regional Labour Market Monitoring to the health workforce. The novel aspect of this model is an integrated, procedural approach that promotes a 'learning system' of governance based on three interconnected pillars: mixed methods and bottom-up data collection, strong stakeholder involvement with complex communication tools and shared decision- and policy-making. Selected empirical examples illustrate the approach and the tools focusing on two aspects: the connection between sectoral, occupational and mobility data to analyse skill/qualification mixes and the supply-demand matches and the connection between monitoring and stakeholder-driven policy. Regional health workforce monitoring can promote effective governance in high-income countries like Germany with overall high density of health workers but maldistribution of staff and skills. The regional stakeholder networks are cost-effective and easily accessible and might therefore be appealing also to low- and middle-income countries.

  16. Health monitoring and rehabilitation of a concrete structure using intelligent materials

    Science.gov (United States)

    Song, G.; Mo, Y. L.; Otero, K.; Gu, H.

    2006-04-01

    This paper presents the concept of an intelligent reinforced concrete structure (IRCS) and its application in structural health monitoring and rehabilitation. The IRCS has multiple functions which include self-rehabilitation, self-vibration damping, and self-structural health monitoring. These functions are enabled by two types of intelligent (smart) materials: shape memory alloys (SMAs) and piezoceramics. In this research, Nitinol type SMA and PZT (lead zirconate titanate) type piezoceramics are used. The proposed concrete structure is reinforced by martensite Nitinol cables using the method of post-tensioning. The martensite SMA significantly increases the concrete's damping property and its ability to handle large impact. In the presence of cracks due to explosions or earthquakes, by electrically heating the SMA cables, the SMA cables contract and close up the cracks. In this research, PZT patches are embedded in the concrete structure to detect possible cracks inside the concrete structure. The wavelet packet analysis method is then applied as a signal-processing tool to analyze the sensor signals. A damage index is defined to describe the damage severity for health monitoring purposes. In addition, by monitoring the electric resistance change of the SMA cables, the crack width can be estimated. To demonstrate this concept, a concrete beam specimen with reinforced SMA cables and with embedded PZT patches is fabricated. Experiments demonstrate that the IRC has the ability of self-sensing and self-rehabilitation. Three-point bending tests were conducted. During the loading process, a crack opens up to 0.47 inches. Upon removal of the load and heating the SMA cables, the crack closes up. The damage index formed by wavelet packet analysis of the PZT sensor data predicts and confirms the onset and severity of the crack during the loading. Also during the loading, the electrical resistance value of the SMA cable changes by up to 27% and this phenomenon is used to

  17. A mobile sensing system for structural health monitoring: design and validation

    International Nuclear Information System (INIS)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-01-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring

  18. A mobile sensing system for structural health monitoring: design and validation

    Science.gov (United States)

    Zhu, Dapeng; Yi, Xiaohua; Wang, Yang; Lee, Kok-Meng; Guo, Jiajie

    2010-05-01

    This paper describes a new approach using mobile sensor networks for structural health monitoring. Compared with static sensors, mobile sensor networks offer flexible system architectures with adaptive spatial resolutions. The paper first describes the design of a mobile sensing node that is capable of maneuvering on structures built with ferromagnetic materials. The mobile sensing node can also attach/detach an accelerometer onto/from the structural surface. The performance of the prototype mobile sensor network has been validated through laboratory experiments. Two mobile sensing nodes are adopted for navigating on a steel portal frame and providing dense acceleration measurements. Transmissibility function analysis is conducted to identify structural damage using data collected by the mobile sensing nodes. This preliminary work is expected to spawn transformative changes in the use of mobile sensors for future structural health monitoring.

  19. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Directory of Open Access Journals (Sweden)

    Chantel E Markle

    Full Text Available Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015 and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  20. Long-term habitat changes in a protected area: Implications for herpetofauna habitat management and restoration.

    Science.gov (United States)

    Markle, Chantel E; Chow-Fraser, Gillian; Chow-Fraser, Patricia

    2018-01-01

    Point Pelee National Park, located at the southern-most tip of Canada's mainland, historically supported a large number of herpetofauna species; however, despite nearly a century of protection, six snake and five amphibian species have disappeared, and remaining species-at-risk populations are thought to be in decline. We hypothesized that long-term changes in availability and distribution of critical habitat types may have contributed to the disappearance of herpetofauna. To track habitat changes we used aerial image data spanning 85 years (1931-2015) and manually digitized and classified image data using a standardized framework. Change-detection analyses were used to evaluate the relative importance of proportionate loss and fragmentation of 17 habitat types. Marsh habitat diversity and aquatic connectivity has declined since 1931. The marsh matrix transitioned from a graminoid and forb shallow marsh interspersed with water to a cattail dominated marsh, altering critical breeding, foraging, and overwintering habitat. Reduced diversity of marsh habitats appears to be linked to the expansion of invasive Phragmites australis, which invaded prior to 2000. Loss of open habitats such as savanna and meadow has reduced availability of high quality thermoregulation habitat for reptiles. Restoration of the northwestern region and tip of Point Pelee National Park to a mixed landscape of shallow wetlands (cattail, graminoid, forb, open water) and eradication of dense Phragmites stands should improve habitat diversity. Our results suggest that long-term landscape changes resulting from habitat succession and invasive species can negatively affect habitat suitability for herpetofauna and protection of land alone does not necessarily equate to protection of sensitive herpetofauna.

  1. Ecological Monitoring and Compliance Program 2011 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D. J.; Anderson, D. C.; Hall, D. B.; Greger, P. D.; Ostler, W. K.

    2012-06-13

    The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, monitors the ecosystem of the Nevada National Security Site and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program's activities conducted by National Security Technologies, LLC, during calendar year 2011. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex. During 2011, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  2. Ecological Monitoring and Compliance Program 2010 Report

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, D.J.; Anderson, D.C.; Hall, D.B.; Greger, P.D.; Ostler, W.K.

    2011-07-01

    The Ecological Monitoring and Compliance (EMAC) Program, funded through the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), monitors the ecosystem of the Nevada National Security Site (NNSS) and ensures compliance with laws and regulations pertaining to NNSS biota. This report summarizes the program’s activities conducted by National Security Technologies, LLC (NSTec), during calendar year 2010. Program activities included (a) biological surveys at proposed construction sites, (b) desert tortoise compliance, (c) ecosystem monitoring, (d) sensitive plant species monitoring, (e) sensitive and protected/regulated animal monitoring, (f) habitat restoration monitoring, and (g) monitoring of the Nonproliferation Test and Evaluation Complex (NPTEC). During 2010, all applicable laws, regulations, and permit requirements were met, enabling EMAC to achieve its intended goals and objectives.

  3. Habitat Blocks and Wildlife Corridors

    Data.gov (United States)

    Vermont Center for Geographic Information — Habitat blocks are areas of contiguous forest and other natural habitats that are unfragmented by roads, development, or agriculture. Vermonts habitat blocks are...

  4. Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral forest fragments.

    Directory of Open Access Journals (Sweden)

    Michela Balestri

    Full Text Available The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species.

  5. Habitat degradation and seasonality affect physiological stress levels of Eulemur collaris in littoral forest fragments.

    Science.gov (United States)

    Balestri, Michela; Barresi, Marta; Campera, Marco; Serra, Valentina; Ramanamanjato, Jean Baptiste; Heistermann, Michael; Donati, Giuseppe

    2014-01-01

    The littoral forest on sandy soil is among the most threatened habitats in Madagascar and, as such, it represents a hot-spot within a conservation hot-spot. Assessing the health of the resident lemur fauna is not only critical for the long-term viability of these populations, but also necessary for the future re-habilitation of this unique habitat. Since the Endangered collared brown lemur, Eulemur collaris, is the largest seed disperser of the Malagasy south-eastern littoral forest its survival in this habitat is crucial. In this study we compared fecal glucocorticoid metabolite (fGCM) levels, a measure of physiological stress and potential early indicator of population health, between groups of collared brown lemurs living in a degraded forest fragment and groups occurring in a more preserved area. For this, we analysed 279 fecal samples collected year-round from 4 groups of collared brown lemurs using a validated 11-oxoetiocholanolone enzyme immunoassay and tested if fGCM levels were influenced by reproductive stages, phenological seasons, sex, and habitat degradation. The lemurs living in the degraded forest had significantly higher fGCM levels than those living in the more preserved area. In particular, the highest fGCM levels were found during the mating season in all animals and in females during gestation in the degraded forest. Since mating and gestation are both occurring during the lean season in the littoral forest, these results likely reflect a combination of ecological and reproductive pressures. Our findings provide a clear indication that habitat degradation has additive effects to the challenges found in the natural habitat. Since increased stress hormone output may have long-term negative effects on population health and reproduction, our data emphasize the need for and may add to the development of effective conservation plans for the species.

  6. The 'global health' education framework: a conceptual guide for monitoring, evaluation and practice

    Science.gov (United States)

    2011-01-01

    Background In the past decades, the increasing importance of and rapid changes in the global health arena have provoked discussions on the implications for the education of health professionals. In the case of Germany, it remains yet unclear whether international or global aspects are sufficiently addressed within medical education. Evaluation challenges exist in Germany and elsewhere due to a lack of conceptual guides to develop, evaluate or assess education in this field. Objective To propose a framework conceptualising 'global health' education (GHE) in practice, to guide the evaluation and monitoring of educational interventions and reforms through a set of key indicators that characterise GHE. Methods Literature review; deduction. Results and Conclusion Currently, 'new' health challenges and educational needs as a result of the globalisation process are discussed and linked to the evolving term 'global health'. The lack of a common definition of this term complicates attempts to analyse global health in the field of education. The proposed GHE framework addresses these problems and presents a set of key characteristics of education in this field. The framework builds on the models of 'social determinants of health' and 'globalisation and health' and is oriented towards 'health for all' and 'health equity'. It provides an action-oriented construct for a bottom-up engagement with global health by the health workforce. Ten indicators are deduced for use in monitoring and evaluation. PMID:21501519

  7. Does habitat disturbance affect stress, body condition and parasitism in two sympatric lemurs?

    Science.gov (United States)

    Rakotoniaina, Josué H; Kappeler, Peter M; Ravoniarimbinina, Pascaline; Pechouskova, Eva; Hämäläinen, Anni M; Grass, Juliane; Kirschbaum, Clemens; Kraus, Cornelia

    2016-01-01

    Understanding how animals react to human-induced changes in their environment is a key question in conservation biology. Owing to their potential correlation with fitness, several physiological parameters are commonly used to assess the effect of habitat disturbance on animals' general health status. Here, we studied how two lemur species, the fat-tailed dwarf lemur (Cheirogaleus medius) and the grey mouse lemur (Microcebus murinus), respond to changing environmental conditions by comparing their stress levels (measured as hair cortisol concentration), parasitism and general body condition across four habitats ordered along a gradient of human disturbance at Kirindy Forest, Western Madagascar. These two species previously revealed contrasting responses to human disturbance; whereas M. murinus is known as a resilient species, C. medius is rarely encountered in highly disturbed habitats. However, neither hair cortisol concentrations nor parasitism patterns (prevalence, parasite species richness and rate of multiple infections) and body condition varied across the gradient of anthropogenic disturbance. Our results indicate that the effect of anthropogenic activities at Kirindy Forest is not reflected in the general health status of both species, which may have developed a range of behavioural adaptations to deal with suboptimal conditions. Nonetheless, a difference in relative density among sites suggests that the carrying capacity of disturbed habitat is lower, and both species respond differently to environmental changes, with C. medius being more negatively affected. Thus, even for behaviourally flexible species, extended habitat deterioration could hamper long-term viability of populations.

  8. 75 FR 34975 - Notice of Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration...

    Science.gov (United States)

    2010-06-21

    ... Estuary Habitat Restoration Council's Intent to Revise its Estuary Habitat Restoration Strategy; Request... interagency Estuary Habitat Restoration Council, is providing notice of the Council's intent to revise the ''Estuary Habitat Restoration Strategy'' and requesting public comments to guide its revision. DATES...

  9. Vacant habitats in the Universe.

    Science.gov (United States)

    Cockell, Charles S

    2011-02-01

    The search for life on other planets usually makes the assumption that where there is a habitat, it will contain life. On the present-day Earth, uninhabited habitats (or vacant habitats) are rare, but might occur, for example, in subsurface oils or impact craters that have been thermally sterilized in the past. Beyond Earth, vacant habitats might similarly exist on inhabited planets or on uninhabited planets, for example on a habitable planet where life never originated. The hypothesis that vacant habitats are abundant in the Universe is testable by studying other planets. In this review, I discuss how the study of vacant habitats might ultimately inform an understanding of how life has influenced geochemical conditions on Earth. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Choices in recreational water quality monitoring: new opportunities and health risk trade-offs

    Science.gov (United States)

    Nevers, Meredith B.; Byappanahalli, Muruleedhara N.; Whitman, Richard L.

    2013-01-01

    With the recent release of new recreational water quality monitoring criteria, there are more options for regulatory agencies seeking to protect beachgoers from waterborne pathogens. Included are methods that can reduce analytical time, providing timelier estimates of water quality, but the application of these methods has not been examined at most beaches for expectation of health risk and management decisions. In this analysis, we explore health and monitoring outcomes expected at Lake Michigan beaches using protocols for indicator bacteria including culturable Escherichia coli (E. coli; EC), culturable enterococci (ENT), and enterococci as analyzed by qPCR (QENT). Correlations between method results were generally high, except at beaches with historically high concentrations of EC. The “beach action value” was exceeded most often when using EC or ENT as the target indicator; QENT exceeded the limit far less frequently. Measured water quality between years was varied. Although methods with equivalent health expectation have been established, the lack of relationship among method outcomes and annual changes in mean indicator bacteria concentrations complicates the decision-making process. The monitoring approach selected by beach managers may be a combination of available tools that maximizes timely health protection, cost efficiency, and collaboration among beach jurisdictions.

  11. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1995 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, R.Todd

    1996-05-01

    During the 1995 - 96 project period, four new habitat enhancement projects were implemented under the Umatilla River Basin Anadromous Fish Habitat Enhancement Project by the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) in the upper Umatilla River Basin. A total of 38,644 feet of high tensile smooth wire fencing was constructed along 3.6 miles of riparian corridor in the Meacham Creek, Wildhorse Creek, Greasewood Creek, West Fork of Greasewood Creek and Mission Creek watersheds. Additional enhancements on Wildhorse Creek and the lower Greasewood Creek System included: (1) installation of 0.43 miles of smooth wire between river mile (RM) 10.25 and RM 10.5 Wildhorse Creek (fence posts and structures had been previously placed on this property during the 1994 - 95 project period), (2) construction of 46 sediment retention structures in stream channels and maintenance to 18 existing sediment retention structures between RM 9.5 and RM 10.25 Wildhorse Creek, and (3) revegetation of stream corridor areas and adjacent terraces with 500 pounds of native grass seed or close species equivalents and 5,000 native riparian shrub/tree species to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. U.S. Fish and Wildlife Service (USFWS), Bureau of Indian Affairs (BIA) and Environmental Protection Agency (EPA) funds were cost shared with Bonneville Power Administration (BPA) funds, provided under this project, to accomplish habitat enhancements. Water quality monitoring continued and was expanded for temperature and turbidity throughout the upper Umatilla River Watershed. Physical habitat surveys were conducted on the lower 13 river miles of Wildhorse Creek and within the Greasewood Creek Project Area to characterize habitat quality and to quantify various habitat types by area.

  12. A systematic approach to the planning, implementation, monitoring, and evaluation of integrated health services.

    Science.gov (United States)

    Reynolds, Heidi W; Sutherland, Elizabeth G

    2013-05-06

    Because of the current emphasis and enthusiasm focused on integration of health systems, there is a risk of piling resources into integrated strategies without the necessary systems in place to monitor their progress adequately or to measure impact, and to learn from these efforts. The rush to intervene without adequate monitoring and evaluation will continue to result in a weak evidence base for decision making and resource allocation. Program planning and implementation are inextricability linked to monitoring and evaluation. Country level guidance is needed to identify country-specific integrated strategies, thereby increasing country ownership. This paper focuses on integrated health services but takes into account how health services are influenced by the health system, managed by programs, and made up of interventions. We apply the principles in existing comprehensive monitoring and evaluation (M&E) frameworks in order to outline a systematic approach to the M&E of integration for the country level. The approach is grounded by first defining the country-specific health challenges that integration is intended to affect. Priority points of contact for care can directly influence health, and essential packages of integration for all major client presentations need to be defined. Logic models are necessary to outline the plausible causal pathways and define the inputs, roles and responsibilities, indicators, and data sources across the health system. Finally, we recommend improvements to the health information system and in data use to ensure that data are available to inform decisions, because changes in the M&E function to make it more integrated will also facilitate integration in the service delivery, planning, and governance components. This approach described in the paper is the ideal, but its application at the country level can help reveal gaps and guide decisions related to what health services to prioritize for integration, help plan for how to

  13. System Health Monitoring Using a Novel Method: Security Unified Process

    Directory of Open Access Journals (Sweden)

    Alireza Shameli-Sendi

    2012-01-01

    and change management, and project management. The dynamic dimension, or phases, contains inception, analysis and design, construction, and monitoring. Risk assessment is a major part of the ISMS process. In SUP, we present a risk assessment model, which uses a fuzzy expert system to assess risks in organization. Since, the classification of assets is an important aspect of risk management and ensures that effective protection occurs, a Security Cube is proposed to identify organization assets as an asset classification model. The proposed model leads us to have an offline system health monitoring tool that is really a critical need in any organization.

  14. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Kanemoto, Shigeru; Watanabe, Masaya [The University of Aizu, Aizuwakamatsu (Japan); Yusa, Noritaka [Tohoku University, Sendai (Japan)

    2014-08-15

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology.

  15. Advanced Machine learning Algorithm Application for Rotating Machine Health Monitoring

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Watanabe, Masaya; Yusa, Noritaka

    2014-01-01

    The present paper tries to evaluate the applicability of conventional sound analysis techniques and modern machine learning algorithms to rotating machine health monitoring. These techniques include support vector machine, deep leaning neural network, etc. The inner ring defect and misalignment anomaly sound data measured by a rotating machine mockup test facility are used to verify the above various kinds of algorithms. Although we cannot find remarkable difference of anomaly discrimination performance, some methods give us the very interesting eigen patterns corresponding to normal and abnormal states. These results will be useful for future more sensitive and robust anomaly monitoring technology

  16. The Mexican experience in monitoring and evaluation of public policies addressing social determinants of health

    Science.gov (United States)

    Valle, Adolfo Martinez

    2016-01-01

    Monitoring and evaluation (M&E) have gradually become important and regular components of the policy-making process in Mexico since, and even before, the World Health Organization (WHO) Commission on Social Determinants of Health (CSDH) called for interventions and policies aimed at tackling the social determinants of health (SDH). This paper presents two case studies to show how public policies addressing the SDH have been monitored and evaluated in Mexico using reliable, valid, and complete information, which is not regularly available. Prospera, for example, evaluated programs seeking to improve the living conditions of families in extreme poverty in terms of direct effects on health, nutrition, education and income. Monitoring of Prospera's implementation has also helped policy-makers identify windows of opportunity to improve the design and operation of the program. Seguro Popular has monitored the reduction of health inequalities and inequities evaluated the positive effects of providing financial protection to its target population. Useful and sound evidence of the impact of programs such as Progresa and Seguro Popular plus legal mandates, and a regulatory evaluation agency, the National Council for Social Development Policy Evaluation, have been fundamental to institutionalizing M&E in Mexico. The Mexican experience may provide useful lessons for other countries facing the challenge of institutionalizing the M&E of public policy processes to assess the effects of SDH as recommended by the WHO CSDH. PMID:26928215

  17. The Mexican experience in monitoring and evaluation of public policies addressing social determinants of health.

    Science.gov (United States)

    Valle, Adolfo Martinez

    2016-01-01

    Monitoring and evaluation (M&E) have gradually become important and regular components of the policy-making process in Mexico since, and even before, the World Health Organization (WHO) Commission on Social Determinants of Health (CSDH) called for interventions and policies aimed at tackling the social determinants of health (SDH). This paper presents two case studies to show how public policies addressing the SDH have been monitored and evaluated in Mexico using reliable, valid, and complete information, which is not regularly available. Prospera, for example, evaluated programs seeking to improve the living conditions of families in extreme poverty in terms of direct effects on health, nutrition, education and income. Monitoring of Prospera's implementation has also helped policy-makers identify windows of opportunity to improve the design and operation of the program. Seguro Popular has monitored the reduction of health inequalities and inequities evaluated the positive effects of providing financial protection to its target population. Useful and sound evidence of the impact of programs such as Progresa and Seguro Popular plus legal mandates, and a regulatory evaluation agency, the National Council for Social Development Policy Evaluation, have been fundamental to institutionalizing M&E in Mexico. The Mexican experience may provide useful lessons for other countries facing the challenge of institutionalizing the M&E of public policy processes to assess the effects of SDH as recommended by the WHO CSDH.

  18. The Mexican experience in monitoring and evaluation of public policies addressing social determinants of health

    Directory of Open Access Journals (Sweden)

    Adolfo Martinez Valle

    2016-02-01

    Full Text Available Monitoring and evaluation (M&E have gradually become important and regular components of the policy-making process in Mexico since, and even before, the World Health Organization (WHO Commission on Social Determinants of Health (CSDH called for interventions and policies aimed at tackling the social determinants of health (SDH. This paper presents two case studies to show how public policies addressing the SDH have been monitored and evaluated in Mexico using reliable, valid, and complete information, which is not regularly available. Prospera, for example, evaluated programs seeking to improve the living conditions of families in extreme poverty in terms of direct effects on health, nutrition, education and income. Monitoring of Prospera's implementation has also helped policy-makers identify windows of opportunity to improve the design and operation of the program. Seguro Popular has monitored the reduction of health inequalities and inequities evaluated the positive effects of providing financial protection to its target population. Useful and sound evidence of the impact of programs such as Progresa and Seguro Popular plus legal mandates, and a regulatory evaluation agency, the National Council for Social Development Policy Evaluation, have been fundamental to institutionalizing M&E in Mexico. The Mexican experience may provide useful lessons for other countries facing the challenge of institutionalizing the M&E of public policy processes to assess the effects of SDH as recommended by the WHO CSDH.

  19. A Multiple Watershed Approach to Assessing the Effects of Habitat Restoration Actions on Anadromous and Resident Fish Populations, Technical Report 2003-2004.

    Energy Technology Data Exchange (ETDEWEB)

    Marmorek, David

    2004-03-01

    for future habitat restoration actions. Such designs are being developed concurrently with this project by several other groups in the Columbia Basin (RME Workgroup 2003, NMFS 2003, Hillman and Paulsen 2002, Hillman 2003). By addressing questions about habitat restoration and monitoring (in coordination with other related efforts), we hope that this project will catalyze a shift in the Basin's paradigm of habitat restoration, moving from implementation of individual watershed projects towards rigorously designed and monitored, multiwatershed, adaptive management experiments. The project involved three phases of work, which were closely integrated with various related and ongoing efforts in the region: (1) Scoping - We met with a Core Group of habitat experts and managers to scope out a set of testable habitat restoration hypotheses, identify candidate watersheds and recommend participants for a data evaluation workshop. (2) Data Assembly - We contacted over 80 scientists and managers to help evaluate the suitability of each candidate watershed's historical data for assessing the effectiveness of past restoration actions. We eventually settled on the Yakima, Wenatchee, Clearwater, and Salmon subbasins, and began gathering relevant data for these watersheds at a workshop with habitat experts and managers. Data assembly continued for several months after the workshop. (3) Data Analysis and Synthesis - We explored statistical approaches towards retrospectively analyzing the effects of restoration 'treatments' at nested spatial scales across multiple watersheds (Chapters 2-5 of this report). These analyses provided a foundation for identifying existing constraints to testing restoration hypotheses, and opportunities to overcome these constraints through improved experimental designs, monitoring protocols and project selection strategies (Chapters 6 and 7 of this report). Finally, we developed a set of recommendations to improve the design

  20. Integrated System of Structural Health Monitoring and Intelligent Management for a Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2014-01-01

    Full Text Available It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province. The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.